MySQL™ Cluster Manager 1.2.4 User Manual
Abstract

Deprecated release. MySQL Cluster Manager 1.2 has been superseded by later releases adding new features and incorporating fixes to bugs found in previous MySQL Cluster Manager releases, and is no longer available; users of MySQL Cluster Manager 1.2.4 should upgrade as soon as possible. Thus, this document is archival in nature, and no longer actively maintained. Information about the most recent MySQL Cluster Manager 1.3 release can be found at http://dev.mysql.com/doc/mysql-cluster-manager/1.3/en/.

This is the User Manual for the MySQL™ Cluster Manager, version 1.2.4. It documents the MySQL Cluster Manager Agent and MySQL Cluster Manager Client software applications which can be used to administer MySQL Cluster, a version of the MySQL Database System (referred to hereafter as “MySQL Server” or simply “MySQL”) that incorporates the NDB storage engine for high availability and data redundancy in a distributed computing environment.

This Manual applies to MySQL Cluster Manager 1.2.4 and contains information that may not apply to older versions of the MySQL Cluster Manager software. For documentation covering previous MySQL Cluster Manager releases, see MySQL Documentation: MySQL Cluster, on the MySQL website.

MySQL Cluster Manager features. This manual describes features that may not be included in every version of MySQL Cluster Manager, and such features may not be included in the version of MySQL Cluster Manager licensed to you. If you have any questions about the features included in your version of MySQL Cluster Manager, refer to your MySQL Cluster Manager license agreement or contact your Oracle sales representative.

MySQL Cluster Manager, MySQL Server, and MySQL Cluster features. This manual contains certain basic information about MySQL Server and MySQL Cluster; however, it is not in any way intended as an exhaustive reference for either of these products.

Current versions of MySQL Cluster compatible with MySQL Cluster Manager are based on versions 7.2 and 7.3 of the NDB storage engine; these versions of MySQL Cluster are known as “MySQL Cluster NDB 7.2” and “MySQL Cluster NDB 7.3”, respectively. MySQL Cluster functionality varies between MySQL Cluster releases; MySQL Cluster Manager cannot supply or emulate MySQL Cluster features that are not present in the version of the MySQL Cluster software in use.

For complete information about MySQL Server and MySQL Cluster, please refer to the appropriate version of the MySQL Manual:

• For information about MySQL Cluster NDB 7.2, see MySQL Cluster NDB 7.2.
• See MySQL Cluster NDB 7.3 and MySQL Cluster NDB 7.4, for information about MySQL Cluster NDB 7.3.

If you do not have the MySQL Server and MySQL Cluster documentation, you can obtain it free of charge from the MySQL Documentation Library, on the MySQL website.

For legal information, see the Legal Notices.

For help with using MySQL, please visit either the MySQL Forums or MySQL Mailing Lists, where you can discuss your issues with other MySQL users.

For additional documentation on MySQL products, including translations of the documentation into other languages, and downloadable versions in variety of formats, including HTML and PDF formats, see the MySQL Documentation Library.

Licensing information. This product may include third-party software, used under license. See this document for licensing information, including licensing information relating to third-party software that may be included in this release.

Document generated on: 2016-05-13 (revision: 47715)
Table of Contents

Preface and Legal Notices .. v
1 Overview of MySQL Cluster Manager ... 1
 1.1 MySQL Cluster Manager Terminology .. 1
 1.2 MySQL Cluster Manager Architecture .. 2
2 MySQL Cluster Manager Installation, Configuration, Cluster Setup 5
 2.1 Obtaining MySQL Cluster Manager ... 5
 2.2 Operating Platform and MySQL Cluster Version Compatibility 5
 2.3 MySQL Cluster Manager Agent Installation .. 6
 2.3.1 Installing MySQL Cluster Manager on Unix Platforms 7
 2.3.2 Installing MySQL Cluster Manager on Windows Platforms 9
 2.3.3 Setting the MySQL Cluster Manager Agent User Name and Password 17
 2.4 MySQL Cluster Manager Configuration File .. 18
 2.5 Upgrading MySQL Cluster Manager .. 19
3 Using MySQL Cluster Manager ... 23
 3.1 mc-md, the MySQL Cluster Manager Agent ... 23
 3.2 Starting and Stopping the MySQL Cluster Manager Agent 31
 3.2.1 Starting and Stopping the Agent on Linux ... 31
 3.2.2 Starting and Stopping the MySQL Cluster Manager Agent on Windows 32
 3.3 Starting the MySQL Cluster Manager Client ... 35
 3.4 Setting Up MySQL Clusters with MySQL Cluster Manager 37
 3.4.1 Creating a MySQL Cluster with MySQL Cluster Manager 37
 3.4.2 Migrating a MySQL Cluster to MySQL Cluster Manager 39
 3.5 MySQL Cluster Backup and Restore Using MySQL Cluster Manager 42
 3.5.1 Requirements for Backup and Restore .. 42
 3.5.2 Basic MySQL Cluster Backup and Restore Using MySQL Cluster Manager 43
4 MySQL Cluster Manager Client Commands ... 49
 4.1 Online Help and Information Commands .. 54
 4.2 MySQL Cluster Manager Site and Agent Commands 61
 4.2.1 The add hosts Command ... 61
 4.2.2 The change log-level Command ... 62
 4.2.3 The create site Command ... 62
 4.2.4 The delete site Command ... 63
 4.2.5 The list sites Command ... 64
 4.2.6 The list hosts Command .. 64
 4.2.7 The stop agents Command ... 65
 4.2.8 The version Command .. 65
 4.3 MySQL Cluster Manager Package Commands .. 66
 4.3.1 The add package Command ... 66
 4.3.2 The delete package Command ... 68
 4.3.3 The list packages Command ... 69
 4.4 MySQL Cluster Manager Cluster Commands ... 70
 4.4.1 The create cluster Command .. 70
 4.4.2 The delete cluster Command ... 73
 4.4.3 The list clusters Command ... 73
 4.4.4 The restart cluster Command .. 74
 4.4.5 The show status Command .. 74
 4.4.6 The start cluster Command ... 77
 4.4.7 The stop cluster Command ... 78
 4.4.8 The upgrade cluster Command .. 79
 4.5 MySQL Cluster Manager Configuration Commands .. 80
 4.5.1 The get Command ... 82
 4.5.2 The reset Command .. 91
 4.5.3 The set Command .. 96
 4.6 MySQL Cluster Manager Process Commands ... 103
 4.6.1 The add process Command .. 103
Preface and Legal Notices

This is the User Manual for the MySQL™ Cluster Manager, version 1.2.4. It documents the MySQL Cluster Manager Agent and MySQL Cluster Manager Client software applications which can be used to administer MySQL Cluster, a version of the MySQL Database System (referred to hereafter as “MySQL Server” or simply “MySQL”) that incorporates the NDB storage engine for high availability and data redundancy in a distributed computing environment.

This manual does contain certain basic information about MySQL and MySQL Cluster; however, it is not in any way intended as an exhaustive reference for either of these products. Current versions of MySQL Cluster compatible with MySQL Cluster Manager are based on MySQL Server 5.5 and version 7.2 of the NDB storage engine, and MySQL Server 5.6 and NDB version 7.3: these versions of MySQL Cluster are known as “MySQL Cluster NDB 7.2” and “MySQL Cluster NDB 7.3”. For information about MySQL MySQL Cluster NDB 7.2, see MySQL Cluster NDB 7.2); for information about MySQL MySQL Cluster NDB 7.3, see MySQL Cluster NDB 7.3 and MySQL Cluster NDB 7.4). If you do not have the MySQL and MySQL Cluster documentation, this documentation can be obtained free of charge from the MySQL Documentation Library on the MySQL website.

Licensing information. This product may include third-party software, used under license. See this document for licensing information, including licensing information relating to third-party software that may be included in this release.

Legal Notices

Copyright © 2009, 2014, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are “commercial computer software” pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC...
Legal Notices

International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth in an applicable agreement between you and Oracle.

Documentation Accessibility

For information about Oracle’s commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the following terms:

You may create a printed copy of this documentation solely for your own personal use. Conversion to other formats is allowed as long as the actual content is not altered or edited in any way. You shall not publish or distribute this documentation in any form or on any media, except if you distribute the documentation in a manner similar to how Oracle disseminates it (that is, electronically for download on a Web site with the software) or on a CD-ROM or similar medium, provided however that the documentation is disseminated together with the software on the same medium. Any other use, such as any dissemination of printed copies or use of this documentation, in whole or in part, in another publication, requires the prior written consent from an authorized representative of Oracle. Oracle and/ or its affiliates reserve any and all rights to this documentation not expressly granted above.
1.1 MySQL Cluster Manager Terminology

This section provides definitions of key terms used to describe MySQL Cluster Manager and its components in this manual and in other documentation relating to MySQL Cluster Manager and MySQL Cluster.

Site.
A set of hosts on which MySQL Cluster processes to be managed by MySQL Cluster Manager are located. A site can include one or more clusters.

Cluster.
A MySQL Cluster deployment. A cluster consists of a set of MySQL Cluster processes running on one or more hosts. A minimal cluster is usually considered to include one management node, two data nodes, and one SQL node. A typical production cluster may have one or two management nodes, several SQL nodes, and 4 or more data nodes. The exact numbers of data and SQL nodes can vary according to data size, type and rating of hardware used on the hosts, expected throughput, network characteristics, and other factors; the particulars are beyond the scope of this document, and you should consult MySQL Cluster NDB 7.3 and MySQL Cluster NDB 7.4, for more specific information and guidelines.

Host.
A computer. The exact meaning depends on the context:

• A computer where one or more MySQL Cluster processes are run. In this context, we sometimes refer more specifically to a cluster host.

The number of cluster processes and number of cluster hosts may be, but are not necessarily, the same.

• A computer where an instance of the MySQL Cluster Manager agent runs.

In order to run a MySQL Cluster using MySQL Cluster Manager, the MySQL Cluster Manager agent must be running on each host where cluster processes are to be run. In other words, when using MySQL Cluster Manager, all cluster hosts must also be MySQL Cluster Manager agent hosts (although the reverse is not necessarily true). Therefore, you should understand that anytime we use the term host, we are referring to a host computer in both of the senses just given.

Process.
In the context of MySQL Cluster, a process (more specifically, a cluster process) is a MySQL Cluster node, of one of the following 3 types: management node (ndb_mgmd), data node (ndbd or ndbmt.d), or SQL node (mysqld). For more information about these node types and their functions in a cluster, see MySQL Cluster Core Concepts, and MySQL Cluster Nodes, Node Groups, Replicas, and Partitions.

Package.
A copy of the MySQL cluster software. This should include the binary executables needed to run the cluster processes of the desired types on a given host. The simplest way to make sure that this is done
is to place a copy of the entire MySQL Cluster distribution on each computer that you intend to use as a cluster host.

Configuration attribute.
A value whose setting affects cluster operations in a clearly defined and measurable way. When running MySQL Cluster manually, configuration is accomplished using cluster configuration parameters, MySQL server options, and MySQL system and status variables; MySQL Cluster Manager masks the differences between these, provides a unified view of them; see Configuration attributes, for more information.

Agent.
A MySQL Cluster Manager process that runs on each cluster host, responsible for managing the cluster processes running on that host.

Client.
The MySQL Cluster Manager client is a software application that allows a user to connect to MySQL Cluster Manager and perform administrative tasks, such as (but not limited to): creating, starting, and stopping clusters; obtaining cluster and cluster process status reports; getting cluster configuration information and setting cluster configuration attributes.

1.2 MySQL Cluster Manager Architecture

This section provides an architectural overview of MySQL Cluster Manager, its components, and their deployment.

MySQL Cluster Manager is a distributed client-server application consisting of two main components. The MySQL Cluster Manager agent is a set of one or more agent processes that manage MySQL cluster nodes, and the MySQL Cluster Manager client provides a command-line interface to the agent's management functions.

Agent.
The MySQL Cluster Manager agent is comprised of the set of all MySQL Cluster Manager agent processes running on the hosts making up a given management site. A MySQL Cluster Manager agent process is a daemon process which runs on each host to be used in the cluster. In MySQL Cluster Manager, there is no single central server or process; all agents collaborate in managing a cluster as a whole. This means that any connected agent can be used to carry out tasks that effect the entire cluster.

Each agent process is responsible for managing the MySQL Cluster nodes running on the host where the agent is located. MySQL Cluster management and SQL nodes are managed directly by the MySQL Cluster Manager agent; cluster data nodes are managed indirectly, using the cluster management nodes.

Management responsibilities handled by the MySQL Cluster Manager agent include the following:

- Starting, stopping, and restarting cluster nodes
- Cluster configuration changes
- Cluster software upgrades
- Host and node status reporting
- Recovery of failed cluster nodes

Creating, performing initial configuration of, or starting a cluster, requires that agent processes be running on all cluster hosts. Once the cluster has been started, it continues to run even if one or more agent processes fail. However, any failed agent processes must be restarted before you can perform addition cluster management functions.
A MySQL Cluster Manager client is a software application used to access an MySQL Cluster Manager agent. In MySQL Cluster Manager, the client is actually nothing more than the mysql command-line client, started with the options that are necessary for it to connect to an MySQL Cluster Manager agent. MySQL Cluster Manager 1.2.4 and later releases include an mcm client for ease of use; this client consists of a script that acts as a wrapper for the mysql client with these options.

By way of example, we show how MySQL Cluster Manager would be deployed for use with a MySQL Cluster running on 4 host computers. This is illustrated in the following diagram:

In this example cluster, 2 of the hosts each house a management server and an SQL node; the other 2 hosts each house 2 data nodes. However, regardless of the distribution of cluster nodes among the hosts, a MySQL Cluster Manager agent process must be running on each host.

A MySQL Cluster Manager client can be used to access the agent from any of the hosts making up the management site to which the cluster belongs. In addition, the client can be used on any computer that has a network connection to at least 1 of the hosts where an agent process is running. The computer where the client itself runs is not required to be one of these hosts. The client can connect to and use different agent processes on different hosts within the management site, at different times, to perform cluster management functions.
Chapter 2 MySQL Cluster Manager Installation, Configuration, Cluster Setup

Table of Contents

2.1 Obtaining MySQL Cluster Manager ... 5
2.2 Operating Platform and MySQL Cluster Version Compatibility 5
2.3 MySQL Cluster Manager Agent Installation .. 6
 2.3.1 Installing MySQL Cluster Manager on Unix Platforms 7
 2.3.2 Installing MySQL Cluster Manager on Windows Platforms 9
 2.3.3 Setting the MySQL Cluster Manager Agent User Name and Password 17
2.4 MySQL Cluster Manager Configuration File ... 18
2.5 Upgrading MySQL Cluster Manager .. 19

This chapter discusses basic installation and configuration of the MySQL Cluster Manager Management Agent, connecting to the agent with the MySQL Cluster Manager client, and the basics of creating or importing a cluster using MySQL Cluster Manager.

2.1 Obtaining MySQL Cluster Manager

MySQL Cluster Manager is available only through commercial license. To learn more about licensing terms, and to obtain information about where and how to download MySQL Cluster Manager, visit http://www.mysql.com/products/cluster/mcm/, or contact your Oracle representative.

2.2 Operating Platform and MySQL Cluster Version Compatibility

MySQL Cluster Manager 1.2.4 is currently available for and supported on the following operating systems:

• Oracle Linux 5 and 6 (32-bit and 64-bit)
• Novell SUSE Enterprise Linux 11 (64-bit only)
• Solaris 10 and 11, x86 and SPARC (64-bit only)
• Recent versions of Microsoft Windows (MySQL Cluster NDB 7.1.4 and later) (32-bit binaries only; can be used on 64-bit Windows)

MySQL Cluster Manager binaries for Oracle Linux 5 and 6 can also be used with Red Hat Enterprise Linux 5 and 6.

Generic Linux binaries are also available in 32-bit and 64-bit versions. These should work with most recent Linux distributions.

MySQL Cluster Manager is currently supported for use in the following MySQL Cluster release versions, on the platforms shown:

• MySQL Cluster NDB 7.1 (see MySQL Cluster NDB 7.1 in the MySQL 5.1 Reference Manual), beginning with MySQL Cluster NDB 7.1.4 (Linux, Solaris, Windows)
• MySQL Cluster NDB 7.2 (see MySQL Cluster NDB 7.2), beginning with MySQL Cluster NDB 7.2.4 (Linux, Solaris, Windows)
• MySQL Cluster NDB 7.3 (see MySQL Cluster NDB 7.3 and MySQL Cluster NDB 7.4), beginning with MySQL Cluster NDB 7.3.2 (Linux, Solaris, Windows)

Prior to installation, you must obtain the correct build of MySQL Cluster Manager for your operating system and hardware platform. For Unix platforms, MySQL Cluster Manager is delivered as a Unix
MySQL Cluster Manager Agent Installation

Installation of the MySQL Cluster Manager agent and client programs varies according to platform. On Unix platforms, you must extract the binaries and other files from a .tar.gz archive and copy them to the correct locations manually. For Windows platforms, an MSI installer file is provided. The name of the file varies with the target platform. All MySQL Cluster Manager 1.2.4 packages include MySQL Cluster NDB 7.3.2 on all supported platforms. Available packages with applicable platforms and architectures are shown in the following table:

<table>
<thead>
<tr>
<th>Package</th>
<th>OS / Platform</th>
<th>Architecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>mcm-1.2.4-cluster-7.3.2-linux-rhel5-x86-32bit.tar.gz</td>
<td>Oracle Linux 5, Oracle Linux 6</td>
<td>32-bit</td>
</tr>
<tr>
<td>mcm-1.2.4-cluster-7.3.2-linux-rhel5-x86-64bit.tar.gz</td>
<td>Oracle Linux 5, Oracle Linux 6</td>
<td>64-bit</td>
</tr>
<tr>
<td>mcm-1.2.4-cluster-7.3.2-linux-sles11-x86-64bit.tar.gz</td>
<td>SUSE Enterprise Linux 11</td>
<td>64-bit</td>
</tr>
<tr>
<td>mcm-1.2.4-cluster-7.3.2-linux-glibc2.5-x86-32bit.tar.gz</td>
<td>Generic Linux</td>
<td>32-bit</td>
</tr>
<tr>
<td>mcm-1.2.4-cluster-7.3.2-linux-glibc2.5-x86-64bit.tar.gz</td>
<td>Generic Linux</td>
<td>64-bit</td>
</tr>
<tr>
<td>mcm-1.2.4-cluster-7.3.2-solaris10-sparc-64bit.tar.gz</td>
<td>Solaris 10</td>
<td>64-bit (SPARC)</td>
</tr>
<tr>
<td>mcm-1.2.4-cluster-7.3.2-solaris10-x86-64bit.tar.gz</td>
<td>Solaris 10</td>
<td>64-bit (x86)</td>
</tr>
<tr>
<td>mcm-1.2.4-cluster-7.3.2-win32-x86.msi</td>
<td>Windows</td>
<td>32-bit</td>
</tr>
<tr>
<td>mcm-1.2.4-win32-cluster-7.3.2-winx64-x86.msi</td>
<td>Windows</td>
<td>MySQL Cluster Manager: 32-bit; MySQL Cluster: 64-bit</td>
</tr>
</tbody>
</table>

When selecting the appropriate installer for your operating system and hardware, keep in mind that 32-bit programs can normally be run on 64-bit platforms, but that the reverse is not true.

It might be possible that some MySQL Cluster Manager 1.2.4 builds are compatible with versions of Linux or Solaris other than those listed previously. Your Oracle representative and MySQL Support personnel can assist you in determining whether this is the case, and if so, which build is most suitable for your Linux or Solaris operating platform.

MySQL Cluster Manager is currently supported on the following Microsoft Windows operating systems:

- Windows 7
- Windows Vista
- Windows 2008
- Windows XP

The information provided in this section is subject to change from release to release. For more specific and timely information about MySQL Cluster Manager availability and support for different operating platforms and versions, as well as for different MySQL Cluster software versions, see Supported Platforms: MySQL Cluster Manager at http://www.mysql.com/support/supportedplatforms/clustermanager.html, or contact your Oracle representative.

2.3 MySQL Cluster Manager Agent Installation

Installation of the MySQL Cluster Manager agent and client programs varies according to platform. On Unix platforms, you must extract the binaries and other files from a .tar.gz archive and copy them to the correct locations manually. For Windows platforms, an MSI installer is provided which
largely automates this process. Installation of MySQL Cluster Manager using each of these methods is covered in the next two sections.

Note

License keys were required in order to use some very early releases of MySQL Cluster Manager. They are not needed in order to use recent versions, including MySQL Cluster Manager 1.2.4.

2.3.1 Installing MySQL Cluster Manager on Unix Platforms

Installing the MySQL Cluster Manager agent on Linux and similar platforms can be accomplished using the following steps:

1. **Extract the MySQL Cluster Manager 1.2.4 program and other files from the distribution archive.**

 You must install a copy of MySQL Cluster Manager on each computer that you intend to use as a MySQL Cluster host. In other words, you need to install MySQL Cluster Manager on each host that is a member of a MySQL Cluster Manager management site. For each host, you should use the MySQL Cluster Manager build that matches that computer's operating system and processor architecture.

 On Linux systems, you can unpack the archive using the following command, using `mcm-1.2.4-cluster-7.3.2-linux-sles11-x86-64bit.tar.gz` as an example (the actual filename will vary according to the MySQL Cluster Manager build that you intend to deploy):

   ```shell
   tar -zxvf mcm-1.2.4-cluster-7.3.2-linux-sles11-x86-64bit.tar.gz
   ```

 This command unpacks the archive into a directory having the same name as the archive, less the `.tar.gz` extension. Beginning with MySQL Cluster Manager 1.2.3, the archive contains a single directory at the top level, named `mcm-1.2.4`.

 Important

 Because the Solaris version of `tar` cannot handle long filenames correctly, the MySQL Cluster Manager program files may be corrupted if you try to use it to unpack the MySQL Cluster Manager archive. To get around this issue on Solaris operating systems, you should use GNU `tar` (`gtar`) rather than the default `tar` supplied with Solaris. On Solaris 10, `gtar` is often already installed in the `/usr/sfw/bin` directory, although the `gtar` executable may not be included in your path. If `gtar` is not present on your system, please consult the Solaris 10 system documentation for information on how to obtain and install it.

 In general, the location where you place the unpacked MySQL Cluster Manager directory and the name of this directory can be arbitrary. However, we recommend that you use a standard location for optional software, such as `/opt` on Linux systems, and that you name the directory using the 1.2.4 version number. (This facilitates subsequent upgrades.) On a typical Linux system you can accomplish this task like this:

   ```shell
   mv mcm-1.2.4-cluster-7.3.2-linux-sles11-x86-64bit /opt/mcm-1.2.4
   ```

 In MySQL Cluster Manager 1.2.3 and later, you can instead do this:

   ```shell
   cd mcm-1.2.4-cluster-7.3.2-linux-sles11-x86-64bit
   mv mcm-1.2.4 /opt/mcm-1.2.4
   ```

 For ease of use, we recommend that you put the MySQL Cluster Manager files in the same directory on each host where you intend to run it.
Contents of the MySQL Cluster Manager Unix Distribution Archive.
If you change to the directory where you placed the extracted MySQL Cluster Manager archive and list the contents, you should see something similar to what is shown here:

```
shell> cd /opt/mcm-1.2.4
shell> ls
bin  cluster  etc  lib  libexec  licenses  share  var
```

These directories are described in the following table:

<table>
<thead>
<tr>
<th>Directory</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>bin</td>
<td>MySQL Cluster Manager agent startup scripts</td>
</tr>
<tr>
<td>cluster</td>
<td>Contains the MySQL Cluster NDB 7.3.2 binary distribution</td>
</tr>
<tr>
<td>etc</td>
<td>Contains the agent configuration file (mcmd.ini)</td>
</tr>
<tr>
<td>etc/init.d</td>
<td>Init scripts (not currently used)</td>
</tr>
<tr>
<td>lib and subdirectories</td>
<td>Libraries needed to run the MySQL Cluster Manager agent</td>
</tr>
<tr>
<td>libexec</td>
<td>MySQL Cluster Manager agent and client executables</td>
</tr>
<tr>
<td>licenses/lgpl</td>
<td>An archive containing source code (including licensing and documentation), for glib 2.1</td>
</tr>
<tr>
<td>share/doc/mcmd</td>
<td>README.txt file</td>
</tr>
<tr>
<td>var</td>
<td>XML files containing information needed by MySQL Cluster Manager about processes, attributes, and command syntax</td>
</tr>
</tbody>
</table>

Normally, the only directories of those shown in the preceding table that you need be concerned with are the bin and etc directories.

For MySQL Cluster Manager 1.2.4 distributions that include MySQL Cluster, the complete MySQL Cluster NDB 7.3.2 binary distribution is included in the cluster directory. Within this directory, the layout of the MySQL Cluster distribution is the same as that of the standalone MySQL Cluster binary distribution. For example, MySQL Cluster binary programs such as ndb_mgmd, ndbd, ndb_mtd, and ndb_mgm can be found in cluster/bin. For more information, see MySQL Installation Layout for Generic Unix/Linux Binary Package, and Installing a MySQL Cluster Binary Release on Linux, in the MySQL Manual.

If you wish to use the included MySQL Cluster software, it is recommended that you move the cluster directory and all its contents to a location outside the MySQL Cluster Manager installation directory, such as /opt/ndb-version. For example, on a Linux system, you can move the MySQL Cluster NDB 7.3.2 software that is bundled with MySQL Cluster Manager 1.2.4 to a suitable location by first navigating to the MySQL Cluster Manager installation directory and then using a shell command similar to what is shown here:

```
shell> mv cluster /opt/ndb-7.3.2
```

Note
The mcmd --bootstrap option uses the included MySQL Cluster binaries in the installation directory's cluster directory and does not work if they cannot be found there. To work around this issue, create a symbolic link to the correct directory in its place, like this:

```
shell> ln -s /opt/ndb-7.3.2 cluster
```
After doing this, you can use the `mcm` client commands `add package` and `upgrade cluster` to upgrade any desired cluster or clusters to the new MySQL Cluster software version.

The MySQL Cluster Manager agent by default writes its log file as `mcmd.log` in the installation directory. When the agent runs for the first time, it creates a directory where the agent stores its own configuration data; by default, this is `/opt/mcm_data`. (Prior to MySQL Cluster Manager 1.2.3, this was `mcm_data` in the MySQL Cluster Manager installation directory; see Bug #16521396.) The configuration data, log files, and data node file systems for a given MySQL Cluster under MySQL Cluster Manager control, and named `cluster_name`, can be found in `clusters/cluster_name` under this data directory (sometimes also known as the MySQL Cluster Manager data repository).

The location of the MySQL Cluster Manager agent configuration file, log file, and data directory can be controlled with `mcmd` startup options or by making changes in the agent configuration file. To simplify upgrades of MySQL Cluster Manager, we recommend that you change the data repository to a directory outside the MySQL Cluster Manager installation directory, such as `/var/opt/mcm`. See Section 2.4, “MySQL Cluster Manager Configuration File”, and Section 3.2, “Starting and Stopping the MySQL Cluster Manager Agent”, for more information.

2.3.2 Installing MySQL Cluster Manager on Windows Platforms

To install MySQL Cluster Manager 1.2.4 on Windows platforms, you should first have downloaded the MSI installer file `mcm-1.2.4-cluster-7.3.2-win32-x86.msi` (see Section 2.1, “Obtaining MySQL Cluster Manager”). 1.2.4 for Windows is 32-bit, as is the bundled MySQL Cluster NDB 7.3.2; these run on both 32-bit and 64-bit versions of Windows.

As mentioned elsewhere (see, for example, Section 3.4.1, “Creating a MySQL Cluster with MySQL Cluster Manager”), you must install a copy of MySQL Cluster Manager on each computer where you intend to host a MySQL Cluster node. Therefore, the following procedure must be performed separately on each host computer. For ease of installations and upgrades on multiple machines, it is recommended that you install MySQL Cluster Manager to the same location on each host. This is `C:\Program Files\MySQL\MySQL Cluster Manager 1.2.4` or `C:\Program Files (x86)\MySQL\MySQL Cluster Manager 1.2.4` by default, but it is possible to install MySQL Cluster Manager to an alternate location such as `C:\mcm`.

In the discussion that follows, we assume that you have downloaded the MySQL Cluster Manager 1.2.1 MSI installer as user `jon` to this user's Downloads directory (`C:\Users\jon\Downloads\MCM`) on a 64-bit Windows system. Navigate to this directory in Windows Explorer, as shown here:

![MySQL Cluster Manager MSI installation directory](image)

To run the installer, double-click on the file icon in Windows Explorer. Some versions of Windows also provide an `Install` item in the Windows Explorer menu that can be used to run the installer. When you start the installer, you may see a Windows `Security Warning` screen. If you obtained the installer from a trusted source and know that it has not been tampered with, choose `Run` from the dialog, which allows the installer to continue to the `Welcome` screen, as shown here:
Click the Next button to continue to the License Agreement screen, as shown in the next figure:

You should read the license text in the text area, and when you have done so, check the box labelled I accept the terms in the License Agreement. Until you have checked the box, you cannot complete the MySQL Cluster Manager installation; it is possible only to go back to the previous screen, print the license, or cancel the installation (using the buttons labelled Back, Print, and Cancel, respectively). Checking the box enables the Next button, as shown here:
Click the Next button to continue to the Destination Folder screen, where you can choose the installation directory. The next figure shows the Destination Folder screen with the default location. On English-language 32-bit Windows systems, this is `C:\Program Files\MySQL\MySQL Cluster Manager version\`; on English 64-bit Windows systems, the default is `C:\Program Files (x86)\MySQL\MySQL Cluster Manager version\`. (In this example, we are installing MySQL Cluster Manager 1.2.1 on a 64-bit system, so the default is `C:\Program Files (x86)\MySQL \MySQL Cluster Manager 1.2.1\`). You can click the Change button to change the directory where MySQL Cluster Manager should be installed; the default directory is adequate for most cases.

Once you have selected the destination directory, the installer has gathered all the information that it requires to perform the installation. Click Next to continue to the Ready screen, shown here:
Click the **Install** button to install MySQL Cluster Manager. As the installer begins to copy files and perform other tasks affecting the system, you may see a warning dialog from Windows User Access Control, as shown here:

If this occurs, click the **Yes** button to allow the installation to continue. A **Setup Wizard** screen with a progress bar is displayed while the installer runs, as shown in the next figure:
The Setup Wizard may require several minutes to copy all of the necessary files for MySQL Cluster Manager 1.2.4 and MySQL Cluster NDB 7.3.2 to the installation directory and to perform other required changes.

Note

The MySQL Cluster Manager 1.2.4 installer places MySQL Cluster NDB 7.3.2 in the cluster directory under the installation directory. (By default, this is `C:\Program Files\MySQL\MySQL Cluster Manager 1.2.4\cluster` or `C:\Program Files (x86)\MySQL\MySQL Cluster Manager 1.2.4\cluster`.) The location of the MySQL Cluster binaries is not separately configurable using the MySQL Cluster Manager installer.

When the Setup Wizard finishes, the installer displays the Installation Completed screen, as shown here:

MySQL Cluster Manager 1.2.4 has now been installed to the destination directory; click the Finish button to exit the installer.
2.3.2.1 Installing the MySQL Cluster Manager Agent as a Windows Service

After installing the MySQL Cluster Manager Agent as a Windows service, you can start and stop the agent using the Windows Service Manager. The installation also configures the agent to start automatically whenever Windows starts, and to shut down safely whenever Windows shuts down.

Note

The Windows service can be used to control the running of MySQL Cluster Manager agents on a single host only. To shut down agents on multiple hosts, you can use the `stop agents` command in the MySQL Cluster Manager client.

The installation is performed using the command prompt (`cmd.exe`); as with installing or removing any Windows service, it must also be done as a user having sufficient permissions, such as the system Administrator account.

If the account you are currently using has Administrator privileges, you can simply start `cmd.exe`. Otherwise, you must run the command prompt program as the Administrator. To do this, first locate a shortcut to the command prompt. On most Windows systems, you can do this using the Start Menu. Find **Programs** (or **All Programs**, in some Windows versions), then navigate to **Accessories**. Under **Accessories**, right-click on the **Command Prompt** menu item. From the context menu that appears, select **Run as Administrator**. You can see how this looks on a typical Windows system in the next figure.

![Command Prompt Menu](image)

If a Windows UAC dialog referring to `cmd.exe` appears, click **Yes** to allow the command prompt to run as Administrator and thus to continue. You should now have a command prompt window open on your desktop, running a session with Administrator privileges.

To install the MySQL Cluster Manager agent as a service, we use the `SC CREATE` command. This command allows us to specify a name for the service (for use in `NET START` and `NET STOP` commands), a display name (to be shown in the Service Manager), a startup mode (automatic or manual start), and a path to the executable to be run as a service. (Use `mcmd-svc.exe` rather than `mcmd.exe` as the executable.) The path must also include any arguments needed by the program; in the case of MySQL Cluster Manager, `mcmd-svc.exe` must be told where to find its configuration file using the `--defaults-file` option. Both of these paths must be absolute.
Important

Installation of the MySQL Cluster Manager agent as a service is recommended. However, you should not install MySQL Cluster processes (ndb_mgmd.exe, ndbd.exe, ndbmtc.exe, mysqld.exe) as services on Windows hosts to be used as MySQL Cluster nodes under management by MySQL Cluster Manager, since the MySQL Cluster Manager agent itself controls MySQL Cluster nodes independently of the Windows Service Manager.

Assume that you have installed MySQL Cluster Manager to the default location for 64-bit Windows systems C:\Program Files (x86)\MySQL\MySQL Cluster Manager 1.2.4\ (C:\Program Files\MySQL\MySQL Cluster Manager 1.2.4\ on 32-bit Windows systems), and that its configuration file is located in C:\Program Files (x86)\MySQL\MySQL Cluster Manager 1.2.4\etc. Then the following command installs MySQL Cluster Manager as a service named mcm, with the display name “MySQL Cluster Manager 1.2.4”:

C:\> SC CREATE
"MCM" DisplayName= "MySQL Cluster Manager 1.2.4" Start= "auto"
BinPath= "C:\Program Files (x86)\MySQL\MySQL Cluster Manager 1.2.4\bin\mcmd-svc.exe
--defaults-file="C:\Program Files (x86)\MySQL\MySQL Cluster Manager 1.2.4\etc\mcmd.ini"
[SC] CreateService SUCCESS
C:\>

This command can be quite long. For enhanced legibility, we have broken it across several lines, but you should always enter it on a single line, allowing it to wrap naturally, similar to what is shown here:

In addition, you should keep in mind that the spaces after the equals signs following the DisplayName, Start, and BinPath arguments are required.

Starting and stopping the MySQL Cluster Manager agent Windows service. After installing the service successfully, you can start and stop the service manually, if the need arises, with the NET START and NET STOP commands, as shown here:
Once the service is installed, the MySQL Cluster Manager agent starts automatically whenever Windows is started. You can verify that the service is running with the Windows Task Manager. Open the Task Manager, and switch to the Services tab if it is not already displayed. If the MySQL Cluster Manager agent is running, you can find it in the list of services under MCM in the Name, column and *MySQL Cluster Manager 1.2.4* in the Description column, as shown here:

You can also verify if the service is running using the Windows Service Manager, as shown here:
The Service Manager also allows you to start, stop, or pause the MySQL Cluster Manager agent service manually using a GUI.

Note
When first installing the MySQL Cluster Manager agent as a service, the service is not started automatically until Windows is started. If you do not wish to restart Windows, then you must start the service manually using either NET START on the command line or the graphical control provided in the Windows Service Manager.

You can remove the service using the SC DELETE command and the name of the service—in this case MCM—that was used in the SC CREATE command, as shown here:

If the service is running at the time that SC DELETE is executed, the removal of the service takes effect the next time the service is stopped. In such a case, you must stop the previous instance of the service manually, and allow it to be removed, before you can reinstall the service.

Once you have installed the MySQL Cluster Manager agent and the service is running correctly, you are ready to connect to it using the MySQL Cluster Manager client. See Section 3.3, “Starting the MySQL Cluster Manager Client”, for information about how to do this.

2.3.3 Setting the MySQL Cluster Manager Agent User Name and Password

Normally it is not necessary to alter the user name or password used by the user agent to administer mysqld processes. However, if you should wish to do so, you can change either or both of these, using the procedure outlined here:

1. Stop all agents. (You can use stop agents for this purpose.)
2. Update the `etc/mcmd.ini` agent configuration file. Set a new password by uncommenting the line containing `manager-password=` and adding the new password as this value; set a new administrative user account name by uncommenting the line containing `manager-username=` and setting this to the new user name. See Section 3.1, “mcmd, the MySQL Cluster Manager Agent”, for more information about these options.

3. For each `mysqld` do the following:
 a. Log in (using the `mysql` client) as the MySQL root user
 b. If you are changing the user name, do this first, using the following statement, where `olduser` is the current user name and `newuser` is the new `manager-user` that you set previously in `etc/mcmd.ini`:

   ```sql
   RENAME USER 'olduser'@'127.0.0.1' TO 'newuser'@'127.0.0.1';
   ```

 If you are changing the user name for the first time, use `mcmd` for `olduser`. (Prior to MySQL Cluster Manager 1.2.4, if you are doing this for the first time, use `admin` for `olduser`. See Bug #16476206.) In addition, you should use `127.0.0.1` for the host name (and not `localhost`).
 c. Execute the following statement, where `newuser` is the new user name, and `newpass` is the new password:

   ```sql
   SET PASSWORD FOR 'newuser'@'127.0.0.1' = PASSWORD('newpass');
   ```

 Use `mcmd` for the user name if you have not changed it—that is, if `manager-user` has been left unset in `mcmd.ini`. (Prior to MySQL Cluster Manager 1.2.4, if you are doing this for the first time, use `admin` for `olduser`.) Use `127.0.0.1` for the host name (and not `localhost`).
 d. Issue a `FLUSH PRIVILEGES` statement.

4. Restart the agents. All agents should now be using the new password for the `mcmd` accounts on the MySQL servers (`mysqld` processes).

2.4 MySQL Cluster Manager Configuration File

Before starting the MySQL Cluster Manager agent, you should make any necessary changes to the `[mcmd]` section of the agent configuration file, supplied with MySQL Cluster Manager as `etc/mcmd.ini` in the installation directory. On Linux and similar operating systems, you can edit this file in place; on Windows, it is recommended that you save a copy of this file to a convenient location for which the path does not contain any spaces, such as `C:\mcm\data`.

A `#` character in the MySQL Cluster Manager configuration file indicates the beginning of a comment; the comment continues to the end of the line.

The version of this file that is supplied with MySQL Cluster Manager reads similarly to what is shown here:

```ini
[mcmd]
plugins=manager

##manager-port=1862
##agent-uuid=
log-file=mcmd.log
log-level=message
##pid-file=

## Username and password for manager plugin
##manager-username=
```
Upgrading MySQL Cluster Manager

2.5 Upgrading MySQL Cluster Manager

This section discusses upgrading MySQL Cluster Manager from a version 1.1 release or previous 1.2 release to the latest 1.2 release (currently 1.2.4), as well as providing basic guidance on upgrading the bundled MySQL Cluster software.

The basic steps for upgrading a MySQL Cluster Manager installation are listed here:

1. Install the new version of the MySQL Cluster Manager software in the desired location.
2. Create a configuration for the new installation such that it uses the previous installation's data.
3. Stop all running MySQL Cluster Manager agent processes on all hosts.
4. Start the new agent processes, ensuring that they use the new configuration created previously.

A more detailed explanation is provided of each of these steps in the next few paragraphs. For purposes of example, we assume an upgrade from an existing installation of MySQL Cluster Manager 1.2.1 to a new installation of MySQL Cluster Manager 1.2.2. For a Linux or other Unix-like system, we assume that these are installed in /opt/mcm-1.2.1 and /opt/mcm-1.2.2, respectively; on Windows, we assume the default directories C:\Program Files\MySQL\MySQL Cluster Manager 1.2.1 and C:\Program Files\MySQL\MySQL Cluster Manager 1.2.2.

Step 1: Install new MySQL Cluster Manager version.

You can obtain and install a new version of MySQL Cluster Manager in the same way as for a new installation (see Section 2.1, “Obtaining MySQL Cluster Manager”, and Section 2.3, “MySQL Cluster Manager Agent Installation”), with the additional requirement that you should not attempt to install the new version in the same location as the version which you are currently using.

Step 2: Configure new installation.

In order for the new MySQL Cluster Manager agent binaries to manage the same MySQL Cluster instances, they must be able to find the data contained in the agent

Note

Prior to MySQL Cluster Manager 1.1.1, the [mcmd] section of the configuration file used the heading [mysql-proxy]. The old name is still supported for backward compatibility, but is now deprecated and is thus subject to removal in a future release of MySQL Cluster Manager. For this reason, you should change any [mysql-proxy] section headings in existing configuration files to [mcmd], when upgrading to MySQL Cluster Manager 1.2.4.

A minimal agent configuration file as used in production might look like this:

```
[mcmd]
plugins=manager
manager-port=1862
manager-directory=/var/opt/mcm-1.2.4
log-file=/var/opt/mcm/mcmd.log
log-level=warning
```

For more information about these and other options which can be set in the agent configuration file, see Section 3.1, "mcmd, the MySQL Cluster Manager Agent".
Upgrading MySQL Cluster Manager

repository used by the old installation's binaries. In MySQL Cluster Manager 1.2.3 and later, this is /opt/mcm_data by default, but can be set using the manager-directory directive in mcmd.ini. (Prior to MySQL Cluster Manager 1.2.3, the default was the mcm_data directory in the agent installation directory; see Bug #16521396.)

It is simplest for MySQL Cluster Manager software upgrades if the agent repository and the agent configuration file are located externally to the agent installation directory. Suppose the old version of the agent is installed to /opt/mcm-1.2.1, and that it uses the directory /var/opt/mcm for its agent repository and /etc/mcm/mcmd.ini for its configuration file. In this case, to make the new binaries use the same configuration and repository, it is necessary only to start the new mcmd processes such that they use the same configuration file (see Step 4). Otherwise, you should copy the default configuration file to a location outside the installation directory, such as /etc/mcm/mcmd.ini, as shown here:

shell> cp -r /opt/mcm-1.2.1/etc/mcmd.ini /etc/mcm/mcmd.ini

Then, add the following line to the new copy of the mcmd.ini file:

manager-directory=/var/opt/mcm

After this, you can save and close the file. See also Section 2.4, "MySQL Cluster Manager Configuration File".

Step 3: Stop all agents. Stop the agent processes using the old binaries on all hosts making up the management installation. You can stop all agents for a given site, for example mysite, using the stop agents command in the MySQL Cluster Manager client, as shown here:

mcm> stop agents mysite;

You should execute a stop agents command, similar to the one just shown, for each site listed in the output of list sites.

Step 4: Start new MySQL Cluster Manager binaries. Start the new mcmd agent binaries with the --defaults-file option so that it uses the correct configuration file, like this:

shell> mcmd --defaults-file=/etc/mcm/mcmd.ini &

You should now be able to start the mcm client from the new installation and perform management tasks as usual. Once the client successfully starts and connects to the agent, you can verify that it is running the correct version of the MySQL Cluster Manager software using the version command, as shown here:

mcm> version;
+-----------------------------+
| Version |
+-----------------------------+
| MySQL Cluster Manager 1.2.4 |
+-----------------------------+
1 row in set (0.00 sec)

See Chapter 3, Using MySQL Cluster Manager, for more information about performing common cluster management tasks with the mcm client.

Upgrading MySQL Cluster. Although the MySQL Cluster software typically comes bundled with the MySQL Cluster Manager distribution, it is important to keep in mind that upgrading the MySQL Cluster Manager software does not upgrade any existing MySQL Cluster installations. Since the new MySQL Cluster Manager installation uses the same configuration as the old one, the clusters under its control remain unchanged. If you wish to upgrade a cluster using the bundled MySQL Cluster software, you should move the cluster directory (see Contents of the MySQL Cluster Manager Unix Distribution
Archive) and all of its contents to a location outside the MySQL Cluster Manager installation directory. After this, you can use **add package** and **upgrade cluster** to upgrade one or more clusters to the new version of the MySQL Cluster software.
Chapter 3 Using MySQL Cluster Manager

Table of Contents

3.1 mcmd, the MySQL Cluster Manager Agent .. 23
3.2 Starting and Stopping the MySQL Cluster Manager Agent 31
 3.2.1 Starting and Stopping the Agent on Linux ... 31
 3.2.2 Starting and Stopping the MySQL Cluster Manager Agent on Windows 32
3.3 Starting the MySQL Cluster Manager Client .. 35
3.4 Setting Up MySQL Clusters with MySQL Cluster Manager 37
 3.4.1 Creating a MySQL Cluster with MySQL Cluster Manager 37
 3.4.2 Migrating a MySQL Cluster to MySQL Cluster Manager 39
3.5 MySQL Cluster Backup and Restore Using MySQL Cluster Manager 42
 3.5.1 Requirements for Backup and Restore ... 42
 3.5.2 Basic MySQL Cluster Backup and Restore Using MySQL Cluster Manager 43

This chapter discusses starting and stopping the MySQL Cluster Manager agent and client, and setting up, backing up, and restoring MySQL Clusters using the MySQL Cluster Manager.

3.1 mcmd, the MySQL Cluster Manager Agent

mcmd is the MySQL Cluster Manager agent program; invoking this executable starts the MySQL Cluster Manager Agent, to which you can connect using the mcm client (see Section 3.3, "Starting the MySQL Cluster Manager Client", and Chapter 4, MySQL Cluster Manager Client Commands, for more information).

You can modify the behavior of the agent in a number of different ways by specifying one or more of the options discussed in this section. Most of these options can be specified either on the command line or in the agent configuration file (normally etc/mcmd.ini). (Some exceptions include the --defaults-file and --bootstrap options, which, if used, must be specified on the command line, and which are mutually exclusive with one another.) For example, you can set the agent's cluster logging level to warning instead than the default message in either one of the following two ways:

- Include --log-level=warning on the command line when invoking mcmd.

When specifying an agent configuration option on the command line, the name of the option is prefixed with two leading dash characters (--).

- Include the following line in the agent configuration file:

```
log-level=warning
```

Note

In MySQL Cluster Manager 1.2.3 and later, you can change the logging level at runtime using the mcm client change log-level command.

When used in the configuration file, the name of the option should not be prefixed with any other characters. Each option must be specified on a separate line. You can comment out all of a given line by inserting a leading hash character (#), like this:

```
#log-level=warning
```

You can also comment out part of a line in this way; any text following the # character is ignored, to the end of the current line.
The following table contains a summary of agent options that are read on startup by mcmd. More detailed information about each of these options, such as allowed range of values, can be found in the list following the table.

Table 3.1 MySQL Cluster Manager Agent (mcmd) Option Summary

<table>
<thead>
<tr>
<th>Format</th>
<th>Description</th>
<th>Introduced</th>
</tr>
</thead>
<tbody>
<tr>
<td>--agent-uuid</td>
<td>Set the agent’s UUID; needed only when running multiple agent processes on the same host.</td>
<td></td>
</tr>
<tr>
<td>--basedir</td>
<td>Directory to use as prefix for relative paths in the configuration</td>
<td></td>
</tr>
<tr>
<td>--bootstrap</td>
<td>Bootstrap a default cluster on startup.</td>
<td></td>
</tr>
<tr>
<td>--daemon</td>
<td>Run in daemon mode.</td>
<td></td>
</tr>
<tr>
<td>--defaults-file</td>
<td>Configuration file to use</td>
<td></td>
</tr>
<tr>
<td>--event-threads</td>
<td>Number of event handler threads to use.</td>
<td></td>
</tr>
<tr>
<td>--help</td>
<td>Show application options.</td>
<td></td>
</tr>
<tr>
<td>--help-all</td>
<td>Show all options (application options and manager module options).</td>
<td></td>
</tr>
<tr>
<td>--help-manager</td>
<td>Show manager module options.</td>
<td></td>
</tr>
<tr>
<td>--keepalive</td>
<td>Try to restart mcmd in the event of a crash.</td>
<td></td>
</tr>
<tr>
<td>--log-backtrace-on-crash</td>
<td>Attempt to load debugger in case of a crash.</td>
<td></td>
</tr>
<tr>
<td>--log-file</td>
<td>Name of the file to write the log to.</td>
<td></td>
</tr>
<tr>
<td>--log-level</td>
<td>Set the cluster logging level.</td>
<td></td>
</tr>
<tr>
<td>--log-use-syslog</td>
<td>Log to syslog.</td>
<td></td>
</tr>
<tr>
<td>--manager-directory</td>
<td>Directory used for manager data storage.</td>
<td></td>
</tr>
<tr>
<td>--manager-password</td>
<td>Password used for the manager account.</td>
<td></td>
</tr>
<tr>
<td>--manager-port</td>
<td>Port for client to use when connecting to manager.</td>
<td></td>
</tr>
<tr>
<td>--manager-username</td>
<td>User account name to run the manager under.</td>
<td></td>
</tr>
<tr>
<td>--max-open-files</td>
<td>Maximum number of open files (ulimit -n).</td>
<td></td>
</tr>
<tr>
<td>--pid-file</td>
<td>Specify PID file (used if running as daemon)</td>
<td></td>
</tr>
<tr>
<td>--plugin-dir</td>
<td>Directory in which to look for plugins</td>
<td></td>
</tr>
<tr>
<td>--plugins</td>
<td>Comma-separated list of plugins to load; must include "manager".</td>
<td></td>
</tr>
<tr>
<td>--verbose-shutdown</td>
<td>Always log the exit code when shutting down.</td>
<td></td>
</tr>
<tr>
<td>--version</td>
<td>Show the manager version.</td>
<td></td>
</tr>
<tr>
<td>--xcom-port</td>
<td>Specify the XCOM port.</td>
<td>1.2.3</td>
</tr>
</tbody>
</table>

MySQL Cluster Manager Agent (mcmd) Option Descriptions

The following list contains descriptions of each startup option available for use with mcmd, including allowed and default values. Options noted as boolean need only be specified in order to take effect; you should not try to set a value for these.

- **--agent-uuid=uuid**

 Command-Line Format: `--agent-uuid=uuid`
 Permitted Values: Type `string`, Default `[set internally]`
MySQL Cluster Manager Agent (mcmd) Option Descriptions

Set a UUID for this agent. Normally this value is set automatically, and needs to be specified only when running more than one `mcmd` process on the same host.

- **`--basedir=dir_name`**

 Command-Line Format

 `-basedir=dir_name`

 Permitted Values

<table>
<thead>
<tr>
<th>Type</th>
<th>directory name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>.</td>
</tr>
</tbody>
</table>

 Directory with path to use as prefix for relative paths in the configuration.

- **`--bootstrap`**

 Command-Line Format

 `-bootstrap`

 Permitted Values

<table>
<thead>
<tr>
<th>Type</th>
<th>boolean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default:</td>
<td>true</td>
</tr>
</tbody>
</table>

 Start the agent with default configuration values, create a default one-machine cluster named `mycluster`, and start it. This option works only if no clusters have yet been created. This option is mutually exclusive with the `--defaults-file` option.

 Currently, any data stored in the default cluster `mycluster` is not preserved between cluster restarts.

- **`--daemon`**

 Command-Line Format

 `-daemon`

 Permitted Values

<table>
<thead>
<tr>
<th>Type</th>
<th>boolean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default:</td>
<td>true</td>
</tr>
</tbody>
</table>

 Run `mcmd` as a daemon.

- **`--defaults-file=filename`**

 Command-Line Format

 `-defaults-file=file_name`

 Permitted Values

<table>
<thead>
<tr>
<th>Type</th>
<th>file name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>etc/mcmd.ini</td>
</tr>
</tbody>
</table>

 Set the file from which to read configuration options. The default is `etc/mcmd.ini`. See Section 2.4, “MySQL Cluster Manager Configuration File”, for more information.

- **`--event-threads=#`**

 Command-Line Format

 `-event-threads=#`

 Permitted Values

<table>
<thead>
<tr>
<th>Type</th>
<th>numeric</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default:</td>
<td>1</td>
</tr>
<tr>
<td>Min Value:</td>
<td>1</td>
</tr>
<tr>
<td>Max Value:</td>
<td>[system dependent]</td>
</tr>
</tbody>
</table>

 Number of event handler threads to use. The default is 1, which is sufficient for most normal operations.
• **--help, --?**

<table>
<thead>
<tr>
<th>Command-Line Format</th>
<th>--help</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permitted Values</td>
<td>Type</td>
</tr>
<tr>
<td></td>
<td>Default</td>
</tr>
</tbody>
</table>

`mcmd` help output is divided into **Application** and **Manager** sections. When used with `mcmd`, **--help** causes the **Application** options to be shown, as shown here:

```
shell> mcmd --help
Usage: mcmd [OPTION...] - MySQL Cluster Manager
Help Options:
    -?, --help             Show help options
    --help-all             Show all help options
    --help-manager         Show options for the manager-module
Application Options:
    -V, --version          Show version
    --defaults-file=<file> configuration file
    --verbose-shutdown     Always log the exit code when shutting down
    --daemon               Start in daemon-mode
    --basedir=<absolute path> Base directory to prepend to relative paths in the config
    --pid-file=<file>      PID file in case we are started as daemon
    --plug-dir=<path>      Path to the plugins
    --plugins=<name>       Plugins to load
    --log-level=<string>   Log all messages of level ... or higher
    --log-file=<file>      Log all messages in a file
    --log-use-syslog       Log all messages to syslog
    --log-backtrace-on-crash Try to invoke debugger on crash
    --keepalive            Try to restart mcmd if it crashed
    --max-open-files       Maximum number of open files (ulimit -n)
    --event-threads        Number of event-handling threads (default: 1)
```

• **--help-all**

<table>
<thead>
<tr>
<th>Command-Line Format</th>
<th>--help-all</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permitted Values</td>
<td>Type</td>
</tr>
<tr>
<td></td>
<td>Default</td>
</tr>
</tbody>
</table>

`mcmd` help output is divided into **Application** and **Manager** sections. When used with **--help-all**, `mcmd` displays both the **Application** and the **Manager** options, like this:

```
> mcmd --help-all
Usage: mcmd [OPTION...] - MySQL Cluster Manager
Help Options:
    -?, --help             Show help options
    --help-all             Show all help options
    --help-manager         Show options for the manager-module
manager-module
    --manager-port=<clientport> Port to manage the cluster (default: 1862)
    --xcom-port=<xcomport>   Xcom port (default: 18620)
    --manager-username=<username> Username to manage the cluster (default: mcmd)
    --manager-password=<password> Password for the manager user-account (default: super)
    --bootstrap            Bootstrap a default cluster on initial startup
    --manager-directory=<directory> Path to managers config information
Application Options:
    -V, --version          Show version
    --defaults-file=<file> configuration file
```
MySQL Cluster Manager Agent (mcmd) Option Descriptions

<table>
<thead>
<tr>
<th>Option Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>--verbose-shutdown</td>
<td>Always log the exit code when shutting down</td>
</tr>
<tr>
<td>--daemon</td>
<td>Start in daemon-mode</td>
</tr>
<tr>
<td>--basedir=<absolute path></td>
<td>Base directory to prepend to relative paths in the config</td>
</tr>
<tr>
<td>--pid-file=<file></td>
<td>PID file in case we are started as daemon</td>
</tr>
<tr>
<td>--plugin-dir=<path></td>
<td>Plugins to load</td>
</tr>
<tr>
<td>--plugin=<name></td>
<td>Plugins to load</td>
</tr>
<tr>
<td>--log-level=<string></td>
<td>Log all messages of level ... or higher</td>
</tr>
<tr>
<td>--log-file=<file></td>
<td>Log all messages in a file</td>
</tr>
<tr>
<td>--log-use-syslog</td>
<td>Log all messages to syslog</td>
</tr>
<tr>
<td>--log-backtrace-on-crash</td>
<td>Try to invoke debugger on crash</td>
</tr>
<tr>
<td>--keepalive</td>
<td>Try to restart mcmd if it crashed</td>
</tr>
<tr>
<td>--max-open-files</td>
<td>Maximum number of open files (ulimit -n)</td>
</tr>
<tr>
<td>--event-threads</td>
<td>Number of event-handling threads (default: 1)</td>
</tr>
</tbody>
</table>

• --help-manager

<table>
<thead>
<tr>
<th>Command-Line Format</th>
<th>--help-manager</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permitted Values</td>
<td>Type boolean</td>
</tr>
<tr>
<td>Default</td>
<td>true</td>
</tr>
</tbody>
</table>

mcmd help output is divided into Application and Manager sections. When used with --help-manager, mcmd displays the Manager options, like this:

shell> mcmd --help-manager
Usage:
 mcmd [OPTION...] - MySQL Cluster Manager

manager-module
 --manager-port=<clientport> | Port to manage the cluster (default: 1862)
 --xcom-port=<xcomport> | Xcom port (default: 18620)
 --manager-username=<username> | Username to manage the cluster (default: mcmd)
 --manager-password=<password> | Password for the manager user-account (default: super)
 --bootstrap | Bootstrap a default cluster on initial startup
 --manager-directory=<directory> | Path to managers config information

• --keepalive

<table>
<thead>
<tr>
<th>Command-Line Format</th>
<th>--keepalive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permitted Values</td>
<td>Type boolean</td>
</tr>
<tr>
<td>Default</td>
<td>true</td>
</tr>
</tbody>
</table>

Use this option to cause mcmd to attempt to restart in the event of a crash.

• --log-backtrace-on-crash

<table>
<thead>
<tr>
<th>Command-Line Format</th>
<th>--log-backtrace-on-crash</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permitted Values</td>
<td>Type boolean</td>
</tr>
<tr>
<td>Default</td>
<td>true</td>
</tr>
</tbody>
</table>

Attempt to load the debugger in the event of a crash. Not normally used in production.

• --log-file=filename

<table>
<thead>
<tr>
<th>Command-Line Format</th>
<th>--log-file=file</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permitted Values</td>
<td>Type file name</td>
</tr>
<tr>
<td>Default</td>
<td>mcmd.log</td>
</tr>
</tbody>
</table>

Set the name of the file to write the log to. The default is mcmd.log in the installation directory. On Linux and other Unix-like platforms, you can use a relative path; this is in relation to the MySQL Cluster Manager installation directory, and not to the bin or etc subdirectory. On Windows, you
must use an absolute path, and it cannot contain any spaces; in addition, you must replace any
backslash (\) characters in the path with forward slashes (/).

• **--log-level=level**

<table>
<thead>
<tr>
<th>Command-Line Format</th>
<th>--log-level=level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permitted Values</td>
<td>Type enumeration</td>
</tr>
<tr>
<td></td>
<td>Default message</td>
</tr>
<tr>
<td></td>
<td>Valid Values message</td>
</tr>
<tr>
<td></td>
<td>debug</td>
</tr>
<tr>
<td></td>
<td>critical</td>
</tr>
<tr>
<td></td>
<td>error</td>
</tr>
<tr>
<td></td>
<td>info</td>
</tr>
<tr>
<td></td>
<td>warning</td>
</tr>
</tbody>
</table>

Sets the cluster log event severity level; see MySQL Cluster Logging Management Commands, for
definitions of the levels, which are the same as these except that ALERT is mapped to critical
and the Unix syslog LOG_NOTICE level is used (and mapped to message). For additional
information, see

Possible values for this option are (any one of) debug, critical, error, info, message, and
warning. message is the default.

You should be aware that the debug, message, and info levels can result in rapid growth of the
agent log, so for normal operations, you may prefer to set this to warning or error.

As with other agent options, changes in the cluster logging level made using this option do not take
effect until mcmd is restarted. Beginning with MySQL Cluster Manager 1.2.3, you can change the
cluster logging level at runtime using the change log-level command in the mcm client. This
option also applies its setting to all hosts running on all sites; change log-level is more flexible
and its effects can be constrained to a specific management site, or to one or more hosts within that
site.

• **--log-use-syslog**

<table>
<thead>
<tr>
<th>Command-Line Format</th>
<th>--log-use-syslog</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permitted Values</td>
<td>Type boolean</td>
</tr>
<tr>
<td></td>
<td>Default true</td>
</tr>
</tbody>
</table>

Write logging output to syslog.

• **--manager-directory=dir_name**

<table>
<thead>
<tr>
<th>Command-Line Format</th>
<th>--manager-directory=dir</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permitted Values (< 1.2.2)</td>
<td>Type directory name</td>
</tr>
<tr>
<td>Default mcm_data</td>
<td></td>
</tr>
<tr>
<td>Permitted Values (>= 1.2.3)</td>
<td>Type directory name</td>
</tr>
<tr>
<td>Default /opt/mcm_data</td>
<td></td>
</tr>
</tbody>
</table>

Set the location of the agent repository, which contains collections of MySQL Cluster Manager data
files and MySQL Cluster configuration and data files. The value must be a valid absolute path. On
Linux, if the directory does not exist, it is created; on Windows, the directory must be created if it
does not exist. Additionally on Windows, the path may not contain any spaces or backslash (\)
characters; backslashes must be replaced with forward slashes (/).
The default location is `/opt/mcm_data`. (Prior to MySQL Cluster Manager 1.2.3, this was `mcm_data`.) If you change the default, you should use a standard location external to the MySQL Cluster Manager installation directory, such as `/var/opt/mcm` on Linux.

In addition to the MySQL Cluster Manager data files, the `manager-directory` also contains a `rep` directory in which MySQL Cluster data files for each MySQL Cluster under MySQL Cluster Manager control are kept. Normally, there is no need to interact with these directories beyond specifying the location of the `manager-directory` in the agent configuration file (`mcmd.ini`).

However, in the event that an agent reaches an inconsistent state, it is possible to delete the contents of the `rep` directory, in which case the agent attempts to recover its repository from another agent. In such cases, you must also delete the `repchksum` checksum file from the `manager-directory`. Otherwise, the agent reads this file and raises a checksum error due to the now-empty `rep` directory.

- **--manager-password=password**

 Command-Line Format

  ```
  --manager-password=password
  ```

 Permitted Values
 Type: string

 Default: `super`

 Set a password to be used for the manager agent user account. The default is `super`.

 Using this option together with `manager-username` causes the creation of a MySQL user account, having the username and password specified using these two options. This account is created with all privileges on the MySQL server including the granting of privileges. In other words, it is created as if you had executed `GRANT ALL PRIVILEGES ON *.* ... WITH GRANT OPTION` in the mysql client.

- **--manager-port=port**

 Command-Line Format

  ```
  --manager-port=port
  ```

 Permitted Values
 Type: numeric

 Default: `localhost:1862`

 Specify the port used by MySQL Cluster Manager client connections. Any valid TC/IP port number can be used. Normally, there is no need to change it from the default value (1862).

 Previously, this option could optionally take a host name in addition to the port number, but in MySQL Cluster Manager 1.1.1 and later the host name is no longer accepted.

- **--manager-username=name**

 Command-Line Format

  ```
  --manager-username=name
  ```

 Permitted Values
 (`<= 1.2.3`)
 Type: string

 Default: `admin`

 (`>= 1.2.4`)
 Type: string

 Default: `mcmd`

 Set a user name for the MySQL account to be used by the MySQL Cluster Manager agent. The default is `mcmd`.

 Note

 In MySQL Cluster Manager 1.2.3 and earlier, the default user account name was `admin`. (Bug #16476206)
When used together with `manager-password`, this option also causes the creation of a new MySQL user account, having the user name and password specified using these two options. *This account is created with all privileges on the MySQL server including the granting of privileges.* In other words, it is created as if you had executed `GRANT ALL PRIVILEGES ON *.* ... WITH GRANT OPTION` in the `mysql` client. The existing MySQL root account is not altered in such cases, and the default test database is preserved.

- `--max-open-files=#`

<table>
<thead>
<tr>
<th>Command-Line Format</th>
<th>--max-open-files=#</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permitted Values</td>
<td>Type numeric</td>
</tr>
<tr>
<td>Default</td>
<td>1</td>
</tr>
<tr>
<td>Min Value</td>
<td>1</td>
</tr>
<tr>
<td>Max Value</td>
<td>[system dependent]</td>
</tr>
</tbody>
</table>

Set the maximum number of open files (as with `ulimit -n`).

- `--pid-file=file`

<table>
<thead>
<tr>
<th>Command-Line Format</th>
<th>--pid-file=file_name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permitted Values</td>
<td>Type file name</td>
</tr>
<tr>
<td>Default</td>
<td>mcmd.pid</td>
</tr>
</tbody>
</table>

Set the name and path to a process ID (.pid) file. Not normally used or needed. This option is not supported on Windows systems.

- `--plugin-dir`

<table>
<thead>
<tr>
<th>Command-Line Format</th>
<th>--plugin-dir=dir_name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permitted Values</td>
<td>Type directory name</td>
</tr>
<tr>
<td>Default</td>
<td>lib/mcmd</td>
</tr>
</tbody>
</table>

Set the directory to search for plugins. The default is `lib/mcmd`, in the MySQL Cluster Manager installation directory; normally there is no need to change this.

- `--plugins`

<table>
<thead>
<tr>
<th>Command-Line Format</th>
<th>--plugins=list</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permitted Values</td>
<td>Type directory name</td>
</tr>
<tr>
<td>Default</td>
<td></td>
</tr>
</tbody>
</table>

Specify a list of plugins to be loaded on startup. To enable MySQL Cluster Manager, this list must include `manager` (the default value). Please be aware that we currently do not test MySQL Cluster Manager with any values for `plugins` other than `manager`. Therefore, we recommend using the default value in a production setting.

- `--verbose-shutdown`

<table>
<thead>
<tr>
<th>Command-Line Format</th>
<th>--verbose-shutdown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permitted Values</td>
<td>Type boolean</td>
</tr>
<tr>
<td>Default</td>
<td>true</td>
</tr>
</tbody>
</table>
Force `mcmd` to log the exit code whenever shutting down, regardless of the reason.

- `--version`, `-V`

Command-Line Format

<table>
<thead>
<tr>
<th>Permitted Values</th>
<th>Type</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>--version</code></td>
<td>boolean</td>
<td>true</td>
</tr>
</tbody>
</table>

Display version information and exit. Output may vary according to the MySQL Cluster Manager software version, operating platform, and versions of libraries used on your system, but should closely resemble what is shown here, with the first line of output containing the MySQL Cluster Manager release number (emphasized text):

```
shell> mcmd -V
MySQL Cluster Manager 1.2.4 (64bit)
  chassis: mysql-proxy 0.8.3
  glib2: 2.16.6
  libevent: 1.4.13-stable
  -- modules
  manager: 1.2.4
```

- `--xcom-port`

Command-Line Format

<table>
<thead>
<tr>
<th>Permitted Values</th>
<th>Type</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>--xcom-port</code></td>
<td>numeric</td>
<td>18620</td>
</tr>
</tbody>
</table>

Allows you to specify the XCOM port. The default is 18620.

This option was added in MySQL Cluster Manager 1.2.3.

3.2 Starting and Stopping the MySQL Cluster Manager Agent

Before you can start using MySQL Cluster Manager to create and manage a MySQL Cluster, the MySQL Cluster Manager agent must be started on each computer that is intended to host one or more nodes in the MySQL Cluster to be managed.

The MySQL Cluster Manager agent employs a MySQL user account for administrative access to `mysqld` processes. It is possible, but not a requirement, to change the default user name, the default password used for this account, or both. For more information, see Section 2.3.3, “Setting the MySQL Cluster Manager Agent User Name and Password”.

3.2.1 Starting and Stopping the Agent on Linux

To start the MySQL Cluster Manager agent on a given host running a Linux or similar operating system, you should run `mcmd`, found in the `bin` directory within the manager installation directory on that host. Typical options used with `mcmd` are shown here:

```
```

See Section 3.1, “mcmd, the MySQL Cluster Manager Agent”, for information about additional options that can be used when invoking `mcmd` from the command line, or in a configuration file.

`mcmd` normally runs in the foreground. If you wish, you can use your platform's usual mechanism for backgrounding a process. On a Linux system, you can do this by appending an ampersand character (`&`), like this (not including any options that might be required):
By default, the agent assumes that the agent configuration file is etc/mcmd.ini, in the MySQL Cluster Manager installation directory. You can tell the agent to use a different configuration file by passing the path to this file to the \texttt{--defaults-file} option, as shown here:

\begin{verbatim}
shell> ./bin/mcmd --defaults-file=/home/mcm/mcm-agent.conf
\end{verbatim}

The \texttt{--bootstrap} option causes the agent to start with default configuration values, create a default one-machine cluster named mycluster, and start it. This option works only if no cluster has yet created, and is mutually exclusive with the \texttt{--defaults-file} option. Currently, any data stored in the default cluster mycluster is not preserved between cluster restarts; this is a known issue which we may address in a future release of MySQL Cluster Manager.

The use of the \texttt{--bootstrap} option with mcmd is shown here on a system having the host name torsk, where MySQL Cluster Manager has been installed to /home/jon/mcm:

\begin{verbatim}
shell> ./mcmd --bootstrap
MySQL Cluster Manager 1.2.4 started
Connect to MySQL Cluster Manager by running "/home/jon/mcm/bin/mcm" -a torsk:1862
Configuring default cluster 'mycluster'...
Starting default cluster 'mycluster'...
Cluster 'mycluster' started successfully
ndb_mgmd torsk:1186
ndbd torsk
ndbd torsk
mysqlld torsk:3306
mysqlld torsk:3307
ndbapi *
Connect to the database by running "/home/jon/mcm/cluster/bin/mysql" -h torsk -P 3306 -u root
\end{verbatim}

You can then connect to the agent using the mcm client (see Section 3.3, “Starting the MySQL Cluster Manager Client”), and to either of the MySQL Servers running on ports 3306 and 3307 using mysql or another MySQL client application.

The \texttt{--log-file} option allows you to override the default location for the agent log file (normally mcmd.log, in the MySQL Cluster Manager installation directory).

You can use \texttt{--log-level} option to override the log-level set in the agent configuration file.

See Section 3.1, “mcmd, the MySQL Cluster Manager Agent”, for more information about options that can be used with mcmd.

The MySQL Cluster Manager agent must be started on each host in the MySQL Cluster to be managed.

To stop one or more instances of the MySQL Cluster Manager agent, use the \texttt{stop agents} command in the MySQL Cluster Manager client. If the client is unavailable, you can stop each agent process using the system's standard method for doing so, such as \texttt{^C} or \texttt{kill}.

In addition, the agent does not automatically run as a daemon or service on Linux and other Unix-like systems; if an agent process fails, you must either have your own mechanism in place for detecting the failure and restarting the agent process or restart it manually. (This is not true for MySQL Cluster Manager on Windows; see Starting and stopping the MySQL Cluster Manager agent Windows service, for more information.)

\section*{3.2.2 Starting and Stopping the MySQL Cluster Manager Agent on Windows}

To start the MySQL Cluster Manager agent manually on a Windows host, you should invoke mcmd.exe, found in the bin directory under the manager installation directory on that host. By default,
the agent uses etc/mcmd.ini in the MySQL Cluster Manager installation directory as its configuration file; this can be overridden by passing the desired file's location as the value of the --defaults-file option.

Typical options for mcmd are shown here:

```
```

For information about additional options that can be used with mcmd on the command line or in an option file, see Section 3.1, "mcmd, the MySQL Cluster Manager Agent".

By default, the agent assumes that the agent configuration file is etc/mcmd.ini, in the MySQL Cluster Manager installation directory. You can tell the agent to use a different configuration file by passing the path to this file to the --defaults-file option, as shown here:

```
C:\Program Files (x86)\MySQL\MySQL Cluster Manager 1.1.4\bin>
mcmd --defaults-file="C:\Program Files (x86)\MySQL\MySQL Cluster Manager 1.2.4\etc\mcmd.ini"
```

The --bootstrap option causes the agent to start with default configuration values, create a default one-machine cluster named mycluster, and start it. The use of this option with mcmd is shown here on a system having the host name torsk, where MySQL Cluster Manager has been installed to the default location:

```
C:\Program Files (x86)\MySQL\MySQL Cluster Manager 1.2.4\bin>mcmd --bootstrap
MySQL Cluster Manager 1.2.4 started
Connect to MySQL Cluster Manager by running "C:\Program Files (x86)\MySQL\MySQL Cluster Manager 1.2.4\bin\mcm" -a TORSK:1862
Configuring default cluster 'mycluster'...
Starting default cluster 'mycluster'...
Cluster 'mycluster' started successfully
ndb_mgmd        TORSK:1186
ndbd            TORSK
ndbd            TORSK
mysqld          TORSK:3306
mysqld          TORSK:3307
ndbapi          *
Connect to the database by running "C:\Program Files (x86)\MySQL\MySQL Cluster Manager 1.2.4\cluster\bin\mysql" -h TORSK -P 3306 -u root
```

You can then connect to the agent using the mcm client (see Section 3.3, "Starting the MySQL Cluster Manager Client"), and to either of the MySQL Servers running on ports 3306 and 3307 using mysql or another MySQL client application.

When starting the MySQL Cluster Manager agent for the first time, you may see one or more Windows Security Alert dialogs, such as the one shown here:
You should grant permission to connect to private networks for any of the programs `mcmd.exe`, `ndb_mgmt.exe`, `ndbd.exe`, `ndbmtd.exe`, or `mysqld.exe`. To do so, check the Private Networks... box and then click the Allow access button. It is generally not necessary to grant MySQL Cluster Manager or MySQL Cluster access to public networks such as the Internet.

Note
The `--defaults-file` and `--bootstrap` options are mutually exclusive.

The `--log-file` option allows you to override the default location for the agent log file (normally `mcmd.log`, in the MySQL Cluster Manager installation directory).

You can use `--log-level` option to override the log-level set in the agent configuration file.

See Section 3.1, “mcmd, the MySQL Cluster Manager Agent”, for more information about options that can be used with `mcmd`.

The MySQL Cluster Manager agent must be started on each host in the MySQL Cluster to be managed.

It is possible to install MySQL Cluster Manager as a Windows service, so that it is started automatically each time Windows starts. See Section 2.3.2.1, “Installing the MySQL Cluster Manager Agent as a Windows Service”.

To stop one or more instances of the MySQL Cluster Manager agent, use the `stop agents` command in the MySQL Cluster Manager client. You can also stop an agent process using the
Starting the MySQL Cluster Manager Client

3.3 Starting the MySQL Cluster Manager Client

This section covers starting the MySQL Cluster Manager client and connecting to the MySQL Cluster Manager agent.

MySQL Cluster Manager 1.2.4 includes a command-line client mcm, located in the installation bin directory. `mcm` can be invoked with any one of the options shown in the following table:

<table>
<thead>
<tr>
<th>Long form</th>
<th>Short form</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>--help</td>
<td>-?</td>
<td>Display <code>mcm</code> client options</td>
</tr>
<tr>
<td>--version</td>
<td>-V</td>
<td>Shows MySQL Cluster Manager agent/client version.</td>
</tr>
<tr>
<td>--address</td>
<td>-a</td>
<td>Host and optional port to use when connecting to <code>mcmd</code>, in <code>host[:port]</code> format; default is <code>127.0.0.1:1862</code>.</td>
</tr>
<tr>
<td>--mysql-help</td>
<td>-I</td>
<td>Show help for <code>mysql</code> client (see following).</td>
</tr>
</tbody>
</table>

The client-server protocol used by MySQL Cluster Manager is platform-independent. You can connect to any MySQL Cluster Manager agent with a `mcm` client on any platform where it is available. This means, for example, that you can use an `mcm` client on Microsoft Windows to connect to a MySQL Cluster Manager agent that is running on a Linux host.

`mcm` actually acts as a wrapper for the `mysql` client that is included with the bundled MySQL Cluster distribution. Invoking `mcm` with no options specified is equivalent to the following:

```
shell> mysql -umcmd -psuper -h 127.0.0.1 -P 1862
```

(These `-u` and `-p` options and values are hard-coded and cannot be changed.) This means that you can use the `mysql` client to run MySQL Cluster Manager client sessions on platforms where `mcm` itself (or even `mcmd`) is not available. For more information, see Connecting to the agent using the `mysql` client.

If you experience problems starting an MySQL Cluster Manager client session because the client fails to connect, see Can't connect to [local] MySQL server, for some reasons why this might occur, as well as suggestions for some possible solutions.

To end a client session, use the `exit` or `quit` command (short form: `\q`). Neither of these commands requires a separator or terminator character.

For more information, see Chapter 4, MySQL Cluster Manager Client Commands.

Connecting to the agent with the `mcm` client. You can connect to the MySQL Cluster Manager agent by invoking `mcm` (or, on Windows, `mcm.exe`). You may also need to specify a hostname, port number, or both, using the following command-line options:

- `--host=hostname` or `-h hostname`
 This option takes the name or IP address of the host to connect to. The default is `localhost` (which may not be recognized on all platforms when starting a `mcm` client session even if it works for starting `mysql` client sessions).

 You should keep in mind that the `mcm` client does not perform host name resolution; any name resolution information comes from the operating system on the host where the client is run. For this reason, it is usually best to use a numeric IP address rather than a hostname for this option.
Starting the MySQL Cluster Manager Client

• **--port=portnumber or -P[]portnumber**

 This option specifies the TCP/IP port for the client to use. This must be the same port that is used by the MySQL Cluster Manager agent. As mentioned elsewhere, if no agent port is specified in the MySQL Cluster Manager agent configuration file (mcmd.ini), the default number of the port used by the MySQL Cluster Manager agent is 1862, which is also used by default by mcm.

 mcm accepts additional mysql client options, some of which may possibly be of use for MySQL Cluster Manager client sessions. For example, the **--pager** option might prove helpful when the output of **get** contains too many rows to fit in a single screen. The **--prompt** option can be used to provide a distinctive prompt to help avoid confusion between multiple client sessions. However, options not shown in the current manual have not been extensively tested with mcm and so cannot be guaranteed to work correctly (or even at all). See mysql Options, for a complete listing and descriptions of all mysql client options.

 Note

 Like the mysql client, mcm also supports \G as a statement terminator which causes the output to be formatted vertically. This can be helpful when using a terminal whose width is restricted to some number of (typically 80) characters. See Chapter 4, MySQL Cluster Manager Client Commands, for examples.

Connecting to the agent using the mysql client. As mentioned previously, mcm actually serves as a wrapper for the mysql client. In fact, a mysql client from any recent MySQL distribution (MySQL 5.1 or later) should work without any issues for connecting to mcmd. In addition, since the client-server protocol used by MySQL Cluster Manager is platform-independent, you can use a mysql client on any platform supported by MySQL. (This means, for example, that you can use a mysql client on Microsoft Windows to connect to a MySQL Cluster Manager agent that is running on a Linux host.) Connecting to the MySQL Cluster Manager agent using the mysql client is accomplished by invoking mysql and specifying a hostname, port number, username and password, using the following command-line options:

• **--host=hostname or -h[]hostname**

 This option takes the name or IP address of the host to connect to. The default is localhost. Like the mcm client, the mysql client does not perform host name resolution, and relies on the host operating system for this task. For this reason, it is usually best to use a numeric IP address rather than a hostname for this option.

• **--port=portnumber or -P[]portnumber**

 This option specifies the TCP/IP port for the client to use. This must be the same port that is used by the MySQL Cluster Manager agent. Although the default number of the port used by the MySQL Cluster Manager agent is 1862 (which is also used by default by mcm), this default value is not known to the mysql client, which uses port 3306 (the default port for the MySQL server) if this option is not specified when mysql is invoked.

 Thus, you must use the **--port** or **-P** option to connect to the MySQL Cluster Manager agent using the mysql client, even if the agent process is using the MySQL Cluster Manager default port, and even if the agent process is running on the same host as the mysql client. Unless the correct agent port number is supplied to it on startup, mysql is unable to connect to the agent.

• **--user=username or -u[]username**

 Specifies the username for the user trying to connect. Currently, the only user permitted to connect is “mcmd”; this is hard-coded into the agent software and cannot be altered by any user. (In MySQL Cluster Manager 1.2.3 and earlier, this was admin—see Bug#16476206.) By default, the mysql client tries to use the name of the current system user on Unix systems and “ODBC” on Windows, so you must supply this option and the username “mcmd” when trying to access the MySQL Cluster Manager agent with the mysql client; otherwise, mysql cannot connect to the agent.
- \(--password\) [\(=\) password] or \(-p\) [password]

Specifies the password for the user trying to connect. If you use the short option form (\(-p\)), you must not leave a space between this option and the password. If you omit the password value following the \(--password\) or \(-p\) option on the command line, the \texttt{mysql} client prompts you for one.

Specifying a password on the command line should be considered insecure. It is preferable that you either omit the password when invoking the client, then supply it when prompted, or put the password in a startup script or configuration file.

Currently, the password is hard-coded as “super”, and cannot be changed or overridden by MySQL Cluster Manager users. Therefore, if you do not include the \(--password\) or \(-p\) option when invoking \texttt{mysql}, it cannot connect to the agent.

In addition, you can use the \(--prompt\) option to set the \texttt{mysql} client's prompt. This is recommended, since allowing the default prompt (\texttt{mysql>}) to be used could lead to confusion between a MySQL Cluster Manager client session and a MySQL client session.

Thus, you can connect to a MySQL Cluster Manager agent by invoking the \texttt{mysql} client on the same machine from the system shell in a manner similar to what is shown here.

\begin{verbatim}
shell> mysql -h127.0.0.1 -P1862 -umcmd -p --prompt='mcm> '
\end{verbatim}

For convenience, on systems where \texttt{mcm} itself is not available, you might even want to put this invocation in a startup script. On a Linux or similar system, this script might be named \texttt{mcm-client.sh}, with contents similar to what is shown here:

\begin{verbatim}
#!/bin/sh
/usr/local/mysql/bin/mysql -h127.0.0.1 -P1862 -umcmd -p --prompt='mcm> '
\end{verbatim}

In this case, you could then start up a MySQL Cluster Manager client session using something like this in the system shell:

\begin{verbatim}
shell> ./mcm-client
\end{verbatim}

On Windows, you can create a batch file with a name such as \texttt{mcm-client.bat} containing something like this:

\begin{verbatim}
C:\mysql\bin\mysql.exe -umcmd -psuper -h localhost -P 1862 --prompt="mcm> "
\end{verbatim}

(Adjust the path to the \texttt{mysql.exe} client executable as necessary to match its location on your system.)

If you save this file to a convenient location such as the Windows desktop, you can start a MySQL Cluster Manager client session merely by double-clicking the corresponding file icon on the desktop (or in Windows Explorer); the client session opens in a new \texttt{cmd.exe} (DOS) window.

3.4 Setting Up MySQL Clusters with MySQL Cluster Manager

This section provides basic information about setting up a new MySQL Cluster with MySQL Cluster Manager. It also supplies guidance on migration of an existing MySQL Cluster to MySQL Cluster Manager.

For more information about obtaining and installing the MySQL Cluster Manager agent and client software, see Chapter 2, \textit{MySQL Cluster Manager Installation, Configuration, Cluster Setup}.

See Chapter 4, \textit{MySQL Cluster Manager Client Commands}, for detailed information on the MySQL Cluster Manager client commands shown in this chapter.

3.4.1 Creating a MySQL Cluster with MySQL Cluster Manager
Creating a MySQL Cluster with MySQL Cluster Manager

In this section, we discuss the procedure for using MySQL Cluster Manager to create and start a new MySQL Cluster. We assume that you have already obtained the MySQL Cluster Manager and MySQL Cluster software, and that you are already familiar with installing MySQL Cluster Manager (see Chapter 2, MySQL Cluster Manager Installation, Configuration, Cluster Setup).

We also assume that you have identified the hosts on which you plan to run the cluster and have decided on the types and distributions of the different types of nodes among these hosts, as well as basic configuration requirements based on these factors and the hardware characteristics of the host machines.

Note
You can create and start a MySQL Cluster on a single host for testing or similar purposes, simply by invoking `mcmd` with the `--bootstrap` option. See Section 3.2, “Starting and Stopping the MySQL Cluster Manager Agent”.

Creating a new cluster consists of the following tasks:

- **MySQL Cluster Manager agent installation and startup.** Install the MySQL Cluster Manager software distribution, make any necessary edits of the agent configuration files, and start the agent processes as explained in Chapter 2, MySQL Cluster Manager Installation, Configuration, Cluster Setup. Agent processes must be running on all cluster hosts before you can create a cluster. This means that you need to place a complete copy of the MySQL Cluster Manager software distribution on every host. The MySQL Cluster Manager software does not have to be in a specific location, or even the same location on all hosts, but it must be present; you cannot manage any cluster processes hosted on a computer where `mcmd` is not also running.

- **MySQL Cluster Manager client session startup.** Starting the MySQL Cluster Manager client and connect to the MySQL Cluster Manager agent. You can connect to an agent process running on any of the cluster hosts, using the `mcm` client on any computer that can establish a network connection to the desired host. See Section 3.3, “Starting the MySQL Cluster Manager Client”, for details.

On systems where `mcm` is not available, you can use the `mysql` client for this purpose. See Connecting to the agent using the `mysql` client.

- **MySQL Cluster software deployment.** The simplest and easiest way to do this is to copy the complete MySQL Cluster distribution to the same location on every host in the cluster. (If you have installed MySQL Cluster Manager 1.2.4 on each host, the MySQL Cluster NDB 7.2.4 distribution is already included, in `mcm_installation_dir/cluster`.) If you do not use the same location on every host, be sure to note it for each host. Do not yet start any MySQL Cluster processes or edit any configuration files; when creating a new cluster, MySQL Cluster Manager takes care of these tasks automatically.

On Windows hosts, you should not install as services any of the MySQL Cluster node process programs, including `ndb_mgmd.exe`, `ndbd.exe`, `ndbmtd.exe`, and `mysqld.exe`. MySQL Cluster Manager manages MySQL Cluster processes independently of the Windows Service Manager and does not interact with the Service Manager or any Windows services when doing so.

Note
You can actually perform this step at any time up to the point where the software package is registered (using `add package`). However, we recommend that you have all required software—including the MySQL Cluster software—in place before executing any MySQL Cluster Manager client commands.

- **Management site definition.** Using the `create site` command in the MySQL Cluster Manager client, define a MySQL Cluster Manager management site—that is, the set of hosts to be managed. This command provides a name for the site, and must reference all hosts in the cluster. Section 4.2.3, “The `create site` Command”, provides syntax and other information about this
command. To verify that the site was created correctly, use the MySQL Cluster Manager client commands `list sites` and `list hosts`.

- **MySQL Cluster software package registration.** In this step, you provide the location of the MySQL Cluster software on all hosts in the cluster using one or more `add package` commands. To verify that the package was created correctly, use the `list packages` and `list processes` commands.

- **Cluster definition.** Execute a `create cluster` command to define the set of MySQL Cluster nodes (processes) and hosts on which each cluster process runs, making up a the MySQL Cluster. This command also uses the name of the package registered in the previous step so that MySQL Cluster Manager knows the location of the binary running each cluster process. You can use the `list clusters` and `list processes` commands to determine whether the cluster has been defined as desired.

If you wish to use SQL node connection pooling, see [Setup for `mysqld` connection pooling](#) before creating the cluster.

- **Initial configuration.** Perform any configuration of the cluster that is required or desired prior to starting it. You can set values for MySQL Cluster Manager configuration attributes (MySQL Cluster parameters and MySQL Server options) using the MySQL Cluster Manager client `set` command. You do not need to edit any configuration files directly—in fact, you should not do so. Keep in mind that certain attributes are read-only, and that some others cannot be reset after the cluster has been started for the first time. You can use the `get` command to verify that attributes have been set to the correct values.

- **Cluster startup.** Once you have completed the previous steps, including necessary or desired initial configuration, you are ready to start the cluster. The `start cluster` command starts all cluster processes in the correct order. You can verify that the cluster has started and is running normally after this command has completed, using the MySQL Cluster Manager client command `show status`. At this point, the cluster is ready for use by MySQL Cluster applications.

3.4.2 Migrating a MySQL Cluster to MySQL Cluster Manager

MySQL Cluster Manager is designed primarily for managing MySQL Cluster deployments that are created by it, rather than introducing it into existing MySQL Cluster instances that are already in use. Currently, there is no integrated functionality for importing an existing MySQL Cluster into MySQL Cluster Manager, and it is not currently possible to perform this task without shutting down and restarting the cluster.

This section outlines a suggested procedure for importing an existing MySQL Cluster manually into MySQL Cluster Manager. It is in many ways similar to creating a new cluster in MySQL Cluster Manager, but differs in how initial configuration of the cluster is carried out. The importation procedure includes the following steps:

- **MySQL Cluster Manager agent installation and startup.** Deploy the MySQL Cluster Manager software distribution on the cluster hosts, perform any necessary agent configuration, then start the MySQL Cluster Manager agent, as described in Chapter 2, *MySQL Cluster Manager Installation, Configuration, Cluster Setup*. MySQL Cluster Manager agent processes must be running on all hosts where cluster processes are running before proceeding any further.

- **MySQL Cluster Manager client session startup.** Start a MySQL Cluster Manager client session; you can connect to a MySQL Cluster Manager agent process running on any of the cluster hosts (see Section 3.3, “Starting the MySQL Cluster Manager Client”).

- **Management site definition.** Define a MySQL Cluster Manager site that includes all hosts in the cluster, using the `create site` command.

- **MySQL Cluster software package registration.** Register a package referencing the location of the MySQL Cluster software on each cluster host using one or more `add package` commands. Be sure to specify the actual location of the MySQL Cluster software on each host.
Migrating a MySQL Cluster to MySQL Cluster Manager

- **Cluster definition.** Define a cluster in MySQL Cluster Manager using the `create cluster` command, making sure to reference all cluster processes and hosts when doing so.

- **Node IDs generated by MySQL Cluster Manager.**
 When creating a cluster, MySQL Cluster Manager automatically assigns sequential node IDs, in the order specified by the process host list used in the `create cluster` command, using the ranges listed here for each type of process:
 - **Data nodes:** 1-48
 - **Management nodes:** 48-49
 - **SQL/API nodes:** 50-255

 Processes of each type are assigned consecutive IDs from the beginning of the range indicated for that type.

- **Cluster configuration.**
 There is no facility in MySQL Cluster Manager 1.2.4 for importing configuration data from an existing cluster; therefore, this step must be performed manually. Consolidate all configuration information from the existing cluster; this includes parameters set in the cluster's `config.ini` file (or files), `mysqld` options set in `my.cnf` or `my.ini` files, and any arguments that were passed to MySQL Cluster executables on the command line when invoking them. For most attributes, you need to execute a `set` statement that is equivalent to a setting in a `config.ini` or `my.cnf` file. Suppose that the `config.ini` file contains a `[ndbd default]` setting such as this one:

  ```
  DataMemory = 2400G
  ```

 In this case, you would need to execute this `set` command in the MySQL Cluster Manager client:

  ```
  mcm> set DataMemory:ndbd = 2400G;
  ```

 More generally, if you have a `my.cnf` file entry in a `[process_type default]` section of `config.ini` where `process_type` is the name of a MySQL Cluster process (`ndb_mgmd`, `ndbd`, `mysqld`, or `api`) then you can use the following regular expression to derive an equivalent MySQL Cluster Manager client `set` statement from it.

  ```plaintext
  s/\(\w*\)\s?\=\s?\(\w*\)/set $1:process_type = $2;/
  ```

 In the case of `[mysql]` and `[api]` sections of the `config.ini` file, you also need to determine whether the equivalent `set` statement should be applied using `mysqld` or `ndbapi` as the `process_name`.

- **Important**

 Some attributes such as `HostName` and `Id` are read-only (`HostName` is already defined by `create site` and `create cluster`; node IDs are determined by MySQL Cluster Manager and cannot be overridden).

 In addition, you should always keep in mind that MySQL Cluster and MySQL Cluster Manager do not always use the same default values for parameters and their corresponding attributes. This is crucial especially in the case of `DataDirectory`, since the data nodes must be able to read these following the importation to access the cluster's data. See Migrating data directories.

- **Migrating data directories.**
 Do not start the new cluster before making sure that you have configured all processes in the new cluster to use the same data directories used by all nodes in the original cluster. If the data nodes of
the imported cluster are not configured to read the original data directories, the imported cluster will be unable to access the original cluster’s data.

Keep in mind that the default value used by MySQL Cluster Manager for the `DataDirectory` attribute (`manager_directory/clusters/cluster_name/node_id/data`) is not the same as the default set by MySQL Cluster or MySQL Server, as described here:

For a management node or data node, MySQL Cluster uses the process working directory as the `DataDirectory`, which means that, if the `DataDirectory` was not set explicitly to an absolute path in the original cluster’s `config.ini` file, the arguments with which the cluster executable was invoked and the location it was started from may also affect this value. For a `mysqld` processes, the default location of the data directory depends on the method that was used to install the `mysqld` binary (see Installation Layouts, for more information); this value can also be overridden from the command line or in the `mysqld`’s `my.cnf` file.

Due to these many factors which can affect the locations of the nodes’ data directories, you should always verify the true location of the original data directory for each node in the original cluster by inspection of the file system, then set `DataDirectory` (using MySQL Cluster Manager) for each node in the new cluster explicitly.

For a `config.ini` setting that applies to a single process of type `process_type` and having node ID `node_id`, you can use the following regular expression to generate a `set` statement that applies the same setting to the same cluster process:

```bash
s/\w+\s?=?\w+\s*/\set \1:process_name:node_id = \2;/
```

Cluster shutdown and startup.

Once you have finished migrating the cluster configuration data, you are ready to restart the Cluster under control of MySQL Cluster Manager. This requires a system restart; that is, the cluster must be completely shut down, then restarted.

Important

Before proceeding with this step, make certain that the configuration you have set up for the cluster in MySQL Cluster Manager is correct. In particular, make sure that the node ID and data directory are the same for each node, in both the original configuration and the new configuration you have just created using MySQL Cluster Manager. Also verify that you have set any attributes that cannot be changed once the cluster has been started for the first time.

Shutting down the cluster consists of the following two steps:

1. Issue an `ndb_mgm SHUTDOWN` command. You can do this either in an `ndb_mgm` client session, or by invoking `ndb_mgm` from the system shell, like this:

   ```
   shell> ndb_mgm -e "SHUTDOWN"
   ```

 (Here, the quotation marks are optional.) For more information, see Commands in the MySQL Cluster Management Client.

2. Stop all `mysqld` processes that were connected to the cluster. To do this, issue the following command on each host running an SQL node:

   ```
   shell> mysqladmin -uroot shutdown
   ```

 If the MySQL `root` user password has been set, you can supply it when invoking the command, like this:
If more than one `mysqld` process is running on the same host, each process must use a different port. In such cases, you must invoke `mysqladmin` separately for each `mysqld` process, specifying the port each time with the `--port` or `-P` option, similar to what is shown here:

```
shell> ./mysqladmin -uroot -P3306 shutdown
110919 12:41:26 mysqld_safe mysqld from pid file /usr/local/mysql/data/m1.pid ended
[1]+  Done  ./mysqld_safe --port=3306 --pid-file=/usr/local/mysql/data/m1.pid
shell> ./mysqladmin -uroot -P3307 shutdown
110919 12:41:26 mysqld_safe mysqld from pid file /usr/local/mysql/data/m2.pid ended
[1]+  Done  ./mysqld_safe --port=3307 --pid-file=/usr/local/mysql/data/m2.pid
```

See `mysqladmin — Client for Administering a MySQL Server`, for more information.

Once all cluster processes have stopped, you can start the cluster using MySQL Cluster Manager. Start the MySQL Cluster Manager agent and a MySQL Cluster Manager client session if these are not already running, then issue a `start cluster` command in the MySQL Cluster Manager client (substituting the name of the imported cluster for `mycluster`):

```
mcm> start cluster mycluster;
```

Once the cluster has started successfully, the importation process is complete, and you should be able from this point onwards to manage the cluster as if you had actually created it using MySQL Cluster Manager.

3.5 MySQL Cluster Backup and Restore Using MySQL Cluster Manager

This section describes usage of the NDB native backup and restore functionality implemented in MySQL Cluster Manager 1.2 to perform a number of common tasks.

3.5.1 Requirements for Backup and Restore

This section provides information about basic requirements for performing backup and restore operations using MySQL Cluster Manager.

Requirements for MySQL Cluster backup.

Basic requirements for performing MySQL backups using MySQL Cluster Manager are minimal. At least one data node in each node group must be running, and there must be sufficient disk space on the node file systems. Partial backups are not supported.

Requirements for MySQL Cluster restore.

Restoring a MySQL Cluster using MySQL Cluster Manager is subject to the following conditions:

- A complete restore requires that all data nodes are up and running, and that all files belonging to a given backup are available.

- A partial restore is possible, but must be specified as such. This can be accomplished using the `restore cluster` client command with its `--skip-nodeid` option.

- In the event that data nodes have been added to the cluster since the backup was taken, only those data nodes for which backup files exist are restored. In such cases data is not automatically distributed to the new nodes, and, following the restore, you must redistribute the data manually by issuing an `ALTER ONLINE TABLE ... REORGANIZE PARTITION` statement in the `mysql` client for each NDB table in the cluster. See Adding MySQL Cluster Data Nodes Online: Basic procedure, for more information.
This section describes backing up and restoring a MySQL Cluster, with examples of complete and partial restore operations. Note that the `backup cluster` and `restore cluster` commands work with NDB tables only; tables using other MySQL storage engines (such as InnoDB or MyISAM) are ignored.

For purposes of example, we use a MySQL Cluster named `mycluster` whose processes and status can be seen here:

```
mcm> show status -r mycluster;
+--------+----------+----------+---------+-----------+-----------+
| NodeId | Process  | Host     | Status  | Nodegroup | Package   |
+--------+----------+----------+---------+-----------+-----------+
| 49     | ndb_mgmd | tonfisk  | running |           | mypackage |
| 1      | ndbd     | tonfisk  | running | 0         | mypackage |
| 2      | ndbd     | tonfisk  | running | 0         | mypackage |
| 50     | mysqlld  | tonfisk  | running |           | mypackage |
| 51     | mysqlld  | tonfisk  | running |           | mypackage |
| 52     | ndbapi   | *tonfisk | added   |           |           |
| 53     | ndbapi   | *tonfisk | added   |           |           |
+--------+----------+----------+---------+-----------+-----------+
7 rows in set (0.08 sec)
```

You can see whether there are any existing backups of `mycluster` using the `list backups` command, as shown here:

```
mcm> list backups mycluster;
+----------+--------+---------+---------------------+---------+
| BackupId | NodeId | Host    | Timestamp           | Comment |
+----------+--------+---------+---------------------+---------+
| 1        | 1      | tonfisk | 2012-12-04 12:03:52 |         |
| 1        | 2      | tonfisk | 2012-12-04 12:03:52 |         |
| 2        | 1      | tonfisk | 2012-12-04 12:04:15 |         |
| 2        | 2      | tonfisk | 2012-12-04 12:04:15 |         |
| 3        | 1      | tonfisk | 2012-12-04 12:17:41 |         |
| 3        | 2      | tonfisk | 2012-12-04 12:17:41 |         |
+----------+--------+---------+---------------------+---------+
6 rows in set (0.12 sec)
```

Simple backup. To create a backup, use the `backup cluster` command with the name of the cluster as an argument, similar to what is shown here:

```
mcm> backup cluster mycluster;
+-------------------------------+
| Command result                |
+-------------------------------+
| Backup completed successfully |
+-------------------------------+
1 row in set (3.31 sec)
```

`backup cluster` requires only the name of the cluster to be backed up as an argument; for information about additional options supported by this command, see Section 4.7.2, "The backup cluster Command". To verify that a new backup of `mycluster` was created with a unique ID, check the output of `list backups`, as shown here (where the rows corresponding to the new backup files are indicated with emphasized text):

```
mcm> list backups mycluster;
+----------+--------+---------+---------------------+---------+
| BackupId | NodeId | Host    | Timestamp           | Comment |
|          | 1      | tonfisk | 2012-12-04 12:03:52 |         |
|          | 2      | tonfisk | 2012-12-04 12:03:52 |         |
+----------+--------+---------+---------------------+---------+
```

43
If you attempt to create a backup of a MySQL Cluster in which each node group does not have at least one data node running, backup cluster fails with the error Backup cannot be performed as processes are stopped in cluster cluster_name.

Simple complete restore. To perform a complete restore of a MySQL Cluster from a backup with a given ID, follow the steps listed here:

1. Identify the backup to be used.

 In this example, we use the backup having the ID 4, that was created for mycluster previously in this section.

2. Wipe the MySQL Cluster data.

 The simplest way to do this is to stop and then perform an initial start of the cluster as shown here, using mycluster:

```plaintext
mcm> stop cluster mycluster;
| Command result                           |
| +----------------------------------------|
| | Cluster stopped successfully            |
| +----------------------------------------|
1 row in set (15.24 sec)

mcm> start cluster --initial mycluster;
| Command result                           |
| +----------------------------------------|
| | Cluster started successfully            |
| +----------------------------------------|
1 row in set (34.47 sec)
```

3. Restore the backup.

 This is done using the restore cluster command, which requires the backup ID and the name of the cluster as arguments. Thus, you can restore backup 4 to mycluster as shown here:

```plaintext
mcm> restore cluster --backupid=4 mycluster;
| Command result                           |
| +----------------------------------------|
| | Restore completed successfully          |
| +----------------------------------------|
1 row in set (16.78 sec)
```

Partial restore—missing images. It is possible using MySQL Cluster Manager to perform a partial restore of a MySQL Cluster—that is, to restore from a backup in which backup images from one or more data nodes are not available. This is required if we wish to restore mycluster to backup number 6, since an image for this backup is available only for node 1, as can be seen in the output of list backups in the mcm client (emphasized text):

```plaintext
mcm> list backups mycluster;
<table>
<thead>
<tr>
<th>BackupId</th>
<th>NodeId</th>
<th>Host</th>
<th>Timestamp</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
8 rows in set (0.04 sec)
```
Basic MySQL Cluster Backup and Restore Using MySQL Cluster Manager

To perform a restore of only those nodes for which we have images (in this case, node 1 only), we can use the \texttt{--skip-nodeid} option when executing a \texttt{restore cluster} command. This option causes one or more nodes to be skipped when performing the restore. Assuming that \texttt{mycluster} has been cleared of data (as described earlier in this section), we can perform a restore that skips node 2 as shown here:

\begin{verbatim}
mcm> restore cluster \texttt{--backupid=6} \texttt{--skip-nodeid=2} mycluster;
\end{verbatim}

\begin{verbatim}
+--------------------------------+
| Command result |
+--------------------------------+
| Restore completed successfully |
+--------------------------------+
1 row in set (17.06 sec)
\end{verbatim}

Because we excluded node 2 from the restore process, no data has been distributed to it. To cause MySQL Cluster data to be distributed to any such excluded or skipped nodes following a partial restore, it is necessary to redistribute the data manually by executing an \texttt{ALTER ONLINE TABLE ... REORGANIZE PARTITION} statement in the \texttt{mysql} client for each \texttt{NDB} table in the cluster. To obtain a list of \texttt{NDB} tables from the \texttt{mysql} client, you can use multiple \texttt{SHOW TABLES} statements or a query such as this one:

\begin{verbatim}
SELECT CONCAT('', TABLE_SCHEMA, '.', TABLE_NAME)
FROM INFORMATION_SCHEMA.TABLES
WHERE ENGINE='ndbcluster';
\end{verbatim}

You can generate the necessary SQL statements using a more elaborate version of the query just shown, such as the one employed here:

\begin{verbatim}
mysql> SELECT
-\rightarrow CONCAT('ALTER ONLINE TABLE `', TABLE_SCHEMA,
-\rightarrow ``.`', TABLE_NAME, `` REORGANIZE PARTITION;')
-\rightarrow AS Statement
-\rightarrow FROM INFORMATION_SCHEMA.TABLES
-\rightarrow WHERE ENGINE='ndbcluster';
\end{verbatim}

\begin{verbatim}
+--+
| Statement |
+--+
| ALTER ONLINE TABLE `mysql`.`ndb_apply_status` REORGANIZE PARTITION; |
| ALTER ONLINE TABLE `mysql`.`ndb_index_stat_head` REORGANIZE PARTITION; |
| ALTER ONLINE TABLE `mysql`.`ndb_index_stat_sample` REORGANIZE PARTITION; |
| ALTER ONLINE TABLE `db1`.`n1` REORGANIZE PARTITION; |
| ALTER ONLINE TABLE `db1`.`n2` REORGANIZE PARTITION; |
| ALTER ONLINE TABLE `db1`.`n3` REORGANIZE PARTITION; |
| ALTER ONLINE TABLE `test`.`n1` REORGANIZE PARTITION; |
| ALTER ONLINE TABLE `test`.`n2` REORGANIZE PARTITION; |
| ALTER ONLINE TABLE `test`.`n3` REORGANIZE PARTITION; |
| ALTER ONLINE TABLE `test`.`n4` REORGANIZE PARTITION; |
+--+
10 rows in set (0.09 sec)
\end{verbatim}

\textbf{Partial restore—data nodes added.} A partial restore can also be performed when new data nodes have been added to a MySQL Cluster following a backup. In this case, you can exclude the new nodes...
using `--skip-nodeid` when executing the `restore cluster` command. Consider the MySQL Cluster named `mycluster` as shown in the output of the following `show status` command:

```
<table>
<thead>
<tr>
<th>NodeId</th>
<th>Process</th>
<th>Host</th>
<th>Status</th>
<th>Nodegroup</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>49</td>
<td>ndb_mgmd</td>
<td>tonfisk</td>
<td>stopped</td>
<td></td>
<td>mypackage</td>
</tr>
<tr>
<td>1</td>
<td>ndbd</td>
<td>tonfisk</td>
<td>stopped</td>
<td>0</td>
<td>mypackage</td>
</tr>
<tr>
<td>2</td>
<td>ndbd</td>
<td>tonfisk</td>
<td>stopped</td>
<td>0</td>
<td>mypackage</td>
</tr>
<tr>
<td>50</td>
<td>mysqlid</td>
<td>tonfisk</td>
<td>stopped</td>
<td></td>
<td>mypackage</td>
</tr>
<tr>
<td>51</td>
<td>mysqlid</td>
<td>tonfisk</td>
<td>stopped</td>
<td></td>
<td>mypackage</td>
</tr>
<tr>
<td>52</td>
<td>ndbapi</td>
<td>*tonfisk</td>
<td>added</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>ndbapi</td>
<td>*tonfisk</td>
<td>added</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
+--------+---------+--------+--------+-----------+---------|
```

The output of `list backups` shows us the available backup images for this cluster:

```
<table>
<thead>
<tr>
<th>BackupId</th>
<th>NodeId</th>
<th>Host</th>
<th>Timestamp</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>tonfisk</td>
<td>2012-12-04 12:03:52</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>tonfisk</td>
<td>2012-12-04 12:03:52</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>tonfisk</td>
<td>2012-12-04 12:04:15</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>tonfisk</td>
<td>2012-12-04 12:04:15</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>tonfisk</td>
<td>2012-12-04 12:17:41</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>tonfisk</td>
<td>2012-12-04 12:17:41</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>tonfisk</td>
<td>2012-12-12 14:24:35</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>tonfisk</td>
<td>2012-12-12 14:24:35</td>
<td></td>
</tr>
</tbody>
</table>
+----------+--------+--------+---------------------+---------|
8 rows in set (0.06 sec)
```

Now suppose that, at a later point in time, 2 data nodes have been added to `mycluster` using an `add process` command. The `show status` output for `mycluster` now looks like this:

```
<table>
<thead>
<tr>
<th>NodeId</th>
<th>Process</th>
<th>Host</th>
<th>Status</th>
<th>Nodegroup</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>49</td>
<td>ndb_mgmd</td>
<td>tonfisk</td>
<td>running</td>
<td></td>
<td>mypackage</td>
</tr>
<tr>
<td>1</td>
<td>ndbd</td>
<td>tonfisk</td>
<td>running</td>
<td>0</td>
<td>mypackage</td>
</tr>
<tr>
<td>2</td>
<td>ndbd</td>
<td>tonfisk</td>
<td>running</td>
<td>0</td>
<td>mypackage</td>
</tr>
<tr>
<td>50</td>
<td>mysqlid</td>
<td>tonfisk</td>
<td>running</td>
<td></td>
<td>mypackage</td>
</tr>
<tr>
<td>51</td>
<td>mysqlid</td>
<td>tonfisk</td>
<td>running</td>
<td></td>
<td>mypackage</td>
</tr>
<tr>
<td>52</td>
<td>ndbapi</td>
<td>*tonfisk</td>
<td>added</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>ndbapi</td>
<td>*tonfisk</td>
<td>added</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>ndbd</td>
<td>tonfisk</td>
<td>running</td>
<td>1</td>
<td>mypackage</td>
</tr>
<tr>
<td>4</td>
<td>ndbd</td>
<td>tonfisk</td>
<td>running</td>
<td>1</td>
<td>mypackage</td>
</tr>
</tbody>
</table>
+--------+---------+--------+---------+-----------+---------|
9 rows in set (0.01 sec)
```

Since nodes 3 and 4 were not included in the backup, we need to exclude them when performing the restore. You can cause `restore cluster` to skip multiple data nodes by specifying a comma-separated list of node IDs with the `--skip-nodeid` option. Assume that we have just cleared `mycluster` of MySQL Cluster data using the `mcm` client commands `stop cluster` and `start cluster --initial` as described previously in this section; then we can restore `mycluster` (now having 4 data nodes numbered 1, 2, 3, and 4) from backup number 4 (made when `mycluster` had only 2 data nodes numbered 1 and 2) as shown here:

```
<table>
<thead>
<tr>
<th>Command result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restore completed successfully</td>
</tr>
</tbody>
</table>
```

46
No data is distributed to the skipped (new) nodes; you must force nodes 3 and 4 to be included in a redistribution of the data using `ALTER ONLINE TABLE ... REORGANIZE PARTITION` as described previously in this section.
Chapter 4 MySQL Cluster Manager Client Commands

Table of Contents

4.1 Online Help and Information Commands .. 54
4.2 MySQL Cluster Manager Site and Agent Commands .. 61
 4.2.1 The add hosts Command ... 61
 4.2.2 The change log-level Command ... 62
 4.2.3 The create site Command ... 62
 4.2.4 The delete site Command ... 63
 4.2.5 The list sites Command ... 64
 4.2.6 The list hosts Command ... 64
 4.2.7 The stop agents Command ... 65
 4.2.8 The version Command ... 65
4.3 MySQL Cluster Manager Package Commands .. 66
 4.3.1 The add package Command .. 66
 4.3.2 The delete package Command .. 68
 4.3.3 The list packages Command ... 69
4.4 MySQL Cluster Manager Cluster Commands .. 70
 4.4.1 The create cluster Command .. 70
 4.4.2 The delete cluster Command .. 73
 4.4.3 The list clusters Command .. 73
 4.4.4 The restart cluster Command ... 74
 4.4.5 The show status Command .. 74
 4.4.6 The start cluster Command .. 77
 4.4.7 The stop cluster Command ... 78
 4.4.8 The upgrade cluster Command ... 79
4.5 MySQL Cluster Manager Configuration Commands .. 80
 4.5.1 The get Command ... 82
 4.5.2 The reset Command ... 91
 4.5.3 The set Command ... 96
4.6 MySQL Cluster Manager Process Commands .. 103
 4.6.1 The add process Command ... 103
 4.6.2 The change process Command ... 104
 4.6.3 The list processes Command .. 107
 4.6.4 The start process Command ... 107
 4.6.5 The stop process Command .. 108
4.7 MySQL Cluster Manager Backup and Restore Commands 109
 4.7.1 The abort backup Command ... 109
 4.7.2 The backup cluster Command .. 109
 4.7.3 The list backups Command ... 110
 4.7.4 The restore cluster Command .. 110

Identifiers in client commands

Case-sensitivity rules for client commands

Options common to client commands

The sections in this chapter describe commands used in the MySQL Cluster Manager 1.2.4 client for tasks such as defining sites, packages, and MySQL Cluster instances (“clusters”); configuring a MySQL Cluster; and getting the status of a running MySQL Cluster. These commands are issued to the management agent using the mysql client program included with the MySQL Cluster distribution (for information about the mysql client not specific to using MySQL Cluster Manager, see mysql — The
MySQL Command-Line Tool. Each MySQL Cluster Manager client command takes the form shown here:

```
instruction [options] [arguments]
```

options:
```
  option [option] [...]
```

option:
```
  --option-long-name=[value-list]
  |   -option-short-name [value-list]
```

value-list:
```
  value[,value[,...]]
```

arguments:
```
  argument [argument] [...]
```

For example, consider the following MySQL Cluster Manager command, which starts a MySQL Cluster named `mycluster` and backgrounds the deletion process so that the client can be used to execute other commands in the meantime, without having to wait on the `start cluster` command to complete:

```
start cluster --background mycluster;
```

In this example, the command contains a `delete site` instruction. An instruction consists of one or two keywords, such as `set`, or `show status`. This instruction is modified by the `--background` option which follows it; however, this option assigns no values.

Most command options have short forms, consisting of single letters, in addition to their long forms. Using the short form of the `--background` option, the previous example could also be written like this:

```
delete site -B mysite;
```

The long form of an option must be preceded by a double dash (`--`), and is case insensitive (lower case being the canonical form). The short form of an option must be preceded by a single dash (`-`), and is case sensitive. In either case, the dash character or characters must come immediately before the option name, and there must be no space characters between them. Otherwise, the MySQL Cluster Manager client cannot parse the command correctly. More information about long and short forms of options is given later in this section.

Important

Do not confuse options given to MySQL Cluster Manager client commands with `mysql` client options. A MySQL Cluster Manager client command option is always employed as part of a MySQL Cluster Manager client command; it is not passed to the `mysql` client when invoking it.

In addition, you cannot issue queries or other SQL statements in the MySQL Cluster Manager client. These are not recognized by the client, and are rejected with an error. The converse of this is also true: MySQL Cluster Manager client commands are not recognized by the standard `mysql` client.

The instruction just shown takes the argument `mysite`. The argument is usually an identifier that names the object to be effected; in this case, the command deletes the site whose name matches the argument. (For more information, see Section 4.2.3, “The `create site` Command”.)

Changes in client commands in version 1.2.4. An additional `--verbose` option has been added in MySQL Cluster Manager 1.2.4 to the `create cluster` and `add process` commands. In both cases, using the option causes the command to return a list of the MySQL Cluster processes affected by the command; this includes their node IDs, process types, and the hosts where they are located.
Identifiers in client commands.
A legal MySQL Cluster Manager identifier consists of any sequence of characters from among the following:

- The letters \texttt{a} through \texttt{z} and \texttt{A} through \texttt{Z}
- The digits \texttt{0} through \texttt{9}
- The dash (\texttt{-}), period (\texttt{.}), and underscore (\texttt{_}) characters

A MySQL Cluster Manager identifier must begin with a letter or digit.

Case-sensitivity rules for client commands.
The rules for case-sensitivity of MySQL Cluster Manager identifiers, commands, command options, process names, and configuration attributes are as follows:

- \textbf{Identifiers are case-sensitive}. For example, `delete site mycluster` cannot be used to delete a site named `myCluster`.

- \textbf{Command keywords and the long forms of command options are case-insensitive}. For example, any of the three commands `delete cluster mycluster`, `DELETE CLUSTER mycluster`, and `DeLeTe cLuStEr mycluster` works to delete the MySQL Cluster instance named `mycluster`.

 In this manual, we show command keywords and the long forms of command options in lowercase, but you are not required to follow this convention if you do not wish to do so.

- \textbf{The short forms of command options are case-sensitive}. For example, `-b` (lowercase) is the short form of the `--basedir` option, but `-B` (uppercase) is the short form of the `--background` option.

- \textbf{Names of MySQL Cluster processes are case-insensitive}. For example, either of the commands `get --include-defaults DataMemory:ndbd mycluster` or `get --include-defaults datamemory:NDBD mycluster` reports the data memory allocated for each ndbd process in the cluster named `mycluster`.

 In this manual, we show names of MySQL Cluster processes in lowercase. You are not required to follow this convention if you do not wish to do so; however, since the corresponding executables are named and must be invoked in lowercase, we suggest that you use lowercase.

- \textbf{Configuration attribute names are case-insensitive}. For example, either of the commands `get --include-defaults DataMemory:ndbd mycluster` or `get --include-defaults datamemory:ndbd mycluster` returns the data memory allocated for each ndbd process in the cluster named `mycluster`; either of the commands `set engine-condition-pushdown:mysqld:4=0 mycluster` or `set Engine-Condition-Pushdown:mysqld:4=0 mycluster` disables the condition pushdown optimization in the \texttt{mysqld} process having the node ID \texttt{4} in the MySQL Cluster named `mycluster`.

\begin{note}

Configuration attributes in the MySQL Cluster Manager derive from two different sources: MySQL Cluster configuration parameters, and MySQL Server options. MySQL Cluster configuration parameters are case-insensitive, but their canonical forms use upper camelcase (that is, medial capitalization including the first letter). This means that whether you set a value for data memory using the MySQL Cluster Manager client or in the \texttt{config.ini} file, you can refer to it as `DataMemory`, `datamemory`, or `dATaMEmORY` without any negative impact. However, MySQL Server command-line options are case-sensitive and use only lowercase. This means that, for example, `set Engine-Condition-Pushdown:mysqld:4=0 mycluster` in the MySQL Cluster Manager client works to disable condition pushdown in the indicated `mysqld` process, but if...\end{note}
you invoke the mysqld executable from a system prompt using --Engine-Condition-Pushdown=0, mysqld fails to start.

In this manual, for easy recognition, we show configuration attribute names as having the same lowercase used in other MySQL documentation; thus, we always refer to DataMemory, rather than datamemory or DATAMEMORY, and engine-condition-pushdown, rather than Engine-Condition-Pushdown or ENGINE-CONDITION-PUSHDOWN. While you are not required to do this when using MySQL Cluster Manager, we suggest that you also follow this convention.

Note

Values that contain space characters must be quoted using single quote (') characters. For example, if you wish to define a package named mypackage for a site named mysite using /usr/local/mysql cluster/7.3 (where a space occurs between mysql and cluster) as the path to the base directory on all hosts, the correct command would be `add package --basedir='/usr/local/mysql cluster/7.3' mypackage`.

To decrease the possibility of errors in reading and entering MySQL Cluster Manager commands, we recommend avoiding the use of space characters whenever possible.

Each command must end with a terminator character. By default, this is the semicolon (;) character. However, the sequences \g and \G are also supported as command terminators. The \G terminator causes the output to be vertically formatted (the same as in the standard mysql client), as shown in this example:

```
mcm> get DataMemory mycluster\G
*************************** 1. row ***************************
    Name: DataMemory
    Value: 500M
    Process1: ndbd
      Id1: 2
    Process2:
      Id2: 
        Level: Process
    Comment:
*************************** 2. row ***************************
    Name: DataMemory
    Value: 500M
    Process1: ndbd
      Id1: 3
    Process2:
      Id2: 
        Level: Process
    Comment:
2 rows in set (0.22 sec)
```

By convention (for reasons of readability), we do not normally include the command terminator when showing the syntax for a command in Backus-Naur format or when including a MySQL Cluster Manager command inline in this text. However, if you do not use a statement terminator when you enter the command in the MySQL Cluster Manager client, the client displays a special “waiting...” prompt -> until you supply a terminator, as shown here:

```
mcm> list sites
  ->
  ->
  -> ;
Empty set (1.50 sec)
```

(The is the same as the behavior of the mysql client when you fail to end a statement with a terminator.)
A command option can also in many cases accept (or even require) a set of one or more values. The next example includes such an option, and also demonstrates setting of multiple values in a single option by passing them to the option as a comma-separated list:

```bash
mcm> create site --hosts=tonfisk,flundra mysite;
```

The command just shown creates a site named *mysite*, consisting of two hosts named *tonfisk* and *flundra*. (See Section 4.2.3, “The create site Command”, for more information about this command.) Since we used the long form of the `--hosts` option, we were required to use an equals sign (=) to mark the end of the option name and the beginning of the values list. You must not insert any space characters before or after the equal sign; doing so causes an error, as shown here:

```bash
mcm> create site --hosts =grindval,haj yoursite;
ERROR 7 (00MGR): Option --hosts requires a value
mcm> create site --hosts= grindval,haj yoursite;
ERROR 7 (00MGR): Option --hosts requires a value
```

The short form of an option does not use an equal sign. Instead, the value-list is separated from the option by a space. Using the `-h` option, which is the short form of the `--hosts` option, the previous `create site` command can be entered and executed like this:

```bash
mcm> create site -h tonfisk,flundra mysite;
```

The short forms of options actually accept multiple spaces between the option name and the values list; however, a single space is sufficient. If you omit the space, or try to use an equal sign, the command fails with an error, as shown here:

```bash
mcm> create site -htonfisk,flundra mysite;
ERROR 6 (00MGR): Illegal number of operands
mcm> create site -h=tonfisk,flundra mysite;
ERROR 3 (00MGR): Illegal syntax
```

Any option value containing one or more whitespace characters, one or more dash characters (-), or both, must be quoted using single quotation marks. Multiple values should be separated by commas only; do not insert spaces before or after any of the commas. Using spaces before or after the commas in a list of values causes the command to fail with an error, as shown here:

```bash
mcm> create site --hosts=tonfisk, flundra mysite;
ERROR 6 (00MGR): Illegal number of operands
```

As you can see from the examples just shown, a MySQL Cluster Manager client command returns a result set, just as an SQL statement does in the standard `mysql` client. The result set returned by a MySQL Cluster Manager client command consists of one of the following:

- A single row that contains a message indicating the outcome of the command. The `create site` command in the last example returned the result **Site created successfully**, to inform the user that the command succeeded.
Online Help and Information Commands

• One or more rows listing requested objects or properties. An example of such a command is `list processes`, as shown here:

```plaintext
mcm> list processes mycluster;
+--------+----------+----------+
| NodeId | Name     | Host     |
+--------+----------+----------+
| 49     | ndb_mgmd | flundra  |
| 1      | ndbd     | tonfisk  |
| 2      | ndbd     | grindval |
| 50     | mysqlld  | haj      |
| 51     | mysqlld  | torsk    |
| 52     | ndbapi   | *        |
+--------+----------+----------+
6 rows in set (0.03 sec)
```

In the case of `list processes`, each row in the result contains the ID and type of a node in the MySQL Cluster named `mycluster`, together with the name of the host on which the process is running.

• An empty result set. This can occur with one of the `list` commands when there is nothing to report, such as when `list sites` is used before any sites have been created:

```plaintext
mcm> list sites;
Empty set (0.72 sec)
```

Each command must be entered separately; it is not possible to combine multiple commands on a single line.

Options common to client commands.
The following three options are common to most MySQL Cluster Manager client commands:

1. `--help` (short form: `-?`): Common to all client commands. Provides help output specific to the given command. See Section 4.1, “Online Help and Information Commands”, for more information about this option.

2. `--force` (short form `-f`): Causes any safety checks to be bypassed when executing the command. For example, `delete cluster mycluster` normally fails if any of the MySQL Cluster processes in the MySQL Cluster named `mycluster` are running; however, `delete cluster --force mycluster` forces the shutdown of `mycluster`, followed by the deletion of `mycluster` from MySQL Cluster Manager's inventory.

 The `--force` option is supported for all MySQL Cluster Manager 1.2.4 client commands with the exception of `add hosts`.

3. `--background` (short form `-B`): Rather than waiting for the command to complete, the MySQL Cluster Manager client immediately returns the command prompt, allowing you to perform additional tasks in the client while that command continues to execute in the background. This can be useful when executing commands that might require some time to complete (such as starting a cluster with a great many nodes).

 This option is supported by all client commands except for `create site, delete site, add hosts, add package, and delete package`.

4.1 Online Help and Information Commands

Online help is available in the MySQL Cluster Manager client for MySQL Cluster Manager client commands. The client can provide both general and command-specific information. In addition, you can obtain information about `mysql` client commands that are independent of the MySQL server and thus are also available for use when connected to the MySQL Cluster Manager agent.

Listing MySQL Cluster Manager client commands.
Online Help and Information Commands

For a list of all commands with brief descriptions, use the `list commands` command, as shown here:

```
mcm> list commands;
<table>
<thead>
<tr>
<th>Help</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMMANDS</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>add hosts</td>
</tr>
<tr>
<td>add package</td>
</tr>
<tr>
<td>add process</td>
</tr>
<tr>
<td>change process</td>
</tr>
<tr>
<td>create cluster</td>
</tr>
<tr>
<td>create site</td>
</tr>
<tr>
<td>delete cluster</td>
</tr>
<tr>
<td>delete package</td>
</tr>
<tr>
<td>delete site</td>
</tr>
<tr>
<td>get</td>
</tr>
<tr>
<td>list clusters</td>
</tr>
<tr>
<td>list commands</td>
</tr>
<tr>
<td>list hosts</td>
</tr>
<tr>
<td>list nextnodeids</td>
</tr>
<tr>
<td>list packages</td>
</tr>
<tr>
<td>list processes</td>
</tr>
<tr>
<td>list sites</td>
</tr>
<tr>
<td>reset</td>
</tr>
<tr>
<td>restart cluster</td>
</tr>
<tr>
<td>set</td>
</tr>
<tr>
<td>show status</td>
</tr>
<tr>
<td>start cluster</td>
</tr>
<tr>
<td>start process</td>
</tr>
<tr>
<td>stop agents</td>
</tr>
<tr>
<td>stop cluster</td>
</tr>
<tr>
<td>stop process</td>
</tr>
<tr>
<td>upgrade cluster</td>
</tr>
<tr>
<td>version</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>GLOBAL OPTIONS</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>Options that can be used with all commands</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>--help</td>
</tr>
<tr>
<td>------</td>
</tr>
</tbody>
</table>

Use `COMMAND --help` to see verbose help for individual commands.
```

Obtaining information about specific MySQL Cluster Manager client commands.
To obtain more detailed help specific to a given command, invoke the command using the `--help` option, as shown in this example:

```
mcm> create site --help;
<table>
<thead>
<tr>
<th>Help</th>
</tr>
</thead>
<tbody>
<tr>
<td>create site [options] &lt;sitename&gt;</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>Creates a site from the hosts listed in --hosts.</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>Required options:</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>--hosts</td>
</tr>
<tr>
<td>Format: --hosts = &lt;host&gt;[,&lt;host&gt;]*.</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>Valid options:</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>--background</td>
</tr>
<tr>
<td>--hosts</td>
</tr>
<tr>
<td>Format: --hosts = &lt;host&gt;[,&lt;host&gt;]*.</td>
</tr>
</tbody>
</table>
```

37 rows in set (0.00 sec)
For any MySQL Cluster Manager client command, the `--help` option may be abbreviated to `-?`

```
list processes -?
```

As mentioned elsewhere in this manual (see Chapter 4, MySQL Cluster Manager Client Commands), many other MySQL Cluster Manager command options have short forms as well. These are included in the documentation for each command. You can also find out what these are for a given command by invoking it with the `--help` or `-?` option.

You can obtain the release version of the MySQL Cluster Manager software in use from the output of the `version` command.

mysql client commands in the MySQL Cluster Manager client.
You can also use most standard `mysql` client commands in the MySQL Cluster Manager client (but not SQL statements, which depend on being connected to a MySQL server), such as `prompt`, `quit`, and `status`. For example, the output of the status command when connected to the MySQL Cluster Manager agent looks something like this (depending on the exact version of the client and agent which you are using and possibly other factors):

```
mcm> status
/home/jon/bin/mcm/libexec/../cluster/bin/mysql
Ver 14.14 Distrib 5.6.11-ndb-7.3.2, for linux2.6 (x86_64) using EditLine wrapper
```

You may use the command delimiter with `mysql` client commands, but you are not required to do so. For instance, assuming that the delimiter in use was the default semicolon (`;`) character, we could have executed the `status` command like this:

```
mcm> status;
```

A particularly useful `mysql` client command that you can also employ with `mcm` is the `source` command (short form: `\.`), which you can use for executing scripts containing MySQL Cluster Manager
client commands. On a Linux system, you might have a text file in your home directory named `get-attributes.mcm`, whose contents are shown here:

```
get :ndb_mgmd mycluster\G
get :ndbd mycluster\G
get :mysqld mycluster\G
```

Assuming that you have created a cluster named `mycluster`, you can run this script in the client; the results vary according to how this cluster is actually configured, but should be similar to this:

```
mcm> \./get-attributes.mcm
mcm> get :ndb_mgmd mycluster\G
  1. row
    Name: DataDir
    Value: /home/jon/bin/mcm/mcm_data/clusters/mycluster/49/data
  Process1: ndb_mgmd
    NodeId1: 49
    Process2: 
      NodeId2: 
      Level: 
      Comment: 
  *************************** 2. row ***************************
    Name: HostName
    Value: flundra
  Process1: ndb_mgmd
    NodeId1: 49
    Process2: 
      NodeId2: 
      Level: 
      Comment: Read only
*************************** 3. row ***************************
    Name: NodeId
    Value: 49
  Process1: ndb_mgmd
    NodeId1: 49
    Process2: 
      NodeId2: 
      Level: 
      Comment: Read only
*************************** 4. row ***************************
    Name: PortNumber
    Value: 1186
  Process1: ndb_mgmd
    NodeId1: 49
    Process2: 
      NodeId2: 
      Level: Process
      Comment: 
4 rows in set (0.09 sec)
mcm> get :ndbd mycluster\G
  1. row
    Name: DataDir
    Value: /home/jon/bin/mcm/mcm_data/clusters/mycluster/1/data
  Process1: ndbd
    NodeId1: 1
    Process2: 
      NodeId2: 
      Level: 
      Comment: 
  *************************** 2. row ***************************
    Name: HostName
    Value: tonfisk
  Process1: ndbd
    NodeId1: 1
    Process2: 
      NodeId2: 
      Level: 
      Comment: Read only
*************************** 3. row ***************************
```
Name: NodeId
 Value: 1
 Process1: ndbd
 NodeId1: 1
 Process2:
 NodeId2:
 Level:
 Comment: Read only

*************************** 4. row ****************************
Name: DataDir
 Value: /home/jon/bin/mcm/mcm_data/clusters/mycluster/2/data
 Process1: ndbd
 NodeId1: 2
 Process2:
 NodeId2:
 Level:
 Comment:

*************************** 5. row ****************************
Name: HostName
 Value: grindval
 Process1: ndbd
 NodeId1: 2
 Process2:
 NodeId2:
 Level:
 Comment: Read only

*************************** 6. row ****************************
Name: NodeId
 Value: 2
 Process1: ndbd
 NodeId1: 2
 Process2:
 NodeId2:
 Level:
 Comment: Read only

6 rows in set (0.10 sec)

mcm> get :mysqld mycluster\G

*************************** 1. row ****************************
Name: datadir
 Value: /home/jon/bin/mcm/mcm_data/clusters/mycluster/50/data
 Process1: mysqld
 NodeId1: 50
 Process2:
 NodeId2:
 Level:
 Comment:

*************************** 2. row ****************************
Name: HostName
 Value: haj
 Process1: mysqld
 NodeId1: 50
 Process2:
 NodeId2:
 Level:
 Comment: Read only

*************************** 3. row ****************************
Name: log_error
 Value: /home/jon/bin/mcm/mcm_data/clusters/mycluster/50/data/mysqld_50_out.err
 Process1: mysqld
 NodeId1: 50
 Process2:
 NodeId2:
 Level:
 Comment:

*************************** 4. row ****************************
Name: ndb_nodeid
 Value: 50
 Process1: mysqld
 NodeId1: 50
 Process2:
 NodeId2:
 Level:
 Comment:

6 rows in set (0.10 sec)
Online Help and Information Commands

Level:
Comment: Read only
*************************** 5. row ***************************
 Name: ndbcluster
 Value:
 Process1: mysqld
 NodeId1: 50
 Process2:
 NodeId2:
 Level:
 Comment: Read only
*************************** 6. row ***************************
 Name: NodeId
 Value: 50
 Process1: mysqld
 NodeId1: 50
 Process2:
 NodeId2:
 Level:
 Comment: Read only
*************************** 7. row ***************************
 Name: port
 Value: 3306
 Process1: mysqld
 NodeId1: 50
 Process2:
 NodeId2:
 Level:
 Comment:
*************************** 8. row ***************************
 Name: socket
 Value: /tmp/mysql.mycluster.50.sock
 Process1: mysqld
 NodeId1: 50
 Process2:
 NodeId2:
 Level:
 Comment:
*************************** 9. row ***************************
 Name: tmpdir
 Value: /home/jon/bin/mcm/mcm_data/clusters/mycluster/50/data/tmp
 Process1: mysqld
 NodeId1: 50
 Process2:
 NodeId2:
 Level:
 Comment:
*************************** 10. row ***************************
 Name: datadir
 Value: /home/jon/bin/mcm/mcm_data/clusters/mycluster/51/data
 Process1: mysqld
 NodeId1: 51
 Process2:
 NodeId2:
 Level:
 Comment:
*************************** 11. row ***************************
 Name: HostName
 Value: torsk
 Process1: mysqld
 NodeId1: 51
 Process2:
 NodeId2:
 Level:
 Comment: Read only
*************************** 12. row ***************************
 Name: log_error
 Value: /home/jon/bin/mcm/mcm_data/clusters/mycluster/51/data/mysqld_51_out.err
 Process1: mysqld
 NodeId1: 51
 Process2:
 NodeId2:
Note

You are not returned to the client prompt until the script has finished executing.

Similarly, on Windows, you can create a batch file using Notepad or another text editor, copy the same `get` commands as shown previously into it, and save it as `get-attributes.bat` in a convenient location such as the Windows desktop.

You can view a list of available `mysql` client commands using the `help` command. For more information about these, view the `help` output or see `mysql Commands`, in the *MySQL Manual*.
4.2 MySQL Cluster Manager Site and Agent Commands

In this section, we discuss commands used to work with MySQL Cluster Manager management sites. In addition, the `stop agents` and `version` commands, which relate to management agents, are also covered in this section.

A `site`, in terms of MySQL Cluster and MySQL Cluster Manager, is a collection of one or more host computers where MySQL Cluster Manager agents are running. Each agent is identified by the combination of two pieces of information:

- The hostname or IP address of the machine where the agent is running
- The number of the port used by the agent for communications

Note

MySQL Cluster makes extremely intensive use of network connections, and DNS lookups can content with MySQL Cluster and MySQL Cluster Manager for bandwidth, resulting in a negative impact on the performance of MySQL Cluster and the applications using it. For this reason, we recommend that you use numeric IP addresses rather than hostnames for MySQL Cluster and MySQL Cluster Manager host computers whenever feasible.

4.2.1 The `add hosts` Command

```
add hosts --hosts=host_list site_name

host_list:
   host[, host[, ...]]
```

This command adds one or more hosts to an existing management site. Agents using the same port as the management site must be running on any hosts added using this command. It takes as arguments a required option `--hosts`, whose value is a comma-separated list of one or more hosts to be added to the site, and the name of the site to which the hosts are to be added.

For example, the following command adds two hosts named `torsk` and `kolja` to management site `mysite`:

```
mcm> add hosts --hosts=torsk,kolja mysite;
+--------------------------+
| Command result           |
+--------------------------+
| Hosts added successfully |
+--------------------------+
1 row in set (0.48 sec)
```

None of the hosts added by this command may already be members of management site `site_name`.

It is not currently possible using MySQL Cluster Manager to drop or delete hosts from a management site.

Notes

- This command does not support the `--force` option.
- Do not use `localhost` in the host list, as MySQL Cluster Manager relies on the operating system for host name resolution, and `localhost` might be resolved differently on different systems. Use proper host names for the host list or, preferably, use the IP addresses for the hosts instead.
- When IPv6-enabled Windows systems are used as MySQL Cluster hosts under MySQL Cluster Manager, you must reference these hosts using IPv4.
addresses. Otherwise, MySQL Cluster Manager will be unable to connect to the agent processes on those hosts. See Section 5.1, “MySQL Cluster Manager Usage and Design Limitations”.

4.2.2 The **change log-level** Command

```plaintext
change log-level log_level [site_name]
change log-level [{--hosts=|-h }host_list] log_level site_name

host_list:
    host[,host[,...]]
```

Set the management agent's cluster logging level. This has the same effect as using the `--log-level` option; however, unlike the option, this command can be used at run time and does not require a restart of `mcmd`. Issuing this command overrides any value for `--log-level` set on the command line or in the agent configuration file.

When used with the `log_level` alone, this command applies to the agent as a whole—that is, it applies to all sites on all hosts. In the following example, the logging level is set to `warning` on all hosts and sites:

```
mcm> change log-level warning;
+--------------------------------+
<table>
<thead>
<tr>
<th>Command result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log-level changed successfully</td>
</tr>
</tbody>
</table>
+------------------------------+
1 row in set (0.00 sec)
```

You can restrict the effects of the command by specifying the name of a site, or both. For example, the following invocation of the command applies only to the site named `mysite`:

```
mcm> change log-level debug mysite;
+--------------------------------+
<table>
<thead>
<tr>
<th>Command result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log-level changed successfully</td>
</tr>
</tbody>
</table>
+------------------------------+
1 row in set (0.05 sec)
```

You can additionally restrict the change to one or more hosts in a given site using the `--hosts` option, with multiple host names separated by commas. The following command changes the logging level to `debug` on the hosts named `tonfisk` and `haj`, but not on any other hosts in `mysite`:

```
mcm> change log-level --hosts=tonfisk,haj debug mysite;
+--------------------------------+
<table>
<thead>
<tr>
<th>Command result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log-level changed successfully</td>
</tr>
</tbody>
</table>
+------------------------------+
1 row in set (0.09 sec)
```

You must specify a site when using the `--hosts` option; trying to use `--hosts` alone results in an error.

Accepted values for `log_level` are the same as for the `--log-level`: one of `debug`, `critical`, `error`, `info`, `message`, or `warning`. For more detailed information about the meanings and effects of these values, see MySQL Cluster Logging Management Commands.

The `set log-level` command was added in MySQL Cluster Manager 1.2.3.

4.2.3 The **create site** Command
The **create site** command is used to create a MySQL Cluster Manager management site; that is, a set of MySQL Cluster Manager management agents running on one or more host computers. The command requires a list of one or more hosts where management agents are running and a name for the site. The host list is passed as the value of the **--hosts** option (short form: **-h**).

This is an example of a **create site** command that creates a site named *mysite*, consisting of the hosts *tonfisk* and *flundra*:

```
create site --hosts=tonfisk,flundra mysite;
```

```
+---------------------------+
<table>
<thead>
<tr>
<th>Command result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site created successfully</td>
</tr>
</tbody>
</table>
+---------------------------+
1 row in set (0.31 sec)
```

Tip

You can verify that the site was created as intended, using the **list sites** command, as shown here:

```
mcm> list sites;
```

```
+--------+------+-------+-----------------+
| Site   | Port | Local | Hosts           |
|--------+------+-------+-----------------+
| mysite | 1862 | Local | tonfisk,flundra |
+--------+------+-------+-----------------+
1 row in set (0.06 sec)
```

(See Section 4.2.5, “The **list sites** Command”, for more information about this command.)

Agents must be running on all hosts specified in the **--hosts** option when **create site** is executed; otherwise, the command fails with the error *Agent on host host: port is unavailable*. The host where the agent used to issue the command is running must be one of the hosts listed. Otherwise, the command fails with the error *Host host_name is not a member of site site_name*.

A given agent may be a member of one site only; if one of the management agents specified in the **host_list** already belongs to a site, the command fails with the error *Host host is already a member of site site*.

Notes

- Do not use localhost in the host list, as MySQL Cluster Manager relies on the operating system for host name resolution, and localhost might be resolved differently on different systems. Use proper host names for the host list or, preferably, use the IP addresses for the hosts instead.

- When IPv6-enabled Windows systems are used as MySQL Cluster hosts under MySQL Cluster Manager, you must reference these hosts using IPv4 addresses. Otherwise, MySQL Cluster Manager will be unable to connect to the agent processes on those hosts. See Section 5.1, “MySQL Cluster Manager Usage and Design Limitations”.

4.2.4 The **delete site** Command
The `delete site` Command

The `delete site` command deletes an existing management site. The command does not stop or remove any agents making up the deleted site; instead, these agents continue to run, and remain available for use in other sites.

The command takes a single argument, the name of the site to be deleted. This example shows the deletion of a management site named `mysite`:

```
mcm> delete site mysite;
+---------------------------+
| Command result            |
+---------------------------+
| Site deleted successfully |                      
+---------------------------+
1 row in set (0.38 sec)
```

If the site to be deleted does not exist, the command fails with the error `Command requires a site to be defined`. If there are any packages referencing hosts belonging to the site, `delete site` fails with the error `Packages exist in site site_name`. The command also fails if there are defined any clusters that include hosts belonging to the site.

Note

The management client must be connected to a site in order to be able to delete it.

In addition, if you execute a `delete site` command with the `--force` option using one management agent while a different management agent is not running, you must remove the “missing” management agent’s site files manually. For more information on site files, see Section 2.4, “MySQL Cluster Manager Configuration File”.

4.2.5 The `list sites` Command

This command returns a list of the sites known to the management agent. It does not require any arguments. An example is shown here:

```
mcm> list sites;
+--------+-------+-------+-----------------+
| Site   | Port  | Local | Hosts           |
+--------+-------+-------+-----------------+
| mysite | 1862  | Local | tonfisk,flundra |
+--------+-------+-------+-----------------+
1 row in set (0.06 sec)
```

The output of `list sites` contains the following columns:

- **Site**: The name of the site.
- **Port**: The TCP/IP port used for communications between management agents.
- **Local**
- **Hosts**: A comma-separated list of the hosts making up the site.

4.2.6 The `list hosts` Command
The **stop agents** Command

The **list hosts** command is used to obtain a list of the hosts comprising a given management site. The command requires a single argument, the name of the site to be examined. For each host listed, the information returned includes the hostname, availability (the **Status** column), and version of the management agent software in use, as shown in this example:

```
 mcm> list hosts mysite;

+-----------+-----------+---------+
<table>
<thead>
<tr>
<th>Host</th>
<th>Status</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>tonfisk</td>
<td>Available</td>
<td>1.2.4</td>
</tr>
<tr>
<td>flundra</td>
<td>Available</td>
<td>1.2.4</td>
</tr>
</tbody>
</table>
+-----------+-----------+---------+
2 rows in set (0.16 sec)
```

If you omit the **site_name** argument, the command fails with an error, as shown here:

```
 mcm> list hosts;
 ERROR 6 (00MGR): Illegal number of operands
```

4.2.7 The **stop agents** Command

stop agents `[--hosts=host_list]` **site_name**

This command stops one or more MySQL Cluster Manager agents on one or more hosts.

When used without any arguments, **stop agents** stops the agent to which the client is currently connected.

When used with the name of a management site, the command stops all agents running on hosts making up the site. The following stops all MySQL Cluster Manager agents running on hosts in **mysite**:

```
 mcm> stop agents mysite;
```

You can also stop a subset of the agents in a given management site by listing the hosts where they are running with the `--hosts` option, along with the name of the site to which they belong. The result of the following command is to stop MySQL Cluster Manager agents running on hosts **kolja** and **torsk**, both of which are members of the management site **mysite**:

```
 mcm> stop agents --hosts=kolja,torsk mysite;
```

Multiple host names following the `--hosts` option should be separated by commas, with no intervening spaces. Invoking **stop agents** with this option without supplying a **site_name** causes a syntax error. Using an undefined **site_name** or names of hosts not belonging to the site with this command also results in an error.

Note

When IPv6-enabled Windows systems are used as MySQL Cluster hosts under MySQL Cluster Manager, you must reference these hosts using IPv4 addresses. Otherwise, MySQL Cluster Manager will be unable to connect to the agent processes on those hosts. See Section 5.1, “MySQL Cluster Manager Usage and Design Limitations”.

4.2.8 The **version** Command
version

This command displays the version of the MySQL Cluster Manager software in use by the MySQL Cluster Manager agent to which this client is connected, as shown here:

```
mcm> version;
+-----------------------------+
| Version                     |
+-----------------------------+
| MySQL Cluster Manager 1.2.4 |
+-----------------------------+
1 row in set (0.00 sec)
```

The `version` command takes no arguments.

4.3 MySQL Cluster Manager Package Commands

This section contains information about MySQL Cluster Manager client commands used to register, extend, unregister, and obtain information about the software packages making up instances of MySQL Cluster that are to be managed using the MySQL Cluster Manager.

4.3.1 The `add package` Command

```
add package {--basedir=|-b} path
  [{--hosts=|-h} host_list] package_name
```

<table>
<thead>
<tr>
<th>host_list:</th>
</tr>
</thead>
<tbody>
<tr>
<td>host[,,host[,...]]</td>
</tr>
</tbody>
</table>

This command creates a new package, or, if the package named `package_name` already exists, this command extends the package definition. The `--basedir` option (short form: `-b`), which indicates the location of the MySQL Cluster installation directory on the listed hosts, is required. This must be the path to the top-level directory where the MySQL Cluster software is located (for example, `/usr/local/mysql`), and should not include the MySQL Cluster `bin`, `libexec`, or other subdirectory within the installation directory.

Hosts may be specified as a comma-separated list, using the `--hosts` option (short form: `-h`); however, this option is not required. If `--hosts` is omitted, the path is assumed to be valid for all hosts in the cluster that is created using this package (see Section 4.4.1, “The `create cluster` Command”).

Important

You cannot perform `add package` if you have not yet defined any sites (each host referenced in an `add package` command must be associated with a site). See Section 4.2.3, “The `create site` Command”, for more information about defining sites.

Suppose we have two Linux hosts named `tonfisk` and `flundra`, and the MySQL Cluster software is installed in `/usr/local/mysql` on both hosts. In this case, you can create a package named `mypackage` that accounts for both hosts as shown here:

```
mcm> add package --basedir=/usr/local/mysql mypackage;
+-----------------------------+
| Command result             |
+-----------------------------+
| Package added successfully   |
+-----------------------------+
1 row in set (0.71 sec)
```

When this package is used to create a cluster, the MySQL Cluster Manager knows that it should find the MySQL Cluster software in the `/usr/local/mysql` directory on each of the hosts.
The *add package* Command

For options to MySQL Cluster Manager client command options having Windows paths as values, you must use forward slashes (/) in place of backslashes (\), so if *tonfisk* and *flundra* are Windows hosts where MySQL Cluster has been installed to the directory `C:\mysql`, the corresponding add package command would look like this (with the `--basedir` option highlighted):

```
mcm> add package --basedir=c:/mysql mypackage;
+----------------------------+
| Command result             |
+----------------------------+
| Package added successfully |
+----------------------------+
1 row in set (0.71 sec)
```

In the example just given, we could also have issued the command as `add package --basedir=/usr/local/mysql --hosts=tonfisk,flundra mypackage` (or `add package --basedir=c:/mysql --hosts=tonfisk,flundra mypackage` on Windows) with the same result, but the `--hosts` option was not required, since the MySQL Cluster software's location is the same on each host. Let us suppose, however, that the software is installed in `/usr/local/ndb-host-10` on host *tonfisk* and in `/usr/local/ndb-host-20` on host *flundra*. In this case, we must issue 2 separate commands, specifying the host as well as the base directory in each case, as shown here:

```
mcm> add package --basedir=/usr/local/ndb-host-10
   > --hosts=tonfisk yourpackage;
+----------------------------+
| Command result             |
+----------------------------+
| Package added successfully |
+----------------------------+
1 row in set (0.68 sec)
```
```
mcm> add package --basedir=/usr/local/ndb-host-20
   > --hosts=flundra yourpackage;
+----------------------------+
| Command result             |
+----------------------------+
| Package added successfully |
+----------------------------+
1 row in set (0.81 sec)
```

Assuming that both hosts belong to a site called *mysite*, you can verify that these packages have been created as desired using the *list packages* command, as shown here:

```
mcm> list packages mysite;
+-------------+---------------------------------------+-----------------+
| Package     | Path                                  | Hosts           |
+-------------+---------------------------------------+-----------------+
| yourpackage | /usr/local/ndb-host-10                | tonfisk         |
|             | /usr/local/ndb-host-20                | flundra         |
| mypackage   | /usr/local/mysql                      | tonfisk,flundra |
+-------------+---------------------------------------+-----------------+
3 rows in set (1.07 sec)
```

(For more information about this command, see Section 4.3.3, "The *list packages* Command").

It is possible to assign the same base directory (or directories) on the same host (or hosts) to multiple packages, as shown in this example, in which we assume that hosts *tonfisk* and *flundra* have previously been assigned to a site named *mysite*:

```
mcm> add package -b /usr/local/mysql-cluster mypackage;
+----------------------------+
| Command result             |
+----------------------------+
| Package added successfully |
+----------------------------+
```
The **delete package** Command

4.3.2 The **delete package** Command

```
delete package [|--hosts=|-h ]host_list] package_name
host_list: 
  host[, host[,...]]
```

This command is used to unregister a package. More specifically, it removes any references to MySQL Cluster software installations added to the agent's repository when the package was created. **delete package** does not remove any MySQL Cluster installations; the command removes only references to the installations. Once a package has been unregistered, it can no longer be used for a **create cluster** command. The MySQL Cluster binaries remain, but cannot be used in a MySQL Cluster administered using the MySQL Cluster Manager unless and until the base directory containing them has been registered with another package. (It is possible to register a base directory with multiple packages; see **Section 4.3.1, “The add package Command”**, for more information and an example.)

If the **--hosts** option (short form: **-h**) is used with this command, the base directory settings for the host or hosts named by the option are removed as well. All hosts given in the **host_list** must be members of the site to which the package is registered. Otherwise, the command fails.

A package that is in use by a cluster cannot be unregistered; the cluster must first be deleted (see **Section 4.4.2, “The delete cluster Command”**).

Here is an example that demonstrates how to unregister a package named **mypackage**:

```
mcm> delete package mypackage;
+----------------------------+
| Command result             |
| +--------------------------+|
| Package deleted successfully|
+----------------------------+
1 row in set (1.23 sec)
```

You can also verify that the package was unregistered using the **list packages** command; the package name should no longer appear in the output of this command. If you attempt to use the unregistered package in a **create cluster** command, the command fails, as shown here:
The list packages Command

```
mcm> create cluster --package=mypackage
   > --processhosts=ndb_mgmd@tonfisk,ndbd@grindval,ndbd@flundra,mysqld@tonfisk mycluster;
ERROR 4001 (00MGR): Package mypackage not defined
```

An upgrade cluster command that references an unregistered package also fails.

Note

When IPv6-enabled Windows systems are used as MySQL Cluster hosts under MySQL Cluster Manager, you must reference these hosts using IPv4 addresses. Otherwise, MySQL Cluster Manager will be unable to connect to the agent processes on those hosts. See Section 5.1, “MySQL Cluster Manager Usage and Design Limitations”.

4.3.3 The list packages Command

```
list packages [package_name] site_name
```

This command lists registered packages. It requires a single argument, that being the name of the site with which the packages are registered, as shown in this example:

```
mcm> list packages mysite;
+-------------+---------------------------------------+-----------------+
<table>
<thead>
<tr>
<th>Package</th>
<th>Path</th>
<th>Hosts</th>
</tr>
</thead>
<tbody>
<tr>
<td>yourpackage</td>
<td>/usr/local/ndb-host-10</td>
<td>tonfisk</td>
</tr>
<tr>
<td></td>
<td>/usr/local/ndb-host-20</td>
<td>flundra</td>
</tr>
<tr>
<td>mypackage</td>
<td>/usr/local/mysql</td>
<td>tonfisk,flundra</td>
</tr>
</tbody>
</table>
+-------------+---------------------------------------+-----------------+
3 rows in set (1.07 sec)
```

If tonfisk and flundra are Windows hosts, the list of packages might look something like this:

```
mcm> list packages mysite;
+-------------+-------------------+-----------------+
<table>
<thead>
<tr>
<th>Package</th>
<th>Path</th>
<th>Hosts</th>
</tr>
</thead>
<tbody>
<tr>
<td>yourpackage</td>
<td>c:/cluster/ndb-host-10</td>
<td>tonfisk</td>
</tr>
<tr>
<td></td>
<td>c:/cluster/ndb-host-20</td>
<td>flundra</td>
</tr>
<tr>
<td>mypackage</td>
<td>c:/mysql</td>
<td>tonfisk,flundra</td>
</tr>
</tbody>
</table>
+-------------+-------------------+-----------------+
3 rows in set (1.07 sec)
```

In the example just shown, yourpackage uses the MySQL Cluster binaries installed at C:\cluster\ndb-host-10 on host tonfisk, and at C:\cluster\ndb-host-20 on flundra; mypackage uses MySQL Cluster binaries installed at C:\mysql on both hosts.

The output contains three columns; these are described in the following list:

- **Package.** The name of the package. This can sometimes be empty when a package includes MySQL Cluster installations that are in different locations on different hosts (see next example).

- **Path.** The path to the MySQL Cluster installation directory (base directory) on the indicated host or hosts. This is the same as the value given for the --basedir option in the add package command that was used to create or augment the package.

 On Windows, paths shown in this column have any backslash characters converted to forward slashes, just as must be done for the --basedir option (see the earlier example in this section).

- **Hosts.** The host or hosts where the MySQL Cluster installation or installations are located.
You can filter the results so that information relating to only a single package is displayed by supplying the package name before the site name, as shown here:

```
+mcm> list packages yourpackage mysite;
+-------------+-------------------------+---------+
| Package     | Path                    | Hosts   |
+-------------+-------------------------+---------+
| yourpackage | /usr/local/ndb-host-10  | tonfisk |
|             | /usr/local/ndb-host-20  | flundra |
+-------------+-------------------------+---------+
2 rows in set (0.55 sec)
```

(See Section 4.3.1, “The add package Command”, for the add package commands that were used to create yourpackage.)

When a package contains MySQL Cluster installations using different base directories on different hosts, each unique combination of path and host is shown in its own row. However, the name of the package is displayed in the first row only; all rows that immediately follow this row and that do not contain the package name also relate to the same package whose name is shown in the first preceding row to display a package name. For example, consider the list packages command and output shown here:

```
+mcm> list packages mysite;
+-------------+-------------------------+---------+
| Package     | Path                    | Hosts   |
+-------------+-------------------------+---------+
| yourpackage | /usr/local/ndb-host-10  | tonfisk |
|             | /usr/local/ndb-host-20  | flundra |
| mypackage   | /usr/local/mysql        | tonfisk |
|             | /usr/local/bin/mysql    | flundra |
+-------------+-------------------------+---------+
3 rows in set (1.07 sec)
```

This output shows that there are two packages defined for the site named mysite; these packages are named yourpackage and mypackage. The package yourpackage consists of the MySQL Cluster binaries in the directory /usr/local/ndb-host-10 on host tonfisk, and in the directory /usr/local/ndb-host-20 on host flundra. The package named mypackage consists of the MySQL Cluster binaries in the directory /usr/local/mysql on host tonfisk, and in the directory /usr/local/bin/mysql on host flundra.

If you omit the site_name argument, the command fails with an error, as shown here:

```
mcm> list packages;
ERROR 6 (00MGR): Illegal number of operands
```

4.4 MySQL Cluster Manager Cluster Commands

This section contains descriptions of MySQL Cluster Manager commands used to perform operations on clusters. These include creating and deleting a cluster; starting, stopping, and restarting a cluster; upgrading a cluster (that is, upgrading the MySQL Cluster software used by a given cluster); and listing clusters known to MySQL Cluster Manager.

4.4.1 The create cluster Command

```
create cluster {--package=|-P }package_name
  {--processhosts=|-R }process_host_list cluster_name
  [--verbose | -v]process_host_list:
    process_name@host[, process_name@host[, ...]]
process_name:
```

70
The `create cluster` Command

This command creates a cluster to be managed by the MySQL Cluster Manager. However, it does not start the cluster (see Section 4.4.6, “The `start cluster` Command”).

`create cluster` requires the following arguments:

- A `package_name`, supplied as the value of the `--package` option (short form: `-P`). This must be the name of a package previously registered using `add package`.

- A list (`process_host_list`) of MySQL Cluster processes and the hosts on which they are to run, supplied as the value of the `--processhosts` option (short form: `-R`), with list items separated by commas. As with other lists passed as option values in MySQL Cluster Manager commands, you must not use spaces before or after the commas.

Each item in the `process_host_list` consists of the name of a MySQL Cluster process joined with the name of the host on which it is located using an amphora (`@`) sign (also sometimes known as the “at” sign). Permitted values for processes are `ndb_mgmd`, `ndbd`, and `mysqld`. When the cluster employs MySQL Cluster NDB 7.0 or later, you can also use `ndbmtd` as process name. In other words, a valid process name is the name of a MySQL Cluster process daemon binary.

To support running your own NDB API applications with a cluster under MySQL Cluster Manager, it is also possible to use `ndbapi` as a process type. Such applications can be connected to a managed cluster. Currently, MySQL Cluster Manager recognises only that an NDB API application is connected to the cluster; the NDB API application itself must be started, stopped, and configured manually.

It is also possible to specify one or more “free” `mysqld` and `ndbapi` processes without any hosts. To do this, simply use the wildcard `*` (asterisk character) in place of the hostname or IP address, as shown in the following table:

<table>
<thead>
<tr>
<th>“Free” <code>mysqld</code> process:</th>
<th><code>mysqld*@</code></th>
</tr>
</thead>
<tbody>
<tr>
<td>“Free” <code>ndbapi</code> process:</td>
<td><code>ndbapi*@</code></td>
</tr>
</tbody>
</table>

A `mysqld` process or `ndbapi` process that is specified without a host in this fashion is permitted to connect to the cluster from any host that can access the cluster over the network. Otherwise, the process may connect to the cluster only from the specified host.

By convention, items in the `process_host_list` are listed according to the process type, in the following order:

1. Management node processes (`ndb_mgmd`)
2. Data node processes (`MySQL Cluster NDB 6.3: ndbd; MySQL Cluster NDB 7.0 and later: ndbd, ndbmtd`)
3. SQL node processes (`mysqld`)
4. Custom NDB API applications (`ndbapi`)

For information about writing your own NDB API applications, see The NDB API, in the MySQL Cluster API Developer Guide.

While the order in which the items are listed does not affect whether the `create cluster` command succeeds, we suggest that you follow this convention for readability, as well as compatibility with other MySQL Cluster management tools such as `ndb_mgm`.

Note

`create cluster` causes cluster node IDs to be assigned consecutively, in the order that the nodes are specified in the `process_host_list`.
Each host referenced in the list must be part of the site for which the package used in `create cluster` is defined.

For processes of types `mysqld` and `ndbapi`, the hostname is required, but not enforced in the running cluster. In other words, an `[api]` section is created in the cluster `config.ini` file, but no `HostName` parameter is specified; thus, the `mysqld` or `ndbapi` can connect from any host. (Currently, there is no way using MySQL Cluster Manager to specify that a `mysqld` or `ndbapi` process is restricted to connecting from a single host.)

- A name for the cluster. Once the cluster has been created, this name is used to refer to it in other cluster management commands such as `delete cluster`, `start cluster`, and `stop cluster`. Like other object names used with MySQL Cluster Manager, the `cluster_name` must be valid according to the rules given elsewhere in this document for identifiers (see Chapter 4, MySQL Cluster Manager Client Commands).

An additional `--verbose` option for this command causes `create cluster` to output extra information as it is executed, as shown later in this section.

Consider the following command issued in the MySQL Cluster Manager client, which creates a cluster named `mycluster`:

```
mcm> create cluster --package=mypackage -> --processhosts=ndb_mgmd@flundra,ndbd@tonfisk,ndbd@grindval,mysqld@flundra -> mycluster;
+------------------------------+
| Command result               |
+------------------------------+
| Cluster created successfully  |
+------------------------------+
1 row in set (7.71 sec)
```

As defined by the command just shown, `mycluster` consists of four nodes: a management node on host `flundra`; two data nodes—one on each of the hosts `tonfisk` and `grindval`; and one SQL node, also on host `flundra`.

Using the `--verbose` option causes the command to print output similar to that produced by the `list processes` command, as shown here:

```
mcm> create cluster --verbose --package=mypackage -> --processhosts=ndb_mgmd@flundra,ndbd@tonfisk,ndbd@grindval,mysqld@flundra -> mycluster;
+--------+----------+----------+
| NodeId | Name     | Host     |
+--------+----------+----------+
| 49     | ndb_mgmd | flundra  |
| 1      | ndbd     | tonfisk  |
| 2      | ndbd     | grindval |
| 50     | mysqld   | flundra  |
+--------+----------+----------+
4 rows in set (0.32 sec)
```

You can also create this cluster in such a way that the `mysqld` process is permitted to connect to the cluster from any host able to reach the other cluster hosts over the network as shown here:

```
mcm> create cluster --package=mypackage -> --processhosts=ndb_mgmd@flundra,ndbd@tonfisk,ndbd@grindval,mysqld@*
-> mycluster;
+------------------------------+
| Command result               |
+------------------------------+
| Cluster created successfully  |
+------------------------------+
1 row in set (7.71 sec)
```
The delete cluster Command

Note

In the case of a “free” ndbapi process, it is not necessary to have the MySQL Cluster Manager software installed on the host where the ndbapi process is running.

Configuration changes to the newly-created cluster can be made using the set command prior to starting the cluster. This is often preferable to doing after the cluster has been started, since set commands used to make configuration changes in a running cluster can require a rolling restart, and rolling restarts of clusters having many nodes or large quantities of data (or both) may take a great deal of time to complete.

Note

When creating a cluster having more than one mysqld process on the same host machine, MySQL Cluster Manager assigns the MySQL default port (3306) to each of them. Therefore, you must assign a unique port for each mysqld process in the cluster.

4.4.2 The delete cluster Command

delete cluster [--removedirs] cluster_name

This command deletes the cluster named cluster_name; that is, it removes the process from the listing from this cluster, as well as any configuration and data files relating to this cluster.

delete cluster does not remove any MySQL Cluster binaries from hosts.

This example demonstrates how to delete a cluster named mycluster, along with its configuration and data files:

```
$ mcm> delete cluster mycluster;
+------------------------------+
| Command result               |
+------------------------------+
| Cluster deleted successfully |
+------------------------------+
1 row in set (1.22 sec)
```

delete cluster fails if the cluster to be deleted is running, as shown here:

```
$ mcm> delete cluster mycluster;
ERROR 5010 (00MGR): All processes must be stopped to delete cluster mycluster
```

You must shut down the cluster first, using stop cluster.

4.4.3 The list clusters Command

list clusters site_name

This command lists all clusters defined for a given management site named site_name, together with the package used by each cluster. For example, the command shown here displays a list of all clusters defined for the site named mysite:

```
$ mcm> list clusters mysite;
+-----+------------+
| Cluster | Package    |
+-----+------------+
| mycluster | m-7.1.26   |
| yourcluster | y-7.1.26 |
| someothercluster | s-7.2.9  |
+-----+------------+
```
4.4.4 The `restart cluster` Command

This command performs a rolling restart (see Performing a Rolling Restart of a MySQL Cluster) of the cluster named `cluster_name`. The cluster must already be running in order for this command to succeed. (For information about how to determine the operation state of the cluster, see Section 4.4.5, “The `show status` Command”.)

For example, the command shown here performs a rolling restart of the cluster named `mycluster`:

```sql
mcm> restart cluster mycluster;
+--------------------------------+
| Command result                 |
| Cluster restarted successfully |
+--------------------------------+
1 row in set (1 min 22.53 sec)
```

If the cluster is not already running, `restart cluster` fails with an error, as shown here:

```sql
mcm> show status --cluster mycluster;
+-----------+---------+
| Cluster   | Status  |
+-----------+---------+
| mycluster | stopped |
+-----------+---------+
1 row in set (1.49 sec)

mcm> restart cluster mycluster;
ERROR 5009 (00MGR): Restart can not be performed as processes are stopped in cluster mycluster
```

Note

Depending on the number of nodes and the amount of data stored in the cluster, a rolling restart can take a considerable amount of time, up to several hours for a cluster with a great many data nodes and a large amount of data. For this reason, you may want to execute this command with the `--background` option (short form `-B`) to allow it to run in the background, freeing the MySQL Cluster Manager client for other tasks.

Currently, there is no mechanism in MySQL Cluster Manager for performing system initial restarts of a cluster. This means that attributes that require an initial restart to be changed must be set before the cluster is started for the first time.

4.4.5 The `show status` Command

```sql
show status --cluster|-c cluster_name
show status --operation|-o cluster_name
show status --process|-r cluster_name
```

This command is used to check the status of clusters, cluster processes, and commands issued in the MySQL Cluster Manager client. The type of status returned depends on which of the three options `--cluster` (short form: `-c`), `--operation` (short form: `-o`), or `--process` (short form `-r`) is used with
The **show status** Command

the command. (If none of these is used, **--cluster** is assumed.) These options are described in more detail in the next few paragraphs.

--cluster option.
When this option is used, **show status** reports on the status of the cluster named **cluster_name**, as shown in this example:

```plaintext
mcm> show status --cluster mycluster;
<table>
<thead>
<tr>
<th>Cluster</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>mycluster</td>
<td>fully operational</td>
</tr>
</tbody>
</table>
```

When used with the **--cluster** option (short form: **-c**), the output of this command consist of two columns. The **Cluster** column contains the name of the cluster. The **Status** column contains a description of the cluster’s status; possible values and their meanings are shown in the following table:

<table>
<thead>
<tr>
<th>Status Value</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>fully operational</td>
<td>All cluster processes are running.</td>
</tr>
<tr>
<td>operational</td>
<td>All node groups are up and running, but at least one data node process</td>
</tr>
<tr>
<td></td>
<td>(ndbd or ndbmtd) is not running. The cluster is online, but you</td>
</tr>
<tr>
<td></td>
<td>should determine why any “missing” data nodes are not running and correct</td>
</tr>
<tr>
<td></td>
<td>the problem as soon as possible.</td>
</tr>
<tr>
<td>non-operational</td>
<td>The cluster is not operational, because at least one node group is</td>
</tr>
<tr>
<td></td>
<td>offline. You must investigate and fix the problem or problems, then</td>
</tr>
<tr>
<td></td>
<td>restart the cluster, before the cluster can be used for data storage and</td>
</tr>
<tr>
<td></td>
<td>retrieval operations.</td>
</tr>
<tr>
<td>stopped</td>
<td>The cluster is not running, because it has been stopped by the user.</td>
</tr>
<tr>
<td></td>
<td>This normally does not indicate any problem as such, but you must</td>
</tr>
<tr>
<td></td>
<td>restart the cluster before it can be used by any applications.</td>
</tr>
<tr>
<td>created</td>
<td>The cluster has been created successfully using the create cluster</td>
</tr>
<tr>
<td></td>
<td>command, but has never been started. You must start the cluster using</td>
</tr>
<tr>
<td></td>
<td>the start cluster command before you can make use of it.</td>
</tr>
<tr>
<td>unknown</td>
<td>The MySQL Cluster Manager was unable to determine the cluster’s status.</td>
</tr>
<tr>
<td></td>
<td>This may or may not indicate a problem with the cluster; it is possible</td>
</tr>
<tr>
<td></td>
<td>that the problem lies with one or more MySQL Cluster Manager agents or</td>
</tr>
<tr>
<td></td>
<td>the MySQL Cluster Manager client. You should attempt to determine the</td>
</tr>
<tr>
<td></td>
<td>status of the cluster by other means, such as using show status --process in the MySQL Cluster Manager client (described later in this section), or employing one of the commands available in the ndb_mgm client (see ndb_mgm — The MySQL Cluster Management Client) such as SHOW or ALL STATUS.</td>
</tr>
</tbody>
</table>

--operation option.
When the **--operation** option (short form: **-o** or **-O**) is used, it causes **SHOW STATUS** to display the status of the latest command to be executed. This includes commands that were issued using the **--background** option (short form **-bg**). An example of this command is shown here:

```plaintext
mcm> show status --operation mycluster;
<table>
<thead>
<tr>
<th>Command</th>
<th>Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>restart cluster</td>
<td>executing</td>
<td>&lt;no message&gt;</td>
</tr>
</tbody>
</table>
```

1 row in set (1.60 sec)
The output contains 3 columns, described in the following list:

- **Command.** The text of the command last issued (previous to the `show status --operation` command), less any options or arguments.

- **Status.** The current state of the command. Possible values and their meanings are listed later in this section.

- **Description.** In some cases, depending on the command and its status, this column may contain additional information. Otherwise, `<no message>` is displayed here.

Possible values for the **Status** column, together with descriptions of these values, are shown in the following table:

<table>
<thead>
<tr>
<th>Status Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>executing</td>
<td>MySQL Cluster Manager is executing the command, but has not yet completed doing so.</td>
</tr>
<tr>
<td>finished</td>
<td>The command has executed (and completed) successfully.</td>
</tr>
<tr>
<td>failed</td>
<td>The command failed to execute. The Description column may contain information about the reason for the failure.</td>
</tr>
<tr>
<td>unknown</td>
<td>MySQL Cluster Manager was unable to determine the status of this command.</td>
</tr>
</tbody>
</table>

--process option.

When run with this option, `show status` returns information about each process in the cluster named `cluster_name`, as shown in this example:

```
mcm> show status --process mycluster;
+----+-------+----------+---------+-----------+
<table>
<thead>
<tr>
<th>Id</th>
<th>Process</th>
<th>Host</th>
<th>Status</th>
<th>Nodegroup</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ndb_mgmd</td>
<td>tonfisk</td>
<td>running</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>ndbd</td>
<td>flundra</td>
<td>running</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>ndbd</td>
<td>grindval</td>
<td>running</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>mysql</td>
<td>lax</td>
<td>running</td>
<td></td>
</tr>
</tbody>
</table>
+----+-------+----------+---------+-----------+
4 rows in set (1.67 sec)
```

When the **--process** option (short form: `-r`) is used with `show status`, the output contains 5 columns, described in the following list:

- **Id.** This is the node ID of the process as a node in cluster `cluster_name`.

- **Process.** The type of process, that is, the name of the corresponding MySQL Cluster executable. Allowed values are `ndb_mgmd`, `ndbd`, `ndbmd`, and `mysqld`.

- **Host.** The hostname or IP address of the computer where the process is running.

- **Status.** The state or condition of this process. Possible values for this column are given later in this section.

- **Nodegroup.** If the **Process** is `ndbd` or `ndbmd`—that is, if the process is a data node process—then this column shows the ID of the node group to which the process belongs. For any other value of **Process**, this column is empty.

Possible values for the **Status** column are shown in the following table, together with a description of what this value represents:

<table>
<thead>
<tr>
<th>Status Value</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>running</td>
<td>The process is running normally.</td>
</tr>
<tr>
<td>stopped</td>
<td>The process has been stopped by the user.</td>
</tr>
</tbody>
</table>
The start cluster Command

<table>
<thead>
<tr>
<th>Status Value</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>added</td>
<td>The process has been added to the cluster, but not yet started.</td>
</tr>
<tr>
<td>starting</td>
<td>The process has been started, but is not yet fully running. (For data nodes, you can determine which start phase the node is currently in by using the <code>status</code> command in the <code>ndb_mgm</code> client.)</td>
</tr>
<tr>
<td>stopping</td>
<td>The process has received a command to stop, and is now shutting down.</td>
</tr>
<tr>
<td>failed</td>
<td>The process has shut down unexpectedly (likely to have crashed). You should determine the cause for this unplanned shutdown, fix the problem, and restart the process as soon as possible.</td>
</tr>
<tr>
<td>unknown</td>
<td>MySQL Cluster Manager is unable to establish the current status of this process. You should try to determine its status using other means.</td>
</tr>
</tbody>
</table>

You must supply the name of an existing cluster with this command, or else `show status` fails with an error, as shown here:

```
mcm> show status;
ERROR 6 (00MGR): Illegal number of operands
```

```
mcm> show status -c nosuchcluster;
ERROR 5001 (00MGR): Cluster nosuchcluster not defined
```

Important

Do not confuse this command with the MySQL `SHOW STATUS` statement, which has a different syntax, and which can be used only in the standard `mysql` client. The MySQL Cluster Manager client command accepts only those options shown at the beginning of this section, and does not accept a `LIKE` or `WHERE` clause.

4.4.6 The start cluster Command

```
start cluster [--initial|-i] cluster_name
```

This command starts the cluster named `cluster_name`, as shown in this example:

```
mcm> start cluster mycluster;
+------------------------------+
<table>
<thead>
<tr>
<th>Command result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster started successfully</td>
</tr>
</tbody>
</table>
+------------------------------+
1 row in set (45.37 sec)
```

In order for the command to succeed, the cluster named in the command must already exist; otherwise the command fails with the error `Cluster cluster_name not defined`, as shown here:

```
mcm> list sites;
+--------+------+-------+------------------------------+
| Site   | Port | Local | Hosts                        |
|--------+------+-------+------------------------------|
| mysite | 1862 | Local | tonfisk,flundra,grindval,haj |
+--------+------+-------+------------------------------+
1 row in set (1.72 sec)
```

```
mcm> list clusters mysite;
+-----------+-----------+
| Cluster   | Package   |
|-----------+-----------|
| mycluster | mypackage |
```

```
In addition, the cluster must not already be running, as shown here:

```
mcm> start cluster mycluster;
ERROR 5005 (00MGR): Cluster mycluster is running
```

The `--initial` option (short form: `-i`) was added in MySQL Cluster Manager 1.2.1. This option causes all cluster data node processes to be started as if `start process --initial` had been used, which means that all data nodes wipe their data and start with clean data node file systems. NDB tables that were previously stored in the cluster are lost.

Under normal circumstances, you should use this option to start a cluster only when either you do not wish to preserve any of its data (and want to make a clean start), or you intend to restore the cluster from backup to a known good state (see Section 4.7.4, “The `restore cluster` Command”). You should also be aware that no special warnings are printed by the `mcm` client when `--initial` is used with `start cluster`; the command is immediately executed.

For information about creating cluster backups, see Section 4.7.2, “The `backup cluster` Command”. If you need to know which backups are available (if any), use `list backups`.

Using the `--initial` option with `start cluster` does not cause `mysql_install_db` to be executed, or the `mysql` system database to be altered or removed, on any SQL nodes. This option also does not remove MySQL Cluster Disk Data tablespace files; if their removal is needed, it must be performed manually.

### 4.4.7 The `stop cluster` Command

```
stop cluster cluster_name
```

This command stops the cluster named `cluster_name`, if it is running, as shown in this example:

```
mcm> stop cluster mycluster;
<table>
<thead>
<tr>
<th>Command result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster stopped successfully</td>
</tr>
</tbody>
</table>
+------------------------+
1 row in set (21.31 sec)
```

`stop cluster` fails if the cluster is not in an operational state (see Section 4.4.5, “The `show status Command`”, for information about obtaining the cluster’s status):

```
mcm> show status --cluster mycluster;
| Cluster | Status |
+---------+--------+
| mycluster | stopped |
+---------+--------+
1 row in set (1.49 sec)
```
### 4.4.8 The `upgrade cluster` Command

```
 upgrade cluster {--package=|-P }package_name cluster_name
```

This command upgrades the cluster named `cluster_name` to the software package `package_name`. It accomplishes this by performing a rolling restart of the cluster.

The new package must be registered using `add package` before you can use it for an upgrade; otherwise, `upgrade cluster` fails with an error.

Suppose `mycluster` is using MySQL Cluster NDB 7.1.17, and the binaries are registered with a package named `7.1.17`, as shown by this `list clusters` command:

```
 mcm> list clusters mysite;
 +-----------+---------+
 | Cluster | Package |
 +-----------+---------+
 | mycluster | 7.1.17 |
 +-----------+---------+
 1 row in set (1.80 sec)
```

Now you wish to upgrade `mycluster` to MySQL Cluster NDB 7.1.19. Assuming that you have placed the NDB 7.1.19 binaries in the same directory on each host, the `add package` command to create a new package named `7.1.19` that contains these binaries might look something like this:

```
 mcm> add package --basedir=/usr/local/ndb-7.1.19 7.1.19;
```

#### Note

On Windows, you must replace any backslash (`\`) characters in the path used for the `add package` command's `--basedir` option with forward slashes (`/`). See Section 4.3.1, “The `add package` Command”, for additional information and examples.

Both packages should now be listed in the output of the command `list packages mysite`. To perform the upgrade to the `7.1.19` package, use the `upgrade cluster` command as shown here:

```
 mcm> upgrade cluster --package=7.1.19 mycluster;
```

Once the `upgrade cluster` command has been successfully executed, you can verify that `mycluster` is now using the `7.1.19` package from the output of the appropriate `list clusters` command:

```
 mcm> list clusters mysite;
 +-----------+---------+
 | Cluster | Package |
 +-----------+---------+
 | mycluster | 7.1.19 |
 +-----------+---------+
```
Despite the name of this command, `upgrade cluster` can also be used to perform MySQL Cluster downgrades.

MySQL Cluster Manager does not allow cluster upgrades or downgrades not supported by MySQL Cluster. Before attempting any upgrade or downgrade using the `upgrade cluster` command, be sure to consult *Upgrading and Downgrading MySQL Cluster*, to determine whether MySQL Cluster supports the upgrade or downgrade in question, and for any known issues regarding the changes you intend to make.

### 4.5 MySQL Cluster Manager Configuration Commands

This section covers the commands used in the MySQL Cluster Manager for getting and setting values of various types used in MySQL Cluster configuration. We begin with a discussion of what we mean by the term “configuration attribute”, and how this relates to the manual configuration of a MySQL Cluster using MySQL Cluster configuration parameters and MySQL Server options and variables that you may already be familiar with.

#### Configuration attributes.

Traditionally, when administering MySQL Cluster, it has been necessary to distinguish between 3 types of configuration data:

- **Configuration parameters** set in the MySQL Cluster global configuration file read by the management server (or servers), by convention named `config.ini`
- **Configuration variables** set in a running MySQL server (SQL node) by using the SQL `SET` statement in the `mysql` command-line client (or in another MySQL client application)
- **Configuration options** passed to MySQL Cluster executable programs when invoking them

**Note**

Configuration options passed to `mysqld` often have the effect of setting values for configuration variables, many—but not all—of which can be overridden in a running MySQL server using a MySQL client application such as `mysql`.

MySQL Cluster Manager simplifies this configuration scheme by treating all 3 types of configuration data as *attributes*, where the term “attribute” refers to a MySQL Cluster configuration parameter, a MySQL Server variable, or a command-line option used with one or more MySQL Cluster binary programs. It does this transparently, handling all necessary changes in a unified interface.

Suppose that you wish to know how much data memory is allocated to the data nodes in a given MySQL Cluster. Rather than having to determine that this is controlled using the `DataMemory` configuration parameter that is written in the `config.ini` file and then reading that file to find the value, you merely invoke the MySQL Cluster Manager `get` command, and MySQL Cluster Manager handles reading from the file for you, and displays the value without the necessity of opening the file in a separate application such as `more` or `less`. If you wish to change the amount of data memory allocated to the data nodes, you can issue a MySQL Cluster Manager `set` (or `reset`) command; MySQL Cluster Manager then writes the desired value to `config.ini`. If—as is the case with `DataMemory`—updating a configuration value in a running MySQL Cluster requires a rolling restart to be performed, MySQL Cluster Manager can perform this operation automatically so that the configuration change takes effect without further intervention required on the part of the operator.

#### Configuration attribute levels.

A configuration attribute value applies at one of the three levels, described here:

- **Default**: This value is always used by any MySQL Cluster process of the type or types (such as `ndbd` or `mysqld`) to which the attribute applies, unless this value is overridden by the user.
MySQL Cluster Manager Configuration Commands

- **Process**: This value is used for all instances of a given type of MySQL Cluster process.

- **Instance**: This value is used for a specific instance of a MySQL Cluster process, the instance being identified by its MySQL Cluster node ID.

Default values are hard-coded into MySQL Cluster; you can override a default value for a given configuration attribute (using the `set` command) or reset a given attribute value to its default (using the `reset` command), but you cannot change a default value itself. You can set or reset an configuration attribute's value on either the process level or the instance level using a single `set` or `reset` command. Once you have set or reset the value of a configuration attribute, this value persists until it is changed by executing another `set` or `reset` command.

**Note**
When setting or resetting a configuration attribute value, you must specify the level at which the setting applies.

MySQL Cluster Manager determines what value to use for a configuration attribute relating to a given process by following these steps for each MySQL Cluster process:

(For each configuration attribute:)

1. Is an attribute value defined for the node ID of this process?
   - Yes: Use the value that was defined for this node ID, and exit.
   - No: Proceed to the next step.

2. Is an attribute value specified on the process level, that is, for all processes of this type?
   - Yes: Use the value that was specified for all processes of this type, and exit.
   - No: Use the default value that applies to processes of this type, and exit.

(In the steps just shown, “exit” can be taken to mean “If there are more configuration attributes applicable to this process that have not yet been set, proceed to the next attribute until there are no more attributes to be set for this process”.)

**Note**
The most recently specified value takes precedence. This means that if you set a configuration attribute for a specific process, then later specify a process-level value for this attribute, the process-level value is used for all processes of that type, including the instance for which you earlier set an instance-specific value.

**Mandatory attributes.**
Some attributes must be defined in the MySQL Cluster Manager at the process type or instance level for all processes of the applicable type or types for the cluster configuration to be valid. Such mandatory attributes may be changed, but not reset; in other words, the definition can be changed, but the definition itself cannot be removed entirely. Another way of stating this is that a mandatory attribute has no default value.

An example of a mandatory attribute is `NodeId`. If you try to reset a mandatory attribute, the attempt fails with an error, as shown here:

```
mcm> reset NodeId:ndb_mgmd:1 mycluster;
ERROR 6007 (00MGR): Config attribute NodeId is mandatory and cannot be reset
mcm> reset NodeId:ndbd:2 mycluster;
ERROR 6007 (00MGR): Config attribute NodeId is mandatory and cannot be reset
mcm> reset NodeId:mysqld:4 mycluster;
ERROR 6007 (00MGR): Config attribute NodeId is mandatory and cannot be reset
```
Read-only attributes.

A read-only attribute is an attribute that must be defined by the MySQL Cluster Manager when a cluster is created. A read-only attribute can be neither changed nor reset by the user. This means that a read-only attribute is always a mandatory attribute.

One such attribute is HostName, which is read only for any type of MySQL Cluster process. Any attempt to change or reset a read-only attribute fails, as shown here:

```
mcm> reset HostName:ndb_mgmd mycluster;
ERROR 6008 (00MGR): Config attribute HostName is readonly and cannot be changed
mcm> reset HostName:ndbd mycluster;
ERROR 6008 (00MGR): Config attribute HostName is readonly and cannot be changed
mcm> reset HostName:mysqld mycluster;
ERROR 6008 (00MGR): Config attribute HostName is readonly and cannot be changed
mcm> set HostName:ndb_mgmd mycluster;
ERROR 6008 (00MGR): Config attribute HostName is readonly and cannot be changed
mcm> set HostName:ndbd mycluster;
ERROR 6008 (00MGR): Config attribute HostName is readonly and cannot be changed
mcm> set HostName:mysqld mycluster;
ERROR 6008 (00MGR): Config attribute HostName is readonly and cannot be changed
```

An attribute that is mandatory or read only is set when a cluster is created. Neither a mandatory attribute nor a read-only attribute can be reset. (Neither type of attribute has a default value other than what is set for it when the cluster is created.) A mandatory attribute can be changed at any time by the user; a read-only attribute cannot be changed once the cluster has been created. You can obtain a listing of mandatory and read-only attributes using the `get` command.

A listing of attribute properties also can be found in the output of `ndb_config --configinfo --xml` (see `ndb_config — Extract MySQL Cluster Configuration Information`); for more complete information, see Configuration of MySQL Cluster.

MySQL Cluster Manager determines internally which attributes are considered read-only for reasons of cluster stability and performance. You can use the `get` command to see which attributes are read only.

### 4.5.1 The `get` Command

```
get [--include-defaults|-d] [filter_specification_list] cluster_name

filter_specification_list:
 filter_specification[,filter_specification][,...]

filter_specification:
 [attribute_name][:process_specification][+process_specification]

process_specification:
 process_name[:process_id]
```

This command is used in the MySQL Cluster Manager client to obtain configuration attribute values from a MySQL Cluster. (See Section 4.5, “MySQL Cluster Manager Configuration Commands”, for a definition of the term “attribute” as it applies in the MySQL Cluster Manager.) The output includes the following columns:

- **Name**: This column contains the name of the configuration attribute.
- **Value**: This column shows the attribute's current value.
- **Process1**: This column holds the process type to which the attribute applies. This is one of `ndb_mgmd`, `ndbd`, `ndbmttd` (MySQL Cluster NDB 7.0 and later), or `mysqld`.
- **Id1**: This is the process ID of the process to which the attribute applies.
- **Process2**: For attributes that require specifying two nodes, such as those relating to TCP/IP connections, this column shows the process type of the second node.
The **get** Command

- **Id2**: For attributes that require specifying two nodes, this column shows the process ID for the second node.

- **Level**: This is the attribute process level. This value in this column can be Default, Process, or empty; if this column is empty, it means that the attribute applies on the instance level.

- **Comment**: This column is used to show whether the attribute is Mandatory, Read only, Default attribute, or user defined (in which case the Comment column is empty).

By default, `get` returns only those attributes that have been set explicitly, either by the MySQL Cluster Manager itself, or by the user. In other words, it shows only attributes that are mandatory (including read-only attributes), or that have been set by the user after the cluster was created. Hereafter in this discussion, we refer to these as “non-default attributes”.

Thus, prior to setting any configuration attributes, you can obtain a list of all mandatory and read-only attributes by running the simplest possible form of this command, as shown here:

```sql
mcm> get mycluster;
mcm> get mycluster\G
*************************** 1. row ***************************
 Name: DataDir
 Value: /home/jon/bin/mcm/mcm_data/clusters/mycluster/1/data
 Process1: ndbmtd
 NodeId1: 1
 Process2:
 NodeId2:
 Level:
 Comment:

*************************** 2. row ***************************
 Name: HostName
 Value: torsk
 Process1: ndbmtd
 NodeId1: 1
 Process2:
 NodeId2:
 Level:
 Comment: Read only

*************************** 3. row ***************************
 Name: NodeId
 Value: 1
 Process1: ndbmtd
 NodeId1: 1
 Process2:
 NodeId2:
 Level:
 Comment: Read only

*************************** 4. row ***************************
 Name: DataDir
 Value: /home/jon/bin/mcm/mcm_data/clusters/mycluster/2/data
 Process1: ndbmtd
 NodeId1: 2
 Process2:
 NodeId2:
 Level:
 Comment:

*************************** 5. row ***************************
 Name: HostName
 Value: torsk
 Process1: ndbmtd
 NodeId1: 2
 Process2:
 NodeId2:
 Level:
 Comment: Read only

*************************** 6. row ***************************
 Name: NodeId
 Value: 2
 Process1: ndbmtd
 NodeId1: 2
```
The `get` Command

<table>
<thead>
<tr>
<th>Row</th>
<th>Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>DataDir</td>
<td><code>/home/jon/bin/mcm/mcm_data/clusters/mycluster/49/data</code></td>
</tr>
<tr>
<td>8</td>
<td>HostName</td>
<td><code>torsk</code></td>
</tr>
<tr>
<td>9</td>
<td>NodeId</td>
<td><code>49</code></td>
</tr>
<tr>
<td>24</td>
<td>ndbcluster</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>NodeId</td>
<td><code>51</code></td>
</tr>
<tr>
<td>26</td>
<td>port</td>
<td><code>3307</code></td>
</tr>
<tr>
<td>27</td>
<td>socket</td>
<td><code>/tmp/mysql.mycluster.51.sock</code></td>
</tr>
<tr>
<td>28</td>
<td>tmpdir</td>
<td></td>
</tr>
</tbody>
</table>
On Windows, no substitutions for backslashes or other characters used in values of paths reported by the `get` command is performed. However, it is possible to see forward slashes used in such paths if the values were set using the `set` command. See Setting Attributes Containing Paths on Windows [100], for more information.

Although a `socket` attribute is shown for `mysqld` nodes in the `get` output from the previous example and is not marked `Read only`, MySQL Cluster Manager does not support socket files on Windows. For this reason; you should not attempt to set `socket` attributes for Windows `mysqld` processes using MySQL Cluster Manager.

To include default values for attributes that have not (or not yet) been set explicitly, you can invoke this command with the `--include-defaults` option (short form: `-d`), as shown here (in part):

```
mcm> get --include-defaults mycluster\G
```

```
*************************** 1. row ***************************
Name: __ndbmt_classic
Value: NULL
Process1: ndbmtd
NodeId1: 1
Process2:
NodeId2:
Level: Default
Comment:

*************************** 2. row ***************************
Name: __ndbmt_lqh_threads
Value: NULL
Process1: ndbmtd
NodeId1: 1
Process2:
NodeId2:
Level: Default
Comment:

*************************** 3. row ***************************
Name: __ndbmt_lqh_workers
Value: NULL
Process1: ndbmtd
NodeId1: 1
Process2:
NodeId2:
Level: Default
Comment:

*************************** 4. row ***************************
Name: Arbitration
Value: Default
Process1: ndbmtd
NodeId1: 1
Process2:
NodeId2:
Level: Default
Comment:
```
### The `get` Command

<table>
<thead>
<tr>
<th>Row</th>
<th>Name</th>
<th>Value</th>
<th>Process1</th>
<th>NodeId1</th>
<th>Process2</th>
<th>NodeId2</th>
<th>Level</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.</td>
<td>ArbitrationTimeout</td>
<td>7500</td>
<td>ndbmtd</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1094</td>
<td>DefaultOperationRedoProblemAction</td>
<td>queue</td>
<td>ndbapi</td>
<td>52</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1095</td>
<td>ExecuteOnComputer</td>
<td>NULL</td>
<td>ndbapi</td>
<td>52</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1096</td>
<td>HeartbeatThreadPriority</td>
<td>NULL</td>
<td>ndbapi</td>
<td>52</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1097</td>
<td>HostName</td>
<td></td>
<td>ndbapi</td>
<td>52</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1098</td>
<td>MaxScanBatchSize</td>
<td>262144</td>
<td>ndbapi</td>
<td>52</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1099</td>
<td>NodeId</td>
<td>52</td>
<td>ndbapi</td>
<td>52</td>
<td></td>
<td></td>
<td></td>
<td>Read only</td>
</tr>
<tr>
<td>1100</td>
<td>TotalSendBufferMemory</td>
<td>0</td>
<td>ndbapi</td>
<td>52</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The \texttt{get} Command

As you can see, the output from this \texttt{get} command is quite long (and the number of rows generated increases with the number of nodes in the cluster.) However, it is possible to filter the output so that you can view only the attribute or attributes in which you are interested. This can be done by using a comma-separated list of one or more filter specifications. A filter specification is defined as shown here (condensed from that given at the beginning of this section, but effectively the same):

\begin{verbatim}
[attribute_name][[:process_name][:process_id]]
\end{verbatim}

Filtering can be applied per attribute, per process type, and per process instance. We now provide some examples illustrating the use of such filters.

To obtain the value of a given attribute for all processes to which it applies in the cluster, you need only use the name of the attribute as a filter. For example, to obtain the \texttt{HostName} of all processes in the cluster named \texttt{mycluster}, you can execute the command shown here:

\begin{verbatim}
mcm> get HostName mycluster;
+----------+----------+----------+---------+----------+---------+-------+-----------+
| Name     | Value    | Process1 | NodeId1 | Process2 | NodeId2 | Level | Comment   |
+----------+----------+----------+---------+----------+---------+-------+-----------+
HostName	flundra	ndbd	1				Read only
HostName	tonfisk	ndbd	2				Read only
HostName	grindval	ndbd_mgmd	49				Read only
HostName	haj	mysqld	50				Read only
HostName	torsk	mysqld	51				Read only
+----------+----------+----------+---------+----------+---------+-------+-----------+
5 rows in set (0.04 sec)
\end{verbatim}

To obtain the value of a given attribute for all processes of a given type, you can specify a filter of the form \texttt{attribute_name}:\texttt{process-type}. The following command retrieves the \texttt{HostName} of all \texttt{ndbd} processes (only) in the cluster \texttt{mycluster}:

\begin{verbatim}
mcm> get HostName:ndbd mycluster;
+----------+---------+----------+------+----------+------+-------+----------+
| Name     | Value   | Process1 | Id1  | Process2 | Id2  | Level | Comment  |
+----------+---------+----------+------+----------+------+-------+----------+
| HostName | flundra | ndbd     | 1    |          |      |       | Readonly |
| HostName | tonfisk | ndbd     | 2    |          |      |       | Readonly |
+----------+---------+----------+------+----------+------+-------+----------+
2 rows in set (0.12 sec)
\end{verbatim}

To retrieve the value of a given attribute for a particular instance of a process, you can use a filter that takes the form \texttt{attribute_name}:\texttt{process-type}:\texttt{process_id}. For example, you can use the following command to obtain the hostname for the process having 2 as its process ID:

\begin{verbatim}
mcm> get HostName:ndbd:2 mycluster;
+----------+---------+----------+------+----------+------+-------+----------+
| Name     | Value   | Process1 | Id1  | Process2 | Id2  | Level | Comment  |
+----------+---------+----------+------+----------+------+-------+----------+
| HostName | tonfisk | ndbd     | 2    |          |      |       | Readonly |
+----------+---------+----------+------+----------+------+-------+----------+
2 rows in set (0.12 sec)
\end{verbatim}
The `get` Command

When filtering for a given attribute on the instance level, you must include the process type. Failure to do so fails with an error, as shown here:

```
mcm> get HostName:3 mycluster;
ERROR 7002 (00MGR): Illegal process type 3 for cluster mycluster
```

You can obtain information about multiple attributes within a single `get` command by specifying a list of filters, separated by commas. *Each filter in the list must be a complete, valid filter.* The command shown here retrieves the `HostName` and `DataDir` for all processes in `mycluster`:

```
mcm> get HostName,DataDir mycluster;
```

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Process1</th>
<th>NodeId1</th>
<th>Process2</th>
<th>NodeId2</th>
<th>Level</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>DataDir</td>
<td>/opt/c1data</td>
<td>ndbd</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HostName</td>
<td>flundra</td>
<td>ndbd</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>Read only</td>
</tr>
<tr>
<td>DataDir</td>
<td>/opt/c2data</td>
<td>ndbd</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HostName</td>
<td>tonfisk</td>
<td>ndbd</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>Read only</td>
</tr>
<tr>
<td>DataDir</td>
<td>/opt/c49data</td>
<td>ndbd_mgm</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HostName</td>
<td>grindval</td>
<td>ndbd_mgm</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>Read only</td>
</tr>
<tr>
<td>DataDir</td>
<td>/opt/c50data</td>
<td>mysqlld</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HostName</td>
<td>haj</td>
<td>mysqlld</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>Read only</td>
</tr>
<tr>
<td>DataDir</td>
<td>/opt/c51data</td>
<td>mysqlld</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HostName</td>
<td>torsk</td>
<td>mysqlld</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>Read only</td>
</tr>
</tbody>
</table>

```
10 rows in set (0.05 sec)
```

To retrieve the values of `HostName` and `DataDir` for only the data nodes in `mycluster`, you can use the `get` command shown here:

```
mcm> get HostName:ndbd,DataDir:ndbd mycluster;
```

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Process1</th>
<th>Id1</th>
<th>Process2</th>
<th>Id2</th>
<th>Level</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>DataDir</td>
<td>/opt/c2data</td>
<td>ndbd</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HostName</td>
<td>tonfisk</td>
<td>ndbd</td>
<td>1</td>
<td></td>
<td></td>
<td>Read only</td>
<td></td>
</tr>
<tr>
<td>DataDir</td>
<td>/opt/c3data</td>
<td>ndbd</td>
<td>2</td>
<td></td>
<td></td>
<td>Read only</td>
<td></td>
</tr>
<tr>
<td>HostName</td>
<td>flundra</td>
<td>ndbd</td>
<td>2</td>
<td></td>
<td></td>
<td>Read only</td>
<td></td>
</tr>
</tbody>
</table>

```
4 rows in set (1.36 sec)
```

In the example just shown, each filter includes a process type specifier. If you omit this specifier from one of the filters, you obtain a result that you might not expect:

```
mcm> get HostName:ndbd,DataDir:ndbd mycluster;
```

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Process1</th>
<th>Id1</th>
<th>Process2</th>
<th>Id2</th>
<th>Level</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>HostName</td>
<td>grindval</td>
<td>ndbd_mgm</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>Read only</td>
</tr>
<tr>
<td>DataDir</td>
<td>/opt/c2data</td>
<td>ndbd</td>
<td>1</td>
<td></td>
<td></td>
<td>Read only</td>
<td></td>
</tr>
<tr>
<td>HostName</td>
<td>tonfisk</td>
<td>ndbd</td>
<td>2</td>
<td></td>
<td></td>
<td>Read only</td>
<td></td>
</tr>
</tbody>
</table>

```
6 rows in set (0.58 sec)
```

The filter list `HostName,DataDir:ndbd` is perfectly valid. However, it actually consists of the filters `HostName` and `DataDir:ndbd—in other words, it means “the `HostName` for all processes, and the `DataDir` for ndbd processes”.

88
Suppose you wish to obtain the values for `HostName` for just the `ndb_mgmd` and `mysqld` processes in `mycluster`. You might be tempted to try using something like `HostName:ndb_mgmd,mysqld` for the filter list, but this does not work, as you can see here:

```
mcm> get HostName:ndb_mgmd,mysqld mycluster;
ERROR 6003 (00MGR): No such config variable mysqld for process
```

This is due to the fact that each filter in the filter list must be a valid filter, and must include an attribute name. (In the filter list just shown, MySQL Cluster Manager tries to interpret the first string following the comma as an attribute name.) The correct filter list to use in a `get` command for retrieving the `HostName` for the `ndb_mgmd` and `mysqld` processes in `mycluster` is shown in this example:

```
mcm> get HostName:ndb_mgmd,HostName:mysqld mycluster;
```

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Process1</th>
<th>Id1</th>
<th>Process2</th>
<th>Id2</th>
<th>Level</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>HostName</td>
<td>grindval</td>
<td>ndb_mgmd</td>
<td>49</td>
<td></td>
<td></td>
<td></td>
<td>Read only</td>
</tr>
<tr>
<td>HostName</td>
<td>haj</td>
<td>mysqld</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td>Read only</td>
</tr>
<tr>
<td>HostName</td>
<td>torsk</td>
<td>mysqld</td>
<td>51</td>
<td></td>
<td></td>
<td></td>
<td>Read only</td>
</tr>
</tbody>
</table>

2 rows in set (0.21 sec)

It is also possible to obtain a list of attributes and their values for a given process type or instance of a process. For a given process type, use a filter having the form `:process_name`. For example, to retrieve all non-default attributes applying to `ndbd` processes in a cluster named `mycluster`, you can use the filter `:ndbd`, as shown here:

```
mcm> get :ndbd mycluster;
```

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Process1</th>
<th>Id1</th>
<th>Process2</th>
<th>Id2</th>
<th>Level</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>DataDir</td>
<td>/opt/c2data</td>
<td>ndbd</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HostName</td>
<td>tonfisk</td>
<td>ndbd</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>Read only</td>
</tr>
<tr>
<td>NodeId</td>
<td>1</td>
<td>ndbd</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>Read only</td>
</tr>
<tr>
<td>DataDir</td>
<td>/opt/c3data</td>
<td>ndbd</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HostName</td>
<td>flundra</td>
<td>ndbd</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>Read only</td>
</tr>
<tr>
<td>NodeId</td>
<td>2</td>
<td>ndbd</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>Read only</td>
</tr>
</tbody>
</table>

5 rows in set (0.77 sec)

(The example just shown assumes that no attributes are set to non-default values.)

To get a list of all non-default attributes for a single instance of a process, use a filter having the form `:process_name:process_id`, as shown in this example, which retrieves all non-default attributes for the `ndbd` process having 2 as its process ID:

```
mcm> get :ndbd:2 mycluster;
```

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Process1</th>
<th>Id1</th>
<th>Process2</th>
<th>Id2</th>
<th>Level</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>DataDir</td>
<td>/opt/c2data</td>
<td>ndbd</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HostName</td>
<td>flundra</td>
<td>ndbd</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>Read only</td>
</tr>
<tr>
<td>NodeId</td>
<td>2</td>
<td>ndbd</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>Read only</td>
</tr>
</tbody>
</table>

4 rows in set (0.32 sec)

As mentioned previously, you must specify the process type as well as the process ID. If you specify an invalid combination of process type and process ID, the `get` command fails with an error, as shown here:

```
mcm> get :ndbd:4 mycluster;
ERROR 7004 (00MGR): Illegal process type ndbd for id 4
```
If you try to obtain values for an attribute which you know is supported by your MySQL Cluster version, but the result is empty, this almost certainly means that it is a default attribute which either has not been changed since the cluster was created or has been reset. In order to view default attributes using `get`, you must execute the command using the `--include-defaults` option (short form: `-d`).

Suppose you want to see how much DataMemory is configured for the ndbd processes in the cluster named mycluster, and you execute what appears to be the correct `get` command, but an empty result is returned, as shown here:

```
mcm> get DataMemory:ndbd mycluster;
Empty set (1.19 sec)
```

This means that the DataMemory attribute has its default value for all data nodes in the cluster. If you do not recall what this value is, you can determine it easily by repeating the same command with the addition of the `--include-defaults` option:

```
mcm> get --include-defaults DataMemory:ndbd mycluster;
+------------+----------+----------+-----+----------+-----+---------+---------+
| Name | Value | Process1 | Id1 | Process2 | Id2 | Level | Comment |
|------------|----------|----------|-----|----------|-----|---------|---------+
| DataMemory | 83886080 | ndbd | 1 | | | Default | |
| DataMemory | 83886080 | ndbd | 2 | | | Default | |
+------------+----------+----------+-----+----------+-----+---------+---------+
2 rows in set (0.62 sec)
```

Now suppose that you increase the DataMemory to 500 megabytes per data node, then repeat the `get` command to verify the new value:

```
mcm> set DataMemory:ndbd=500M mycluster;
+-----------------------------------+
| Command result |
+-----------------------------------+
| Cluster reconfigured successfully |
+-----------------------------------+
1 row in set (7.77 sec)

mcm> get --include-defaults DataMemory:ndbd mycluster;
+------------+-------+----------+-----+----------+-----+---------+---------+
| Name | Value | Process1 | Id1 | Process2 | Id2 | Level | Comment |
|------------|-------|----------|-----|----------|-----|---------|---------+
| DataMemory | 500M | ndbd | 1 | | | Process | |
| DataMemory | 500M | ndbd | 2 | | | Process | |
+------------+-------+----------+-----+----------+-----+---------+---------+
2 rows in set (1.46 sec)
```

You can see that, not only has the `Value` column in the `get` command output been updated to the new value, but the `Level` column has also been updated from `Default` to `Process`. This means that you no longer need the `--include-defaults` option to view this attribute, as shown here:

```
mcm> get DataMemory:ndbd mycluster;
+------------+-------+----------+-----+----------+-----+---------+---------+
| Name | Value | Process1 | Id1 | Process2 | Id2 | Level | Comment |
|------------|-------|----------|-----|----------|-----|---------|---------+
| DataMemory | 500M | ndbd | 1 | | | Process | |
| DataMemory | 500M | ndbd | 2 | | | Process | |
+------------+-------+----------+-----+----------+-----+---------+---------+
2 rows in set (0.63 sec)
```

However, if you reset DataMemory (also on the process level), this is no longer the case. Then, DataMemory once again assumes its default value, after which you must use the `--include-defaults` option to retrieve it, as shown in this example:

```
mcm> reset DataMemory:ndbd mycluster;
```
The reset Command

---
<table>
<thead>
<tr>
<th>Command result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster reconfigured successfully</td>
</tr>
</tbody>
</table>
---
1 row in set (7.65 sec)

mcm> get DataMemory:ndbd mycluster;
Empty set (1.76 sec)

mcm> get --include-defaults DataMemory:ndbd mycluster;
+------------+----------+----------+-----+----------+-----+---------+---------+
| Name       | Value    | Process1 | Id1 | Process2 | Id2 | Level   | Comment |
+------------+----------+----------+-----+----------+-----+---------+---------+
| DataMemory | 83886080 | ndbd     | 1   |          |     | Default |         |
| DataMemory | 83886080 | ndbd     | 2   |          |     | Default |         |
+------------+----------+----------+-----+----------+-----+---------+---------+
2 rows in set (1.01 sec)

For more information about these commands, see Section 4.5.3, “The set Command”, and Section 4.5.2, “The reset Command”.

The get command does not normally display configuration attributes applying to TCP, SHM, or SCI connections. However, such attributes can be set in the MySQL Cluster Manager client (using the set command); and once they have been set, they are displayed by applicable get commands. See Setting TCP Connection Attributes, which provides an example of this.

4.5.2 The reset Command

reset filter_specification_list cluster_name

filter_specification_list:
  filter_specification[filter_specification][, ...]

filter_specification:
  attribute_name[process_specification][*process_specification]

process_specification:
  process_name[process_id]

This command resets an attribute to its default value. Attributes can be set on either the process level or instance level. To reset an attribute on the process level, use a filter specification having the form attribute_name:process_name, where attribute_name is the name of the attribute to be reset, and process_name is the name of a MySQL Cluster process. To reset a configuration attribute on the instance level, use a filter specification of the form attribute_name:process_name:process_id, where process_id is the process ID.

You cannot issue a reset command that resets all values for a given configuration attribute regardless of process type; each reset command must specify a process type or instance of a process. Otherwise, the command fails, as shown here:

mcm> reset DataMemory mycluster;
ERROR 3 (00MGR): Illegal syntax

You also cannot revert all configuration attributes for a given process type or instance of a process using a single filter specification; you must always include the name of the attribute to be reset. Otherwise, the reset command fails, as shown here:

mcm> reset :ndbd mycluster;
ERROR 3 (00MGR): Illegal syntax

mcm> reset :ndbd:3 mycluster;
ERROR 3 (00MGR): Illegal syntax
Suppose that the data memory for all ndbd processes in the cluster named mycluster has been set to 500 MB, as shown in the output of this get command:

```
mcm> get DataMemory mycluster;
+------------+-------+----------+-----+----------+-----+---------+---------+
| Name | Value | Process1 | Id1 | Process2 | Id2 | Level | Comment |
+------------+-------+----------+-----+----------+-----+---------+---------+
| DataMemory | 500M | ndbd | 2 | | | Process | |
| DataMemory | 500M | ndbd | 3 | | | Process | |
+------------+-------+----------+-----+----------+-----+---------+---------+
2 rows in set (1.91 sec)
```

We can see from the entries in the Level column that the DataMemory setting for both ndbd processes applies on the process level. A process-level setting cannot be reset on the instance level, as shown here:

```
mcm> reset DataMemory:ndbd:2 mycluster;
ERROR 6010 (00MGR): No matching user defined setting was found for config attribute DataMemory
mcm> reset DataMemory:ndbd:3 mycluster;
ERROR 6010 (00MGR): No matching user defined setting was found for config attribute DataMemory
```

The following reset command also does not work, although you might think that it would do so, since it attempts to reset the attribute’s value for both ndbd processes:

```
mcm> reset DataMemory:ndbd:2,DataMemory:ndbd:3 mycluster;
ERROR 6010 (00MGR): No matching user defined setting was found for config attribute DataMemory
```

The previous command fails because MySQL Cluster Manager regards this as an attempt to apply two instance-level configuration changes. Because the DataMemory setting is a process-level setting, you must instead reset DataMemory to its default value on the process level; you can do this by using the filter specification DataMemory:ndbd in the reset command, as shown here:

```
mcm> reset DataMemory:ndbd mycluster;
+-----------------------------------+
| Command result |
+-----------------------------------+
| Cluster reconfigured successfully |
+-----------------------------------+
1 row in set (6.16 sec)
```

If you execute the same get command as shown previously, the result is now empty:

```
mcm> get DataMemory mycluster;
Empty set (0.74 sec)
```

This is because the get command by default does not report default values. To retrieve the DataMemory values after resetting them, you must invoke get using the --include-defaults (short form: -d) option:

```
mcm> get --include-defaults DataMemory mycluster;
+------------+----------+----------+-----+----------+-----+---------+---------+
| Name | Value | Process1 | Id1 | Process2 | Id2 | Level | Comment |
+------------+----------+----------+-----+----------+-----+---------+---------+
| DataMemory | 83886080 | ndbd | 2 | | | Default | |
| DataMemory | 83886080 | ndbd | 3 | | | Default | |
+------------+----------+----------+-----+----------+-----+---------+---------+
2 rows in set (1.21 sec)
```
The `reset` Command

The DataMemory values are now included in the output, and are marked with the word Default in the Comments column.

Now suppose that the `mysqld` configuration attribute `wait_timeout` for the `mysqld` process having the ID 4 in the cluster named mycluster has previously been set to the value 200 as shown here, and that no other changes have been to this attribute:

```
mcm> set wait_timeout:mysqld:4=200 mycluster;
+-----------------------------------+
| Command result |
+-----------------------------------+
| Cluster reconfigured successfully |
+-----------------------------------+
1 row in set (7.78 sec)

mcm> get -d wait_timeout:mysqld:4 mycluster;
+--------------+-------+----------+-----+----------+-----+---------+---------+
| Name | Value | Process1 | Id1 | Process2 | Id2 | Level | Comment |
+--------------+-------+----------+-----+----------+-----+---------+---------+
| wait_timeout | 200 | mysqld | 4 | | | | |
+--------------+-------+----------+-----+----------+-----+---------+---------+
1 row in set (0.98 sec)
```

Because the Level column is empty, we know that this setting applies on the instance level. If you try to reset it on the process level, the attempt fails, as shown here:

```
mcm> reset wait_timeout:mysqld mycluster2;
ERROR 6010 (00MGR): No matching user defined setting was found for config attribute wait_timeout
```

If you wish to reset this attribute to its default value, you must use the `reset` command with the instance-level filter specification `wait_timeout:mysqld:4`, as shown here:

```
mcm> reset wait_timeout:mysqld:4 mycluster;
+-----------------------------------+
| Command result |
+-----------------------------------+
| Cluster reconfigured successfully |
+-----------------------------------+
1 row in set (7.61 sec)
```

Once you have reset `wait_timeout`, it no longer appears in the output of the earlier `get` command:

```
mcm> get wait_timeout:mysqld mycluster;
Empty set (1.42 sec)
```

This is because the default behavior of the `get` command is to display only those values that have been set either by the MySQL Cluster Manager or by the user. Since `wait_timeout` has been allowed to revert to its default value, you must use the `--include-defaults` (short form: `-d`) option to retrieve it, as shown here:

```
mcm> get -d wait_timeout:mysqld mycluster;
+--------------+-------+----------+-----+----------+-----+---------+---------+
| Name | Value | Process1 | Id1 | Process2 | Id2 | Level | Comment |
+--------------+-------+----------+-----+----------+-----+---------+---------+
| wait_timeout | 28800 | mysqld | 4 | | | Default | |
+--------------+-------+----------+-----+----------+-----+---------+---------+
1 row in set (1.66 sec)
```

Now consider a situation in which process-level and instance-level settings have been made to a configuration attribute; in this example, we use IndexMemory. First, verify that IndexMemory is set to its default value for all data node processes (in this case, there are two of them):
Now apply both a process-level change and an instance-level change to this attribute. You can do this with a single `set` command, as shown here:

```
set IndexMemory:ndbd=500M,IndexMemory:ndbd:3=750M mycluster;
```

```
+-----------------------------------+
| Command result |
+-----------------------------------+
| Cluster reconfigured successfully |
+-----------------------------------+
1 row in set (7.29 sec)
```

Because the process-level change was specified first, it is overridden for the `ndbd` process by the instance-level change specified second. The output from the following `get` command confirms that this is the case:

```
get IndexMemory mycluster;
```

```
+-------------+-------+----------+-----+----------+-----+---------+---------+
| Name | Value | Process1 | Id1 | Process2 | Id2 | Level | Comment |
+-------------+-------+----------+-----+----------+-----+---------+---------+
| IndexMemory | 500M | ndbd | 2 | | | Process | |
| IndexMemory | 750M | ndbd | 3 | | | | |
+-------------+-------+----------+-----+----------+-----+---------+---------+
2 rows in set (0.85 sec)
```

If the instance-level IndexMemory setting for the `ndbd` process with process ID 3 is reset, the process-level setting still applies, as shown here:

```
reset IndexMemory:ndbd:3 mycluster;
```

```
+-----------------------------------+
| Command result |
+-----------------------------------+
| Cluster reconfigured successfully |
+-----------------------------------+
1 row in set (6.41 sec)
```

```
get IndexMemory mycluster;
```

```
+-------------+-------+----------+-----+----------+-----+---------+---------+
| Name | Value | Process1 | Id1 | Process2 | Id2 | Level | Comment |
+-------------+-------+----------+-----+----------+-----+---------+---------+
| IndexMemory | 500M | ndbd | 2 | | | Process | |
| IndexMemory | 500M | ndbd | 3 | | | Process | |
+-------------+-------+----------+-----+----------+-----+---------+---------+
2 rows in set (1.09 sec)
```

Now, re-apply the instance-level `IndexMemory` setting, and verify using `get` that it has taken effect:

```
set IndexMemory:ndbd:3=750M mycluster;
```

```
+-----------------------------------+
| Command result |
+-----------------------------------+
| Cluster reconfigured successfully |
+-----------------------------------+
1 row in set (6.79 sec)
```

```
get IndexMemory mycluster;
```

```
+-------------+-------+----------+-----+----------+-----+---------+---------+
| Name | Value | Process1 | Id1 | Process2 | Id2 | Level | Comment |
+-------------+-------+----------+-----+----------+-----+---------+---------+
| IndexMemory | 750M | ndbd | 2 | | | Process | |
| IndexMemory | 750M | ndbd | 3 | | | | |
+-------------+-------+----------+-----+----------+-----+---------+---------+
2 rows in set (1.09 sec)
```
The reset Command

If you reset the process-level setting, the instance-level setting remains, and only the ndbd process having process ID 2 has its IndexMemory reset to the default value; the instance-level setting remains in effect, as you can see from the following sequence of commands:

```
mcm> reset IndexMemory:ndbd mycluster;
<table>
<thead>
<tr>
<th>Command result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster reconfigured successfully</td>
</tr>
</tbody>
</table>
```

1 row in set (7.36 sec)

```
mcm> get -d IndexMemory mycluster;
<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Process1</th>
<th>Id1</th>
<th>Process2</th>
<th>Id2</th>
<th>Level</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>IndexMemory</td>
<td>18874368</td>
<td>ndbd</td>
<td>2</td>
<td></td>
<td></td>
<td>Default</td>
<td></td>
</tr>
<tr>
<td>IndexMemory</td>
<td>750M</td>
<td>ndbd</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

2 rows in set (0.10 sec)

Note

If the order of the specifiers in the original command that set IndexMemory had been reversed as IndexMemory:ndbd:3=750M, IndexMemory:ndbd=500M, the instance-level change would have been overridden by the process-level change, and the resulting IndexMemory setting for both ndbd processes would be 500M. As discussed elsewhere, a process-level setting made after an instance-level setting that affects the same process completely removes the instance-level setting; the instance-level setting is not preserved, and resetting the attribute on the process level merely restores the default setting for all processes of that type. See Section 4.5, “MySQL Cluster Manager Configuration Commands”, for more information.

Resetting TCP Connection Attributes.  Certain configuration attributes, such as those relating to TCP connections, apply to connections between processes rather than to individual processes or individual process types. As shown elsewhere (see Setting TCP Connection Attributes), when you set such an attribute on the process level using MySQL Cluster Manager, this means that the attribute applies to all connections between the two types of processes specified when issuing the set command. It is also possible to set such an attribute on the instance level, in which case it applies only to a single connection between two process instances.

Similarly, it is possible to reset such an attribute on either the process or instance level, depending on the level or levels at which it was set. In either case, an extended form of the process specifier is required, just as it is when setting an attribute that applies to a connection between processes.

Assume that the SendBufferMemory attribute has previously been set for all connections between the two ndbd processes and the two mysqld processes that are found in a MySQL Cluster named mycluster2, as shown in the output of this get command:

```
mcm> get SendBufferMemory mycluster2;
<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Process1</th>
<th>Id1</th>
<th>Process2</th>
<th>Id2</th>
<th>Level</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>SendBufferMemory</td>
<td>4M</td>
<td>ndbd</td>
<td>2</td>
<td>mysqld</td>
<td>4</td>
<td>Process</td>
<td></td>
</tr>
<tr>
<td>SendBufferMemory</td>
<td>4M</td>
<td>ndbd</td>
<td>2</td>
<td>mysqld</td>
<td>5</td>
<td>Process</td>
<td></td>
</tr>
<tr>
<td>SendBufferMemory</td>
<td>4M</td>
<td>ndbd</td>
<td>3</td>
<td>mysqld</td>
<td>4</td>
<td>Process</td>
<td></td>
</tr>
<tr>
<td>SendBufferMemory</td>
<td>8M</td>
<td>ndbd</td>
<td>3</td>
<td>mysqld</td>
<td>5</td>
<td>Process</td>
<td></td>
</tr>
</tbody>
</table>
```

2 rows in set (1.76 sec)
Suppose that you wish to reset `SendBufferMemory` only for the connection between the `ndbd` process having process ID 3 and the `mysqld` process having process ID 5. The `SendBufferMemory` setting that applies to this connection is specified on the instance level, as you can see because the `Level` column value corresponding to this connection is empty; this means that it is possible to reset this value on the instance level. You can do this using the `reset` command shown here:

```
mcm> reset SendBufferMemory:ndbd:3+mysqld:5 mycluster2;
+-----------------------------------+
| Command result |
| Cluster reconfigured successfully |
+-----------------------------------+
1 row in set (7.03 sec)
```

You can verify that the attribute was reset using the `get` command. However, as noted previously, once the instance-level setting has been removed, the process-level setting for this attribute again takes effect, so that the same setting applies to all connections between `ndbd` and `mysqld` processes, as shown here:

```
mcm> get SendBufferMemory mycluster2;
+------------------+-------+----------+-----+----------+-----+---------+---------+
| Name | Value | Process1 | Id1 | Process2 | Id2 | Level | Comment |
+------------------+-------+----------+-----+----------+-----+---------+---------+
| SendBufferMemory | 4M | ndbd | 2 | mysqld | 4 | Process | |
| SendBufferMemory | 4M | ndbd | 2 | mysqld | 5 | Process | |
| SendBufferMemory | 4M | ndbd | 3 | mysqld | 4 | Process | |
| SendBufferMemory | 4M | ndbd | 3 | mysqld | 5 | Process | |
+------------------+-------+----------+-----+----------+-----+---------+---------+
4 rows in set (0.87 sec)
```

To reset this attribute on the process level, you can use the following `reset` command:

```
mcm> reset SendBufferMemory:ndbd+mysqld mycluster2;
+-----------------------------------+
| Command result |
| Cluster reconfigured successfully |
+-----------------------------------+
1 row in set (8.01 sec)
```

You can verify that the attribute has been reset for all connection between `ndbd` processes and `mysqld` processes, by using the `get` command, as shown here:

```
mcm> get -d SendBufferMemory mycluster2;
Empty set (1.39 sec)
```

As noted elsewhere in this manual (see Section 4.5.1, “The `get` Command”), the empty result set is to be expected in this case, even when `get` is invoked using the `--include-defaults` (or `-d`) option, because the MySQL Cluster Manager client does not display attributes that appear in the `[tcp]`, `[shm]`, or `[sci]` sections of the `config.ini` configuration file if they have not been explicitly set by the user.

### 4.5.3 The `set` Command

```
set attribute_assignment_list cluster_name

attribute_assignment_list:
 attribute_assignment[,attribute_assignment][,...]

attribute_assignment:
```

96
The `set` Command

This command is used to set values for one or more configuration attributes. Attributes can be set on either the process level or instance level.

`set` commands are executed whether or not the cluster has been started. In a cluster that is not running, the MySQL Cluster Manager merely updates the configuration files. However, in a running cluster, the MySQL Cluster Manager in addition automatically performs any node restarts or rolling restarts (see Performing a Rolling Restart of a MySQL Cluster) that are required to cause the attribute changes to take effect. However, since restart operations—particularly rolling restarts, where each process in the cluster must be stopped and restarted in turn—can take a great deal of time, it is preferable to make configuration changes before starting the cluster and putting it into use.

To set an attribute on the process level, use a `set` statement that contains an attribute assignment having the form `attribute_name:process_name=value`.

For example, to set `DataMemory` to 500 MB on the `ndbd` process level, so that the new value applies to all `ndbd` processes in the cluster, you can issue a `set` command containing the attribute assignment `DataMemory:ndbd=500M`, as shown here:

```sql
mcm> set DataMemory:ndbd=500M mycluster;
+-----------------------------------+
| Command result |
| Cluster reconfigured successfully |
+-----------------------------------+
1 row in set (5.68 sec)
```

To verify that the new setting is being used, you can issue the following `get` command:

```sql
mcm> get DataMemory mycluster;
+------------+-------+----------+------+----------+------+---------+---------+
| Name | Value | Process1 | Id1 | Process2 | Id2 | Level | Comment |
|------------+-------+----------+------+----------+------+---------+---------+
| DataMemory | 500M | ndbd | 1 | | | Process | |
| DataMemory | 500M | ndbd | 2 | | | Process | |
+------------+-------+----------+------+----------+------+---------+---------+
2 rows in set (0.79 sec)
```

**Note**

For more information about this command, see Section 4.5.1, “The `get` Command.”

To set an attribute for a specific process instance, include the process ID in the attribute assignment; the form of such an attribute assignment is `attribute_name:process_name:process_id=value`. For example, to set the `wait_timeout` attribute for the `mysqld` process that has process ID 50 to 200, you would issue a `set` command that contains the attribute assignment `wait_timeout:mysqld:51=200`, like this:

```sql
mcm> set wait_timeout:mysqld:50=200 mycluster;
+-----------------------------------+
| Command result |
| Cluster reconfigured successfully |
+-----------------------------------+
1 row in set (6.18 sec)
```

You can verify that the setting has taken effect using an applicable `get` command:
The set Command

```
mcm> get wait_timeout mycluster;
+--------------+-------+----------+------+----------+------+-------+---------+
| Name | Value | Process1 | Id1 | Process2 | Id2 | Level | Comment |
+--------------+-------+----------+------+----------+------+-------+---------+
| wait_timeout | 200 | mysqld | 50 | | | | |
+--------------+-------+----------+------+----------+------+-------+---------+
1 row in set (0.50 sec)
```

Attributes which are marked **Read only** cannot be set. Attempting to do so fails with an error, as shown here:

```
mcm> get :ndbd mycluster;
+--------------+-------------+----------+-----+----------+-----+-------+-----------+
| Name | Value | Process1 | Id1 | Process2 | Id2 | Level | Comment |
+--------------+-------------+----------+-----+----------+-----+-------+-----------+
| DataDir | /opt/c2data | ndbd | 1 | | | | |
| HostName | tonfisk | ndbd | 1 | | | | |
| NodeId | 2 | ndbd | 1 | | | | |
| DataDir | /opt/c3data | ndbd | 2 | | | | |
| HostName | grindval | ndbd | 2 | | | | |
| NodeId | 3 | ndbd | 2 | | | | |
+--------------+-------------+----------+-----+----------+-----+-------+-----------+
6 rows in set (1.42 sec)
mcm> set HostName:ndbd:1=lax mycluster;
ERROR 6008 (00MGR): Config attribute HostName is read only and cannot be changed
```

However, you can set mandatory attributes, such as in the example shown previously in this section where the **DataDir** configuration attribute was set to a user-defined value.

**Warning**

The mandatory **NoOfReplicas** attribute must be set on the process level only. Attempting to set it on the instance level may leave the cluster, the MySQL Cluster Manager, or both in an unusable configuration.

Unlike the case with the **get** command, you cannot issue a **set** acting on a “global” scope—that is, you cannot, in a single attribute assignment, set a single value for an attribute such that the new attribute value applies to all processes regardless of process type, even if the attribute having that name can be applied to all process types. Nor can you specify multiple process types in a single attribute assignment. Attempting to do either of these things causes an error, as shown here:

```
mcm> set DataDir=/var/cluster-data mycluster;
ERROR 3 (00MGR): Illegal syntax
```

Instead, you must use a process-level attribute assignment for each process type. However, you are not necessarily required to issue a separate set command for each process type. Instead, you can also make multiple attribute assignments in a single **set** command, supplying the assignments as a comma-separated list. This **set** command assigns **/var/cdata** as the data directory (**DataDir**) for all MySQL Cluster processes in the cluster named **mycluster**:

```
mcm> set DataDir:ndb_mgmd=/var/cdata, DataDir:ndbd=/var/cdata, DataDir:mysqld=/var/cdata mycluster;
| Command result |
| Cluster reconfigured successfully |
+-----------------------------------+
1 row in set (7.66 sec)
```
As you can see from the `get` command just shown, the attribute assignments were successful, and took effect on the process level.

**Note**
In MySQL Cluster Manager, configuration attribute names are not case-sensitive. See Case Sensitivity in String Searches for more information about case-sensitivity issues in MySQL Cluster Manager.

Similarly, you cannot reference multiple process IDs in a single attribute assignment, even if they are processes of the same type; the following command does not work:

```plaintext
mcm> set DataMemory:ndbd:1,2=750M mycluster;
```

```plaintext
ERROR 3 (00MGR): Illegal syntax
```

Instead, you would need to use the following command:

```plaintext
mcm> set DataMemory:ndbd:1=750M,DataMemory:ndbd:2=750M mycluster;
```

1 row in set (7.70 sec)

(Of course, if these are the only two data nodes in `mycluster`, then the command `set DataMemory:ndbd=750M mycluster` also accomplishes the same task.)

**Note**
A few configuration attributes apply to connections between processes and so require you to refer to both processes in the course of setting them. In such cases, you must use a special process specification syntax; see Setting TCP Connection Attributes, for information about how this is done.

You also cannot set values for multiple attributes in a single attribute assignment; this means that the following commands do not work:

```plaintext
mcm> set UndoDataBuffer=32M,UndoIndexBuffer=8M:ndbd mycluster;
```

```plaintext
ERROR 3 (00MGR): Illegal syntax
```

```plaintext
mcm> set DataMemory,IndexMemory:ndbd=1G mycluster;
```

```plaintext
ERROR 3 (00MGR): Illegal syntax
```

However, if you write a complete and valid attribute assignment for each attribute whose value you wish to update, you can rewrite these two commands so that they execute successfully, as shown here:
The set Command

```
mcm> set UndoDataBuffer:ndbd=32M, UndoIndexBuffer:ndbd=8M mycluster;
+-----------------------------------+
| Command result |
+-----------------------------------+
| Cluster reconfigured successfully |
+-----------------------------------+
1 row in set (6.62 sec)
```

```
mcm> set DataMemory:ndbd=1G, IndexMemory:ndbd=1G mycluster;
+-----------------------------------+
| Command result |
+-----------------------------------+
| Cluster reconfigured successfully |
+-----------------------------------+
1 row in set (7.04 sec)
```

In fact, there is no reason that you cannot perform all four assignments in a single set command, using a list of four attribute assignments, like this:

```
mcm> set UndoDataBuffer:ndbd=32M, UndoIndexBuffer:ndbd=8M,
 DataMemory:ndbd=1G, IndexMemory:ndbd=1G mycluster;
+-----------------------------------+
| Command result |
+-----------------------------------+
| Cluster reconfigured successfully |
+-----------------------------------+
1 row in set (6.24 sec)
```

However, it a good idea not to perform too many attribute assignments in any single set command, since this makes it more difficult to spot errors.

On Windows, when setting attributes whose values contain paths (such as DataDir) you must replace any backslash characters in the path with forward slashes. Suppose that you want to use `C:\temp\node50\a` for the tmpdir attribute of the mysqld process having node ID 50 in a MySQL Cluster named mycluster which is running on Windows. The original value for this attribute can be seen using the appropriate get command:

```
mcm> get tmpdir mycluster;
+--------+----------------+----------+-----+----------+-----+-------+---------+
| Name | Value | Process1 | Id1 | Process2 | Id2 | Level | Comment |
+--------+----------------+----------+-----+----------+-----+-------+---------+
| tmpdir | c:\c50data\tmp | mysqld | 50 | | | | |
+--------+----------------+----------+-----+----------+-----+-------+---------+
1 row in set (0.22 sec)
```

The correct set command to make the desired configuration change is shown here:

```
mcm> set tmpdir:mysqld:50=c:/temp/node50 mycluster;
+-----------------------------------+
| Command result |
+-----------------------------------+
| Cluster reconfigured successfully |
+-----------------------------------+
1 row in set (2.62 sec)
```

When you check the value using get—even though it was originally shown using backslashes—the forward slashes are used when displaying the new value:

```
mcm> get tmpdir mycluster;
+--------+----------------+----------+-----+----------+-----+-------+---------+
| Name | Value | Process1 | Id1 | Process2 | Id2 | Level | Comment |
+--------+----------------+----------+-----+----------+-----+-------+---------+
| tmpdir | c:/temp/node50 | mysqld | 50 | | | | |
+--------+----------------+----------+-----+----------+-----+-------+---------+
1 row in set (0.22 sec)
```
The `set` Command

However, if you try to use backslashes in the path when issuing the `set` command, the command fails:

```plaintext
mcm> set tmpdir:mysqld:4=c:\temp\4 mycluster;
Outfile disabled.
ERROR: Unknown command '\4'.
ERROR 6014 (00MGR): Path name for parameter tmpdir must be absolute.
The value 'c:\mp4' is illegal.
```

Setting TCP Connection Attributes. For a few attributes that apply only when using TCP connections (such as the `SendBufferMemory` and `ReceiveBufferMemory` attributes), it is necessary to use a modified syntax for attribute value assignments. In this case, the attribute assignment contains two process specifications, one for each process type or instance to which the setting applies, joined with a plus sign (`+`). For the following example, consider the cluster named `mycluster2`, consisting of the processes shown here:

```plaintext
mcm> list processes mycluster2;
+------+----------+-------------+
| Id | Name | Host |
+------+----------+-------------+
| 49 | ndb_mgmd | grindval |
| 1 | ndbd | tonfisk |
| 2 | ndbd | flundra |
| 50 | mysqld | haj |
| 51 | mysqld | torsk |
+------+----------+-------------+
5 rows in set (0.16 sec)
```

(See Section 4.6.3, “The `list processes` Command”, for more information about this command.)

TCP connection attributes are not shown in the output from the `get` command unless they have been set. This means that, prior to setting `SendBufferMemory` for the first time, you obtain an empty result if you try to retrieve its value, as shown here:

```plaintext
mcm> get SendBufferMemory mycluster2;
Empty set (0.18 sec)
mcm> get --include-defaults SendBufferMemory mycluster2;
Empty set (0.93 sec)
```

To set the `SendBufferMemory` to 4 MB for all TCP connections between data nodes and SQL nodes, you can use the command shown here:

```plaintext
mcm> set SendBufferMemory:ndbd+mysqld=4M mycluster2;
+-----------------------------------+
| Command result |
+-----------------------------------+
| Cluster reconfigured successfully |
+-----------------------------------+
1 row in set (6.44 sec)
```

If you check the attribute's value afterwards using `get`, you can see that the value is applied to all possible connections between each of the two `ndbd` processes and each of the two `mysqld` processes in `mycluster2`, thus there are four rows in the output:

```plaintext
mcm> get SendBufferMemory mycluster2;
+------------------+-------+----------+-----+----------+-----+---------+---------+
| Name | Value | Process1 | Id1 | Process2 | Id2 | Level | Comment |
+------------------+-------+----------+-----+----------+-----+---------+---------+
| SendBufferMemory | 4M | ndbd | 2 | mysqld | 4 | Process |
| SendBufferMemory | 4M | ndbd | 2 | mysqld | 5 | Process |
| SendBufferMemory | 4M | ndbd | 3 | mysqld | 4 | Process |
| SendBufferMemory | 4M | ndbd | 3 | mysqld | 5 | Process |
+------------------+-------+----------+-----+----------+-----+---------+---------+
```
To override this setting for only the connection between the data node with process ID 2 and the mysqld process (process ID 4), you can include the process ID in each of the two parts of the process specification, as shown here:

```
 mcm> set SendBufferMemory:ndbd:2+mysqld:4=8M mycluster2;
 +-----------------------------------+
 | Command result |
 +-----------------------------------+
 | Cluster reconfigured successfully |
 +-----------------------------------+
 1 row in set (7.95 sec)
```

When you check the result using a `get` command, you can see that the new setting applies on the instance level, and only to the connection between processes having IDs 2 and 4; the process-level setting made previously still applies to the remaining 3 connections:

```
 mcm> get SendBufferMemory mycluster2;
 +------------------+-------+----------+-----+----------+-----+---------+---------+
 | Name | Value | Process1 | Id1 | Process2 | Id2 | Level | Comment |
 +------------------+-------+----------+-----+----------+-----+---------+---------+
 | SendBufferMemory | 8M | ndbd | 2 | mysqld | 50 | | |
 | SendBufferMemory | 4M | ndbd | 2 | mysqld | 51 | Process | |
 | SendBufferMemory | 4M | ndbd | 3 | mysqld | 50 | Process | |
 | SendBufferMemory | 4M | ndbd | 3 | mysqld | 51 | Process | |
 +------------------+-------+----------+-----+----------+-----+---------+---------+
 4 rows in set (0.24 sec)
```

You cannot set a connection attribute on the process level in one part of the process specification (that is, for one end of the connection) and on the instance level in the other. Attempting to do so fails with an error, as shown here:

```
 mcm> set SendBufferMemory:ndbd+mysqld:4=2M mycluster2;
 ERROR 3 (00MGR): Illegal syntax
 mcm> set SendBufferMemory:ndbd:2+mysqld=2M mycluster2;
 ERROR 3 (00MGR): Illegal syntax
```

**Setup for mysqld connection pooling.** Enabling connection pooling for mysqld can be done by setting the `ndb-cluster-connection-pool` attribute to the desired number of connections, but also requires an extra step in creating the cluster.

Because the mysqld process attempts to make multiple connections to the cluster when connection pooling is enabled, the cluster must be configured with “spare” or “empty” connections. You can do this by adding (otherwise) unused ndbapi entries in the process_host list used in the `create cluster` command, as shown here:

```
 mcm> create cluster -P mypackage >-R ndb_mgmd@10.100.10.97,ndbd@10.100.10.98,ndbd@10.100.10.99, \
 mysql@10.100.10.97,ndbdapi@10.100.10.100, \
 ndbapi@10.100.10.100,ndbapi@10.100.10.100 > mycluster;
 +-----------------------------------+
 | Command result |
 +-----------------------------------+
 | Cluster created successfully |
 +-----------------------------------+
 1 row in set (6.58 sec)
```

After this, you can use a `set` command like this one to set the size of the connection pool according to the number of excess connections available in the config.ini file:

```
 mcm> set ndb_cluster_connection_pool:mysqld=4;
```
user attribute not supported for mysqld. Trying to set the user attribute for a mysqld process is not currently supported, and results in a warning being written to the MySQL Cluster Manager log.

4.6 MySQL Cluster Manager Process Commands

This section contains information about MySQL Cluster Manager client commands used to start and stop MySQL Cluster processes, and to determine which processes are currently running.

MySQL Cluster Manager, ndb_mgm, and starting or stopping processes. For a MySQL Cluster under MySQL Cluster Manager control, it is recommended not to use the ndb_mgm command-line client that comes with the MySQL Cluster distribution to perform operations that involve starting or stopping nodes. These include but are not limited to the following ndb_mgm client commands (Commands in the MySQL Cluster Management Client):

• START
• STOP
• RESTART
• SHUTDOWN

4.6.1 The add process Command

```
add process --processhosts=process_host_list
 [--set=attribute_assignment_list] cluster_name
```

```
process_host_list:
 process_name@host[,process_name@host,...]
```

```
process_name:
 {ndb_mgmd|ndbd|ndbmtd|mysqld|ndbapi}
```

```
attribute_assignment_list:
 attribute_assignment[,attribute_assignment][,...]
```

```
attribute_assignment:
 attribute_name:=process_name=value
```

This command adds one or more processes to an existing cluster, these being specified using a process_host_list whose format is the same as that used with the create cluster command. Any hosts referenced in the list must be members of the site to which the cluster belongs. In MySQL Cluster Manager 1.2.1 and later, all hosts must be resolvable (Bug #15870901).

Any new processes added by this command must be started explicitly using start process --added.

For example, the following add process command adds two mysqld processes on hosts torsk and kolja to the cluster named mycluster:

```
add process --processhosts=mysqld@torsk,mysqld@kolja mycluster;
```

Processes added before the cluster is started for the first time are started with the cluster. This makes it possible to use this command to break down what would otherwise be very long create cluster commands. Consider the following set of commands which creates and then starts a cluster named mycluster:
The *change process* Command

The long *create cluster* command can be divided into a shorter (and more manageable) version of itself, plus several *add process* commands. This set of commands performs the same task as the previous set, creating `mycluster` with exactly the same processes and hosts as before, and then starting it:

```
create cluster --processhosts=ndb_mgmd@host1,ndbd@host1,ndbd@host2, \
 mysqld@host3,mysqld@host4 mycluster;
start cluster mycluster;
```

Because `mycluster` was never started before the `ndbd` and `mysqld` processes were added to it using the *add process* commands shown, it is not necessary to use the *--added* option with the *start cluster* command in this case; all 5 processes are started.

A newly added process inherits its configuration attribute settings from those in effect for its process type on the parent cluster, or assume the default settings for that process type if none apply. Existing attribute settings in the cluster must have process-level scope to be inherited by new processes added later; instance-level settings set for existing process instances prior to adding any new ones do not apply to any of the added processes. (See Configuration attributes, for more information about the scope of attribute settings.)

Inherited attribute settings can be overridden when adding processes; to do this, use the *add process* command's *--set* option. This option takes as its argument an attribute assignment list similar in format to that used with the *get* and *set* commands. Suppose that the current `ndbd` process-level setting in the cluster named `mycluster` for the `DataDir` attribute is `/home/users/ndb/cluster-data`, but you wish to add two new `ndbd` processes that use `/tmp/cluster/data` instead. You can do this using the following command:

```
mcm> add process --set=ndbd:DataDir=/tmp/cluster/data \
 > --processhosts=mysqld@torsk,mysqld@kolja \
 > mysite;
```

Note
---
The equals sign (`=`) immediately following the *--set* option is required.

When setting attributes in this way which contain paths for processes running on Windows, you must replace any backslashes (`\`) used with forward slashes (`/`), just as with the *set* command. See Setting Attributes Containing Paths on Windows [100], for more information.

After a process has been added using *add process*, you can also use the *set* command to modify its configuration attribute settings (or specify additional ones) as you would with any other cluster process being managed with MySQL Cluster Manager.

It is not currently possible to drop or delete cluster processes using MySQL Cluster Manager.

---

4.6.2 The *change process* Command

Note
---
When IPv6-enabled Windows systems are used as MySQL Cluster hosts under MySQL Cluster Manager, you must reference these hosts using IPv4 addresses. Otherwise, MySQL Cluster Manager will be unable to connect to the agent processes on those hosts. See Section 5.1, “MySQL Cluster Manager Usage and Design Limitations”.

104
The `change process` Command

```plaintext
change process old_proc_type[:proc-id]=new_proc_type cluster_name

old_proc_type | new_proc_type:
{ndbd|ndbmtd}
```

This command is used (MySQL Cluster NDB 7.0 and later) to change the process type for a given MySQL Cluster process or group of MySQL Cluster processes from one process type (`old-process-type`) to another process type (`new-process-type`).

Currently, the only two process types available for use with this command are `ndbd` and `ndbmtd`. This means that `change process` can be used to change the data node process running on one or more data nodes from the single-threaded data node daemon (`ndbd`) to the multi-threaded data node daemon (`ndbmtd`) or vice versa.

By default, `change process` affects all data nodes running the `old-process-type`. By specifying an optional `process_id`, its action can be restricted to the data node having that process ID.

Suppose you have a cluster which is named `mycluster` and which has two data nodes using `ndbd` processes, as reflected in the output of the following `show status` command:

```
mcm> show status --process mycluster;
+--------+----------+----------+----------+-----------+
| NodeId | Process | Host | Status | Nodegroup |
+--------+----------+----------+----------+-----------+
| 49 | ndb_mgmd | flundra | running | |
| 1 | ndbd | tonfisk | running | n/a |
| 2 | ndbd | grindval | running | n/a |
| 50 | mysqlqld | haj | running | |
| 51 | mysqlqld | torsk | running | |
| 52 | ndbapi | * | running | |
+--------+----------+----------+----------+-----------+
6 rows in set (0.06 sec)
```

To change both data nodes to so that they use multi-threaded (`ndbmtd`) processes, issue the command shown here, without any `process_id` specifier:

```
mcm> change process ndbd=ndbmtd mycluster;
+------------------------------+
| Command result |
+------------------------------+
| Process changed successfully |
+------------------------------+
1 row in set (2 min 17.51 sec)
```

After the command has executed, you can verify that both data nodes are now using `ndbmtd` by checking the output of the appropriate `show status` command, as shown here:

```
mcm> show status --process mycluster;
+--------+----------+----------+----------+-----------+
| NodeId | Process | Host | Status | Nodegroup |
+--------+----------+----------+----------+-----------+
| 49 | ndb_mgmd | flundra | running | |
| 1 | ndbmtd | tonfisk | running | n/a |
| 2 | ndbmtd | grindval | running | n/a |
| 50 | mysqlqld | haj | running | |
| 51 | mysqlqld | torsk | running | |
| 52 | ndbapi | * | running | |
+--------+----------+----------+----------+-----------+
6 rows in set (0.09 sec)
```

**Note**

The `change process` command can be used whether or not the cluster or the data node or data nodes to be changed are running. However, the command
The **change process** Command

executes much more quickly if the data node or data nodes to be changed are not running. The next set of examples illustrates this.

It is possible (and sometimes desirable) to use `ndbd` and `ndbmtd` data node processes concurrently; thus, it is also possible using the **change process command** to change a single data node process from single-threaded to multi-threaded, or from multi-threaded to single-threaded. To do this, you must specify the data node process using its process ID.

First, we stop the cluster and verify that all processes are no longer running, as shown here:

```
$ mcm> stop cluster mycluster;
+------------------------------+
<table>
<thead>
<tr>
<th>Command result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster stopped successfully</td>
</tr>
</tbody>
</table>
+------------------------------+
1 row in set (22.93 sec)

$ mcm> show status --process mycluster;
+--------+----------+----------+----------+-----------+
| NodeId | Process | Host | Status | Nodegroup |
+--------+----------+----------+----------+-----------+
| 49 | ndb_mgmd | flundra | stopped | |
| 1 | ndbmtd | tonfisk | stopped | n/a |
| 2 | ndbmtd | grindval | stopped | n/a |
| 50 | mysqlld | haj | stopped | |
| 51 | mysqlld | torsk | stopped | |
| 52 | ndbapi | * | stopped | |
+--------+----------+----------+----------+-----------+
6 rows in set (0.05 sec)
```

The following command changes only the node having the process ID 2 from using the multi-threaded data node daemon to the single-threaded version:

```
$ mcm> change process ndbmtd:2=ndbd mycluster;
+------------------------------+
<table>
<thead>
<tr>
<th>Command result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process changed successfully</td>
</tr>
</tbody>
</table>
+------------------------------+
1 row in set (6.52 sec)
```

As you can see, **change process** operates much more quickly when the process to be changed is not running. As before, you can verify that the command succeeded using **show status**:

```
$ mcm> show status --process mycluster;
+--------+----------+----------+----------+-----------+
| NodeId | Process | Host | Status | Nodegroup |
+--------+----------+----------+----------+-----------+
| 49 | ndb_mgmd | flundra | stopped | |
| 1 | ndbmtd | tonfisk | stopped | n/a |
| 2 | ndbd | grindval | stopped | n/a |
| 50 | mysqlld | haj | stopped | |
| 51 | mysqlld | torsk | stopped | |
| 52 | ndbapi | * | stopped | |
+--------+----------+----------+----------+-----------+
6 rows in set (0.07 sec)
```

To complete the example, we start the cluster again, using **start cluster**, then change node number 2 back from `ndbd` (single-threaded) to `ndbmtd` (multi-threaded) using **change process**, then verify the change using **show status**:

```
$ mcm> start cluster mycluster;
+------------------------------+
<table>
<thead>
<tr>
<th>Command result</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
+------------------------------+

$ mcm> change process ndbd:2=ndbmtd mycluster;
+------------------------------+
<table>
<thead>
<tr>
<th>Command result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process changed successfully</td>
</tr>
</tbody>
</table>
+------------------------------+
1 row in set (6.52 sec)

$ mcm> show status --process mycluster;
+--------+----------+----------+----------+-----------+
| NodeId | Process | Host | Status | Nodegroup |
+--------+----------+----------+----------+-----------+
| 49 | ndb_mgmd | flundra | stopped | |
| 1 | ndbmtd | tonfisk | stopped | n/a |
| 2 | ndbmtd | grindval | stopped | n/a |
| 50 | mysqlld | haj | stopped | |
| 51 | mysqlld | torsk | stopped | |
| 52 | ndbapi | * | stopped | |
+--------+----------+----------+----------+-----------+
6 rows in set (0.07 sec)
```
The list processes Command

You can see that it can require much less time to stop the cluster, change a data node process, and then start the cluster again than it is to change the process while the cluster is running. However, if you do this, the cluster is not available while it is stopped.

As noted previously, change process works only with ndbd and ndbmtd processes; attemptting to use any other process type causes the command to fail with an error, as shown here:

```mcm>
change process ndb_mgmd=mysqld mycluster;
ERROR 7009 (00MGR): Processes ndb_mgmd and mysqld are not interchangable in this package
mcm>
change process ndbd=mysqld mycluster;
ERROR 7009 (00MGR): Processes ndbd and mysqld are not interchangable in this package
```

4.6.3 The list processes Command

This command displays all processes making up a given cluster. The following example demonstrates how to list all processes that are part of the cluster named mycluster:

```mcm>
list processes mycluster;
+--------+----------+----------+
| NodeId | Name | Host |
+--------+----------+----------+
| 49 | ndb_mgmd | flundra |
| 1 | ndbd | tonfisk |
| 2 | ndbd | grindval |
| 50 | mysql | haj |
| 51 | mysql | torsk |
| 52 | ndbapi | * |
+--------+----------+----------+
6 rows in set (0.03 sec)
```

The cluster_name argument is required. If this argument is omitted, the command fails with an error, as shown here:

```mcm>
list processes;
ERROR 6 (00MGR): Illegal number of operands
```

4.6.4 The start process Command
The **stop process** Command

```
start process [--initial|-i] process_id | --added] cluster_name
```

This command starts the MySQL Cluster process having the process ID `process_id` in the cluster named `cluster_name`. The status of the process to be started, as shown by `show status --process`, must be `added` or `stopped`.

This example demonstrates how to start the process having the process ID `1` belonging to the cluster `mycluster`:

```
> start process 1 mycluster;
+-----------------------------+
<table>
<thead>
<tr>
<th>Command result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process started successfully</td>
</tr>
<tr>
<td>----------------------------</td>
</tr>
</tbody>
</table>
1 row in set (13.93 sec)
```

When the `--initial` option (short form: `-i`) is used, MySQL Cluster Manager starts a data node process with the `--initial` option, causing the data node to rebuild its file system.

Invoking this command with the `--added` option rather than with a process ID starts all nodes previously added to the cluster using `add process`, but not yet started.

You can obtain process IDs for all processes in a given cluster using `show status --process` or `list processes`. These are the same as the node IDs for these processes as shown in the output of other `mcm` client commands such as `get` or in the output of `ndb_mgm -e "show"` (see `ndb_mgm — The MySQL Cluster Management Client`).

⚠️ **Caution**

You should not use this command to start a `mysqld` process in a cluster that is stopped or otherwise unavailable.

### 4.6.5 The **stop process** Command

```
stop process process_id cluster_name
```

This command stops the running MySQL Cluster process with the process ID `process_id` in the cluster named `cluster_name`. The status of the process as shown by `show status --process` must be `running`.

Suppose that the process ID of a data node in the cluster named `mycluster` is `3`. Then this data node can be stopped as shown here:

```
> stop process 3 mycluster;
+-----------------------------+
<table>
<thead>
<tr>
<th>Command result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process stopped successfully</td>
</tr>
<tr>
<td>----------------------------</td>
</tr>
</tbody>
</table>
1 row in set (33.07 sec)
```

You can use `show status --process` or `list processes` to obtain process IDs for all processes in a given cluster.

In the event of a disk failure where MySQL Cluster Manager loses its manager directory (including its repository), the agent is able to recover information from other agents, but it does not actually control processes any longer, although it can detect them. This is due to the fact that the MySQL Cluster Manager agent cannot access the PID files. In this case, `stop process` no longer works, and you must kill such processes manually. Keep in mind that, if `StopOnError` is set to 0, the MySQL Cluster
Manager agent restarts the data node process automatically; if `StopOnError` is 1 (the default), then you must execute the `start process` command manually.

### 4.7 MySQL Cluster Manager Backup and Restore Commands

This section contains information about MySQL Cluster Manager client commands relating to backing up a MySQL Cluster and restoring it from backup. All of these command were introduced in MySQL Cluster Manager 1.2.1.

#### 4.7.1 The `abort backup` Command

```
abort backup --backupid=backup_id cluster_name
```

This command aborts a backup, having the specified `backup_id`, of cluster `cluster_name`. You can obtain a list of backups and their IDs known to this MySQL Cluster Manager instance using the `list backups`. If the backup is not actually in progress, the command has no effect.

The `abort backup` command was added in MySQL Cluster Manager 1.2.1.

#### 4.7.2 The `backup cluster` Command

```
backup cluster
 [--snapshotstart | --snapshotend]
 [--waitstarted | --waitcompleted]
 cluster_name
```

This command creates a backup of the MySQL Cluster named `cluster_name`. `backup cluster` takes a backup of the cluster's NDB tables only; tables using other MySQL storage engines (such as InnoDB or MyISAM) are ignored.

The `--snapshotstart` option causes the backup to match the state of the cluster when the backup began; using `--snapshotend` causes the backup to reflect the state of the cluster when the backup was finished. If neither option is specified, the MySQL Cluster Manager client acts as though `--snapshotend` had been used.

When the `--waitstarted` option is used, the MySQL Cluster Manager client waits until the backup has started before returning control to the user; using `--waitcompleted` causes the MySQL Cluster Manager client to wait until the backup process is complete before returning control to the user. If neither of these options is specified, the client behaves as if `--waitcompleted` had been used.

```
mcm> backup cluster mycluster;
+-------------------------------+
| Command result |
+-------------------------------+
| Backup completed successfully |
+-------------------------------+
1 row in set (33.50 sec)
```

You can verify that the backup was performed by checking the output of `list backups`, as shown here:

```
mcm> list backups mycluster;
+----------+--------+---------+---------------------+---------+
| BackupId | NodeId | Host | Timestamp | Comment |
+----------+--------+---------+---------------------+---------+
| 1 | 1 | tonfisk | 2012-12-01 12:03:52 | |
| 1 | 2 | tonfisk | 2012-12-01 12:03:52 | |
| 2 | 1 | tonfisk | 2012-12-04 12:05:15 | |
| 2 | 2 | tonfisk | 2012-12-04 12:05:15 | |
```
Each row in the output represents a backup image—that is, a set of backup files specific to a given backup of a named cluster on a given data node. Timestamp values are UTC. By default, each image is stored as a directory named `/mcm_data/clusters/cluster_name/node_id/data/BACKUP/BACKUP-backup_id/` in the MySQL Cluster Manager installation directory.

It is possible to remove an unwanted backup from a given node by deleting this image directory and its contents. To remove a given backup completely, you must remove the corresponding image from each data node's BACKUP directory. You can do this as long as a backup or restore operation is not in progress; it is not necessary to stop the cluster or MySQL Cluster Manager agent prior to removing the images.

The BackupId is used with abort backup and restore cluster.

The `backup cluster` command was added in MySQL Cluster Manager 1.2.1.

### 4.7.3 The `list backups` Command

```
list backups cluster_name
```

This command lists all backups of the MySQL Cluster named `cluster_name` that are known to this instance of MySQL Cluster Manager. The output includes the backup and node ID as well as a UTC timestamp for each backup, as shown here:

```
mcm> list backups mycluster;
+----------+--------+---------+---------------------+---------+
| BackupId | NodeId | Host | Timestamp | Comment |
|-----------+--------+---------+---------------------+---------+
| 1 | 1 | tonfisk | 2012-12-01 12:03:52 | |
| 1 | 2 | tonfisk | 2012-12-01 12:03:52 | |
| 2 | 1 | tonfisk | 2012-12-04 12:05:15 | |
| 2 | 2 | tonfisk | 2012-12-04 12:05:15 | |
+----------+--------+---------+---------------------+---------+
4 rows in set (0.02 sec)
```

The `list backups` command was added in MySQL Cluster Manager 1.2.1.

### 4.7.4 The `restore cluster` Command

```
restore cluster
|--backupid=|--I backup_id
|--disable-indexes|--x
|--disable-metadata|--M
|--no-binlog|--l
[|--parallelism=|--p #]
|--epoch|--e
[|--skip-nodeid=|--s]id_list
cluster_name
```

This command restores a cluster from a backup having the specified backup ID (`--backupid` option; short form: `-I`) to the MySQL Cluster named `cluster_name`. In its simplest form, it can be used as shown here, to restore the cluster named `mycluster` to the state saved in the backup having backup ID 3:

```
mcm> restore cluster --backupid=3 mycluster;
+--------------------------------+
<table>
<thead>
<tr>
<th>Command result</th>
</tr>
</thead>
</table>
```

110
The *restore cluster* Command

If you are restoring an existing cluster to a known good state, you must wipe any existing first. Stop the cluster using `stop cluster`, then restart it using `start cluster` with the `--initial` option, which causes the data node file systems to be cleared. (Note that Disk Data files must be removed manually.) Following this, you can restore the cluster from the desired backup using `restore cluster`.

**Important**

In order to restore a backup using `restore cluster`, the cluster must have an unused slot for an `ndbapi` process in its configuration. Otherwise, the command fails with the error `Unable to perform restore - no vacant ndbapi slots in config for cluster cluster_name`. See Section 4.4.1, “The `create cluster` Command”, for more information.

Additional options that can be employed with this command are described in the next few paragraphs.

---

**--disable-indexes and --disable-metadata.** To cause indexes to be ignored when restoring the table data, use the `--disable-indexes` option (short form: `-x`). Doing this can decrease the time required to restore a large data set, particularly where many indexes were in use.

Similarly, you can cause metadata to be ignored during the restoration process by using the `--disable-metadata` option (short form: `-M`).

**--no-binlog.** The `--no-binlog` option (short form: `-l`) stops any SQL nodes (`mysqld` processes) in the cluster from writing data from the restore into their binary logs.

**--parallelism.** The `--parallelism` option (short form: `-p`) sets the maximum number of parallel transactions that the `restore cluster` command attempts to use. The default value is 128; the maximum is 1024, and the minimum is 1.

**--epoch.** When the `--epoch` option (short form: `-e`) is used, epoch information is restored to the cluster replication status table (`mysql.ndb_apply_status`), which can be useful for MySQL Cluster replication slaves.

**--privilege-tables.** Causes restoration of tables required for distributed grants (see Distributed MySQL Privileges for MySQL Cluster). Added in MySQL Cluster Manager 1.2.4 (see Bug #16710567).

**--skip-nodeid.** The `--skip-nodeid` option (short form: `-s`) takes a comma-separated list of data node IDs. Nodes having these IDs are skipped by the restoration process. Beginning with MySQL Cluster Manager 1.2.4, this option also supports SQL node IDs (Bug #16710567).

The `restore backup` command was added in MySQL Cluster Manager 1.2.1.
Chapter 5 MySQL Cluster Manager Limitations and Known Issues

Table of Contents

5.1 MySQL Cluster Manager Usage and Design Limitations ........................................... 113
5.2 MySQL Cluster Manager 1.2.4 Limitations Relating to the MySQL Server .................. 114
5.3 MySQL Cluster Manager Limitations Relating to MySQL Cluster ............................. 115
5.4 Syntax and Related Issues in MySQL Cluster Manager .............................................. 115

In this chapter we discuss limitations of and known issues in MySQL Cluster Manager version 1.2.4.

5.1 MySQL Cluster Manager Usage and Design Limitations

The limitations discussed in this section occur by intention or design in MySQL Cluster Manager 1.2.4. Some of these items may become obsolete in future versions; we will update this section accordingly if and as those changes come about.

**change process command.** Currently, the `change process` command can be used only to exchange an `ndbd` process for an `ndbmd` process, or the reverse. That is, in effect, it can be used only to switch a data node between a single-threaded process and a multi-threaded process. It cannot be used for changing a cluster node’s type (for example, you cannot change a data node to an SQL node, management node, or NDB API application node).

Because of this restriction, and due to the fact that multi-threaded data nodes are not supported in MySQL Cluster NDB 6.3 and earlier, the `change process` command is useful only with clusters running MySQL Cluster NDB 7.0 or newer.

**License keys and operating platforms.** License keys are not required to use MySQL Cluster Manager 1.2.4.

**Concurrent client sessions unsupported.** Currently there is no negotiation or arbitration between multiple `mcm` clients. While it is possible to use the client from multiple locations, we do not support concurrent client sessions. You should be careful always to allow a command issued in one `mcm` client session to finish executing before issuing a new command in a different client session. This is true especially when using the `-B` or `--background` option with `mcm` client commands; see Backgrounded commands and error handling.

**IPv6 and host names (Windows).** When IPv6 support is enabled on Windows systems, host names other than `localhost` are resolved using IPv6. When an IPv6-enabled Windows system is used as a MySQL Cluster host under MySQL Cluster Manager, you must reference it using its IPv4 address. Otherwise, `mcm` will be unable to connect to the agent process on that host.

This applies to host names used with the MySQL Cluster Manager client commands `create cluster`, `create site`, `add hosts`, `add package`, `delete package`, `stop agents`, and `add process`.

**No removal of hosts, processes.** Once a host is added to a management site using the `add hosts` command, it cannot be removed with MySQL Cluster Manager.

Once a process has been added to a cluster using the `add process` command, it cannot be removed from the cluster using MySQL Cluster Manager.
5.2 MySQL Cluster Manager 1.2.4 Limitations Relating to the MySQL Server

The limitations described in this section relate to functionality in the MySQL Server that is unsupported or reduced, or otherwise differs when using it with MySQL Cluster Manager.

Replication. Replication is currently not directly supported by MySQL Cluster Manager. See Section 5.3, “MySQL Cluster Manager Limitations Relating to MySQL Cluster”, for more information.

Limited mysqld option modifier support. MySQL Cluster Manager does not recognize the --loose, --maximum, --enable, and --disable prefixes for mysqld options used as MySQL Cluster Manager configuration attributes (for a description of these modifiers, see Program Option Modifiers). For example, the command set loose-skip-innodb:mysqld=true mycluster; fails with the error No such config variable loose-skip-innodb for process mysqld.

The --skip option modifier is supported in some but not all cases, so that commands such as set skip-innodb:mysqld=true mycluster; and set skip-grant-tables:mysqld=true mycluster; can be used with MySQL Cluster Manager, while set skip-column-names:mysqld=true mycluster; cannot. (Bug #48559, Bug #47779)

Visibility of MySQL Cluster Manager mysqld attributes and MySQL server variables. Due in part to issues with mappings between my.cnf option names, mysqld command-line option names, and names of MySQL server variables, some MySQL server variables are not visible to MySQL Cluster Manager, or have different names. For example, the storage_engine server variable shown in the output of SHOW VARIABLES in the mysql client maps to the default-storage-engine configuration attribute used in the MySQL Cluster Manager get and set commands.

Dashes and underscores in MySQL option and variable names. When using the mysql client or other MySQL client applications, many MySQL system options and variables can be named using either dashes or underscores in their names. For example, you can use either ndb_batch_size or ndb-batch-size with the MySQL Server, and the variable is set correctly. This is not the case in MySQL Cluster Manager, where only the forms using underscores are accepted as attribute names. For example, assuming that mycluster is a viable cluster, the command set ndb_batch_size:mysqld=65536 mycluster; works to set the size of ndb_batch_size on all mysqld processes in the cluster, but set ndb-batch-size:mysqld=65536 mycluster; fails.

Dependencies between MySQL Cluster Manager mysqld attributes and MySQL server variables. MySQL Cluster Manager does not track dependencies between mysqld attributes (MySQL Server options and variables). For example, MySQL Server 5.1 and earlier require, when the binlog_format attribute is set, that the log_bin attribute be used as well; if binlog_format is used without log_bin, mysqld fails to start (MySQL Server Bug #42928, fixed in MySQL 5.5 and MySQL Cluster NDB 7.2). If you do this using MySQL Cluster Manager, however, the MySQL Cluster Manager agent reports that the operation was started successfully, and from MySQL Cluster Manager’s point of view, this is correct—MySQL Cluster Manager started the mysqld process with the indicated attribute settings, and it is up to the operator to verify that the result was the one expected. In such cases, it is a good idea to check the status of the mysqld process, perhaps using show status --operation, before continuing.

MySQL Cluster Manager mysqld attributes and MySQL user variables. MySQL user variables are not accessible as MySQL Cluster Manager configuration attributes.

Default MySQL data directory. The default tmpdir for MySQL servers installed under MySQL Cluster Manager was datadir/tmp, which caused issues with the mysql client. This issue was resolved in MySQL Cluster Manager 1.2.3; MySQL Cluster Manager now uses tmp in the MySQL installation directory for this purpose. (Bug #16010476)
5.3 MySQL Cluster Manager Limitations Relating to MySQL Cluster

This section describes limitations relating to MySQL Cluster functionality that is unsupported or curtailed by MySQL Cluster Manager 1.2.4.

MySQL Cluster Manager and replication. MySQL Cluster Manager currently does not provide any explicit support for MySQL Cluster Replication. However, you should still be able to perform manual setup of replication of a MySQL Cluster that is managed by MySQL Cluster Manager.

Backup and restore operations. Starting with version 1.2.1, MySQL Cluster Manager provides integrated backup and restore functionality. You can back up NDB databases and tables using the mcm client backup cluster command, and restore them using the restore cluster client command. Beginning with MySQL Cluster Manager 1.2.3, restoring distributed privileges is also supported.

You can also back up NDB databases and tables using the ndb_mgm client START BACKUP command, and restore them using the ndb_restore program (see ndb_restore — Restore a MySQL Cluster Backup); however MySQL Cluster Manager is not aware of backups that it was not employed to create. Both of the programs just mentioned are supplied with the MySQL Cluster distribution; for more information, see Online Backup of MySQL Cluster, and ndb_restore — Restore a MySQL Cluster Backup.

Note

Backups of tables using storage engines other than NDB, as well as of all other database objects which are not tables, cannot be made using MySQL Cluster Manager, and must be made using some other method, such as mysqldump. (See mysqldump — A Database Backup Program.)

Rolling restarts. Currently, all cluster nodes must be running in order to perform a rolling restart using MySQL Cluster Manager. However, MySQL Cluster itself requires only that at least one management server and all data nodes are running (in other words, any mysqld processes and any additional ndb_mgmd processes can be stopped). In such cases, you can perform the rolling restart manually, after stopping the MySQL Cluster Manager agent.

When making changes in configuration attributes only those nodes requiring a restart to make the change take effect are actually restarted. ndbapi nodes are never restarted by MySQL Cluster Manager.

Cluster upgrades and downgrades.
Not all upgrades and downgrades between different versions of MySQL Cluster are supported. (This is not an issue with MySQL Cluster Manager but rather a limitation in the MySQL Cluster software.) For information on supported online upgrades and downgrades, see Upgrading and Downgrading MySQL Cluster.

5.4 Syntax and Related Issues in MySQL Cluster Manager

This section covers MySQL Cluster Manager issues relating to limitations in SQL and other syntax.

Backgrounded commands and error handling.
MySQL Cluster Manager client commands which are run in the background (that is, when they are invoked with the --background or -B option) do not issue any error messages in the client. If you run a command in the background, you must check the agent log or use the show status command to verify whether the backgrounded command was successful.
Appendix A Changes in MySQL Cluster Manager

MySQL Cluster Manager release notes are no longer published in the MySQL Cluster Manager User Manual.

Release notes for the changes in each release of MySQL Cluster Manager are located at MySQL Cluster Manager 1.2 Release Notes.
Appendix B Attribute Summary Tables

Table of Contents

B.1 Management Node Configuration Parameters ................................................................. 119
B.2 Data Node Configuration Parameters ............................................................................. 121
B.3 API Node Configuration Parameters .............................................................................. 136
B.4 Other Node Configuration Parameters .......................................................................... 138
B.5 MySQL Server Option and Variable Reference for MySQL Cluster ............................. 142

This appendix provides tables of configuration attributes, grouped according to their process type or by the section of the MySQL Cluster configuration file in which they appear. This information is current for MySQL Cluster NDB 7.3. For information regarding MySQL Cluster NDB 7.2 and earlier versions of MySQL Cluster, see Configuration of MySQL Cluster, and the MySQL 5.1 Reference Manual.

Each table provides the following information:

- **Name**: The name of the attribute. The name of the attribute is linked to the attribute’s full description in the online MySQL Cluster documentation.
- **Type/Units**: The data type or unit by which the attribute is measured.
- **Range**: The default value of the attribute if not set by the user, and the minimum and maximum values which can be set for the attribute.
- **Restart Type**: The type of restart required for a change in value in this attribute to be applied in a running MySQL Cluster. The restart type is indicated in this column by an **N** for a node restart, or an **S** for a system restart. Data node attributes: The presence of an **I** in this column indicates that a data node must be restarted using the **--initial** option for a change to take effect.

Attributes having restart type **N** can be changed using a rolling restart of the cluster, and thus can be changed at any time, even if the cluster is running. Changing an attribute whose restart type is **S** requires a complete shutdown of all cluster nodes, followed by a restart of the nodes once all of them have been stopped. Currently, such attributes can be set only before starting a cluster for the first time.

### B.1 Management Node Configuration Parameters

#### Table B.1 Management Node Configuration Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Type or Units</th>
<th>Default Value</th>
<th>Restart Type</th>
<th>In Version ... (and later)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ArbitrationDelay</td>
<td>milliseconds</td>
<td>0</td>
<td>N</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 / 4294967039 (0xFFFFFFFF)</td>
<td></td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td>ArbitrationRank</td>
<td>0-2</td>
<td>1</td>
<td>N</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 / 2</td>
<td></td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td>DataDir</td>
<td>path</td>
<td>N</td>
<td>NDB 7.3.0</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td>Parameter Name</td>
<td>Type or Units</td>
<td>Default Value</td>
<td>Minimum/Maximum or Permitted Values</td>
<td>Restart Type</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---------------------</td>
<td>------------------------</td>
<td>-------------------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>ExecuteOnComputer</td>
<td>name</td>
<td>[none]</td>
<td></td>
<td>S</td>
</tr>
<tr>
<td>HeartbeatIntervalMgmdMgmd</td>
<td>milliseconds</td>
<td>1500</td>
<td>100 / 4294967039 (0xFFFFFEFF)</td>
<td>N</td>
</tr>
<tr>
<td>HeartbeatThreadPriority</td>
<td>string</td>
<td>[none]</td>
<td></td>
<td>S</td>
</tr>
<tr>
<td>HostName</td>
<td>name or IP address</td>
<td>[none]</td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>Id</td>
<td>unsigned</td>
<td>[none]</td>
<td>1 / 255</td>
<td>IS</td>
</tr>
<tr>
<td>LogDestination</td>
<td>{CONSOLE</td>
<td>SYSLOG</td>
<td>FILE}</td>
<td>[see text]</td>
</tr>
<tr>
<td>MaxNoOfSavedEvents</td>
<td>unsigned</td>
<td>100</td>
<td>0 / 4294967039 (0xFFFFFEFF)</td>
<td>N</td>
</tr>
<tr>
<td>NodeId</td>
<td>unsigned</td>
<td>[none]</td>
<td>1 / 255</td>
<td>IS</td>
</tr>
<tr>
<td>PortNumber</td>
<td>unsigned</td>
<td>1186</td>
<td>0 / 64K</td>
<td>S</td>
</tr>
<tr>
<td>PortNumberStats</td>
<td>unsigned</td>
<td>[none]</td>
<td>0 / 64K</td>
<td>N</td>
</tr>
</tbody>
</table>
### Data Node Configuration Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Type or Units</th>
<th>Default Value</th>
<th>Minimum/ Maximum or Permitted Values</th>
<th>Restart Type</th>
<th>In Version ... (and later)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TotalSendBufferMemory</td>
<td>bytes</td>
<td>0</td>
<td>256K / 4294967039 (0xFFFFFEFF)</td>
<td>N</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td>wan</td>
<td>boolean</td>
<td>false</td>
<td>true, false</td>
<td>N</td>
<td>NDB 7.3.0</td>
</tr>
</tbody>
</table>

**B.2 Data Node Configuration Parameters**

**Table B.2 Data Node Configuration Parameters**

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Type or Units</th>
<th>Default Value</th>
<th>Minimum/ Maximum or Permitted Values</th>
<th>Restart Type</th>
<th>In Version ... (and later)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arbitration</td>
<td>enumeration</td>
<td>Default</td>
<td>Default, Disabled, WaitExternal</td>
<td>N</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td>ArbitrationTimeout</td>
<td>milliseconds</td>
<td>7500</td>
<td>10 / 4294967039 (0xFFFFFEFF)</td>
<td>N</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td>BackupDataBufferSize</td>
<td>bytes</td>
<td>16M</td>
<td>512K / 4294967039 (0xFFFFFEFF)</td>
<td>N</td>
<td>NDB 7.4.11</td>
</tr>
<tr>
<td>BackupDataDir</td>
<td>path</td>
<td>FileSystemPath</td>
<td>...</td>
<td>IN</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td>BackupDiskWriteSpeedPct</td>
<td>percent</td>
<td>50</td>
<td>0 / 90</td>
<td>N</td>
<td>NDB 7.4.8</td>
</tr>
<tr>
<td>BackupLogBufferSize</td>
<td>bytes</td>
<td>16M</td>
<td></td>
<td>N</td>
<td>NDB 7.4.8</td>
</tr>
<tr>
<td>Parameter Name</td>
<td>Type or Units</td>
<td>Default Value</td>
<td>Restart Type</td>
<td>In Version ... (and later)</td>
<td></td>
</tr>
<tr>
<td>------------------------------</td>
<td>---------------</td>
<td>---------------</td>
<td>--------------</td>
<td>---------------------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td>NDB 7.4.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2M / 4294967039 (0xFFFFFEFF)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>bytes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1M</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>256K / 4294967039 (0xFFFFFEFF)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BackupMaxWriteSize</td>
<td></td>
<td></td>
<td>N</td>
<td>NDB 7.4.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>bytes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>32M</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 / 4294967039 (0xFFFFFEFF)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BackupMemory</td>
<td></td>
<td></td>
<td>N</td>
<td>NDB 7.3.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>bytes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>32M</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 / 4294967039 (0xFFFFFEFF)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BackupReportFrequency</td>
<td></td>
<td></td>
<td>N</td>
<td>NDB 7.3.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>seconds</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 / 4294967039 (0xFFFFFEFF)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BackupWriteSize</td>
<td></td>
<td></td>
<td>N</td>
<td>NDB 7.4.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>bytes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>256K</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>32K / 4294967039 (0xFFFFFEFF)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BatchSizePerLocalScan</td>
<td></td>
<td></td>
<td>N</td>
<td>NDB 7.3.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>integer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>256</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 / 992</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BuildIndexThreads</td>
<td></td>
<td></td>
<td>S</td>
<td>NDB 7.3.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>numeric</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 / 128</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CompressedBackup</td>
<td></td>
<td></td>
<td>N</td>
<td>NDB 7.3.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>boolean</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>false</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>true, false</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CompressedLCP</td>
<td></td>
<td></td>
<td>N</td>
<td>NDB 7.3.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>boolean</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>false</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>true, false</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ConnectCheckIntervalDelay</td>
<td></td>
<td></td>
<td>N</td>
<td>NDB 7.3.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>milliseconds</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 / 4294967039 (0xFFFFFEFF)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parameter Name</td>
<td>Type or Units</td>
<td>Default Value</td>
<td>Restart Type</td>
<td>In Version ...</td>
<td></td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---------------</td>
<td>---------------</td>
<td>--------------</td>
<td>----------------</td>
<td></td>
</tr>
<tr>
<td>CrashOnCorruptedTuple</td>
<td>boolean</td>
<td>true, false</td>
<td>S</td>
<td>NDB 7.3.0</td>
<td></td>
</tr>
<tr>
<td>DataDir</td>
<td>path</td>
<td>. ...</td>
<td>IN</td>
<td>NDB 7.3.0</td>
<td></td>
</tr>
<tr>
<td>DataMemory</td>
<td>bytes</td>
<td>80M / 1M / 1024G</td>
<td>N</td>
<td>NDB 7.3.0</td>
<td></td>
</tr>
<tr>
<td>DefaultHashMapSize</td>
<td>LDM threads</td>
<td>3840 / 0 / 3840</td>
<td>N</td>
<td>NDB 7.3.0</td>
<td></td>
</tr>
<tr>
<td>DictTrace</td>
<td>bytes</td>
<td>undefined / 0 / 100</td>
<td>N</td>
<td>NDB 7.3.0</td>
<td></td>
</tr>
<tr>
<td>DiskCheckpointSpeed</td>
<td>bytes</td>
<td>10M / 1M / 4294967039 (0xFFFFFEFF)</td>
<td>N</td>
<td>NDB 7.3.0</td>
<td></td>
</tr>
<tr>
<td>DiskCheckpointSpeedInRestart</td>
<td>bytes</td>
<td>100M / 1M / 4294967039 (0xFFFFFEFF)</td>
<td>N</td>
<td>NDB 7.3.0</td>
<td></td>
</tr>
<tr>
<td>DiskIOThreadPool</td>
<td>threads</td>
<td>2 / 0 / 4294967039 (0xFFFFFEFF)</td>
<td>N</td>
<td>NDB 7.3.0</td>
<td></td>
</tr>
<tr>
<td>Diskless</td>
<td>true/false (1/0)</td>
<td>false, true, false</td>
<td>IS</td>
<td>NDB 7.3.0</td>
<td></td>
</tr>
<tr>
<td>DiskPageBufferEntries</td>
<td>32K pages</td>
<td>10 / 1 / 1000</td>
<td>N</td>
<td>NDB 7.4.3</td>
<td></td>
</tr>
<tr>
<td>DiskPageBufferMemory</td>
<td>bytes</td>
<td>64M</td>
<td>N</td>
<td>NDB 7.3.0</td>
<td></td>
</tr>
</tbody>
</table>
## Data Node Configuration Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Type or Units</th>
<th>Default Value</th>
<th>Minimum/ Maximum or Permitted Values</th>
<th>Restart Type</th>
<th>In Version ... (and later)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>DiskSyncSize</strong></td>
<td>bytes</td>
<td>4M</td>
<td>32K / 4294967039 (0xFFFFFEFF)</td>
<td>N</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td><strong>ExecuteOnComputer</strong></td>
<td>name</td>
<td>[none]</td>
<td>...</td>
<td>S</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td><strong>ExtraSendBufferMemory</strong></td>
<td>bytes</td>
<td>0</td>
<td>0 / 32G</td>
<td>N</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td><strong>FileSystemPath</strong></td>
<td>path</td>
<td>DataDir</td>
<td>...</td>
<td>IN</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td><strong>FileSystemPathDataFiles</strong></td>
<td>filename</td>
<td>[see text]</td>
<td>...</td>
<td>IN</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td><strong>FileSystemPathDD</strong></td>
<td>filename</td>
<td>FileSystemPath</td>
<td>...</td>
<td>IN</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td><strong>FileSystemPathUndoFiles</strong></td>
<td>filename</td>
<td>[see text]</td>
<td>...</td>
<td>IN</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td><strong>FragmentLogFileSize</strong></td>
<td>bytes</td>
<td>16M</td>
<td>4M / 1G</td>
<td>IN</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td><strong>HeartbeatIntervalDbApi</strong></td>
<td>milliseconds</td>
<td>1500</td>
<td>100 / 4294967039 (0xFFFFFEFF)</td>
<td>N</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td><strong>HeartbeatIntervalDbDb</strong></td>
<td>milliseconds</td>
<td>5000</td>
<td>10 / 4294967039 (0xFFFFFEFF)</td>
<td>N</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td><strong>HeartbeatOrder</strong></td>
<td>numeric</td>
<td></td>
<td></td>
<td>S</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td>Parameter Name</td>
<td>Type or Units</td>
<td>Default Value</td>
<td>Minimum/Maximum or Permitted Values</td>
<td>Restart Type</td>
<td>In Version ...(and later)</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---------------</td>
<td>---------------</td>
<td>-------------------------------------</td>
<td>--------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>HostName</td>
<td></td>
<td>name or IP address</td>
<td>localhost ...</td>
<td>N</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td>Id</td>
<td></td>
<td>unsigned</td>
<td>[none]</td>
<td>IS</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td>IndexMemory</td>
<td></td>
<td>bytes</td>
<td>18M</td>
<td>N</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td>IndexStatAutoCreate</td>
<td></td>
<td>boolean</td>
<td>false, true</td>
<td>S</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td>IndexStatAutoUpdate</td>
<td></td>
<td>boolean</td>
<td>false, true</td>
<td>S</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td>IndexStatSaveScale</td>
<td>percentage</td>
<td>100</td>
<td>0 / 4294967039 (0xFFFFFEFF)</td>
<td>IN</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td>IndexStatSaveSize</td>
<td>bytes</td>
<td>32768</td>
<td>0 / 4294967039 (0xFFFFFEFF)</td>
<td>IN</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td>IndexStatTriggerPct</td>
<td>percentage</td>
<td>100</td>
<td>0 / 4294967039 (0xFFFFFEFF)</td>
<td>IN</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td>IndexStatTriggerScale</td>
<td>percentage</td>
<td>100</td>
<td>0 / 4294967039 (0xFFFFFEFF)</td>
<td>IN</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td>IndexStatUpdateDelay</td>
<td>seconds</td>
<td></td>
<td></td>
<td>IN</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td>Parameter Name</td>
<td>Type or Units</td>
<td>Default Value</td>
<td>Restart Type</td>
<td>In Version ... (and later)</td>
<td></td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---------------</td>
<td>----------------------------------------</td>
<td>--------------</td>
<td>----------------------------</td>
<td></td>
</tr>
<tr>
<td>InitFragmentLogFiles</td>
<td>string</td>
<td>[see text]</td>
<td>S</td>
<td>NDB 7.3.0</td>
<td></td>
</tr>
<tr>
<td>InitialLogFileGroup</td>
<td>string</td>
<td>[see text]</td>
<td>S</td>
<td>NDB 7.3.0</td>
<td></td>
</tr>
<tr>
<td>InitialNoOfOpenFiles</td>
<td>files</td>
<td>27</td>
<td>N</td>
<td>NDB 7.3.0</td>
<td></td>
</tr>
<tr>
<td>InitialTablespace</td>
<td>string</td>
<td>[see text]</td>
<td>S</td>
<td>NDB 7.3.0</td>
<td></td>
</tr>
<tr>
<td>LateAlloc</td>
<td>numeric</td>
<td>1</td>
<td>N</td>
<td>NDB 7.3.0</td>
<td></td>
</tr>
<tr>
<td>LcpScanProgressTimeout</td>
<td>second</td>
<td>60</td>
<td>N</td>
<td>NDB 7.3.3</td>
<td></td>
</tr>
<tr>
<td>LockExecuteThreadToCPU</td>
<td>CPU ID</td>
<td>64K</td>
<td>N</td>
<td>NDB 7.3.0</td>
<td></td>
</tr>
<tr>
<td>LockMaintThreadsToCPU</td>
<td>CPU ID</td>
<td>[none]</td>
<td>N</td>
<td>NDB 7.3.0</td>
<td></td>
</tr>
<tr>
<td>LockPagesInMainMemory</td>
<td>numeric</td>
<td>0</td>
<td>N</td>
<td>NDB 7.3.0</td>
<td></td>
</tr>
<tr>
<td>LogLevelCheckpoint</td>
<td>log level</td>
<td>0</td>
<td>N</td>
<td>NDB 7.3.0</td>
<td></td>
</tr>
<tr>
<td>Parameter Name</td>
<td>Type or Units</td>
<td>Default Value</td>
<td>Minimum/Maximum or Permitted Values</td>
<td>Restart Type</td>
<td>In Version ...</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---------------</td>
<td>---------------</td>
<td>------------------------------------</td>
<td>--------------</td>
<td>----------------</td>
</tr>
<tr>
<td>LogLevelCongestion</td>
<td>levelr</td>
<td>0</td>
<td>0 / 15</td>
<td>N</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td>LogLevelConnection</td>
<td>integer</td>
<td>0</td>
<td>0 / 15</td>
<td>N</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td>LogLevelError</td>
<td>integer</td>
<td>0</td>
<td>0 / 15</td>
<td>N</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td>LogLevelInfo</td>
<td>integer</td>
<td>0</td>
<td>0 / 15</td>
<td>N</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td>LogLevelNodeRestart</td>
<td>integer</td>
<td>0</td>
<td>0 / 15</td>
<td>N</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td>LogLevelShutdown</td>
<td>integer</td>
<td>0</td>
<td>0 / 15</td>
<td>N</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td>LogLevelStartup</td>
<td>integer</td>
<td>1</td>
<td>0 / 15</td>
<td>N</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td>LogLevelStatistic</td>
<td>integer</td>
<td>0</td>
<td>0 / 15</td>
<td>N</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td>LongMessageBuffer</td>
<td>bytes</td>
<td>64M</td>
<td>512K / 4294967039 (0xFFFFFEFF)</td>
<td>N</td>
<td>NDB 7.3.5</td>
</tr>
<tr>
<td>MaxAllocate</td>
<td>unsigned</td>
<td>32M</td>
<td>1M / 1G</td>
<td>N</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td>MaxBufferedEpochs</td>
<td>epochs</td>
<td>100</td>
<td>0 / 100000</td>
<td>N</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td>MaxBufferedEpochBytes</td>
<td>bytes</td>
<td>26214400</td>
<td>N</td>
<td>NDB 7.3.0</td>
<td></td>
</tr>
<tr>
<td>Parameter Name</td>
<td>Type or Units</td>
<td>Default Value</td>
<td>Restart Type</td>
<td>In Version ...</td>
<td></td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>---------------</td>
<td>-------------------------------------</td>
<td>--------------</td>
<td>----------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Minimum/Maximum or Permitted Values</td>
<td></td>
<td>(and later)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>MaxDiskWriteSpeed</strong></td>
<td>numeric</td>
<td>20M</td>
<td>S</td>
<td>NDB 7.4.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1M / 1024G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>MaxDiskWriteSpeedOtherNodeRestart</strong></td>
<td>numeric</td>
<td>50M</td>
<td>S</td>
<td>NDB 7.4.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1M / 1024G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>MaxDiskWriteSpeedOwnRestart</strong></td>
<td>numeric</td>
<td>200M</td>
<td>S</td>
<td>NDB 7.4.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1M / 1024G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>MaxDMLOperationsPerTransaction</strong></td>
<td>operations</td>
<td>4294967295</td>
<td>N</td>
<td>NDB 7.3.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>32 / 4294967295</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>MaxLCPStartDelay</strong></td>
<td>seconds</td>
<td>0</td>
<td>N</td>
<td>NDB 7.3.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 / 600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>MaxNoOfAttributes</strong></td>
<td>integer</td>
<td>1000</td>
<td>N</td>
<td>NDB 7.3.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>32 / 4294967039 (0xFFFFFEFF)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>MaxNoOfConcurrentIndexOperations</strong></td>
<td>integer</td>
<td>8K</td>
<td>N</td>
<td>NDB 7.3.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 / 4294967039 (0xFFFFFEFF)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>MaxNoOfConcurrentOperations</strong></td>
<td>integer</td>
<td>32K</td>
<td>N</td>
<td>NDB 7.3.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>32 / 4294967039 (0xFFFFFEFF)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>MaxNoOfConcurrentScans</strong></td>
<td>integer</td>
<td>256</td>
<td>N</td>
<td>NDB 7.3.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 / 500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>MaxNoOfConcurrentSubOperations</strong></td>
<td>unsigned</td>
<td></td>
<td>N</td>
<td>NDB 7.3.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Table:

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Type or Units</th>
<th>Default Value</th>
<th>Restart Type</th>
<th>In Version ...</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Minimum/Maximum or Permitted Values</td>
<td></td>
<td>(and later)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>MaxDiskWriteSpeed</strong></td>
<td>numeric</td>
<td>26214400 (0x01900000) / 4294967039 (0xFFFFFEFF)</td>
<td>S</td>
<td>NDB 7.4.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>MaxDiskWriteSpeedOtherNodeRestart</strong></td>
<td>numeric</td>
<td>50M</td>
<td>S</td>
<td>NDB 7.4.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1M / 1024G</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>MaxDiskWriteSpeedOwnRestart</strong></td>
<td>numeric</td>
<td>200M</td>
<td>S</td>
<td>NDB 7.4.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1M / 1024G</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>MaxDMLOperationsPerTransaction</strong></td>
<td>operations</td>
<td>4294967295</td>
<td>N</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>32 / 4294967295</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>MaxLCPStartDelay</strong></td>
<td>seconds</td>
<td>0</td>
<td>N</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 / 600</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>MaxNoOfAttributes</strong></td>
<td>integer</td>
<td>1000</td>
<td>N</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>32 / 4294967039 (0xFFFFFEFF)</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>MaxNoOfConcurrentIndexOperations</strong></td>
<td>integer</td>
<td>8K</td>
<td>N</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 / 4294967039 (0xFFFFFEFF)</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>MaxNoOfConcurrentOperations</strong></td>
<td>integer</td>
<td>32K</td>
<td>N</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>32 / 4294967039 (0xFFFFFEFF)</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>MaxNoOfConcurrentScans</strong></td>
<td>integer</td>
<td>256</td>
<td>N</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 / 500</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>MaxNoOfConcurrentSubOperations</strong></td>
<td>unsigned</td>
<td></td>
<td>N</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parameter Name</td>
<td>Type or Units</td>
<td>Default Value</td>
<td>Restart Type</td>
<td>In Version ... (and later)</td>
</tr>
<tr>
<td>----------------------------------------</td>
<td>---------------</td>
<td>---------------</td>
<td>--------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>MaxNoOfConcurrentTransactions</td>
<td>integer</td>
<td>4096</td>
<td>N</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td>MaxNoOfFiredTriggers</td>
<td>integer</td>
<td>4000</td>
<td>N</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td>MaxNoOfLocalOperations</td>
<td>integer</td>
<td>UNDEFINED</td>
<td>N</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td>MaxNoOfLocalScans</td>
<td>integer</td>
<td>[see text]</td>
<td>N</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td>MaxNoOfOpenFiles</td>
<td>unsigned</td>
<td>0</td>
<td>N</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td>MaxNoOfOrderedIndexes</td>
<td>integer</td>
<td>128</td>
<td>N</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td>MaxNoOfSavedMessages</td>
<td>integer</td>
<td>25</td>
<td>N</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td>MaxNoOfSubscribers</td>
<td>unsigned</td>
<td>0</td>
<td>N</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td>Parameter Name</td>
<td>Type or Units</td>
<td>Default Value</td>
<td>Restart Type</td>
<td>In Version ... (and later)</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---------------</td>
<td>-------------------------------------------------------------------------------</td>
<td>--------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>MaxNoOfSubscriptions</td>
<td>unsigned</td>
<td>0 / 4294967039 (0xFFFFFEFF)</td>
<td>N</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td>MaxNoOfTables</td>
<td>integer</td>
<td>128</td>
<td>N</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td>MaxNoOfTriggers</td>
<td>integer</td>
<td>768</td>
<td>N</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td>MaxNoOfUniqueHashIndexes</td>
<td>integer</td>
<td>64</td>
<td>N</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td>MaxParallelCopyInstances</td>
<td>integer</td>
<td>0 / 64</td>
<td>S</td>
<td>NDB 7.4.3</td>
</tr>
<tr>
<td>MaxParallelScansPerFragment</td>
<td>bytes</td>
<td>256</td>
<td>N</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td>MaxStartFailRetries</td>
<td>unsigned</td>
<td>3 / 4294967039 (0xFFFFFEFF)</td>
<td>N</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td>MemReportFrequency</td>
<td>unsigned</td>
<td>0 / 4294967039 (0xFFFFFEFF)</td>
<td>N</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td>MinDiskWriteSpeed</td>
<td>numeric</td>
<td></td>
<td>S</td>
<td>NDB 7.4.1</td>
</tr>
<tr>
<td>Parameter Name</td>
<td>Type or Units</td>
<td>Default Value</td>
<td>Minimum/Maximum or Permitted Values</td>
<td>Restart Type</td>
</tr>
<tr>
<td>------------------------</td>
<td>---------------</td>
<td>--------------------------------------------------------------------------------</td>
<td>-------------------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>MinFreePct</td>
<td>unsigned</td>
<td>5</td>
<td>0 / 100</td>
<td>N</td>
</tr>
<tr>
<td>NodeGroup</td>
<td>[none]</td>
<td></td>
<td>0 / 65536</td>
<td>IS</td>
</tr>
<tr>
<td>NodeId</td>
<td>unsigned</td>
<td>[none]</td>
<td>1 / 48</td>
<td>IS</td>
</tr>
<tr>
<td>NoOfFragmentLogFiles</td>
<td>integer</td>
<td>16</td>
<td>3 / 4294967039 (0xFFFFFEFF)</td>
<td>IN</td>
</tr>
<tr>
<td>NoOfReplicas</td>
<td>integer</td>
<td>2</td>
<td>1 / 4</td>
<td>IS</td>
</tr>
<tr>
<td>Numa</td>
<td>boolean</td>
<td>1</td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>ODirect</td>
<td>boolean</td>
<td>false</td>
<td>false, true, false</td>
<td>N</td>
</tr>
<tr>
<td>RealtimeScheduler</td>
<td>boolean</td>
<td>false</td>
<td>false, true, false</td>
<td>N</td>
</tr>
<tr>
<td>RedoBuffer</td>
<td>bytes</td>
<td>32M</td>
<td>1M / 4294967039 (0xFFFFFEFF)</td>
<td>N</td>
</tr>
<tr>
<td>RedoOverCommitCounter</td>
<td>numeric</td>
<td>3</td>
<td>0 / 4294967039 (0xFFFFFEFF)</td>
<td>N</td>
</tr>
</tbody>
</table>
### Data Node Configuration Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Type or Units</th>
<th>Default Value</th>
<th>Restart Type</th>
<th>In Version ... (and later)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RebootDelay</td>
<td>seconds</td>
<td>20</td>
<td>N</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td>RedoOverCommitLimit</td>
<td>bytes</td>
<td>256K</td>
<td>N</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td>ReservedSendBufferMemory</td>
<td>error code</td>
<td>2 / 4</td>
<td>N</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td>SchedulerExecutionTimer</td>
<td>µs</td>
<td>50 / 11000</td>
<td>N</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td>SchedulerResponsiveness</td>
<td>integer</td>
<td>5 / 10</td>
<td>S</td>
<td>NDB 7.4.9</td>
</tr>
<tr>
<td>SchedulerSpinTimer</td>
<td>µs</td>
<td>0 / 500</td>
<td>N</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td>ServerPort</td>
<td>unsigned</td>
<td>[none] / 1 / 64K</td>
<td>S</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td>SharedGlobalMemory</td>
<td>bytes</td>
<td>128M</td>
<td>N</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td>StartFailRetryDelay</td>
<td>unsigned</td>
<td>0 / 4294967039 (0xFFFFFEFF)</td>
<td>N</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td>StartFailureTimeout</td>
<td>milliseconds</td>
<td>0 / 4294967039 (0xFFFFFEFF)</td>
<td>N</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td>StartNoNodeGroupTimeout</td>
<td>milliseconds</td>
<td>0 / 4294967039 (0xFFFFFEFF)</td>
<td>N</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td>Parameter Name</td>
<td>Type or Units</td>
<td>Default Value</td>
<td>Minimum/Maximum or Permitted Values</td>
<td>Restart Type</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---------------</td>
<td>---------------</td>
<td>-------------------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>RestartType</td>
<td></td>
<td>15000</td>
<td>0 / 4294967039 (0xFFFFFEFF)</td>
<td>N</td>
</tr>
<tr>
<td>StartPartialTimeout</td>
<td>milliseconds</td>
<td>30000</td>
<td>0 / 4294967039 (0xFFFFFEFF)</td>
<td>N</td>
</tr>
<tr>
<td>StartPartitionedTimeout</td>
<td>milliseconds</td>
<td>60000</td>
<td>0 / 4294967039 (0xFFFFFEFF)</td>
<td>N</td>
</tr>
<tr>
<td>StartupStatusReportFrequency</td>
<td>seconds</td>
<td>0</td>
<td>0 / 4294967039 (0xFFFFFEFF)</td>
<td>N</td>
</tr>
<tr>
<td>StopOnError</td>
<td>boolean</td>
<td>1</td>
<td>0, 1</td>
<td>N</td>
</tr>
<tr>
<td>StringMemory</td>
<td>% or bytes</td>
<td>25</td>
<td>0 / 4294967039 (0xFFFFFEFF)</td>
<td>S</td>
</tr>
<tr>
<td>TcpBind_INADDR_ANY</td>
<td>boolean</td>
<td>false</td>
<td>true, false</td>
<td>N</td>
</tr>
<tr>
<td>TimeBetweenEpochs</td>
<td>milliseconds</td>
<td>100</td>
<td>0 / 32000</td>
<td>N</td>
</tr>
<tr>
<td>TimeBetweenEpochsTimeout</td>
<td>milliseconds</td>
<td>0</td>
<td>0 / 256000</td>
<td>N</td>
</tr>
<tr>
<td>TimeBetweenGlobalCheckpoints</td>
<td>milliseconds</td>
<td>2000</td>
<td>20 / 32000</td>
<td>N</td>
</tr>
<tr>
<td>Parameter Name</td>
<td>Type or Units</td>
<td>Default Value</td>
<td>Minimum/Maximum or Permitted Values</td>
<td>Restart Type</td>
</tr>
<tr>
<td>--------------------------------------------</td>
<td>---------------</td>
<td>---------------</td>
<td>------------------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td><strong>TimeBetweenGlobalCheckpointsTimeout</strong></td>
<td>milliseconds</td>
<td>120000</td>
<td>10 / 4294967039 (0xFFFFFEFF)</td>
<td>N</td>
</tr>
<tr>
<td><strong>TimeBetweenInactiveTransactionAbortCheck</strong></td>
<td>milliseconds</td>
<td>1000</td>
<td>1000 / 4294967039 (0xFFFFFEFF)</td>
<td>N</td>
</tr>
<tr>
<td><strong>TimeBetweenLocalCheckpoints</strong></td>
<td>number of 4-byte words, as a base-2 logarithm</td>
<td>20</td>
<td>0 / 31</td>
<td>N</td>
</tr>
<tr>
<td><strong>TimeBetweenWatchDogCheck</strong></td>
<td>milliseconds</td>
<td>6000</td>
<td>70 / 4294967039 (0xFFFFFEFF)</td>
<td>N</td>
</tr>
<tr>
<td><strong>TimeBetweenWatchDogCheckInitial</strong></td>
<td>milliseconds</td>
<td>6000</td>
<td>70 / 4294967039 (0xFFFFFEFF)</td>
<td>N</td>
</tr>
<tr>
<td><strong>TotalSendBufferMemory</strong></td>
<td>bytes</td>
<td>0</td>
<td>256K / 4294967039 (0xFFFFFEFF)</td>
<td>N</td>
</tr>
<tr>
<td><strong>TransactionBufferMemory</strong></td>
<td>bytes</td>
<td>1M</td>
<td>1K / 4294967039 (0xFFFFFEFF)</td>
<td>N</td>
</tr>
<tr>
<td><strong>TransactionDeadlockDetectionTimeout</strong></td>
<td>milliseconds</td>
<td>1200</td>
<td>50 / 4294967039 (0xFFFFFEFF)</td>
<td>N</td>
</tr>
</tbody>
</table>
### Parameter Name

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Type or Units</th>
<th>Default Value</th>
<th>Restart Type</th>
<th>In Version ... (and later)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TransactionInactiveTimeout</td>
<td>milliseconds</td>
<td>[see text]</td>
<td>N</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td>TwoPassInitialNodeRestartCopy</td>
<td>boolean</td>
<td>false</td>
<td>N</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td>UndoDataBuffer</td>
<td>unsigned</td>
<td>16M</td>
<td>N</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td>UndoIndexBuffer</td>
<td>unsigned</td>
<td>2M</td>
<td>N</td>
<td>NDB 7.3.0</td>
</tr>
</tbody>
</table>

### Table B.3 Multi-Threaded Data Node Configuration Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Type or Units</th>
<th>Default Value</th>
<th>Restart Type</th>
<th>In Version ... (and later)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MaxNoOfExecutionThreads</td>
<td>integer</td>
<td>2</td>
<td>IS</td>
<td>NDB 7.3.3</td>
</tr>
<tr>
<td>NoOfFragmentLogParts</td>
<td>numeric</td>
<td>4</td>
<td>IN</td>
<td>NDB 7.3.3</td>
</tr>
<tr>
<td>ThreadConfig</td>
<td>string</td>
<td>&quot;&quot;</td>
<td>IS</td>
<td>NDB 7.3.0</td>
</tr>
</tbody>
</table>
### B.3 API Node Configuration Parameters

**Table B.4 SQL Node / API Node Configuration Parameters**

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Type or Units</th>
<th>Default Value</th>
<th>Restart Type</th>
<th>In Version ... (and later)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ApiVerbose</td>
<td>bytes</td>
<td>undefined</td>
<td>N</td>
<td>NDB 7.4.12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 / 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ArbitrationDelay</td>
<td>milliseconds</td>
<td>0</td>
<td>N</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 / 4294967039</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0xFFFFFEFF)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ArbitrationRank</td>
<td>0-2</td>
<td>0</td>
<td>N</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 / 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AutoReconnect</td>
<td>boolean</td>
<td>false</td>
<td>N</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>true, false</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BatchByteSize</td>
<td>bytes</td>
<td>16K</td>
<td>N</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1024 / 1M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BatchSize</td>
<td>records</td>
<td>256</td>
<td>N</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 / 992</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ConnectBackoffMaxTime</td>
<td>integer</td>
<td>0</td>
<td>N</td>
<td>NDB 7.4.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 / 4294967039</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0xFFFFFEFF)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ConnectionMap</td>
<td>string</td>
<td>[none]</td>
<td>N</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DefaultHashMapSize</td>
<td>buckets</td>
<td>3840</td>
<td>N</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 / 3840</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DefaultOperationRedoProblemAction</td>
<td>enumeration</td>
<td>QUEUE</td>
<td>S</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ABORT, QUEUE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EventLogBufferSize</td>
<td>bytes</td>
<td></td>
<td>S</td>
<td>NDB 7.3.0</td>
</tr>
</tbody>
</table>


Parameter Name	Type or Units	Default Value	Restart Type	In Version ...
				(and later)
ExecuteOnComputer	name	[none]	S	NDB 7.3.0
		...		
ExtraSendBufferMemory	bytes	0 / 0 / 256K	N	NDB 7.3.0
		0 / 0 / 4294967039 (0xFFFFFEFF)		
HeartbeatThreadPriority	string	[none]	S	NDB 7.3.0
		...		
HostName	name or IP address	[none]	N	NDB 7.3.0
		...		
Id	unsigned	[none]	IS	NDB 7.3.0
		1 / 255		
MaxScanBatchSize	bytes	256K	N	NDB 7.3.0
		32K / 16M		
NodeId	unsigned	[none]	IS	NDB 7.3.0
		1 / 255		
StartConnectBackoffMaxTime	integer	0	N	NDB 7.4.2
		0 / 0 / 4294967039 (0xFFFFFEFF)		
TotalSendBufferMemory	bytes	0	N	NDB 7.3.0
		256K / 4294967039 (0xFFFFFEFF)		
wan	boolean	false	N	NDB 7.3.0
		false		
## B.4 Other Node Configuration Parameters

### Table B.5 Computer Configuration Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Type or Units</th>
<th>Default Value</th>
<th>Restart Type</th>
<th>In Version ... (and later)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>HostName</strong></td>
<td>name or IP address</td>
<td>[none]</td>
<td>N</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td><strong>Id</strong></td>
<td>string</td>
<td>[none]</td>
<td>IS</td>
<td>NDB 7.3.0</td>
</tr>
</tbody>
</table>

### Table B.6 TCP Configuration Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Type or Units</th>
<th>Default Value</th>
<th>Restart Type</th>
<th>In Version ... (and later)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Checksum</strong></td>
<td>boolean</td>
<td>false</td>
<td>N</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td><strong>Group</strong></td>
<td>unsigned</td>
<td>55</td>
<td>N</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td><strong>NodeId1</strong></td>
<td>numeric</td>
<td>[none]</td>
<td>N</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td><strong>NodeId2</strong></td>
<td>numeric</td>
<td>[none]</td>
<td>N</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td><strong>NodeIdServer</strong></td>
<td>numeric</td>
<td>[none]</td>
<td>N</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td><strong>OverloadLimit</strong></td>
<td>bytes</td>
<td>0</td>
<td>N</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td><strong>PortNumber</strong></td>
<td>unsigned</td>
<td>[none]</td>
<td>S</td>
<td>NDB 7.3.0</td>
</tr>
</tbody>
</table>
### Other Node Configuration Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Type or Units</th>
<th>Default Value</th>
<th>Minimum/Maximum or Permitted Values</th>
<th>Restart Type</th>
<th>In Version ... (and later)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proxy</td>
<td>string</td>
<td>[none]</td>
<td>...</td>
<td>N</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td>ReceiveBufferMemory</td>
<td>bytes</td>
<td>2M</td>
<td>16K / 4294967039 (0xFFFFFEFF)</td>
<td>N</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td>SendBufferMemory</td>
<td>unsigned</td>
<td>2M</td>
<td>256K / 4294967039 (0xFFFFFEFF)</td>
<td>N</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td>SendSignalId</td>
<td>boolean</td>
<td>[see text]</td>
<td>true, false</td>
<td>N</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td>TCP_MAXSEG_SIZE</td>
<td>unsigned</td>
<td>0</td>
<td>0 / 2G</td>
<td>N</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td>TCP_RCV_BUF_SIZE</td>
<td>unsigned</td>
<td>0</td>
<td>0 / 2G</td>
<td>N</td>
<td>NDB 7.3.1</td>
</tr>
<tr>
<td>TCP_SND_BUF_SIZE</td>
<td>unsigned</td>
<td>0</td>
<td>0 / 2G</td>
<td>N</td>
<td>NDB 7.4.8</td>
</tr>
<tr>
<td>TcpBind_INADDR_ANY</td>
<td>boolean</td>
<td>false</td>
<td>true, false</td>
<td>N</td>
<td>NDB 7.3.0</td>
</tr>
</tbody>
</table>

### Table B.7 Shared Memory Configuration Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Type or Units</th>
<th>Default Value</th>
<th>Minimum/Maximum or Permitted Values</th>
<th>Restart Type</th>
<th>In Version ... (and later)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Checksum</td>
<td>boolean</td>
<td>true</td>
<td>true</td>
<td>N</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td>Parameter Name</td>
<td>Type or Units</td>
<td>Default Value</td>
<td>Minimum/Maximum or Permitted Values</td>
<td>Restart Type</td>
<td>In Version ... (and later)</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------</td>
<td>---------------</td>
<td>-------------------------------------</td>
<td>--------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>Group</td>
<td>true, false</td>
<td></td>
<td></td>
<td>N</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td></td>
<td>unsigned</td>
<td>35</td>
<td>0 / 200</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>NodeId1</td>
<td>numeric</td>
<td>[none]</td>
<td></td>
<td>N</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td>NodeId2</td>
<td>numeric</td>
<td>[none]</td>
<td></td>
<td>N</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td>NodeIdServer</td>
<td>numeric</td>
<td>[none]</td>
<td></td>
<td>N</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td>OverloadLimit</td>
<td>bytes</td>
<td>0</td>
<td>0 / 4294967039 (0xFFFFFEFF)</td>
<td>N</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td>PortNumber</td>
<td>unsigned</td>
<td>[none]</td>
<td>0 / 64K</td>
<td>S</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td>SendSignalId</td>
<td>boolean</td>
<td>false</td>
<td></td>
<td>N</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>true, false</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ShmKey</td>
<td>unsigned</td>
<td>[none]</td>
<td>0 / 4294967039 (0xFFFFFEFF)</td>
<td>N</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td>ShmSize</td>
<td>bytes</td>
<td>1M</td>
<td>64K / 4294967039 (0xFFFFFEFF)</td>
<td>N</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td>Signum</td>
<td>unsigned</td>
<td>[none]</td>
<td>0 / 4294967039 (0xFFFFFEFF)</td>
<td>N</td>
<td>NDB 7.3.0</td>
</tr>
</tbody>
</table>
### Table B.8 SCI Configuration Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Type or Units</th>
<th>Default Value</th>
<th>Minimum/Maximum or Permitted Values</th>
<th>Restart Type</th>
<th>In Version ... (and later)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Checksum</td>
<td>boolean</td>
<td>false</td>
<td>true, false</td>
<td>N</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td>Group</td>
<td>unsigned</td>
<td>15</td>
<td>0 / 200</td>
<td>N</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td>Host1SciId0</td>
<td>unsigned</td>
<td>[none]</td>
<td>0 / 4294967039 (0xFFFFFEFF)</td>
<td>N</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td>Host1SciId1</td>
<td>unsigned</td>
<td>0</td>
<td>0 / 4294967039 (0xFFFFFEFF)</td>
<td>N</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td>Host2SciId0</td>
<td>unsigned</td>
<td>[none]</td>
<td>0 / 4294967039 (0xFFFFFEFF)</td>
<td>N</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td>Host2SciId1</td>
<td>unsigned</td>
<td>0</td>
<td>0 / 4294967039 (0xFFFFFEFF)</td>
<td>N</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td>NodeId1</td>
<td>numeric</td>
<td>[none]</td>
<td>...</td>
<td>N</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td>NodeId2</td>
<td>numeric</td>
<td>[none]</td>
<td>...</td>
<td>N</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td>NodeIdServer</td>
<td>numeric</td>
<td>[none]</td>
<td>...</td>
<td>N</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td>OverloadLimit</td>
<td>bytes</td>
<td>0</td>
<td></td>
<td>N</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td>Parameter Name</td>
<td>Type or Units</td>
<td>Default Value</td>
<td>Minimum/ Maximum or Permitted Values</td>
<td>Restart Type</td>
<td>In Version ... (and later)</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------</td>
<td>---------------</td>
<td>-------------------------------------</td>
<td>--------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>PortNumber</td>
<td>unsigned</td>
<td>[none]</td>
<td>0 / 64K</td>
<td>S</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td>SendLimit</td>
<td>unsigned</td>
<td>8K</td>
<td>128 / 32K</td>
<td>N</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td>SendSignalId</td>
<td>boolean</td>
<td>true</td>
<td>true, false</td>
<td>N</td>
<td>NDB 7.3.0</td>
</tr>
<tr>
<td>SharedBufferSize</td>
<td>unsigned</td>
<td>10M</td>
<td>64K / 4294967039 (0xFFFFFEFF)</td>
<td>N</td>
<td>NDB 7.3.0</td>
</tr>
</tbody>
</table>

### B.5 MySQL Server Option and Variable Reference for MySQL Cluster

#### Table B.9 MySQL Server Options and Variables for MySQL Cluster: MySQL Cluster NDB 7.3-7.4

<table>
<thead>
<tr>
<th>Command Line</th>
<th>System Variable</th>
<th>Status Variable</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Option File</td>
<td>Scope</td>
<td>Dynamic</td>
<td></td>
</tr>
<tr>
<td>Notes</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Com_show_ndb_status**
  - No: No
  - No: Yes
  - Both: No
  - DESCRIPTION: Count of SHOW NDB STATUS statements

- **create_old_temporals**
  - Yes: Yes
  - No: No
  - Global: No
  - DESCRIPTION: Use pre-5.6.4 storage format for temporal types when creating tables. Intended for use in replication and upgrades/downgrades between NDB 7.2 and NDB 7.3/7.4.

- **Handler_discover**
  - No: No
  - Both: Yes
  - No: No
  - DESCRIPTION: Number of times that tables have been discovered
<table>
<thead>
<tr>
<th>Option or Variable Name</th>
<th>Command Line</th>
<th>System Variable</th>
<th>Status Variable</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>have_ndbcluster</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>ndb-batch-size</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>ndb-blob-read-batch-bytes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>ndb-blob-write-batch-bytes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>ndb-cluster-connection-pool</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>ndb-connectstring</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>ndb-deferred-constraints</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>ndb-distribution</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>ndb-log-apply-status</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>

DESCRIPTION: Whether mysql supports NDB Cluster tables (set by --ndbcluster option)

DESCRIPTION: Size (in bytes) to use for NDB transaction batches

DESCRIPTION: Specifies size in bytes that large BLOB reads should be batched into. 0 = no limit.

DESCRIPTION: Specifies size in bytes that large BLOB writes should be batched into. 0 = no limit.

DESCRIPTION: Number of connections to the cluster used by MySQL

DESCRIPTION: Point to the management server that distributes the cluster configuration

DESCRIPTION: Specifies that constraint checks on unique indexes (where these are supported) should be deferred until commit time. Not normally needed or used; for testing purposes only.

DESCRIPTION: Default distribution for new tables in NDBCLUSTER (KEYHASH or LINHASH, default is KEYHASH)
<table>
<thead>
<tr>
<th>Option or Variable Name</th>
<th>Command Line</th>
<th>System Variable</th>
<th>Status Variable</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Option File</td>
<td>Scope</td>
<td>Dynamic</td>
</tr>
<tr>
<td>DESCRIPTION: Cause a MySQL server acting as a slave to log mysql.ndb_apply_status updates received from its immediate master in its own binary log, using its own server ID. Effective only if the server is started with the --ndbcluster option.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ndb-log-empty-epochs</th>
<th>Yes</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DESCRIPTION: When enabled, causes epochs in which there were no changes to be written to the ndb_apply_status and ndb_binlog_index tables, even when --log-slave-updates is enabled.

<table>
<thead>
<tr>
<th>ndb-log-exclusive-reads</th>
<th>Yes</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DESCRIPTION: Log primary key reads with exclusive locks; allow conflict resolution based on read conflicts.

<table>
<thead>
<tr>
<th>ndb-log-orig</th>
<th>Yes</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DESCRIPTION: Log originating server id and epoch in mysql.ndb_binlog_index table.

<table>
<thead>
<tr>
<th>ndb-log-transaction-id</th>
<th>Yes</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DESCRIPTION: Write NDB transaction IDs in the binary log. Requires --log-bin-v1-events=OFF.

<table>
<thead>
<tr>
<th>ndb-log-update-as-write</th>
<th>Yes</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DESCRIPTION: Toggles logging of updates on the master between updates (OFF) and writes (ON)

<table>
<thead>
<tr>
<th>ndb-mgmd-host</th>
<th>Yes</th>
<th>No</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DESCRIPTION: Set the host (and port, if desired) for connecting to management server.

<table>
<thead>
<tr>
<th>ndb-nodeid</th>
<th>Yes</th>
<th>No</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DESCRIPTION: MySQL Cluster node ID for this MySQL server.

<table>
<thead>
<tr>
<th>ndb-rev-thread-activation-threshold</th>
<th>Yes</th>
<th>No</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DESCRIPTION: Activation threshold when receive thread takes over the polling of the cluster connection (measured in concurrently active threads).
<table>
<thead>
<tr>
<th>Option or Variable Name</th>
<th>Command Line</th>
<th>System Variable</th>
<th>Status Variable</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ndb-transid-mysql-connection-map</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>DESCRIPTION: CPU mask for locking receiver threads to specific CPUs; specified as hexadecimal. See documentation for details.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ndb-wait-connected</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>DESCRIPTION: Enable or disable the ndb_transid_mysql_connection_map plugin; that is, enable or disable the INFORMATION_SCHEMA table having that name.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ndb-wait-setup</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>DESCRIPTION: Time (in seconds) for the MySQL server to wait for connection to cluster management and data nodes before accepting MySQL client connections.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ndb_api_bytes_received_count</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>DESCRIPTION: Amount of data (in bytes) received from the data nodes by this MySQL Server (SQL node).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ndb_api_bytes_received_count_session</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>DESCRIPTION: Amount of data (in bytes) received from the data nodes in this client session.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ndb_api_bytes_received_count_slave</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>DESCRIPTION: Amount of data (in bytes) received from the data nodes by this slave.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ndb_api_bytes_sent_count</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>DESCRIPTION: Amount of data (in bytes) sent to the data nodes by this MySQL Server (SQL node).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ndb_api_bytes_sent_count_session</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>DESCRIPTION: Amount of data (in bytes) sent to the data nodes in this client session.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Option or Variable Name</td>
<td>Command Line</td>
<td>System Variable</td>
<td>Status Variable</td>
<td>Notes</td>
</tr>
<tr>
<td>------------------------------------------------</td>
<td>--------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-------</td>
</tr>
<tr>
<td>Ndb_api_bytes_sent_count_slave</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>DESCRIPTION: Amount of data (in bytes) sent to the data nodes by this slave.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ndb_api_event_bytes_count</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>DESCRIPTION: Number of bytes of events received by this MySQL Server (SQL node).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ndb_api_event_bytes_count_injector</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>DESCRIPTION: Number of bytes of events received by the NDB binary log injector thread.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ndb_api_event_data_count</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>DESCRIPTION: Number of row change events received by this MySQL Server (SQL node).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ndb_api_event_data_count_injector</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>DESCRIPTION: Number of row change events received by the NDB binary log injector thread.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ndb_api_event_nondata_count</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>DESCRIPTION: Number of events received, other than row change events, by this MySQL Server (SQL node).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ndb_api_event_nondata_count_injector</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>DESCRIPTION: Number of events received, other than row change events, by the NDB binary log injector thread.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ndb_api_pk_op_count</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>DESCRIPTION: Number of operations based on or using primary keys by this MySQL Server (SQL node).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ndb_api_pk_op_count_session</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>DESCRIPTION: Number of operations based on or using primary keys in this client session.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Option or Variable Name</td>
<td>Command Line</td>
<td>System Variable</td>
<td>Status Variable</td>
<td>Notes</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-------</td>
</tr>
<tr>
<td>Ndb_api_pk_op_count_slave</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>DESCRIPTION: Number of operations based on or using primary keys by this slave.</td>
</tr>
<tr>
<td>Ndb_api_pruned_scan_count</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>DESCRIPTION: Number of scans that have been pruned to a single partition by this MySQL Server (SQL node).</td>
</tr>
<tr>
<td>Ndb_api_pruned_scan_count_session</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>DESCRIPTION: Number of scans that have been pruned to a single partition in this client session.</td>
</tr>
<tr>
<td>Ndb_api_pruned_scan_count_slave</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>DESCRIPTION: Number of scans that have been pruned to a single partition by this slave.</td>
</tr>
<tr>
<td>Ndb_api_range_scan_count</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>DESCRIPTION: Number of range scans that have been started by this MySQL Server (SQL node).</td>
</tr>
<tr>
<td>Ndb_api_range_scan_count_session</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>DESCRIPTION: Number of range scans that have been started in this client session.</td>
</tr>
<tr>
<td>Ndb_api_range_scan_count_slave</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>DESCRIPTION: Number of range scans that have been started by this slave.</td>
</tr>
<tr>
<td>Ndb_api_read_row_count</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>DESCRIPTION: Total number of rows that have been read by this MySQL Server (SQL node).</td>
</tr>
<tr>
<td>Ndb_api_read_row_count_session</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>DESCRIPTION: Total number of rows that have been read in this client session.</td>
</tr>
<tr>
<td>Ndb_api_read_row_count_slave</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>DESCRIPTION: Total number of rows that have been read by this slave.</td>
</tr>
<tr>
<td>Option or Variable Name</td>
<td>Command Line</td>
<td>System Variable</td>
<td>Status Variable</td>
<td>Notes</td>
</tr>
<tr>
<td>------------------------</td>
<td>--------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-------</td>
</tr>
<tr>
<td>DESCRIPTION: Total number of rows that have been read by this slave.</td>
<td>Ndb_api_scan_batch_count</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>DESCRIPTION: Number of batches of rows received by this MySQL Server (SQL node).</td>
<td>Ndb_api_scan_batch_count_session</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>DESCRIPTION: Number of batches of rows received in this client session.</td>
<td>Ndb_api_scan_batch_count_slave</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>DESCRIPTION: Number of batches of rows received by this slave.</td>
<td>Ndb_api_table_scan_count</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>DESCRIPTION: Number of table scans that have been started, including scans of internal tables, by this MySQL Server (SQL node).</td>
<td>Ndb_api_table_scan_count_session</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>DESCRIPTION: Number of table scans that have been started, including scans of internal tables, in this client session.</td>
<td>Ndb_api_table_scan_count_slave</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>DESCRIPTION: Number of table scans that have been started, including scans of internal tables, by this slave.</td>
<td>Ndb_api_trans_abort_count</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>DESCRIPTION: Number of transactions aborted by this MySQL Server (SQL node).</td>
<td>Ndb_api_trans_abort_count_session</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>DESCRIPTION: Number of transactions aborted in this client session.</td>
<td>Ndb_api_trans_abort_count_slave</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Option or Variable Name</td>
<td>Command Line</td>
<td>System Variable</td>
<td>Status Variable</td>
<td>Notes</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--------------</td>
<td>-----------------</td>
<td>----------------</td>
<td>-------</td>
</tr>
<tr>
<td><strong>Ndb_api_trans_close_count</strong></td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>DESCRIPTION: Number of transactions aborted by this slave.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Ndb_api_trans_close_count_session</strong></td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>DESCRIPTION: Number of transactions aborted (may be greater than the sum of TransCommitCount and TransAbortCount) in this client session.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Ndb_api_trans_close_count_slave</strong></td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>DESCRIPTION: Number of transactions aborted (may be greater than the sum of TransCommitCount and TransAbortCount) by this slave.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Ndb_api_trans_commit_count</strong></td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>DESCRIPTION: Number of transactions committed by this MySQL Server (SQL node).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Ndb_api_trans_commit_count_session</strong></td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>DESCRIPTION: Number of transactions committed in this client session.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Ndb_api_trans_commit_count_slave</strong></td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>DESCRIPTION: Number of transactions committed by this slave.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Ndb_api_trans_local_read_row_count</strong></td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>DESCRIPTION: Total number of rows that have been read by this MySQL Server (SQL node).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Ndb_api_trans_local_read_row_count_session</strong></td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>DESCRIPTION: Total number of rows that have been read in this client session.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Ndb_api_trans_local_read_row_count_slave</strong></td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>DESCRIPTION: Total number of rows that have been read by this slave.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Option or Variable Name</td>
<td>Command Line</td>
<td>System Variable</td>
<td>Notes</td>
<td>Status Variable</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--------------</td>
<td>-----------------</td>
<td>-------</td>
<td>-----------------</td>
</tr>
<tr>
<td></td>
<td>Option File</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>DESCRIPTION:</strong> Total number of rows that have been read by this slave.</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Ndb_api_trans_start_count</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td><strong>DESCRIPTION:</strong> Number of transactions started by this MySQL Server (SQL node).</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Ndb_api_trans_start_count_session</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td><strong>DESCRIPTION:</strong> Number of transactions started in this client session.</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Ndb_api_trans_start_count_slave</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td><strong>DESCRIPTION:</strong> Number of transactions started by this slave.</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Ndb_api_uk_op_count</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td><strong>DESCRIPTION:</strong> Number of operations based on or using unique keys by this MySQL Server (SQL node).</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Ndb_api_uk_op_count_session</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td><strong>DESCRIPTION:</strong> Number of operations based on or using unique keys in this client session.</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Ndb_api_uk_op_count_slave</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td><strong>DESCRIPTION:</strong> Number of operations based on or using unique keys by this slave.</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Ndb_api_wait_exec_complete_count</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td><strong>DESCRIPTION:</strong> Number of times thread has been blocked while waiting for execution of an operation to complete by this MySQL Server (SQL node).</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Ndb_api_wait_exec_complete_count_session</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td><strong>DESCRIPTION:</strong> Number of times thread has been blocked while waiting for execution of an operation to complete in this client session.</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Ndb_api_wait_exec_complete_count_slave</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Option or Variable Name</td>
<td>Command Line</td>
<td>System Variable</td>
<td>Status Variable</td>
<td>Notes</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-------</td>
</tr>
<tr>
<td></td>
<td>Option File</td>
<td>Scope</td>
<td>Dynamic</td>
<td></td>
</tr>
<tr>
<td>DESCRIPTION: Number of times thread has been blocked while waiting for execution of an operation to complete by this slave.</td>
<td>Ndb_api_wait_meta_request_count</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>DESCRIPTION: Number of times thread has been blocked waiting for a metadata-based signal by this MySQL Server (SQL node).</td>
<td>Ndb_api_wait_meta_request_count_session</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>DESCRIPTION: Number of times thread has been blocked waiting for a metadata-based signal in this client session.</td>
<td>Ndb_api_wait_meta_request_count_slave</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>DESCRIPTION: Number of times thread has been blocked while waiting for a scan-based signal by this MySQL Server (SQL node).</td>
<td>Ndb_api_wait_scan_result_count</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>DESCRIPTION: Total time (in nanoseconds) spent waiting for some type of signal from the data nodes by this MySQL Server (SQL node).</td>
<td>Ndb_api_wait_scan_result_count_session</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>DESCRIPTION: Total time (in nanoseconds) spent waiting for some type of signal from the data nodes in this client session.</td>
<td>Ndb_api_wait_scan_result_count_slave</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>DESCRIPTION: Total time (in nanoseconds) spent waiting for some type of signal from the data nodes by this slave.</td>
<td>Ndb_api_wait_nanos_count</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>DESCRIPTION: Total time (in nanoseconds) spent waiting for some type of signal from the data nodes in this client session.</td>
<td>Ndb_api_wait_nanos_count_session</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>DESCRIPTION: Total time (in nanoseconds) spent waiting for some type of signal from the data nodes by this slave.</td>
<td>Ndb_api_wait_nanos_count_slave</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>DESCRIPTION: Number of times thread has been blocked while waiting for a scan-based signal by this MySQL Server (SQL node).</td>
<td>Ndb_api_wait_scan_result_count</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>DESCRIPTION: Total time (in nanoseconds) spent waiting for some type of signal from the data nodes by this slave.</td>
<td>Ndb_api_wait_scan_result_count_session</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Option or Variable Name</td>
<td>Command Line</td>
<td>System Variable</td>
<td>Status Variable</td>
<td>Notes</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-------</td>
</tr>
<tr>
<td>Ndb_api_wait_scan_result_count_slave</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>DESCRIPTION: Number of times thread has been blocked while waiting for a scan-based signal in this client session.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ndb_autoincrement_prefetch_sz</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Both</td>
</tr>
<tr>
<td>DESCRIPTION: NDB auto-increment prefetch size</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ndb_cache_check_time</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Both</td>
</tr>
<tr>
<td>DESCRIPTION: Number of milliseconds between checks of cluster SQL nodes made by the MySQL query cache</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ndb_clear_apply_status</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Global</td>
</tr>
<tr>
<td>DESCRIPTION: Causes RESET SLAVE to clear all rows from the ndb_apply_status table. ON by default.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ndb_cluster_node_id</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Both</td>
</tr>
<tr>
<td>DESCRIPTION: If the server is acting as a MySQL Cluster node, then the value of this variable its node ID in the cluster</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ndb_config_from_host</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Both</td>
</tr>
<tr>
<td>DESCRIPTION: The host name or IP address of the Cluster management server. Formerly Ndb_connected_host</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ndb_config_from_port</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Both</td>
</tr>
<tr>
<td>DESCRIPTION: The port for connecting to Cluster management server. Formerly Ndb_connected_port</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ndb_conflict_fn_epoch</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Both</td>
</tr>
<tr>
<td>Option or Variable Name</td>
<td>Command Line</td>
<td>System Variable</td>
<td>Status Variable</td>
<td>Notes</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-------</td>
</tr>
<tr>
<td><strong>Ndb_conflict_fn_epoch2</strong></td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>DESCRIPTION: Number of rows that have been found in conflict by the NDB$EPOCH() conflict detection function</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Ndb_conflict_fn_epoch2_trans</strong></td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>DESCRIPTION: Number of rows that have been found in conflict by the NDB$EPOCH2() conflict detection function</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Ndb_conflict_fn_epoch_trans</strong></td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>DESCRIPTION: Number of rows that have been found in conflict by the NDB$EPOCH2_TRANS() conflict detection function</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Ndb_conflict_fn_max</strong></td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>DESCRIPTION: If the server is part of a MySQL Cluster involved in cluster replication, the value of this variable indicates the number of times that conflict resolution based on &quot;greater timestamp wins&quot; has been applied</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Ndb_conflict_fn_max_del_win</strong></td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>DESCRIPTION: Number of times that conflict resolution based on outcome of NDB $MAX_DELETE_WIN() has been applied.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Ndb_conflict_fn_old</strong></td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>DESCRIPTION: If the server is part of a MySQL Cluster involved in cluster replication, the value of this variable indicates the number of times that &quot;same timestamp wins&quot; conflict resolution has been applied</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Ndb_conflict_last_conflict_epoch</strong></td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>DESCRIPTION: Most recent NDB epoch on this slave in which a conflict was detected.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Ndb_conflict_last_stable_epoch</strong></td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Command Line</td>
<td>System Variable</td>
<td>Status Variable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>----------------</td>
<td>----------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Option File</td>
<td>Scope</td>
<td>Dynamic</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Notes**

| No | No | Yes |
| No | Global | No |

DESCRIPTION: Number of rows found to be in conflict by a transactional conflict function.

`Ndb_conflict_reflected_op_discard_count`

| No | No | Yes |
| No | Global | No |

DESCRIPTION: Number of reflected operations that were not applied due an error during execution.

`Ndb_conflict_reflected_op_prepare_count`

| No | No | Yes |
| No | Global | No |

DESCRIPTION: Number of reflected operations received that have been prepared for execution.

`Ndb_conflict_refresh_op_count`

| No | No | Yes |
| No | Global | No |

DESCRIPTION: Number of refresh operations that have been prepared.

`Ndb_conflict_trans_conflict_commit_count`

| No | No | Yes |
| No | Global | No |

DESCRIPTION: Number of epoch transactions committed after requiring transactional conflict handling.

`Ndb_conflict_trans_detect_iter_count`

| No | No | Yes |
| No | Global | No |

DESCRIPTION: Number of internal iterations required to commit an epoch transaction. Should be (slightly) greater than or equal to `Ndb_conflict_trans_conflict_commit_count`.

`Ndb_conflict_trans_reject_count`

| No | No | Yes |
| No | Global | No |

DESCRIPTION: Number of transactions rejected after being found in conflict by a transactional conflict function.

`Ndb_conflict_trans_row_conflict_count`

| No | No | Yes |
| No | Global | No |

DESCRIPTION: Number of rows found in conflict by a transactional conflict function. Includes any rows included in or dependent on conflicting transactions.

`Ndb_conflict_trans_row_reject_count`
<table>
<thead>
<tr>
<th>Option or Variable Name</th>
<th>Command Line</th>
<th>System Variable</th>
<th>Status Variable</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>ndb_deferred_constraints</strong></td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>DESCRIPTION: Specifies that constraint checks should be deferred (where these are supported). Not normally needed or used; for testing purposes only.</td>
</tr>
<tr>
<td><strong>ndb_distribution</strong></td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>DESCRIPTION: Default distribution for new tables in NDBCLUSTER (KEYHASH or LINHASH, default is KEYHASH)</td>
</tr>
<tr>
<td><strong>Ndb_conflict_delete_delete_count</strong></td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>DESCRIPTION: Number of delete-delete conflicts detected (delete operation is applied, but row does not exist)</td>
</tr>
<tr>
<td><strong>ndb_eventbuffer_free_percent</strong></td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>DESCRIPTION: Percentage of free memory that should be available in event buffer before resumption of buffering, after reaching limit set by ndb_eventbuffer_max_alloc.</td>
</tr>
<tr>
<td><strong>ndb_eventbuffer_max_alloc</strong></td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>DESCRIPTION: Maximum memory that can be allocated for buffering events by the NDB API. Defaults to 0 (no limit).</td>
</tr>
<tr>
<td><strong>Ndb_execute_count</strong></td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>DESCRIPTION: Provides the number of round trips to the NDB kernel made by operations</td>
</tr>
<tr>
<td><strong>ndb_extra_logging</strong></td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>DESCRIPTION: Controls logging of MySQL Cluster schema, connection, and data distribution events in the MySQL error log</td>
</tr>
<tr>
<td><strong>ndb_force_send</strong></td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>DESCRIPTION: Total number of rows realigned after being found in conflict by a transactional conflict function. Includes Ndb_conflict_trans_row_conflict_count and any rows included in or dependent on conflicting transactions.</td>
</tr>
<tr>
<td><strong>ndb_force_send</strong></td>
<td>Yes</td>
<td>Both</td>
<td>Yes</td>
<td>DESCRIPTION: Total number of rows realigned after being found in conflict by a transactional conflict function. Includes Ndb_conflict_trans_row_conflict_count and any rows included in or dependent on conflicting transactions.</td>
</tr>
<tr>
<td>Option or Variable Name</td>
<td>Command Line</td>
<td>System Variable</td>
<td>Status Variable</td>
<td>Notes</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--------------</td>
<td>-----------------</td>
<td>----------------</td>
<td>-------</td>
</tr>
<tr>
<td>ndb_index_stat_cache_entries</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>DESCRIPTION: Forces sending of buffers to NDB immediately, without waiting for other threads</td>
</tr>
<tr>
<td>ndb_index_stat_enable</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>DESCRIPTION: Sets the granularity of the statistics by determining the number of starting and ending keys</td>
</tr>
<tr>
<td>ndb_index_stat_option</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>DESCRIPTION: Use NDB index statistics in query optimization</td>
</tr>
<tr>
<td>ndb_index_stat_update_freq</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>DESCRIPTION: Comma-separated list of tunable options for NDB index statistics; the list should contain no spaces</td>
</tr>
<tr>
<td>ndb_join_pushdown</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>DESCRIPTION: How often to query data nodes instead of the statistics cache</td>
</tr>
<tr>
<td>ndb_log_apply_status</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>DESCRIPTION: Enables pushing down of joins to data nodes</td>
</tr>
<tr>
<td>ndb_log_bin</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>DESCRIPTION: Whether or not a MySQL server acting as a slave logs mysql.ndb_apply_status updates received from its immediate master in its own binary log, using its own server ID.</td>
</tr>
<tr>
<td>ndb_log_binlog_index</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>DESCRIPTION: Write updates to NDB tables in the binary log. Effective only if binary logging is enabled with --log-bin.</td>
</tr>
<tr>
<td>ndb_log_empty_epochs</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>DESCRIPTION: Insert mapping between epochs and binary log positions into the ndb_binlog_index table. Defaults to ON. Effective only if binary logging is enabled on the server.</td>
</tr>
<tr>
<td>Option or Variable Name</td>
<td>Command Line</td>
<td>System Variable</td>
<td>Status Variable</td>
<td>Notes</td>
</tr>
<tr>
<td>------------------------------------------------</td>
<td>--------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>ndb_log_exclusive_reads</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Dynamic</td>
</tr>
<tr>
<td>DESCRIPTION: When enabled, epochs in which there were no changes are written to the ndb_apply_status and ndb_binlog_index tables, even when log_slave_updates is enabled.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ndb_log_orig</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Dynamic</td>
</tr>
<tr>
<td>DESCRIPTION: Whether the id and epoch of the originating server are recorded in the mysql.ndb_binlog_index table. Set using the --ndb-log-orig option when starting mysqld.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ndb_log_transaction_id</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Dynamic</td>
</tr>
<tr>
<td>DESCRIPTION: Whether NDB transaction IDs are written into the binary log. (Read-only.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ndb_log_updated_only</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Dynamic</td>
</tr>
<tr>
<td>DESCRIPTION: Log complete rows (ON) or updates only (OFF)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ndb_number_of_data_nodes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Dynamic</td>
</tr>
<tr>
<td>DESCRIPTION: If the server is part of a MySQL Cluster, the value of this variable is the number of data nodes in the cluster</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ndb_optimization_delay</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Dynamic</td>
</tr>
<tr>
<td>DESCRIPTION: Sets the number of milliseconds to wait between processing sets of rows by OPTIMIZE TABLE on NDB tables.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ndb_optimized_node_selection</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Dynamic</td>
</tr>
<tr>
<td>DESCRIPTION: Determines how an SQL node chooses a cluster data node to use as transaction coordinator</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ndb_pruned_scan_count</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Dynamic</td>
</tr>
<tr>
<td>DESCRIPTION: If data scan is enabled, the number of data nodes that did not participate in a scan is logged.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Option or Variable Name</td>
<td>Command Line</td>
<td>System Variable</td>
<td>Status Variable</td>
<td></td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td></td>
</tr>
<tr>
<td>Ndb_pushed_queries_defined</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Ndb_pushed_queries_dropped</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Ndb_pushed_queries_executed</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Ndb_pushed_reads</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>ndb_recv_thread_activation_threshold</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>ndb_recv_thread_cpu_mask</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>ndb_report_thresh_binlog_epoch_slip</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>ndb_report_thresh_binlog_mem_usage</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>

DESCRIPTION: Number of scans executed by NDB since the cluster was last started where partition pruning could be used.

DESCRIPTION: Number of joins that API nodes have attempted to push down to the data nodes.

DESCRIPTION: Number of joins that API nodes have tried to push down, but failed.

DESCRIPTION: Number of joins successfully pushed down and executed on the data nodes.

DESCRIPTION: Number of reads executed on the data nodes by pushed-down joins.

DESCRIPTION: Activation threshold when receive thread takes over the polling of the cluster connection (measured in concurrently active threads).

DESCRIPTION: CPU mask for locking receiver threads to specific CPUs; specified as hexadecimal. See documentation for details.

DESCRIPTION: This is a threshold on the number of epochs to be behind before reporting binary log status.

DESCRIPTION: This is a threshold on the percentage of free memory remaining before reporting binary log status.
<table>
<thead>
<tr>
<th>Option or Variable Name</th>
<th>Command Line</th>
<th>System Variable</th>
<th>Status Variable</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ndb_show_foreign_key_mock_tables</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>ndb_slave_conflict_role</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Ndb_slave_max_replicated_epoch</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>ndb_table_no_logging</td>
<td>No</td>
<td>Session</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>ndb_table_temporary</td>
<td>No</td>
<td>Both</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>ndb_use_exact_count</td>
<td>No</td>
<td>Both</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>ndb_use_transactions</td>
<td>Yes</td>
<td>Both</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>ndb_version</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Option or Variable Name</td>
<td>Command Line</td>
<td>System Variable</td>
<td>Status Variable</td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>--------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Option File</td>
<td>Notes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ndb_version_string</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>DESCRIPTION: Shows build and NDB engine version as an integer.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ndbcluster</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>DESCRIPTION: Enable NDB Cluster (if this version of MySQL supports it)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ndbinfo_database</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>DESCRIPTION: The name used for the NDB information database; read only.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ndbinfo_max_bytes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>DESCRIPTION: Used for debugging only.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ndbinfo_max_rows</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>DESCRIPTION: Used for debugging only.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ndbinfo_offline</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>DESCRIPTION: Put the ndbinfo database into offline mode, in which no rows are returned from tables or views.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ndbinfo_show_hidden</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>DESCRIPTION: Whether to show ndbinfo internal base tables in the mysql client. The default is OFF.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ndbinfo_table_prefix</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>DESCRIPTION: The prefix to use for naming ndbinfo internal base tables</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ndbinfo_version</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>
### Option or Variable Name

<table>
<thead>
<tr>
<th>Option or Variable Name</th>
<th>Command Line</th>
<th>System Variable</th>
<th>Status Variable</th>
<th>Notes</th>
<th>Scope</th>
<th>Dynamic</th>
</tr>
</thead>
<tbody>
<tr>
<td>server-id-bits</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Global</td>
<td>No</td>
</tr>
<tr>
<td>DESCRIPTION: The version of the ndbinfo engine; read only.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| server-id-bits          | Yes          | Yes             | No              | Yes   | Global| No      |
| DESCRIPTION: Sets the number of least significant bits in the server_id actually used for identifying the server, permitting NDB API applications to store application data in the most significant bits. server_id must be less than 2 to the power of this value. |

| slave_allow_batching    | Yes          | Yes             | No              | Yes   | Global| Yes     |
| DESCRIPTION: The effective value of server_id if the server was started with the --server-id-bits option set to a nondefault value. |

| transaction_allow_batching | No | Yes | No |
| transaction_allow_batching | No | Session | Yes |
| DESCRIPTION: Allows batching of statements within a transaction. Disable AUTOCOMMIT to use. |
Index

A
abort backup command, 109
  backupid option, 109
add hosts command, 61
add package command, 66, 69
  basedir option, 67
add process command, 103
agent
  configuration, 18
  defined, 2, 2
  distribution, 6, 7
  distribution layout, 8
  installing, 6
  starting, 31
  starting (Linux), 31
  starting (Windows), 32
  stopping (Linux), 32
  stopping (Windows), 34
agent-uuid option
  mcmd, 24
architecture, 1, 2
attributes
  case-sensitivity, 51
  summary table, 119

B
background option
  limitations, 115
backgrounding of commands, 115
backup
  commands, 109
backup cluster command, 109
  snapshoted option, 109
  snapshotstart option, 109
  waitcompleted option, 109
  waitstarted option, 109
backup images, 110
backupid option (abort backup), 109
backupid option (restore cluster), 110
backups
  creating, 109
  removing, 110
basedir option
  mcmd, 25
basedir option (add package command), 67
bootstrap option
  mcmd, 25

C
change log-level command, 62
change process command, 104
  limitations, 113
changing data node processes, 104
client
  commands in, 49
defined, 2, 3
  executing scripts with, 56
  mysql client commands in, 56
  starting, 35
client commands, 49
  abort backup, 109
  add hosts, 61
  add package, 66, 69
  add process, 103
  backup, 109
  backup cluster, 109
  case-sensitivity in, 51
  change log-level, 62
  change process, 104
  command-specific, 55
  configuration, 80
  create cluster, 70
  create site, 62
  delete cluster, 73
  delete package, 68
  delete site, 63
get, 82
help, 60
identifiers in, 51
information, 54
list backups, 110
list clusters, 73
list hosts, 64
list processes, 107
list sites, 64
online help, 54
options, 50, 53, 54
package, 66
process, 103
reset, 91
restart cluster, 74
restore, 109
restore cluster, 110
results returned by, 53
set, 96
show status, 74
site, 61
start cluster, 77
start process, 107
status of, 75
stop agents, 65
stop cluster, 78
stop process, 108
syntax, 49
upgrade cluster, 79
version, 65
cluster
  defined, 1
cluster backups
  aborting, 109
  listing, 110
  restoring from, 110
cluster option (show status command), 75
cluster processes
adding, 103
cluster status, 75
clusters
creating, 37, 37, 70
importing, 39, 40, 40, 40
listing, 73
migrating to MySQL Cluster Manager, 39
(see also importing clusters)
removing, 73
restarting, 74
starting, 77
stopping, 78
upgrading, 79
command status, 75
common terms, 1
concurrent client sessions unsupported, 113
configuration
derivation of attributes, 80
configuration attributes, 80
defined, 2
for TCP connections, 101
getting, 82
how determined by MySQL Cluster Manager, 81
levels applying, 80
mandatory, 81
read-only, 82
resetting, 91
setting, 96
configuration commands, 80
configuration file, 18
configuration parameters (see configuration attributes)
configuration variables (see configuration attributes)
connecting to agent
with mcm client, 35
with mysql client, 36
create cluster command, 70
assignment of node IDs in, 71
create site command, 62
hosts option, 63

d
daemon option
mcmd, 25
DataDir, 40
defaults-file option
mcmd, 25
delete cluster command, 73
delete package command, 68
delete site command, 63
deployment (example), 3
disable-indexes option (restore cluster), 111
disable-metadata option (restore cluster), 111
downgrades
MySQL Cluster, 115
E
epoch option (restore cluster), 111
event-threads option
mcmd, 25
G
get command, 82
filtering output, 87
include-defaults option, 85
with multiple attributes, 88
H
help command, 60
help for commands, 55
help option, 55
mcmd, 26
help-all option
mcmd, 26
help-manager option
mcmd, 27
HostName, 40
hosts
defined, 1
hosts option (create site), 63
I
Id (node ID), 40
identifiers, 51
case-sensitivity, 51
spaces in, 52
importing clusters, 39
and configuration, 40
and data directories, 40
and host names, 40
and Node IDs, 40
and node IDs, 40
restarting under MySQL Cluster Manager, 41
include-defaults option (get command), 85
initial option (start cluster), 78
installation, 5
IPv6
and hostnames (Windows), 113
K
keepalive option
mcmd, 27
L
license keys
and operating platform, 113
license keys (obsolete), 7
limitations, 113
background option, 115
backup, 115, 115
change process command, 113
client, 114, 114, 114, 114
cruster upgrades and downgrades, 115
concurrent usage, 113
IPv6, 113
license keys, 113
MySQL server variables, 114, 114
MySQL user variables, 114
operating systems, 113
relating to MySQL Server, 114
replication, 115
restarts, 115
syntax, 115
Windows, 113
list backups command, 110
list clusters command, 73
list commands command, 55
list hosts command, 64
list processes command, 107
list sites command, 64
log-backtrace-on-crash option
  mcmd, 27
log-file option
  mcmd, 27
log-level option
  mcmd, 28
log-use-syslog option
  mcmd, 28
logging
  configuring, 62
M
management site
  defined, 1
management sites
  adding hosts, 61
  creating, 62
  deleting, 63
  listing, 64
  listing hosts, 64
manager-directory option
  mcmd, 28
manager-password option
  mcmd, 29
manager-port option
  mcmd, 29
manager-username option
  mcmd, 29
max-open-files option
  mcmd, 30
mcmd
  and mysql client, 35
  mcmd, 31
  agent-uuid option, 24
  basedir option, 25
  bootstrap option, 25
  daemon option, 25
  defaults-file option, 25
  event-threads option, 25
  help option, 26
  help-all option, 26
  help-manager option, 27
  keepalive option, 27
  log-backtrace-on-crash option, 27
  log-file option, 27
  log-level option, 28
  log-use-syslog option, 28
  manager-directory option, 28
  manager-password option, 29
  manager-port option, 29
  manager-username option, 29
  max-open-files option, 30
  pid-file option, 30
  plugin-dir option, 30
  plugins option, 30
  verbose-shutdown option, 30
  version option, 31
  xcom-port option, 31
mcmd.exe, 32
migrating clusters to MySQL Cluster Manager, 39
  (see also importing clusters)
multiple client sessions, 113
mysql client commands, 56
mysql-cluster-manager (OBsolete, see mcmd), 31
mysql options, 114
N
ndb_mgm (MySQL Cluster command-line client)
  using with MySQL Cluster Manager, 103
no-binlog option (restore cluster), 111
node IDs
  and create cluster command, 71
O
obtaining MySQL Cluster Manager, 5
operation option (show status command), 75
P
packages
  defined, 1
  listing, 66, 69
  registering, 66
  removing, 68
parallelism option (restore cluster), 111
pid-file option
  mcmd, 30
plugin-dir option
  mcmd, 30
plugins option
  mcmd, 30
process option (show status command), 76
process status, 76
processes
  changing, 104
  commands, 103
  defined, 1
  listing, 107
  starting, 107
status, 76
stopping, 108

R
ReceiveBufferMemory, 96, 101
replication, 115
reset command, 91
and attribute name, 91
and TCP connections, 96
order of operands, 95
process level, 92
scope, 91
restart cluster command, 74
restore (from backup)
commands, 109
restore cluster command, 110
backup option, 110
disable-indexes option, 111
disable-metadata option, 111
epoch option, 111
no-binlog option, 111
parallelism option, 111
skip-nodeid option, 111
rolling restarts, 115

S
scripts (MySQL Cluster Manager client), 56
SendBufferMemory, 96, 101
set command, 96
and TCP connection attributes, 101
instance level, 97
paths used with (Windows), 100
scope, 97, 98
undoing effects of, 92
verifying effects, 97
with multiple attributes, 99
with multiple processes, 99
show status command, 74
cluster option, 75
operation option, 75
process option, 76
skip-nodeid option (restore cluster), 111
silent commands
cluster, 70
snapshotend option (backup cluster), 109
snapshotstart option (backup cluster), 109
start cluster command, 77
initial option, 78
start process command, 107
starting and stopping nodes
and ndb_mgm (MySQL Cluster command-line
client), 103
stop agents command, 65
stop cluster command, 78
stop process command, 108
syntax issues, 115

T
terminology, 1

U
upgrade cluster command, 79
upgrades
MySQL Cluster, 115

V
verbose-shutdown option
mcmd, 30
version command, 65
version option
mcmd, 31

W
waitcompleted option (backup cluster), 109
waitstarted option (backup cluster), 109

X
xcom-port option
mcmd, 31