
MySQL NDB Cluster 7.3 Release Notes
Abstract

This document contains release notes for the changes in each release of MySQL NDB Cluster that uses version
7.3 of the NDB (NDBCLUSTER) storage engine.

Each NDB Cluster 7.3 release is based on a mainline MySQL Server release and a particular version of the NDB
storage engine, as shown in the version string returned by executing SELECT VERSION() in the mysql client, or
by executing the ndb_mgm client SHOW or STATUS command; for more information, see MySQL NDB Cluster 7.3
and NDB Cluster 7.4.

For general information about features added in NDB Cluster 7.3, see What is New in MySQL NDB Cluster. For
a complete list of all bug fixes and feature changes in MySQL Cluster, please refer to the changelog section for
each individual NDB Cluster release.

For additional MySQL 5.6 documentation, see the MySQL 5.6 Reference Manual, which includes an overview of
features added in MySQL 5.6 that are not specific to NDB Cluster (What Is New in MySQL 5.6), and discussion
of upgrade issues that you may encounter for upgrades from MySQL 5.5 to MySQL 5.6 (Changes in MySQL
5.6). For a complete list of all bug fixes and feature changes made in MySQL 5.6 that are not specific to NDB, see
MySQL 5.6 Release Notes.

Updates to these notes occur as new product features are added, so that everybody can follow the development
process. If a recent version is listed here that you cannot find on the download page (https://dev.mysql.com/
downloads/), the version has not yet been released.

The documentation included in source and binary distributions may not be fully up to date with respect to release
note entries because integration of the documentation occurs at release build time. For the most up-to-date
release notes, please refer to the online documentation instead.

For legal information, see the Legal Notices.

For help with using MySQL, please visit the MySQL Forums, where you can discuss your issues with other
MySQL users.

Document generated on: 2023-02-24 (revision: 26185)

Table of Contents
Preface and Legal Notices .. 3
Changes in MySQL NDB Cluster 7.3.33 (5.6.51-ndb-7.3.33) (2021-04-21, General Availability) 4
Changes in MySQL NDB Cluster 7.3.32 (5.6.51-ndb-7.3.32) (2021-01-19, General Availability) 4
Changes in MySQL NDB Cluster 7.3.31 (5.6.50-ndb-7.3.31) (2020-10-20, General Availability) 5
Changes in MySQL NDB Cluster 7.3.30 (5.6.49-ndb-7.3.30) (2020-07-14, General Availability) 6
Changes in MySQL NDB Cluster 7.3.29 (5.6.48-ndb-7.3.29) (2020-04-28, General Availability) 6
Changes in MySQL NDB Cluster 7.3.28 (5.6.47-ndb-7.3.28) (2020-01-14, General Availability) 7
Changes in MySQL NDB Cluster 7.3.27 (5.6.46-ndb-7.3.27) (2019-10-15, General Availability) 7
Changes in MySQL NDB Cluster 7.3.26 (5.6.45-ndb-7.3.26) (2019-07-23, General Availability) 7
Changes in MySQL NDB Cluster 7.3.25 (5.6.44-ndb-7.3.25) (2019-04-26, General Availability) 8
Changes in MySQL NDB Cluster 7.3.24 (5.6.43-ndb-7.3.24) (2019-01-22, General Availability) 8
Changes in MySQL NDB Cluster 7.3.23 (5.6.42-ndb-7.3.23) (2018-10-23, General Availability) 9
Changes in MySQL NDB Cluster 7.3.22 (5.6.41-ndb-7.3.22) (2018-07-27, General Availability) 9
Changes in MySQL NDB Cluster 7.3.21 (5.6.40-ndb-7.3.21) (2018-04-20, General Availability) 10
Changes in MySQL NDB Cluster 7.3.20 (5.6.39-ndb-7.3.20) (2018-01-17, General Availability) 11
Changes in MySQL NDB Cluster 7.3.19 (5.6.38-ndb-7.3.19) (2017-10-18, General Availability) 11
Changes in MySQL NDB Cluster 7.3.18 (5.6.37-ndb-7.3.18) (2017-07-18, General Availability) 12
Changes in MySQL NDB Cluster 7.3.17 (5.6.36-ndb-7.3.17) (2017-04-10, General Availability) 13
Changes in MySQL NDB Cluster 7.3.16 (5.6.35-ndb-7.3.16) (2017-01-17, General Availability) 14
Changes in MySQL NDB Cluster 7.3.15 (5.6.34-ndb-7.3.15) (2016-10-18, General Availability) 15

1

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-what-is-new.html
https://dev.mysql.com/doc/refman/5.6/en/
https://dev.mysql.com/doc/refman/5.6/en/mysql-nutshell.html
https://dev.mysql.com/doc/refman/5.6/en/upgrading-from-previous-series.html
https://dev.mysql.com/doc/refman/5.6/en/upgrading-from-previous-series.html
https://dev.mysql.com/doc/relnotes/mysql/5.6/en/
https://dev.mysql.com/downloads/
https://dev.mysql.com/downloads/
http://forums.mysql.com

MySQL NDB Cluster 7.3 Release Notes

Changes in MySQL NDB Cluster 7.3.14 (5.6.31-ndb-7.3.14) (2016-07-18, General Availability) 16
Changes in MySQL NDB Cluster 7.3.13 (5.6.29-ndb-7.3.13) (2016-04-18, General Availability) 18
Changes in MySQL NDB Cluster 7.3.12 (5.6.28-ndb-7.3.12) (2016-01-19, General Availability) 19
Changes in MySQL NDB Cluster 7.3.11 (5.6.27-ndb-7.3.11) (2015-10-19, General Availability) 21
Changes in MySQL NDB Cluster 7.3.10 (5.6.25-ndb-7.3.10) (2015-07-13, General Availability) 23
Changes in MySQL NDB Cluster 7.3.9 (5.6.24-ndb-7.3.9) (2015-04-14, General Availability) 26
Changes in MySQL NDB Cluster 7.3.8 (5.6.22-ndb-7.3.8) (2015-01-21, General Availability) 29
Changes in MySQL NDB Cluster 7.3.7 (5.6.21-ndb-7.3.7) (2014-10-17, General Availability) 34
Changes in MySQL NDB Cluster 7.3.6 (5.6.19-ndb-7.3.6) (2014-07-11, General Availability) 37
Changes in MySQL NDB Cluster 7.3.5 (5.6.17-ndb-7.3.5) (2014-04-07, General Availability) 42
Changes in MySQL NDB Cluster 7.3.4 (5.6.15-ndb-7.3.4) (2014-02-06, General Availability) 46
Changes in MySQL NDB Cluster 7.3.3 (5.6.14-ndb-7.3.3) (2013-11-18, General Availability) 48
Changes in MySQL NDB Cluster 7.3.2 (5.6.11-ndb-7.3.2) (2013-06-18, General Availability) 52
Changes in MySQL NDB Cluster 7.3.1 (5.6.10-ndb-7.3.1) (2013-04-17, Development Milestone) 55
Release Series Changelogs: MySQL NDB Cluster 7.3 .. 58

Changes in MySQL NDB Cluster 7.3.32 (5.6.51-ndb-7.3.32) (2021-01-19, General
Availability) ... 58
Changes in MySQL NDB Cluster 7.3.31 (5.6.50-ndb-7.3.31) (2020-10-20, General
Availability) ... 58
Changes in MySQL NDB Cluster 7.3.30 (5.6.49-ndb-7.3.30) (2020-07-14, General
Availability) ... 59
Changes in MySQL NDB Cluster 7.3.29 (5.6.48-ndb-7.3.29) (2020-04-28, General
Availability) ... 59
Changes in MySQL NDB Cluster 7.3.26 (5.6.45-ndb-7.3.26) (2019-07-23, General
Availability) ... 59
Changes in MySQL NDB Cluster 7.3.25 (5.6.44-ndb-7.3.25) (2019-04-26, General
Availability) ... 60
Changes in MySQL NDB Cluster 7.3.24 (5.6.43-ndb-7.3.24) (2019-01-22, General
Availability) ... 60
Changes in MySQL NDB Cluster 7.3.23 (5.6.42-ndb-7.3.23) (2018-10-23, General
Availability) ... 60
Changes in MySQL NDB Cluster 7.3.22 (5.6.41-ndb-7.3.22) (2018-07-27, General
Availability) ... 61
Changes in MySQL NDB Cluster 7.3.21 (5.6.40-ndb-7.3.21) (2018-04-20, General
Availability) ... 61
Changes in MySQL NDB Cluster 7.3.20 (5.6.39-ndb-7.3.20) (2018-01-17, General
Availability) ... 61
Changes in MySQL NDB Cluster 7.3.19 (5.6.38-ndb-7.3.19) (2017-10-18, General
Availability) ... 62
Changes in MySQL NDB Cluster 7.3.18 (5.6.37-ndb-7.3.18) (2017-07-18, General
Availability) ... 62
Changes in MySQL NDB Cluster 7.3.17 (5.6.36-ndb-7.3.17) (2017-04-10, General
Availability) ... 63
Changes in MySQL NDB Cluster 7.3.16 (5.6.35-ndb-7.3.16) (2017-01-17, General
Availability) ... 63
Changes in MySQL NDB Cluster 7.3.15 (5.6.34-ndb-7.3.15) (2016-10-18, General
Availability) ... 64
Changes in MySQL NDB Cluster 7.3.14 (5.6.31-ndb-7.3.14) (2016-07-18, General
Availability) ... 65
Changes in MySQL NDB Cluster 7.3.13 (5.6.29-ndb-7.3.13) (2016-04-18, General
Availability) ... 66
Changes in MySQL NDB Cluster 7.3.12 (5.6.28-ndb-7.3.12) (2016-01-19, General
Availability) ... 67
Changes in MySQL NDB Cluster 7.3.11 (5.6.27-ndb-7.3.11) (2015-10-19, General
Availability) ... 68
Changes in MySQL NDB Cluster 7.3.10 (5.6.25-ndb-7.3.10) (2015-07-13, General
Availability) ... 70
Changes in MySQL NDB Cluster 7.3.9 (5.6.24-ndb-7.3.9) (2015-04-14, General Availability) ... 73

2

MySQL NDB Cluster 7.3 Release Notes

Changes in MySQL NDB Cluster 7.3.8 (5.6.22-ndb-7.3.8) (2015-01-21, General Availability) ... 75
Changes in MySQL NDB Cluster 7.3.7 (5.6.21-ndb-7.3.7) (2014-10-17, General Availability) ... 79
Changes in MySQL NDB Cluster 7.3.6 (5.6.19-ndb-7.3.6) (2014-07-11, General Availability) ... 82
Changes in MySQL NDB Cluster 7.3.5 (5.6.17-ndb-7.3.5) (2014-04-07, General Availability) ... 86
Changes in MySQL NDB Cluster 7.3.4 (5.6.15-ndb-7.3.4) (2014-02-06, General Availability) ... 89
Changes in MySQL NDB Cluster 7.3.3 (5.6.14-ndb-7.3.3) (2013-11-18, General Availability) ... 91
Changes in MySQL NDB Cluster 7.3.2 (5.6.11-ndb-7.3.2) (2013-06-18, General Availability) ... 95
Changes in MySQL NDB Cluster 7.3.1 (5.6.10-ndb-7.3.1) (2013-04-17, Development
Milestone) ... 97

Index .. 99

Preface and Legal Notices
This document contains release notes for the changes in each release of MySQL NDB Cluster that
uses version 7.3 of the NDB storage engine.

Legal Notices

Copyright © 1997, 2023, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing
restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly
permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,
broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any
form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless
required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-
free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone
licensing it on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated
software, any programs embedded, installed or activated on delivered hardware, and modifications of
such programs) and Oracle computer documentation or other Oracle data delivered to or accessed by
U.S. Government end users are "commercial computer software" or "commercial computer software
documentation" pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, the use, reproduction, duplication, release, display, disclosure,
modification, preparation of derivative works, and/or adaptation of i) Oracle programs (including any
operating system, integrated software, any programs embedded, installed or activated on delivered
hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other
Oracle data, is subject to the rights and limitations specified in the license contained in the applicable
contract. The terms governing the U.S. Government's use of Oracle cloud services are defined by the
applicable contract for such services. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Oracle, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may
be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC
trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. AMD, Epyc, and the AMD logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

3

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html

MySQL NDB Cluster 7.3 Release Notes

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible
for and expressly disclaim all warranties of any kind with respect to third-party content, products,
and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to
your access to or use of third-party content, products, or services, except as set forth in an applicable
agreement between you and Oracle.

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the
following terms:

You may create a printed copy of this documentation solely for your own personal use. Conversion
to other formats is allowed as long as the actual content is not altered or edited in any way. You shall
not publish or distribute this documentation in any form or on any media, except if you distribute the
documentation in a manner similar to how Oracle disseminates it (that is, electronically for download
on a Web site with the software) or on a CD-ROM or similar medium, provided however that the
documentation is disseminated together with the software on the same medium. Any other use, such
as any dissemination of printed copies or use of this documentation, in whole or in part, in another
publication, requires the prior written consent from an authorized representative of Oracle. Oracle and/
or its affiliates reserve any and all rights to this documentation not expressly granted above.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program
website at
https://www.oracle.com/corporate/accessibility/.

Access to Oracle Support for Accessibility

Oracle customers that have purchased support have access to electronic support through My Oracle
Support. For information, visit
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab.

Changes in MySQL NDB Cluster 7.3.33 (5.6.51-ndb-7.3.33)
(2021-04-21, General Availability)

MySQL NDB Cluster 7.3.33 is a new release of NDB Cluster, based on MySQL Server 5.6 and
including features from version 7.3 of the NDB storage engine, as well as fixing a number of recently
discovered bugs in previous NDB Cluster releases.

Obtaining MySQL NDB Cluster 7.3. MySQL NDB Cluster 7.3 source code and binaries can be
obtained from https://dev.mysql.com/downloads/cluster/.

For an overview of changes made in MySQL NDB Cluster 7.3, see What is New in NDB Cluster 7.3.

This release also incorporates all bug fixes and changes made in previous NDB Cluster releases.

Note

NDB 7.3.33 is the final release in the NDB 7.3 series.

Changes in MySQL NDB Cluster 7.3.32 (5.6.51-ndb-7.3.32)
(2021-01-19, General Availability)

MySQL NDB Cluster 7.3.32 is a new release of NDB Cluster, based on MySQL Server 5.6 and
including features from version 7.3 of the NDB storage engine, as well as fixing a number of recently
discovered bugs in previous NDB Cluster releases.

4

https://www.oracle.com/corporate/accessibility/
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-what-is-new-7-3.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html

MySQL NDB Cluster 7.3 Release Notes

Obtaining MySQL NDB Cluster 7.3. MySQL NDB Cluster 7.3 source code and binaries can be
obtained from https://dev.mysql.com/downloads/cluster/.

For an overview of changes made in MySQL NDB Cluster 7.3, see What is New in NDB Cluster 7.3.

This release also incorporates all bug fixes and changes made in previous NDB Cluster releases.

Deprecation and Removal Notes

• NDB Client Programs: Effective with this release, the MySQL NDB Cluster Auto-Installer
(ndb_setup.py) has been has been removed from the NDB Cluster binary and source distributions,
and is no longer supported. (Bug #32084831)

References: See also: Bug #31888835.

• ndbmemcache: ndbmemcache, which was deprecated in the previous release of NDB Cluster, has
now been removed from NDB Cluster, and is no longer supported. (Bug #32106576)

Changes in MySQL NDB Cluster 7.3.31 (5.6.50-ndb-7.3.31)
(2020-10-20, General Availability)

MySQL NDB Cluster 7.3.31 is a new release of NDB Cluster, based on MySQL Server 5.6 and
including features from version 7.3 of the NDB storage engine, as well as fixing a number of recently
discovered bugs in previous NDB Cluster releases.

Obtaining MySQL NDB Cluster 7.3. MySQL NDB Cluster 7.3 source code and binaries can be
obtained from https://dev.mysql.com/downloads/cluster/.

For an overview of changes made in MySQL NDB Cluster 7.3, see What is New in NDB Cluster 7.3.

This release also incorporates all bug fixes and changes made in previous NDB Cluster releases, as
well as all bug fixes and feature changes which were added in mainline MySQL 5.6 through MySQL
5.6.50 (see Changes in MySQL 5.6.50 (2020-10-19, General Availability)).

• Deprecation and Removal Notes

• Bugs Fixed

Deprecation and Removal Notes

• NDB Cluster APIs: Support for Node.js has been removed in this release.

Node.js continues to be supported in NDB Cluster 8.0 only. (Bug #31781948)

• NDB Client Programs: Effective with this release, the MySQL NDB Cluster Auto-Installer
(ndb_setup.py) has been deprecated and is subject to removal in a future version of NDB Cluster.
(Bug #31888835)

• ndbmemcache: ndbmemcache is deprecated in this release of NDB Cluster, and is scheduled for
removal in the next release. (Bug #31876970)

Bugs Fixed

• Packaging: The Dojo library included with NDB Cluster has been upgraded to version 1.15.4. (Bug
#31559518)

5

https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-what-is-new-7-3.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-what-is-new-7-3.html
https://dev.mysql.com/doc/relnotes/mysql/5.6/en/news-5-6-50.html

MySQL NDB Cluster 7.3 Release Notes

Changes in MySQL NDB Cluster 7.3.30 (5.6.49-ndb-7.3.30)
(2020-07-14, General Availability)

MySQL NDB Cluster 7.3.30 is a new release of NDB Cluster, based on MySQL Server 5.6 and
including features from version 7.3 of the NDB storage engine, as well as fixing a number of recently
discovered bugs in previous NDB Cluster releases.

Obtaining MySQL NDB Cluster 7.3. MySQL NDB Cluster 7.3 source code and binaries can be
obtained from https://dev.mysql.com/downloads/cluster/.

For an overview of changes made in MySQL NDB Cluster 7.3, see What is New in NDB Cluster 7.3.

This release also incorporates all bug fixes and changes made in previous NDB Cluster releases, as
well as all bug fixes and feature changes which were added in mainline MySQL 5.6 through MySQL
5.6.49 (see Changes in MySQL 5.6.49 (2020-07-13, General Availability)).

Bugs Fixed

• During a node restart, the SUMA block of the node that is starting must get a copy of the subscriptions
(events with subscribers) and subscribers (NdbEventOperation instances which are executing)
from a node already running. Before the copy is complete, nodes which are still starting ignore any
user-level SUB_START or SUB_STOP requests; after the copy is done, they can participate in such
requests. While the copy operation is in progress, user-level SUB_START and SUB_STOP requests
are blocked using a DICT lock.

An issue was found whereby a starting node could participate in SUB_START and SUB_STOP
requests after the lock was requested, but before it is granted, which resulted in unsuccessful
SUB_START and SUB_STOP requests. This fix ensures that the nodes cannot participate in these
requests until after the DICT lock has actually been granted. (Bug #31302657)

• The Dojo toolkit included with NDB Cluster and used by the Auto-Installer was upgraded to version
1.15.3. (Bug #31029110)

• When executing any of the SHUTDOWN, ALL STOP, or ALL RESTART management commands, it is
possible for different nodes to attempt to stop on different global checkpoint index (CGI) boundaries.
If they succeed in doing so, then a subsequent system restart is slower than normal because any
nodes having an earlier stop GCI must undergo takeover as part of the process. When nodes
failing on the first GCI boundary cause surviving nodes to be nonviable, surviving nodes suffer an
arbitration failure; this has the positive effect of causing such nodes to halt at the correct GCI, but
can give rise to spurious errors or similar.

To avoid such issues, extra synchronization is now performed during a planned shutdown to reduce
the likelihood that different data nodes attempt to shut down at different GCIs as well as the use of
unnecessary node takeovers during system restarts. (Bug #31008713)

Changes in MySQL NDB Cluster 7.3.29 (5.6.48-ndb-7.3.29)
(2020-04-28, General Availability)

MySQL NDB Cluster 7.3.29 is a new release of NDB Cluster, based on MySQL Server 5.6 and
including features from version 7.3 of the NDB storage engine, as well as fixing a number of recently
discovered bugs in previous NDB Cluster releases.

Obtaining MySQL NDB Cluster 7.3. MySQL NDB Cluster 7.3 source code and binaries can be
obtained from https://dev.mysql.com/downloads/cluster/.

For an overview of changes made in MySQL NDB Cluster 7.3, see What is New in NDB Cluster 7.3.

This release also incorporates all bug fixes and changes made in previous NDB Cluster releases, as
well as all bug fixes and feature changes which were added in mainline MySQL 5.6 through MySQL
5.6.48 (see Changes in MySQL 5.6.48 (2020-04-27, General Availability)) .

6

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-what-is-new-7-3.html
https://dev.mysql.com/doc/relnotes/mysql/5.6/en/news-5-6-49.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-suma.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbeventoperation.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbdict.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbdict.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-mgm-client-commands.html#ndbclient-shutdown
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-mgm-client-commands.html#ndbclient-stop
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-mgm-client-commands.html#ndbclient-restart
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-what-is-new-7-3.html
https://dev.mysql.com/doc/relnotes/mysql/5.6/en/news-5-6-48.html

MySQL NDB Cluster 7.3 Release Notes

Bugs Fixed

• For NDB tables having no explicit primary key, NdbReceiverBuffer could be allocated with too
small a size. This was due to the fact that the attribute bitmap sent to NDB from the data nodes
always includes the primary key. The extra space required for hidden primary keys is now taken into
consideration in such cases. (Bug #30183466)

Changes in MySQL NDB Cluster 7.3.28 (5.6.47-ndb-7.3.28)
(2020-01-14, General Availability)

MySQL NDB Cluster 7.3.28 is a new release of NDB Cluster which upgrades the included MySQL
Server from version 5.6.46 to 5.6.47. No changes have been made in the NDB storage engine for this
release, which is identical in this respect with NDB 7.3.27.

Obtaining MySQL NDB Cluster 7.3. MySQL NDB Cluster 7.3 source code and binaries can be
obtained from https://dev.mysql.com/downloads/cluster/.

For an overview of changes made in MySQL NDB Cluster 7.3, see What is New in NDB Cluster 7.3.

This release also incorporates all bug fixes and changes made in previous NDB Cluster releases, as
well as all bug fixes and feature changes which were added in mainline MySQL 5.6 through MySQL
5.6.47 .

Changes in MySQL NDB Cluster 7.3.27 (5.6.46-ndb-7.3.27)
(2019-10-15, General Availability)

MySQL NDB Cluster 7.3.27 is a new release of NDB Cluster which upgrades the included MySQL
Server from version 5.6.45 to 5.6.46. No changes have been made in the NDB storage engine for this
release, which is identical in this respect with NDB 7.3.26.

Obtaining MySQL NDB Cluster 7.3. MySQL NDB Cluster 7.3 source code and binaries can be
obtained from https://dev.mysql.com/downloads/cluster/.

For an overview of changes made in MySQL NDB Cluster 7.3, see What is New in NDB Cluster 7.3.

This release also incorporates all bug fixes and changes made in previous NDB Cluster releases, as
well as all bug fixes and feature changes which were added in mainline MySQL 5.6 through MySQL
5.6.46 (see Changes in MySQL 5.6.46 (2019-10-14, General Availability)).

Changes in MySQL NDB Cluster 7.3.26 (5.6.45-ndb-7.3.26)
(2019-07-23, General Availability)

MySQL NDB Cluster 7.3.26 is a new release of NDB Cluster, based on MySQL Server 5.6 and
including features from version 7.3 of the NDB storage engine, as well as fixing a number of recently
discovered bugs in previous NDB Cluster releases.

Obtaining MySQL NDB Cluster 7.3. MySQL NDB Cluster 7.3 source code and binaries can be
obtained from https://dev.mysql.com/downloads/cluster/.

For an overview of changes made in MySQL NDB Cluster 7.3, see What is New in NDB Cluster 7.3.

This release also incorporates all bug fixes and changes made in previous NDB Cluster releases, as
well as all bug fixes and feature changes which were added in mainline MySQL 5.6 through MySQL
5.6.45 (see Changes in MySQL 5.6.45 (2019-07-22, General Availability)).

Bugs Fixed

• The requestInfo fields for the long and short forms of the LQHKEYREQ signal had different
definitions; bits used for the key length in the short version were reused for flags in the long version,

7

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-what-is-new-7-3.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-what-is-new-7-3.html
https://dev.mysql.com/doc/relnotes/mysql/5.6/en/news-5-6-46.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-what-is-new-7-3.html
https://dev.mysql.com/doc/relnotes/mysql/5.6/en/news-5-6-45.html

MySQL NDB Cluster 7.3 Release Notes

since the key length is implicit in the section length of the long version of the signal but it was
possible for long LQHKEYREQ signals to contain a keylength in these same bits, which could be
misinterpreted by the receiving local query handler, potentially leading to errors. Checks have now
been implemented to make sure that this no longer happens. (Bug #29820838)

• ndb_restore --restore-epoch incorrectly reported the stop GCP as 1 less than the actual
position. (Bug #29343655)

Changes in MySQL NDB Cluster 7.3.25 (5.6.44-ndb-7.3.25)
(2019-04-26, General Availability)

MySQL NDB Cluster 7.3.25 is a new release of NDB Cluster, based on MySQL Server 5.6 and
including features from version 7.3 of the NDB storage engine, as well as fixing a number of recently
discovered bugs in previous NDB Cluster releases.

Obtaining MySQL NDB Cluster 7.3. MySQL NDB Cluster 7.3 source code and binaries can be
obtained from https://dev.mysql.com/downloads/cluster/.

For an overview of changes made in MySQL NDB Cluster 7.3, see What is New in NDB Cluster 7.3.

This release also incorporates all bug fixes and changes made in previous NDB Cluster releases, as
well as all bug fixes and feature changes which were added in mainline MySQL 5.6 through MySQL
5.6.44 (see Changes in MySQL 5.6.44 (2019-04-25, General Availability)).

• Functionality Added or Changed

• Bugs Fixed

Functionality Added or Changed

• Building with CMake3 is now supported by the compile-cluster script included in the NDB source
distribution. (WL #12303)

Bugs Fixed

• Important Change: The dependency of ndb_restore on the NDBT library, which is used
for internal testing only, has been removed. This means that the program no longer prints
NDBT_ProgramExit: ... when terminating. Applications that depend upon this behavior should
be updated to reflect this change when upgrading to this release. (WL #13117)

• An NDB table having both a foreign key on another NDB table using ON DELETE CASCADE and one
or more TEXT or BLOB columns leaked memory.

As part of this fix, ON DELETE CASCADE is no longer supported for foreign keys on NDB tables
when the child table contains a column that uses any of the BLOB or TEXT types. (Bug #89511, Bug
#27484882)

Changes in MySQL NDB Cluster 7.3.24 (5.6.43-ndb-7.3.24)
(2019-01-22, General Availability)

MySQL NDB Cluster 7.3.24 is a new release of NDB Cluster, based on MySQL Server 5.6 and
including features from version 7.3 of the NDB storage engine, as well as fixing a number of recently
discovered bugs in previous NDB Cluster releases.

Obtaining MySQL NDB Cluster 7.3. MySQL NDB Cluster 7.3 source code and binaries can be
obtained from https://dev.mysql.com/downloads/cluster/.

For an overview of changes made in MySQL NDB Cluster 7.3, see What is New in NDB Cluster 7.3.

8

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_restore-epoch
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-what-is-new-7-3.html
https://dev.mysql.com/doc/relnotes/mysql/5.6/en/news-5-6-44.html
https://dev.mysql.com/doc/refman/5.6/en/blob.html
https://dev.mysql.com/doc/refman/5.6/en/blob.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-what-is-new-7-3.html

MySQL NDB Cluster 7.3 Release Notes

This release also incorporates all bug fixes and changes made in previous NDB Cluster releases, as
well as all bug fixes and feature changes which were added in mainline MySQL 5.6 through MySQL
5.6.43 (see Changes in MySQL 5.6.43 (2019-01-21, General Availability)).

Bugs Fixed

• Asynchronous disconnection of mysqld from the cluster caused any subsequent attempt to
start an NDB API transaction to fail. If this occurred during a bulk delete operation, the SQL
layer called HA::end_bulk_delete(), whose implementation by ha_ndbcluster assumed
that a transaction had been started, and could fail if this was not the case. This problem is fixed
by checking that the transaction pointer used by this method is set before referencing it. (Bug
#20116393)

Changes in MySQL NDB Cluster 7.3.23 (5.6.42-ndb-7.3.23)
(2018-10-23, General Availability)

MySQL NDB Cluster 7.3.23 is a new release of NDB Cluster, based on MySQL Server 5.6 and
including features from version 7.3 of the NDB storage engine, as well as fixing a number of recently
discovered bugs in previous NDB Cluster releases.

Obtaining MySQL NDB Cluster 7.3. MySQL NDB Cluster 7.3 source code and binaries can be
obtained from https://dev.mysql.com/downloads/cluster/.

For an overview of changes made in MySQL NDB Cluster 7.3, see What is New in NDB Cluster 7.3.

This release also incorporates all bug fixes and changes made in previous NDB Cluster releases, as
well as all bug fixes and feature changes which were added in mainline MySQL 5.6 through MySQL
5.6.42 (see Changes in MySQL 5.6.42 (2018-10-22, General Availability)).

Bugs Fixed

• Having a large number of deferred triggers could sometimes lead to job buffer exhaustion. This
could occur due to the fact that a single trigger can execute many operations—for example, a foreign
key parent trigger may perform operations on multiple matching child table rows—and that a row
operation on a base table can execute multiple triggers. In such cases, row operations are executed
in batches. When execution of many triggers was deferred—meaning that all deferred triggers are
executed at pre-commit—the resulting concurrent execution of a great many trigger operations could
cause the data node job buffer or send buffer to be exhausted, leading to failure of the node.

This issue is fixed by limiting the number of concurrent trigger operations as well as the number of
trigger fire requests outstanding per transaction.

For immediate triggers, limiting of concurrent trigger operations may increase the number of triggers
waiting to be executed, exhausting the trigger record pool and resulting in the error Too many
concurrently fired triggers (increase MaxNoOfFiredTriggers. This can be avoided
by increasing MaxNoOfFiredTriggers, reducing the user transaction batch size, or both. (Bug
#22529864)

References: See also: Bug #18229003, Bug #27310330.

Changes in MySQL NDB Cluster 7.3.22 (5.6.41-ndb-7.3.22)
(2018-07-27, General Availability)

MySQL NDB Cluster 7.3.22 is a new release of NDB Cluster, based on MySQL Server 5.6 and
including features from version 7.3 of the NDB storage engine, as well as fixing a number of recently
discovered bugs in previous NDB Cluster releases.

Obtaining MySQL NDB Cluster 7.3. MySQL NDB Cluster 7.3 source code and binaries can be
obtained from https://dev.mysql.com/downloads/cluster/.

9

https://dev.mysql.com/doc/relnotes/mysql/5.6/en/news-5-6-43.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-what-is-new-7-3.html
https://dev.mysql.com/doc/relnotes/mysql/5.6/en/news-5-6-42.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxnooffiredtriggers
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/downloads/cluster/

MySQL NDB Cluster 7.3 Release Notes

For an overview of changes made in MySQL NDB Cluster 7.3, see What is New in NDB Cluster 7.3.

This release also incorporates all bug fixes and changes made in previous NDB Cluster releases, as
well as all bug fixes and feature changes which were added in mainline MySQL 5.6 through MySQL
5.6.41 (see Changes in MySQL 5.6.41 (2018-07-27, General Availability)).

Bugs Fixed

• An internal buffer being reused immediately after it had been freed could lead to an unplanned data
node shutdown. (Bug #27622643)

References: See also: Bug #28698831.

• An NDB online backup consists of data, which is fuzzy, and a redo and undo log. To restore to a
consistent state it is necessary to ensure that the log contains all of the changes spanning the
capture of the fuzzy data portion and beyond to a consistent snapshot point. This is achieved by
waiting for a GCI boundary to be passed after the capture of data is complete, but before stopping
change logging and recording the stop GCI in the backup's metadata.

At restore time, the log is replayed up to the stop GCI, restoring the system to the state it had at the
consistent stop GCI. A problem arose when, under load, it was possible to select a GCI boundary
which occurred too early and did not span all the data captured. This could lead to inconsistencies
when restoring the backup; these could be noticed as broken constraints or corrupted BLOB entries.

Now the stop GCI is chosen is so that it spans the entire duration of the fuzzy data capture process,
so that the backup log always contains all data within a given stop GCI. (Bug #27497461)

References: See also: Bug #27566346.

Changes in MySQL NDB Cluster 7.3.21 (5.6.40-ndb-7.3.21)
(2018-04-20, General Availability)

MySQL NDB Cluster 7.3.21 is a new release of NDB Cluster, based on MySQL Server 5.6 and
including features from version 7.3 of the NDB storage engine, as well as fixing a number of recently
discovered bugs in previous NDB Cluster releases.

Obtaining MySQL NDB Cluster 7.3. MySQL NDB Cluster 7.3 source code and binaries can be
obtained from https://dev.mysql.com/downloads/cluster/.

For an overview of changes made in MySQL NDB Cluster 7.3, see What is New in NDB Cluster 7.3.

This release also incorporates all bug fixes and changes made in previous NDB Cluster releases, as
well as all bug fixes and feature changes which were added in mainline MySQL 5.6 through MySQL
5.6.40 (see Changes in MySQL 5.6.40 (2018-04-19, General Availability)).

Bugs Fixed

• NDB Cluster APIs: Incorrect results, usually an empty result set, were returned when setBound()
was used to specify a NULL bound. This issue appears to have been caused by a problem in gcc,
limited to cases using the old version of this method (which does not employ NdbRecord), and
is fixed by rewriting the problematic internal logic in the old implementation. (Bug #89468, Bug
#27461752)

• Queries using very large lists with IN were not handled correctly, which could lead to data node
failures. (Bug #27397802)

References: See also: Bug #28728603.

• ndb_restore --print-data --hex did not print trailing 0s of LONGVARBINARY values. (Bug
#65560, Bug #14198580)

10

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-what-is-new-7-3.html
https://dev.mysql.com/doc/relnotes/mysql/5.6/en/news-5-6-41.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/blob.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-what-is-new-7-3.html
https://dev.mysql.com/doc/relnotes/mysql/5.6/en/news-5-6-40.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbindexscanoperation.html#ndb-ndbindexscanoperation-setbound
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbrecord.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_print-data
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_hex
https://dev.mysql.com/doc/refman/5.6/en/blob.html

MySQL NDB Cluster 7.3 Release Notes

Changes in MySQL NDB Cluster 7.3.20 (5.6.39-ndb-7.3.20)
(2018-01-17, General Availability)

MySQL NDB Cluster 7.3.20 is a new release of NDB Cluster, based on MySQL Server 5.6 and
including features from version 7.3 of the NDB storage engine, as well as fixing a number of recently
discovered bugs in previous NDB Cluster releases.

Obtaining MySQL NDB Cluster 7.3. MySQL NDB Cluster 7.3 source code and binaries can be
obtained from https://dev.mysql.com/downloads/cluster/.

For an overview of changes made in MySQL NDB Cluster 7.3, see What is New in NDB Cluster 7.3.

This release also incorporates all bug fixes and changes made in previous NDB Cluster releases, as
well as all bug fixes and feature changes which were added in mainline MySQL 5.6 through MySQL
5.6.39 (see Changes in MySQL 5.6.39 (2018-01-15, General Availability)).

Bugs Fixed

• NDB Replication: On an SQL node not being used for a replication channel with sql_log_bin=0
it was possible after creating and populating an NDB table for a table map event to be written to the
binary log for the created table with no corresponding row events. This led to problems when this log
was later used by a slave cluster replicating from the mysqld where this table was created.

Fixed this by adding support for maintaining a cumulative any_value bitmap for global checkpoint
event operations that represents bits set consistently for all rows of a specific table in a given epoch,
and by adding a check to determine whether all operations (rows) for a specific table are all marked
as NOLOGGING, to prevent the addition of this table to the Table_map held by the binlog injector.

As part of this fix, the NDB API adds a new getNextEventOpInEpoch3() method which
provides information about any AnyValue received by making it possible to retrieve the cumulative
any_value bitmap. (Bug #26333981)

• A query against the INFORMATION_SCHEMA.FILES table returned no results when it included an
ORDER BY clause. (Bug #26877788)

• Following TRUNCATE TABLE on an NDB table, its AUTO_INCREMENT ID was not reset on an SQL
node not performing binary logging. (Bug #14845851)

• The NDBFS block's OM_SYNC flag is intended to make sure that all FSWRITEREQ signals used for
a given file are synchronized, but was ignored by platforms that do not support O_SYNC, meaning
that this feature did not behave properly on those platforms. Now the synchronization flag is used on
those platforms that do not support O_SYNC. (Bug #76975, Bug #21049554)

Changes in MySQL NDB Cluster 7.3.19 (5.6.38-ndb-7.3.19)
(2017-10-18, General Availability)

MySQL NDB Cluster 7.3.19 is a new release of NDB Cluster, based on MySQL Server 5.6 and
including features from version 7.3 of the NDB storage engine, as well as fixing a number of recently
discovered bugs in previous NDB Cluster releases.

Obtaining MySQL NDB Cluster 7.3. MySQL NDB Cluster 7.3 source code and binaries can be
obtained from https://dev.mysql.com/downloads/cluster/.

For an overview of changes made in MySQL NDB Cluster 7.3, see What is New in NDB Cluster 7.3.

This release also incorporates all bug fixes and changes made in previous NDB Cluster releases, as
well as all bug fixes and feature changes which were added in mainline MySQL 5.6 through MySQL
5.6.38 (see Changes in MySQL 5.6.38 (2017-10-16, General Availability)).

11

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-what-is-new-7-3.html
https://dev.mysql.com/doc/relnotes/mysql/5.6/en/news-5-6-39.html
https://dev.mysql.com/doc/refman/5.6/en/replication-options-binary-log.html#sysvar_sql_log_bin
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-getnexteventopinepoch3
https://dev.mysql.com/doc/refman/5.6/en/information-schema-files-table.html
https://dev.mysql.com/doc/refman/5.6/en/truncate-table.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-what-is-new-7-3.html
https://dev.mysql.com/doc/relnotes/mysql/5.6/en/news-5-6-38.html

MySQL NDB Cluster 7.3 Release Notes

Bugs Fixed

• Added DUMP code 7027 to facilitate testing of issues relating to local checkpoints. For more
information, see DUMP 7027. (Bug #26661468)

• A previous fix intended to improve logging of node failure handling in the transaction coordinator
included logging of transactions that could occur in normal operation, which made the resulting logs
needlessly verbose. Such normal transactions are no longer written to the log in such cases. (Bug
#26568782)

References: This issue is a regression of: Bug #26364729.

• Some DUMP codes used for the LGMAN kernel block were incorrectly assigned numbers in the
range used for codes belonging to DBTUX. These have now been assigned symbolic constants and
numbers in the proper range (10001, 10002, and 10003). (Bug #26365433)

• Node failure handling in the DBTC kernel block consists of a number of tasks which execute
concurrently, and all of which must complete before TC node failure handling is complete. This fix
extends logging coverage to record when each task completes, and which tasks remain, includes the
following improvements:

• Handling interactions between GCP and node failure handling interactions, in which TC takeover
causes GCP participant stall at the master TC to allow it to extend the current GCI with any
transactions that were taken over; the stall can begin and end in different GCP protocol states.
Logging coverage is extended to cover all scenarios. Debug logging is now more consistent and
understandable to users.

• Logging done by the QMGR block as it monitors duration of node failure handling duration is done
more frequently. A warning log is now generated every 30 seconds (instead of 1 minute), and this
now includes DBDIH block debug information (formerly this was written separately, and less often).

• To reduce space used, DBTC instance number: is shortened to DBTC number:.

• A new error code is added to assist testing.

(Bug #26364729)

• A potential hundredfold signal fan-out when sending a START_FRAG_REQ signal could lead to a node
failure due to a job buffer full error in start phase 5 while trying to perform a local checkpoint
during a restart. (Bug #86675, Bug #26263397)

References: See also: Bug #26288247, Bug #26279522.

Changes in MySQL NDB Cluster 7.3.18 (5.6.37-ndb-7.3.18)
(2017-07-18, General Availability)

MySQL NDB Cluster 7.3.18 is a new release of NDB Cluster, based on MySQL Server 5.6 and
including features from version 7.3 of the NDB storage engine, as well as fixing a number of recently
discovered bugs in previous NDB Cluster releases.

Obtaining MySQL NDB Cluster 7.3. MySQL NDB Cluster 7.3 source code and binaries can be
obtained from https://dev.mysql.com/downloads/cluster/.

For an overview of changes made in MySQL NDB Cluster 7.3, see What is New in NDB Cluster 7.3.

This release also incorporates all bug fixes and changes made in previous NDB Cluster releases, as
well as all bug fixes and feature changes which were added in mainline MySQL 5.6 through MySQL
5.6.37 (see Changes in MySQL 5.6.37 (2017-07-17, General Availability)).

• Functionality Added or Changed

12

https://dev.mysql.com/doc/ndb-internals/en/dump-command-7027.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-what-is-new-7-3.html
https://dev.mysql.com/doc/relnotes/mysql/5.6/en/news-5-6-37.html

MySQL NDB Cluster 7.3 Release Notes

• Bugs Fixed

Functionality Added or Changed

• Important Change; MySQL NDB ClusterJ: The ClusterJPA plugin for OpenJPA is no longer
supported by NDB Cluster, and has been removed from the distribution. (Bug #23563810)

Bugs Fixed

• NDB Replication: Added a check to stop an NDB replication slave when configuration as a
multithreaded slave is detected (for example, if slave_parallel_workers is set to a nonzero
value). (Bug #21074209)

• MySQL NDB ClusterJ: Compilation for the tests for NDB JTie failed. It was due to how null
references were handled, which has been corrected by this fix. (Bug #26080804)

• Backup .log files contained log entries for one or more extra fragments, due to an issue with
filtering out changes logged by other nodes in the same node group. This resulted in a larger .log
file and thus use of more resources than necessary; it could also cause problems when restoring,
since backups from different nodes could interfere with one another while the log was being applied.
(Bug #25891014)

• Error 240 is raised when there is a mismatch between foreign key trigger columns and the values
supplied to them during trigger execution, but had no error message indicating the source of the
problem. (Bug #23141739)

References: See also: Bug #23068914, Bug #85857.

• ALTER TABLE .. MAX_ROWS=0 can now be performed only by using a copying ALTER TABLE
statement. Resetting MAX_ROWS to 0 can no longer be performed using ALGORITHM=INPLACE or
the ONLINE keyword. (Bug #21960004)

• When compiling the NDB kernel with gcc version 6.0.0 or later, it is now built using -flifetime-
dse=1. (Bug #85381, Bug #25690926)

Changes in MySQL NDB Cluster 7.3.17 (5.6.36-ndb-7.3.17)
(2017-04-10, General Availability)

MySQL NDB Cluster 7.3.17 is a new release of NDB Cluster, based on MySQL Server 5.6 and
including features from version 7.3 of the NDB storage engine, as well as fixing a number of recently
discovered bugs in previous NDB Cluster releases.

Obtaining MySQL NDB Cluster 7.3. MySQL NDB Cluster 7.3 source code and binaries can be
obtained from https://dev.mysql.com/downloads/cluster/.

For an overview of changes made in MySQL NDB Cluster 7.3, see What is New in NDB Cluster 7.3.

This release also incorporates all bug fixes and changes made in previous NDB Cluster releases, as
well as all bug fixes and feature changes which were added in mainline MySQL 5.6 through MySQL
5.6.36 (see Changes in MySQL 5.6.36 (2017-04-10, General Availability)).

Bugs Fixed

• NDB Disk Data: Stale data from NDB Disk Data tables that had been dropped could potentially
be included in backups due to the fact that disk scans were enabled for these. To prevent this
possibility, disk scans are now disabled—as are other types of scans—when taking a backup. (Bug
#84422, Bug #25353234)

• NDB Disk Data: In some cases, setting dynamic in-memory columns of an NDB Disk Data table to
NULL was not handled correctly. (Bug #79253, Bug #22195588)

13

https://dev.mysql.com/doc/refman/5.6/en/replication-options-replica.html#sysvar_slave_parallel_workers
https://dev.mysql.com/doc/refman/5.6/en/alter-table.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-what-is-new-7-3.html
https://dev.mysql.com/doc/relnotes/mysql/5.6/en/news-5-6-36.html

MySQL NDB Cluster 7.3 Release Notes

Changes in MySQL NDB Cluster 7.3.16 (5.6.35-ndb-7.3.16)
(2017-01-17, General Availability)

MySQL NDB Cluster 7.3.16 is a new release of NDB Cluster, based on MySQL Server 5.6 and
including features from version 7.3 of the NDB storage engine, as well as fixing a number of recently
discovered bugs in previous NDB Cluster releases.

Obtaining MySQL NDB Cluster 7.3. MySQL NDB Cluster 7.3 source code and binaries can be
obtained from https://dev.mysql.com/downloads/cluster/.

For an overview of changes made in MySQL NDB Cluster 7.3, see What is New in NDB Cluster 7.3.

This release also incorporates all bug fixes and changes made in previous NDB Cluster releases, as
well as all bug fixes and feature changes which were added in mainline MySQL 5.6 through MySQL
5.6.35 (see Changes in MySQL 5.6.35 (2016-12-12, General Availability)).

Bugs Fixed

• ndb_restore did not restore tables having more than 341 columns correctly. This was due to the
fact that the buffer used to hold table metadata read from .ctl files was of insufficient size, so that
only part of the table descriptor could be read from it in such cases. This issue is fixed by increasing
the size of the buffer used by ndb_restore for file reads. (Bug #25182956)

References: See also: Bug #25302901.

• The rand() function was used to produce a unique table ID and table version needed to identify a
schema operation distributed between multiple SQL nodes, relying on the assumption that rand()
would never produce the same numbers on two different instances of mysqld. It was later determined
that this is not the case, and that in fact it is very likely for the same random numbers to be produced
on all SQL nodes.

This fix removes the usage of rand() for producing a unique table ID or version, and instead uses
a sequence in combination with the node ID of the coordinator. This guarantees uniqueness until the
counter for the sequence wraps, which should be sufficient for this purpose.

The effects of this duplication could be observed as timeouts in the log (for example NDB create
db: waiting max 119 sec for distributing) when restarting multiple mysqld processes
simultaneously or nearly so, or when issuing the same CREATE DATABASE or DROP DATABASE
statement on multiple SQL nodes. (Bug #24926009)

• Long message buffer exhaustion when firing immediate triggers could result in row ID leaks;
this could later result in persistent RowId already allocated errors (NDB Error 899). (Bug
#23723110)

References: See also: Bug #19506859, Bug #13927679.

• when a parent NDB table in a foreign key relationship was updated, the update cascaded to a child
table as expected, but the change was not cascaded to a child table of this child table (that is, to a
grandchild of the original parent). This can be illustrated using the tables generated by the following
CREATE TABLE statements:

CREATE TABLE parent(
 id INT PRIMARY KEY AUTO_INCREMENT,
 col1 INT UNIQUE,
 col2 INT
) ENGINE NDB;

CREATE TABLE child(
 ref1 INT UNIQUE,
 FOREIGN KEY fk1(ref1)
 REFERENCES parent(col1) ON UPDATE CASCADE
) ENGINE NDB;

14

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-what-is-new-7-3.html
https://dev.mysql.com/doc/relnotes/mysql/5.6/en/news-5-6-35.html
https://dev.mysql.com/doc/refman/5.6/en/create-database.html
https://dev.mysql.com/doc/refman/5.6/en/drop-database.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/create-table.html

MySQL NDB Cluster 7.3 Release Notes

CREATE TABLE grandchild(
 ref2 INT,
 FOREIGN KEY fk2(ref2)
 REFERENCES child(ref1) ON UPDATE CASCADE
) ENGINE NDB;

Table child is a child of table parent; table grandchild is a child of table child, and a
grandchild of parent. In this scenario, a change to column col1 of parent cascaded to ref1 in
table child, but it was not always propagated in turn to ref2 in table grandchild. (Bug #83743,
Bug #25063506)

Changes in MySQL NDB Cluster 7.3.15 (5.6.34-ndb-7.3.15)
(2016-10-18, General Availability)

MySQL NDB Cluster 7.3.15 is a new release of NDB Cluster, based on MySQL Server 5.6 and
including features from version 7.3 of the NDB storage engine, as well as fixing a number of recently
discovered bugs in previous NDB Cluster releases.

Obtaining MySQL NDB Cluster 7.3. MySQL NDB Cluster 7.3 source code and binaries can be
obtained from https://dev.mysql.com/downloads/cluster/.

For an overview of changes made in MySQL NDB Cluster 7.3, see What is New in NDB Cluster 7.3.

This release also incorporates all bug fixes and changes made in previous NDB Cluster releases, as
well as all bug fixes and feature changes which were added in mainline MySQL 5.6 through MySQL
5.6.34 (see Changes in MySQL 5.6.34 (2016-10-12, General Availability)).

• Functionality Added or Changed

• Bugs Fixed

Functionality Added or Changed

• MySQL NDB ClusterJ: To help applications handle database errors better, a number of new
features have been added to the ClusterJDatastoreException class:

• A new method, getCode(), returns code from the NdbError object.

• A new method, getMysqlCode(), returns mysql_code from the NdbError object.

• A new subclass, ClusterJDatastoreException.Classification, gives users the ability to
decode the result from getClassification(). The method Classification.toString()
gives the name of the error classification as listed in NDB Error Classifications.

(Bug #22353594)

Bugs Fixed

• NDB Cluster APIs: Reuse of transaction IDs could occur when Ndb objects were created and
deleted concurrently. As part of this fix, the NDB API methods lock_ndb_objects() and
unlock_ndb_objects are now declared as const. (Bug #23709232)

• Removed an invalid assertion to the effect that all cascading child scans are closed at the time
API connection records are released following an abort of the main transaction. The assertion was
invalid because closing of scans in such cases is by design asynchronous with respect to the main
transaction, which means that subscans may well take some time to close after the main transaction
is closed. (Bug #23709284)

• A number of potential buffer overflow issues were found and fixed in the NDB codebase. (Bug
#23152979)

15

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-what-is-new-7-3.html
https://dev.mysql.com/doc/relnotes/mysql/5.6/en/news-5-6-34.html
https://dev.mysql.com/doc/ndbapi/en/ndb-error-classifications.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb-cluster-connection.html#ndb-ndb-cluster-connection-lock-ndb-objects
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb-cluster-connection.html#ndb-ndb-cluster-connection-unlock-ndb-objects

MySQL NDB Cluster 7.3 Release Notes

• When a data node has insufficient redo buffer during a system restart, it does not participate in the
restart until after the other nodes have started. After this, it performs a takeover of its fragments from
the nodes in its node group that have already started; during this time, the cluster is already running
and user activity is possible, including DML and DDL operations.

During a system restart, table creation is handled differently in the DIH kernel block than normally, as
this creation actually consists of reloading table definition data from disk on the master node. Thus,
DIH assumed that any table creation that occurred before all nodes had restarted must be related
to the restart and thus always on the master node. However, during the takeover, table creation can
occur on non-master nodes due to user activity; when this happened, the cluster underwent a forced
shutdown.

Now an extra check is made during system restarts to detect in such cases whether the executing
node is the master node, and use that information to determine whether the table creation is part of
the restart proper, or is taking place during a subsequent takeover. (Bug #23028418)

• When restoring a backup taken from a database containing tables that had foreign keys,
ndb_restore disabled the foreign keys for data, but not for the logs. (Bug #83155, Bug #24736950)

• Several object constructors and similar functions in the NDB codebase did not always perform sanity
checks when creating new instances. These checks are now performed under such circumstances.
(Bug #77408, Bug #21286722)

• An internal call to malloc() was not checked for NULL. The function call was replaced with a direct
write. (Bug #77375, Bug #21271194)

Changes in MySQL NDB Cluster 7.3.14 (5.6.31-ndb-7.3.14)
(2016-07-18, General Availability)

MySQL NDB Cluster 7.3.14 is a new release of NDB Cluster, based on MySQL Server 5.6 and
including features from version 7.3 of the NDB storage engine, as well as fixing a number of recently
discovered bugs in previous NDB Cluster releases.

Obtaining MySQL NDB Cluster 7.3. MySQL NDB Cluster 7.3 source code and binaries can be
obtained from https://dev.mysql.com/downloads/cluster/.

For an overview of changes made in MySQL NDB Cluster 7.3, see What is New in NDB Cluster 7.3.

This release also incorporates all bug fixes and changes made in previous NDB Cluster releases, as
well as all bug fixes and feature changes which were added in mainline MySQL 5.6 through MySQL
5.6.31 (see Changes in MySQL 5.6.31 (2016-06-02, General Availability)).

• Functionality Added or Changed

• Bugs Fixed

Functionality Added or Changed

• MySQL NDB ClusterJ: To make it easier for ClusterJ to handle fatal errors that require the
SessionFactory to be closed, a new public method in the SessionFactory interface,
getConnectionPoolSessionCounts(), has been created. When it returns zeros for all pooled
connections, it means all sessions have been closed, at which point the SessionFactory can be
closed and reopened. See Error Handling and Reconnection for more detail. (Bug #22353594)

Bugs Fixed

• Incompatible Change: When the data nodes are only partially connected to the API nodes, a node
used for a pushdown join may get its request from a transaction coordinator on a different node,
without (yet) being connected to the API node itself. In such cases, the NodeInfo object for the
requesting API node contained no valid info about the software version of the API node, which

16

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-what-is-new-7-3.html
https://dev.mysql.com/doc/relnotes/mysql/5.6/en/news-5-6-31.html
https://dev.mysql.com/doc/ndbapi/en/mccj-clusterj-sessionfactory.html#mccj-clusterj-sessionfactory-getconnectionpoolsessioncounts
https://dev.mysql.com/doc/ndbapi/en/mccj-using-clusterj-start.html#mccj-using-clusterj-reconnect

MySQL NDB Cluster 7.3 Release Notes

caused the DBSPJ block to assume (incorrectly) when aborting to assume that the API node used
NDB version 7.2.4 or earlier, requiring the use of a backward compatability mode to be used during
query abort which sent a node failure error instead of the real error causing the abort.

Now, whenever this situation occurs, it is assumed that, if the NDB software version is not yet
available, the API node version is greater than 7.2.4. (Bug #23049170)

• NDB Cluster APIs: Deletion of Ndb objects used a dispoportionately high amount of CPU. (Bug
#22986823)

• Reserved send buffer for the loopback transporter, introduced in MySQL NDB Cluster 7.4.8 and
used by API and management nodes for administrative signals, was calculated incorrectly. (Bug
#23093656, Bug #22016081)

References: This issue is a regression of: Bug #21664515.

• During a node restart, re-creation of internal triggers used for verifying the referential integrity of
foreign keys was not reliable, because it was possible that not all distributed TC and LDM instances
agreed on all trigger identities. To fix this problem, an extra step is added to the node restart
sequence, during which the trigger identities are determined by querying the current master node.
(Bug #23068914)

References: See also: Bug #23221573.

• Following the forced shutdown of one of the 2 data nodes in a cluster where NoOfReplicas=2, the
other data node shut down as well, due to arbitration failure. (Bug #23006431)

• ClusterMgr is a internal component of NDB API and ndb_mgmd processes, part of
TransporterFacade—which in turn is a wrapper around the transporter registry—and shared
with data nodes. This component is responsible for a number of tasks including connection setup
requests; sending and monitoring of heartbeats; provision of node state information; handling
of cluster disconnects and reconnects; and forwarding of cluster state indicators. ClusterMgr
maintains a count of live nodes which is incremented on receiving a report of a node having
connected (reportConnected() method call), and decremented on receiving a report that a
node has disconnected (reportDisconnected()) from TransporterRegistry. This count is
checked within reportDisconnected() to verify that is it greater than zero.

The issue addressed here arose when node connections were very brief due to send buffer
exhaustion (among other potential causes) and the check just described failed. This occurred
because, when a node did not fully connect, it was still possible for the connection attempt to trigger
a reportDisconnected() call in spite of the fact that the connection had not yet been reported to
ClusterMgr; thus, the pairing of reportConnected() and reportDisconnected() calls was
not guaranteed, which could cause the count of connected nodes to be set to zero even though there
remained nodes that were still in fact connected, causing node crashes with debug builds of MySQL
NDB Cluster, and potential errors or other adverse effects with release builds.

To fix this issue, ClusterMgr::reportDisconnected() now verifies that a disconnected node
had actually finished connecting completely before checking and decrementing the number of
connected nodes. (Bug #21683144, Bug #22016081)

References: See also: Bug #21664515, Bug #21651400.

• To reduce the possibility that a node's loopback transporter becomes disconnected from the
transporter registry by reportError() due to send buffer exhaustion (implemented by the fix for
Bug #21651400), a portion of the send buffer is now reserved for the use of this transporter. (Bug
#21664515, Bug #22016081)

References: See also: Bug #21651400, Bug #21683144.

• The loopback transporter is similar to the TCP transporter, but is used by a node to send signals
to itself as part of many internal operations. Like the TCP transporter, it could be disconnected

17

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-noofreplicas

MySQL NDB Cluster 7.3 Release Notes

due to certain conditions including send buffer exhaustion, but this could result in blocking of
TransporterFacade and so cause multiple issues within an ndb_mgmd or API node process. To
prevent this, a node whose loopback transporter becomes disconnected is now simply shut down,
rather than allowing the node process to hang. (Bug #21651400, Bug #22016081)

References: See also: Bug #21683144, Bug #21664515.

Changes in MySQL NDB Cluster 7.3.13 (5.6.29-ndb-7.3.13)
(2016-04-18, General Availability)

MySQL NDB Cluster 7.3.13 is a new release of NDB Cluster, based on MySQL Server 5.6 and
including features from version 7.3 of the NDB storage engine, as well as fixing a number of recently
discovered bugs in previous NDB Cluster releases.

Obtaining MySQL NDB Cluster 7.3. MySQL NDB Cluster 7.3 source code and binaries can be
obtained from https://dev.mysql.com/downloads/cluster/.

For an overview of changes made in MySQL NDB Cluster 7.3, see What is New in NDB Cluster 7.3.

This release also incorporates all bug fixes and changes made in previous NDB Cluster releases, as
well as all bug fixes and feature changes which were added in mainline MySQL 5.6 through MySQL
5.6.29 (see Changes in MySQL 5.6.29 (2016-02-05, General Availability)).

Bugs Fixed

• NDB Cluster APIs: Executing a transaction with an NdbIndexOperation based on an obsolete
unique index caused the data node process to fail. Now the index is checked in such cases, and if it
cannot be used the transaction fails with an appropriate error. (Bug #79494, Bug #22299443)

• During node failure handling, the request structure used to drive the cleanup operation was not
maintained correctly when the request was executed. This led to inconsistencies that were harmless
during normal operation, but these could lead to assertion failures during node failure handling, with
subsequent failure of additional nodes. (Bug #22643129)

• The previous fix for a lack of mutex protection for the internal
TransporterFacade::deliver_signal() function was found to be incomplete in some cases.
(Bug #22615274)

References: This issue is a regression of: Bug #77225, Bug #21185585.

• When setup of the binary log as an atomic operation on one SQL node failed, this could trigger a
state in other SQL nodes in which they appeared to detect the SQL node participating in schema
change distribution, whereas it had not yet completed binary log setup. This could in turn cause a
deadlock on the global metadata lock when the SQL node still retrying binary log setup needed this
lock, while another mysqld had taken the lock for itself as part of a schema change operation. In
such cases, the second SQL node waited for the first one to act on its schema distribution changes,
which it was not yet able to do. (Bug #22494024)

• Duplicate key errors could occur when ndb_restore was run on a backup containing a unique
index. This was due to the fact that, during restoration of data, the database can pass through one
or more inconsistent states prior to completion, such an inconsistent state possibly having duplicate
values for a column which has a unique index. (If the restoration of data is preceded by a run with --
disable-indexes and followed by one with --rebuild-indexes, these errors are avoided.)

Added a check for unique indexes in the backup which is performed only when restoring data, and
which does not process tables that have explicitly been excluded. For each unique index found, a
warning is now printed. (Bug #22329365)

• Restoration of metadata with ndb_restore -m occasionally failed with the error message Failed
to create index... when creating a unique index. While disgnosing this problem, it was

18

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-what-is-new-7-3.html
https://dev.mysql.com/doc/relnotes/mysql/5.6/en/news-5-6-29.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbindexoperation.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_disable-indexes
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_disable-indexes
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_rebuild-indexes
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_restore-meta

MySQL NDB Cluster 7.3 Release Notes

found that the internal error PREPARE_SEIZE_ERROR (a temporary error) was reported as an
unknown error. Now in such cases, ndb_restore retries the creation of the unique index, and
PREPARE_SEIZE_ERROR is reported as NDB Error 748 Busy during read of event table.
(Bug #21178339)

References: See also: Bug #22989944.

• Optimization of signal sending by buffering and sending them periodically, or when the buffer
became full, could cause SUB_GCP_COMPLETE_ACK signals to be excessively delayed. Such signals
are sent for each node and epoch, with a minimum interval of TimeBetweenEpochs; if they are not
received in time, the SUMA buffers can overflow as a result. The overflow caused API nodes to be
disconnected, leading to current transactions being aborted due to node failure. This condition made
it difficult for long transactions (such as altering a very large table), to be completed. Now in such
cases, the ACK signal is sent without being delayed. (Bug #18753341)

Changes in MySQL NDB Cluster 7.3.12 (5.6.28-ndb-7.3.12)
(2016-01-19, General Availability)

MySQL NDB Cluster 7.3.12 is a new release of NDB Cluster, based on MySQL Server 5.6 and
including features from version 7.3 of the NDB storage engine, as well as fixing a number of recently
discovered bugs in previous NDB Cluster releases.

Obtaining MySQL NDB Cluster 7.3. MySQL NDB Cluster 7.3 source code and binaries can be
obtained from https://dev.mysql.com/downloads/cluster/.

For an overview of changes made in MySQL NDB Cluster 7.3, see What is New in NDB Cluster 7.3.

This release also incorporates all bug fixes and changes made in previous NDB Cluster releases, as
well as all bug fixes and feature changes which were added in mainline MySQL 5.6 through MySQL
5.6.28 (see Changes in MySQL 5.6.28 (2015-12-07, General Availability)).

Bugs Fixed

• Important Change: A fix made in MySQL NDB Cluster 7.3.11 and MySQL NDB Cluster 7.4.8
caused ndb_restore to perform unique key checks even when operating in modes which do not
restore data, such as when using the program's --restore-epoch or --print-data option.

That change in behavior caused existing valid backup routines to fail; to keep this issue from
affecting this and future releases, the previous fix has been reverted. This means that the
requirement added in those versions that ndb_restore be run --disable-indexes or --
rebuild-indexes when used on tables containing unique indexes is also lifted. (Bug #22345748)

References: See also: Bug #22329365. Reverted patches: Bug #57782, Bug #11764893.

• Important Note: If an NDB table having a foreign key was dropped while one of the data nodes was
stopped, the data node later failed when trying to restart. (Bug #18554390)

• NDB Replication: While the binary log injector thread was handling failure events, it was possible for
all NDB tables to be left indefinitely in read-only mode. This was due to a race condition between the
binary log injector thread and the utility thread handling events on the ndb_schema table, and to the
fact that, when handling failure events, the binary log injector thread places all NDB tables in read-
only mode until all such events are handled and the thread restarts itself.

When the binary log inject thread receives a group of one or more failure events, it drops all other
existing event operations and expects no more events from the utility thread until it has handled all of
the failure events and then restarted itself. However, it was possible for the utility thread to continue
attempting binary log setup while the injector thread was handling failures and thus attempting to
create the schema distribution tables as well as event subscriptions on these tables. If the creation
of these tables and event subscriptions occurred during this time, the binary log injector thread's

19

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-timebetweenepochs
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-what-is-new-7-3.html
https://dev.mysql.com/doc/relnotes/mysql/5.6/en/news-5-6-28.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_restore-epoch
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_print-data
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_disable-indexes
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_rebuild-indexes
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_rebuild-indexes
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html

MySQL NDB Cluster 7.3 Release Notes

expectation that there were no further event operations was never met; thus, the injector thread
never restarted, and NDB tables remained in read-only as described previously.

To fix this problem, the Ndb object that handles schema events is now definitely dropped once the
ndb_schema table drop event is handled, so that the utility thread cannot create any new events
until after the injector thread has restarted, at which time, a new Ndb object for handling schema
events is created. (Bug #17674771, Bug #19537961, Bug #22204186, Bug #22361695)

• NDB Cluster APIs: The binary log injector did not work correctly with TE_INCONSISTENT event
type handling by Ndb::nextEvent(). (Bug #22135541)

References: See also: Bug #20646496.

• NDB Cluster APIs: Ndb::pollEvents() and pollEvents2() were slow to receive events,
being dependent on other client threads or blocks to perform polling of transporters on their behalf.
This fix allows a client thread to perform its own transporter polling when it has to wait in either of
these methods.

Introduction of transporter polling also revealed a problem with missing mutex protection in the
ndbcluster_binlog handler, which has been added as part of this fix. (Bug #79311, Bug
#20957068, Bug #22224571, WL #8627)

• In debug builds, a WAIT_EVENT while polling caused excessive logging to stdout. (Bug #22203672)

• When executing a schema operation such as CREATE TABLE on a MySQL NDB Cluster with
multiple SQL nodes, it was possible for the SQL node on which the operation was performed to time
out while waiting for an acknowledgement from the others. This could occur when different SQL
nodes had different settings for --ndb-log-updated-only, --ndb-log-update-as-write, or
other mysqld options effecting binary logging by NDB.

This happened due to the fact that, in order to distribute schema changes between them, all SQL
nodes subscribe to changes in the ndb_schema system table, and that all SQL nodes are made
aware of each others subscriptions by subscribing to TE_SUBSCRIBE and TE_UNSUBSCRIBE
events. The names of events to subscribe to are constructed from the table names, adding REPL$
or REPLF$ as a prefix. REPLF$ is used when full binary logging is specified for the table. The issue
described previously arose because different values for the options mentioned could lead to different
events being subscribed to by different SQL nodes, meaning that all SQL nodes were not necessarily
aware of each other, so that the code that handled waiting for schema distribution to complete did
not work as designed.

To fix this issue, MySQL NDB Cluster now treats the ndb_schema table as a special case and
enforces full binary logging at all times for this table, independent of any settings for mysqld binary
logging options. (Bug #22174287, Bug #79188)

• Attempting to create an NDB table having greater than the maximum supported combined width
for all BIT columns (4096) caused data node failure when these columns were defined with
COLUMN_FORMAT DYNAMIC. (Bug #21889267)

• Creating a table with the maxmimum supported number of columns (512) all using COLUMN_FORMAT
DYNAMIC led to data node failures. (Bug #21863798)

• Using ndb_mgm STOP -f to force a node shutdown even when it triggered a complete shutdown of
the cluster, it was possible to lose data when a sufficient number of nodes were shut down, triggering
a cluster shutodwn, and the timing was such that SUMA handovers had been made to nodes already
in the process of shutting down. (Bug #17772138)

• The internal NdbEventBuffer::set_total_buckets() method calculated the number of
remaining buckets incorrectly. This caused any incomplete epoch to be prematurely completed when
the SUB_START_CONF signal arrived out of order. Any events belonging to this epoch arriving later
were then ignored, and so effectively lost, which resulted in schema changes not being distributed
correctly among SQL nodes. (Bug #79635, Bug #22363510)

20

https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-nextevent
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-pollevents
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-pollevents2
https://dev.mysql.com/doc/refman/5.6/en/create-table.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-options-variables.html#option_mysqld_ndb-log-updated-only
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-options-variables.html#option_mysqld_ndb-log-update-as-write
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/bit-type.html

MySQL NDB Cluster 7.3 Release Notes

• Compilation of MySQL NDB Cluster failed on SUSE Linux Enterprise Server 12. (Bug #79429, Bug
#22292329)

• Schema events were appended to the binary log out of order relative to non-schema events. This
was caused by the fact that the binary log injector did not properly handle the case where schema
events and non-schema events were from different epochs.

This fix modifies the handling of events from the two schema and non-schema event streams
such that events are now always handled one epoch at a time, starting with events from the
oldest available epoch, without regard to the event stream in which they occur. (Bug #79077, Bug
#22135584, Bug #20456664)

• NDB failed during a node restart due to the status of the current local checkpoint being set but not as
active, even though it could have other states under such conditions. (Bug #78780, Bug #21973758)

• The value set for spintime by the ThreadConfig parameter was not calculated correctly, causing
the spin to continue for longer than actually specified. (Bug #78525, Bug #21886476)

Changes in MySQL NDB Cluster 7.3.11 (5.6.27-ndb-7.3.11)
(2015-10-19, General Availability)

MySQL NDB Cluster 7.3.11 is a new release of NDB Cluster, based on MySQL Server 5.6 and
including features from version 7.3 of the NDB storage engine, as well as fixing a number of recently
discovered bugs in previous NDB Cluster releases.

Obtaining MySQL NDB Cluster 7.3. MySQL NDB Cluster 7.3 source code and binaries can be
obtained from https://dev.mysql.com/downloads/cluster/.

For an overview of changes made in MySQL NDB Cluster 7.3, see What is New in NDB Cluster 7.3.

This release also incorporates all bug fixes and changes made in previous NDB Cluster releases, as
well as all bug fixes and feature changes which were added in mainline MySQL 5.6 through MySQL
5.6.27 (see Changes in MySQL 5.6.27 (2015-09-30, General Availability)).

• Functionality Added or Changed

• Bugs Fixed

Functionality Added or Changed

• Important Change; NDB Replication: Added the create_old_temporals server
system variable to complement the system variables avoid_temporal_upgrade and
show_old_temporals introduced in MySQL 5.6.24 and available in MySQL NDB Cluster
beginning with NDB 7.3.9 and NDB 7.4.6. Enabling create_old_temporals causes mysqld
to use the storage format employed prior to MySQL 5.6.4 when creating any DATE, DATETIME,
or TIMESTAMP column—that is, the column is created without any support for fractional seconds.
create_old_temporals is disabled by default. The system variable is read-only; to enable the
use of pre-5.6.4 temporal types, set the equivalent option (--create-old-temporals) on the
command line, or in an option file read by the MySQL server.

create_old_temporals is available only in MySQL NDB Cluster; it is not supported in the
standard MySQL 5.6 server. It is intended to facilitate upgrades from MySQL NDB Cluster 7.2 to
MySQL NDB Cluster 7.3 and 7.4, after which table columns of the affected types can be upgraded
to the new storage format. create_old_temporals is deprecated and scheduled for removal in a
future MySQL NDB Cluster version.

avoid_temporal_upgrade must also be enabled for this feature to work properly. You should
also enable show_old_temporals as well. For more information, see the descriptions of these
variables. For more about the changes in MySQL's temporal types, see Date and Time Type Storage
Requirements. (Bug #20701918)

21

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbmtd-threadconfig
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-what-is-new-7-3.html
https://dev.mysql.com/doc/relnotes/mysql/5.6/en/news-5-6-27.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-options-variables.html#sysvar_create_old_temporals
https://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html#sysvar_avoid_temporal_upgrade
https://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html#sysvar_show_old_temporals
https://dev.mysql.com/doc/refman/5.6/en/datetime.html
https://dev.mysql.com/doc/refman/5.6/en/datetime.html
https://dev.mysql.com/doc/refman/5.6/en/datetime.html
https://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html#sysvar_avoid_temporal_upgrade
https://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html#sysvar_show_old_temporals
https://dev.mysql.com/doc/refman/5.6/en/storage-requirements.html#data-types-storage-reqs-date-time
https://dev.mysql.com/doc/refman/5.6/en/storage-requirements.html#data-types-storage-reqs-date-time

MySQL NDB Cluster 7.3 Release Notes

References: See also: Bug #21492598, Bug #72997, Bug #18985760.

Bugs Fixed

• Important Change: When ndb_restore was run without --disable-indexes or --rebuild-
indexes on a table having a unique index, it was possible for rows to be restored in an order that
resulted in duplicate values, causing it to fail with duplicate key errors. Running ndb_restore on
such a table now requires using at least one of these options; failing to do so now results in an error.
(Bug #57782, Bug #11764893)

References: See also: Bug #22329365, Bug #22345748.

• NDB Cluster APIs: While executing dropEvent(), if the coordinator DBDICT failed after the
subscription manager (SUMA block) had removed all subscriptions but before the coordinator had
deleted the event from the system table, the dropped event remained in the table, causing any
subsequent drop or create event with the same name to fail with NDB error 1419 Subscription
already dropped or error 746 Event name already exists. This occurred even when calling
dropEvent() with a nonzero force argument.

Now in such cases, error 1419 is ignored, and DBDICT deletes the event from the table. (Bug
#21554676)

• NDB Cluster APIs: The internal value representing the latest global checkpoint was not always
updated when a completed epoch of event buffers was inserted into the event queue. This caused
subsequent calls to Ndb::pollEvents() and pollEvents2() to fail when trying to obtain
the correct GCI for the events available in the event buffers. This could also result in later calls to
nextEvent() or nextEvent2() seeing events that had not yet been discovered. (Bug #78129,
Bug #21651536)

• Backup block states were reported incorrectly during backups. (Bug #21360188)

References: See also: Bug #20204854, Bug #21372136.

• When a data node is known to have been alive by other nodes in the cluster at a given global
checkpoint, but its sysfile reports a lower GCI, the higher GCI is used to determine which global
checkpoint the data node can recreate. This caused problems when the data node being started
had a clean file system (GCI = 0), or when it was more than more global checkpoint behind the other
nodes.

Now in such cases a higher GCI known by other nodes is used only when it is at most one GCI
ahead. (Bug #19633824)

References: See also: Bug #20334650, Bug #21899993. This issue is a regression of: Bug #29167.

• When restoring a specific database or databases with the --include-databases or --exclude-
databases option, ndb_restore attempted to apply foreign keys on tables in databases which
were not among those being restored. (Bug #18560951)

• After restoring the database schema from backup using ndb_restore, auto-discovery of restored
tables in transactions having multiple statements did not work correctly, resulting in Deadlock
found when trying to get lock; try restarting transaction errors.

This issue was encountered both in the mysql client, as well as when such transactions were
executed by application programs using Connector/J and possibly other MySQL APIs.

Prior to upgrading, this issue can be worked around by executing SELECT TABLE_NAME,
TABLE_SCHEMA FROM INFORMATION_SCHEMA.TABLES WHERE ENGINE = 'NDBCLUSTER'
on all SQL nodes following the restore operation, before executing any other statements. (Bug
#18075170)

22

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_disable-indexes
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_rebuild-indexes
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_rebuild-indexes
https://dev.mysql.com/doc/ndbapi/en/ndb-dictionary.html#ndb-dictionary-dropevent
https://dev.mysql.com/doc/ndbapi/en/ndb-dictionary.html#ndb-dictionary-dropevent
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-pollevents
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-pollevents2
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-nextevent
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-nextevent2
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_include-databases
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_exclude-databases
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_exclude-databases

MySQL NDB Cluster 7.3 Release Notes

• ndb_desc used with the --extra-partition-info and --blob-info options failed when run
against a table containing one or more TINYBLOB. columns. (Bug #14695968)

• Trying to create an NDB table with a composite foreign key referencing a composite primary key of
the parent table failed when one of the columns in the composite foreign key was the table's primary
key and in addition this column also had a unique key. (Bug #78150, Bug #21664899)

• When attempting to enable index statistics, creation of the required system tables, events and
event subscriptions often fails when multiple mysqld processes using index statistics are started
concurrently in conjunction with starting, restarting, or stopping the cluster, or with node failure
handling. This is normally recoverable, since the affected mysqld process or processes can (and
do) retry these operations shortly thereafter. For this reason, such failures are no longer logged as
warnings, but merely as informational events. (Bug #77760, Bug #21462846)

• Adding a unique key to an NDB table failed when the table already had a foreign key. Prior to
upgrading, you can work around this issue by creating the unique key first, then adding the foreign
key afterwards, using a separate ALTER TABLE statement. (Bug #77457, Bug #20309828)

Changes in MySQL NDB Cluster 7.3.10 (5.6.25-ndb-7.3.10)
(2015-07-13, General Availability)

MySQL NDB Cluster 7.3.10 is a new release of NDB Cluster, based on MySQL Server 5.6 and
including features from version 7.3 of the NDB storage engine, as well as fixing a number of recently
discovered bugs in previous NDB Cluster releases.

Obtaining MySQL NDB Cluster 7.3. MySQL NDB Cluster 7.3 source code and binaries can be
obtained from https://dev.mysql.com/downloads/cluster/.

For an overview of changes made in MySQL NDB Cluster 7.3, see What is New in NDB Cluster 7.3.

This release also incorporates all bug fixes and changes made in previous NDB Cluster releases, as
well as all bug fixes and feature changes which were added in mainline MySQL 5.6 through MySQL
5.6.25 (see Changes in MySQL 5.6.25 (2015-05-29, General Availability)).

• Functionality Added or Changed

• Bugs Fixed

Functionality Added or Changed

• MySQL NDB ClusterJ: Under high workload, it was possible to overload the direct memory used
to back domain objects, because direct memory is not garbage collected in the same manner as
objects allocated on the heap. Two strategies have been added to the ClusterJ implementation:
first, direct memory is now pooled, so that when the domain object is garbage collected, the
direct memory can be reused by another domain object. Additionally, a new user-level method,
release(instance), has been added to the Session interface, which allows users to release the
direct memory before the corresponding domain object is garbage collected. See the description for
release(T) for more information. (Bug #20504741)

• A number of improvements, listed here, have been made with regard to handling issues that could
arise when an overload arose due to a great number of inserts being performed during a local
checkpoint (LCP):

• Failures sometimes occurred during restart processing when trying to execute the undo log, due
to a problem with finding the end of the log. This happened when there remained unwritten pages
at the end of the first undo file when writing to the second undo file, which caused the execution of
undo logs in reverse order and so execute old or even nonexistent log records.

This is fixed by ensuring that execution of the undo log begins with the proper end of the log, and,
if started earlier, that any unwritten or faulty pages are ignored.

23

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-desc.html#option_ndb_desc_extra-partition-info
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-desc.html#option_ndb_desc_blob-info
https://dev.mysql.com/doc/refman/5.6/en/blob.html
https://dev.mysql.com/doc/refman/5.6/en/alter-table.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-what-is-new-7-3.html
https://dev.mysql.com/doc/relnotes/mysql/5.6/en/news-5-6-25.html
https://dev.mysql.com/doc/ndbapi/en/mccj-clusterj-session.html#mccj-clusterj-session-release-t

MySQL NDB Cluster 7.3 Release Notes

• It was possible to fail during an LCP, or when performing a COPY_FRAGREQ, due to running out of
operation records. We fix this by making sure that LCPs and COPY_FRAG use resources reserved
for operation records, as was already the case with scan records. In addition, old code for ACC
operations that was no longer required but that could lead to failures was removed.

• When an LCP was performed while loading a table, it was possible to hit a livelock during LCP
scans, due to the fact that each record that was inserted into new pages after the LCP had started
had its LCP_SKIP flag set. Such records were discarded as intended by the LCP scan, but when
inserts occurred faster than the LCP scan could discard records, the scan appeared to hang.
As part of this issue, the scan failed to report any progress to the LCP watchdog, which after 70
seconds of livelock killed the process. This issue was observed when performing on the order of
250000 inserts per second over an extended period of time (120 seconds or more), using a single
LDM.

This part of the fix makes a number of changes, listed here:

• We now ensure that pages created after the LCP has started are not included in LCP scans; we
also ensure that no records inserted into those pages have their LCP_SKIP flag set.

• Handling of the scan protocol is changed such that a certain amount of progress is made by the
LCP regardless of load; we now report progress to the LCP watchdog so that we avoid failure in
the event that an LCP is making progress but not writing any records.

• We now take steps to guarantee that LCP scans proceed more quickly than inserts can occur,
by ensuring that scans are prioritized this scanning activity, and thus, that the LCP is in fact
(eventually) completed.

• In addition, scanning is made more efficient, by prefetching tuples; this helps avoid stalls while
fetching memory in the CPU.

• Row checksums for preventing data corruption now include the tuple header bits.

(Bug #76373, Bug #20727343, Bug #76741, Bug #69994, Bug #20903880, Bug #76742, Bug
#20904721, Bug #76883, Bug #20980229, WL #8525)

Bugs Fixed

• Important Change; NDB Cluster APIs: Added the method
Ndb::isExpectingHigherQueuedEpochs() to the NDB API to detect when additional, newer
event epochs were detected by pollEvents2().

The behavior of Ndb::pollEvents() has also been modified such that it now returns
NDB_FAILURE_GCI (equal to ~(Uint64) 0) when a cluster failure has been detected. (Bug
#18753887)

• NDB Cluster APIs: Added the Column::getSizeInBytesForRecord() method, which returns
the size required for a column by an NdbRecord, depending on the column's type (text/blob, or
other). (Bug #21067283)

• NDB Cluster APIs: Creation and destruction of Ndb_cluster_connection objects by multiple
threads could make use of the same application lock, which in some cases led to failures in the
global dictionary cache. To alleviate this problem, the creation and destruction of several internal
NDB API objects have been serialized. (Bug #20636124)

• NDB Cluster APIs: A number of timeouts were not handled correctly in the NDB API. (Bug
#20617891)

• NDB Cluster APIs: When an Ndb object created prior to a failure of the cluster was reused, the
event queue of this object could still contain data node events originating from before the failure.
These events could reference “old” epochs (from before the failure occurred), which in turn could

24

https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-isexpectinghigherqueuedepochs
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-pollevents2
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-pollevents
https://dev.mysql.com/doc/ndbapi/en/ndb-column.html#ndb-column-getsizeinbytesforrecord
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbrecord.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb-cluster-connection.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html

MySQL NDB Cluster 7.3 Release Notes

violate the assumption made by the nextEvent() method that epoch numbers always increase.
This issue is addressed by explicitly clearing the event queue in such cases. (Bug #18411034)

References: See also: Bug #20888668.

• MySQL NDB ClusterJ: When used with Java 1.7 or higher, ClusterJ might cause the Java VM to
crash when querying tables with BLOB columns, because NdbDictionary::createRecord
calculates the wrong size needed for the record. Subsequently, when ClusterJ called
NdbScanOperation::nextRecordCopyOut, the data overran the allocated buffer space. With
this fix, ClusterJ checks the size calculated by NdbDictionary::createRecord and uses the
value for the buffer size, if it is larger than the value ClusterJ itself calculates. (Bug #20695155)

• After restoring the database metadata (but not any data) by running ndb_restore --restore-
meta (or -m), SQL nodes would hang while trying to SELECT from a table in the database to which
the metadata was restored. In such cases the attempt to query the table now fails as expected, since
the table does not actually exist until ndb_restore is executed with --restore-data (-r). (Bug
#21184102)

References: See also: Bug #16890703.

• When a great many threads opened and closed blocks in the NDB API in rapid succession, the
internal close_clnt() function synchronizing the closing of the blocks waited an insufficiently
long time for a self-signal indicating potential additional signals needing to be processed. This led
to excessive CPU usage by ndb_mgmd, and prevented other threads from opening or closing other
blocks. This issue is fixed by changing the function polling call to wait on a specific condition to be
woken up (that is, when a signal has in fact been executed). (Bug #21141495)

• Previously, multiple send threads could be invoked for handling sends to the same node; these
threads then competed for the same send lock. While the send lock blocked the additional send
threads, work threads could be passed to other nodes.

This issue is fixed by ensuring that new send threads are not activated while there is already an
active send thread assigned to the same node. In addition, a node already having an active send
thread assigned to it is no longer visible to other, already active, send threads; that is, such a node
is longer added to the node list when a send thread is currently assigned to it. (Bug #20954804, Bug
#76821)

• Queueing of pending operations when the redo log was overloaded
(DefaultOperationRedoProblemAction API node configuration parameter) could lead to
timeouts when data nodes ran out of redo log space (P_TAIL_PROBLEM errors). Now when the redo
log is full, the node aborts requests instead of queuing them. (Bug #20782580)

References: See also: Bug #20481140.

• NDB statistics queries could be delayed by the error delay set for ndb_index_stat_option
(default 60 seconds) when the index that was queried had been marked with internal error. The
same underlying issue could also cause ANALYZE TABLE to hang when executed against an NDB
table having multiple indexes where an internal error occurred on one or more but not all indexes.

Now in such cases, any existing statistics are returned immediately, without waiting for any additonal
statistics to be discovered. (Bug #20553313, Bug #20707694, Bug #76325)

• The multithreaded scheduler sends to remote nodes either directly from each worker thread or
from dedicated send threadsL, depending on the cluster's configuration. This send might transmit
all, part, or none of the available data from the send buffers. While there remained pending send
data, the worker or send threads continued trying to send in a loop. The actual size of the data
sent in the most recent attempt to perform a send is now tracked, and used to detect lack of send
progress by the send or worker threads. When no progress has been made, and there is no other

25

https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-nextevent
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_restore-meta
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_restore-meta
https://dev.mysql.com/doc/refman/5.6/en/select.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_restore-data
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-api-definition.html#ndbparam-api-defaultoperationredoproblemaction
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-options-variables.html#sysvar_ndb_index_stat_option
https://dev.mysql.com/doc/refman/5.6/en/analyze-table.html

MySQL NDB Cluster 7.3 Release Notes

work outstanding, the scheduler takes a 1 millisecond pause to free up the CPU for use by other
threads. (Bug #18390321)

References: See also: Bug #20929176, Bug #20954804.

• In some cases, attempting to restore a table that was previously backed up failed with a File Not
Found error due to a missing table fragment file. This occurred as a result of the NDB kernel BACKUP
block receiving a Busy error while trying to obtain the table description, due to other traffic from
external clients, and not retrying the operation.

The fix for this issue creates two separate queues for such requests—one for internal clients such as
the BACKUP block or ndb_restore, and one for external clients such as API nodes—and prioritizing
the internal queue.

Note that it has always been the case that external client applications using the NDB API (including
MySQL applications running against an SQL node) are expected to handle Busy errors by retrying
transactions at a later time; this expectation is not changed by the fix for this issue. (Bug #17878183)

References: See also: Bug #17916243.

• In some cases, the DBDICT block failed to handle repeated GET_TABINFOREQ signals after the first
one, leading to possible node failures and restarts. This could be observed after setting a sufficiently
high value for MaxNoOfExecutionThreads and low value for LcpScanProgressTimeout. (Bug
#77433, Bug #21297221)

• Client lookup for delivery of API signals to the correct client by the internal
TransporterFacade::deliver_signal() function had no mutex protection, which could cause
issues such as timeouts encountered during testing, when other clients connected to the same
TransporterFacade. (Bug #77225, Bug #21185585)

• It was possible to end up with a lock on the send buffer mutex when send buffers became a limiting
resource, due either to insufficient send buffer resource configuration, problems with slow or failing
communications such that all send buffers became exhausted, or slow receivers failing to consume
what was sent. In this situation worker threads failed to allocate send buffer memory for signals, and
attempted to force a send in order to free up space, while at the same time the send thread was busy
trying to send to the same node or nodes. All of these threads competed for taking the send buffer
mutex, which resulted in the lock already described, reported by the watchdog as Stuck in Send.
This fix is made in two parts, listed here:

1. The send thread no longer holds the global send thread mutex while getting the send buffer
mutex; it now releases the global mutex prior to locking the send buffer mutex. This keeps worker
threads from getting stuck in send in such cases.

2. Locking of the send buffer mutex done by the send threads now uses a try-lock. If the try-lock
fails, the node to make the send to is reinserted at the end of the list of send nodes in order to be
retried later. This removes the Stuck in Send condition for the send threads.

(Bug #77081, Bug #21109605)

Changes in MySQL NDB Cluster 7.3.9 (5.6.24-ndb-7.3.9)
(2015-04-14, General Availability)

MySQL NDB Cluster 7.3.9 is a new release of NDB Cluster, based on MySQL Server 5.6 and including
features from version 7.3 of the NDB storage engine, as well as fixing a number of recently discovered
bugs in previous NDB Cluster releases.

Obtaining MySQL NDB Cluster 7.3. MySQL NDB Cluster 7.3 source code and binaries can be
obtained from https://dev.mysql.com/downloads/cluster/.

For an overview of changes made in MySQL NDB Cluster 7.3, see What is New in NDB Cluster 7.3.

26

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbmtd-maxnoofexecutionthreads
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-what-is-new-7-3.html

MySQL NDB Cluster 7.3 Release Notes

This release also incorporates all bug fixes and changes made in previous NDB Cluster releases, as
well as all bug fixes and feature changes which were added in mainline MySQL 5.6 through MySQL
5.6.24 (see Changes in MySQL 5.6.24 (2015-04-06, General Availability)).

Bugs Fixed

• Important Change: The maximum failure time calculation used to ensure that normal node failure
handling mechanisms are given time to handle survivable cluster failures (before global checkpoint
watchdog mechanisms start to kill nodes due to GCP delays) was excessively conservative, and
neglected to consider that there can be at most number_of_data_nodes / NoOfReplicas node
failures before the cluster can no longer survive. Now the value of NoOfReplicas is properly taken
into account when performing this calculation.

This fix adds the TimeBetweenGlobalCheckpointsTimeout data node configuration parameter,
which makes the minimum timeout between global checkpoints settable by the user. This timeout
was previously fixed internally at 120000 milliseconds, which is now the default value for this
parameter. (Bug #20069617, Bug #20069624)

References: See also: Bug #19858151, Bug #20128256, Bug #20135976.

• NDB Cluster APIs: When a transaction is started from a cluster connection, Table and Index
schema objects may be passed to this transaction for use. If these schema objects have been
acquired from a different connection (Ndb_cluster_connection object), they can be deleted at
any point by the deletion or disconnection of the owning connection. This can leave a connection
with invalid schema objects, which causes an NDB API application to fail when these are
dereferenced.

To avoid this problem, if your application uses multiple connections, you can now set a check
to detect sharing of schema objects between connections when passing a schema object to a
transaction, using the NdbTransaction::setSchemaObjectOwnerChecks() method added in
this release. When this check is enabled, the schema objects having the same names are acquired
from the connection and compared to the schema objects passed to the transaction. Failure to match
causes the application to fail with an error. (Bug #19785977)

• NDB Cluster APIs: The increase in the default number of hashmap buckets
(DefaultHashMapSize API node configuration parameter) from 240 to 3480 in MySQL NDB
Cluster 7.2.11 increased the size of the internal DictHashMapInfo::HashMap type considerably.
This type was allocated on the stack in some getTable() calls which could lead to stack overflow
issues for NDB API users.

To avoid this problem, the hashmap is now dynamically allocated from the heap. (Bug #19306793)

• NDB Cluster APIs: A scan operation, whether it is a single table scan or a query scan used by
a pushed join, stores the result set in a buffer. This maximum size of this buffer is calculated and
preallocated before the scan operation is started. This buffer may consume a considerable amount of
memory; in some cases we observed a 2 GB buffer footprint in tests that executed 100 parallel scans
with 2 single-threaded (ndbd) data nodes. This memory consumption was found to scale linearly with
additional fragments.

A number of root causes, listed here, were discovered that led to this problem:

• Result rows were unpacked to full NdbRecord format before they were stored in the buffer. If only
some but not all columns of a table were selected, the buffer contained empty space (essentially
wasted).

• Due to the buffer format being unpacked, VARCHAR and VARBINARY columns always had to be
allocated for the maximum size defined for such columns.

• BatchByteSize and MaxScanBatchSize values were not taken into consideration as a limiting
factor when calculating the maximum buffer size.

27

https://dev.mysql.com/doc/relnotes/mysql/5.6/en/news-5-6-24.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-noofreplicas
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-timebetweenglobalcheckpointstimeout
https://dev.mysql.com/doc/ndbapi/en/ndb-table.html
https://dev.mysql.com/doc/ndbapi/en/ndb-index.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb-cluster-connection.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbtransaction.html#ndb-ndbtransaction-setschemaobjectownerchecks
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-api-definition.html#ndbparam-api-defaulthashmapsize
https://dev.mysql.com/doc/ndbapi/en/ndb-dictionary.html#ndb-dictionary-gettable
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbrecord.html
https://dev.mysql.com/doc/refman/5.6/en/char.html
https://dev.mysql.com/doc/refman/5.6/en/binary-varbinary.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-api-definition.html#ndbparam-api-batchbytesize
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-api-definition.html#ndbparam-api-maxscanbatchsize

MySQL NDB Cluster 7.3 Release Notes

These issues became more evident in NDB 7.2 and later MySQL NDB Cluster release series. This
was due to the fact buffer size is scaled by BatchSize, and that the default value for this parameter
was increased fourfold (from 64 to 256) beginning with MySQL NDB Cluster 7.2.1.

This fix causes result rows to be buffered using the packed format instead of the unpacked format;
a buffered scan result row is now not unpacked until it becomes the current row. In addition,
BatchByteSize and MaxScanBatchSize are now used as limiting factors when calculating the
required buffer size.

Also as part of this fix, refactoring has been done to separate handling of buffered (packed) from
handling of unbuffered result sets, and to remove code that had been unused since NDB 7.0
or earlier. The NdbRecord class declaration has also been cleaned up by removing a number
of unused or redundant member variables. (Bug #73781, Bug #75599, Bug #19631350, Bug
#20408733)

• It was found during testing that problems could arise when the node registered as the arbitrator
disconnected or failed during the arbitration process.

In this situation, the node requesting arbitration could never receive a positive acknowledgement
from the registered arbitrator; this node also lacked a stable set of members and could not initiate
selection of a new arbitrator.

Now in such cases, when the arbitrator fails or loses contact during arbitration, the requesting node
immediately fails rather than waiting to time out. (Bug #20538179)

• The values of the Ndb_last_commit_epoch_server and Ndb_last_commit_epoch_session
status variables were incorrectly reported on some platforms. To correct this problem, these values
are now stored internally as long long, rather than long. (Bug #20372169)

• When a data node fails or is being restarted, the remaining nodes in the same nodegroup resend to
subscribers any data which they determine has not already been sent by the failed node. Normally,
when a data node (actually, the SUMA kernel block) has sent all data belonging to an epoch for
which it is responsible, it sends a SUB_GCP_COMPLETE_REP signal, together with a count, to all
subscribers, each of which responds with a SUB_GCP_COMPLETE_ACK. When SUMA receives this
acknowledgment from all subscribers, it reports this to the other nodes in the same nodegroup so
that they know that there is no need to resend this data in case of a subsequent node failure. If a
node failed before all subscribers sent this acknowledgement but before all the other nodes in the
same nodegroup received it from the failing node, data for some epochs could be sent (and reported
as complete) twice, which could lead to an unplanned shutdown.

The fix for this issue adds to the count reported by SUB_GCP_COMPLETE_ACK a list of identifiers
which the receiver can use to keep track of which buckets are completed and to ignore any duplicate
reported for an already completed bucket. (Bug #17579998)

• When performing a restart, it was sometimes possible to find a log end marker which had been
written by a previous restart, and that should have been invalidated. Now when searching for the last
page to invalidate, the same search algorithm is used as when searching for the last page of the log
to read. (Bug #76207, Bug #20665205)

• When reading and copying transporter short signal data, it was possible for the data to be copied
back to the same signal with overlapping memory. (Bug #75930, Bug #20553247)

• When a bulk delete operation was committed early to avoid an additional round trip, while also
returning the number of affected rows, but failed with a timeout error, an SQL node performed no
verification that the transaction was in the Committed state. (Bug #74494, Bug #20092754)

References: See also: Bug #19873609.

• An ALTER TABLE statement containing comments and a partitioning option against an NDB table
caused the SQL node on which it was executed to fail. (Bug #74022, Bug #19667566)

28

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-api-definition.html#ndbparam-api-batchsize
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-options-variables.html#statvar_Ndb_last_commit_epoch_server
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-options-variables.html#statvar_Ndb_last_commit_epoch_session
https://dev.mysql.com/doc/refman/5.6/en/alter-table-partition-operations.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html

MySQL NDB Cluster 7.3 Release Notes

Changes in MySQL NDB Cluster 7.3.8 (5.6.22-ndb-7.3.8)
(2015-01-21, General Availability)

MySQL NDB Cluster 7.3.8 is a new release of NDB Cluster, based on MySQL Server 5.6 and including
features from version 7.3 of the NDB storage engine, as well as fixing a number of recently discovered
bugs in previous NDB Cluster releases.

Obtaining MySQL NDB Cluster 7.3. MySQL NDB Cluster 7.3 source code and binaries can be
obtained from https://dev.mysql.com/downloads/cluster/.

For an overview of changes made in MySQL NDB Cluster 7.3, see What is New in NDB Cluster 7.3.

This release also incorporates all bug fixes and changes made in previous NDB Cluster releases, as
well as all bug fixes and feature changes which were added in mainline MySQL 5.6 through MySQL
5.6.22 (see Changes in MySQL 5.6.22 (2014-12-01, General Availability)).

• Functionality Added or Changed

• Bugs Fixed

Functionality Added or Changed

• Performance: Recent improvements made to the multithreaded scheduler were intended to optimize
the cache behavior of its internal data structures, with members of these structures placed such that
those local to a given thread do not overflow into a cache line which can be accessed by another
thread. Where required, extra padding bytes are inserted to isolate cache lines owned (or shared) by
other threads, thus avoiding invalidation of the entire cache line if another thread writes into a cache
line not entirely owned by itself. This optimization improved MT Scheduler performance by several
percent.

It has since been found that the optimization just described depends on the global instance of
struct thr_repository starting at a cache line aligned base address as well as the compiler not
rearranging or adding extra padding to the scheduler struct; it was also found that these prerequisites
were not guaranteed (or even checked). Thus this cache line optimization has previously worked
only when g_thr_repository (that is, the global instance) ended up being cache line aligned
only by accident. In addition, on 64-bit platforms, the compiler added extra padding words in struct
thr_safe_pool such that attempts to pad it to a cache line aligned size failed.

The current fix ensures that g_thr_repository is constructed on a cache line aligned address,
and the constructors modified so as to verify cacheline aligned adresses where these are assumed
by design.

Results from internal testing show improvements in MT Scheduler read performance of up to 10% in
some cases, following these changes. (Bug #18352514)

• NDB Cluster APIs: Two new example programs, demonstrating reads and writes of CHAR,
VARCHAR, and VARBINARY column values, have been added to storage/ndb/ndbapi-examples
in the MySQL NDB Cluster source tree. For more information about these programs, including
source code listings, see NDB API Simple Array Example, and NDB API Simple Array Example
Using Adapter.

• MySQL NDB ClusterJ: A new property, PROPERTY_CLUSTER_CONNECT_TIMEOUT_MGM, can
now be used to set the network connection timeout. (Bug #19913569)

Bugs Fixed

• NDB Disk Data: An update on many rows of a large Disk Data table could in some rare cases lead
to node failure. In the event that such problems are observed with very large transactions on Disk
Data tables you can now increase the number of page entries allocated for disk page buffer memory

29

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-what-is-new-7-3.html
https://dev.mysql.com/doc/relnotes/mysql/5.6/en/news-5-6-22.html
https://dev.mysql.com/doc/refman/5.6/en/char.html
https://dev.mysql.com/doc/refman/5.6/en/char.html
https://dev.mysql.com/doc/refman/5.6/en/binary-varbinary.html
https://dev.mysql.com/doc/ndbapi/en/ndbapi-examples-array-simple.html
https://dev.mysql.com/doc/ndbapi/en/ndbapi-examples-array-adapter.html
https://dev.mysql.com/doc/ndbapi/en/ndbapi-examples-array-adapter.html
https://dev.mysql.com/doc/ndbapi/en/mccj-clusterj-constants.html#mccj-clusterj-constants-property_cluster_connect_timeout_before

MySQL NDB Cluster 7.3 Release Notes

by raising the value of the DiskPageBufferEntries data node configuration parameter added in
this release. (Bug #19958804)

• NDB Disk Data: In some cases, during DICT master takeover, the new master could crash while
attempting to roll forward an ongoing schema transaction. (Bug #19875663, Bug #74510)

• NDB Disk Data: When a node acting as a DICT master fails, the arbitrator selects another node to
take over in place of the failed node. During the takeover procedure, which includes cleaning up any
schema transactions which are still open when the master failed, the disposition of the uncommitted
schema transaction is decided. Normally this transaction be rolled back, but if it has completed a
sufficient portion of a commit request, the new master finishes processing the commit. Until the
fate of the transaction has been decided, no new TRANS_END_REQ messages from clients can be
processed. In addition, since multiple concurrent schema transactions are not supported, takeover
cleanup must be completed before any new transactions can be started.

A similar restriction applies to any schema operations which are performed in the scope of an open
schema transaction. The counter used to coordinate schema operation across all nodes is employed
both during takeover processing and when executing any non-local schema operations. This means
that starting a schema operation while its schema transaction is in the takeover phase causes this
counter to be overwritten by concurrent uses, with unpredictable results.

The scenarios just described were handled previously using a pseudo-random delay when
recovering from a node failure. Now we check before the new master has rolled forward or
backwards any schema transactions remaining after the failure of the previous master and avoid
starting new schema transactions or performing operations using old transactions until takeover
processing has cleaned up after the abandoned transaction. (Bug #19874809, Bug #74503)

• NDB Disk Data: When a node acting as DICT master fails, it is still possible to request that any open
schema transaction be either committed or aborted by sending this request to the new DICT master.
In this event, the new master takes over the schema transaction and reports back on whether the
commit or abort request succeeded. In certain cases, it was possible for the new master to be
misidentified—that is, the request was sent to the wrong node, which responded with an error that
was interpreted by the client application as an aborted schema transaction, even in cases where the
transaction could have been successfully committed, had the correct node been contacted. (Bug
#74521, Bug #19880747)

• NDB Replication: When an NDB client thread made a request to flush the binary log using
statements such as FLUSH BINARY LOGS or SHOW BINLOG EVENTS, this caused not only the
most recent changes made by this client to be flushed, but all recent changes made by all other
clients to be flushed as well, even though this was not needed. This behavior caused unnecessary
waiting for the statement to execute, which could lead to timeouts and other issues with replication.
Now such statements flush the most recent database changes made by the requesting thread only.

As part of this fix, the status variables Ndb_last_commit_epoch_server,
Ndb_last_commit_epoch_session, and Ndb_slave_max_replicated_epoch, originally
implemented in MySQL NDB Cluster 7.4, are also now available in MySQL NDB Cluster 7.3. For
descriptions of these variables, see NDB Cluster Status Variables; for further information, see NDB
Cluster Replication Conflict Resolution. (Bug #19793475)

• NDB Replication: It was possible using wildcards to set up conflict resolution for an exceptions table
(that is, a table named using the suffix $EX), which should not be allowed. Now when a replication
conflict function is defined using wildcard expressions, these are checked for possible matches so
that, in the event that the function would cover an exceptions table, it is not set up for this table. (Bug
#19267720)

• NDB Cluster APIs: It was possible to delete an Ndb_cluster_connection object while there
remained instances of Ndb using references to it. Now the Ndb_cluster_connection destructor
waits for all related Ndb objects to be released before completing. (Bug #19999242)

References: See also: Bug #19846392.

30

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-diskpagebufferentries
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/flush.html#flush-binary-logs
https://dev.mysql.com/doc/refman/5.6/en/show-binlog-events.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-options-variables.html#statvar_Ndb_last_commit_epoch_server
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-options-variables.html#statvar_Ndb_last_commit_epoch_session
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-options-variables.html#statvar_Ndb_slave_max_replicated_epoch
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-options-variables.html#mysql-cluster-status-variables
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-replication-conflict-resolution.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-replication-conflict-resolution.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb-cluster-connection.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html

MySQL NDB Cluster 7.3 Release Notes

• NDB Cluster APIs: The buffer allocated by an NdbScanOperation for receiving scanned
rows was not released until the NdbTransaction owning the scan operation was closed. This
could lead to excessive memory usage in an application where multiple scans were created
within the same transaction, even if these scans were closed at the end of their lifecycle,
unless NdbScanOperation::close() was invoked with the releaseOp argument equal to
true. Now the buffer is released whenever the cursor navigating the result set is closed with
NdbScanOperation::close(), regardless of the value of this argument. (Bug #75128, Bug
#20166585)

• MySQL NDB ClusterJ: The following errors were logged at the SEVERE level; they are now logged
at the NORMAL level, as they should be:

• Duplicate primary key

• Duplicate unique key

• Foreign key constraint error: key does not exist

• Foreign key constraint error: key exists

(Bug #20045455)

• MySQL NDB ClusterJ: The com.mysql.clusterj.tie class gave off a logging message
at the INFO logging level for every single query, which was unnecessary and was affecting the
performance of applications that used ClusterJ. (Bug #20017292)

• MySQL NDB ClusterJ: ClusterJ reported a segmentation violation when an application closed
a session factory while some sessions were still active. This was because MySQL NDB Cluster
allowed an Ndb_cluster_connection object be to deleted while some Ndb instances were still
active, which might result in the usage of null pointers by ClusterJ. This fix stops that happening
by preventing ClusterJ from closing a session factory when any of its sessions are still active. (Bug
#19846392)

References: See also: Bug #19999242.

• The global checkpoint commit and save protocols can be delayed by various causes, including slow
disk I/O. The DIH master node monitors the progress of both of these protocols, and can enforce a
maximum lag time during which the protocols are stalled by killing the node responsible for the lag
when it reaches this maximum. This DIH master GCP monitor mechanism did not perform its task
more than once per master node; that is, it failed to continue monitoring after detecting and handling
a GCP stop. (Bug #20128256)

References: See also: Bug #19858151, Bug #20069617, Bug #20062754.

• When running mysql_upgrade on a MySQL NDB Cluster SQL node, the expected drop of the
performance_schema database on this node was instead performed on all SQL nodes connected
to the cluster. (Bug #20032861)

31

https://dev.mysql.com/doc/ndbapi/en/ndb-ndbscanoperation.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbtransaction.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbscanoperation.html#ndb-ndbscanoperation-close

MySQL NDB Cluster 7.3 Release Notes

• A number of problems relating to the fired triggers pool have been fixed, including the following
issues:

• When the fired triggers pool was exhausted, NDB returned Error 218 (Out of
LongMessageBuffer). A new error code 221 is added to cover this case.

• An additional, separate case in which Error 218 was wrongly reported now returns the correct
error.

• Setting low values for MaxNoOfFiredTriggers led to an error when no memory was allocated if
there was only one hash bucket.

• An aborted transaction now releases any fired trigger records it held. Previously, these records
were held until its ApiConnectRecord was reused by another transaction.

• In addition, for the Fired Triggers pool in the internal ndbinfo.ndb$pools table, the high
value always equalled the total, due to the fact that all records were momentarily seized when
initializing them. Now the high value shows the maximum following completion of initialization.

(Bug #19976428)

• Online reorganization when using ndbmtd data nodes and with binary logging by mysqld enabled
could sometimes lead to failures in the TRIX and DBLQH kernel blocks, or in silent data corruption.
(Bug #19903481)

References: See also: Bug #19912988.

• The local checkpoint scan fragment watchdog and the global checkpoint monitor can each exclude
a node when it is too slow when participating in their respective protocols. This exclusion was
implemented by simply asking the failing node to shut down, which in case this was delayed (for
whatever reason) could prolong the duration of the GCP or LCP stall for other, unaffected nodes.

To minimize this time, an isolation mechanism has been added to both protocols whereby any other
live nodes forcibly disconnect the failing node after a predetermined amount of time. This allows the
failing node the opportunity to shut down gracefully (after logging debugging and other information) if
possible, but limits the time that other nodes must wait for this to occur. Now, once the remaining live
nodes have processed the disconnection of any failing nodes, they can commence failure handling
and restart the related protocol or protocol, even if the failed node takes an excessively long time to
shut down. (Bug #19858151)

References: See also: Bug #20128256, Bug #20069617, Bug #20062754.

• A watchdog failure resulted from a hang while freeing a disk page in TUP_COMMITREQ, due to use of
an uninitialized block variable. (Bug #19815044, Bug #74380)

• Multiple threads crashing led to multiple sets of trace files being printed and possibly to deadlocks.
(Bug #19724313)

• When a client retried against a new master a schema transaction that failed previously against
the previous master while the latter was restarting, the lock obtained by this transaction on the
new master prevented the previous master from progressing past start phase 3 until the client was
terminated, and resources held by it were cleaned up. (Bug #19712569, Bug #74154)

• When using the NDB storage engine, the maximum possible length of a database or table name is 63
characters, but this limit was not always strictly enforced. This meant that a statement using a name
having 64 characters such CREATE DATABASE, DROP DATABASE, or ALTER TABLE RENAME could
cause the SQL node on which it was executed to fail. Now such statements fail with an appropriate
error message. (Bug #19550973)

32

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxnooffiredtriggers
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/create-database.html
https://dev.mysql.com/doc/refman/5.6/en/drop-database.html
https://dev.mysql.com/doc/refman/5.6/en/alter-table.html

MySQL NDB Cluster 7.3 Release Notes

• When a new data node started, API nodes were allowed to attempt to register themselves with the
data node for executing transactions before the data node was ready. This forced the API node to
wait an extra heartbeat interval before trying again.

To address this issue, a number of HA_ERR_NO_CONNECTION errors (Error 4009) that could be
issued during this time have been changed to Cluster temporarily unavailable errors (Error
4035), which should allow API nodes to use new data nodes more quickly than before. As part of this
fix, some errors which were incorrectly categorised have been moved into the correct categories, and
some errors which are no longer used have been removed. (Bug #19524096, Bug #73758)

• When executing very large pushdown joins involving one or more indexes each defined over several
columns, it was possible in some cases for the DBSPJ block (see The DBSPJ Block) in the NDB
kernel to generate SCAN_FRAGREQ signals that were excessively large. This caused data nodes to
fail when these could not be handled correctly, due to a hard limit in the kernel on the size of such
signals (32K). This fix bypasses that limitation by breaking up SCAN_FRAGREQ data that is too large
for one such signal, and sending the SCAN_FRAGREQ as a chunked or fragmented signal instead.
(Bug #19390895)

• ndb_index_stat sometimes failed when used against a table containing unique indexes. (Bug
#18715165)

• Queries against tables containing a CHAR(0) columns failed with ERROR 1296 (HY000): Got
error 4547 'RecordSpecification has overlapping offsets' from NDBCLUSTER.
(Bug #14798022)

• In the NDB kernel, it was possible for a TransporterFacade object to reset a buffer while the data
contained by the buffer was being sent, which could lead to a race condition. (Bug #75041, Bug
#20112981)

• mysql_upgrade failed to drop and recreate the ndbinfo database and its tables as expected.
(Bug #74863, Bug #20031425)

• Due to a lack of memory barriers, MySQL NDB Cluster programs such as ndbmtd did not compile on
POWER platforms. (Bug #74782, Bug #20007248)

• In some cases, when run against a table having an AFTER DELETE trigger, a DELETE statement that
matched no rows still caused the trigger to execute. (Bug #74751, Bug #19992856)

• A basic requirement of the NDB storage engine's design is that the transporter registry not attempt
to receive data (TransporterRegistry::performReceive()) from and update the connection
status (TransporterRegistry::update_connections()) of the same set of transporters
concurrently, due to the fact that the updates perform final cleanup and reinitialization of buffers used
when receiving data. Changing the contents of these buffers while reading or writing to them could
lead to "garbage" or inconsistent signals being read or written.

During the course of work done previously to improve the implementation of the transporter
facade, a mutex intended to protect against the concurrent use of the performReceive() and
update_connections()) methods on the same transporter was inadvertently removed. This
fix adds a watchdog check for concurrent usage. In addition, update_connections() and
performReceive() calls are now serialized together while polling the transporters. (Bug #74011,
Bug #19661543)

• ndb_restore failed while restoring a table which contained both a built-in conversion on the
primary key and a staging conversion on a TEXT column.

During staging, a BLOB table is created with a primary key column of the target type. However, a
conversion function was not provided to convert the primary key values before loading them into the
staging blob table, which resulted in corrupted primary key values in the staging BLOB table. While

33

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbspj.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbinfo.html
https://dev.mysql.com/doc/refman/5.6/en/delete.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/blob.html
https://dev.mysql.com/doc/refman/5.6/en/blob.html

MySQL NDB Cluster 7.3 Release Notes

moving data from the staging table to the target table, the BLOB read failed because it could not find
the primary key in the BLOB table.

Now all BLOB tables are checked to see whether there are conversions on primary keys of their main
tables. This check is done after all the main tables are processed, so that conversion functions and
parameters have already been set for the main tables. Any conversion functions and parameters
used for the primary key in the main table are now duplicated in the BLOB table. (Bug #73966, Bug
#19642978)

• Corrupted messages to data nodes sometimes went undetected, causing a bad signal to be
delivered to a block which aborted the data node. This failure in combination with disconnecting
nodes could in turn cause the entire cluster to shut down.

To keep this from happening, additional checks are now made when unpacking signals received over
TCP, including checks for byte order, compression flag (which must not be used), and the length of
the next message in the receive buffer (if there is one).

Whenever two consecutive unpacked messages fail the checks just described, the current message
is assumed to be corrupted. In this case, the transporter is marked as having bad data and no more
unpacking of messages occurs until the transporter is reconnected. In addition, an entry is written to
the cluster log containing the error as well as a hex dump of the corrupted message. (Bug #73843,
Bug #19582925)

• ndb_restore --print-data truncated TEXT and BLOB column values to 240 bytes rather than
256 bytes. (Bug #65467, Bug #14571512)

• Transporter send buffers were not updated properly following a failed send. (Bug #45043, Bug
#20113145)

Changes in MySQL NDB Cluster 7.3.7 (5.6.21-ndb-7.3.7)
(2014-10-17, General Availability)

MySQL NDB Cluster 7.3.7 is a new release of NDB Cluster, based on MySQL Server 5.6 and including
features from version 7.3 of the NDB storage engine, as well as fixing a number of recently discovered
bugs in previous NDB Cluster releases.

Obtaining MySQL NDB Cluster 7.3. MySQL NDB Cluster 7.3 source code and binaries can be
obtained from https://dev.mysql.com/downloads/cluster/.

For an overview of changes made in MySQL NDB Cluster 7.3, see What is New in NDB Cluster 7.3.

This release also incorporates all bug fixes and changes made in previous NDB Cluster releases, as
well as all bug fixes and feature changes which were added in mainline MySQL 5.6 through MySQL
5.6.21 (see Changes in MySQL 5.6.21 (2014-09-23, General Availability)).

• Bundled SSL Update (Commercial Releases)

• Functionality Added or Changed

• Bugs Fixed

Bundled SSL Update (Commercial Releases)

• Starting with this release, commercial distributions of MySQL NDB Cluster 7.3 are built using
OpenSSL 1.0.1i.

Functionality Added or Changed

• After adding new data nodes to the configuration file of a MySQL NDB Cluster having many API
nodes, but prior to starting any of the data node processes, API nodes tried to connect to these
“missing” data nodes several times per second, placing extra loads on management nodes and the

34

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_print-data
https://dev.mysql.com/doc/refman/5.6/en/blob.html
https://dev.mysql.com/doc/refman/5.6/en/blob.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-what-is-new-7-3.html
https://dev.mysql.com/doc/relnotes/mysql/5.6/en/news-5-6-21.html

MySQL NDB Cluster 7.3 Release Notes

network. To reduce unnecessary traffic caused in this way, it is now possible to control the amount of
time that an API node waits between attempts to connect to data nodes which fail to respond; this is
implemented in two new API node configuration parameters StartConnectBackoffMaxTime and
ConnectBackoffMaxTime.

Time elapsed during node connection attempts is not taken into account when applying these
parameters, both of which are given in milliseconds with approximately 100 ms resolution. As
long as the API node is not connected to any data nodes as described previously, the value of the
StartConnectBackoffMaxTime parameter is applied; otherwise, ConnectBackoffMaxTime is
used.

In a MySQL NDB Cluster with many unstarted data nodes, the values of these parameters can be
raised to circumvent connection attempts to data nodes which have not yet begun to function in the
cluster, as well as moderate high traffic to management nodes.

For more information about the behavior of these parameters, see Defining SQL and Other API
Nodes in an NDB Cluster. (Bug #17257842)

• Added the --exclude-missing-tables option for ndb_restore. When enabled, the option
causes tables present in the backup but not in the target database to be ignored. (Bug #57566, Bug
#11764704)

Bugs Fixed

• NDB Replication: The fix for Bug #18770469 in the MySQL Server made changes in the
transactional behavior of the temporary conversion tables used when replicating between tables with
different schemas. These changes as implemented are not compatible with NDB, and thus the fix for
this bug has been reverted in MySQL NDB Cluster. (Bug #19692387)

References: See also: Bug #19704825. Reverted patches: Bug #18770469.

• NDB Cluster APIs: The fix for Bug #16723708 stopped the ndb_logevent_get_next() function
from casting a log event's ndb_mgm_event_category to an enum type, but this change interfered
with existing applications, and so the function's original behavior is now reinstated. A new MGM API
function exhibiting the corrected behavior ndb_logevent_get_next2() has been added in this
release to take the place of the reverted function, for use in applications that do not require backward
compatibility. In all other respects apart from this, the new function is identical with its predecessor.
(Bug #18354165)

References: Reverted patches: Bug #16723708.

• NDB Cluster APIs: NDB API scans leaked Ndb_cluster_connection objects after
nextResult() was called when an operation resulted in an error. This leak locked up the
corresponding connection objects in the DBTC kernel block until the connection was closed. (Bug
#17730825, Bug #20170731)

• MySQL NDB ClusterJ: Retrieval of values from BLOB and TEXT columns by ClusterJ column
accessor methods was not handled correctly. (Bug #18419468, Bug #19028487)

• When assembling error messages of the form Incorrect state for node n state:
node_state, written when the transporter failed to connect, the node state was used in place of the
node ID in a number of instances, which resulted in errors of this type for which the node state was
reported incorrectly. (Bug #19559313, Bug #73801)

• In some cases, transporter receive buffers were reset by one thread while being read by another.
This happened when a race condition occurred between a thread receiving data and another thread
initiating disconnect of the transporter (disconnection clears this buffer). Concurrency logic has now
been implemented to keep this race from taking place. (Bug #19552283, Bug #73790)

• The failure of a data node could in some situations cause a set of API nodes to fail as well due to the
sending of a CLOSE_COMREQ signal that was sometimes not completely initialized. (Bug #19513967)

35

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-api-definition.html#ndbparam-api-startconnectbackoffmaxtime
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-api-definition.html#ndbparam-api-connectbackoffmaxtime
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-api-definition.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-api-definition.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_exclude-missing-tables
https://dev.mysql.com/doc/ndbapi/en/mgm-functions-log-events.html#mgm-ndb-logevent-get-next
https://dev.mysql.com/doc/ndbapi/en/mgm-types.html#mgm-ndb-mgm-event-category
https://dev.mysql.com/doc/ndbapi/en/mgm-functions-log-events.html#mgm-ndb-logevent-get-next2
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb-cluster-connection.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbscanoperation.html#ndb-ndbscanoperation-nextresult
https://dev.mysql.com/doc/refman/5.6/en/blob.html
https://dev.mysql.com/doc/refman/5.6/en/blob.html

MySQL NDB Cluster 7.3 Release Notes

• A more detailed error report is printed in the event of a critical failure in one of the NDB internal
sendSignal*() methods, prior to crashing the process, as was already implemented for
sendSignal(), but was missing from the more specialized sendSignalNoRelease() method.
Having a crash of this type correctly reported can help with identifying configuration hardware issues
in some cases. (Bug #19414511)

References: See also: Bug #19390895.

• ndb_restore failed to restore the cluster's metadata when there were more than approximately 17
K data objects. (Bug #19202654)

• The fix for a previous issue with the handling of multiple node failures required determining the
number of TC instances the failed node was running, then taking them over. The mechanism
to determine this number sometimes provided an invalid result which caused the number of TC
instances in the failed node to be set to an excessively high value. This in turn caused redundant
takeover attempts, which wasted time and had a negative impact on the processing of other node
failures and of global checkpoints. (Bug #19193927)

References: This issue is a regression of: Bug #18069334.

• Parallel transactions performing reads immediately preceding a delete on the same tuple could
cause the NDB kernel to crash. This was more likely to occur when separate TC threads were
specified using the ThreadConfig configuration parameter. (Bug #19031389)

• Attribute promotion between different TEXT types (any of TINYTEXT, TEXT, MEDIUMTEXT, and
LONGTEXT) by ndb_restore was not handled properly in some cases. In addition, TEXT values are
now truncated according to the limits set by mysqld (for example, values converted to TINYTEXT
from another type are truncated to 256 bytes). In the case of columns using a multibyte character
set, the value is truncated to the end of the last well-formed character.

Also as a result of this fix, conversion to a TEXT column of any size that uses a different character
set from the original is now disallowed. (Bug #18875137)

• To assist with diagnostic issues where many watchdog warnings are raised, it is now possible to
activate (or deactivate) a killer watchdog using DUMP 2610 in the ndb_mgm client. When set, this
shuts down the data node on which the next watchdog warning occurs, providing a trace log. (Bug
#18703922)

• The NDB optimized node recovery mechanism attempts to transfer only relevant page changes to
a starting node in order to speed the recovery process; this is done by having the starting node
indicate the index of the last global checkpoint (GCI) in which it participated, so that the node that
was already running copies only data for rows which have changed since that GCI. Every row has
a GCI metacolumn which facilitates this; for a deleted row, the slot formerly stpring this row's data
contains a GCI value, and for deleted pages, every row on the missing page is considered changed
and thus needs to be sent.

When these changes are received by the starting node, this node performs a lookup for the page and
index to determine what they contain. This lookup could cause a real underlying page to be mapped
against the logical page ID, even when this page contained no data.

One way in which this issue could manifest itself occurred after cluster DataMemory usage
approached maximum, and deletion of many rows followed by a rolling restart of the data nodes
was performed with the expectation that this would free memory, but in fact it was possible in this
scenario for memory not to be freed and in some cases for memory usage actually to increase to its
maximum.

This fix solves these issues by ensuring that a real physical page is mapped to a logical ID during
node recovery only when this page contains actual data which needs to be stored. (Bug #18683398,
Bug #18731008)

36

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbmtd-threadconfig
https://dev.mysql.com/doc/refman/5.6/en/blob.html
https://dev.mysql.com/doc/refman/5.6/en/blob.html
https://dev.mysql.com/doc/refman/5.6/en/blob.html
https://dev.mysql.com/doc/refman/5.6/en/blob.html
https://dev.mysql.com/doc/refman/5.6/en/blob.html
https://dev.mysql.com/doc/ndb-internals/en/dump-command-2610.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-datamemory

MySQL NDB Cluster 7.3 Release Notes

• When a data node sent a MISSING_DATA signal due to a buffer overflow and no event data had
yet been sent for the current epoch, the dummy event list created to handle this inconsistency was
not deleted after the information in the dummy event list was transferred to the completed list. (Bug
#18410939)

• Incorrect calculation of the next autoincrement value following a manual insertion towards the
end of a cached range could result in duplicate values sometimes being used. This issue could
manifest itself when using certain combinations of values for auto_increment_increment,
auto_increment_offset, and ndb_autoincrement_prefetch_sz.

This issue has been fixed by modifying the calculation to make sure that the next value
from the cache as computed by NDB is of the form auto_increment_offset + (N *
auto_increment_increment. This avoids any rounding up by the MySQL Server of the returned
value, which could result in duplicate entries when the rounded-up value fell outside the range of
values cached by NDB. (Bug #17893872)

• ndb_show_tables --help output contained misleading information about the --database
(-d) option. In addition, the long form of the option (--database) did not work properly. (Bug
#17703874)

• Using the --help option with ndb_print_file caused the program to segfault. (Bug #17069285)

• For multithreaded data nodes, some threads do communicate often, with the result that very old
signals can remain at the top of the signal buffers. When performing a thread trace, the signal
dumper calculated the latest signal ID from what it found in the signal buffers, which meant that these
old signals could be erroneously counted as the newest ones. Now the signal ID counter is kept as
part of the thread state, and it is this value that is used when dumping signals for trace files. (Bug
#73842, Bug #19582807)

Changes in MySQL NDB Cluster 7.3.6 (5.6.19-ndb-7.3.6)
(2014-07-11, General Availability)

MySQL NDB Cluster 7.3.6 is a new release of NDB Cluster, based on MySQL Server 5.6 and including
features from version 7.3 of the NDB storage engine, as well as fixing a number of recently discovered
bugs in previous NDB Cluster releases.

Obtaining MySQL NDB Cluster 7.3. MySQL NDB Cluster 7.3 source code and binaries can be
obtained from https://dev.mysql.com/downloads/cluster/.

For an overview of changes made in MySQL NDB Cluster 7.3, see What is New in NDB Cluster 7.3.

This release also incorporates all bug fixes and changes made in previous NDB Cluster releases, as
well as all bug fixes and feature changes which were added in mainline MySQL 5.6 through MySQL
5.6.19 (see Changes in MySQL 5.6.19 (2014-05-30, General Availability)).

• Functionality Added or Changed

• Bugs Fixed

Functionality Added or Changed

• NDB Cluster APIs: Added as an aid to debugging the ability to specify a human-readable name for
a given Ndb object and later to retrieve it. These operations are implemented, respectively, as the
setNdbObjectName() and getNdbObjectName() methods.

To make tracing of event handling between a user application and NDB easier, you can use the
reference (from getReference() followed by the name (if provided) in printouts; the reference ties
together the application Ndb object, the event buffer, and the NDB storage engine's SUMA block. (Bug
#18419907)

37

https://dev.mysql.com/doc/refman/5.6/en/replication-options-source.html#sysvar_auto_increment_increment
https://dev.mysql.com/doc/refman/5.6/en/replication-options-source.html#sysvar_auto_increment_offset
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-options-variables.html#sysvar_ndb_autoincrement_prefetch_sz
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-show-tables.html#option_ndb_show_tables_help
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-show-tables.html#option_ndb_show_tables_database
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-what-is-new-7-3.html
https://dev.mysql.com/doc/relnotes/mysql/5.6/en/news-5-6-19.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-setndbobjectname
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-getndbobjectname
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-getreference
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html

MySQL NDB Cluster 7.3 Release Notes

Bugs Fixed

• NDB Disk Data: Setting the undo buffer size used by InitialLogFileGroup to a value greater
than that set by SharedGlobalMemory prevented data nodes from starting; the data nodes failed
with Error 1504 Out of logbuffer memory. While the failure itself is expected behavior, the error
message did not provide sufficient information to diagnose the actual source of the problem; now in
such cases, a more specific error message Out of logbuffer memory (specify smaller
undo_buffer_size or increase SharedGlobalMemory) is supplied. (Bug #11762867, Bug
#55515)

• NDB Replication: When using NDB$EPOCH_TRANS, conflicts between DELETE operations were
handled like conflicts between updates, with the primary rejecting the transaction and dependents,
and realigning the secondary. This meant that their behavior with regard to subsequent operations
on any affected row or rows depended on whether they were in the same epoch or a different one:
within the same epoch, they were considered conflicting events; in different epochs, they were not
considered in conflict.

This fix brings the handling of conflicts between deletes by NDB$EPOCH_TRANS with that performed
when using NDB$EPOCH for conflict detection and resolution, and extends testing with NDB$EPOCH
and NDB$EPOCH_TRANS to include “delete-delete” conflicts, and encapsulate the expected result,
with transactional conflict handling modified so that a conflict between DELETE operations alone is
not sufficient to cause a transaction to be considered in conflict. (Bug #18459944)

• NDB Replication: The implicit FLUSH LOGS performed as part of binary log rotation could
deadlock and time out with a sufficiently small value for max_binlog_size. (Bug #18274220, Bug
#19895502, Bug #20009154)

References: See also: Bug #18845822, Bug #19793475, Bug #16884594.

• NDB Cluster APIs: When two tables had different foreign keys with the same name, ndb_restore
considered this a name conflict and failed to restore the schema. As a result of this fix, a
slash character (/) is now expressly disallowed in foreign key names, and the naming format
parent_id/child_id/fk_name is now enforced by the NDB API. (Bug #18824753)

• NDB Cluster APIs: When an NDB data node indicates a buffer overflow via an empty epoch, the
event buffer places an inconsistent data event in the event queue. When this was consumed, it was
not removed from the event queue as expected, causing subsequent nextEvent() calls to return
0. This caused event consumption to stall because the inconsistency remained flagged forever, while
event data accumulated in the queue.

Event data belonging to an empty inconsistent epoch can be found either at the beginning or
somewhere in the middle. pollEvents() returns 0 for the first case. This fix handles the second
case: calling nextEvent() call dequeues the inconsistent event before it returns. In order to benefit
from this fix, user applications must call nextEvent() even when pollEvents() returns 0. (Bug
#18716991)

• NDB Cluster APIs: The pollEvents() method returned 1, even when called with a wait time
equal to 0, and there were no events waiting in the queue. Now in such cases it returns 0 as
expected. (Bug #18703871)

• MySQL NDB ClusterJ: Writing a value failed when read from a fixed-width char column using utf8
to another column of the same type and length but using latin1. The data was returned with extra
spaces after being padded during its insertion. The value is now trimmed before returning it.

This fix also corrects Data length too long errors during the insertion of valid utf8 characters
of 2 or more bytes. This was due to padding of the data before encoding it, rather than after. (Bug
#71435, Bug #18283369)

• Processing a NODE_FAILREP signal that contained an invalid node ID could cause a data node to
fail. (Bug #18993037, Bug #73015)

38

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-initiallogfilegroup
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-sharedglobalmemory
https://dev.mysql.com/doc/refman/5.6/en/flush.html#flush-logs
https://dev.mysql.com/doc/refman/5.6/en/replication-options-binary-log.html#sysvar_max_binlog_size
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-nextevent
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-pollevents
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-pollevents

MySQL NDB Cluster 7.3 Release Notes

References: This issue is a regression of: Bug #16007980.

• When building out of source, some files were written to the source directory instead of the build dir.
These included the manifest.mf files used for creating ClusterJ jars and the pom.xml file used
by mvn_install_ndbjtie.sh. In addition, ndbinfo.sql was written to the build directory, but
marked as output to the source directory in CMakeLists.txt. (Bug #18889568, Bug #72843)

• When the binary log injector thread commits an epoch to the binary log and this causes the log file to
reach maximum size, it may need to rotate the binary log. The rotation is not performed until either all
the committed transactions from all client threads are flushed to the binary log, or a maximum of 30
seconds has elapsed. In the case where all transactions were committed prior to the 30-second wait,
it was possible for committed transactions from multiple client threads to belong to newer epochs
than the latest epoch committed by the injector thread, causing the thread to deadlock with itself, and
causing an unnecessary 30-second delay before breaking the deadlock. (Bug #18845822)

• Adding a foreign key failed with NDB Error 208 if the parent index was parent table's primary key,
the primary key was not on the table's initial attributes, and the child table was not empty. (Bug
#18825966)

• When an NDB table served as both the parent table and a child table for 2 different foreign keys
having the same name, dropping the foreign key on the child table could cause the foreign key on
the parent table to be dropped instead, leading to a situation in which it was impossible to drop
the remaining foreign key. This situation can be modelled using the following CREATE TABLE
statements:

CREATE TABLE parent (
 id INT NOT NULL,
 PRIMARY KEY (id)
) ENGINE=NDB;

CREATE TABLE child (
 id INT NOT NULL,
 parent_id INT,
 PRIMARY KEY (id),
 INDEX par_ind (parent_id),

 FOREIGN KEY (parent_id)
 REFERENCES parent(id)
) ENGINE=NDB;

CREATE TABLE grandchild (
 id INT,
 parent_id INT,
 INDEX par_ind (parent_id),

 FOREIGN KEY (parent_id)
 REFERENCES child(id)
) ENGINE=NDB;

With the tables created as just shown, the issue occurred when executing the statement ALTER
TABLE child DROP FOREIGN KEY parent_id, because it was possible in some cases for NDB
to drop the foreign key from the grandchild table instead. When this happened, any subsequent
attempt to drop the foreign key from either the child or from the grandchild table failed. (Bug
#18662582)

• It was possible for a data node restart to become stuck indefinitely in start phase 101 (see Summary
of NDB Cluster Start Phases) when there were connection problems between the node being
restarted and one or more subscribing API nodes.

To help prevent this from happening, a new data node configuration parameter
RestartSubscriberConnectTimeout has been introduced, which can be used to control how
long a data node restart can stall in start phase 101 before giving up and attempting to restart again.
The default is 12000 ms. (Bug #18599198)

39

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/create-table.html
https://dev.mysql.com/doc/refman/5.6/en/alter-table.html
https://dev.mysql.com/doc/refman/5.6/en/alter-table.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-start-phases.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-start-phases.html

MySQL NDB Cluster 7.3 Release Notes

• Executing ALTER TABLE ... REORGANIZE PARTITION after increasing the number of data
nodes in the cluster from 4 to 16 led to a crash of the data nodes. This issue was shown to be a
regression caused by previous fix which added a new dump handler using a dump code that was
already in use (7019), which caused the command to execute two different handlers with different
semantics. The new handler was assigned a new DUMP code (7024). (Bug #18550318)

References: This issue is a regression of: Bug #14220269.

• Following a long series of inserts, when running with a relatively small redo log and an insufficient
large value for MaxNoOfConcurrentTransactions, there remained transactions that were
blocked by the lack of redo log and were thus not aborted in the correct state (waiting for prepare log
to be sent to disk, or LOG_QUEUED state). This caused the redo log to remain blocked until unblocked
by a completion of a local checkpoint. This could lead to a deadlock, when the blocked aborts in
turned blocked global checkpoints, and blocked GCPs block LCPs. To prevent this situation from
arising, we now abort immediately when we reach the LOG_QUEUED state in the abort state handler.
(Bug #18533982)

• ndbmtd supports multiple parallel receiver threads, each of which performs signal reception for a
subset of the remote node connections (transporters) with the mapping of remote_nodes to receiver
threads decided at node startup. Connection control is managed by the multi-instance TRPMAN block,
which is organized as a proxy and workers, and each receiver thread has a TRPMAN worker running
locally.

The QMGR block sends signals to TRPMAN to enable and disable communications with remote nodes.
These signals are sent to the TRPMAN proxy, which forwards them to the workers. The workers
themselves decide whether to act on signals, based on the set of remote nodes they manage.

The current issue arises because the mechanism used by the TRPMAN workers for determining
which connections they are responsible for was implemented in such a way that each worker thought
it was responsible for all connections. This resulted in the TRPMAN actions for OPEN_COMORD,
ENABLE_COMREQ, and CLOSE_COMREQ being processed multiple times.

The fix keeps TRPMAN instances (receiver threads) executing OPEN_COMORD, ENABLE_COMREQ and
CLOSE_COMREQ requests. In addition, the correct TRPMAN instance is now chosen when routing from
this instance for a specific remote connection. (Bug #18518037)

• During data node failure handling, the transaction coordinator performing takeover gathers all known
state information for any failed TC instance transactions, determines whether each transaction
has been committed or aborted, and informs any involved API nodes so that they can report this
accurately to their clients. The TC instance provides this information by sending TCKEY_FAILREF or
TCKEY_FAILCONF signals to the API nodes as appropriate top each affected transaction.

In the event that this TC instance does not have a direct connection to the API node, it attempts
to deliver the signal by routing it through another data node in the same node group as the failing
TC, and sends a GSN_TCKEY_FAILREFCONF_R signal to TC block instance 0 in that data node. A
problem arose in the case of multiple transaction cooridnators, when this TC instance did not have a
signal handler for such signals, which led it to fail.

This issue has been corrected by adding a handler to the TC proxy block which in such cases
forwards the signal to one of the local TC worker instances, which in turn attempts to forward the
signal on to the API node. (Bug #18455971)

• When running with a very slow main thread, and one or more transaction coordinator threads, on
different CPUs, it was possible to encounter a timeout when sending a DIH_SCAN_GET_NODESREQ
signal, which could lead to a crash of the data node. Now in such cases the timeout is avoided. (Bug
#18449222)

• Failure of multiple nodes while using ndbmtd with multiple TC threads was not handled gracefully
under a moderate amount of traffic, which could in some cases lead to an unplanned shutdown of
the cluster. (Bug #18069334)

40

https://dev.mysql.com/doc/refman/5.6/en/alter-table-partition-operations.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxnoofconcurrenttransactions

MySQL NDB Cluster 7.3 Release Notes

• A local checkpoint (LCP) is tracked using a global LCP state (c_lcpState), and each NDB table has
a status indicator which indicates the LCP status of that table (tabLcpStatus). If the global LCP
state is LCP_STATUS_IDLE, then all the tables should have an LCP status of TLS_COMPLETED.

When an LCP starts, the global LCP status is LCP_INIT_TABLES and the thread starts setting
all the NDB tables to TLS_ACTIVE. If any tables are not ready for LCP, the LCP initialization
procedure continues with CONTINUEB signals until all tables have become available and been
marked TLS_ACTIVE. When this initialization is complete, the global LCP status is set to
LCP_STATUS_ACTIVE.

This bug occurred when the following conditions were met:

• An LCP was in the LCP_INIT_TABLES state, and some but not all tables had been set to
TLS_ACTIVE.

• The master node failed before the global LCP state changed to LCP_STATUS_ACTIVE; that is,
before the LCP could finish processing all tables.

• The NODE_FAILREP signal resulting from the node failure was processed before the final
CONTINUEB signal from the LCP initialization process, so that the node failure was processed
while the LCP remained in the LCP_INIT_TABLES state.

Following master node failure and selection of a new one, the new master queries the remaining
nodes with a MASTER_LCPREQ signal to determine the state of the LCP. At this point, since the LCP
status was LCP_INIT_TABLES, the LCP status was reset to LCP_STATUS_IDLE. However, the
LCP status of the tables was not modified, so there remained tables with TLS_ACTIVE. Afterwards,
the failed node is removed from the LCP. If the LCP status of a given table is TLS_ACTIVE, there is
a check that the global LCP status is not LCP_STATUS_IDLE; this check failed and caused the data
node to fail.

Now the MASTER_LCPREQ handler ensures that the tabLcpStatus for all tables is updated to
TLS_COMPLETED when the global LCP status is changed to LCP_STATUS_IDLE. (Bug #18044717)

• When performing a copying ALTER TABLE operation, mysqld creates a new copy of the table
to be altered. This intermediate table, which is given a name bearing the prefix #sql-, has an
updated schema but contains no data. mysqld then copies the data from the original table to this
intermediate table, drops the original table, and finally renames the intermediate table with the name
of the original table.

mysqld regards such a table as a temporary table and does not include it in the output from SHOW
TABLES; mysqldump also ignores an intermediate table. However, NDB sees no difference between
such an intermediate table and any other table. This difference in how intermediate tables are viewed
by mysqld (and MySQL client programs) and by the NDB storage engine can give rise to problems
when performing a backup and restore if an intermediate table existed in NDB, possibly left over from
a failed ALTER TABLE that used copying. If a schema backup is performed using mysqldump and
the mysql client, this table is not included. However, in the case where a data backup was done
using the ndb_mgm client's BACKUP command, the intermediate table was included, and was also
included by ndb_restore, which then failed due to attempting to load data into a table which was
not defined in the backed up schema.

To prevent such failures from occurring, ndb_restore now by default ignores intermediate tables
created during ALTER TABLE operations (that is, tables whose names begin with the prefix #sql-).
A new option --exclude-intermediate-sql-tables is added that makes it possible to
override the new behavior. The option's default value is TRUE; to cause ndb_restore to revert
to the old behavior and to attempt to restore intermediate tables, set this option to FALSE. (Bug
#17882305)

• The logging of insert failures has been improved. This is intended to help diagnose occasional issues
seen when writing to the mysql.ndb_binlog_index table. (Bug #17461625)

41

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/alter-table.html
https://dev.mysql.com/doc/refman/5.6/en/show-tables.html
https://dev.mysql.com/doc/refman/5.6/en/show-tables.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/alter-table.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_exclude-intermediate-sql-tables

MySQL NDB Cluster 7.3 Release Notes

• The DEFINER column in the INFORMATION_SCHEMA.VIEWS table contained erroneous values
for views contained in the ndbinfo information database. This could be seen in the result of a
query such as SELECT TABLE_NAME, DEFINER FROM INFORMATION_SCHEMA.VIEWS WHERE
TABLE_SCHEMA='ndbinfo'. (Bug #17018500)

• Employing a CHAR column that used the UTF8 character set as a table's primary key column led to
node failure when restarting data nodes. Attempting to restore a table with such a primary key also
caused ndb_restore to fail. (Bug #16895311, Bug #68893)

• The --order (-o) option for the ndb_select_all utility worked only when specified as the last
option, and did not work with an equals sign.

As part of this fix, the program's --help output was also aligned with the --order option's correct
behavior. (Bug #64426, Bug #16374870)

Changes in MySQL NDB Cluster 7.3.5 (5.6.17-ndb-7.3.5)
(2014-04-07, General Availability)

MySQL NDB Cluster 7.3.5 is a new release of NDB Cluster, based on MySQL Server 5.6 and including
features from version 7.3 of the NDB storage engine, as well as fixing a number of recently discovered
bugs in previous NDB Cluster releases.

Obtaining MySQL NDB Cluster 7.3. MySQL NDB Cluster 7.3 source code and binaries can be
obtained from https://dev.mysql.com/downloads/cluster/.

For an overview of changes made in MySQL NDB Cluster 7.3, see What is New in NDB Cluster 7.3.

This release also incorporates all bug fixes and changes made in previous NDB Cluster releases, as
well as all bug fixes and feature changes which were added in mainline MySQL 5.6 through MySQL
5.6.17 (see Changes in MySQL 5.6.17 (2014-03-27, General Availability)).

• Functionality Added or Changed

• Bugs Fixed

Functionality Added or Changed

• Handling of LongMessageBuffer shortages and statistics has been improved as follows:

• The default value of LongMessageBuffer has been increased from 4 MB to 64 MB.

• When this resource is exhausted, a suitable informative message is now printed in the data node
log describing possible causes of the problem and suggesting possible solutions.

• LongMessageBuffer usage information is now shown in the ndbinfo.memoryusage table.
See the description of this table for an example and additional information.

(WL #7779)

Bugs Fixed

• Important Change: The server system variables ndb_index_cache_entries and
ndb_index_stat_freq, which had been deprecated in a previous MySQL NDB Cluster release
series, have now been removed. (Bug #11746486, Bug #26673)

• Replication: Log rotation events could cause group_relay_log_pos to be moved forward
incorrectly within a group. This meant that, when the transaction was retried, or if the SQL thread
was stopped in the middle of a transaction following one or more log rotations (such that the
transaction or group spanned multiple relay log files), part or all of the group was silently skipped.

42

https://dev.mysql.com/doc/refman/5.6/en/information-schema-views-table.html
https://dev.mysql.com/doc/refman/5.6/en/char.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-select-all.html#option_ndb_select_all_order
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-what-is-new-7-3.html
https://dev.mysql.com/doc/relnotes/mysql/5.6/en/news-5-6-17.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-longmessagebuffer
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbinfo-memoryusage.html

MySQL NDB Cluster 7.3 Release Notes

This issue has been addressed by correcting a problem in the logic used to avoid touching the
coordinates of the SQL thread when updating the log position as part of a relay log rotation whereby
it was possible to update the SQL thread's coordinates when not using a multithreaded slave, even in
the middle of a group. (Bug #18482854)

• Solaris: An issue found when compiling the MySQL NDB Cluster software for Solaris platforms
could lead to problems when using ThreadConfig on such systems. (Bug #18181656)

• NDB Replication: A slave in MySQL NDB Cluster Replication now monitors the progression of
epoch numbers received from its immediate upstream master, which can both serve as a useful
check on the low-level functioning of replication, and provide a warning in the event replication is
restarted accidentally at an already-applied position.

As a result of this enhancement, an epoch ID collision has the following results, depending on the
state of the slave SQL thread:

• Following a RESET SLAVE statement, no action is taken, in order to allow the execution of this
statement without spurious warnings.

• Following START SLAVE, a warning is produced that the slave is being positioned at an epoch that
has already been applied.

• In all other cases, the slave SQL thread is stopped against the possibility that a system
malfunction has resulted in the re-application of an existing epoch.

(Bug #17461576)

References: See also: Bug #17369118.

• NDB Cluster APIs: When an NDB API client application received a signal with an invalid block or
signal number, NDB provided only a very brief error message that did not accurately convey the
nature of the problem. Now in such cases, appropriate printouts are provided when a bad signal or
message is detected. In addition, the message length is now checked to make certain that it matches
the size of the embedded signal. (Bug #18426180)

• NDB Cluster APIs: Refactoring that was performed in MySQL NDB Cluster 7.3.4 inadvertently
introduced a dependency in Ndb.hpp on a file that is not included in the distribution, which caused
NDB API applications to fail to compile. The dependency has been removed. (Bug #18293112, Bug
#71803)

References: This issue is a regression of: Bug #17647637.

• NDB Cluster APIs: An NDB API application sends a scan query to a data node; the scan is
processed by the transaction coordinator (TC). The TC forwards a LQHKEYREQ request to the
appropriate LDM, and aborts the transaction if it does not receive a LQHKEYCONF response
within the specified time limit. After the transaction is successfully aborted, the TC sends a
TCROLLBACKREP to the NDBAPI client, and the NDB API client processes this message by cleaning
up any Ndb objects associated with the transaction.

The client receives the data which it has requested in the form of TRANSID_AI signals, buffered
for sending at the data node, and may be delivered after a delay. On receiving such a signal, NDB
checks the transaction state and ID: if these are as expected, it processes the signal using the Ndb
objects associated with that transaction.

The current bug occurs when all the following conditions are fulfilled:

• The transaction coordinator aborts a transaction due to delays and sends a TCROLLBACPREP
signal to the client, while at the same time a TRANSID_AI which has been buffered for delivery at
an LDM is delivered to the same client.

43

https://dev.mysql.com/doc/refman/5.6/en/reset-slave.html
https://dev.mysql.com/doc/refman/5.6/en/start-slave.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html

MySQL NDB Cluster 7.3 Release Notes

• The NDB API client considers the transaction complete on receipt of a TCROLLBACKREP signal,
and immediately closes the transaction.

• The client has a separate receiver thread running concurrently with the thread that is engaged in
closing the transaction.

• The arrival of the late TRANSID_AI interleaves with the closing of the user thread's transaction
such that TRANSID_AI processing passes normal checks before closeTransaction() resets
the transaction state and invalidates the receiver.

When these conditions are all met, the receiver thread proceeds to continue working on the
TRANSID_AI signal using the invalidated receiver. Since the receiver is already invalidated, its
usage results in a node failure.

Now the Ndb object cleanup done for TCROLLBACKREP includes invalidation of the transaction
ID, so that, for a given transaction, any signal which is received after the TCROLLBACKREP arrives
does not pass the transaction ID check and is silently dropped. This fix is also implemented for the
TC_COMMITREF, TCROLLBACKREF, TCKEY_FAILCONF, and TCKEY_FAILREF signals as well.

See also Operations and Signals, for additional information about NDB messaging. (Bug #18196562)

• NDB Cluster APIs: The example ndbapi-examples/ndbapi_blob_ndbrecord/main.cpp
included an internal header file (ndb_global.h) not found in the MySQL NDB Cluster binary
distribution. The example now uses stdlib.h and string.h instead of this file. (Bug #18096866,
Bug #71409)

• NDB Cluster APIs: When Dictionary::dropTable() attempted (as a normal part of its internal
operations) to drop an index used by a foreign key constraint, the drop failed. Now in such cases,
invoking dropTable() causes all foreign keys on the table to be dropped, whether this table acts
as a parent table, child table, or both.

This issue did not affect dropping of indexes using SQL statements. (Bug #18069680)

References: See also: Bug #17591531.

• NDB Cluster APIs: ndb_restore could sometimes report Error 701 System busy with
other schema operation unnecessarily when restoring in parallel. (Bug #17916243)

• When an ALTER TABLE statement changed table schemas without causing a change in the table's
partitioning, the new table definition did not copy the hash map from the old definition, but used the
current default hash map instead. However, the table data was not reorganized according to the new
hashmap, which made some rows inaccessible using a primary key lookup if the two hash maps had
incompatible definitions.

To keep this situation from occurring, any ALTER TABLE that entails a hashmap change now
triggers a reorganisation of the table. In addition, when copying a table definition in such cases, the
hashmap is now also copied. (Bug #18436558)

• When certain queries generated signals having more than 18 data words prior to a node failure, such
signals were not written correctly in the trace file. (Bug #18419554)

• Checking of timeouts is handled by the signal TIME_SIGNAL. Previously, this signal was generated
by the QMGR NDB kernel block in the main thread, and sent to the QMRG, DBLQH, and DBTC blocks
(see NDB Kernel Blocks) as needed to check (respectively) heartbeats, disk writes, and transaction
timeouts. In ndbmtd (as opposed to ndbd), these blocks all execute in different threads. This
meant that if, for example, QMGR was actively working and some other thread was put to sleep, the
previously sleeping thread received a large number of TIME_SIGNAL messages simultaneously
when it was woken up again, with the effect that effective times moved very quickly in DBLQH as well
as in DBTC. In DBLQH, this had no noticeable adverse effects, but this was not the case in DBTC;
the latter block could not work on transactions even though time was still advancing, leading to a

44

https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-closetransaction
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-ndb-protocol-operations-signals.html
https://dev.mysql.com/doc/ndbapi/en/ndb-dictionary.html#ndb-dictionary-droptable
https://dev.mysql.com/doc/refman/5.6/en/alter-table.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks.html

MySQL NDB Cluster 7.3 Release Notes

situation in which many operations appeared to time out because the transaction coordinator (TC)
thread was comparatively slow in answering requests.

In addition, when the TC thread slept for longer than 1500 milliseconds, the data node crashed
due to detecting that the timeout handling loop had not yet stopped. To rectify this problem, the
generation of the TIME_SIGNAL has been moved into the local threads instead of QMGR; this
provides for better control over how quickly TIME_SIGNAL messages are allowed to arrive. (Bug
#18417623, WL #7747)

• The ServerPort and TcpBind_INADDR_ANY configuration parameters were not included in the
output of ndb_mgmd --print-full-config. (Bug #18366909)

• After dropping an NDB table, neither the cluster log nor the output of the REPORT MemoryUsage
command showed that the IndexMemory used by that table had been freed, even though the
memory had in fact been deallocated. This issue was introduced in MySQL NDB Cluster 7.3.2. (Bug
#18296810)

• ndb_show_tables sometimes failed with the error message Unable to connect to
management server and immediately terminated, without providing the underlying reason for the
failure. To provide more useful information in such cases, this program now also prints the most
recent error from the Ndb_cluster_connection object used to instantiate the connection. (Bug
#18276327)

• -DWITH_NDBMTD=0 did not function correctly, which could cause the build to fail on platforms such
as ARM and Raspberry Pi which do not define the memory barrier functions required to compile
ndbmtd. (Bug #18267919)

References: See also: Bug #16620938.

• The block threads managed by the multithreading scheduler communicate by placing signals in an
out queue or job buffer which is set up between all block threads. This queue has a fixed maximum
size, such that when it is filled up, the worker thread must wait for the consumer to drain the queue.
In a highly loaded system, multiple threads could end up in a circular wait lock due to full out buffers,
such that they were preventing each other from performing any useful work. This condition eventually
led to the data node being declared dead and killed by the watchdog timer.

To fix this problem, we detect situations in which a circular wait lock is about to begin, and cause
buffers which are otherwise held in reserve to become available for signal processing by queues
which are highly loaded. (Bug #18229003)

• The ndb_mgm client START BACKUP command (see Commands in the NDB Cluster Management
Client) could experience occasional random failures when a ping was received prior to an expected
BackupCompleted event. Now the connection established by this command is not checked until it
has been properly set up. (Bug #18165088)

• When creating a table with foreign key referencing an index in another table, it sometimes appeared
possible to create the foreign key even if the order of the columns in the indexes did not match, due
to the fact that an appropriate error was not always returned internally. This fix improves the error
used internally to work in most cases; however, it is still possible for this situation to occur in the
event that the parent index is a unique index. (Bug #18094360)

• Updating parent tables of foreign keys used excessive scan resources and so required unusually
high settings for MaxNoOfLocalScans and MaxNoOfConcurrentScans. (Bug #18082045)

• Dropping a nonexistent foreign key on an NDB table (using, for example, ALTER TABLE) appeared
to succeed. Now in such cases, the statement fails with a relevant error message, as expected. (Bug
#17232212)

• Data nodes running ndbmtd could stall while performing an online upgrade of a MySQL NDB Cluster
containing a great many tables from a version prior to NDB 7.2.5 to version 7.2.5 or later. (Bug
#16693068)

45

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-serverport
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-tcpbind_inaddr_any
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-mgmd.html#option_ndb_mgmd_print-full-config
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-indexmemory
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb-cluster-connection.html
https://dev.mysql.com/doc/refman/5.6/en/source-configuration-options.html#option_cmake_with_ndbmtd
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-mgm-client-commands.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-mgm-client-commands.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxnooflocalscans
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxnoofconcurrentscans
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/alter-table.html

MySQL NDB Cluster 7.3 Release Notes

Changes in MySQL NDB Cluster 7.3.4 (5.6.15-ndb-7.3.4)
(2014-02-06, General Availability)

MySQL NDB Cluster 7.3.4 is a new release of NDB Cluster, based on MySQL Server 5.6 and including
features from version 7.3 of the NDB storage engine, as well as fixing a number of recently discovered
bugs in previous NDB Cluster releases.

Obtaining MySQL NDB Cluster 7.3. MySQL NDB Cluster 7.3 source code and binaries can be
obtained from https://dev.mysql.com/downloads/cluster/.

For an overview of changes made in MySQL NDB Cluster 7.3, see What is New in NDB Cluster 7.3.

This release also incorporates all bug fixes and changes made in previous NDB Cluster releases, as
well as all bug fixes and feature changes which were added in mainline MySQL 5.6 through MySQL
5.6.15 (see Changes in MySQL 5.6.15 (2013-12-03, General Availability)).

Bugs Fixed

• Packaging; Solaris: Compilation of ndbmtd failed on Solaris 10 and 11 for 32-bit x86, and the
binary was not included in the binary distributions for these platforms. (Bug #16620938)

• Microsoft Windows: Timers used in timing scheduler events in the NDB kernel have been
refactored, in part to insure that they are monotonic on all platforms. In particular, on Windows, event
intervals were previously calculated using values obtained from GetSystemTimeAsFileTime(),
which reads directly from the system time (“wall clock”), and which may arbitrarily be reset backward
or forward, leading to false watchdog or heartbeat alarms, or even node shutdown. Lack of timer
monotonicity could also cause slow disk writes during backups and global checkpoints. To fix
this issue, the Windows implementation now uses QueryPerformanceCounters() instead of
GetSystemTimeAsFileTime(). In the event that a monotonic timer is not found on startup of the
data nodes, a warning is logged.

In addition, on all platforms, a check is now performed at compile time for available system
monotonic timers, and the build fails if one cannot be found; note that CLOCK_HIGHRES is now
supported as an alternative for CLOCK_MONOTONIC if the latter is not available. (Bug #17647637)

• NDB Disk Data: When using Disk Data tables and ndbmtd data nodes, it was possible for the undo
buffer to become overloaded, leading to a crash of the data nodes. This issue was more likely to
be encountered when using Disk Data columns whose size was approximately 8K or larger. (Bug
#16766493)

• NDB Cluster APIs: UINT_MAX64 was treated as a signed value by Visual Studio 2010. To prevent
this from happening, the value is now explicitly defined as unsigned. (Bug #17947674)

References: See also: Bug #17647637.

• NDB Cluster APIs: It was possible for an Ndb object to receive signals for handling before it was
initialized, leading to thread interleaving and possible data node failure when executing a call to
Ndb::init(). To guard against this happening, a check is now made when it is starting to receive
signals that the Ndb object is properly initialized before any signals are actually handled. (Bug
#17719439)

• NDB Cluster APIs: Compilation of example NDB API program files failed due to missing include
directives. (Bug #17672846, Bug #70759)

• NDB Cluster APIs: An application, having opened two distinct instances of
Ndb_cluster_connection, attempted to use the second connection object to send signals to
itself, but these signals were blocked until the destructor was explicitly called for that connection
object. (Bug #17626525)

References: This issue is a regression of: Bug #16595838.

46

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-what-is-new-7-3.html
https://dev.mysql.com/doc/relnotes/mysql/5.6/en/news-5-6-15.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-init
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb-cluster-connection.html

MySQL NDB Cluster 7.3 Release Notes

• ndbmemcache: A memcached server running the NDB engine could crash after being disconnected
from a cluster. (Bug #14055851)

• MySQL NDB ClusterJ: Call of setPartitionKey() failed after a previous transaction failed. It was
because the state of the transaction was not properly cleaned up after the transaction failure. This fix
adds the clean-up that is needed in the situation. (Bug #17885485)

• Interrupting a drop of a foreign key could cause the underlying table to become corrupt. (Bug
#18041636)

• Monotonic timers on several platforms can experience issues which might result in the monotonic
clock doing small jumps back in time. This is due to imperfect synchronization of clocks between
multiple CPU cores and does not normally have an adverse effect on the scheduler and watchdog
mechanisms; so we handle some of these cases by making backtick protection less strict, although
we continue to ensure that the backtick is less than 10 milliseconds. This fix also removes several
checks for backticks which are thereby made redundant. (Bug #17973819)

• Under certain specific circumstances, in a cluster having two SQL nodes, one of these could hang,
and could not be accessed again even after killing the mysqld process and restarting it. (Bug
#17875885, Bug #18080104)

References: See also: Bug #17934985.

• Poor support or lack of support on some platforms for monotonic timers caused issues with delayed
signal handling by the job scheduler for the multithreaded data node. Variances (timer leaps) on such
platforms are now handled in the same way the multithreaded data node process that they are by the
singlethreaded version. (Bug #17857442)

References: See also: Bug #17475425, Bug #17647637.

• In some cases, with ndb_join_pushdown enabled, it was possible to obtain from a valid query the
error Got error 290 'Corrupt key in TC, unable to xfrm' from NDBCLUSTER even
though the data was not actually corrupted.

It was determined that a NULL in a VARCHAR column could be used to construct a lookup key, but
since NULL is never equal to any other value, such a lookup could simple have been eliminated
instead. This NULL lookup in turn led to the spurious error message.

This fix takes advantage of the fact that a key lookup with NULL never finds any matching rows, and
so NDB does not try to perform the lookup that would have led to the error. (Bug #17845161)

• The local checkpoint lag watchdog tracking the number of times a check for LCP timeout was
performed using the system scheduler and used this count to check for a timeout condition, but this
caused a number of issues. To overcome these limitations, the LCP watchdog has been refactored
to keep track of its own start times, and to calculate elapsed time by reading the (real) clock every
time it is called. (Bug #17842035)

References: See also: Bug #17647469.

• It was theoretically possible in certain cases for a number of output functions internal to the NDB code
to supply an uninitialized buffer as output. Now in such cases, a newline character is printed instead.
(Bug #17775602, Bug #17775772)

• Use of the localtime() function in NDB multithreading code led to otherwise nondeterministic
failures in ndbmtd. This fix replaces this function, which on many platforms uses a buffer shared
among multiple threads, with localtime_r(), which can have allocated to it a buffer of its own.
(Bug #17750252)

• When using single-threaded (ndbd) data nodes with RealTimeScheduler enabled, the CPU did
not, as intended, temporarily lower its scheduling priority to normal every 10 milliseconds to give
other, non-realtime threads a chance to run. (Bug #17739131)

47

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-options-variables.html#sysvar_ndb_join_pushdown
https://dev.mysql.com/doc/refman/5.6/en/char.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-realtimescheduler

MySQL NDB Cluster 7.3 Release Notes

• During arbitrator selection, QMGR (see The QMGR Block) runs through a series of states, the first
few of which are (in order) NULL, INIT, FIND, PREP1, PREP2, and START. A check for an arbitration
selection timeout occurred in the FIND state, even though the corresponding timer was not set until
QMGR reached the PREP1 and PREP2 states. Attempting to read the resulting uninitialized timestamp
value could lead to false Could not find an arbitrator, cluster is not partition-
safe warnings.

This fix moves the setting of the timer for arbitration timeout to the INIT state, so that the value later
read during FIND is always initialized. (Bug #17738720)

• The global checkpoint lag watchdog tracking the number of times a check for GCP lag was
performed using the system scheduler and used this count to check for a timeout condition, but this
caused a number of issues. To overcome these limitations, the GCP watchdog has been refactored
to keep track of its own start times, and to calculate elapsed time by reading the (real) clock every
time it is called.

In addition, any backticks (rare in any case) are now handled by taking the backward time as the new
current time and calculating the elapsed time for this round as 0. Finally, any ill effects of a forward
leap, which possibly could expire the watchdog timer immediately, are reduced by never calculating
an elapsed time longer than the requested delay time for the watchdog timer. (Bug #17647469)

References: See also: Bug #17842035.

• The length of the interval (intended to be 10 seconds) between warnings for GCP_COMMIT when the
GCP progress watchdog did not detect progress in a global checkpoint was not always calculated
correctly. (Bug #17647213)

• Trying to drop an index used by a foreign key constraint caused data node failure. Now in such
cases, the statement used to perform the drop fails. (Bug #17591531)

• In certain rare cases on commit of a transaction, an Ndb object was released before the transaction
coordinator (DBTC kernel block) sent the expected COMMIT_CONF signal; NDB failed to send a
COMMIT_ACK signal in response, which caused a memory leak in the NDB kernel could later lead to
node failure.

Now an Ndb object is not released until the COMMIT_CONF signal has actually been received. (Bug
#16944817)

• Losing its connections to the management node or data nodes while a query against the
ndbinfo.memoryusage table was in progress caused the SQL node where the query was issued
to fail. (Bug #14483440, Bug #16810415)

• The ndbd_redo_log_reader utility now supports a --help option. Using this options causes the
program to print basic usage information, and then to exit. (Bug #11749591, Bug #36805)

Changes in MySQL NDB Cluster 7.3.3 (5.6.14-ndb-7.3.3)
(2013-11-18, General Availability)

MySQL NDB Cluster 7.3.3 is a new release of NDB Cluster, based on MySQL Server 5.6 and including
features from version 7.3 of the NDB storage engine, as well as fixing a number of recently discovered
bugs in previous NDB Cluster releases.

Obtaining MySQL NDB Cluster 7.3. MySQL NDB Cluster 7.3 source code and binaries can be
obtained from https://dev.mysql.com/downloads/cluster/.

For an overview of changes made in MySQL NDB Cluster 7.3, see What is New in NDB Cluster 7.3.

This release also incorporates all bug fixes and changes made in previous NDB Cluster releases, as
well as all bug fixes and feature changes which were added in mainline MySQL 5.6 through MySQL
5.6.14 (see Changes in MySQL 5.6.14 (2013-09-20, General Availability)).

48

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-qmgr.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbinfo-memoryusage.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-what-is-new-7-3.html
https://dev.mysql.com/doc/relnotes/mysql/5.6/en/news-5-6-14.html

MySQL NDB Cluster 7.3 Release Notes

• Functionality Added or Changed

• Bugs Fixed

Functionality Added or Changed

• The length of time a management node waits for a heartbeat message from another management
node is now configurable using the HeartbeatIntervalMgmdMgmd management node
configuration parameter added in this release. The connection is considered dead after 3 missed
heartbeats. The default value is 1500 milliseconds, or a timeout of approximately 6000 ms. (Bug
#17807768, Bug #16426805)

• The MySQL NDB Cluster Auto-Installer now generates a my.cnf file for each mysqld in the
cluster before starting it. For more information, see The NDB Cluster Auto-Installer (NO LONGER
SUPPORTED). (Bug #16994782)

• BLOB and TEXT columns are now reorganized by the ALTER ONLINE TABLE ... REORGANIZE
PARTITION statement. (Bug #13714148)

Bugs Fixed

• Performance: In a number of cases found in various locations in the MySQL NDB Cluster codebase,
unnecessary iterations were performed; this was caused by failing to break out of a repeating control
structure after a test condition had been met. This community-contributed fix removes the unneeded
repetitions by supplying the missing breaks. (Bug #16904243, Bug #69392, Bug #16904338, Bug
#69394, Bug #16778417, Bug #69171, Bug #16778494, Bug #69172, Bug #16798410, Bug #69207,
Bug #16801489, Bug #69215, Bug #16904266, Bug #69393)

• Packaging: Portions of the documentation specific to MySQL NDB Cluster and the NDB storage
engine were not included when installing from RPMs. (Bug #16303451)

• Microsoft Windows: The Windows error ERROR_FILE_EXISTS was not recognized by NDB, which
treated it as an unknown error. (Bug #16970960)

• NDB Disk Data: NDB error 899 RowId already allocated was raised due to a RowId “leak”
which occurred under either of the following sets of circumstances:

1. Insertion of a row into an in-memory table was rejected after an ordered index update failed due
to insufficient DataMemory.

2. Insertion of a row into a Disk Data table was rejected due to lack of sufficient table space.

(Bug #13927679)

References: See also: Bug #22494024, Bug #13990924.

• NDB Replication: Trying to use a stale .frm file and encountering a mismatch bewteen table
definitions could cause mysqld to make errors when writing to the binary log. (Bug #17250994)

• NDB Replication: Replaying a binary log that had been written by a mysqld from a MySQL Server
distribution (and from not a MySQL NDB Cluster distribution), and that contained DML statements,
on a MySQL NDB Cluster SQL node could lead to failure of the SQL node. (Bug #16742250)

• NDB Cluster APIs: The Event::setTable() method now supports a pointer or a reference to
table as its required argument. If a null table pointer is used, the method now returns -1 to make it
clear that this is what has occurred. (Bug #16329082)

• ndbmemcache: When attempting to start memcached with a cache_size larger than that of the
available memory and with preallocate=true failed, the error message provided only a numeric
code, and did not indicate what the actual source of the error was. (Bug #17509293, Bug #70403)

• ndbmemcache: The CMakeLists.txt files for ndbmemcache wrote into the source tree,
preventing out-of-source builds. (Bug #14650456)

49

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-mgm-definition.html#ndbparam-mgmd-heartbeatintervalmgmdmgmd
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-install-auto.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-install-auto.html
https://dev.mysql.com/doc/refman/5.6/en/blob.html
https://dev.mysql.com/doc/refman/5.6/en/blob.html
https://dev.mysql.com/doc/refman/5.6/en/alter-table-partition-operations.html
https://dev.mysql.com/doc/refman/5.6/en/alter-table-partition-operations.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/ndbapi/en/ndb-event.html#ndb-event-settable

MySQL NDB Cluster 7.3 Release Notes

• ndbmemcache: ndbmemcache did not handle passed-in BINARY values correctly.

• Trying to restore to a table having a BLOB column in a different position from that of the original one
caused ndb_restore --restore-data to fail. (Bug #17395298)

• ndb_restore could abort during the last stages of a restore using attribute promotion or demotion
into an existing table. This could happen if a converted attribute was nullable and the backup had
been run on active database. (Bug #17275798)

• It was not possible to start MySQL NDB Cluster processes created by the Auto-Installer on a
Windows host running freeSSHd. (Bug #17269626)

• The DBUTIL data node block is now less strict about the order in which it receives certain messages
from other nodes. (Bug #17052422)

• ALTER ONLINE TABLE ... REORGANIZE PARTITION failed when run against a table having or
using a reference to a foreign key. (Bug #17036744, Bug #69619)

• TUPKEYREQ signals are used to read data from the tuple manager block (DBTUP), and are
used for all types of data access, especially for scans which read many rows. A TUPKEYREQ
specifies a series of 'columns' to be read, which can be either single columns in a specific table, or
pseudocolumns, two of which—READ_ALL and READ_PACKED—are aliases to read all columns in a
table, or some subset of these columns. Pseudocolumns are used by modern NDB API applications
as they require less space in the TUPKEYREQ to specify columns to be read, and can return the data
in a more compact (packed) format.

This fix moves the creation and initialization of on-stack Signal objects to only those pseudocolumn
reads which need to EXECUTE_DIRECT to other block instances, rather than for every read. In
addition, the size of an on-stack signal is now varied to suit the requirements of each pseudocolumn,
so that only reads of the INDEX_STAT pseudocolumn now require initialization (and 3KB memory
each time this is performed). (Bug #17009502)

• A race condition could sometimes occur when trying to lock receive threads to cores. (Bug
#17009393)

• Results from joins using a WHERE with an ORDER BY ... DESC clause were not sorted properly;
the DESC keyword in such cases was effectively ignored. (Bug #16999886, Bug #69528)

• RealTimeScheduler did not work correctly with data nodes running ndbmtd. (Bug #16961971)

• File system errors occurring during a local checkpoint could sometimes cause an LCP to hang with
no obvious cause when they were not handled correctly. Now in such cases, such errors always
cause the node to fail. Note that the LQH block always shuts down the node when a local checkpoint
fails; the change here is to make likely node failure occur more quickly and to make the original file
system error more visible. (Bug #16961443)

• Maintenance and checking of parent batch completion in the SPJ block of the NDB kernel was
reimplemented. Among other improvements, the completion state of all ancestor nodes in the tree
are now preserved. (Bug #16925513)

• Dropping a column, which was not itself a foreign key, from an NDB table having foreign keys failed
with ER_TABLE_DEF_CHANGED. (Bug #16912989)

• The LCP fragment scan watchdog periodically checks for lack of progress in a fragment scan
performed as part of a local checkpoint, and shuts down the node if there is no progress after a
given amount of time has elapsed. This interval, formerly hard-coded as 60 seconds, can now be
configured using the LcpScanProgressTimeout data node configuration parameter added in this
release.

This configuration parameter sets the maximum time the local checkpoint can be stalled before
the LCP fragment scan watchdog shuts down the node. The default is 60 seconds, which provides
backward compatibility with previous releases.

50

https://dev.mysql.com/doc/refman/5.6/en/binary-varbinary.html
https://dev.mysql.com/doc/refman/5.6/en/blob.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_restore-data
https://dev.mysql.com/doc/refman/5.6/en/alter-table-partition-operations.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-realtimescheduler
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/mysql-errors/5.6/en/server-error-reference.html#error_er_table_def_changed
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-lcpscanprogresstimeout

MySQL NDB Cluster 7.3 Release Notes

You can disable the LCP fragment scan watchdog by setting this parameter to 0. (Bug #16630410)

• Added the ndb_error_reporter options --connection-timeout, which makes it possible to
set a timeout for connecting to nodes, --dry-scp, which disables scp connections to remote hosts,
and --skip-nodegroup, which skips all nodes in a given node group. (Bug #16602002)

References: See also: Bug #11752792, Bug #44082.

• After issuing START BACKUP id WAIT STARTED, if id had already been used for a backup ID,
an error caused by the duplicate ID occurred as expected, but following this, the START BACKUP
command never completed. (Bug #16593604, Bug #68854)

• ndb_mgm treated backup IDs provided to ABORT BACKUP commands as signed values, so that
backup IDs greater than 231 wrapped around to negative values. This issue also affected out-of-
range backup IDs, which wrapped around to negative values instead of causing errors as expected
in such cases. The backup ID is now treated as an unsigned value, and ndb_mgm now performs
proper range checking for backup ID values greater than MAX_BACKUPS (232). (Bug #16585497, Bug
#68798)

• When trying to specify a backup ID greater than the maximum allowed, the value was silently
truncated. (Bug #16585455, Bug #68796)

• The unexpected shutdown of another data node as a starting data node received its node ID caused
the latter to hang in Start Phase 1. (Bug #16007980)

References: See also: Bug #18993037.

• SELECT ... WHERE ... LIKE from an NDB table could return incorrect results when using
engine_condition_pushdown=ON. (Bug #15923467, Bug #67724)

• The NDB receive thread waited unnecessarily for additional job buffers to become available when
receiving data. This caused the receive mutex to be held during this wait, which could result in a
busy wait when the receive thread was running with real-time priority.

This fix also handles the case where a negative return value from the initial check of the job buffer
by the receive thread prevented further execution of data reception, which could possibly lead to
communication blockage or configured ReceiveBufferMemory underutilization. (Bug #15907515)

• When the available job buffers for a given thread fell below the critical threshold, the internal
multithreading job scheduler waited for job buffers for incoming rather than outgoing signals to
become available, which meant that the scheduler waited the maximum timeout (1 millisecond)
before resuming execution. (Bug #15907122)

• Setting lower_case_table_names to 1 or 2 on Windows systems caused ALTER TABLE ...
ADD FOREIGN KEY statements against tables with names containing uppercase letters to fail with
Error 155, No such table: '(null)'. (Bug #14826778, Bug #67354)

• Under some circumstances, a race occurred where the wrong watchdog state could be reported.
A new state name Packing Send Buffers is added for watchdog state number 11, previously
reported as Unknown place. As part of this fix, the state numbers for states without names are
always now reported in such cases. (Bug #14824490)

• When a node fails, the Distribution Handler (DBDIH kernel block) takes steps together with the
Transaction Coordinator (DBTC) to make sure that all ongoing transactions involving the failed node
are taken over by a surviving node and either committed or aborted. Transactions taken over which
are then committed belong in the epoch that is current at the time the node failure occurs, so the
surviving nodes must keep this epoch available until the transaction takeover is complete. This is
needed to maintain ordering between epochs.

A problem was encountered in the mechanism intended to keep the current epoch open which led
to a race condition between this mechanism and that normally used to declare the end of an epoch.

51

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-error-reporter.html#option_ndb_error_reporter_connection-timeout
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-error-reporter.html#option_ndb_error_reporter_dry-scp
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-error-reporter.html#option_ndb_error_reporter_skip-nodegroup
https://dev.mysql.com/doc/refman/5.6/en/select.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/switchable-optimizations.html#optflag_engine-condition-pushdown
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-tcp-definition.html#ndbparam-tcp-receivebuffermemory
https://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html#sysvar_lower_case_table_names
https://dev.mysql.com/doc/refman/5.6/en/alter-table.html
https://dev.mysql.com/doc/refman/5.6/en/alter-table.html

MySQL NDB Cluster 7.3 Release Notes

This could cause the current epoch to be closed prematurely, leading to failure of one or more
surviving data nodes. (Bug #14623333, Bug #16990394)

• Exhaustion of LongMessageBuffer memory under heavy load could cause data nodes running
ndbmtd to fail. (Bug #14488185)

• When using dynamic listening ports for accepting connections from API nodes, the port numbers
were reported to the management server serially. This required a round trip for each API node,
causing the time required for data nodes to connect to the management server to grow linearly with
the number of API nodes. To correct this problem, each data node now reports all dynamic ports at
once. (Bug #12593774)

• ndb_error-reporter did not support the --help option. (Bug #11756666, Bug #48606)

References: See also: Bug #11752792, Bug #44082.

• Formerly, the node used as the coordinator or leader for distributed decision making between nodes
(also known as the DICT manager—see The DBDICT Block) was indicated in the output of the
ndb_mgm client SHOW command as the “master” node, although this node has no relationship to a
master server in MySQL Replication. (It should also be noted that it is not necessary to know which
node is the leader except when debugging NDBCLUSTER source code.) To avoid possible confusion,
this label has been removed, and the leader node is now indicated in SHOW command output using
an asterisk (*) character. (Bug #11746263, Bug #24880)

• The matrix of values used for thread configuration when applying the setting of the
MaxNoOfExecutionThreads configuration parameter has been improved to align with support for
greater numbers of LDM threads. See Multi-Threading Configuration Parameters (ndbmtd), for more
information about the changes. (Bug #75220, Bug #20215689)

• Program execution failed to break out of a loop after meeting a desired condition in a number of
internal methods, performing unneeded work in all cases where this occurred. (Bug #69610, Bug
#69611, Bug #69736, Bug #17030606, Bug #17030614, Bug #17160263)

• ABORT BACKUP in the ndb_mgm client (see Commands in the NDB Cluster Management Client) took
an excessive amount of time to return (approximately as long as the backup would have required
to complete, had it not been aborted), and failed to remove the files that had been generated by the
aborted backup. (Bug #68853, Bug #17719439)

• Attribute promotion and demotion when restoring data to NDB tables using ndb_restore --
restore-data with the --promote-attributes and --lossy-conversions options has been
improved as follows:

• Columns of types CHAR, and VARCHAR can now be promoted to BINARY and VARBINARY, and
columns of the latter two types can be demoted to one of the first two.

Note that converted character data is not checked to conform to any character set.

• Any of the types CHAR, VARCHAR, BINARY, and VARBINARY can now be promoted to TEXT or
BLOB.

When performing such promotions, the only other sort of type conversion that can be performed at
the same time is between character types and binary types.

Changes in MySQL NDB Cluster 7.3.2 (5.6.11-ndb-7.3.2)
(2013-06-18, General Availability)

MySQL NDB Cluster 7.3.2 is the first GA release of NDB Cluster, based on MySQL Server 5.6 and
including new features in version 7.3 of the NDB storage engine, as well as fixing recently discovered
bugs in previous NDB Cluster releases.

52

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-longmessagebuffer
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-error-reporter.html#option_ndb_error_reporter_help
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbdict.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbmtd-maxnoofexecutionthreads
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#mysql-cluster-ndbd-definition-ndbmtd-parameters
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-mgm-client-commands.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_restore-data
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_restore-data
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_promote-attributes
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_lossy-conversions
https://dev.mysql.com/doc/refman/5.6/en/char.html
https://dev.mysql.com/doc/refman/5.6/en/char.html
https://dev.mysql.com/doc/refman/5.6/en/binary-varbinary.html
https://dev.mysql.com/doc/refman/5.6/en/binary-varbinary.html
https://dev.mysql.com/doc/refman/5.6/en/blob.html
https://dev.mysql.com/doc/refman/5.6/en/blob.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html

MySQL NDB Cluster 7.3 Release Notes

Obtaining MySQL NDB Cluster 7.3. MySQL NDB Cluster 7.3 source code and binaries can be
obtained from https://dev.mysql.com/downloads/cluster/.

For an overview of changes made in MySQL NDB Cluster 7.3, see What is New in NDB Cluster 7.3.

This release also incorporates all bug fixes and changes made in previous NDB Cluster releases, as
well as all bug fixes and feature changes which were added in mainline MySQL 5.6 through MySQL
5.6.11 (see Changes in MySQL 5.6.11 (2013-04-18, General Availability)).

• Functionality Added or Changed

• Bugs Fixed

Functionality Added or Changed

• ndbmemcache: ndbmemcache now supports values of types DATE, TIME, and DATETIME using
microsecond precision. (Bug #16593493)

Bugs Fixed

• Packaging; Microsoft Windows: The MySQL NDB Cluster installer for Windows provided a
nonfunctional option to install debug symbols (contained in *.pdb files). This option has been
removed from the installer.

Note

You can obtain the *.pdb debug files for a given MySQL NDB Cluster
release from the Windows .zip archive for the same release, such as
mysql-cluster-gpl-7.2.14-win32.zip or mysql-cluster-
gpl-7.3.2-winx64.zip.

(Bug #16748308, Bug #69112)

• NDB Disk Data: The statements CREATE TABLESPACE, ALTER LOGFILE GROUP, and
ALTER TABLESPACE failed with a syntax error when INITIAL_SIZE was specified using letter
abbreviations such as M or G. In addition, CREATE LOGFILE GROUP failed when INITIAL_SIZE,
UNDO_BUFFER_SIZE, or both options were specified using letter abbreviations. (Bug #13116514,
Bug #16104705, Bug #62858)

• NDB Cluster APIs: For each log event retrieved using the MGM API, the log event category
(ndb_mgm_event_category) was simply cast to an enum type, which resulted in invalid category
values. Now an offset is added to the category following the cast to ensure that the value does not
fall out of the allowed range.

Note

This change was reverted by the fix for Bug #18354165. See
the MySQL NDB Cluster API Developer documentation for
ndb_logevent_get_next(), for more information.

(Bug #16723708)

References: See also: Bug #18354165.

• NDB Cluster APIs: The Ndb::computeHash() API method performs a malloc() if no buffer
is provided for it to use. However, it was assumed that the memory thus returned would always
be suitably aligned, which is not always the case. Now when malloc() provides a buffer to this
method, the buffer is aligned after it is allocated, and before it is used. (Bug #16484617)

• MySQL NDB ClusterJ: ClusterJ now provides partial support for MySQL date and time data types
with fractional seconds (see Date and Time Data Type Syntax), as shown in the following table:

53

https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-what-is-new-7-3.html
https://dev.mysql.com/doc/relnotes/mysql/5.6/en/news-5-6-11.html
https://dev.mysql.com/doc/refman/5.6/en/datetime.html
https://dev.mysql.com/doc/refman/5.6/en/time.html
https://dev.mysql.com/doc/refman/5.6/en/datetime.html
https://dev.mysql.com/doc/refman/5.6/en/create-tablespace.html
https://dev.mysql.com/doc/refman/5.6/en/alter-logfile-group.html
https://dev.mysql.com/doc/refman/5.6/en/alter-tablespace.html
https://dev.mysql.com/doc/refman/5.6/en/create-logfile-group.html
https://dev.mysql.com/doc/ndbapi/en/mgm-types.html#mgm-ndb-mgm-event-category
https://dev.mysql.com/doc/ndbapi/en/mgm-functions-log-events.html#mgm-ndb-logevent-get-next
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-computehash
https://dev.mysql.com/doc/refman/5.6/en/date-and-time-type-syntax.html

MySQL NDB Cluster 7.3 Release Notes

ClusterJ Class MySQL Data Types Precision

java.util.Date DATETIME

millisecond

TIME millisecond

TIMESTAMP millisecond

java.sql.Date DATE day

java.sql.Timestamp DATETIME millisecond

TIMESTAMP millisecond

java.sql.Time TIME second

(Bug #16593510)

• mysql_upgrade failed when upgrading from MySQL NDB Cluster 7.1.26 to MySQL NDB Cluster
7.2.13 when it attempted to invoke a stored procedure before the mysql.proc table had been
upgraded. (Bug #16933405)

References: This issue is a regression of: Bug #16226274.

• The planned or unplanned shutdown of one or more data nodes while reading table data from the
ndbinfo database caused a memory leak. (Bug #16932989)

• Executing DROP TABLE while DBDIH was updating table checkpoint information subsequent to a
node failure could lead to a data node failure. (Bug #16904469)

• In certain cases, when starting a new SQL node, mysqld failed with Error 1427 Api node died,
when SUB_START_REQ reached node. (Bug #16840741)

• Failure to use container classes specific NDB during node failure handling could cause leakage of
commit-ack markers, which could later lead to resource shortages or additional node crashes. (Bug
#16834416)

• Use of an uninitialized variable employed in connection with error handling in the DBLQH kernel block
could sometimes lead to a data node crash or other stability issues for no apparent reason. (Bug
#16834333)

• A race condition in the time between the reception of a execNODE_FAILREP signal by the QMGR
kernel block and its reception by the DBLQH and DBTC kernel blocks could lead to data node crashes
during shutdown. (Bug #16834242)

• The CLUSTERLOG command (see Commands in the NDB Cluster Management Client) caused
ndb_mgm to crash on Solaris SPARC systems. (Bug #16834030)

• On Solaris SPARC platforms, batched key access execution of some joins could fail due to invalid
memory access. (Bug #16818575)

• When 2 NDB tables had foreign key references to each other, it was necessary to drop the tables in
the same order in which they were created. (Bug #16817928)

• The duplicate weedout algorithm introduced in MySQL 5.6 evaluates semijoins such as subqueries
using IN) by first performing a normal join between the outer and inner table which may create
duplicates of rows form the outer (and inner) table and then removing any duplicate result rows
from the outer table by comparing their primary key values. Problems could arise when NDB copied
VARCHAR values using their maximum length, resulting in a binary key image which contained

54

https://dev.mysql.com/doc/refman/5.6/en/datetime.html
https://dev.mysql.com/doc/refman/5.6/en/time.html
https://dev.mysql.com/doc/refman/5.6/en/datetime.html
https://dev.mysql.com/doc/refman/5.6/en/datetime.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbinfo.html
https://dev.mysql.com/doc/refman/5.6/en/drop-table.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-mgm-client-commands.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/char.html

MySQL NDB Cluster 7.3 Release Notes

garbage past the actual lengths of the VARCHAR values, which meant that multiple instances of the
same key were not binary-identical as assumed by the MySQL server.

To fix this problem, NDB now zero-pads such values to the maximum length of the column so that
copies of the same key are treated as identical by the weedout process. (Bug #16744050)

• DROP DATABASE failed to work correctly when executed against a database containing NDB tables
joined by foreign key constraints (and all such tables being contained within this database), leaving
these tables in place while dropping the remaining tables in the database and reporting failure. (Bug
#16692652, Bug #69008)

• When using firstmatch=on with the optimizer_switch system variable, pushed joins could
return too many rows. (Bug #16664035)

• A variable used by the batched key access implementation was not initialized by NDB as expected.
This could cause a “batch full” condition to be reported after only a single row had been batched,
effectively disabling batching altogether and leading to an excessive number of round trips between
mysqld and NDB. (Bug #16485658)

• When started with --initial and an invalid --config-file (-f) option, ndb_mgmd removed
the old configuration cache before verifying the configuration file. Now in such cases, ndb_mgmd first
checks for the file, and continues with removing the configuration cache only if the configuration file
is found and is valid. (Bug #16299289)

• Creating more than 32 hash maps caused data nodes to fail. Usually new hashmaps are created
only when performing reorganzation after data nodes have been added or when explicit partitioning
is used, such as when creating a table with the MAX_ROWS option, or using PARTITION BY KEY()
PARTITIONS n. (Bug #14710311)

• Setting foreign_key_checks = 0 had no effect on the handling of NDB tables. Now, doing so
causes such checks of foreign key constraints to be suspended—that is, has the same effect on NDB
tables as it has on InnoDB tables. (Bug #14095855, Bug #16286309)

References: See also: Bug #16286164.

Changes in MySQL NDB Cluster 7.3.1 (5.6.10-ndb-7.3.1)
(2013-04-17, Development Milestone)

MySQL NDB Cluster 7.3.1 is a new Developer Milestone release of NDB Cluster, based on MySQL
Server 5.6 and previewing new features under development for version 7.3 of the NDB storage engine,
as well as fixing a number of recently discovered bugs in previous releases.

Obtaining MySQL NDB Cluster 7.3. MySQL NDB Cluster 7.3 source code and binaries can be
obtained from https://dev.mysql.com/downloads/cluster/.

This release also incorporates all bug fixes and changes made in previous NDB Cluster releases, as
well as all bug fixes and feature changes which were added in mainline MySQL 5.6 through MySQL
5.6.10 (see Changes in MySQL 5.6.10 (2013-02-05, General Availability)).

• Based on MySQL Server 5.6

• MySQL Cluster GUI Configuration Wizard

• Support for Foreign Key Constraints

• NoSQL Connector for JavaScript (Node.js)

• Functionality Added or Changed

• Bugs Fixed

55

https://dev.mysql.com/doc/refman/5.6/en/drop-database.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/switchable-optimizations.html#optflag_firstmatch
https://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html#sysvar_optimizer_switch
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-mgmd.html#option_ndb_mgmd_initial
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-mgmd.html#option_ndb_mgmd_config-file
https://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html#sysvar_foreign_key_checks
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/doc/relnotes/mysql/5.6/en/news-5-6-10.html

MySQL NDB Cluster 7.3 Release Notes

Based on MySQL Server 5.6

• Important Change: MySQL NDB Cluster SQL nodes are now based on MySQL Server 5.6. For
information about feature additions and other changes made in MySQL 5.6, see What Is New in
MySQL 5.6.

The mysqld binary provided with MySQL NDB Cluster 7.3.1 is based on MySQL Server 5.6.10,
and includes all MySQL Server 5.6 feature enhancements and bug fixes found in that release; see
Changes in MySQL 5.6.10 (2013-02-05, General Availability), for information about these.

MySQL Cluster GUI Configuration Wizard

• Important Change: The MySQL NDB Cluster distribution now includes a browser-based graphical
configuration wizard that assists the user in configuring and deploying a MySQL NDB Cluster. This
deployment can consist of an arbitrary number of nodes (within certain limits) on the user machine
only, or include nodes distributed on a local network. The wizard can be launched from the command
line (using the ndb_setup utility now included in the binary distribution) or a desktop file browser.

For more information about this tool, see The NDB Cluster Auto-Installer (NO LONGER
SUPPORTED).

Support for Foreign Key Constraints

• Important Change: MySQL NDB Cluster now supports foreign key constraints between NDB tables,
including support for CASCADE, SET NULL, and RESTRICT and NO ACTION reference options for
DELETE and UPDATE actions. (MySQL currently does not support SET DEFAULT.)

MySQL requires generally that all child and parent tables in foreign key relationships employ the
same storage engine; thus, to use foreign keys with MySQL NDB Cluster tables, the child and parent
table must each use the NDB storage engine. (It is not possible, for example, for a foreign key on an
NDB table to reference an index of an InnoDB table.)

Note that MySQL NDB Cluster tables that are explicitly partitioned by KEY or LINEAR KEY may
contain foreign key references or be referenced by foreign keys (or both). This is unlike the case with
InnoDB tables that are user partitioned, which may not have any foreign key relationships.

You can create an NDB table having a foreign key reference on another NDB table using CREATE
TABLE ... [CONSTRAINT] FOREIGN KEY ... REFERENCES. A child table's foreign key
definitions can be seen in the output of SHOW CREATE TABLE; you can also obtain information
about foreign keys by querying the INFORMATION_SCHEMA.KEY_COLUMN_USAGE table.

FOREIGN KEY Constraints, provides general information about foreign key support in MySQL.
For more information about the syntax supported by MySQL for foreign keys, see FOREIGN KEY
Constraints.

NoSQL Connector for JavaScript (Node.js)

• NDB Cluster APIs: MySQL NDB Cluster 7.3 includes support for JavaScript applications written
against Node.js with MySQL NDB Cluster and MySQL Server as a data store. The Connector for
JavaScript provides a domain object model similar in many ways to that employed by ClusterJ (see
The ClusterJ API and Data Object Model) and can be used with either of two back-end adapters: the
ndb adapter, which uses the NDB API to provide high-performance native access to MySQL NDB
Cluster; and the mysql-js adapter, which uses the MySQL Server and the node-mysql driver
available from https://github.com/felixge/node-mysql/ .

The Connector for JavaScript is included with the MySQL NDB Cluster distribution, and contains
setup programs which can assist you with installation of the connector. You must have Node.js and
MySQL NDB Cluster installed prior to running the setup scripts. The node-mysql driver is also
required for the mysql-js Node.js adapter; you can install this using the package management tool
included with Node.js. For more information, see MySQL NoSQL Connector for JavaScript.

56

https://dev.mysql.com/doc/refman/5.6/en/mysql-nutshell.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-nutshell.html
https://dev.mysql.com/doc/relnotes/mysql/5.6/en/news-5-6-10.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-install-auto.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-install-auto.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/create-table-foreign-keys.html
https://dev.mysql.com/doc/refman/5.6/en/create-table-foreign-keys.html
https://dev.mysql.com/doc/refman/5.6/en/show-create-table.html
https://dev.mysql.com/doc/refman/5.6/en/information-schema-key-column-usage-table.html
https://dev.mysql.com/doc/refman/5.6/en/constraint-foreign-key.html
https://dev.mysql.com/doc/refman/5.6/en/create-table-foreign-keys.html
https://dev.mysql.com/doc/refman/5.6/en/create-table-foreign-keys.html
https://dev.mysql.com/doc/ndbapi/en/mccj-overview-clusterj-object-models.html
https://github.com/felixge/node-mysql/
https://dev.mysql.com/doc/ndbapi/en/ndb-nodejs.html

MySQL NDB Cluster 7.3 Release Notes

Functionality Added or Changed

• Important Change: The behavior of and values used for the TCP_RCV_BUF_SIZE and
TCP_SND_BUF_SIZE TCP configuration parameters have been improved. Formerly, the default
values for these parameters were 70080 and 71540, respectively—which it was later found
could lead to excessive timeouts in some circumstances—with the minimum for each of them
being 1. Now, the default and recommended value is 0 for both TCP_RCV_BUF_SIZE and
TCP_SND_BUF_SIZE, which allows the operating system or platform to choose the send or receive
buffer size for TCP sockets. (Bug #14554519)

References: See also: Bug #14168828.

• NDB Cluster APIs: Added DUMP code 2514, which provides information about counts of transaction
objects per API node. For more information, see DUMP 2514. See also Commands in the NDB
Cluster Management Client. (Bug #15878085)

• When ndb_restore fails to find a table, it now includes in the error output an NDB API error code
giving the reason for the failure. (Bug #16329067)

• Data node logs now provide tracking information about arbitrations, including which nodes have
assumed the arbitrator role and at what times. (Bug #11761263, Bug #53736)

Bugs Fixed

• Important Note; NDB Replication: Setting binlog_row_image=minimal caused MySQL NDB
Cluster replication conflict resolution to fail.

To fix this problem, support for this variable is disabled in the NDB storage engine such that setting
it or the corresponding --binlog-row-image server option has no effect for NDB tables. (Bug
#16316828)

• ndbmemcache: When using a large values table, memcached failed to store flags correctly or not
at all in NDB, even when it had been configured to, as follows:

• In MySQL NDB Cluster 7.2.4 and earlier, the flags value was never stored for long values, even if
configured to do so.

• In MySQL NDB Cluster 7.2.6 and later, nonzero flags values were correctly stored for long values,
but a value of zero was not stored.

In addition, because some clients (such as Spymemcached for Java) use the flags field, this fix also
enables storage of flags for the values table by default. (Bug #14088078)

• API: mysqld failed to respond when mysql_shutdown() was invoked from a C application, or
mysqladmin shutdown was run from the command line. (Bug #14849574)

• When an update of an NDB table changes the primary key (or part of the primary key), the operation
is executed as a delete plus an insert. In some cases, the initial read operation did not retrieve all
column values required by the insert, so that another read was required. This fix ensures that all
required column values are included in the first read in such cases, which saves the overhead of an
additional read operation. (Bug #16614114)

• Pushed joins executed when optimizer_switch='batched_key_access=on' was also in use
returned incorrect results. (Bug #16437431)

• Selecting from the INFORMATION_SCHEMA.KEY_COLUMN_USAGE table while using tables with
foreign keys caused mysqld to crash. (Bug #16246874, Bug #68224)

• Including a table as a part of a pushed join should be rejected if there are outer joined tables in
between the table to be included and the tables with which it is joined with; however the check as
performed for any such outer joined tables did so by checking the join type against the root of the
pushed query, rather than the common ancestor of the tables being joined. (Bug #16199028)

57

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-tcp-definition.html#ndbparam-tcp-tcp_rcv_buf_size
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-tcp-definition.html#ndbparam-tcp-tcp_snd_buf_size
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-tcp-definition.html#ndbparam-tcp-tcp_rcv_buf_size
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-tcp-definition.html#ndbparam-tcp-tcp_snd_buf_size
https://dev.mysql.com/doc/ndb-internals/en/dump-command-2514.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-mgm-client-commands.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-mgm-client-commands.html
https://dev.mysql.com/doc/refman/5.6/en/replication-options-binary-log.html#sysvar_binlog_row_image
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/c-api/5.6/en/mysql-shutdown.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html#sysvar_optimizer_switch
https://dev.mysql.com/doc/refman/5.6/en/information-schema-key-column-usage-table.html

MySQL NDB Cluster 7.3 Release Notes

References: See also: Bug #16198866.

• Some queries were handled differently with ndb_join_pushdown enabled, due to the fact that
outer join conditions were not always pruned correctly from joins before they were pushed down.
(Bug #16198866)

References: See also: Bug #16199028.

• Attempting to perform additional operations such as ADD COLUMN as part of an ALTER [ONLINE
| OFFLINE] TABLE ... RENAME ... statement is not supported, and now fails with an
ER_NOT_SUPPORTED_YET error. (Bug #16021021)

• Purging the binary logs could sometimes cause mysqld to crash. (Bug #15854719)

Release Series Changelogs: MySQL NDB Cluster 7.3
This section contains unified changelog information for the MySQL NDB Cluster 7.3 release series.

For changelogs covering individual MySQL NDB Cluster 7.3 releases, see NDB Cluster Release Notes.

For general information about features added in MySQL NDB Cluster 7.3, see What is New in NDB
Cluster 7.3.

For an overview of features added in MySQL 5.6 that are not specific to NDB Cluster, see What Is New
in MySQL 5.6. For a complete list of all bug fixes and feature changes made in MySQL 5.6 that are not
specific to NDB Cluster, see the MySQL 5.6 Release Notes.

Changes in MySQL NDB Cluster 7.3.32 (5.6.51-ndb-7.3.32) (2021-01-19,
General Availability)

Deprecation and Removal Notes

• NDB Client Programs: Effective with this release, the MySQL NDB Cluster Auto-Installer
(ndb_setup.py) has been has been removed from the NDB Cluster binary and source distributions,
and is no longer supported. (Bug #32084831)

References: See also: Bug #31888835.

Changes in MySQL NDB Cluster 7.3.31 (5.6.50-ndb-7.3.31) (2020-10-20,
General Availability)

• Deprecation and Removal Notes

• Bugs Fixed

Deprecation and Removal Notes

• NDB Cluster APIs: Support for Node.js has been removed in this release.

Node.js continues to be supported in NDB Cluster 8.0 only. (Bug #31781948)

• NDB Client Programs: Effective with this release, the MySQL NDB Cluster Auto-Installer
(ndb_setup.py) has been deprecated and is subject to removal in a future version of NDB Cluster.
(Bug #31888835)

Bugs Fixed

• Packaging: The Dojo library included with NDB Cluster has been upgraded to version 1.15.4. (Bug
#31559518)

58

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-options-variables.html#sysvar_ndb_join_pushdown
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-online-operations.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-online-operations.html
https://dev.mysql.com/doc/mysql-errors/5.6/en/server-error-reference.html#error_er_not_supported_yet
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-news.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-what-is-new-7-3.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-what-is-new-7-3.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-nutshell.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-nutshell.html
https://dev.mysql.com/doc/relnotes/mysql/5.6/en/

MySQL NDB Cluster 7.3 Release Notes

Changes in MySQL NDB Cluster 7.3.30 (5.6.49-ndb-7.3.30) (2020-07-14,
General Availability)

Bugs Fixed

• During a node restart, the SUMA block of the node that is starting must get a copy of the subscriptions
(events with subscribers) and subscribers (NdbEventOperation instances which are executing)
from a node already running. Before the copy is complete, nodes which are still starting ignore any
user-level SUB_START or SUB_STOP requests; after the copy is done, they can participate in such
requests. While the copy operation is in progress, user-level SUB_START and SUB_STOP requests
are blocked using a DICT lock.

An issue was found whereby a starting node could participate in SUB_START and SUB_STOP
requests after the lock was requested, but before it is granted, which resulted in unsuccessful
SUB_START and SUB_STOP requests. This fix ensures that the nodes cannot participate in these
requests until after the DICT lock has actually been granted. (Bug #31302657)

• The Dojo toolkit included with NDB Cluster and used by the Auto-Installer was upgraded to version
1.15.3. (Bug #31029110)

• When executing any of the SHUTDOWN, ALL STOP, or ALL RESTART management commands, it is
possible for different nodes to attempt to stop on different global checkpoint index (CGI) boundaries.
If they succeed in doing so, then a subsequent system restart is slower than normal because any
nodes having an earlier stop GCI must undergo takeover as part of the process. When nodes
failing on the first GCI boundary cause surviving nodes to be nonviable, surviving nodes suffer an
arbitration failure; this has the positive effect of causing such nodes to halt at the correct GCI, but
can give rise to spurious errors or similar.

To avoid such issues, extra synchronization is now performed during a planned shutdown to reduce
the likelihood that different data nodes attempt to shut down at different GCIs as well as the use of
unnecessary node takeovers during system restarts. (Bug #31008713)

Changes in MySQL NDB Cluster 7.3.29 (5.6.48-ndb-7.3.29) (2020-04-28,
General Availability)

Bugs Fixed

• For NDB tables having no explicit primary key, NdbReceiverBuffer could be allocated with too
small a size. This was due to the fact that the attribute bitmap sent to NDB from the data nodes
always includes the primary key. The extra space required for hidden primary keys is now taken into
consideration in such cases. (Bug #30183466)

Changes in MySQL NDB Cluster 7.3.26 (5.6.45-ndb-7.3.26) (2019-07-23,
General Availability)

Bugs Fixed

• The requestInfo fields for the long and short forms of the LQHKEYREQ signal had different
definitions; bits used for the key length in the short version were reused for flags in the long version,
since the key length is implicit in the section length of the long version of the signal but it was
possible for long LQHKEYREQ signals to contain a keylength in these same bits, which could be
misinterpreted by the receiving local query handler, potentially leading to errors. Checks have now
been implemented to make sure that this no longer happens. (Bug #29820838)

• ndb_restore --restore-epoch incorrectly reported the stop GCP as 1 less than the actual
position. (Bug #29343655)

59

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-suma.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbeventoperation.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbdict.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbdict.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-mgm-client-commands.html#ndbclient-shutdown
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-mgm-client-commands.html#ndbclient-stop
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-mgm-client-commands.html#ndbclient-restart
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_restore-epoch

MySQL NDB Cluster 7.3 Release Notes

Changes in MySQL NDB Cluster 7.3.25 (5.6.44-ndb-7.3.25) (2019-04-26,
General Availability)

• Functionality Added or Changed

• Bugs Fixed

Functionality Added or Changed

• Building with CMake3 is now supported by the compile-cluster script included in the NDB source
distribution. (WL #12303)

Bugs Fixed

• Important Change: The dependency of ndb_restore on the NDBT library, which is used
for internal testing only, has been removed. This means that the program no longer prints
NDBT_ProgramExit: ... when terminating. Applications that depend upon this behavior should
be updated to reflect this change when upgrading to this release. (WL #13117)

• An NDB table having both a foreign key on another NDB table using ON DELETE CASCADE and one
or more TEXT or BLOB columns leaked memory.

As part of this fix, ON DELETE CASCADE is no longer supported for foreign keys on NDB tables
when the child table contains a column that uses any of the BLOB or TEXT types. (Bug #89511, Bug
#27484882)

Changes in MySQL NDB Cluster 7.3.24 (5.6.43-ndb-7.3.24) (2019-01-22,
General Availability)

Bugs Fixed

• Asynchronous disconnection of mysqld from the cluster caused any subsequent attempt to
start an NDB API transaction to fail. If this occurred during a bulk delete operation, the SQL
layer called HA::end_bulk_delete(), whose implementation by ha_ndbcluster assumed
that a transaction had been started, and could fail if this was not the case. This problem is fixed
by checking that the transaction pointer used by this method is set before referencing it. (Bug
#20116393)

Changes in MySQL NDB Cluster 7.3.23 (5.6.42-ndb-7.3.23) (2018-10-23,
General Availability)

Bugs Fixed

• Having a large number of deferred triggers could sometimes lead to job buffer exhaustion. This
could occur due to the fact that a single trigger can execute many operations—for example, a foreign
key parent trigger may perform operations on multiple matching child table rows—and that a row
operation on a base table can execute multiple triggers. In such cases, row operations are executed
in batches. When execution of many triggers was deferred—meaning that all deferred triggers are
executed at pre-commit—the resulting concurrent execution of a great many trigger operations could
cause the data node job buffer or send buffer to be exhausted, leading to failure of the node.

This issue is fixed by limiting the number of concurrent trigger operations as well as the number of
trigger fire requests outstanding per transaction.

For immediate triggers, limiting of concurrent trigger operations may increase the number of triggers
waiting to be executed, exhausting the trigger record pool and resulting in the error Too many
concurrently fired triggers (increase MaxNoOfFiredTriggers. This can be avoided
by increasing MaxNoOfFiredTriggers, reducing the user transaction batch size, or both. (Bug
#22529864)

60

https://dev.mysql.com/doc/refman/5.6/en/blob.html
https://dev.mysql.com/doc/refman/5.6/en/blob.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxnooffiredtriggers

MySQL NDB Cluster 7.3 Release Notes

References: See also: Bug #18229003, Bug #27310330.

Changes in MySQL NDB Cluster 7.3.22 (5.6.41-ndb-7.3.22) (2018-07-27,
General Availability)

Bugs Fixed

• An internal buffer being reused immediately after it had been freed could lead to an unplanned data
node shutdown. (Bug #27622643)

References: See also: Bug #28698831.

• An NDB online backup consists of data, which is fuzzy, and a redo and undo log. To restore to a
consistent state it is necessary to ensure that the log contains all of the changes spanning the
capture of the fuzzy data portion and beyond to a consistent snapshot point. This is achieved by
waiting for a GCI boundary to be passed after the capture of data is complete, but before stopping
change logging and recording the stop GCI in the backup's metadata.

At restore time, the log is replayed up to the stop GCI, restoring the system to the state it had at the
consistent stop GCI. A problem arose when, under load, it was possible to select a GCI boundary
which occurred too early and did not span all the data captured. This could lead to inconsistencies
when restoring the backup; these could be noticed as broken constraints or corrupted BLOB entries.

Now the stop GCI is chosen is so that it spans the entire duration of the fuzzy data capture process,
so that the backup log always contains all data within a given stop GCI. (Bug #27497461)

References: See also: Bug #27566346.

Changes in MySQL NDB Cluster 7.3.21 (5.6.40-ndb-7.3.21) (2018-04-20,
General Availability)

Bugs Fixed

• NDB Cluster APIs: Incorrect results, usually an empty result set, were returned when setBound()
was used to specify a NULL bound. This issue appears to have been caused by a problem in gcc,
limited to cases using the old version of this method (which does not employ NdbRecord), and
is fixed by rewriting the problematic internal logic in the old implementation. (Bug #89468, Bug
#27461752)

• Queries using very large lists with IN were not handled correctly, which could lead to data node
failures. (Bug #27397802)

References: See also: Bug #28728603.

• ndb_restore --print-data --hex did not print trailing 0s of LONGVARBINARY values. (Bug
#65560, Bug #14198580)

Changes in MySQL NDB Cluster 7.3.20 (5.6.39-ndb-7.3.20) (2018-01-17,
General Availability)

Bugs Fixed

• A query against the INFORMATION_SCHEMA.FILES table returned no results when it included an
ORDER BY clause. (Bug #26877788)

• Following TRUNCATE TABLE on an NDB table, its AUTO_INCREMENT ID was not reset on an SQL
node not performing binary logging. (Bug #14845851)

61

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/blob.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbindexscanoperation.html#ndb-ndbindexscanoperation-setbound
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbrecord.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_print-data
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_hex
https://dev.mysql.com/doc/refman/5.6/en/blob.html
https://dev.mysql.com/doc/refman/5.6/en/information-schema-files-table.html
https://dev.mysql.com/doc/refman/5.6/en/truncate-table.html

MySQL NDB Cluster 7.3 Release Notes

• The NDBFS block's OM_SYNC flag is intended to make sure that all FSWRITEREQ signals used for
a given file are synchronized, but was ignored by platforms that do not support O_SYNC, meaning
that this feature did not behave properly on those platforms. Now the synchronization flag is used on
those platforms that do not support O_SYNC. (Bug #76975, Bug #21049554)

Changes in MySQL NDB Cluster 7.3.19 (5.6.38-ndb-7.3.19) (2017-10-18,
General Availability)

Bugs Fixed

• Added DUMP code 7027 to facilitate testing of issues relating to local checkpoints. For more
information, see DUMP 7027. (Bug #26661468)

• A previous fix intended to improve logging of node failure handling in the transaction coordinator
included logging of transactions that could occur in normal operation, which made the resulting logs
needlessly verbose. Such normal transactions are no longer written to the log in such cases. (Bug
#26568782)

References: This issue is a regression of: Bug #26364729.

• Some DUMP codes used for the LGMAN kernel block were incorrectly assigned numbers in the
range used for codes belonging to DBTUX. These have now been assigned symbolic constants and
numbers in the proper range (10001, 10002, and 10003). (Bug #26365433)

• Node failure handling in the DBTC kernel block consists of a number of tasks which execute
concurrently, and all of which must complete before TC node failure handling is complete. This fix
extends logging coverage to record when each task completes, and which tasks remain, includes the
following improvements:

• Handling interactions between GCP and node failure handling interactions, in which TC takeover
causes GCP participant stall at the master TC to allow it to extend the current GCI with any
transactions that were taken over; the stall can begin and end in different GCP protocol states.
Logging coverage is extended to cover all scenarios. Debug logging is now more consistent and
understandable to users.

• Logging done by the QMGR block as it monitors duration of node failure handling duration is done
more frequently. A warning log is now generated every 30 seconds (instead of 1 minute), and this
now includes DBDIH block debug information (formerly this was written separately, and less often).

• To reduce space used, DBTC instance number: is shortened to DBTC number:.

• A new error code is added to assist testing.

(Bug #26364729)

• A potential hundredfold signal fan-out when sending a START_FRAG_REQ signal could lead to a node
failure due to a job buffer full error in start phase 5 while trying to perform a local checkpoint
during a restart. (Bug #86675, Bug #26263397)

References: See also: Bug #26288247, Bug #26279522.

Changes in MySQL NDB Cluster 7.3.18 (5.6.37-ndb-7.3.18) (2017-07-18,
General Availability)

Bugs Fixed

• Backup .log files contained log entries for one or more extra fragments, due to an issue with
filtering out changes logged by other nodes in the same node group. This resulted in a larger .log
file and thus use of more resources than necessary; it could also cause problems when restoring,

62

https://dev.mysql.com/doc/ndb-internals/en/dump-command-7027.html

MySQL NDB Cluster 7.3 Release Notes

since backups from different nodes could interfere with one another while the log was being applied.
(Bug #25891014)

• Error 240 is raised when there is a mismatch between foreign key trigger columns and the values
supplied to them during trigger execution, but had no error message indicating the source of the
problem. (Bug #23141739)

References: See also: Bug #23068914, Bug #85857.

• ALTER TABLE .. MAX_ROWS=0 can now be performed only by using a copying ALTER TABLE
statement. Resetting MAX_ROWS to 0 can no longer be performed using ALGORITHM=INPLACE or
the ONLINE keyword. (Bug #21960004)

• When compiling the NDB kernel with gcc version 6.0.0 or later, it is now built using -flifetime-
dse=1. (Bug #85381, Bug #25690926)

Changes in MySQL NDB Cluster 7.3.17 (5.6.36-ndb-7.3.17) (2017-04-10,
General Availability)

Bugs Fixed

• NDB Disk Data: Stale data from NDB Disk Data tables that had been dropped could potentially
be included in backups due to the fact that disk scans were enabled for these. To prevent this
possibility, disk scans are now disabled—as are other types of scans—when taking a backup. (Bug
#84422, Bug #25353234)

• NDB Disk Data: In some cases, setting dynamic in-memory columns of an NDB Disk Data table to
NULL was not handled correctly. (Bug #79253, Bug #22195588)

Changes in MySQL NDB Cluster 7.3.16 (5.6.35-ndb-7.3.16) (2017-01-17,
General Availability)

Bugs Fixed

• ndb_restore did not restore tables having more than 341 columns correctly. This was due to the
fact that the buffer used to hold table metadata read from .ctl files was of insufficient size, so that
only part of the table descriptor could be read from it in such cases. This issue is fixed by increasing
the size of the buffer used by ndb_restore for file reads. (Bug #25182956)

References: See also: Bug #25302901.

• The rand() function was used to produce a unique table ID and table version needed to identify a
schema operation distributed between multiple SQL nodes, relying on the assumption that rand()
would never produce the same numbers on two different instances of mysqld. It was later determined
that this is not the case, and that in fact it is very likely for the same random numbers to be produced
on all SQL nodes.

This fix removes the usage of rand() for producing a unique table ID or version, and instead uses
a sequence in combination with the node ID of the coordinator. This guarantees uniqueness until the
counter for the sequence wraps, which should be sufficient for this purpose.

The effects of this duplication could be observed as timeouts in the log (for example NDB create
db: waiting max 119 sec for distributing) when restarting multiple mysqld processes
simultaneously or nearly so, or when issuing the same CREATE DATABASE or DROP DATABASE
statement on multiple SQL nodes. (Bug #24926009)

• Long message buffer exhaustion when firing immediate triggers could result in row ID leaks;
this could later result in persistent RowId already allocated errors (NDB Error 899). (Bug
#23723110)

63

https://dev.mysql.com/doc/refman/5.6/en/alter-table.html
https://dev.mysql.com/doc/refman/5.6/en/create-database.html
https://dev.mysql.com/doc/refman/5.6/en/drop-database.html

MySQL NDB Cluster 7.3 Release Notes

References: See also: Bug #19506859, Bug #13927679.

• when a parent NDB table in a foreign key relationship was updated, the update cascaded to a child
table as expected, but the change was not cascaded to a child table of this child table (that is, to a
grandchild of the original parent). This can be illustrated using the tables generated by the following
CREATE TABLE statements:

CREATE TABLE parent(
 id INT PRIMARY KEY AUTO_INCREMENT,
 col1 INT UNIQUE,
 col2 INT
) ENGINE NDB;

CREATE TABLE child(
 ref1 INT UNIQUE,
 FOREIGN KEY fk1(ref1)
 REFERENCES parent(col1) ON UPDATE CASCADE
) ENGINE NDB;

CREATE TABLE grandchild(
 ref2 INT,
 FOREIGN KEY fk2(ref2)
 REFERENCES child(ref1) ON UPDATE CASCADE
) ENGINE NDB;

Table child is a child of table parent; table grandchild is a child of table child, and a
grandchild of parent. In this scenario, a change to column col1 of parent cascaded to ref1 in
table child, but it was not always propagated in turn to ref2 in table grandchild. (Bug #83743,
Bug #25063506)

Changes in MySQL NDB Cluster 7.3.15 (5.6.34-ndb-7.3.15) (2016-10-18,
General Availability)

Bugs Fixed

• NDB Cluster APIs: Reuse of transaction IDs could occur when Ndb objects were created and
deleted concurrently. As part of this fix, the NDB API methods lock_ndb_objects() and
unlock_ndb_objects are now declared as const. (Bug #23709232)

• Removed an invalid assertion to the effect that all cascading child scans are closed at the time
API connection records are released following an abort of the main transaction. The assertion was
invalid because closing of scans in such cases is by design asynchronous with respect to the main
transaction, which means that subscans may well take some time to close after the main transaction
is closed. (Bug #23709284)

• A number of potential buffer overflow issues were found and fixed in the NDB codebase. (Bug
#23152979)

• When a data node has insufficient redo buffer during a system restart, it does not participate in the
restart until after the other nodes have started. After this, it performs a takeover of its fragments from
the nodes in its node group that have already started; during this time, the cluster is already running
and user activity is possible, including DML and DDL operations.

During a system restart, table creation is handled differently in the DIH kernel block than normally, as
this creation actually consists of reloading table definition data from disk on the master node. Thus,
DIH assumed that any table creation that occurred before all nodes had restarted must be related
to the restart and thus always on the master node. However, during the takeover, table creation can
occur on non-master nodes due to user activity; when this happened, the cluster underwent a forced
shutdown.

64

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/create-table.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb-cluster-connection.html#ndb-ndb-cluster-connection-lock-ndb-objects
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb-cluster-connection.html#ndb-ndb-cluster-connection-unlock-ndb-objects

MySQL NDB Cluster 7.3 Release Notes

Now an extra check is made during system restarts to detect in such cases whether the executing
node is the master node, and use that information to determine whether the table creation is part of
the restart proper, or is taking place during a subsequent takeover. (Bug #23028418)

• When restoring a backup taken from a database containing tables that had foreign keys,
ndb_restore disabled the foreign keys for data, but not for the logs. (Bug #83155, Bug #24736950)

• Several object constructors and similar functions in the NDB codebase did not always perform sanity
checks when creating new instances. These checks are now performed under such circumstances.
(Bug #77408, Bug #21286722)

• An internal call to malloc() was not checked for NULL. The function call was replaced with a direct
write. (Bug #77375, Bug #21271194)

Changes in MySQL NDB Cluster 7.3.14 (5.6.31-ndb-7.3.14) (2016-07-18,
General Availability)

Bugs Fixed

• Incompatible Change: When the data nodes are only partially connected to the API nodes, a node
used for a pushdown join may get its request from a transaction coordinator on a different node,
without (yet) being connected to the API node itself. In such cases, the NodeInfo object for the
requesting API node contained no valid info about the software version of the API node, which
caused the DBSPJ block to assume (incorrectly) when aborting to assume that the API node used
NDB version 7.2.4 or earlier, requiring the use of a backward compatability mode to be used during
query abort which sent a node failure error instead of the real error causing the abort.

Now, whenever this situation occurs, it is assumed that, if the NDB software version is not yet
available, the API node version is greater than 7.2.4. (Bug #23049170)

• NDB Cluster APIs: Deletion of Ndb objects used a dispoportionately high amount of CPU. (Bug
#22986823)

• Reserved send buffer for the loopback transporter, introduced in MySQL NDB Cluster 7.4.8 and
used by API and management nodes for administrative signals, was calculated incorrectly. (Bug
#23093656, Bug #22016081)

References: This issue is a regression of: Bug #21664515.

• During a node restart, re-creation of internal triggers used for verifying the referential integrity of
foreign keys was not reliable, because it was possible that not all distributed TC and LDM instances
agreed on all trigger identities. To fix this problem, an extra step is added to the node restart
sequence, during which the trigger identities are determined by querying the current master node.
(Bug #23068914)

References: See also: Bug #23221573.

• Following the forced shutdown of one of the 2 data nodes in a cluster where NoOfReplicas=2, the
other data node shut down as well, due to arbitration failure. (Bug #23006431)

• ClusterMgr is a internal component of NDB API and ndb_mgmd processes, part of
TransporterFacade—which in turn is a wrapper around the transporter registry—and shared
with data nodes. This component is responsible for a number of tasks including connection setup
requests; sending and monitoring of heartbeats; provision of node state information; handling
of cluster disconnects and reconnects; and forwarding of cluster state indicators. ClusterMgr
maintains a count of live nodes which is incremented on receiving a report of a node having
connected (reportConnected() method call), and decremented on receiving a report that a
node has disconnected (reportDisconnected()) from TransporterRegistry. This count is
checked within reportDisconnected() to verify that is it greater than zero.

65

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-noofreplicas

MySQL NDB Cluster 7.3 Release Notes

The issue addressed here arose when node connections were very brief due to send buffer
exhaustion (among other potential causes) and the check just described failed. This occurred
because, when a node did not fully connect, it was still possible for the connection attempt to trigger
a reportDisconnected() call in spite of the fact that the connection had not yet been reported to
ClusterMgr; thus, the pairing of reportConnected() and reportDisconnected() calls was
not guaranteed, which could cause the count of connected nodes to be set to zero even though there
remained nodes that were still in fact connected, causing node crashes with debug builds of MySQL
NDB Cluster, and potential errors or other adverse effects with release builds.

To fix this issue, ClusterMgr::reportDisconnected() now verifies that a disconnected node
had actually finished connecting completely before checking and decrementing the number of
connected nodes. (Bug #21683144, Bug #22016081)

References: See also: Bug #21664515, Bug #21651400.

• To reduce the possibility that a node's loopback transporter becomes disconnected from the
transporter registry by reportError() due to send buffer exhaustion (implemented by the fix for
Bug #21651400), a portion of the send buffer is now reserved for the use of this transporter. (Bug
#21664515, Bug #22016081)

References: See also: Bug #21651400, Bug #21683144.

• The loopback transporter is similar to the TCP transporter, but is used by a node to send signals
to itself as part of many internal operations. Like the TCP transporter, it could be disconnected
due to certain conditions including send buffer exhaustion, but this could result in blocking of
TransporterFacade and so cause multiple issues within an ndb_mgmd or API node process. To
prevent this, a node whose loopback transporter becomes disconnected is now simply shut down,
rather than allowing the node process to hang. (Bug #21651400, Bug #22016081)

References: See also: Bug #21683144, Bug #21664515.

Changes in MySQL NDB Cluster 7.3.13 (5.6.29-ndb-7.3.13) (2016-04-18,
General Availability)

Bugs Fixed

• NDB Cluster APIs: Executing a transaction with an NdbIndexOperation based on an obsolete
unique index caused the data node process to fail. Now the index is checked in such cases, and if it
cannot be used the transaction fails with an appropriate error. (Bug #79494, Bug #22299443)

• During node failure handling, the request structure used to drive the cleanup operation was not
maintained correctly when the request was executed. This led to inconsistencies that were harmless
during normal operation, but these could lead to assertion failures during node failure handling, with
subsequent failure of additional nodes. (Bug #22643129)

• The previous fix for a lack of mutex protection for the internal
TransporterFacade::deliver_signal() function was found to be incomplete in some cases.
(Bug #22615274)

References: This issue is a regression of: Bug #77225, Bug #21185585.

• When setup of the binary log as an atomic operation on one SQL node failed, this could trigger a
state in other SQL nodes in which they appeared to detect the SQL node participating in schema
change distribution, whereas it had not yet completed binary log setup. This could in turn cause a
deadlock on the global metadata lock when the SQL node still retrying binary log setup needed this
lock, while another mysqld had taken the lock for itself as part of a schema change operation. In
such cases, the second SQL node waited for the first one to act on its schema distribution changes,
which it was not yet able to do. (Bug #22494024)

66

https://dev.mysql.com/doc/ndbapi/en/ndb-ndbindexoperation.html

MySQL NDB Cluster 7.3 Release Notes

• Duplicate key errors could occur when ndb_restore was run on a backup containing a unique
index. This was due to the fact that, during restoration of data, the database can pass through one
or more inconsistent states prior to completion, such an inconsistent state possibly having duplicate
values for a column which has a unique index. (If the restoration of data is preceded by a run with --
disable-indexes and followed by one with --rebuild-indexes, these errors are avoided.)

Added a check for unique indexes in the backup which is performed only when restoring data, and
which does not process tables that have explicitly been excluded. For each unique index found, a
warning is now printed. (Bug #22329365)

• Restoration of metadata with ndb_restore -m occasionally failed with the error message Failed
to create index... when creating a unique index. While disgnosing this problem, it was
found that the internal error PREPARE_SEIZE_ERROR (a temporary error) was reported as an
unknown error. Now in such cases, ndb_restore retries the creation of the unique index, and
PREPARE_SEIZE_ERROR is reported as NDB Error 748 Busy during read of event table.
(Bug #21178339)

References: See also: Bug #22989944.

• Optimization of signal sending by buffering and sending them periodically, or when the buffer
became full, could cause SUB_GCP_COMPLETE_ACK signals to be excessively delayed. Such signals
are sent for each node and epoch, with a minimum interval of TimeBetweenEpochs; if they are not
received in time, the SUMA buffers can overflow as a result. The overflow caused API nodes to be
disconnected, leading to current transactions being aborted due to node failure. This condition made
it difficult for long transactions (such as altering a very large table), to be completed. Now in such
cases, the ACK signal is sent without being delayed. (Bug #18753341)

Changes in MySQL NDB Cluster 7.3.12 (5.6.28-ndb-7.3.12) (2016-01-19,
General Availability)

Bugs Fixed

• Important Change: A fix made in MySQL NDB Cluster 7.3.11 and MySQL NDB Cluster 7.4.8
caused ndb_restore to perform unique key checks even when operating in modes which do not
restore data, such as when using the program's --restore-epoch or --print-data option.

That change in behavior caused existing valid backup routines to fail; to keep this issue from
affecting this and future releases, the previous fix has been reverted. This means that the
requirement added in those versions that ndb_restore be run --disable-indexes or --
rebuild-indexes when used on tables containing unique indexes is also lifted. (Bug #22345748)

References: See also: Bug #22329365. Reverted patches: Bug #57782, Bug #11764893.

• Important Note: If an NDB table having a foreign key was dropped while one of the data nodes was
stopped, the data node later failed when trying to restart. (Bug #18554390)

• NDB Cluster APIs: The binary log injector did not work correctly with TE_INCONSISTENT event
type handling by Ndb::nextEvent(). (Bug #22135541)

References: See also: Bug #20646496.

• NDB Cluster APIs: Ndb::pollEvents() and pollEvents2() were slow to receive events,
being dependent on other client threads or blocks to perform polling of transporters on their behalf.
This fix allows a client thread to perform its own transporter polling when it has to wait in either of
these methods.

Introduction of transporter polling also revealed a problem with missing mutex protection in the
ndbcluster_binlog handler, which has been added as part of this fix. (Bug #79311, Bug
#20957068, Bug #22224571, WL #8627)

• In debug builds, a WAIT_EVENT while polling caused excessive logging to stdout. (Bug #22203672)

67

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_disable-indexes
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_disable-indexes
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_rebuild-indexes
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_restore-meta
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-timebetweenepochs
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_restore-epoch
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_print-data
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_disable-indexes
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_rebuild-indexes
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_rebuild-indexes
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-nextevent
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-pollevents
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-pollevents2

MySQL NDB Cluster 7.3 Release Notes

• When executing a schema operation such as CREATE TABLE on a MySQL NDB Cluster with
multiple SQL nodes, it was possible for the SQL node on which the operation was performed to time
out while waiting for an acknowledgement from the others. This could occur when different SQL
nodes had different settings for --ndb-log-updated-only, --ndb-log-update-as-write, or
other mysqld options effecting binary logging by NDB.

This happened due to the fact that, in order to distribute schema changes between them, all SQL
nodes subscribe to changes in the ndb_schema system table, and that all SQL nodes are made
aware of each others subscriptions by subscribing to TE_SUBSCRIBE and TE_UNSUBSCRIBE
events. The names of events to subscribe to are constructed from the table names, adding REPL$
or REPLF$ as a prefix. REPLF$ is used when full binary logging is specified for the table. The issue
described previously arose because different values for the options mentioned could lead to different
events being subscribed to by different SQL nodes, meaning that all SQL nodes were not necessarily
aware of each other, so that the code that handled waiting for schema distribution to complete did
not work as designed.

To fix this issue, MySQL NDB Cluster now treats the ndb_schema table as a special case and
enforces full binary logging at all times for this table, independent of any settings for mysqld binary
logging options. (Bug #22174287, Bug #79188)

• Attempting to create an NDB table having greater than the maximum supported combined width
for all BIT columns (4096) caused data node failure when these columns were defined with
COLUMN_FORMAT DYNAMIC. (Bug #21889267)

• Creating a table with the maxmimum supported number of columns (512) all using COLUMN_FORMAT
DYNAMIC led to data node failures. (Bug #21863798)

• Using ndb_mgm STOP -f to force a node shutdown even when it triggered a complete shutdown of
the cluster, it was possible to lose data when a sufficient number of nodes were shut down, triggering
a cluster shutodwn, and the timing was such that SUMA handovers had been made to nodes already
in the process of shutting down. (Bug #17772138)

• The internal NdbEventBuffer::set_total_buckets() method calculated the number of
remaining buckets incorrectly. This caused any incomplete epoch to be prematurely completed when
the SUB_START_CONF signal arrived out of order. Any events belonging to this epoch arriving later
were then ignored, and so effectively lost, which resulted in schema changes not being distributed
correctly among SQL nodes. (Bug #79635, Bug #22363510)

• Compilation of MySQL NDB Cluster failed on SUSE Linux Enterprise Server 12. (Bug #79429, Bug
#22292329)

• Schema events were appended to the binary log out of order relative to non-schema events. This
was caused by the fact that the binary log injector did not properly handle the case where schema
events and non-schema events were from different epochs.

This fix modifies the handling of events from the two schema and non-schema event streams
such that events are now always handled one epoch at a time, starting with events from the
oldest available epoch, without regard to the event stream in which they occur. (Bug #79077, Bug
#22135584, Bug #20456664)

• NDB failed during a node restart due to the status of the current local checkpoint being set but not as
active, even though it could have other states under such conditions. (Bug #78780, Bug #21973758)

• The value set for spintime by the ThreadConfig parameter was not calculated correctly, causing
the spin to continue for longer than actually specified. (Bug #78525, Bug #21886476)

Changes in MySQL NDB Cluster 7.3.11 (5.6.27-ndb-7.3.11) (2015-10-19,
General Availability)

68

https://dev.mysql.com/doc/refman/5.6/en/create-table.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-options-variables.html#option_mysqld_ndb-log-updated-only
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-options-variables.html#option_mysqld_ndb-log-update-as-write
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/bit-type.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbmtd-threadconfig

MySQL NDB Cluster 7.3 Release Notes

Bugs Fixed

• Important Change: When ndb_restore was run without --disable-indexes or --rebuild-
indexes on a table having a unique index, it was possible for rows to be restored in an order that
resulted in duplicate values, causing it to fail with duplicate key errors. Running ndb_restore on
such a table now requires using at least one of these options; failing to do so now results in an error.
(Bug #57782, Bug #11764893)

References: See also: Bug #22329365, Bug #22345748.

• NDB Cluster APIs: While executing dropEvent(), if the coordinator DBDICT failed after the
subscription manager (SUMA block) had removed all subscriptions but before the coordinator had
deleted the event from the system table, the dropped event remained in the table, causing any
subsequent drop or create event with the same name to fail with NDB error 1419 Subscription
already dropped or error 746 Event name already exists. This occurred even when calling
dropEvent() with a nonzero force argument.

Now in such cases, error 1419 is ignored, and DBDICT deletes the event from the table. (Bug
#21554676)

• NDB Cluster APIs: The internal value representing the latest global checkpoint was not always
updated when a completed epoch of event buffers was inserted into the event queue. This caused
subsequent calls to Ndb::pollEvents() and pollEvents2() to fail when trying to obtain
the correct GCI for the events available in the event buffers. This could also result in later calls to
nextEvent() or nextEvent2() seeing events that had not yet been discovered. (Bug #78129,
Bug #21651536)

• Backup block states were reported incorrectly during backups. (Bug #21360188)

References: See also: Bug #20204854, Bug #21372136.

• When a data node is known to have been alive by other nodes in the cluster at a given global
checkpoint, but its sysfile reports a lower GCI, the higher GCI is used to determine which global
checkpoint the data node can recreate. This caused problems when the data node being started
had a clean file system (GCI = 0), or when it was more than more global checkpoint behind the other
nodes.

Now in such cases a higher GCI known by other nodes is used only when it is at most one GCI
ahead. (Bug #19633824)

References: See also: Bug #20334650, Bug #21899993. This issue is a regression of: Bug #29167.

• When restoring a specific database or databases with the --include-databases or --exclude-
databases option, ndb_restore attempted to apply foreign keys on tables in databases which
were not among those being restored. (Bug #18560951)

• After restoring the database schema from backup using ndb_restore, auto-discovery of restored
tables in transactions having multiple statements did not work correctly, resulting in Deadlock
found when trying to get lock; try restarting transaction errors.

This issue was encountered both in the mysql client, as well as when such transactions were
executed by application programs using Connector/J and possibly other MySQL APIs.

Prior to upgrading, this issue can be worked around by executing SELECT TABLE_NAME,
TABLE_SCHEMA FROM INFORMATION_SCHEMA.TABLES WHERE ENGINE = 'NDBCLUSTER'
on all SQL nodes following the restore operation, before executing any other statements. (Bug
#18075170)

• ndb_desc used with the --extra-partition-info and --blob-info options failed when run
against a table containing one or more TINYBLOB. columns. (Bug #14695968)

69

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_disable-indexes
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_rebuild-indexes
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_rebuild-indexes
https://dev.mysql.com/doc/ndbapi/en/ndb-dictionary.html#ndb-dictionary-dropevent
https://dev.mysql.com/doc/ndbapi/en/ndb-dictionary.html#ndb-dictionary-dropevent
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-pollevents
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-pollevents2
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-nextevent
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-nextevent2
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_include-databases
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_exclude-databases
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_exclude-databases
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-desc.html#option_ndb_desc_extra-partition-info
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-desc.html#option_ndb_desc_blob-info
https://dev.mysql.com/doc/refman/5.6/en/blob.html

MySQL NDB Cluster 7.3 Release Notes

• Trying to create an NDB table with a composite foreign key referencing a composite primary key of
the parent table failed when one of the columns in the composite foreign key was the table's primary
key and in addition this column also had a unique key. (Bug #78150, Bug #21664899)

• When attempting to enable index statistics, creation of the required system tables, events and
event subscriptions often fails when multiple mysqld processes using index statistics are started
concurrently in conjunction with starting, restarting, or stopping the cluster, or with node failure
handling. This is normally recoverable, since the affected mysqld process or processes can (and
do) retry these operations shortly thereafter. For this reason, such failures are no longer logged as
warnings, but merely as informational events. (Bug #77760, Bug #21462846)

• Adding a unique key to an NDB table failed when the table already had a foreign key. Prior to
upgrading, you can work around this issue by creating the unique key first, then adding the foreign
key afterwards, using a separate ALTER TABLE statement. (Bug #77457, Bug #20309828)

Changes in MySQL NDB Cluster 7.3.10 (5.6.25-ndb-7.3.10) (2015-07-13,
General Availability)

• Functionality Added or Changed

• Bugs Fixed

Functionality Added or Changed

• A number of improvements, listed here, have been made with regard to handling issues that could
arise when an overload arose due to a great number of inserts being performed during a local
checkpoint (LCP):

• Failures sometimes occurred during restart processing when trying to execute the undo log, due
to a problem with finding the end of the log. This happened when there remained unwritten pages
at the end of the first undo file when writing to the second undo file, which caused the execution of
undo logs in reverse order and so execute old or even nonexistent log records.

This is fixed by ensuring that execution of the undo log begins with the proper end of the log, and,
if started earlier, that any unwritten or faulty pages are ignored.

• It was possible to fail during an LCP, or when performing a COPY_FRAGREQ, due to running out of
operation records. We fix this by making sure that LCPs and COPY_FRAG use resources reserved
for operation records, as was already the case with scan records. In addition, old code for ACC
operations that was no longer required but that could lead to failures was removed.

• When an LCP was performed while loading a table, it was possible to hit a livelock during LCP
scans, due to the fact that each record that was inserted into new pages after the LCP had started
had its LCP_SKIP flag set. Such records were discarded as intended by the LCP scan, but when
inserts occurred faster than the LCP scan could discard records, the scan appeared to hang.
As part of this issue, the scan failed to report any progress to the LCP watchdog, which after 70
seconds of livelock killed the process. This issue was observed when performing on the order of
250000 inserts per second over an extended period of time (120 seconds or more), using a single
LDM.

This part of the fix makes a number of changes, listed here:

• We now ensure that pages created after the LCP has started are not included in LCP scans; we
also ensure that no records inserted into those pages have their LCP_SKIP flag set.

• Handling of the scan protocol is changed such that a certain amount of progress is made by the
LCP regardless of load; we now report progress to the LCP watchdog so that we avoid failure in
the event that an LCP is making progress but not writing any records.

70

https://dev.mysql.com/doc/refman/5.6/en/alter-table.html

MySQL NDB Cluster 7.3 Release Notes

• We now take steps to guarantee that LCP scans proceed more quickly than inserts can occur,
by ensuring that scans are prioritized this scanning activity, and thus, that the LCP is in fact
(eventually) completed.

• In addition, scanning is made more efficient, by prefetching tuples; this helps avoid stalls while
fetching memory in the CPU.

• Row checksums for preventing data corruption now include the tuple header bits.

(Bug #76373, Bug #20727343, Bug #76741, Bug #69994, Bug #20903880, Bug #76742, Bug
#20904721, Bug #76883, Bug #20980229, WL #8525)

Bugs Fixed

• Important Change; NDB Cluster APIs: Added the method
Ndb::isExpectingHigherQueuedEpochs() to the NDB API to detect when additional, newer
event epochs were detected by pollEvents2().

The behavior of Ndb::pollEvents() has also been modified such that it now returns
NDB_FAILURE_GCI (equal to ~(Uint64) 0) when a cluster failure has been detected. (Bug
#18753887)

• NDB Cluster APIs: Added the Column::getSizeInBytesForRecord() method, which returns
the size required for a column by an NdbRecord, depending on the column's type (text/blob, or
other). (Bug #21067283)

• NDB Cluster APIs: Creation and destruction of Ndb_cluster_connection objects by multiple
threads could make use of the same application lock, which in some cases led to failures in the
global dictionary cache. To alleviate this problem, the creation and destruction of several internal
NDB API objects have been serialized. (Bug #20636124)

• NDB Cluster APIs: A number of timeouts were not handled correctly in the NDB API. (Bug
#20617891)

• NDB Cluster APIs: When an Ndb object created prior to a failure of the cluster was reused, the
event queue of this object could still contain data node events originating from before the failure.
These events could reference “old” epochs (from before the failure occurred), which in turn could
violate the assumption made by the nextEvent() method that epoch numbers always increase.
This issue is addressed by explicitly clearing the event queue in such cases. (Bug #18411034)

References: See also: Bug #20888668.

• After restoring the database metadata (but not any data) by running ndb_restore --restore-
meta (or -m), SQL nodes would hang while trying to SELECT from a table in the database to which
the metadata was restored. In such cases the attempt to query the table now fails as expected, since
the table does not actually exist until ndb_restore is executed with --restore-data (-r). (Bug
#21184102)

References: See also: Bug #16890703.

• When a great many threads opened and closed blocks in the NDB API in rapid succession, the
internal close_clnt() function synchronizing the closing of the blocks waited an insufficiently
long time for a self-signal indicating potential additional signals needing to be processed. This led
to excessive CPU usage by ndb_mgmd, and prevented other threads from opening or closing other
blocks. This issue is fixed by changing the function polling call to wait on a specific condition to be
woken up (that is, when a signal has in fact been executed). (Bug #21141495)

• Previously, multiple send threads could be invoked for handling sends to the same node; these
threads then competed for the same send lock. While the send lock blocked the additional send
threads, work threads could be passed to other nodes.

71

https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-isexpectinghigherqueuedepochs
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-pollevents2
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-pollevents
https://dev.mysql.com/doc/ndbapi/en/ndb-column.html#ndb-column-getsizeinbytesforrecord
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbrecord.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb-cluster-connection.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-nextevent
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_restore-meta
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_restore-meta
https://dev.mysql.com/doc/refman/5.6/en/select.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_restore-data

MySQL NDB Cluster 7.3 Release Notes

This issue is fixed by ensuring that new send threads are not activated while there is already an
active send thread assigned to the same node. In addition, a node already having an active send
thread assigned to it is no longer visible to other, already active, send threads; that is, such a node
is longer added to the node list when a send thread is currently assigned to it. (Bug #20954804, Bug
#76821)

• Queueing of pending operations when the redo log was overloaded
(DefaultOperationRedoProblemAction API node configuration parameter) could lead to
timeouts when data nodes ran out of redo log space (P_TAIL_PROBLEM errors). Now when the redo
log is full, the node aborts requests instead of queuing them. (Bug #20782580)

References: See also: Bug #20481140.

• NDB statistics queries could be delayed by the error delay set for ndb_index_stat_option
(default 60 seconds) when the index that was queried had been marked with internal error. The
same underlying issue could also cause ANALYZE TABLE to hang when executed against an NDB
table having multiple indexes where an internal error occurred on one or more but not all indexes.

Now in such cases, any existing statistics are returned immediately, without waiting for any additonal
statistics to be discovered. (Bug #20553313, Bug #20707694, Bug #76325)

• The multithreaded scheduler sends to remote nodes either directly from each worker thread or
from dedicated send threadsL, depending on the cluster's configuration. This send might transmit
all, part, or none of the available data from the send buffers. While there remained pending send
data, the worker or send threads continued trying to send in a loop. The actual size of the data
sent in the most recent attempt to perform a send is now tracked, and used to detect lack of send
progress by the send or worker threads. When no progress has been made, and there is no other
work outstanding, the scheduler takes a 1 millisecond pause to free up the CPU for use by other
threads. (Bug #18390321)

References: See also: Bug #20929176, Bug #20954804.

• In some cases, attempting to restore a table that was previously backed up failed with a File Not
Found error due to a missing table fragment file. This occurred as a result of the NDB kernel BACKUP
block receiving a Busy error while trying to obtain the table description, due to other traffic from
external clients, and not retrying the operation.

The fix for this issue creates two separate queues for such requests—one for internal clients such as
the BACKUP block or ndb_restore, and one for external clients such as API nodes—and prioritizing
the internal queue.

Note that it has always been the case that external client applications using the NDB API (including
MySQL applications running against an SQL node) are expected to handle Busy errors by retrying
transactions at a later time; this expectation is not changed by the fix for this issue. (Bug #17878183)

References: See also: Bug #17916243.

• In some cases, the DBDICT block failed to handle repeated GET_TABINFOREQ signals after the first
one, leading to possible node failures and restarts. This could be observed after setting a sufficiently
high value for MaxNoOfExecutionThreads and low value for LcpScanProgressTimeout. (Bug
#77433, Bug #21297221)

• Client lookup for delivery of API signals to the correct client by the internal
TransporterFacade::deliver_signal() function had no mutex protection, which could cause
issues such as timeouts encountered during testing, when other clients connected to the same
TransporterFacade. (Bug #77225, Bug #21185585)

• It was possible to end up with a lock on the send buffer mutex when send buffers became a limiting
resource, due either to insufficient send buffer resource configuration, problems with slow or failing
communications such that all send buffers became exhausted, or slow receivers failing to consume

72

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-api-definition.html#ndbparam-api-defaultoperationredoproblemaction
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-options-variables.html#sysvar_ndb_index_stat_option
https://dev.mysql.com/doc/refman/5.6/en/analyze-table.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbmtd-maxnoofexecutionthreads

MySQL NDB Cluster 7.3 Release Notes

what was sent. In this situation worker threads failed to allocate send buffer memory for signals, and
attempted to force a send in order to free up space, while at the same time the send thread was busy
trying to send to the same node or nodes. All of these threads competed for taking the send buffer
mutex, which resulted in the lock already described, reported by the watchdog as Stuck in Send.
This fix is made in two parts, listed here:

1. The send thread no longer holds the global send thread mutex while getting the send buffer
mutex; it now releases the global mutex prior to locking the send buffer mutex. This keeps worker
threads from getting stuck in send in such cases.

2. Locking of the send buffer mutex done by the send threads now uses a try-lock. If the try-lock
fails, the node to make the send to is reinserted at the end of the list of send nodes in order to be
retried later. This removes the Stuck in Send condition for the send threads.

(Bug #77081, Bug #21109605)

Changes in MySQL NDB Cluster 7.3.9 (5.6.24-ndb-7.3.9) (2015-04-14,
General Availability)

Bugs Fixed

• Important Change: The maximum failure time calculation used to ensure that normal node failure
handling mechanisms are given time to handle survivable cluster failures (before global checkpoint
watchdog mechanisms start to kill nodes due to GCP delays) was excessively conservative, and
neglected to consider that there can be at most number_of_data_nodes / NoOfReplicas node
failures before the cluster can no longer survive. Now the value of NoOfReplicas is properly taken
into account when performing this calculation.

This fix adds the TimeBetweenGlobalCheckpointsTimeout data node configuration parameter,
which makes the minimum timeout between global checkpoints settable by the user. This timeout
was previously fixed internally at 120000 milliseconds, which is now the default value for this
parameter. (Bug #20069617, Bug #20069624)

References: See also: Bug #19858151, Bug #20128256, Bug #20135976.

• NDB Cluster APIs: When a transaction is started from a cluster connection, Table and Index
schema objects may be passed to this transaction for use. If these schema objects have been
acquired from a different connection (Ndb_cluster_connection object), they can be deleted at
any point by the deletion or disconnection of the owning connection. This can leave a connection
with invalid schema objects, which causes an NDB API application to fail when these are
dereferenced.

To avoid this problem, if your application uses multiple connections, you can now set a check
to detect sharing of schema objects between connections when passing a schema object to a
transaction, using the NdbTransaction::setSchemaObjectOwnerChecks() method added in
this release. When this check is enabled, the schema objects having the same names are acquired
from the connection and compared to the schema objects passed to the transaction. Failure to match
causes the application to fail with an error. (Bug #19785977)

• NDB Cluster APIs: The increase in the default number of hashmap buckets
(DefaultHashMapSize API node configuration parameter) from 240 to 3480 in MySQL NDB
Cluster 7.2.11 increased the size of the internal DictHashMapInfo::HashMap type considerably.
This type was allocated on the stack in some getTable() calls which could lead to stack overflow
issues for NDB API users.

To avoid this problem, the hashmap is now dynamically allocated from the heap. (Bug #19306793)

• NDB Cluster APIs: A scan operation, whether it is a single table scan or a query scan used by
a pushed join, stores the result set in a buffer. This maximum size of this buffer is calculated and
preallocated before the scan operation is started. This buffer may consume a considerable amount of

73

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-noofreplicas
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-timebetweenglobalcheckpointstimeout
https://dev.mysql.com/doc/ndbapi/en/ndb-table.html
https://dev.mysql.com/doc/ndbapi/en/ndb-index.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb-cluster-connection.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbtransaction.html#ndb-ndbtransaction-setschemaobjectownerchecks
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-api-definition.html#ndbparam-api-defaulthashmapsize
https://dev.mysql.com/doc/ndbapi/en/ndb-dictionary.html#ndb-dictionary-gettable

MySQL NDB Cluster 7.3 Release Notes

memory; in some cases we observed a 2 GB buffer footprint in tests that executed 100 parallel scans
with 2 single-threaded (ndbd) data nodes. This memory consumption was found to scale linearly with
additional fragments.

A number of root causes, listed here, were discovered that led to this problem:

• Result rows were unpacked to full NdbRecord format before they were stored in the buffer. If only
some but not all columns of a table were selected, the buffer contained empty space (essentially
wasted).

• Due to the buffer format being unpacked, VARCHAR and VARBINARY columns always had to be
allocated for the maximum size defined for such columns.

• BatchByteSize and MaxScanBatchSize values were not taken into consideration as a limiting
factor when calculating the maximum buffer size.

These issues became more evident in NDB 7.2 and later MySQL NDB Cluster release series. This
was due to the fact buffer size is scaled by BatchSize, and that the default value for this parameter
was increased fourfold (from 64 to 256) beginning with MySQL NDB Cluster 7.2.1.

This fix causes result rows to be buffered using the packed format instead of the unpacked format;
a buffered scan result row is now not unpacked until it becomes the current row. In addition,
BatchByteSize and MaxScanBatchSize are now used as limiting factors when calculating the
required buffer size.

Also as part of this fix, refactoring has been done to separate handling of buffered (packed) from
handling of unbuffered result sets, and to remove code that had been unused since NDB 7.0
or earlier. The NdbRecord class declaration has also been cleaned up by removing a number
of unused or redundant member variables. (Bug #73781, Bug #75599, Bug #19631350, Bug
#20408733)

• It was found during testing that problems could arise when the node registered as the arbitrator
disconnected or failed during the arbitration process.

In this situation, the node requesting arbitration could never receive a positive acknowledgement
from the registered arbitrator; this node also lacked a stable set of members and could not initiate
selection of a new arbitrator.

Now in such cases, when the arbitrator fails or loses contact during arbitration, the requesting node
immediately fails rather than waiting to time out. (Bug #20538179)

• The values of the Ndb_last_commit_epoch_server and Ndb_last_commit_epoch_session
status variables were incorrectly reported on some platforms. To correct this problem, these values
are now stored internally as long long, rather than long. (Bug #20372169)

• When a data node fails or is being restarted, the remaining nodes in the same nodegroup resend to
subscribers any data which they determine has not already been sent by the failed node. Normally,
when a data node (actually, the SUMA kernel block) has sent all data belonging to an epoch for
which it is responsible, it sends a SUB_GCP_COMPLETE_REP signal, together with a count, to all
subscribers, each of which responds with a SUB_GCP_COMPLETE_ACK. When SUMA receives this
acknowledgment from all subscribers, it reports this to the other nodes in the same nodegroup so
that they know that there is no need to resend this data in case of a subsequent node failure. If a
node failed before all subscribers sent this acknowledgement but before all the other nodes in the
same nodegroup received it from the failing node, data for some epochs could be sent (and reported
as complete) twice, which could lead to an unplanned shutdown.

The fix for this issue adds to the count reported by SUB_GCP_COMPLETE_ACK a list of identifiers
which the receiver can use to keep track of which buckets are completed and to ignore any duplicate
reported for an already completed bucket. (Bug #17579998)

74

https://dev.mysql.com/doc/ndbapi/en/ndb-ndbrecord.html
https://dev.mysql.com/doc/refman/5.6/en/char.html
https://dev.mysql.com/doc/refman/5.6/en/binary-varbinary.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-api-definition.html#ndbparam-api-batchbytesize
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-api-definition.html#ndbparam-api-maxscanbatchsize
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-api-definition.html#ndbparam-api-batchsize
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-options-variables.html#statvar_Ndb_last_commit_epoch_server
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-options-variables.html#statvar_Ndb_last_commit_epoch_session

MySQL NDB Cluster 7.3 Release Notes

• When performing a restart, it was sometimes possible to find a log end marker which had been
written by a previous restart, and that should have been invalidated. Now when searching for the last
page to invalidate, the same search algorithm is used as when searching for the last page of the log
to read. (Bug #76207, Bug #20665205)

• When reading and copying transporter short signal data, it was possible for the data to be copied
back to the same signal with overlapping memory. (Bug #75930, Bug #20553247)

• When a bulk delete operation was committed early to avoid an additional round trip, while also
returning the number of affected rows, but failed with a timeout error, an SQL node performed no
verification that the transaction was in the Committed state. (Bug #74494, Bug #20092754)

References: See also: Bug #19873609.

• An ALTER TABLE statement containing comments and a partitioning option against an NDB table
caused the SQL node on which it was executed to fail. (Bug #74022, Bug #19667566)

Changes in MySQL NDB Cluster 7.3.8 (5.6.22-ndb-7.3.8) (2015-01-21,
General Availability)

• Functionality Added or Changed

• Bugs Fixed

Functionality Added or Changed

• Performance: Recent improvements made to the multithreaded scheduler were intended to optimize
the cache behavior of its internal data structures, with members of these structures placed such that
those local to a given thread do not overflow into a cache line which can be accessed by another
thread. Where required, extra padding bytes are inserted to isolate cache lines owned (or shared) by
other threads, thus avoiding invalidation of the entire cache line if another thread writes into a cache
line not entirely owned by itself. This optimization improved MT Scheduler performance by several
percent.

It has since been found that the optimization just described depends on the global instance of
struct thr_repository starting at a cache line aligned base address as well as the compiler not
rearranging or adding extra padding to the scheduler struct; it was also found that these prerequisites
were not guaranteed (or even checked). Thus this cache line optimization has previously worked
only when g_thr_repository (that is, the global instance) ended up being cache line aligned
only by accident. In addition, on 64-bit platforms, the compiler added extra padding words in struct
thr_safe_pool such that attempts to pad it to a cache line aligned size failed.

The current fix ensures that g_thr_repository is constructed on a cache line aligned address,
and the constructors modified so as to verify cacheline aligned adresses where these are assumed
by design.

Results from internal testing show improvements in MT Scheduler read performance of up to 10% in
some cases, following these changes. (Bug #18352514)

• NDB Cluster APIs: Two new example programs, demonstrating reads and writes of CHAR,
VARCHAR, and VARBINARY column values, have been added to storage/ndb/ndbapi-examples
in the MySQL NDB Cluster source tree. For more information about these programs, including
source code listings, see NDB API Simple Array Example, and NDB API Simple Array Example
Using Adapter.

Bugs Fixed

• NDB Disk Data: An update on many rows of a large Disk Data table could in some rare cases lead
to node failure. In the event that such problems are observed with very large transactions on Disk

75

https://dev.mysql.com/doc/refman/5.6/en/alter-table-partition-operations.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/char.html
https://dev.mysql.com/doc/refman/5.6/en/char.html
https://dev.mysql.com/doc/refman/5.6/en/binary-varbinary.html
https://dev.mysql.com/doc/ndbapi/en/ndbapi-examples-array-simple.html
https://dev.mysql.com/doc/ndbapi/en/ndbapi-examples-array-adapter.html
https://dev.mysql.com/doc/ndbapi/en/ndbapi-examples-array-adapter.html

MySQL NDB Cluster 7.3 Release Notes

Data tables you can now increase the number of page entries allocated for disk page buffer memory
by raising the value of the DiskPageBufferEntries data node configuration parameter added in
this release. (Bug #19958804)

• NDB Disk Data: In some cases, during DICT master takeover, the new master could crash while
attempting to roll forward an ongoing schema transaction. (Bug #19875663, Bug #74510)

• NDB Disk Data: When a node acting as a DICT master fails, the arbitrator selects another node to
take over in place of the failed node. During the takeover procedure, which includes cleaning up any
schema transactions which are still open when the master failed, the disposition of the uncommitted
schema transaction is decided. Normally this transaction be rolled back, but if it has completed a
sufficient portion of a commit request, the new master finishes processing the commit. Until the
fate of the transaction has been decided, no new TRANS_END_REQ messages from clients can be
processed. In addition, since multiple concurrent schema transactions are not supported, takeover
cleanup must be completed before any new transactions can be started.

A similar restriction applies to any schema operations which are performed in the scope of an open
schema transaction. The counter used to coordinate schema operation across all nodes is employed
both during takeover processing and when executing any non-local schema operations. This means
that starting a schema operation while its schema transaction is in the takeover phase causes this
counter to be overwritten by concurrent uses, with unpredictable results.

The scenarios just described were handled previously using a pseudo-random delay when
recovering from a node failure. Now we check before the new master has rolled forward or
backwards any schema transactions remaining after the failure of the previous master and avoid
starting new schema transactions or performing operations using old transactions until takeover
processing has cleaned up after the abandoned transaction. (Bug #19874809, Bug #74503)

• NDB Disk Data: When a node acting as DICT master fails, it is still possible to request that any open
schema transaction be either committed or aborted by sending this request to the new DICT master.
In this event, the new master takes over the schema transaction and reports back on whether the
commit or abort request succeeded. In certain cases, it was possible for the new master to be
misidentified—that is, the request was sent to the wrong node, which responded with an error that
was interpreted by the client application as an aborted schema transaction, even in cases where the
transaction could have been successfully committed, had the correct node been contacted. (Bug
#74521, Bug #19880747)

• NDB Cluster APIs: It was possible to delete an Ndb_cluster_connection object while there
remained instances of Ndb using references to it. Now the Ndb_cluster_connection destructor
waits for all related Ndb objects to be released before completing. (Bug #19999242)

References: See also: Bug #19846392.

• NDB Cluster APIs: The buffer allocated by an NdbScanOperation for receiving scanned
rows was not released until the NdbTransaction owning the scan operation was closed. This
could lead to excessive memory usage in an application where multiple scans were created
within the same transaction, even if these scans were closed at the end of their lifecycle,
unless NdbScanOperation::close() was invoked with the releaseOp argument equal to
true. Now the buffer is released whenever the cursor navigating the result set is closed with
NdbScanOperation::close(), regardless of the value of this argument. (Bug #75128, Bug
#20166585)

• The global checkpoint commit and save protocols can be delayed by various causes, including slow
disk I/O. The DIH master node monitors the progress of both of these protocols, and can enforce a
maximum lag time during which the protocols are stalled by killing the node responsible for the lag
when it reaches this maximum. This DIH master GCP monitor mechanism did not perform its task
more than once per master node; that is, it failed to continue monitoring after detecting and handling
a GCP stop. (Bug #20128256)

References: See also: Bug #19858151, Bug #20069617, Bug #20062754.

76

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-diskpagebufferentries
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb-cluster-connection.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbscanoperation.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbtransaction.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbscanoperation.html#ndb-ndbscanoperation-close

MySQL NDB Cluster 7.3 Release Notes

• When running mysql_upgrade on a MySQL NDB Cluster SQL node, the expected drop of the
performance_schema database on this node was instead performed on all SQL nodes connected
to the cluster. (Bug #20032861)

• A number of problems relating to the fired triggers pool have been fixed, including the following
issues:

• When the fired triggers pool was exhausted, NDB returned Error 218 (Out of
LongMessageBuffer). A new error code 221 is added to cover this case.

• An additional, separate case in which Error 218 was wrongly reported now returns the correct
error.

• Setting low values for MaxNoOfFiredTriggers led to an error when no memory was allocated if
there was only one hash bucket.

• An aborted transaction now releases any fired trigger records it held. Previously, these records
were held until its ApiConnectRecord was reused by another transaction.

• In addition, for the Fired Triggers pool in the internal ndbinfo.ndb$pools table, the high
value always equalled the total, due to the fact that all records were momentarily seized when
initializing them. Now the high value shows the maximum following completion of initialization.

(Bug #19976428)

• Online reorganization when using ndbmtd data nodes and with binary logging by mysqld enabled
could sometimes lead to failures in the TRIX and DBLQH kernel blocks, or in silent data corruption.
(Bug #19903481)

References: See also: Bug #19912988.

• The local checkpoint scan fragment watchdog and the global checkpoint monitor can each exclude
a node when it is too slow when participating in their respective protocols. This exclusion was
implemented by simply asking the failing node to shut down, which in case this was delayed (for
whatever reason) could prolong the duration of the GCP or LCP stall for other, unaffected nodes.

To minimize this time, an isolation mechanism has been added to both protocols whereby any other
live nodes forcibly disconnect the failing node after a predetermined amount of time. This allows the
failing node the opportunity to shut down gracefully (after logging debugging and other information) if
possible, but limits the time that other nodes must wait for this to occur. Now, once the remaining live
nodes have processed the disconnection of any failing nodes, they can commence failure handling
and restart the related protocol or protocol, even if the failed node takes an excessively long time to
shut down. (Bug #19858151)

References: See also: Bug #20128256, Bug #20069617, Bug #20062754.

• A watchdog failure resulted from a hang while freeing a disk page in TUP_COMMITREQ, due to use of
an uninitialized block variable. (Bug #19815044, Bug #74380)

• Multiple threads crashing led to multiple sets of trace files being printed and possibly to deadlocks.
(Bug #19724313)

• When a client retried against a new master a schema transaction that failed previously against
the previous master while the latter was restarting, the lock obtained by this transaction on the
new master prevented the previous master from progressing past start phase 3 until the client was
terminated, and resources held by it were cleaned up. (Bug #19712569, Bug #74154)

• When using the NDB storage engine, the maximum possible length of a database or table name is 63
characters, but this limit was not always strictly enforced. This meant that a statement using a name
having 64 characters such CREATE DATABASE, DROP DATABASE, or ALTER TABLE RENAME could

77

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxnooffiredtriggers
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/create-database.html
https://dev.mysql.com/doc/refman/5.6/en/drop-database.html
https://dev.mysql.com/doc/refman/5.6/en/alter-table.html

MySQL NDB Cluster 7.3 Release Notes

cause the SQL node on which it was executed to fail. Now such statements fail with an appropriate
error message. (Bug #19550973)

• When a new data node started, API nodes were allowed to attempt to register themselves with the
data node for executing transactions before the data node was ready. This forced the API node to
wait an extra heartbeat interval before trying again.

To address this issue, a number of HA_ERR_NO_CONNECTION errors (Error 4009) that could be
issued during this time have been changed to Cluster temporarily unavailable errors (Error
4035), which should allow API nodes to use new data nodes more quickly than before. As part of this
fix, some errors which were incorrectly categorised have been moved into the correct categories, and
some errors which are no longer used have been removed. (Bug #19524096, Bug #73758)

• When executing very large pushdown joins involving one or more indexes each defined over several
columns, it was possible in some cases for the DBSPJ block (see The DBSPJ Block) in the NDB
kernel to generate SCAN_FRAGREQ signals that were excessively large. This caused data nodes to
fail when these could not be handled correctly, due to a hard limit in the kernel on the size of such
signals (32K). This fix bypasses that limitation by breaking up SCAN_FRAGREQ data that is too large
for one such signal, and sending the SCAN_FRAGREQ as a chunked or fragmented signal instead.
(Bug #19390895)

• ndb_index_stat sometimes failed when used against a table containing unique indexes. (Bug
#18715165)

• Queries against tables containing a CHAR(0) columns failed with ERROR 1296 (HY000): Got
error 4547 'RecordSpecification has overlapping offsets' from NDBCLUSTER.
(Bug #14798022)

• In the NDB kernel, it was possible for a TransporterFacade object to reset a buffer while the data
contained by the buffer was being sent, which could lead to a race condition. (Bug #75041, Bug
#20112981)

• mysql_upgrade failed to drop and recreate the ndbinfo database and its tables as expected.
(Bug #74863, Bug #20031425)

• Due to a lack of memory barriers, MySQL NDB Cluster programs such as ndbmtd did not compile on
POWER platforms. (Bug #74782, Bug #20007248)

• In some cases, when run against a table having an AFTER DELETE trigger, a DELETE statement that
matched no rows still caused the trigger to execute. (Bug #74751, Bug #19992856)

• A basic requirement of the NDB storage engine's design is that the transporter registry not attempt
to receive data (TransporterRegistry::performReceive()) from and update the connection
status (TransporterRegistry::update_connections()) of the same set of transporters
concurrently, due to the fact that the updates perform final cleanup and reinitialization of buffers used
when receiving data. Changing the contents of these buffers while reading or writing to them could
lead to "garbage" or inconsistent signals being read or written.

During the course of work done previously to improve the implementation of the transporter
facade, a mutex intended to protect against the concurrent use of the performReceive() and
update_connections()) methods on the same transporter was inadvertently removed. This
fix adds a watchdog check for concurrent usage. In addition, update_connections() and
performReceive() calls are now serialized together while polling the transporters. (Bug #74011,
Bug #19661543)

• ndb_restore failed while restoring a table which contained both a built-in conversion on the
primary key and a staging conversion on a TEXT column.

During staging, a BLOB table is created with a primary key column of the target type. However, a
conversion function was not provided to convert the primary key values before loading them into the
staging blob table, which resulted in corrupted primary key values in the staging BLOB table. While

78

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbspj.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbinfo.html
https://dev.mysql.com/doc/refman/5.6/en/delete.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/blob.html
https://dev.mysql.com/doc/refman/5.6/en/blob.html

MySQL NDB Cluster 7.3 Release Notes

moving data from the staging table to the target table, the BLOB read failed because it could not find
the primary key in the BLOB table.

Now all BLOB tables are checked to see whether there are conversions on primary keys of their main
tables. This check is done after all the main tables are processed, so that conversion functions and
parameters have already been set for the main tables. Any conversion functions and parameters
used for the primary key in the main table are now duplicated in the BLOB table. (Bug #73966, Bug
#19642978)

• Corrupted messages to data nodes sometimes went undetected, causing a bad signal to be
delivered to a block which aborted the data node. This failure in combination with disconnecting
nodes could in turn cause the entire cluster to shut down.

To keep this from happening, additional checks are now made when unpacking signals received over
TCP, including checks for byte order, compression flag (which must not be used), and the length of
the next message in the receive buffer (if there is one).

Whenever two consecutive unpacked messages fail the checks just described, the current message
is assumed to be corrupted. In this case, the transporter is marked as having bad data and no more
unpacking of messages occurs until the transporter is reconnected. In addition, an entry is written to
the cluster log containing the error as well as a hex dump of the corrupted message. (Bug #73843,
Bug #19582925)

• ndb_restore --print-data truncated TEXT and BLOB column values to 240 bytes rather than
256 bytes. (Bug #65467, Bug #14571512)

• Transporter send buffers were not updated properly following a failed send. (Bug #45043, Bug
#20113145)

Changes in MySQL NDB Cluster 7.3.7 (5.6.21-ndb-7.3.7) (2014-10-17,
General Availability)

• Functionality Added or Changed

• Bugs Fixed

Functionality Added or Changed

• After adding new data nodes to the configuration file of a MySQL NDB Cluster having many API
nodes, but prior to starting any of the data node processes, API nodes tried to connect to these
“missing” data nodes several times per second, placing extra loads on management nodes and the
network. To reduce unnecessary traffic caused in this way, it is now possible to control the amount of
time that an API node waits between attempts to connect to data nodes which fail to respond; this is
implemented in two new API node configuration parameters StartConnectBackoffMaxTime and
ConnectBackoffMaxTime.

Time elapsed during node connection attempts is not taken into account when applying these
parameters, both of which are given in milliseconds with approximately 100 ms resolution. As
long as the API node is not connected to any data nodes as described previously, the value of the
StartConnectBackoffMaxTime parameter is applied; otherwise, ConnectBackoffMaxTime is
used.

In a MySQL NDB Cluster with many unstarted data nodes, the values of these parameters can be
raised to circumvent connection attempts to data nodes which have not yet begun to function in the
cluster, as well as moderate high traffic to management nodes.

For more information about the behavior of these parameters, see Defining SQL and Other API
Nodes in an NDB Cluster. (Bug #17257842)

79

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_print-data
https://dev.mysql.com/doc/refman/5.6/en/blob.html
https://dev.mysql.com/doc/refman/5.6/en/blob.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-api-definition.html#ndbparam-api-startconnectbackoffmaxtime
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-api-definition.html#ndbparam-api-connectbackoffmaxtime
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-api-definition.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-api-definition.html

MySQL NDB Cluster 7.3 Release Notes

• Added the --exclude-missing-tables option for ndb_restore. When enabled, the option
causes tables present in the backup but not in the target database to be ignored. (Bug #57566, Bug
#11764704)

Bugs Fixed

• NDB Cluster APIs: The fix for Bug #16723708 stopped the ndb_logevent_get_next() function
from casting a log event's ndb_mgm_event_category to an enum type, but this change interfered
with existing applications, and so the function's original behavior is now reinstated. A new MGM API
function exhibiting the corrected behavior ndb_logevent_get_next2() has been added in this
release to take the place of the reverted function, for use in applications that do not require backward
compatibility. In all other respects apart from this, the new function is identical with its predecessor.
(Bug #18354165)

References: Reverted patches: Bug #16723708.

• NDB Cluster APIs: NDB API scans leaked Ndb_cluster_connection objects after
nextResult() was called when an operation resulted in an error. This leak locked up the
corresponding connection objects in the DBTC kernel block until the connection was closed. (Bug
#17730825, Bug #20170731)

• When assembling error messages of the form Incorrect state for node n state:
node_state, written when the transporter failed to connect, the node state was used in place of the
node ID in a number of instances, which resulted in errors of this type for which the node state was
reported incorrectly. (Bug #19559313, Bug #73801)

• In some cases, transporter receive buffers were reset by one thread while being read by another.
This happened when a race condition occurred between a thread receiving data and another thread
initiating disconnect of the transporter (disconnection clears this buffer). Concurrency logic has now
been implemented to keep this race from taking place. (Bug #19552283, Bug #73790)

• The failure of a data node could in some situations cause a set of API nodes to fail as well due to the
sending of a CLOSE_COMREQ signal that was sometimes not completely initialized. (Bug #19513967)

• A more detailed error report is printed in the event of a critical failure in one of the NDB internal
sendSignal*() methods, prior to crashing the process, as was already implemented for
sendSignal(), but was missing from the more specialized sendSignalNoRelease() method.
Having a crash of this type correctly reported can help with identifying configuration hardware issues
in some cases. (Bug #19414511)

References: See also: Bug #19390895.

• ndb_restore failed to restore the cluster's metadata when there were more than approximately 17
K data objects. (Bug #19202654)

• The fix for a previous issue with the handling of multiple node failures required determining the
number of TC instances the failed node was running, then taking them over. The mechanism
to determine this number sometimes provided an invalid result which caused the number of TC
instances in the failed node to be set to an excessively high value. This in turn caused redundant
takeover attempts, which wasted time and had a negative impact on the processing of other node
failures and of global checkpoints. (Bug #19193927)

References: This issue is a regression of: Bug #18069334.

• Parallel transactions performing reads immediately preceding a delete on the same tuple could
cause the NDB kernel to crash. This was more likely to occur when separate TC threads were
specified using the ThreadConfig configuration parameter. (Bug #19031389)

• Attribute promotion between different TEXT types (any of TINYTEXT, TEXT, MEDIUMTEXT, and
LONGTEXT) by ndb_restore was not handled properly in some cases. In addition, TEXT values are
now truncated according to the limits set by mysqld (for example, values converted to TINYTEXT

80

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_exclude-missing-tables
https://dev.mysql.com/doc/ndbapi/en/mgm-functions-log-events.html#mgm-ndb-logevent-get-next
https://dev.mysql.com/doc/ndbapi/en/mgm-types.html#mgm-ndb-mgm-event-category
https://dev.mysql.com/doc/ndbapi/en/mgm-functions-log-events.html#mgm-ndb-logevent-get-next2
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb-cluster-connection.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbscanoperation.html#ndb-ndbscanoperation-nextresult
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbmtd-threadconfig
https://dev.mysql.com/doc/refman/5.6/en/blob.html
https://dev.mysql.com/doc/refman/5.6/en/blob.html
https://dev.mysql.com/doc/refman/5.6/en/blob.html
https://dev.mysql.com/doc/refman/5.6/en/blob.html
https://dev.mysql.com/doc/refman/5.6/en/blob.html

MySQL NDB Cluster 7.3 Release Notes

from another type are truncated to 256 bytes). In the case of columns using a multibyte character
set, the value is truncated to the end of the last well-formed character.

Also as a result of this fix, conversion to a TEXT column of any size that uses a different character
set from the original is now disallowed. (Bug #18875137)

• To assist with diagnostic issues where many watchdog warnings are raised, it is now possible to
activate (or deactivate) a killer watchdog using DUMP 2610 in the ndb_mgm client. When set, this
shuts down the data node on which the next watchdog warning occurs, providing a trace log. (Bug
#18703922)

• The NDB optimized node recovery mechanism attempts to transfer only relevant page changes to
a starting node in order to speed the recovery process; this is done by having the starting node
indicate the index of the last global checkpoint (GCI) in which it participated, so that the node that
was already running copies only data for rows which have changed since that GCI. Every row has
a GCI metacolumn which facilitates this; for a deleted row, the slot formerly stpring this row's data
contains a GCI value, and for deleted pages, every row on the missing page is considered changed
and thus needs to be sent.

When these changes are received by the starting node, this node performs a lookup for the page and
index to determine what they contain. This lookup could cause a real underlying page to be mapped
against the logical page ID, even when this page contained no data.

One way in which this issue could manifest itself occurred after cluster DataMemory usage
approached maximum, and deletion of many rows followed by a rolling restart of the data nodes
was performed with the expectation that this would free memory, but in fact it was possible in this
scenario for memory not to be freed and in some cases for memory usage actually to increase to its
maximum.

This fix solves these issues by ensuring that a real physical page is mapped to a logical ID during
node recovery only when this page contains actual data which needs to be stored. (Bug #18683398,
Bug #18731008)

• When a data node sent a MISSING_DATA signal due to a buffer overflow and no event data had
yet been sent for the current epoch, the dummy event list created to handle this inconsistency was
not deleted after the information in the dummy event list was transferred to the completed list. (Bug
#18410939)

• Incorrect calculation of the next autoincrement value following a manual insertion towards the
end of a cached range could result in duplicate values sometimes being used. This issue could
manifest itself when using certain combinations of values for auto_increment_increment,
auto_increment_offset, and ndb_autoincrement_prefetch_sz.

This issue has been fixed by modifying the calculation to make sure that the next value
from the cache as computed by NDB is of the form auto_increment_offset + (N *
auto_increment_increment. This avoids any rounding up by the MySQL Server of the returned
value, which could result in duplicate entries when the rounded-up value fell outside the range of
values cached by NDB. (Bug #17893872)

• ndb_show_tables --help output contained misleading information about the --database
(-d) option. In addition, the long form of the option (--database) did not work properly. (Bug
#17703874)

• Using the --help option with ndb_print_file caused the program to segfault. (Bug #17069285)

• For multithreaded data nodes, some threads do communicate often, with the result that very old
signals can remain at the top of the signal buffers. When performing a thread trace, the signal
dumper calculated the latest signal ID from what it found in the signal buffers, which meant that these
old signals could be erroneously counted as the newest ones. Now the signal ID counter is kept as
part of the thread state, and it is this value that is used when dumping signals for trace files. (Bug
#73842, Bug #19582807)

81

https://dev.mysql.com/doc/ndb-internals/en/dump-command-2610.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-datamemory
https://dev.mysql.com/doc/refman/5.6/en/replication-options-source.html#sysvar_auto_increment_increment
https://dev.mysql.com/doc/refman/5.6/en/replication-options-source.html#sysvar_auto_increment_offset
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-options-variables.html#sysvar_ndb_autoincrement_prefetch_sz
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-show-tables.html#option_ndb_show_tables_help
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-show-tables.html#option_ndb_show_tables_database

MySQL NDB Cluster 7.3 Release Notes

Changes in MySQL NDB Cluster 7.3.6 (5.6.19-ndb-7.3.6) (2014-07-11,
General Availability)

• Functionality Added or Changed

• Bugs Fixed

Functionality Added or Changed

• NDB Cluster APIs: Added as an aid to debugging the ability to specify a human-readable name for
a given Ndb object and later to retrieve it. These operations are implemented, respectively, as the
setNdbObjectName() and getNdbObjectName() methods.

To make tracing of event handling between a user application and NDB easier, you can use the
reference (from getReference() followed by the name (if provided) in printouts; the reference ties
together the application Ndb object, the event buffer, and the NDB storage engine's SUMA block. (Bug
#18419907)

Bugs Fixed

• NDB Disk Data: Setting the undo buffer size used by InitialLogFileGroup to a value greater
than that set by SharedGlobalMemory prevented data nodes from starting; the data nodes failed
with Error 1504 Out of logbuffer memory. While the failure itself is expected behavior, the error
message did not provide sufficient information to diagnose the actual source of the problem; now in
such cases, a more specific error message Out of logbuffer memory (specify smaller
undo_buffer_size or increase SharedGlobalMemory) is supplied. (Bug #11762867, Bug
#55515)

• NDB Cluster APIs: When two tables had different foreign keys with the same name, ndb_restore
considered this a name conflict and failed to restore the schema. As a result of this fix, a
slash character (/) is now expressly disallowed in foreign key names, and the naming format
parent_id/child_id/fk_name is now enforced by the NDB API. (Bug #18824753)

• NDB Cluster APIs: When an NDB data node indicates a buffer overflow via an empty epoch, the
event buffer places an inconsistent data event in the event queue. When this was consumed, it was
not removed from the event queue as expected, causing subsequent nextEvent() calls to return
0. This caused event consumption to stall because the inconsistency remained flagged forever, while
event data accumulated in the queue.

Event data belonging to an empty inconsistent epoch can be found either at the beginning or
somewhere in the middle. pollEvents() returns 0 for the first case. This fix handles the second
case: calling nextEvent() call dequeues the inconsistent event before it returns. In order to benefit
from this fix, user applications must call nextEvent() even when pollEvents() returns 0. (Bug
#18716991)

• NDB Cluster APIs: The pollEvents() method returned 1, even when called with a wait time
equal to 0, and there were no events waiting in the queue. Now in such cases it returns 0 as
expected. (Bug #18703871)

• Processing a NODE_FAILREP signal that contained an invalid node ID could cause a data node to
fail. (Bug #18993037, Bug #73015)

References: This issue is a regression of: Bug #16007980.

• When building out of source, some files were written to the source directory instead of the build dir.
These included the manifest.mf files used for creating ClusterJ jars and the pom.xml file used
by mvn_install_ndbjtie.sh. In addition, ndbinfo.sql was written to the build directory, but
marked as output to the source directory in CMakeLists.txt. (Bug #18889568, Bug #72843)

• When the binary log injector thread commits an epoch to the binary log and this causes the log file to
reach maximum size, it may need to rotate the binary log. The rotation is not performed until either all

82

https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-setndbobjectname
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-getndbobjectname
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-getreference
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-initiallogfilegroup
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-sharedglobalmemory
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-nextevent
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-pollevents
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-pollevents

MySQL NDB Cluster 7.3 Release Notes

the committed transactions from all client threads are flushed to the binary log, or a maximum of 30
seconds has elapsed. In the case where all transactions were committed prior to the 30-second wait,
it was possible for committed transactions from multiple client threads to belong to newer epochs
than the latest epoch committed by the injector thread, causing the thread to deadlock with itself, and
causing an unnecessary 30-second delay before breaking the deadlock. (Bug #18845822)

• Adding a foreign key failed with NDB Error 208 if the parent index was parent table's primary key,
the primary key was not on the table's initial attributes, and the child table was not empty. (Bug
#18825966)

• When an NDB table served as both the parent table and a child table for 2 different foreign keys
having the same name, dropping the foreign key on the child table could cause the foreign key on
the parent table to be dropped instead, leading to a situation in which it was impossible to drop
the remaining foreign key. This situation can be modelled using the following CREATE TABLE
statements:

CREATE TABLE parent (
 id INT NOT NULL,
 PRIMARY KEY (id)
) ENGINE=NDB;

CREATE TABLE child (
 id INT NOT NULL,
 parent_id INT,
 PRIMARY KEY (id),
 INDEX par_ind (parent_id),

 FOREIGN KEY (parent_id)
 REFERENCES parent(id)
) ENGINE=NDB;

CREATE TABLE grandchild (
 id INT,
 parent_id INT,
 INDEX par_ind (parent_id),

 FOREIGN KEY (parent_id)
 REFERENCES child(id)
) ENGINE=NDB;

With the tables created as just shown, the issue occurred when executing the statement ALTER
TABLE child DROP FOREIGN KEY parent_id, because it was possible in some cases for NDB
to drop the foreign key from the grandchild table instead. When this happened, any subsequent
attempt to drop the foreign key from either the child or from the grandchild table failed. (Bug
#18662582)

• It was possible for a data node restart to become stuck indefinitely in start phase 101 (see Summary
of NDB Cluster Start Phases) when there were connection problems between the node being
restarted and one or more subscribing API nodes.

To help prevent this from happening, a new data node configuration parameter
RestartSubscriberConnectTimeout has been introduced, which can be used to control how
long a data node restart can stall in start phase 101 before giving up and attempting to restart again.
The default is 12000 ms. (Bug #18599198)

• Executing ALTER TABLE ... REORGANIZE PARTITION after increasing the number of data
nodes in the cluster from 4 to 16 led to a crash of the data nodes. This issue was shown to be a
regression caused by previous fix which added a new dump handler using a dump code that was
already in use (7019), which caused the command to execute two different handlers with different
semantics. The new handler was assigned a new DUMP code (7024). (Bug #18550318)

References: This issue is a regression of: Bug #14220269.

• Following a long series of inserts, when running with a relatively small redo log and an insufficient
large value for MaxNoOfConcurrentTransactions, there remained transactions that were

83

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/create-table.html
https://dev.mysql.com/doc/refman/5.6/en/alter-table.html
https://dev.mysql.com/doc/refman/5.6/en/alter-table.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-start-phases.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-start-phases.html
https://dev.mysql.com/doc/refman/5.6/en/alter-table-partition-operations.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxnoofconcurrenttransactions

MySQL NDB Cluster 7.3 Release Notes

blocked by the lack of redo log and were thus not aborted in the correct state (waiting for prepare log
to be sent to disk, or LOG_QUEUED state). This caused the redo log to remain blocked until unblocked
by a completion of a local checkpoint. This could lead to a deadlock, when the blocked aborts in
turned blocked global checkpoints, and blocked GCPs block LCPs. To prevent this situation from
arising, we now abort immediately when we reach the LOG_QUEUED state in the abort state handler.
(Bug #18533982)

• ndbmtd supports multiple parallel receiver threads, each of which performs signal reception for a
subset of the remote node connections (transporters) with the mapping of remote_nodes to receiver
threads decided at node startup. Connection control is managed by the multi-instance TRPMAN block,
which is organized as a proxy and workers, and each receiver thread has a TRPMAN worker running
locally.

The QMGR block sends signals to TRPMAN to enable and disable communications with remote nodes.
These signals are sent to the TRPMAN proxy, which forwards them to the workers. The workers
themselves decide whether to act on signals, based on the set of remote nodes they manage.

The current issue arises because the mechanism used by the TRPMAN workers for determining
which connections they are responsible for was implemented in such a way that each worker thought
it was responsible for all connections. This resulted in the TRPMAN actions for OPEN_COMORD,
ENABLE_COMREQ, and CLOSE_COMREQ being processed multiple times.

The fix keeps TRPMAN instances (receiver threads) executing OPEN_COMORD, ENABLE_COMREQ and
CLOSE_COMREQ requests. In addition, the correct TRPMAN instance is now chosen when routing from
this instance for a specific remote connection. (Bug #18518037)

• During data node failure handling, the transaction coordinator performing takeover gathers all known
state information for any failed TC instance transactions, determines whether each transaction
has been committed or aborted, and informs any involved API nodes so that they can report this
accurately to their clients. The TC instance provides this information by sending TCKEY_FAILREF or
TCKEY_FAILCONF signals to the API nodes as appropriate top each affected transaction.

In the event that this TC instance does not have a direct connection to the API node, it attempts
to deliver the signal by routing it through another data node in the same node group as the failing
TC, and sends a GSN_TCKEY_FAILREFCONF_R signal to TC block instance 0 in that data node. A
problem arose in the case of multiple transaction cooridnators, when this TC instance did not have a
signal handler for such signals, which led it to fail.

This issue has been corrected by adding a handler to the TC proxy block which in such cases
forwards the signal to one of the local TC worker instances, which in turn attempts to forward the
signal on to the API node. (Bug #18455971)

• When running with a very slow main thread, and one or more transaction coordinator threads, on
different CPUs, it was possible to encounter a timeout when sending a DIH_SCAN_GET_NODESREQ
signal, which could lead to a crash of the data node. Now in such cases the timeout is avoided. (Bug
#18449222)

• Failure of multiple nodes while using ndbmtd with multiple TC threads was not handled gracefully
under a moderate amount of traffic, which could in some cases lead to an unplanned shutdown of
the cluster. (Bug #18069334)

• A local checkpoint (LCP) is tracked using a global LCP state (c_lcpState), and each NDB table has
a status indicator which indicates the LCP status of that table (tabLcpStatus). If the global LCP
state is LCP_STATUS_IDLE, then all the tables should have an LCP status of TLS_COMPLETED.

When an LCP starts, the global LCP status is LCP_INIT_TABLES and the thread starts setting
all the NDB tables to TLS_ACTIVE. If any tables are not ready for LCP, the LCP initialization
procedure continues with CONTINUEB signals until all tables have become available and been
marked TLS_ACTIVE. When this initialization is complete, the global LCP status is set to
LCP_STATUS_ACTIVE.

84

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html

MySQL NDB Cluster 7.3 Release Notes

This bug occurred when the following conditions were met:

• An LCP was in the LCP_INIT_TABLES state, and some but not all tables had been set to
TLS_ACTIVE.

• The master node failed before the global LCP state changed to LCP_STATUS_ACTIVE; that is,
before the LCP could finish processing all tables.

• The NODE_FAILREP signal resulting from the node failure was processed before the final
CONTINUEB signal from the LCP initialization process, so that the node failure was processed
while the LCP remained in the LCP_INIT_TABLES state.

Following master node failure and selection of a new one, the new master queries the remaining
nodes with a MASTER_LCPREQ signal to determine the state of the LCP. At this point, since the LCP
status was LCP_INIT_TABLES, the LCP status was reset to LCP_STATUS_IDLE. However, the
LCP status of the tables was not modified, so there remained tables with TLS_ACTIVE. Afterwards,
the failed node is removed from the LCP. If the LCP status of a given table is TLS_ACTIVE, there is
a check that the global LCP status is not LCP_STATUS_IDLE; this check failed and caused the data
node to fail.

Now the MASTER_LCPREQ handler ensures that the tabLcpStatus for all tables is updated to
TLS_COMPLETED when the global LCP status is changed to LCP_STATUS_IDLE. (Bug #18044717)

• When performing a copying ALTER TABLE operation, mysqld creates a new copy of the table
to be altered. This intermediate table, which is given a name bearing the prefix #sql-, has an
updated schema but contains no data. mysqld then copies the data from the original table to this
intermediate table, drops the original table, and finally renames the intermediate table with the name
of the original table.

mysqld regards such a table as a temporary table and does not include it in the output from SHOW
TABLES; mysqldump also ignores an intermediate table. However, NDB sees no difference between
such an intermediate table and any other table. This difference in how intermediate tables are viewed
by mysqld (and MySQL client programs) and by the NDB storage engine can give rise to problems
when performing a backup and restore if an intermediate table existed in NDB, possibly left over from
a failed ALTER TABLE that used copying. If a schema backup is performed using mysqldump and
the mysql client, this table is not included. However, in the case where a data backup was done
using the ndb_mgm client's BACKUP command, the intermediate table was included, and was also
included by ndb_restore, which then failed due to attempting to load data into a table which was
not defined in the backed up schema.

To prevent such failures from occurring, ndb_restore now by default ignores intermediate tables
created during ALTER TABLE operations (that is, tables whose names begin with the prefix #sql-).
A new option --exclude-intermediate-sql-tables is added that makes it possible to
override the new behavior. The option's default value is TRUE; to cause ndb_restore to revert
to the old behavior and to attempt to restore intermediate tables, set this option to FALSE. (Bug
#17882305)

• The logging of insert failures has been improved. This is intended to help diagnose occasional issues
seen when writing to the mysql.ndb_binlog_index table. (Bug #17461625)

• The DEFINER column in the INFORMATION_SCHEMA.VIEWS table contained erroneous values
for views contained in the ndbinfo information database. This could be seen in the result of a
query such as SELECT TABLE_NAME, DEFINER FROM INFORMATION_SCHEMA.VIEWS WHERE
TABLE_SCHEMA='ndbinfo'. (Bug #17018500)

• Employing a CHAR column that used the UTF8 character set as a table's primary key column led to
node failure when restarting data nodes. Attempting to restore a table with such a primary key also
caused ndb_restore to fail. (Bug #16895311, Bug #68893)

85

https://dev.mysql.com/doc/refman/5.6/en/alter-table.html
https://dev.mysql.com/doc/refman/5.6/en/show-tables.html
https://dev.mysql.com/doc/refman/5.6/en/show-tables.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/alter-table.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_exclude-intermediate-sql-tables
https://dev.mysql.com/doc/refman/5.6/en/information-schema-views-table.html
https://dev.mysql.com/doc/refman/5.6/en/char.html

MySQL NDB Cluster 7.3 Release Notes

• The --order (-o) option for the ndb_select_all utility worked only when specified as the last
option, and did not work with an equals sign.

As part of this fix, the program's --help output was also aligned with the --order option's correct
behavior. (Bug #64426, Bug #16374870)

Changes in MySQL NDB Cluster 7.3.5 (5.6.17-ndb-7.3.5) (2014-04-07,
General Availability)

• Functionality Added or Changed

• Bugs Fixed

Functionality Added or Changed

• Handling of LongMessageBuffer shortages and statistics has been improved as follows:

• The default value of LongMessageBuffer has been increased from 4 MB to 64 MB.

• When this resource is exhausted, a suitable informative message is now printed in the data node
log describing possible causes of the problem and suggesting possible solutions.

• LongMessageBuffer usage information is now shown in the ndbinfo.memoryusage table.
See the description of this table for an example and additional information.

(WL #7779)

Bugs Fixed

• Important Change: The server system variables ndb_index_cache_entries and
ndb_index_stat_freq, which had been deprecated in a previous MySQL NDB Cluster release
series, have now been removed. (Bug #11746486, Bug #26673)

• Solaris: An issue found when compiling the MySQL NDB Cluster software for Solaris platforms
could lead to problems when using ThreadConfig on such systems. (Bug #18181656)

• NDB Cluster APIs: When an NDB API client application received a signal with an invalid block or
signal number, NDB provided only a very brief error message that did not accurately convey the
nature of the problem. Now in such cases, appropriate printouts are provided when a bad signal or
message is detected. In addition, the message length is now checked to make certain that it matches
the size of the embedded signal. (Bug #18426180)

• NDB Cluster APIs: Refactoring that was performed in MySQL NDB Cluster 7.3.4 inadvertently
introduced a dependency in Ndb.hpp on a file that is not included in the distribution, which caused
NDB API applications to fail to compile. The dependency has been removed. (Bug #18293112, Bug
#71803)

References: This issue is a regression of: Bug #17647637.

• NDB Cluster APIs: An NDB API application sends a scan query to a data node; the scan is
processed by the transaction coordinator (TC). The TC forwards a LQHKEYREQ request to the
appropriate LDM, and aborts the transaction if it does not receive a LQHKEYCONF response
within the specified time limit. After the transaction is successfully aborted, the TC sends a
TCROLLBACKREP to the NDBAPI client, and the NDB API client processes this message by cleaning
up any Ndb objects associated with the transaction.

The client receives the data which it has requested in the form of TRANSID_AI signals, buffered
for sending at the data node, and may be delivered after a delay. On receiving such a signal, NDB
checks the transaction state and ID: if these are as expected, it processes the signal using the Ndb
objects associated with that transaction.

86

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-select-all.html#option_ndb_select_all_order
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-longmessagebuffer
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbinfo-memoryusage.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html

MySQL NDB Cluster 7.3 Release Notes

The current bug occurs when all the following conditions are fulfilled:

• The transaction coordinator aborts a transaction due to delays and sends a TCROLLBACPREP
signal to the client, while at the same time a TRANSID_AI which has been buffered for delivery at
an LDM is delivered to the same client.

• The NDB API client considers the transaction complete on receipt of a TCROLLBACKREP signal,
and immediately closes the transaction.

• The client has a separate receiver thread running concurrently with the thread that is engaged in
closing the transaction.

• The arrival of the late TRANSID_AI interleaves with the closing of the user thread's transaction
such that TRANSID_AI processing passes normal checks before closeTransaction() resets
the transaction state and invalidates the receiver.

When these conditions are all met, the receiver thread proceeds to continue working on the
TRANSID_AI signal using the invalidated receiver. Since the receiver is already invalidated, its
usage results in a node failure.

Now the Ndb object cleanup done for TCROLLBACKREP includes invalidation of the transaction
ID, so that, for a given transaction, any signal which is received after the TCROLLBACKREP arrives
does not pass the transaction ID check and is silently dropped. This fix is also implemented for the
TC_COMMITREF, TCROLLBACKREF, TCKEY_FAILCONF, and TCKEY_FAILREF signals as well.

See also Operations and Signals, for additional information about NDB messaging. (Bug #18196562)

• NDB Cluster APIs: The example ndbapi-examples/ndbapi_blob_ndbrecord/main.cpp
included an internal header file (ndb_global.h) not found in the MySQL NDB Cluster binary
distribution. The example now uses stdlib.h and string.h instead of this file. (Bug #18096866,
Bug #71409)

• NDB Cluster APIs: When Dictionary::dropTable() attempted (as a normal part of its internal
operations) to drop an index used by a foreign key constraint, the drop failed. Now in such cases,
invoking dropTable() causes all foreign keys on the table to be dropped, whether this table acts
as a parent table, child table, or both.

This issue did not affect dropping of indexes using SQL statements. (Bug #18069680)

References: See also: Bug #17591531.

• NDB Cluster APIs: ndb_restore could sometimes report Error 701 System busy with
other schema operation unnecessarily when restoring in parallel. (Bug #17916243)

• When an ALTER TABLE statement changed table schemas without causing a change in the table's
partitioning, the new table definition did not copy the hash map from the old definition, but used the
current default hash map instead. However, the table data was not reorganized according to the new
hashmap, which made some rows inaccessible using a primary key lookup if the two hash maps had
incompatible definitions.

To keep this situation from occurring, any ALTER TABLE that entails a hashmap change now
triggers a reorganisation of the table. In addition, when copying a table definition in such cases, the
hashmap is now also copied. (Bug #18436558)

• When certain queries generated signals having more than 18 data words prior to a node failure, such
signals were not written correctly in the trace file. (Bug #18419554)

• Checking of timeouts is handled by the signal TIME_SIGNAL. Previously, this signal was generated
by the QMGR NDB kernel block in the main thread, and sent to the QMRG, DBLQH, and DBTC blocks
(see NDB Kernel Blocks) as needed to check (respectively) heartbeats, disk writes, and transaction

87

https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-closetransaction
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-ndb-protocol-operations-signals.html
https://dev.mysql.com/doc/ndbapi/en/ndb-dictionary.html#ndb-dictionary-droptable
https://dev.mysql.com/doc/refman/5.6/en/alter-table.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks.html

MySQL NDB Cluster 7.3 Release Notes

timeouts. In ndbmtd (as opposed to ndbd), these blocks all execute in different threads. This
meant that if, for example, QMGR was actively working and some other thread was put to sleep, the
previously sleeping thread received a large number of TIME_SIGNAL messages simultaneously
when it was woken up again, with the effect that effective times moved very quickly in DBLQH as well
as in DBTC. In DBLQH, this had no noticeable adverse effects, but this was not the case in DBTC;
the latter block could not work on transactions even though time was still advancing, leading to a
situation in which many operations appeared to time out because the transaction coordinator (TC)
thread was comparatively slow in answering requests.

In addition, when the TC thread slept for longer than 1500 milliseconds, the data node crashed
due to detecting that the timeout handling loop had not yet stopped. To rectify this problem, the
generation of the TIME_SIGNAL has been moved into the local threads instead of QMGR; this
provides for better control over how quickly TIME_SIGNAL messages are allowed to arrive. (Bug
#18417623, WL #7747)

• The ServerPort and TcpBind_INADDR_ANY configuration parameters were not included in the
output of ndb_mgmd --print-full-config. (Bug #18366909)

• After dropping an NDB table, neither the cluster log nor the output of the REPORT MemoryUsage
command showed that the IndexMemory used by that table had been freed, even though the
memory had in fact been deallocated. This issue was introduced in MySQL NDB Cluster 7.3.2. (Bug
#18296810)

• ndb_show_tables sometimes failed with the error message Unable to connect to
management server and immediately terminated, without providing the underlying reason for the
failure. To provide more useful information in such cases, this program now also prints the most
recent error from the Ndb_cluster_connection object used to instantiate the connection. (Bug
#18276327)

• -DWITH_NDBMTD=0 did not function correctly, which could cause the build to fail on platforms such
as ARM and Raspberry Pi which do not define the memory barrier functions required to compile
ndbmtd. (Bug #18267919)

References: See also: Bug #16620938.

• The block threads managed by the multithreading scheduler communicate by placing signals in an
out queue or job buffer which is set up between all block threads. This queue has a fixed maximum
size, such that when it is filled up, the worker thread must wait for the consumer to drain the queue.
In a highly loaded system, multiple threads could end up in a circular wait lock due to full out buffers,
such that they were preventing each other from performing any useful work. This condition eventually
led to the data node being declared dead and killed by the watchdog timer.

To fix this problem, we detect situations in which a circular wait lock is about to begin, and cause
buffers which are otherwise held in reserve to become available for signal processing by queues
which are highly loaded. (Bug #18229003)

• The ndb_mgm client START BACKUP command (see Commands in the NDB Cluster Management
Client) could experience occasional random failures when a ping was received prior to an expected
BackupCompleted event. Now the connection established by this command is not checked until it
has been properly set up. (Bug #18165088)

• When creating a table with foreign key referencing an index in another table, it sometimes appeared
possible to create the foreign key even if the order of the columns in the indexes did not match, due
to the fact that an appropriate error was not always returned internally. This fix improves the error
used internally to work in most cases; however, it is still possible for this situation to occur in the
event that the parent index is a unique index. (Bug #18094360)

• Updating parent tables of foreign keys used excessive scan resources and so required unusually
high settings for MaxNoOfLocalScans and MaxNoOfConcurrentScans. (Bug #18082045)

88

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-serverport
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-tcpbind_inaddr_any
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-mgmd.html#option_ndb_mgmd_print-full-config
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-indexmemory
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb-cluster-connection.html
https://dev.mysql.com/doc/refman/5.6/en/source-configuration-options.html#option_cmake_with_ndbmtd
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-mgm-client-commands.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-mgm-client-commands.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxnooflocalscans
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxnoofconcurrentscans

MySQL NDB Cluster 7.3 Release Notes

• Dropping a nonexistent foreign key on an NDB table (using, for example, ALTER TABLE) appeared
to succeed. Now in such cases, the statement fails with a relevant error message, as expected. (Bug
#17232212)

• Data nodes running ndbmtd could stall while performing an online upgrade of a MySQL NDB Cluster
containing a great many tables from a version prior to NDB 7.2.5 to version 7.2.5 or later. (Bug
#16693068)

Changes in MySQL NDB Cluster 7.3.4 (5.6.15-ndb-7.3.4) (2014-02-06,
General Availability)

Bugs Fixed

• Packaging; Solaris: Compilation of ndbmtd failed on Solaris 10 and 11 for 32-bit x86, and the
binary was not included in the binary distributions for these platforms. (Bug #16620938)

• Microsoft Windows: Timers used in timing scheduler events in the NDB kernel have been
refactored, in part to insure that they are monotonic on all platforms. In particular, on Windows, event
intervals were previously calculated using values obtained from GetSystemTimeAsFileTime(),
which reads directly from the system time (“wall clock”), and which may arbitrarily be reset backward
or forward, leading to false watchdog or heartbeat alarms, or even node shutdown. Lack of timer
monotonicity could also cause slow disk writes during backups and global checkpoints. To fix
this issue, the Windows implementation now uses QueryPerformanceCounters() instead of
GetSystemTimeAsFileTime(). In the event that a monotonic timer is not found on startup of the
data nodes, a warning is logged.

In addition, on all platforms, a check is now performed at compile time for available system
monotonic timers, and the build fails if one cannot be found; note that CLOCK_HIGHRES is now
supported as an alternative for CLOCK_MONOTONIC if the latter is not available. (Bug #17647637)

• NDB Disk Data: When using Disk Data tables and ndbmtd data nodes, it was possible for the undo
buffer to become overloaded, leading to a crash of the data nodes. This issue was more likely to
be encountered when using Disk Data columns whose size was approximately 8K or larger. (Bug
#16766493)

• NDB Cluster APIs: UINT_MAX64 was treated as a signed value by Visual Studio 2010. To prevent
this from happening, the value is now explicitly defined as unsigned. (Bug #17947674)

References: See also: Bug #17647637.

• NDB Cluster APIs: It was possible for an Ndb object to receive signals for handling before it was
initialized, leading to thread interleaving and possible data node failure when executing a call to
Ndb::init(). To guard against this happening, a check is now made when it is starting to receive
signals that the Ndb object is properly initialized before any signals are actually handled. (Bug
#17719439)

• NDB Cluster APIs: Compilation of example NDB API program files failed due to missing include
directives. (Bug #17672846, Bug #70759)

• NDB Cluster APIs: An application, having opened two distinct instances of
Ndb_cluster_connection, attempted to use the second connection object to send signals to
itself, but these signals were blocked until the destructor was explicitly called for that connection
object. (Bug #17626525)

References: This issue is a regression of: Bug #16595838.

• Interrupting a drop of a foreign key could cause the underlying table to become corrupt. (Bug
#18041636)

• Monotonic timers on several platforms can experience issues which might result in the monotonic
clock doing small jumps back in time. This is due to imperfect synchronization of clocks between

89

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/alter-table.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-init
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb-cluster-connection.html

MySQL NDB Cluster 7.3 Release Notes

multiple CPU cores and does not normally have an adverse effect on the scheduler and watchdog
mechanisms; so we handle some of these cases by making backtick protection less strict, although
we continue to ensure that the backtick is less than 10 milliseconds. This fix also removes several
checks for backticks which are thereby made redundant. (Bug #17973819)

• Under certain specific circumstances, in a cluster having two SQL nodes, one of these could hang,
and could not be accessed again even after killing the mysqld process and restarting it. (Bug
#17875885, Bug #18080104)

References: See also: Bug #17934985.

• Poor support or lack of support on some platforms for monotonic timers caused issues with delayed
signal handling by the job scheduler for the multithreaded data node. Variances (timer leaps) on such
platforms are now handled in the same way the multithreaded data node process that they are by the
singlethreaded version. (Bug #17857442)

References: See also: Bug #17475425, Bug #17647637.

• In some cases, with ndb_join_pushdown enabled, it was possible to obtain from a valid query the
error Got error 290 'Corrupt key in TC, unable to xfrm' from NDBCLUSTER even
though the data was not actually corrupted.

It was determined that a NULL in a VARCHAR column could be used to construct a lookup key, but
since NULL is never equal to any other value, such a lookup could simple have been eliminated
instead. This NULL lookup in turn led to the spurious error message.

This fix takes advantage of the fact that a key lookup with NULL never finds any matching rows, and
so NDB does not try to perform the lookup that would have led to the error. (Bug #17845161)

• The local checkpoint lag watchdog tracking the number of times a check for LCP timeout was
performed using the system scheduler and used this count to check for a timeout condition, but this
caused a number of issues. To overcome these limitations, the LCP watchdog has been refactored
to keep track of its own start times, and to calculate elapsed time by reading the (real) clock every
time it is called. (Bug #17842035)

References: See also: Bug #17647469.

• It was theoretically possible in certain cases for a number of output functions internal to the NDB code
to supply an uninitialized buffer as output. Now in such cases, a newline character is printed instead.
(Bug #17775602, Bug #17775772)

• Use of the localtime() function in NDB multithreading code led to otherwise nondeterministic
failures in ndbmtd. This fix replaces this function, which on many platforms uses a buffer shared
among multiple threads, with localtime_r(), which can have allocated to it a buffer of its own.
(Bug #17750252)

• When using single-threaded (ndbd) data nodes with RealTimeScheduler enabled, the CPU did
not, as intended, temporarily lower its scheduling priority to normal every 10 milliseconds to give
other, non-realtime threads a chance to run. (Bug #17739131)

• During arbitrator selection, QMGR (see The QMGR Block) runs through a series of states, the first
few of which are (in order) NULL, INIT, FIND, PREP1, PREP2, and START. A check for an arbitration
selection timeout occurred in the FIND state, even though the corresponding timer was not set until
QMGR reached the PREP1 and PREP2 states. Attempting to read the resulting uninitialized timestamp
value could lead to false Could not find an arbitrator, cluster is not partition-
safe warnings.

This fix moves the setting of the timer for arbitration timeout to the INIT state, so that the value later
read during FIND is always initialized. (Bug #17738720)

• The global checkpoint lag watchdog tracking the number of times a check for GCP lag was
performed using the system scheduler and used this count to check for a timeout condition, but this

90

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-options-variables.html#sysvar_ndb_join_pushdown
https://dev.mysql.com/doc/refman/5.6/en/char.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-realtimescheduler
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-qmgr.html

MySQL NDB Cluster 7.3 Release Notes

caused a number of issues. To overcome these limitations, the GCP watchdog has been refactored
to keep track of its own start times, and to calculate elapsed time by reading the (real) clock every
time it is called.

In addition, any backticks (rare in any case) are now handled by taking the backward time as the new
current time and calculating the elapsed time for this round as 0. Finally, any ill effects of a forward
leap, which possibly could expire the watchdog timer immediately, are reduced by never calculating
an elapsed time longer than the requested delay time for the watchdog timer. (Bug #17647469)

References: See also: Bug #17842035.

• The length of the interval (intended to be 10 seconds) between warnings for GCP_COMMIT when the
GCP progress watchdog did not detect progress in a global checkpoint was not always calculated
correctly. (Bug #17647213)

• Trying to drop an index used by a foreign key constraint caused data node failure. Now in such
cases, the statement used to perform the drop fails. (Bug #17591531)

• In certain rare cases on commit of a transaction, an Ndb object was released before the transaction
coordinator (DBTC kernel block) sent the expected COMMIT_CONF signal; NDB failed to send a
COMMIT_ACK signal in response, which caused a memory leak in the NDB kernel could later lead to
node failure.

Now an Ndb object is not released until the COMMIT_CONF signal has actually been received. (Bug
#16944817)

• Losing its connections to the management node or data nodes while a query against the
ndbinfo.memoryusage table was in progress caused the SQL node where the query was issued
to fail. (Bug #14483440, Bug #16810415)

• The ndbd_redo_log_reader utility now supports a --help option. Using this options causes the
program to print basic usage information, and then to exit. (Bug #11749591, Bug #36805)

Changes in MySQL NDB Cluster 7.3.3 (5.6.14-ndb-7.3.3) (2013-11-18,
General Availability)

• Functionality Added or Changed

• Bugs Fixed

Functionality Added or Changed

• The length of time a management node waits for a heartbeat message from another management
node is now configurable using the HeartbeatIntervalMgmdMgmd management node
configuration parameter added in this release. The connection is considered dead after 3 missed
heartbeats. The default value is 1500 milliseconds, or a timeout of approximately 6000 ms. (Bug
#17807768, Bug #16426805)

• The MySQL NDB Cluster Auto-Installer now generates a my.cnf file for each mysqld in the
cluster before starting it. For more information, see The NDB Cluster Auto-Installer (NO LONGER
SUPPORTED). (Bug #16994782)

• BLOB and TEXT columns are now reorganized by the ALTER ONLINE TABLE ... REORGANIZE
PARTITION statement. (Bug #13714148)

Bugs Fixed

• Performance: In a number of cases found in various locations in the MySQL NDB Cluster codebase,
unnecessary iterations were performed; this was caused by failing to break out of a repeating control
structure after a test condition had been met. This community-contributed fix removes the unneeded

91

https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbinfo-memoryusage.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-mgm-definition.html#ndbparam-mgmd-heartbeatintervalmgmdmgmd
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-install-auto.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-install-auto.html
https://dev.mysql.com/doc/refman/5.6/en/blob.html
https://dev.mysql.com/doc/refman/5.6/en/blob.html
https://dev.mysql.com/doc/refman/5.6/en/alter-table-partition-operations.html
https://dev.mysql.com/doc/refman/5.6/en/alter-table-partition-operations.html

MySQL NDB Cluster 7.3 Release Notes

repetitions by supplying the missing breaks. (Bug #16904243, Bug #69392, Bug #16904338, Bug
#69394, Bug #16778417, Bug #69171, Bug #16778494, Bug #69172, Bug #16798410, Bug #69207,
Bug #16801489, Bug #69215, Bug #16904266, Bug #69393)

• Packaging: Portions of the documentation specific to MySQL NDB Cluster and the NDB storage
engine were not included when installing from RPMs. (Bug #16303451)

• Microsoft Windows: The Windows error ERROR_FILE_EXISTS was not recognized by NDB, which
treated it as an unknown error. (Bug #16970960)

• NDB Disk Data: NDB error 899 RowId already allocated was raised due to a RowId “leak”
which occurred under either of the following sets of circumstances:

1. Insertion of a row into an in-memory table was rejected after an ordered index update failed due
to insufficient DataMemory.

2. Insertion of a row into a Disk Data table was rejected due to lack of sufficient table space.

(Bug #13927679)

References: See also: Bug #22494024, Bug #13990924.

• NDB Cluster APIs: The Event::setTable() method now supports a pointer or a reference to
table as its required argument. If a null table pointer is used, the method now returns -1 to make it
clear that this is what has occurred. (Bug #16329082)

• Trying to restore to a table having a BLOB column in a different position from that of the original one
caused ndb_restore --restore-data to fail. (Bug #17395298)

• ndb_restore could abort during the last stages of a restore using attribute promotion or demotion
into an existing table. This could happen if a converted attribute was nullable and the backup had
been run on active database. (Bug #17275798)

• It was not possible to start MySQL NDB Cluster processes created by the Auto-Installer on a
Windows host running freeSSHd. (Bug #17269626)

• The DBUTIL data node block is now less strict about the order in which it receives certain messages
from other nodes. (Bug #17052422)

• ALTER ONLINE TABLE ... REORGANIZE PARTITION failed when run against a table having or
using a reference to a foreign key. (Bug #17036744, Bug #69619)

• TUPKEYREQ signals are used to read data from the tuple manager block (DBTUP), and are
used for all types of data access, especially for scans which read many rows. A TUPKEYREQ
specifies a series of 'columns' to be read, which can be either single columns in a specific table, or
pseudocolumns, two of which—READ_ALL and READ_PACKED—are aliases to read all columns in a
table, or some subset of these columns. Pseudocolumns are used by modern NDB API applications
as they require less space in the TUPKEYREQ to specify columns to be read, and can return the data
in a more compact (packed) format.

This fix moves the creation and initialization of on-stack Signal objects to only those pseudocolumn
reads which need to EXECUTE_DIRECT to other block instances, rather than for every read. In
addition, the size of an on-stack signal is now varied to suit the requirements of each pseudocolumn,
so that only reads of the INDEX_STAT pseudocolumn now require initialization (and 3KB memory
each time this is performed). (Bug #17009502)

• A race condition could sometimes occur when trying to lock receive threads to cores. (Bug
#17009393)

• Results from joins using a WHERE with an ORDER BY ... DESC clause were not sorted properly;
the DESC keyword in such cases was effectively ignored. (Bug #16999886, Bug #69528)

92

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/ndbapi/en/ndb-event.html#ndb-event-settable
https://dev.mysql.com/doc/refman/5.6/en/blob.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_restore-data
https://dev.mysql.com/doc/refman/5.6/en/alter-table-partition-operations.html

MySQL NDB Cluster 7.3 Release Notes

• RealTimeScheduler did not work correctly with data nodes running ndbmtd. (Bug #16961971)

• File system errors occurring during a local checkpoint could sometimes cause an LCP to hang with
no obvious cause when they were not handled correctly. Now in such cases, such errors always
cause the node to fail. Note that the LQH block always shuts down the node when a local checkpoint
fails; the change here is to make likely node failure occur more quickly and to make the original file
system error more visible. (Bug #16961443)

• Maintenance and checking of parent batch completion in the SPJ block of the NDB kernel was
reimplemented. Among other improvements, the completion state of all ancestor nodes in the tree
are now preserved. (Bug #16925513)

• Dropping a column, which was not itself a foreign key, from an NDB table having foreign keys failed
with ER_TABLE_DEF_CHANGED. (Bug #16912989)

• The LCP fragment scan watchdog periodically checks for lack of progress in a fragment scan
performed as part of a local checkpoint, and shuts down the node if there is no progress after a
given amount of time has elapsed. This interval, formerly hard-coded as 60 seconds, can now be
configured using the LcpScanProgressTimeout data node configuration parameter added in this
release.

This configuration parameter sets the maximum time the local checkpoint can be stalled before
the LCP fragment scan watchdog shuts down the node. The default is 60 seconds, which provides
backward compatibility with previous releases.

You can disable the LCP fragment scan watchdog by setting this parameter to 0. (Bug #16630410)

• Added the ndb_error_reporter options --connection-timeout, which makes it possible to
set a timeout for connecting to nodes, --dry-scp, which disables scp connections to remote hosts,
and --skip-nodegroup, which skips all nodes in a given node group. (Bug #16602002)

References: See also: Bug #11752792, Bug #44082.

• After issuing START BACKUP id WAIT STARTED, if id had already been used for a backup ID,
an error caused by the duplicate ID occurred as expected, but following this, the START BACKUP
command never completed. (Bug #16593604, Bug #68854)

• ndb_mgm treated backup IDs provided to ABORT BACKUP commands as signed values, so that
backup IDs greater than 231 wrapped around to negative values. This issue also affected out-of-
range backup IDs, which wrapped around to negative values instead of causing errors as expected
in such cases. The backup ID is now treated as an unsigned value, and ndb_mgm now performs
proper range checking for backup ID values greater than MAX_BACKUPS (232). (Bug #16585497, Bug
#68798)

• When trying to specify a backup ID greater than the maximum allowed, the value was silently
truncated. (Bug #16585455, Bug #68796)

• The unexpected shutdown of another data node as a starting data node received its node ID caused
the latter to hang in Start Phase 1. (Bug #16007980)

References: See also: Bug #18993037.

• SELECT ... WHERE ... LIKE from an NDB table could return incorrect results when using
engine_condition_pushdown=ON. (Bug #15923467, Bug #67724)

• The NDB receive thread waited unnecessarily for additional job buffers to become available when
receiving data. This caused the receive mutex to be held during this wait, which could result in a
busy wait when the receive thread was running with real-time priority.

This fix also handles the case where a negative return value from the initial check of the job buffer
by the receive thread prevented further execution of data reception, which could possibly lead to
communication blockage or configured ReceiveBufferMemory underutilization. (Bug #15907515)

93

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-realtimescheduler
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/mysql-errors/5.6/en/server-error-reference.html#error_er_table_def_changed
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-lcpscanprogresstimeout
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-error-reporter.html#option_ndb_error_reporter_connection-timeout
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-error-reporter.html#option_ndb_error_reporter_dry-scp
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-error-reporter.html#option_ndb_error_reporter_skip-nodegroup
https://dev.mysql.com/doc/refman/5.6/en/select.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/switchable-optimizations.html#optflag_engine-condition-pushdown
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-tcp-definition.html#ndbparam-tcp-receivebuffermemory

MySQL NDB Cluster 7.3 Release Notes

• When the available job buffers for a given thread fell below the critical threshold, the internal
multithreading job scheduler waited for job buffers for incoming rather than outgoing signals to
become available, which meant that the scheduler waited the maximum timeout (1 millisecond)
before resuming execution. (Bug #15907122)

• Setting lower_case_table_names to 1 or 2 on Windows systems caused ALTER TABLE ...
ADD FOREIGN KEY statements against tables with names containing uppercase letters to fail with
Error 155, No such table: '(null)'. (Bug #14826778, Bug #67354)

• Under some circumstances, a race occurred where the wrong watchdog state could be reported.
A new state name Packing Send Buffers is added for watchdog state number 11, previously
reported as Unknown place. As part of this fix, the state numbers for states without names are
always now reported in such cases. (Bug #14824490)

• When a node fails, the Distribution Handler (DBDIH kernel block) takes steps together with the
Transaction Coordinator (DBTC) to make sure that all ongoing transactions involving the failed node
are taken over by a surviving node and either committed or aborted. Transactions taken over which
are then committed belong in the epoch that is current at the time the node failure occurs, so the
surviving nodes must keep this epoch available until the transaction takeover is complete. This is
needed to maintain ordering between epochs.

A problem was encountered in the mechanism intended to keep the current epoch open which led
to a race condition between this mechanism and that normally used to declare the end of an epoch.
This could cause the current epoch to be closed prematurely, leading to failure of one or more
surviving data nodes. (Bug #14623333, Bug #16990394)

• Exhaustion of LongMessageBuffer memory under heavy load could cause data nodes running
ndbmtd to fail. (Bug #14488185)

• When using dynamic listening ports for accepting connections from API nodes, the port numbers
were reported to the management server serially. This required a round trip for each API node,
causing the time required for data nodes to connect to the management server to grow linearly with
the number of API nodes. To correct this problem, each data node now reports all dynamic ports at
once. (Bug #12593774)

• ndb_error-reporter did not support the --help option. (Bug #11756666, Bug #48606)

References: See also: Bug #11752792, Bug #44082.

• Formerly, the node used as the coordinator or leader for distributed decision making between nodes
(also known as the DICT manager—see The DBDICT Block) was indicated in the output of the
ndb_mgm client SHOW command as the “master” node, although this node has no relationship to a
master server in MySQL Replication. (It should also be noted that it is not necessary to know which
node is the leader except when debugging NDBCLUSTER source code.) To avoid possible confusion,
this label has been removed, and the leader node is now indicated in SHOW command output using
an asterisk (*) character. (Bug #11746263, Bug #24880)

• The matrix of values used for thread configuration when applying the setting of the
MaxNoOfExecutionThreads configuration parameter has been improved to align with support for
greater numbers of LDM threads. See Multi-Threading Configuration Parameters (ndbmtd), for more
information about the changes. (Bug #75220, Bug #20215689)

• Program execution failed to break out of a loop after meeting a desired condition in a number of
internal methods, performing unneeded work in all cases where this occurred. (Bug #69610, Bug
#69611, Bug #69736, Bug #17030606, Bug #17030614, Bug #17160263)

• ABORT BACKUP in the ndb_mgm client (see Commands in the NDB Cluster Management Client) took
an excessive amount of time to return (approximately as long as the backup would have required
to complete, had it not been aborted), and failed to remove the files that had been generated by the
aborted backup. (Bug #68853, Bug #17719439)

94

https://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html#sysvar_lower_case_table_names
https://dev.mysql.com/doc/refman/5.6/en/alter-table.html
https://dev.mysql.com/doc/refman/5.6/en/alter-table.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-longmessagebuffer
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-error-reporter.html#option_ndb_error_reporter_help
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbdict.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbmtd-maxnoofexecutionthreads
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#mysql-cluster-ndbd-definition-ndbmtd-parameters
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-mgm-client-commands.html

MySQL NDB Cluster 7.3 Release Notes

• Attribute promotion and demotion when restoring data to NDB tables using ndb_restore --
restore-data with the --promote-attributes and --lossy-conversions options has been
improved as follows:

• Columns of types CHAR, and VARCHAR can now be promoted to BINARY and VARBINARY, and
columns of the latter two types can be demoted to one of the first two.

Note that converted character data is not checked to conform to any character set.

• Any of the types CHAR, VARCHAR, BINARY, and VARBINARY can now be promoted to TEXT or
BLOB.

When performing such promotions, the only other sort of type conversion that can be performed at
the same time is between character types and binary types.

Changes in MySQL NDB Cluster 7.3.2 (5.6.11-ndb-7.3.2) (2013-06-18,
General Availability)

Bugs Fixed

• Packaging; Microsoft Windows: The MySQL NDB Cluster installer for Windows provided a
nonfunctional option to install debug symbols (contained in *.pdb files). This option has been
removed from the installer.

Note

You can obtain the *.pdb debug files for a given MySQL NDB Cluster
release from the Windows .zip archive for the same release, such as
mysql-cluster-gpl-7.2.14-win32.zip or mysql-cluster-
gpl-7.3.2-winx64.zip.

(Bug #16748308, Bug #69112)

• NDB Disk Data: The statements CREATE TABLESPACE, ALTER LOGFILE GROUP, and
ALTER TABLESPACE failed with a syntax error when INITIAL_SIZE was specified using letter
abbreviations such as M or G. In addition, CREATE LOGFILE GROUP failed when INITIAL_SIZE,
UNDO_BUFFER_SIZE, or both options were specified using letter abbreviations. (Bug #13116514,
Bug #16104705, Bug #62858)

• NDB Cluster APIs: For each log event retrieved using the MGM API, the log event category
(ndb_mgm_event_category) was simply cast to an enum type, which resulted in invalid category
values. Now an offset is added to the category following the cast to ensure that the value does not
fall out of the allowed range.

Note

This change was reverted by the fix for Bug #18354165. See
the MySQL NDB Cluster API Developer documentation for
ndb_logevent_get_next(), for more information.

(Bug #16723708)

References: See also: Bug #18354165.

• NDB Cluster APIs: The Ndb::computeHash() API method performs a malloc() if no buffer
is provided for it to use. However, it was assumed that the memory thus returned would always
be suitably aligned, which is not always the case. Now when malloc() provides a buffer to this
method, the buffer is aligned after it is allocated, and before it is used. (Bug #16484617)

95

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_restore-data
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_restore-data
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_promote-attributes
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_lossy-conversions
https://dev.mysql.com/doc/refman/5.6/en/char.html
https://dev.mysql.com/doc/refman/5.6/en/char.html
https://dev.mysql.com/doc/refman/5.6/en/binary-varbinary.html
https://dev.mysql.com/doc/refman/5.6/en/binary-varbinary.html
https://dev.mysql.com/doc/refman/5.6/en/blob.html
https://dev.mysql.com/doc/refman/5.6/en/blob.html
https://dev.mysql.com/doc/refman/5.6/en/create-tablespace.html
https://dev.mysql.com/doc/refman/5.6/en/alter-logfile-group.html
https://dev.mysql.com/doc/refman/5.6/en/alter-tablespace.html
https://dev.mysql.com/doc/refman/5.6/en/create-logfile-group.html
https://dev.mysql.com/doc/ndbapi/en/mgm-types.html#mgm-ndb-mgm-event-category
https://dev.mysql.com/doc/ndbapi/en/mgm-functions-log-events.html#mgm-ndb-logevent-get-next
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-computehash

MySQL NDB Cluster 7.3 Release Notes

• mysql_upgrade failed when upgrading from MySQL NDB Cluster 7.1.26 to MySQL NDB Cluster
7.2.13 when it attempted to invoke a stored procedure before the mysql.proc table had been
upgraded. (Bug #16933405)

References: This issue is a regression of: Bug #16226274.

• The planned or unplanned shutdown of one or more data nodes while reading table data from the
ndbinfo database caused a memory leak. (Bug #16932989)

• Executing DROP TABLE while DBDIH was updating table checkpoint information subsequent to a
node failure could lead to a data node failure. (Bug #16904469)

• In certain cases, when starting a new SQL node, mysqld failed with Error 1427 Api node died,
when SUB_START_REQ reached node. (Bug #16840741)

• Failure to use container classes specific NDB during node failure handling could cause leakage of
commit-ack markers, which could later lead to resource shortages or additional node crashes. (Bug
#16834416)

• Use of an uninitialized variable employed in connection with error handling in the DBLQH kernel block
could sometimes lead to a data node crash or other stability issues for no apparent reason. (Bug
#16834333)

• A race condition in the time between the reception of a execNODE_FAILREP signal by the QMGR
kernel block and its reception by the DBLQH and DBTC kernel blocks could lead to data node crashes
during shutdown. (Bug #16834242)

• The CLUSTERLOG command (see Commands in the NDB Cluster Management Client) caused
ndb_mgm to crash on Solaris SPARC systems. (Bug #16834030)

• On Solaris SPARC platforms, batched key access execution of some joins could fail due to invalid
memory access. (Bug #16818575)

• When 2 NDB tables had foreign key references to each other, it was necessary to drop the tables in
the same order in which they were created. (Bug #16817928)

• The duplicate weedout algorithm introduced in MySQL 5.6 evaluates semijoins such as subqueries
using IN) by first performing a normal join between the outer and inner table which may create
duplicates of rows form the outer (and inner) table and then removing any duplicate result rows
from the outer table by comparing their primary key values. Problems could arise when NDB copied
VARCHAR values using their maximum length, resulting in a binary key image which contained
garbage past the actual lengths of the VARCHAR values, which meant that multiple instances of the
same key were not binary-identical as assumed by the MySQL server.

To fix this problem, NDB now zero-pads such values to the maximum length of the column so that
copies of the same key are treated as identical by the weedout process. (Bug #16744050)

• DROP DATABASE failed to work correctly when executed against a database containing NDB tables
joined by foreign key constraints (and all such tables being contained within this database), leaving
these tables in place while dropping the remaining tables in the database and reporting failure. (Bug
#16692652, Bug #69008)

• When using firstmatch=on with the optimizer_switch system variable, pushed joins could
return too many rows. (Bug #16664035)

• A variable used by the batched key access implementation was not initialized by NDB as expected.
This could cause a “batch full” condition to be reported after only a single row had been batched,
effectively disabling batching altogether and leading to an excessive number of round trips between
mysqld and NDB. (Bug #16485658)

• When started with --initial and an invalid --config-file (-f) option, ndb_mgmd removed
the old configuration cache before verifying the configuration file. Now in such cases, ndb_mgmd first

96

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbinfo.html
https://dev.mysql.com/doc/refman/5.6/en/drop-table.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-mgm-client-commands.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/char.html
https://dev.mysql.com/doc/refman/5.6/en/drop-database.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/switchable-optimizations.html#optflag_firstmatch
https://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html#sysvar_optimizer_switch
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-mgmd.html#option_ndb_mgmd_initial
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-mgmd.html#option_ndb_mgmd_config-file

MySQL NDB Cluster 7.3 Release Notes

checks for the file, and continues with removing the configuration cache only if the configuration file
is found and is valid. (Bug #16299289)

• Creating more than 32 hash maps caused data nodes to fail. Usually new hashmaps are created
only when performing reorganzation after data nodes have been added or when explicit partitioning
is used, such as when creating a table with the MAX_ROWS option, or using PARTITION BY KEY()
PARTITIONS n. (Bug #14710311)

• Setting foreign_key_checks = 0 had no effect on the handling of NDB tables. Now, doing so
causes such checks of foreign key constraints to be suspended—that is, has the same effect on NDB
tables as it has on InnoDB tables. (Bug #14095855, Bug #16286309)

References: See also: Bug #16286164.

Changes in MySQL NDB Cluster 7.3.1 (5.6.10-ndb-7.3.1) (2013-04-17,
Development Milestone)

• Based on MySQL Server 5.6

• MySQL Cluster GUI Configuration Wizard

• Support for Foreign Key Constraints

• NoSQL Connector for JavaScript (Node.js)

• Functionality Added or Changed

• Bugs Fixed

Based on MySQL Server 5.6

• Important Change: MySQL NDB Cluster SQL nodes are now based on MySQL Server 5.6. For
information about feature additions and other changes made in MySQL 5.6, see What Is New in
MySQL 5.6.

The mysqld binary provided with MySQL NDB Cluster 7.3.1 is based on MySQL Server 5.6.10,
and includes all MySQL Server 5.6 feature enhancements and bug fixes found in that release; see
Changes in MySQL 5.6.10 (2013-02-05, General Availability), for information about these.

MySQL Cluster GUI Configuration Wizard

• Important Change: The MySQL NDB Cluster distribution now includes a browser-based graphical
configuration wizard that assists the user in configuring and deploying a MySQL NDB Cluster. This
deployment can consist of an arbitrary number of nodes (within certain limits) on the user machine
only, or include nodes distributed on a local network. The wizard can be launched from the command
line (using the ndb_setup utility now included in the binary distribution) or a desktop file browser.

For more information about this tool, see The NDB Cluster Auto-Installer (NO LONGER
SUPPORTED).

Support for Foreign Key Constraints

• Important Change: MySQL NDB Cluster now supports foreign key constraints between NDB tables,
including support for CASCADE, SET NULL, and RESTRICT and NO ACTION reference options for
DELETE and UPDATE actions. (MySQL currently does not support SET DEFAULT.)

MySQL requires generally that all child and parent tables in foreign key relationships employ the
same storage engine; thus, to use foreign keys with MySQL NDB Cluster tables, the child and parent
table must each use the NDB storage engine. (It is not possible, for example, for a foreign key on an
NDB table to reference an index of an InnoDB table.)

97

https://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html#sysvar_foreign_key_checks
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-nutshell.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-nutshell.html
https://dev.mysql.com/doc/relnotes/mysql/5.6/en/news-5-6-10.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-install-auto.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-install-auto.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html

MySQL NDB Cluster 7.3 Release Notes

Note that MySQL NDB Cluster tables that are explicitly partitioned by KEY or LINEAR KEY may
contain foreign key references or be referenced by foreign keys (or both). This is unlike the case with
InnoDB tables that are user partitioned, which may not have any foreign key relationships.

You can create an NDB table having a foreign key reference on another NDB table using CREATE
TABLE ... [CONSTRAINT] FOREIGN KEY ... REFERENCES. A child table's foreign key
definitions can be seen in the output of SHOW CREATE TABLE; you can also obtain information
about foreign keys by querying the INFORMATION_SCHEMA.KEY_COLUMN_USAGE table.

FOREIGN KEY Constraints, provides general information about foreign key support in MySQL.
For more information about the syntax supported by MySQL for foreign keys, see FOREIGN KEY
Constraints.

NoSQL Connector for JavaScript (Node.js)

• NDB Cluster APIs: MySQL NDB Cluster 7.3 includes support for JavaScript applications written
against Node.js with MySQL NDB Cluster and MySQL Server as a data store. The Connector for
JavaScript provides a domain object model similar in many ways to that employed by ClusterJ (see
The ClusterJ API and Data Object Model) and can be used with either of two back-end adapters: the
ndb adapter, which uses the NDB API to provide high-performance native access to MySQL NDB
Cluster; and the mysql-js adapter, which uses the MySQL Server and the node-mysql driver
available from https://github.com/felixge/node-mysql/ .

The Connector for JavaScript is included with the MySQL NDB Cluster distribution, and contains
setup programs which can assist you with installation of the connector. You must have Node.js and
MySQL NDB Cluster installed prior to running the setup scripts. The node-mysql driver is also
required for the mysql-js Node.js adapter; you can install this using the package management tool
included with Node.js. For more information, see MySQL NoSQL Connector for JavaScript.

Functionality Added or Changed

• Important Change: The behavior of and values used for the TCP_RCV_BUF_SIZE and
TCP_SND_BUF_SIZE TCP configuration parameters have been improved. Formerly, the default
values for these parameters were 70080 and 71540, respectively—which it was later found
could lead to excessive timeouts in some circumstances—with the minimum for each of them
being 1. Now, the default and recommended value is 0 for both TCP_RCV_BUF_SIZE and
TCP_SND_BUF_SIZE, which allows the operating system or platform to choose the send or receive
buffer size for TCP sockets. (Bug #14554519)

References: See also: Bug #14168828.

• NDB Cluster APIs: Added DUMP code 2514, which provides information about counts of transaction
objects per API node. For more information, see DUMP 2514. See also Commands in the NDB
Cluster Management Client. (Bug #15878085)

• When ndb_restore fails to find a table, it now includes in the error output an NDB API error code
giving the reason for the failure. (Bug #16329067)

• Data node logs now provide tracking information about arbitrations, including which nodes have
assumed the arbitrator role and at what times. (Bug #11761263, Bug #53736)

Bugs Fixed

• API: mysqld failed to respond when mysql_shutdown() was invoked from a C application, or
mysqladmin shutdown was run from the command line. (Bug #14849574)

• When an update of an NDB table changes the primary key (or part of the primary key), the operation
is executed as a delete plus an insert. In some cases, the initial read operation did not retrieve all
column values required by the insert, so that another read was required. This fix ensures that all

98

https://dev.mysql.com/doc/refman/5.6/en/create-table-foreign-keys.html
https://dev.mysql.com/doc/refman/5.6/en/create-table-foreign-keys.html
https://dev.mysql.com/doc/refman/5.6/en/show-create-table.html
https://dev.mysql.com/doc/refman/5.6/en/information-schema-key-column-usage-table.html
https://dev.mysql.com/doc/refman/5.6/en/constraint-foreign-key.html
https://dev.mysql.com/doc/refman/5.6/en/create-table-foreign-keys.html
https://dev.mysql.com/doc/refman/5.6/en/create-table-foreign-keys.html
https://dev.mysql.com/doc/ndbapi/en/mccj-overview-clusterj-object-models.html
https://github.com/felixge/node-mysql/
https://dev.mysql.com/doc/ndbapi/en/ndb-nodejs.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-tcp-definition.html#ndbparam-tcp-tcp_rcv_buf_size
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-tcp-definition.html#ndbparam-tcp-tcp_snd_buf_size
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-tcp-definition.html#ndbparam-tcp-tcp_rcv_buf_size
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-tcp-definition.html#ndbparam-tcp-tcp_snd_buf_size
https://dev.mysql.com/doc/ndb-internals/en/dump-command-2514.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-mgm-client-commands.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-mgm-client-commands.html
https://dev.mysql.com/doc/c-api/5.6/en/mysql-shutdown.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html

MySQL NDB Cluster 7.3 Release Notes

required column values are included in the first read in such cases, which saves the overhead of an
additional read operation. (Bug #16614114)

• Pushed joins executed when optimizer_switch='batched_key_access=on' was also in use
returned incorrect results. (Bug #16437431)

• Selecting from the INFORMATION_SCHEMA.KEY_COLUMN_USAGE table while using tables with
foreign keys caused mysqld to crash. (Bug #16246874, Bug #68224)

• Including a table as a part of a pushed join should be rejected if there are outer joined tables in
between the table to be included and the tables with which it is joined with; however the check as
performed for any such outer joined tables did so by checking the join type against the root of the
pushed query, rather than the common ancestor of the tables being joined. (Bug #16199028)

References: See also: Bug #16198866.

• Some queries were handled differently with ndb_join_pushdown enabled, due to the fact that
outer join conditions were not always pruned correctly from joins before they were pushed down.
(Bug #16198866)

References: See also: Bug #16199028.

• Attempting to perform additional operations such as ADD COLUMN as part of an ALTER [ONLINE
| OFFLINE] TABLE ... RENAME ... statement is not supported, and now fails with an
ER_NOT_SUPPORTED_YET error. (Bug #16021021)

• Purging the binary logs could sometimes cause mysqld to crash. (Bug #15854719)

Index

Symbols
#include, 46, 89
#sql-*, 37, 82
*, 48, 91
--binlog-row-image, 55
--config-file, 53, 95
--database, 34, 79
--disable-indexes, 21, 68
--exclude-databases, 21, 68
--exclude-intermediate-sql-tables, 37, 82
--exclude-missing-tables, 34, 79
--help, 34, 46, 79, 89
--include-databases, 21, 68
--initial, 53, 95
--lossy-conversions, 48, 91
--ndb-log-update-as-write, 19, 67
--ndb-log-updated-only, 19, 67
--order, 37, 82
--print-data, 29, 75
--print-full-config, 42, 86
--promote-attributes, 48, 91
--rebuild-indexes, 21, 68
--restore-data, 23, 48, 70, 91
--restore-epoch, 7, 59
--restore-meta, 23, 70
-d, 34, 79
-DWITH_NDBMTD, 42, 86
-flifetime-dse, 12, 62
.ctl files, 14, 63

99

https://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html#sysvar_optimizer_switch
https://dev.mysql.com/doc/refman/5.6/en/information-schema-key-column-usage-table.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-options-variables.html#sysvar_ndb_join_pushdown
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-online-operations.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-online-operations.html
https://dev.mysql.com/doc/mysql-errors/5.6/en/server-error-reference.html#error_er_not_supported_yet

MySQL NDB Cluster 7.3 Release Notes

.FRM, 48
/ (slash character), 37, 82
~Ndb, 16, 65
~Ndb_cluster_connection(), 46, 89

A
ABORT BACKUP, 48, 91
add node, 29, 75
add nodes, 34, 79
AFTER DELETE, 29, 75
alignment, 53, 95
ALTER LOGFILE GROUP, 53, 95
ALTER ONLINE TABLE, 48, 91
ALTER TABLE, 21, 37, 42, 55, 68, 82, 86, 97
ALTER TABLE RENAME, 29, 75
ALTER TABLESPACE, 53, 95
ANALYZE TABLE, 23, 70
AnyValue, 11
API, 55, 97
API nodes, 18, 34, 37, 53, 66, 79, 82, 95
API_REGREQ, 29, 75
arbitration, 16, 65
arbitrator, 55, 97
arbitrator selection, 46, 89
attribute demotion, 34, 79
attribute promotion, 34, 48, 79, 91
AUTO_INCREMENT, 11, 61
auto_increment_increment, 34, 79
auto_increment_offset, 34, 79

B
backup, 12, 21, 23, 46, 48, 62, 68, 70, 89, 91
backup and restore, 21
backup files, 48, 91
BackupCompleted, 42, 86
backups, 13, 63
BatchByteSize, 27, 73
BatchSize, 27, 73
BINARY, 48
binary log, 48
binary log injector, 19, 67
binlog, 48
binlog injector, 19, 37, 67, 82
binlog rotation, 37, 82
BKA, 53, 55, 95, 97
BLOB, 8, 23, 29, 34, 46, 48, 60, 75, 89, 91
BLOB tables, 29, 75
blocks, 23, 70
buffer allocation, 29, 75
buffer overload, 46, 89
buffers, 53, 95
build, 37, 82
bulk deletes, 27, 73
Busy error, 23, 70

C
cache line, 29, 75

100

MySQL NDB Cluster 7.3 Release Notes

cache_size, 48
cascading_scans_count, 15, 64
changes

NDB Cluster, 58
CHAR, 29, 37, 75, 82
CHAR(0), 29, 75
circular wait lock, 42, 86
close_clnt(), 23, 70
CLOSE_COMREQ, 34, 37, 79, 82
cluster failure and recovery, 23, 70
Cluster temporary unavailable, 29, 75
ClusterJDatastoreException, 15
ClusterJPA, 12
CLUSTERLOG, 53, 95
ClusterMgr, 16, 65
CMake3, 8, 60
CMakeLists.txt, 37, 48, 82
column accessors, 34
Column::getSizeInBytesForRecord(), 23, 70
COLUMN_FORMAT DYNAMIC, 19, 67
COMMENT, 27, 73
commitAckMarker, 53, 95
COMMIT_ACK, 46, 89
COMMIT_CONF, 46, 89
COMMIT_REF, 46, 89
community, 48, 91
community contribution, 48, 91
compiling, 8, 12, 19, 29, 42, 48, 60, 62, 67, 75, 86
composite keys, 21, 68
concurrent trigger operations, 9, 60
configuration, 12, 55, 97
conflict detection, 37
conflict resolution, 29, 37, 55
ConnectBackoffMaxTime, 34, 79
connection-timeout, 48, 91
constraints, 55, 97
COPY_FRAGREQ, 23, 70
CREATE DATABASE, 29, 75
CREATE LOGFILE GROUP, 53, 95
CREATE TABLE, 15, 55, 64, 97
CREATE TABLESPACE, 53, 95
createEvent(), 21, 68
create_old_temporals, 21
cross-version replication, 21
c_lcpState, 37, 82

D
Data length too long, 37
data node halts, 29
data node restarts, 16, 65
data node shutdown, 10, 61
data nodes, 37, 48, 53, 55, 82, 91, 95, 97
data redistribution, 42, 86
DataMemory, 34, 48, 79, 91
date and time types, 53
DBDICT, 21, 23, 29, 68, 70, 75
DBDIH, 15, 37, 48, 64, 82, 91
Dbdih::CheckGcpStopLab(), 46, 89

101

MySQL NDB Cluster 7.3 Release Notes

DBLQH, 29, 42, 46, 48, 53, 75, 86, 89, 91, 95
Dblqh::checkLcpFragWatchdog(), 46, 89
Dblqh::TcConnectRec, 53, 95
DBSPJ, 16, 29, 48, 65, 75, 91
DBTC, 11, 16, 34, 37, 42, 46, 48, 53, 62, 65, 79, 82, 86, 89, 91,
95
DBTRIX, 29, 75
DBTUP, 48, 91
DbtupExecQuery.cpp, 34, 79
DBTUX, 11, 62
DBUTIL, 48, 91
deadlocks, 21, 23, 68, 70
debug, 19, 53, 67, 95
DefaultHashMapSize, 27, 73
DefaultOperationRedoProblemAction, 23, 70
DEFINER, 37, 82
DELETE, 37
deprecation, 21
DESC, 48, 91
DICT manager, 48, 91
DICT master, 29, 75
DictHashMapInfo::HashMap, 27, 73
Dictionary, 21, 68
Dictionary::dropTable(), 42, 86
Dictionary::getTable(), 27, 73
DIH master, 29, 75
DIH_SCAN_GET_NODESREQ, 37, 82
disconnection, 9, 46, 60
DISCONNECT_REP, 27, 73
DiskBufferPageEntries, 29, 75
distributions, 48
DML, 48
documentation, 48, 91
dojo, 5, 6, 58, 59
DROP COLUMN, 48, 91
DROP DATABASE, 29, 53, 75, 95
drop events, 19
DROP FOREIGN KEY, 37, 82
DROP INDEX, 46, 89
drop operations, 42, 86
DROP TABLE, 19, 42, 53, 67, 86, 95
dropEvent(), 21, 68
dry-scp, 48, 91
DUMP, 55, 97
DUMP 2610, 34, 79
DUMP 7019, 37, 82
DUMP 7024, 37, 82
DUMP 7027, 11, 62
DUMP 9991, 27, 73
DUMP codes, 11, 62
duplicate IDs, 48, 91
duplicate key, 21, 68
duplicate keys, 18, 66
DYNAMIC, 13, 63

E
ENABLE_COMREQ, 37, 82
epochs, 42, 48, 91

102

MySQL NDB Cluster 7.3 Release Notes

error 1419, 21, 68
Error 218, 29, 75
Error 221, 29, 75
error 240, 12, 62
error 4547, 29, 75
error 746, 21, 68
Error 899, 14, 63
error 899, 48, 91
error handling, 19, 42, 48, 55, 67, 86, 91, 97
error logging, 29
errors, 18, 34, 37, 42, 48, 66, 79, 82, 86, 91
ERROR_FILE_EXISTS, 48, 91
ER_DUP_ENTRY, 34, 79
event buffer, 37, 82
event queue, 23, 70
Event::setTable(), 48, 91
examples, 29, 42, 46, 75, 86, 89
exceptions tables, 29
EXECUTE_DIRECT, 48, 91

F
failure handling, 19
FAIL_REP, 27, 73
File not found error, 23, 70
FILES, 11, 61
fired triggers, 29, 75
firstmatch optimization, 53, 95
FKs, 42, 46, 48, 55, 86, 89, 91, 97
flags, 55
FLUSH BINARY LOG, 29
FLUSH LOGS, 37
forced shutdown, 16, 65
foreign keys, 14, 15, 16, 19, 21, 37, 42, 46, 48, 53, 63, 64, 65, 67,
68, 82, 86, 89, 91, 95
foreign_key_checks, 53, 95
fractional seconds, 53
fragment scans, 48, 91
freeSSHd, 48, 91

G
garbage collection, 23
gcc, 12, 62
GCI, 6, 21, 34, 59, 68, 79
GCI boundary, 10, 61
GCP, 27, 46, 73, 89
GCP lag, 46, 89
GCP monitor, 29, 75
GCP stop, 29, 75
GCP_COMMIT, 46, 89
getConnectionPoolSessionCounts(), 16
getNdbObjectName(), 37, 82
GetSystemTimeAsFileTime, 46, 89
getTupleIdFromNdb(), 34, 79
GET_TABINFOREQ, 23, 70
GET_TABLINFOREF, 23, 70
GET_TABLINFOREQ, 23, 70
grandchild, 14, 63

103

MySQL NDB Cluster 7.3 Release Notes

group_relay_log_pos, 42
GSIReader, 27, 73
GSN_TCKEY_FAILREFCONF_R, 37, 82
g_thr_repository, 29, 75

H
hash maps, 42, 53, 86, 95
HA_ERR_NO_CONNECTION, 29, 75
HeartbeatIntervalMgmdMgmd, 48, 91
help, 37, 48, 82, 91

I
IBM POWER, 29, 75
identifiers, 29, 75
Important Change, 8, 12, 19, 21, 23, 27, 42, 55, 60, 67, 68, 70, 73,
86, 97
Important Note, 19, 55, 67
IN, 10, 61
IN(), 53, 95
Incompatible Change, 16, 65
index statistics, 21, 23, 68, 70
IndexMemory, 42, 86
INDEX_STAT, 48, 91
INFORMATION_SCHEMA, 11, 37, 55, 61, 82, 97
InitialLogFileGroup, 37, 82
INITIAL_SIZE, 53, 95
INSERT, 23, 37, 70, 82
insert, 48, 91
installer, 48, 91
installing, 53, 95
internals, 34, 48, 79, 91
invalidateLcpInfoAfterSr(), 19, 67
isConsistent(), 19, 67

J
JavaScript, 55, 97
job buffer, 11, 62
job buffer full, 9, 60
job buffers, 48, 91
job scheduler, 46, 48, 89, 91
JOIN, 48, 91

K
KEY_COLUMN_USAGE, 55, 97

L
last page of log, 27, 73
latin1, 37
LCP, 11, 19, 48, 62, 67, 91
LCP scans, 23, 70
LCP states, 37, 82
LCP timeout, 46, 89
LcpScanProgressTimeout, 23, 48, 70, 91
LCP_SKIP, 23, 70
LDM, 16, 65
LDM threads, 48, 91
leak, 34, 79

104

MySQL NDB Cluster 7.3 Release Notes

LGMAN, 11, 46, 62, 89
LIKE, 48, 91
livelocks, 23, 70
localtime(), 46, 89
localtime_r(), 46, 89
locking, 29, 75
lock_ndb_objects(), 15, 64
log files, 12, 62
log messages, 42, 86
log rotation, 37
logging, 11, 19, 21, 55, 62, 67, 68, 97
long long, 27, 73
LongMessageBuffer, 14, 29, 42, 48, 63, 75, 86, 91
LONGVARBINARY, 10, 61
Loopback transporter, 16, 65
lost connection, 16
lower_case_table_names, 48, 91
LQH > 4, 42, 86
LQHKEYREQ, 7, 42, 59, 86

M
malloc(), 15, 53, 64, 95
manifest.mf, 37, 82
Master, 48, 91
MASTER_LCPREQ, 37, 82
MaxBufferedEpochs, 18, 66
MaxNoOfConcurrentScans, 42, 86
MaxNoOfExecutionThreads, 23, 48, 70, 91
MaxNoOfFiredTriggers, 29, 75
MaxNoOfLocalScans, 42, 86
MaxScanBatchSize, 27, 73
max_binlog_size, 37
max_failure_time, 27, 73
MAX_NULL_BITS, 19, 67
memory allocation, 34, 79
memory barrier macros, 42, 86
message corruption, 29, 75
metadata, 18, 34, 66, 79
MGM API, 34, 53, 79, 95
mgmd, 48, 91
Microsoft Windows, 46, 48, 53, 89, 91, 95
MISSING_DATA, 34, 79
MT scheduler, 23, 70
MT Scheduler, 29, 75
mt-scheduler, 23, 42, 70, 86
multiple connections, 27, 73
multiple mysqlds, 21, 68
multiple-statement transactions, 21, 68
multithreaded, 23, 70
mvn_install_ndbjtie.sh, 37, 82
my.cnf, 48, 91
MySQL NDB ClusterJ, 12, 15, 16, 23, 29, 34, 37, 46, 53
mysql-js, 55, 97
mysql.proc, 53, 95
mysqladmin, 55, 97
mysqld, 9, 19, 21, 27, 29, 46, 48, 53, 55, 60, 67, 68, 73, 75, 89,
91, 95, 97
mysql_shutdown, 55, 97

105

MySQL NDB Cluster 7.3 Release Notes

mysql_upgrade, 29, 53, 75, 95

N
Ndb, 29, 75
NDB Client Programs, 5, 5, 58, 58
NDB Cluster, 5, 5, 6, 6, 7, 8, 9, 9, 10, 10, 11, 11, 12, 14,
15, 16, 18, 19, 21, 23, 27, 29, 34, 37, 42, 46, 48, 53, 55, 58,
58, 59, 59, 59, 60, 60, 60, 61, 61, 61, 62, 62, 63, 64, 65, 66,
67, 68, 70, 73, 75, 79, 82, 86, 89, 91, 95, 97
NDB Cluster APIs, 5, 10, 15, 16, 18, 19, 21, 23, 27, 29, 34, 37, 42,
46, 48, 53, 55, 58, 61, 64, 65, 66, 67, 68, 70, 73, 75, 79, 82,
86, 89, 91, 95, 97
NDB Disk Data, 13, 29, 37, 46, 48, 53, 63, 75, 82, 89, 91, 95
NDB distributed triggers, 16, 65
Ndb object, 37, 46, 82, 89
NDB Replication, 11, 12, 19, 21, 29, 34, 37, 42, 48, 55
NDB$EPOCH, 37
NDB$EPOCH_TRANS, 37
Ndb.hpp, 42, 86
Ndb::closeTransaction(), 42, 86
Ndb::computeHash(), 53, 95
Ndb::getNextEventOpInEpoch3(), 11
Ndb::init(), 46, 89
Ndb::isExpectingHigherQueuedEpochs(), 23, 70
Ndb::nextEvent(), 23, 37, 70, 82
Ndb::pollEvents(), 23, 37, 70, 82
ndbd, 46, 89
NdbDictInterface::dictSignal(), 29, 75
NdbDictionary, 48, 91
ndbd_redo_log_reader, 46, 89
NdbEventBuffer::m_latestGCI, 21, 68
NDBFS, 11, 61
NdbFS, 48, 91
NdbIndexOperation, 18, 66
NdbIndexScanOperation::setBound(), 10, 61
ndbinfo, 29, 37, 53, 75, 82, 95
ndbinfo.memoryusage, 42, 46, 86, 89
ndbinfo.ndb$pools, 29, 75
ndbinfo.sql, 37, 82
NDBJTie, 12
ndbmemcache, 5, 5, 46, 48, 53, 55
ndbmtd, 29, 34, 37, 42, 46, 48, 75, 79, 82, 86, 89, 91
NdbReceiver, 27, 73
NdbReceiverBuffer, 6, 59
NdbRecord, 27, 42, 73, 86
NdbScanOperation, 29, 75
NdbScanOperation::close(), 29, 75
NdbScanOperation::nextresult(), 34, 79
NDBT, 8, 60
NdbTick(), 46, 89
NdbTick_Elapsed(), 46, 89
NdbTransaction, 29, 75
NdbTransaction::setSchemObjectOwnerChecks(), 27, 73
ndb_autoincrement_prefetch_sz, 34, 79
ndb_binlog_index, 37, 82
ndb_binlog_setup(), 18, 66
Ndb_cluster_connection, 15, 23, 29, 34, 42, 46, 64, 70, 75, 79, 86, 89
ndb_desc, 21, 68

106

MySQL NDB Cluster 7.3 Release Notes

ndb_error_reporter, 48, 91
ndb_global.h, 42, 86
ndb_index_cache_entries, 42, 86
ndb_index_stat, 29, 75
ndb_index_stat_freq, 42, 86
ndb_index_stat_option, 23, 70
ndb_join_pushdown, 46, 55, 89, 97
Ndb_last_commit_epoch_server, 27, 29, 73
Ndb_last_commit_epoch_session, 27, 29, 73
ndb_logevent_get_next(), 34, 79
ndb_logevent_get_next2(), 34, 79
NDB_MAX_TUPLE_SIZE, 19, 67
ndb_mgm, 42, 48, 53, 86, 91, 95
ndb_mgmd, 16, 42, 48, 53, 65, 86, 91, 95
ndb_mgm_event_category, 34, 53, 79, 95
ndb_print_file, 34, 79
ndb_restore, 7, 8, 10, 10, 14, 15, 18, 19, 21, 23, 29, 34, 37, 42,
48, 55, 59, 60, 61, 61, 63, 64, 66, 67, 68, 70, 75, 79, 82, 86,
91, 97
ndb_schema, 19, 67
ndb_select_all, 37, 82
ndb_setup.py, 5, 5, 58, 58
ndb_show_tables, 34, 42, 79, 86
Ndb_slave_max_replicated_epoch, 29
nextEvent(), 19, 21, 67, 68
nextEvent2(), 21, 68
node connections, 46, 89
node failover, 29, 75
node failure, 21, 37, 48, 68, 82, 91
node failure handling, 11, 18, 29, 34, 37, 42, 53, 62, 66, 75, 79, 82, 86,
95
node recovery, 34, 79
node restart, 11, 19, 62, 67
node restarts, 6, 29, 59, 75
node shutdown, 53, 95
node starts, 21, 68
node state, 34, 79
node takeover, 29, 34, 37, 48, 75, 79, 82, 91
Node.js, 5, 55, 58, 97
nodeFailure error, 16, 65
NodeInfo, 16, 65
NODE_FAILREP, 29, 37, 75, 82
noOfConnectedNodes, 16, 65
NoOfReplicas, 27, 73
NotMaster, 29, 75
NULL, 10, 13, 46, 48, 61, 63, 89, 91
null, 15, 64

O
object creation, 23, 70
object destruction, 23, 70
OFFLINE, 55, 97
ON DELETE CASCADE, 8, 60
ON UPDATE CASCADE, 14, 63
ONLINE, 55, 97
online add nodes, 48, 91
online reorganization, 29, 75
OPEN_COMORD, 37, 82

107

MySQL NDB Cluster 7.3 Release Notes

optimizer, 55, 97
optimizer_switch, 55, 97
ORDER BY, 11, 48, 61, 91
output buffers, 46, 89
O_SYNC, 11, 61

P
Packaging, 5, 46, 48, 53, 58, 89, 91, 95
parallel schema operations, 14, 63
parent batch completion, 48, 91
PARTITION, 27, 73
partition info, 21, 68
Performance, 29, 48, 75, 91
Performance Schema, 29, 75
PK, 29, 37, 75, 82
pollEvent(), 19, 67
pollEvents(), 19, 21, 67, 68
pollEvents2(), 19, 21, 67, 68
preallocate, 48
PREPARE_SEIZE_ERROR, 18, 66
primary key, 55, 97
primary keys, 21, 68
PROPERTY_CLUSTER_CONNECT_TIMEOUT_MGM, 29
purging logs, 55, 97
pushdown conditions, 55, 97
pushdown joins, 29, 75
pushed joins, 55, 97
P_TAIL_PROBLEM, 23, 70

Q
QMGR, 11, 34, 37, 42, 46, 53, 62, 79, 82, 86, 89, 95
queries, 34
QueryPerformanceCounters, 46, 89

R
rand(), 14, 63
range checking, 48, 91
read-only, 19
READ_ALL, 48, 91
READ_PACKED, 48, 91
RealTimeScheduler, 46, 48, 89, 91
receive buffers, 34, 79
receive thread, 48, 91
receive threads, 23, 48, 70, 91
ReceiveBufferMemory, 48, 91
receiver thread, 37, 82
RecordSpecification, 29, 75
redo, 23, 70
relay log rotation, 42
releaseOp, 29, 75
RENAME, 55, 97
REORGANIZE PARTITION, 37, 48, 82, 91
Replication, 42
reportConnected(), 16, 65
reportDisconnected(), 16, 65
resource recovery, 42, 86
restarts, 23, 27, 37, 53, 70, 73, 82, 95

108

MySQL NDB Cluster 7.3 Release Notes

RestartSubscriberConnectTimeout, 37, 82
restore, 21, 68
result buffers, 27, 73
rolling restart, 34, 79
RPM, 48, 91

S
ScanFrag watchdog, 29, 75
scans, 13, 63
SCAN_FRAGREQ, 29, 75
schema events, 19, 67
schema operations, 19, 67
schema transactions, 29, 75
schemaTrans, 29, 75
SELECT, 23, 70
send buffer, 16, 23, 65, 70
send buffers, 29, 75
send threads, 23, 70
SendBuffer, 16, 65
sendFragmentedSignal(), 29, 75
sendSignal(), 34, 79
sendSignalNoRelease(), 34, 79
server system variables, 42, 86
ServerPort, 42, 86
setNdbObjectName(), 37, 82
setPartitionKey(), 46
setsockopt(), 55, 97
SharedGlobalMemory, 37, 82
SHOW, 48, 91
SHOW BINLOG EVENTS, 29
signal corruption, 29, 75
signal dump, 34, 79
signal handling, 27, 37, 46, 73, 82, 89
signal ID, 34, 79
slave, 42
slave_parallel_workers, 12
Solaris, 42, 46, 86, 89
SPARC, 53, 95
spintimer, 19, 67
SPJ, 53, 95
SQL node, 18, 55, 66, 97
SQL nodes, 18, 66
stack overflow, 27, 73
START BACKUP, 42, 48, 86, 91
start phase 101, 37, 82
start, stop, restart, 21, 68
StartConnectBackoffMaxTime, 34, 79
startup, 48, 91
STOP -f, 19, 67
stop GCI, 10, 61
Stuck in Send, 23, 70
subqueries, 53, 95
subscription events, 19, 67
SUB_GCP_COMPLETE_ACK, 18, 27, 66, 73
SUB_GCP_COMPLETE_REP, 19, 27, 67, 73
SUB_START_CONF, 19, 67
SUB_START_REQ, 53, 95
SUMA, 18, 19, 21, 66, 67, 68

109

MySQL NDB Cluster 7.3 Release Notes

sysfile, 21, 68
system restart, 15, 64

T
tabLcpStatus, 37, 82
table corruption, 46, 89
tablespace, 48, 91
Table_Map, 11
TC, 34, 37, 79, 82
TcDumpApiConnectRecSummary, 55, 97
TCKEY_FAILCONF, 37, 82
TCKEY_FAILREF, 37, 82
TCP transporter, 16, 29, 65, 75
TcpBind_INADDR_ANY, 42, 86
TCP_RCV_BUF_SIZE, 55, 97
TCP_SND_BUF_SIZE, 55, 97
TCROLLBACKREP, 42, 86
TEXT, 8, 29, 34, 48, 60, 75, 79, 91
TE_SUBSCRIBE, 19, 67
thread contention, 23, 70
thread synchronization, 23, 70
ThreadConfig, 19, 34, 42, 67, 79, 86
throttling, 46, 89
thr_safe_pool, 29, 75
TimeBetweenEpochs, 18, 66
TimeBetweenGlobalCheckpointsTimeout, 27, 73
timeouts, 19, 23, 29, 37, 42, 46, 48, 67, 70, 82, 86, 89, 91
timers, 46, 89
TIME_SIGNAL, 42, 86
TINYBLOB, 21, 68
TINYTEXT, 34, 79
TOTAL_BUCKETS_INIT, 19, 67
trace, 34, 79
trace files, 29, 42, 75, 86
transaction ID, 15, 64
transactions, 29, 75
TRANSID_AI, 42, 86
Transporter::doDisconnect(), 34, 79
Transporter::doSend(), 29, 75
TransporterFacade, 16, 65
TransporterFacade::deliver_signal(), 23, 70
TransporterFacade::reset_send_buffer(), 29, 75
TransporterFacade::theMutexPtr, 29, 75
TransporterRegistry, 16, 65
TransporterRegistry::connect_server(), 34, 79
TransporterRegistry::performReceive(), 34, 79
TransporterRegistry::performRecive(), 29, 75
TransporterRegistry::reportError(), 16, 65
TransporterRegistry::update_connections(), 29, 75
transporters, 34, 79
TRANS_END_REQ, 29, 75
triggers, 29, 75
TRMAN, 34, 79
TRPMAN, 37, 82
TRUNCATE, 11, 61
TUPKEYREQ, 48, 91
TUP_COMMITREQ, 29, 75
type conversions, 29, 75

110

MySQL NDB Cluster 7.3 Release Notes

types, 34, 79

U
UINT_MAX64, 46, 89
undo buffer, 37, 82
undo log, 23, 70
UNDO_BUFFER_SIZE, 53, 95
UNIQUE, 29, 75
unique index, 18, 66
unique indexes, 18, 66
unique key, 21, 68
unique key checks, 19, 67
unique keys, 18, 21, 66, 68
unlock_ndb_objects(), 15, 64
updates, 42, 55, 86, 97
upgrades, 21, 42, 86
UTF8, 37, 82
utf8, 37

V
values table, 55
VARBINARY, 27, 29, 73, 75
VARCHAR, 27, 29, 46, 53, 73, 75, 89, 95
Visual Studio, 46, 89

W
wait locks, 9, 60
WAIT STARTED, 48, 91
WAIT_EVENT, 19, 67
watchdog checks, 46, 89
watchdog state, 48, 91
watchdog warnings, 34, 79
WHERE, 48, 91
wildcards, 29
work threads, 23, 70

X
x86, 46, 89

Z
ZFAIL_CLOSING, 27, 73

111

112

	MySQL NDB Cluster 7.3 Release Notes
	Table of Contents
	Preface and Legal Notices
	Changes in MySQL NDB Cluster 7.3.33 (5.6.51-ndb-7.3.33) (2021-04-21, General Availability)
	Changes in MySQL NDB Cluster 7.3.32 (5.6.51-ndb-7.3.32) (2021-01-19, General Availability)
	Changes in MySQL NDB Cluster 7.3.31 (5.6.50-ndb-7.3.31) (2020-10-20, General Availability)
	Changes in MySQL NDB Cluster 7.3.30 (5.6.49-ndb-7.3.30) (2020-07-14, General Availability)
	Changes in MySQL NDB Cluster 7.3.29 (5.6.48-ndb-7.3.29) (2020-04-28, General Availability)
	Changes in MySQL NDB Cluster 7.3.28 (5.6.47-ndb-7.3.28) (2020-01-14, General Availability)
	Changes in MySQL NDB Cluster 7.3.27 (5.6.46-ndb-7.3.27) (2019-10-15, General Availability)
	Changes in MySQL NDB Cluster 7.3.26 (5.6.45-ndb-7.3.26) (2019-07-23, General Availability)
	Changes in MySQL NDB Cluster 7.3.25 (5.6.44-ndb-7.3.25) (2019-04-26, General Availability)
	Changes in MySQL NDB Cluster 7.3.24 (5.6.43-ndb-7.3.24) (2019-01-22, General Availability)
	Changes in MySQL NDB Cluster 7.3.23 (5.6.42-ndb-7.3.23) (2018-10-23, General Availability)
	Changes in MySQL NDB Cluster 7.3.22 (5.6.41-ndb-7.3.22) (2018-07-27, General Availability)
	Changes in MySQL NDB Cluster 7.3.21 (5.6.40-ndb-7.3.21) (2018-04-20, General Availability)
	Changes in MySQL NDB Cluster 7.3.20 (5.6.39-ndb-7.3.20) (2018-01-17, General Availability)
	Changes in MySQL NDB Cluster 7.3.19 (5.6.38-ndb-7.3.19) (2017-10-18, General Availability)
	Changes in MySQL NDB Cluster 7.3.18 (5.6.37-ndb-7.3.18) (2017-07-18, General Availability)
	Changes in MySQL NDB Cluster 7.3.17 (5.6.36-ndb-7.3.17) (2017-04-10, General Availability)
	Changes in MySQL NDB Cluster 7.3.16 (5.6.35-ndb-7.3.16) (2017-01-17, General Availability)
	Changes in MySQL NDB Cluster 7.3.15 (5.6.34-ndb-7.3.15) (2016-10-18, General Availability)
	Changes in MySQL NDB Cluster 7.3.14 (5.6.31-ndb-7.3.14) (2016-07-18, General Availability)
	Changes in MySQL NDB Cluster 7.3.13 (5.6.29-ndb-7.3.13) (2016-04-18, General Availability)
	Changes in MySQL NDB Cluster 7.3.12 (5.6.28-ndb-7.3.12) (2016-01-19, General Availability)
	Changes in MySQL NDB Cluster 7.3.11 (5.6.27-ndb-7.3.11) (2015-10-19, General Availability)
	Changes in MySQL NDB Cluster 7.3.10 (5.6.25-ndb-7.3.10) (2015-07-13, General Availability)
	Changes in MySQL NDB Cluster 7.3.9 (5.6.24-ndb-7.3.9) (2015-04-14, General Availability)
	Changes in MySQL NDB Cluster 7.3.8 (5.6.22-ndb-7.3.8) (2015-01-21, General Availability)
	Changes in MySQL NDB Cluster 7.3.7 (5.6.21-ndb-7.3.7) (2014-10-17, General Availability)
	Changes in MySQL NDB Cluster 7.3.6 (5.6.19-ndb-7.3.6) (2014-07-11, General Availability)
	Changes in MySQL NDB Cluster 7.3.5 (5.6.17-ndb-7.3.5) (2014-04-07, General Availability)
	Changes in MySQL NDB Cluster 7.3.4 (5.6.15-ndb-7.3.4) (2014-02-06, General Availability)
	Changes in MySQL NDB Cluster 7.3.3 (5.6.14-ndb-7.3.3) (2013-11-18, General Availability)
	Changes in MySQL NDB Cluster 7.3.2 (5.6.11-ndb-7.3.2) (2013-06-18, General Availability)
	Changes in MySQL NDB Cluster 7.3.1 (5.6.10-ndb-7.3.1) (2013-04-17, Development Milestone)
	Release Series Changelogs: MySQL NDB Cluster 7.3
	Changes in MySQL NDB Cluster 7.3.32 (5.6.51-ndb-7.3.32) (2021-01-19, General Availability)
	Changes in MySQL NDB Cluster 7.3.31 (5.6.50-ndb-7.3.31) (2020-10-20, General Availability)
	Changes in MySQL NDB Cluster 7.3.30 (5.6.49-ndb-7.3.30) (2020-07-14, General Availability)
	Changes in MySQL NDB Cluster 7.3.29 (5.6.48-ndb-7.3.29) (2020-04-28, General Availability)
	Changes in MySQL NDB Cluster 7.3.26 (5.6.45-ndb-7.3.26) (2019-07-23, General Availability)
	Changes in MySQL NDB Cluster 7.3.25 (5.6.44-ndb-7.3.25) (2019-04-26, General Availability)
	Changes in MySQL NDB Cluster 7.3.24 (5.6.43-ndb-7.3.24) (2019-01-22, General Availability)
	Changes in MySQL NDB Cluster 7.3.23 (5.6.42-ndb-7.3.23) (2018-10-23, General Availability)
	Changes in MySQL NDB Cluster 7.3.22 (5.6.41-ndb-7.3.22) (2018-07-27, General Availability)
	Changes in MySQL NDB Cluster 7.3.21 (5.6.40-ndb-7.3.21) (2018-04-20, General Availability)
	Changes in MySQL NDB Cluster 7.3.20 (5.6.39-ndb-7.3.20) (2018-01-17, General Availability)
	Changes in MySQL NDB Cluster 7.3.19 (5.6.38-ndb-7.3.19) (2017-10-18, General Availability)
	Changes in MySQL NDB Cluster 7.3.18 (5.6.37-ndb-7.3.18) (2017-07-18, General Availability)
	Changes in MySQL NDB Cluster 7.3.17 (5.6.36-ndb-7.3.17) (2017-04-10, General Availability)
	Changes in MySQL NDB Cluster 7.3.16 (5.6.35-ndb-7.3.16) (2017-01-17, General Availability)
	Changes in MySQL NDB Cluster 7.3.15 (5.6.34-ndb-7.3.15) (2016-10-18, General Availability)
	Changes in MySQL NDB Cluster 7.3.14 (5.6.31-ndb-7.3.14) (2016-07-18, General Availability)
	Changes in MySQL NDB Cluster 7.3.13 (5.6.29-ndb-7.3.13) (2016-04-18, General Availability)
	Changes in MySQL NDB Cluster 7.3.12 (5.6.28-ndb-7.3.12) (2016-01-19, General Availability)
	Changes in MySQL NDB Cluster 7.3.11 (5.6.27-ndb-7.3.11) (2015-10-19, General Availability)
	Changes in MySQL NDB Cluster 7.3.10 (5.6.25-ndb-7.3.10) (2015-07-13, General Availability)
	Changes in MySQL NDB Cluster 7.3.9 (5.6.24-ndb-7.3.9) (2015-04-14, General Availability)
	Changes in MySQL NDB Cluster 7.3.8 (5.6.22-ndb-7.3.8) (2015-01-21, General Availability)
	Changes in MySQL NDB Cluster 7.3.7 (5.6.21-ndb-7.3.7) (2014-10-17, General Availability)
	Changes in MySQL NDB Cluster 7.3.6 (5.6.19-ndb-7.3.6) (2014-07-11, General Availability)
	Changes in MySQL NDB Cluster 7.3.5 (5.6.17-ndb-7.3.5) (2014-04-07, General Availability)
	Changes in MySQL NDB Cluster 7.3.4 (5.6.15-ndb-7.3.4) (2014-02-06, General Availability)
	Changes in MySQL NDB Cluster 7.3.3 (5.6.14-ndb-7.3.3) (2013-11-18, General Availability)
	Changes in MySQL NDB Cluster 7.3.2 (5.6.11-ndb-7.3.2) (2013-06-18, General Availability)
	Changes in MySQL NDB Cluster 7.3.1 (5.6.10-ndb-7.3.1) (2013-04-17, Development Milestone)

	Index

