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Abstract

This document describes how to use MySQL Al. It covers how to load data, run queries, optimize analytics workloads,
and use machine learning and generative Al capabilities.

For legal information, see the Preface and Legal Notices.

For help with using MySQL, please visit the MySQL Forums, where you can discuss your issues with other MySQL
users.

Document generated on: 2026-01-22 (revision: 84306)
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Preface and Legal Notices

This is the user manual for MySQL Al.

Licensing information.  This product may include third-party software, used under license. See the
MySQL Al License Information User Manual for licensing information, including licensing information
relating to third-party software that may be included in this MySQL Al release.

Legal Notices

Copyright © 2006, 2026, Oracle and/or its affiliates.
License Restrictions

This software and related documentation are provided under a license agreement containing restrictions
on use and disclosure and are protected by intellectual property laws. Except as expressly permitted

in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast,
modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

Warranty Disclaimer

The information contained herein is subject to change without notice and is not warranted to be error-free.
If you find any errors, please report them to us in writing.

Restricted Rights Notice

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or
related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications

of such programs) and Oracle computer documentation or other Oracle data delivered to or accessed

by U.S. Government end users are "commercial computer software," "commercial computer software
documentation," or "limited rights data" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, the use, reproduction, duplication, release, display,
disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle programs (including
any operating system, integrated software, any programs embedded, installed, or activated on delivered
hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract.
The terms governing the U.S. Government's use of Oracle cloud services are defined by the applicable
contract for such services. No other rights are granted to the U.S. Government.

Hazardous Applications Notice

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Trademark Notice

Vii


https://downloads.mysql.com/docs/licenses/mysql-ai-9.6-com-en.pdf

Documentation Accessibility

Oracle, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names
may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Epyc, and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a
registered trademark of The Open Group.

Third-Party Content, Products, and Services Disclaimer

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

Use of This Documentation

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the
following terms:

You may create a printed copy of this documentation solely for your own personal use. Conversion to other
formats is allowed as long as the actual content is not altered or edited in any way. You shall not publish

or distribute this documentation in any form or on any media, except if you distribute the documentation in
a manner similar to how Oracle disseminates it (that is, electronically for download on a Web site with the
software) or on a CD-ROM or similar medium, provided however that the documentation is disseminated
together with the software on the same medium. Any other use, such as any dissemination of printed
copies or use of this documentation, in whole or in part, in another publication, requires the prior written
consent from an authorized representative of Oracle. Oracle and/or its affiliates reserve any and all rights
to this documentation not expressly granted above.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website
at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support for Accessibility

Oracle customers that have purchased support have access to electronic support through My Oracle
Support. For information, visit

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit ht t p: / / www. or acl e. cont pl s/ t opi c/
| ookup?ct x=accé& d=tr s if you are hearing impaired.
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Chapter 1 Introduction to MySQL Al

This chapter describes MySQL Al.

MySQL Al consists of the following components:

* MySQL Enterprise Edition for MySQL Al, which contains the following Al components:
* MySQL Commercial Server
e Al Engine
« MySQL Al Plugin

* MySQL Shell Al Edition, which supports MySQL Shell Workbench.

* MySQL Router Al Edition, which supports MySQL REST Service

always be accurate, complete, current, or appropriate for Your intended use. You
are responsible for Your use of Al output and for reviewing and independently
verifying the accuracy and appropriateness of Al output before Your use. Al output

Important
A The responses produced by generative artificial intelligence (Al) models may not
may not be unique, and other customers may receive similar output.
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Chapter 2 Installing MySQL Al

Table of Contents

2.1 Supported Platforms and REQUIFEMENTS ........ciuuiiiiiieiii e e e e e e e e e et e e e e anas 3
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2.3 Command-liNe INSLAIIALION ........coiiiiiiiii e e e e e e et e e e et e e e eat e e e eetnneeeens 7

This chapter describes how to install MySQL Al

2.1 Supported Platforms and Requirements

MySQL Al is supported on the following:

* Oracle Linux 8

* Red Hat Enterprise Linux 8

The installation requires the following:

» Your system satisfies the platform requirements and the following system requirements for MySQL Al:
e CPUs: 32 logical, or virtual, CPU cores
* RAM: 128GB
e Storage: 512GB

* You have a license for the MySQL Enterprise Edition.

* You are a sudoer on your system.

* You have TLS certificates and keys that satisfy the MySQL requirements. See Creating SSL and RSA
Certificates and Keys if you want to configure encrypted communication with the MySQL Al components
using your own certificates and keys.

Warning

@ In this installation of MySQL Al, the MySQL Shell GUI server and the MySQL REST
server both run on the same host as the MySQL Server, and they allow a user to
access the MySQL server through them from a remote host, even if the user has
been restricted to connect only from | ocal host (or 127.0.0.1 for IPv4, or ::1 for
IPV6). System administrators may want to prevent that from happening, especially
if their systems are going on production. Possible measures that can be taken
include:

« Disallow certain users (for example, the server administrator) from connecting by
HTTP connections, but only allow connections by, for example, Unix sockets with
the aut h_socket authentication plugin. See Socket Peer-Credential Pluggable
Authentication.

¢ Do not install the MySQL Shell GUI and MySQL REST Service.

2.2 Installing MySQL Al

Installing MySQL Al requires the following steps:



https://dev.mysql.com/doc/refman/9.6/en/creating-ssl-rsa-files.html
https://dev.mysql.com/doc/refman/9.6/en/creating-ssl-rsa-files.html
https://dev.mysql.com/doc/refman/9.6/en/socket-pluggable-authentication.html
https://dev.mysql.com/doc/refman/9.6/en/socket-pluggable-authentication.html

MySQL Al Installer

1. Install the MySQL Al installer. See MySQL Al Installer.

2. Run the MySQL Al installer to install and configure MySQL Al server and tools. The MySQL Al installer
can be run in the following ways:

e GUI Installer: a graphical installer which enables you to configure and install MySQL Al. See MySQL
Al GUI Installation

¢ Command-line installer: command line installer which enables you to configure and install MySQL Al
from the command line. See Section 2.3, “Command-line Installation”

MySQL Al Installer

This section describes how to install the MySQL Al installer. The MySQL Al installer enables you to install
and configure MySQL Al.

To install the MySQL Al installer do the following:

1. Download the MySQL Al RPM bundles from My Oracle Support (MOS) or Oracle Software Delivery
Cloud.

2. Extract all RPMs from the downloaded archive.

3. Install the MySQL Al Installer with the following command:

$> sudo dnf localinstall nysql-ai-setup-version.distro.arch.rpm
The MySQL Al Installer is installed.

4. Run the MySQL Al Installer to install and configure all the components of MySQL Al. It can be run in
GUI mode or in command-line mode.

MySQL Al GUI Installation

To run the MySQL Al installer GUI, start the installer GUI in the folder where you have extracted the RPMs
with the following command:

$> sudo nysql -ai - setup

Note
@ You must run the installer in the same directory as the extracted RPMs.

The installer guides you through the following configuration pages:
1. Introduction: Click Continue.

2. System Requirements: Checks your system for hardware requirements. Click Continue to proceed if
your system meets all the minimum requirements.

A report is given if the minimum requirements are not satisfied. In that case, choose Continue Anyway
or Cancel.

Warning
O MySQL Al might not work or experience performance issues if installed on a
system that does not satisfy the minimum requirements.



https://support.oracle.com/
https://edelivery.oracle.com/
https://edelivery.oracle.com/

MySQL Al GUI Installation

The installer also checks if any default ports used for communication with the MySQL Al components
are already in use, and reports to you if that is the case.

User & password: Define a user name and password for the MySQL root user. The password must
satisfy the MEDIUM level policy of the validate_password component.

You can choose to Only allow local connections for this user (see the Warning near the beginning
of Chapter 2, Installing MySQL Al).

Click Continue to proceed.
MySQL Studio: Install and configure the MySQL Studio.

You can replace the default port number (8080). A warning is displayed if the port you entered is
already in use or will be used by another MySQL Al component.

Router & Shell: Install and configure the MySQL Shell GUI and MySQL Router for MySQL Al

Note
@ Check Warning before proceeding with the installation of the MySQL Shell GUI
and MySQL Router (MySQL REST Service).

Select to install both, either, or neither, by going through the following pages:
¢ MySQL Shell GUI: Select Install the MySQL Shell GUI web service to install the component.

You can replace the default port number (8000) with another number for MySQL Shell GUI web
server to listen for connections. A warning is displayed if the port you entered is already in use or will
be used by another MySQL Al component.

« MySQL Router (MySQL REST Service): Select Install MySQL Router and configure it for
MySQL REST Service to install the component.

You can replace the default HTTPS port number (8443) with another number for the MySQL REST
Service web server to listen to connections. A warning is displayed if the port you entered is already
in use or will be used by another MySQL Al component.

You can enter a secret for JSON Web Secret (JWS) tokens. If you do not enter one, a random secret
will be created.

Click Continue to proceed.

. Vector Store: Specify the directory for loading documents into the vector store. The location must be
configured by the server system variable secure_file priv fornysql d to import data securely
from it. The default locationis / var/1i b/ mysql -fi | es. If you specify a directory that does not exist,
it will be created.

Click Continue to proceed.

. Certificates: Configure TLS certificates for encrypted communication with each of the following
components of MySQL Al.

Note
@ » The certificates and keys you provide must satisfy MySQL requirements. See
Creating SSL and RSA Certificates and Keys.



https://dev.mysql.com/doc/refman/9.6/en/validate-password.html
https://dev.mysql.com/doc/refman/9.6/en/server-system-variables.html#sysvar_secure_file_priv
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Finalizing Installation

« The certificate, key, and bundle files specified must be readable by the r oot
user who installs MySQL Al; adjust their file permissions if needed.

< The certificate, key, and bundle files must not be passphrase protected.

» Afile path to a certificate bundle file is expected in the certificate field.
However, the path can also point to either a certificate file or a bundle file that
does not contain the private key, in which case a separate field appears for
you to provide the file path for the private key or, for the PEM format only, the
actual key string (pasted keys are represented by icons on the screen).

 The Common Name (CN) for your certificate is shown. The user can verify
that the CN is correct and, for the MySQL Al plugin and MySQL Machine
Learning Services, correct it if the installer misreads it.

« MySQL Server: Provide the path to the certificate bundle in PEM or PKSC#12 format for
communication between the server and other components using the mysqgl and nysql x protocols. If
no certificate is supplied, a self-signed certificate is generated.

* MySQL Server Plugin (for MySQL Al) and MySQL Machine Learning Services: Provide paths to
the certificate bundles in PEM or PKSC#12 format. Two distinct certificate bundles are required for
the two components. If no certificates are provided, encrypted communication between MySQL Al
components will be disabled.

e MySQL Studio,MySQL Shell GUI and MySQL REST Service: Provide the paths to the certificate
bundles in PEM or PKSC#12 format. If either of the certificates is not supplied, a self-signed
certificate will be created for the respective service.

Click Continue to proceed.

8. Finalize Installation: Confirm selections and begin the installation procedure. The following issues are
reported if they occur:

* Networking ports are assigned multiple times. Use the Previous button to go back to earlier
pages and correct the port assignments.

< Internal communication between MySQL Server and the Machine Learning and Al subsystem
should not be encrypted because no certificates were given. Use the Previous button to go back
and supply the certificates, or select the note to confirm this.

Click Finalize to start installation of MySQL Al.

Finalizing Installation

The installer completes and presents a message containing information on URLs and endpoints for the
selected components.

For example, if you selected MySQL Studio, MySQL Shell Workbench, and MySQL Router (MySQL REST
Service):

Installation finished.

To access MySQL Studi o, navigate to the foll ow ng
URL in a web browser:




Customizing the GUI Installer

https://host Addr ess: 8080/

To access a SQL shell for this MySQL Al instance, navigate to the foll ow ng
URL in a web browser:

https://host Addr ess: 8000/
The MySQL REST Service endpoint is

https://host Addr ess: 8443/

Customizing the GUI Installer

The installer GUI can also take command-line installer options to populate fields, skip specific elements of
the installation, and so on. The following example instructs the installer to run without the option to install
MySQL Studio and MySQL Router, and sets the root username to John:

sudo nysql -ai -setup --skip-nysql-studio --skip-nysqgl-router --nysql-root-user=John

2.3 Command-line Installation

The MySQL Al Installer can also be run in command-line mode, without invoking the installation GUI.
Execute the following command in the folder where you have extracted the RPMs from the MySQL Al RPM
bundle:

$> sudo nysql -ai-setup --cli [options]

options:
--option-1ong-nanme[ =val ue-1i st]
| -option-short-name [val ue-1list]
val ue-1list:
val ue[, val ue[,...]]

The command options are described in groups below (use the - h or - - hel p option to see the option
descriptions):

Installation Type

» --skip-install: Do notinstall anything. This is useful for testing system requirements and installation
options.

Install Without Satisfying Minimum Requirements

o --skip-requirements: Install even if the system does not satisfy the minimum requirements.

Warning
O MySQL Al might not work or might have performance issues if installed on a
system that does not satisfy the minimum requirements.

User and Password

e --mysql -root -user=user nane: User name and password for the MySQL root user.




MySQL Studio, MySQL Shell Workbench and MySQL Router (MySQL REST Service)

e --nysql -root - passwor d=passwor d: Password for the MySQL root user. The password must satisfy
the MEDIUM level policy of the validate_password component.

* --nysql -root -al | owrenot e-connecti on: The root user is allowed to connect from hosts other
than | ocal host . See the Warning near the beginning of Chapter 2, Installing MySQL Al.

MySQL Studio, MySQL Shell Workbench and MySQL Router (MySQL REST
Service)

Note
g Check the Warning near the beginning of Chapter 2, Installing MySQL Al before
installing the MySQL Shell GUI and MySQL Router (MySQL REST Service).

e --install-nysql -studi o: Install the MySQL Studio service.

e --nysql - studi o- port =port #: Replace the default port number (8000) with another one for MySQL
Studio's server to listen for connections. A warning is displayed if the port you entered is already in use
or will be used by another MySQL Al component.

e --skip-nysql - studi o: Skip installing MySQL Studio.
e --install-nysqgl -shell-gui: Install the MySQL Shell Workbench service.
e --skip-nysql -shel | - gui : Skip installing MySQL Shell Workbench.

e --nysql -shel | - gui - port =por t #: Replace the default port number (8000) with another one for
MySQL Shell GUI web server to listen for connections. A warning is displayed if the port you entered is
already in use or will be used by another MySQL Al component.

o --ski p-nysqgl - rout er: Skip installing MySQL Router and MySQL REST Service.

e --nysql -rout er-port=port #: Replace the default HTTPS port number (8443) with another one
for the MySQL REST Service web server to listen to connections. A warning is displayed if the port you
entered is already in use or will be used by another MySQL Al component.

e --nysql -router-jw-secret= wt-secret:Provide a secret for JSON Web Secret (JWS) tokens.
If this option is not specified, a random secret will be created by default.

Vector Store

e --secure-file-priv=filepath: Specify the directory for loading documents into the vector store.
The location must be configured by the server system variable secure file priv fornysql dto
import data securely from it. If the option is not specified, the default location is / var /| i b/ mysql -
fil es. If you specify a directory that does not exist, it will be created.

Certificates

Configure TLS certificates for encrypted communication with each of the following components of MySQL
Al.

Notes
@ * The certificate, key, and bundle files specified must be readable by r oot user
who installs MySQL Al; adjust their file permissions if needed.
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Certificates

« The certificate, key, and bundle files must not be passphrase protected.

« A file path to a certificate bundle file is expected in the *- cer ti fi cat e option.
However, the path can also point to either a certificate file or a bundle file that
does not contain the private key, in which case use the *-pri vat e-key to
provide the file path for the private key or, for the PEM format only, the actual key
string.

MySQL Al uses certificates keystore in p12 for encryption purposes. Two entities are required for creating
certificates:

e Al_PLUGIN (CN = ai_plugin)
» Al_ENGINE (CN = ai_engine)

To create certificates, you first need to create a config file with the details of the Root CA (Certificate
Authority). See the example below:

[ req]

di sti ngui shed_nane=r eq_di sti ngui shed_nane
x509_ext ensi ons=v3_ca

pronpt = no

[ reqg_distingui shed_nane ]
C=US

L=San Franci sco

CN=MyRoot CA

[ v3_ca ]

basi cConst r ai nt s=CA: TRUE
keyUsage=keyCert Si gn, cRLSi gn
subj ect Al t Nanme=@l t _nanes

[ alt_nanes ]
DNS. 1=MyRoot CA Al t

The CN value, MyRoot CA, identifies the RootCA itself. You can customize this value to your specification.

After creating the config file, you can generate the Root CA certificate with the following command:

openssl req -x509 -config ca.conf -sha256 -nodes -days 3650 -newkey rsa: 2048 -keyout ca_private_key. pem - o

The value 3650 specifies the expiry duration for the certificate (about 10 years). You can change this value
to your specification.

After running this command, two new files are generated: ca_pri vat e_key. pem(private key) and
cert _chai n. pem(public key certificate chain signed by self).

After generating the Root CA certificates, you can run the script to generate a certificate for an entity
signed by the previous Root CA. See the following example:

#! / bi n/ sh
generate_cert() {
| ocal CN="$1"
if [[ "$CN'" =="" 1]; then

CN=$( host nane)
fi




Certificates

# Determ ne subject for the client certificate
| ocal SUBJECT="/C=US/ O=Or acl e/ Ul D=%{ CN} / CN=${ C\} "

# 1. Create a new private key and corresponding CSR for the client
openssl req -newkey rsa: 2048 -sha256 -nodes \

-keyout "private_key.pent \

-out "client_cert.csr" \

-subj " $SUBJECT"

# 2. Create SAN configuration file
| ocal SAN_CONFI G _FI LE=" $( nkt enp) "
echo "
keyUsage=di gi t al Si gnat ur e, keyEnci pher nent
> "$SAN_CONFI G FI LE"

# 3. Sign the client CSR using the M/Root CA, creating a client certificate
openssl x509 -reqg \

-CA "cert_chain. pent \

- CAkey "ca_private_key. pem \

-in "client_cert.csr" \

-out "certificate. pem \

-days 365 \

-CAcreateserial \

-extfile "$SAN CONFI G FI LE"
rm " $SAN_CONFI G FI LE"

# 4. Package the client key and certificate into a PKCS12 file
openssl| pkcs12 -export \

-out "${CN}_keystore.pl2" \

-inkey "private_key. pent \

-in "certificate. pem \

-certfile "cert_chain. pen \

-nane "keystore" \

- passwor d pass:

# Cl eanup
rmclient_cert.csr certificate.pem private_key. pem cert_chain. srl

chnod 644 "${CN} _keystore.pl2"
}

generate_cert "$@

In the example, - days 365 refers to the expiry duration of the certificate. You can customize this value
to your specification. You must run the script in the same directory where the Root CA certificates were
generated.

After generating the certificate, you can run the following script to generate the certificate for the Al Plugin
(CN = ai_plugin):

bash create_certs.sh ai _engine
This generates the .p12 file ai _pl ugi n_keystore. pl2.

Generating the Root CA certificate is a one-time activity. To renew certificates, you must save and use
the the Root CA certificates using the previous steps. If you place renewed certificates in the appropriate
location, they are automatically loaded before the expiration date.

Certificates for MySQL Server.  Provide the certificate and private key in PEM or PKSC#12 format for
communication with MySQL Server using the mysql and mysqgl x protocols. If no certificate is supplied, a
self-signed certificate is generated.

e --nysql -server-tls-certificate=fil epath: Location of the certificate bundle used for HTTPS
communication by MySQL Server.
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e --nysql -server-tls-private-key=fil epat h: The private key used for HTTPS communication
by MySQL Server. This option is needed only if - - mysql - server-tls-certificate pointsto a
certificate file, or a bundle file that does not contain the private key. Provide with this option the file path
for the private key or, for PEM format only, the actual key string.

Certificates for Al Plugin and Machine Learning Services.  Provide the certificates in PEM or
PKSC#12 format. Two distinct certificate bundles are required for the two components. If no
certificates and keys are provided for any of the two components, encrypted communication with the
component is disabled, unless self-signed certificates, with specified common names, are requested.

e --skip-ai-encryption: Use this option to explicitly turn off encryption for communication with the
Al plugin and Machine Learning services. If this command line option is absent, installer will quit without
installing MySQL Al unless certificates are provided or self-signed certificates are requested (see options
below).

e --ai-plugin-certificate=fil epath:Location of the certificate bundle used for HTTPS
communication with the Al plugin.

e --ai-plugin-private-key=fil epath: The private key used for HTTPS communication with the Al
plugin. This option is needed only if - - ai - pl ugi n-certifi cat e points to a certificate file, or a bundle
file that does not contain the private key. Provide with this option the file path for the private key or, for
PEM format only, the actual key string.

e --ai-plugi n-common-nane=stri ng: Common name for the certificate for communication with the
Al plugin. This option is only needed if you want to correct the installer's reading of the common name
from your certificate.

e --ai-plugin-create-self-signed-certificate=Conmon_Nane: Create a self-sighed
certificate for communication with the Al plugin with the common name specified by this option.

e --ai-services-certificate=fil epath:Location of the certificate bundle used for HTTPS
communication with the Machine Learning Service.

e --ai-services-private-key=fil epat h. The private key used for HTTPS communication with the
Al plugin. This option is needed only if - - ai - servi ces-certi fi cat e points to a certificate file, or a
bundle file that does not contain the private key. Provide with this option the file path for the private key
or, for the PEM format only, the actual key string.

e --ai-services-comon- nane=st ri ng: Common name for the certificate for communication with
the Machine Learning service. This option is only needed if you want to correct the installer's reading of
the common name from your certificate.

e --ai-services-create-sel f-signed-certificate=Comobn_Nane: Create a self-signed
certificate for communication with the Machine Learning service with the common name specified by this
option.

Certificates for MySQL Studio, MySQL Shell Workbench, and MySQL Router (MySQL REST
Service):  Provide the certificate and private key in PEM or PKSC#12 format. If either of the certificates
is not supplied, a self-signed certificate will be created for the respective service.

 --nysql -studi o-https-certificate=fil epath: Location of the certificate bundle used for
HTTPS communication by the MySQL Studio.

e --nysql -studi o-https-private-key=fil epat h: The private key used for HTTPS
communication by MySQL Studio. This option is needed only if - - mysql - st udi o- ht t ps-
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certificat e points to a certificate file, or a bundle file that does not contain the private key. Provide
with this option the file path for the private key or, for the PEM format only, the actual key string.

--nysql -shel | -https-certificate=fil epath:Location of the certificate bundle used for HTTPS
communication by the MySQL Shell Workbench service.

--nysql -shel | -https-private-key=fil epat h: The private key used for HTTPS communication
by the MySQL Shell Workbench service. This option is needed only if - - mysql - shel | - ht t ps-
certificat e points to a certificate file, or a bundle file that does not contain the private key. Provide
with this option the file path for the private key or, for the PEM format only, the actual key string.

--nysqgl -router-https-certificate=fil epath: Location of the certificate bundle used for
HTTPS communication by MySQL Router (MySQL REST Service).

--nysql -router-https-private-key=fil epat h: The private key used for HTTPS
communication by MySQL Router (MySQL REST Service). This option is needed only if - - mysql -
router-https-certificate points to a certificate file, or a bundle file that does not contain the
private key. Provide with this option the file path for the private key or, for the PEM format only, the
actual key string.

Certificate Revocation Lists.  Optionally, add a Certificate Revocation List (CRL) to enable clients

to check whether a certificate has been revoked before its expiration date. This helps ensure that
compromised or invalid certificates are not trusted, even if they have not yet expired, allowing for improved
certificate management and timely response to security issues.

You must provide the CRL, which contains the serial numbers of revoked certificates, to both the Al
plugin and the MySQL server. If you need to replace revoked certificates with new certificates, the new
certificates should have the same names and be placed in the same location as the originals. If revoked
certificates are not properly replaced, connections may fail or the Al Services may shut down.

--ssl Crl =fi | epat h: The path to the CRL file when configuring MySQL server (Al Engi ne). For Al
plugin, configure the file in the rapi d_ssl _cr | global variable. To configure the variable, the state of
rapi d_boot st rap must be | DLE or OFF.

If you create a new CRL or update a CRL, the latest CRL file is reloaded, and all existing TLS
connections are refreshed by closing the current SSL context and recreating it.

If the CRL is invalid, (for example it is signed by a different Root CA, it is corrupted or empty, or it is
expired), no connection can occur, and any existing connections will break.

The CRL file must be encrypted without a passphrase. The file and file path must be no more than 256
bytes.

You can use the following template to create a CRL.
#! / bi n/ sh
# Copyright (c) 2025, Oracle and/or its affiliates.

generate_crl () {
| ocal QUTPUT_DI R="$1"
| ocal KEYSTORE_TO BE REVOKED="$2"
if [[ ! -e ${OUTPUT_DIR}/index.txt ]]; then
touch ${QUTPUT_DI R}/ i ndex. t xt
f
echo "
[ ca]
default_ca = "M/Root CA"
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[ MyRoot CA ]
dir = ${OUTPUT_DI R}

certs = ${QUTPUT_DI R}

crl_dir = ${QUTPUT_DI R}

new certs_dir = ${QUTPUT_DI R}

dat abase = ${QUTPUT_DI R}/ i ndex. t xt

private_key
certificate

${ QUTPUT_DI R}/ ca_pri vat e_key. pem
${OUTPUT_DI R}/ cert _chai n. pem

defaul t_crl _days = 30

def aul t _nd = sha256
> "$OUTPUT_DI R/ ca. cnf "
# Extract the certificate fromthe revoked keystore file
openss| pkcs12 -in "$KEYSTORE_TO BE REVOKED' -out "$OUTPUT_DI R/ certificate. pen -clcerts -nokeys -pass
openssl| ca -config "$OUTPUT DI R/ ca.cnf" -revoke "$OUTPUT Dl R/ certificate. pent
openssl ca -gencrl -out "$OUTPUT_DI R/ crl.pent -config "$OUTPUT DI R/ ca. cnf"
rm"$OUTPUT_Dl R/ ca. cnf" "$OUTPUT_DI R/ certi fi cate. pent
}

generate crl "$@
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Chapter 3 Loading Data in MySQL Al
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The sections in this chapter describe how to load data in MySQL Al.

3.1 Bulk Ingest Data

MySQL includes a bulk load extension to the LOAD DATA statement. It can do the following:
» Optimize the loading of data sorted by primary key.

» Optimize the loading of unsorted data.

» Optimize the loading of data from an object store.

» Optimize the loading of data from a series of files.

* Load a MySQL Shell dump file.

» Load ZSTD compressed CSV files.

» Monitor bulk load progress with the Performance Schema.
 Large data support.

Use a second session to monitor bulk load progress:

« If the data is sorted, there is a single stage: | oadi ng.

« If the data is unsorted, there are two stages: sorti ng and | oadi ng.

Bulk Ingest Data Type Support

LOAD DATA with ALGORI THVEBULK supports tables with at least one column with the VECTCOR data type. If
you attempt to load a table without at least one column with the VECTOR data type, an error occurs.

In addition to the requirement to have at least one VECTOR column, LOAD DATA with ALGORI THVEBULK
supports the following data types:

* INT

o SMALLI NT
o TINYI NT

* BIG NT

*+ CHAR

* Bl NARY

* VARCHAR

* VARBI NARY
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Bulk Ingest Data Type Support

NUVERI C
DECI VAL
UNSI GNED NUMERI C
UNSI GNED DECI MAL
DOUBLE
FLOAT

DATE

DATETI ME
BIT

ENUM

JSON

SET

TI MESTAMP
YEAR

TI NYBLOB
BLOB

VEDI UVBLOB
LONGBLCOB
TI NYTEXT
TEXT

VEDI UMTEXT
LONGTEXT
GEOVETRY

GEQOVETRYCCLLECTI ON

PO NT

MULTI PO NT

LI NESTRI NG
MULTI LI NESTRI NG
PCLYGON

MULTI POLYGON
VECTCOR
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Bulk Ingest Syntax

Bulk Ingest Syntax

nmysql > LOAD DATA

[ LOW PRI ORI TY | CONCURRENT]
[ FROM
INFILE | URL | S3 'file_prefix' | "options' [COUNT N|
[IN PRI MVARY KEY ORDER]
| NTO TABLE t bl _nane
[ CHARACTER SET charset _nanme] [ COWPRESSI ON = {' ZSTD }]
[{FIELDS | COLUWNS}
[ TERM NATED BY 'string']
[ [ OPTI ONALLY] ENCLGCSED BY 'char']
[ ESCAPED BY ' char']
]
[ LI NES
[ TERM NATED BY 'string']
]
[ 1 GNORE nunber {LINES | ROAB}]
[ PARALLEL = nunber]
[ MEMORY = M
[ ALGORI THM = BULK]

options: {

}

JSON_OBJECT( " key", "val ue"[, "key", "val ue"] ...)
"key", "val ue": {
"url -prefix","prefix"
["url -sequence-start", 0]
["url-suffix","suffix"]
["url-prefix-I|ast-append"," @]
["is-dryrun", {true|fal se}]

}

The additional LOAD DATA clauses are:

FROM Makes the statement more readable.

URL: A URL accessible with a HTTP GET request.
S3: The AWS S3 file location.

This requires the user privilege LOAD FROM S3.
CQOUNT: The number of files in a series of files.

For COUNT 5andfile prefix settodata. csv., the five files would be: dat a. csv. 1,
dat a. csv. 2, dat a. csv. 3,data. csv. 4, and dat a. csv. 5.

I N PRI MARY KEY ORDER: Use when the data is already sorted. The values should be in ascending
order within the file.

For a file series, the primary keys in each file must be disjoint and in ascending order from one file to the
next.

PARALLEL: The number of concurrent threads to use. A typical value might be 16, 32 or 48. The default
value is 16.

PARALLEL does not require CONCURRENT.
VEMORY: The amount of memory to use. A typical value might be 512M or 4G. The default value is 1G.

ALGORI THMV Set to BULK for bulk load. The file format is CSV.
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e COVPRESSI ON: The file compression algorithm. Bulk load supports the ZSTD algorithm.

« options is a JSON object literal that includes:

e url -prefix: The common URL prefix for the files to load.
e url -sequence- st art: The sequence number for the first file.

The default value is 1, and the minimum value is 0. The value cannot be a negative number. The value
can be a string or a number, for example, "134", or "default".

e url -suffix: The file suffix.
e url-prefix-Iast-append: The string to append to the prefix of the last file.
This supports MySQL Shell dump files.

e is-dryrun: Settotrue torun basic checks and report if bulk load is possible on the given table. The
default value is f al se.

To enable i s- dryr un, use any of the following values: t rue, "true"," 1", "on" or 1.

To disable i s- dr yr un, use any of the following values: f al se, "fal se","0","of f" orO.

LOAD DATA with ALGORI THVEBULK does not support these clauses:

LOAD DATA
[ LOCAL]
[ REPLACE | | GNORE]
[ PARTITION (partition_nane [, partition_nanme] ...)]
]
[ LI NES

[ STARTI NG BY 'string']
]
[ (col _name_or _user _var
[, col_nane_or_user_var] ...)]
[ SET col _nane={expr | DEFAULT}
[, col _nane={expr | DEFAULT}] ...]

Syntax Examples

» An example that loads unsorted data from AWS S3 with 48 concurrent threads and 4G of memory:

nmysql > GRANT LOAD FROM S3 ON *.* TO | oad_user @ ocal host ;

nmysql > LOAD DATA FROM S3 ' s3-us-east-1://innodb-bul kl oad-dev-1/lineitemthbl’
| NTO TABLE |ineitem
FI ELDS TERM NATED BY "| "
OPTI ONALLY ENCLCSED BY ' "'
LI NES TERM NATED BY '\n'
PARALLEL = 48
MEMORY = 4G
ALGORI THVEBULK;

» An example that loads eight files of sorted data from AWS S3. The fi | e_prefi x ends with a period.

Thefilesarelineitemtbl.1,lineitemtbl.2,...lineitemtbl.8:
nmysql > GRANT LOAD FROM S3 ON *.* TO | oad_user @ ocal host ;
nmysql > LOAD DATA FROM S3 ' s3-us-east-1://innodb-bul kl oad-dev-1/lineitemtbl.' COUNT 8

I'N PRI MARY KEY ORDER
I NTO TABLE |ineitem
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Bulk Ingest Data to MySQL Server Limitations

FI ELDS TERM NATED BY *|*"
OPTI ONALLY ENCLOSED BY " "'
LI NES TERM NATED BY '\ n'
ALGORI THVFBULK;

» An example that performs a dry run on a sequence of MySQL Shell dump files compressed with the
ZSTD algorithm:

mysql > GRANT LOAD FROM URL ON *.* TO | oad_user @ ocal host ;

nysql > LOAD DATA FROM URL
"{"url-prefix","https://exanple.com bucket/test@ineitem@, "url -sequence-start”,0,"url-suffix","
COUNT 20
I NTO TABLE | i neitem
CHARACTER SET ???? COVPRESSI ON = {' ZSTD }
FI ELDS TERM NATED BY "|"
OPTI ONALLY ENCLCSED BY " "'
LI NES TERM NATED BY '\n'
| GNORE 20000 LI NES
ALGORI THVEBULK;

» An example that loads data with the URI keyword (supported as of MySQL 9.4.0):
mysql > GRANT LOAD FROM URL ON *.* TO | oad_user @ ocal host ;

mysql > LOAD DATA FROM URI ' https://data _files.comdata files_1.tbl"'
I NTO TABLE | i neitem
FI ELDS TERM NATED BY "|"
OPTI ONALLY ENCLCSED BY " "'
LI NES TERM NATED BY '\n'
ALGORI THVEBULK;

» An example that monitors bulk load progress in a second session.

« Review the list of stages with the following query:

nysqgl > SELECT NAME, ENABLED, TI MED FROM perfor mance_schena. set up_i nstrunents
VWHERE ENABLED=' YES' AND NAME LI KE " st age/ bul k_| oad% ;

« Enable the event s_st ages_cur r ent with the following query:

nysql > UPDATE perf or mance_schena. set up_consuner s
SET ENABLED = ' YES' WHERE NAME LI KE 'events_stages_current';

* Use one session to run bulk load, and monitor progress in a second session:

nysqgl > SELECT thread_id, event_id, event_nanme, WORK ESTI MATED, WORK COVPLETED
FROM per f or mance_schena. event s_st ages_current;

SELECT thread_id, event_id, event_nanme, WORK ESTI MATED, WORK COVWPLETED FROM perf or mance_schena. event s

F £ e e e e e eemeeaeeeaaaaa- e meeeaaaas o eeeaaaas +
| thread_id | event_id | event_nane | WORK_ESTI MATED | WORK_COWVPLETED |
F £ e e e e e eemeeaeeeaaaaa- e meeeaaaas o eeeaaaas +
| 49 | 5 | stage/bul k_| oad_unsorted/sorting | 1207551343 | 583008145 |
F £ e e e e e eemeeaeeeaaaaa- e meeeaaaas o eeeaaaas +

1 rowin set (0.00 sec)

3.2 Bulk Ingest Data to MySQL Server Limitations

» LOAD DATA with ALGORI THM=BULK supports tables with at least one column with the VECTOR data
type. If you attempt to load a table without at least one column with the VECTOR data type, an error
occurs.
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Bulk Ingest Data to MySQL Server Limitations

LOAD DATA with ALGORI THM=BULK has the following limitations:

It locks the target table exclusively and does not allow other operations on the table.

It does not support automatic rounding or truncation of the input data. It fails if the input data requires
rounding or truncation in order to be loaded.

It does not support temporary tables.

It is atomic but not transactional. It commits any transaction that is already running. On failure the
LOAD DATA statement is completely rolled back.

It cannot execute when the target table is explicitly locked by a LOCK TABLES statement.

The target table for LOAD DATA with ALGORI THVEBULK has the following limitations:

It must be empty. The state of the table should be as though it has been freshly created. If the
table has instantly added/dropped column, call TRUNCATE before calling LOAD DATA with
ALGORI THVEBULK.

It must not be partitioned.
It must not contain secondary indexes.
It must be in a file_per_tablespace, and must not be in a shared tablespace.

It must have the default row format, ROV FORMAT=DYNAM C. Use ALTER TABLE to make any
changes to the table after LOAD DATA with ALGORI THVEBULK.

It must not contain virtual or stored generated columns.
It must not contain foreign keys.

It must not contain CHECK constraints.

It must not contain triggers.

It is not replicated to other nodes.
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Chapter 4 Training and Using Machine Learning Models
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This chapter describes how to create and manage machine learning models with the AutoML feature of
MySQL Al

4.1 About AutoML

The AutoML feature of MySQL Al makes it easy to use machine learning (ML), whether you are a novice
user or an experienced ML practitioner. You provide the data, and AutoML analyzes the characteristics

of the data and creates an optimized machine learning model that you can use to generate predictions
and explanations. An ML model makes predictions by identifying patterns in your data and applying those
patterns to unseen data. AutoML explanations help you understand how these predictions are made, such
as which features of a dataset contribute most to a prediction. You can score machine learning models to
get a better understanding of the quality of the model and its ability to generate reliable predictions.
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AutoML Ease of Use

With AutoML, you can do the following:
» Classify Data

» Perform Regression Analysis

* Generate Forecasts

» Detect Anomalies

» Generate Recommendations

» Topic Modeling

4.1.1 AutoML Ease of Use

The AutoML feature of MySQL Al is purpose-built for ease of use. It requires no machine learning
expertise, specialized tools, or algorithms. With AutoML and a set of training data, you can train a
predictive machine learning model with a single call to the M._ TRAI N SQL routine.

For example:

CALL sys. ML_TRAI N(' heat waver _bench. census_train', 'revenue', NULL, @ensus_nodel);

The ML_TRAI Nroutine leverages Oracle AutoML technology to automate training of machine learning
models. Learn more about Oracle AutoML.

You can use a model created by M__ TRAI N with other AutoML routines to generate predictions and
explanations. For example, the following call to the M__PREDI CT_TABLE routine generates predictions for
a table of input data:

CALL sys. M_._PREDI CT_TABLE("' heat waven _bench. census_test', @ensus_nodel,
' heat waverm _bench. census_predictions', NULL);

All AutoML operations are initiated by running CALL or SELECT statements, which can be easily integrated
into your applications. AutoML routines reside in the MySQL sys schema. Learn more about AutoML
Routines.

In addition, with AutoML, there is no need to move or reformat your data, which saves you time and effort
while keeping your data and models secure.

To start using AutoML with sample datasets, see Machine Learning Use Cases.

What's Next

e Learn more about the following:
¢ AutoML Supervised Learning
* AutoML Workflow
» Oracle AutoML

» Learn how to Create a Machine Learning Model.

4.1.2 AutoML Workflow

A typical AutoML workflow is described below:
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AutoML Learning Types

1. When you run the M__TRAI Nroutine, AutoML retrieves the data to use for training. The training data is
then distributed across the cluster, which performs machine learning computation in parallel. See Train
a Model.

2. AutoML analyzes the training data, trains an optimized machine learning model, and stores the model
in a model catalog. See Model Catalog.

3. AutoML ML_PREDI CT_* and M._EXPLAI N_* routines use the trained model to generate predictions
and explanations on test or unseen data. See Generate Predictions and Generate Explanations.

4. Predictions and explanations are returned to the user or application that issued the query.

Optionally, the M__ SCORE routine can be used to compute the quality of a model to ensure that predictions
and explanations are reliable. See Score a Model.

To start using AutoML with sample datasets, see Machine Learning Use Cases.
What's Next
» Learn more about the following:
e AutoML Learning Types
* AutoML Ease of Use
* Oracle AutoML

» Learn how to Create a Machine Learning Model.

4.1.3 AutoML Learning Types
AutoML supports the following types of machine learning: supervised, unsupervised, and semi-supervised.

Supervised Learning

Supervised learning creates a machine learning model by analyzing a labeled dataset to learn patterns.
This means that the dataset has values associated with the column (the label) that the machine learning
model eventually generates predictions for. The model is able to predict labels based on the features

of the dataset. For example, a census and income dataset may have features such as age, education,
occupation, and country that you can use to predict the income of an individual (the label). The income
label in this dataset already has values that the machine learning model uses for training.

Once a machine learning model is trained, it can be used on unseen data, where the label is unknown, to
make predictions. In a business setting, predictive models have a variety of possible applications such as
predicting customer churn, approving or rejecting credit applications, predicting customer wait times, and
so on.

See Labeled Data and Unlabeled Data to learn more.
Unsupervised Learning

Unsupervised learning is available for forecasting, anomaly detection and topic modeling use cases. This
type of learning requires no labeled data. This means that the column (the label) the machine learning
model eventually generates predictions for has no values in the dataset for training. For example, a
dataset of credit card transactions that you use for anomaly detection has a column indicating if the
transaction is anomalous or normal, but the column has no data (unlabeled). See Generate Forecasts,
Detect Anomalies, and Topic Modeling to learn more.
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Oracle AutoML

Semi-Supervised Learning

Semi-supervised learning for anomaly detection uses a specific set of labeled data along with unlabeled
data to detect anomalies. The dataset for this type of model must have a column whose only allowed
values are 0 (normal), 1, (anomalous), and NULL (unlabeled). All rows in the dataset are used to train the
unsupervised component, while the rows with a value different than NULL are used to train the supervised
component. See Detect Anomalies and Anomaly Detection Model Types to learn more.

What's Next
* Learn more about the following:
* AutoML Ease of Use
¢ AutoML Workflow
» Oracle AutoML
» Learn how to Create a Machine Learning Model.

» Review Machine Learning Use Cases to create machine learning models with sample datasets.
4.1.4 Oracle AutoML

The AutoML M._TRAI N routine leverages Oracle AutoML technology to automate the process of training
a machine learning model. Oracle AutoML replaces the laborious and time consuming tasks of the data
analyst, whose workflow is as follows:

1. Selecting a model from a large number of viable candidate models.

2. For each model, tuning hyperparameters.

3. Selecting only predictive features to speed up the pipeline and reduce over-fitting.
4. Ensuring the model performs well on unseen data (also called generalization).

Oracle AutoML automates this workflow, providing you with an optimal model given a time budget. When
you run the AutoML ML_ TRAI N routine, that triggers the Oracle AutoML pipeline to run the following stages
in a single command:

« Data pre-processing

* Algorithm selection

Adaptive data reduction
» Hyperparameter optimization
* Model and prediction explanations

Figure 4.1 Oracle AutoML Pipeline

-]
I |
SIEIE] Data L, Algorithm L Adaptive |_,| Hyperparameter | | Model/Prediction | o ooo%
=== Preprocessor Section Data Reduction Optimization Explanations -]
Dataset (.Ieunse..'.mpute. and . Identify Su‘.rlzt.i 4 Sljltili.'lfe Idluntl‘.y u:r.lr.nul Train r!'n.:dlel Tuned
normalize features top k algarithms subsample for hyperparameters and prediction Model
the chosen model explainers odel

Oracle AutoML also produces high quality models very efficiently, which is achieved through a scalable
design and intelligent choices that reduce trials at each stage in the pipeline.
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Additional AutoML Requirements

e Scalable design: The Oracle AutoML pipeline is able to exploit both MySQL Al internode and intranode
parallelism, which improves scalability and reduces runtime.

* Intelligent choices reduce trials in each stage: Algorithms and parameters are chosen based on dataset
characteristics, which ensures that the model is accurate and efficiently selected. This is achieved using
meta-learning throughout the pipeline.

For additional information about Oracle AutoML, refer to Yakovlev, Anatoly, et al. "Oracle AutoML: A Fast
and Predictive AutoML Pipeline." Proceedings of the VLDB Endowment 13.12 (2020): 3166-3180.

What's Next
» Learn more about the following:
e AutoML Learning Types
* AutoML Ease of Use
* AutoML Workflow
* Learn how to Create a Machine Learning Model.

» Review Machine Learning Use Cases to create machine learning models with sample datasets.

4.2 Additional AutoML Requirements

Before You Begin

Model and Table Sizes

* The table used to train a model cannot exceed 10 GB, 100 million rows, or 1017 columns.

Data Requirements

» Each dataset must reside in a single table on the MySQL server. AutoML routines operate on a single
table.

e Table columns must use supported data types. See Supported Data Types for AutoML to learn more.
* NaN (Not a Number) values are not recognized by MySQL and should be replaced by NULL.
* Refer to the following requirements for specific machine learning models.

 Classification models: Must have at least two distinct values, and each distinct value should appear in
at least five rows.

« Regression models: The target column must be numeric.

columns with the same value in each row. Missing values in numerical columns are
replaced with the average value of the column, standardized to a mean of 0 and
with a standard deviation of 1. Missing values in categorical columns are replaced

Note
@ The M__TRAI Nroutine ignores columns missing more than 20% of its values and
with the most frequent value, and either one-hot or ordinal encoding is used to
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MySQL User Names

convert categorical values to numeric values. The input data as it exists in the
MySQL database is not modified by M__ TRAI N.

MySQL User Names

To use AutoML, ensure that the MySQL user name that trains a model does not have a period character
("."). For example, a user named ' j oesmi th' @ % is permitted to train a model, but a user named
"joe.smth" @% is not. The model catalog schema created by the ML_ TRAI N procedure incorporates
the user name in the schema name (for example, M._ SCHENMA j oesmi t h), and a period is not a permitted
schema name character.

What's Next

» Learn more about the following:
e AutoML Privileges
e Supported Data Types for AutoML
» Learn how to Create a Machine Learning Model.

» Review Machine Learning Use Cases to create machine learning models with sample datasets.

4.3 AutoML Privileges

To use AutoML, ask the admin user to grant you the following privileges. Replace user _nane and
dat abase_nane in the commands with the appropriate user name and database name.

Database Privileges
You need the following privileges to access the database that stores the input tables (training datasets).
nmysql > GRANT SELECT, ALTER ON dat abase_nane.* TO 'user_nane' @ % ;

You need the following privileges to access the database that stores the output tables of generated
predictions and explanations.

nysql > GRANT CREATE, DROP, | NSERT, SELECT, ALTER, DELETE, UPDATE ON dat abase_nane.* TO 'user_nane' @ % ;

Tracking and Monitoring Privileges

You need the following privileges to track/monitor the status of AutoML and AutoML routines..
nmysql > GRANT SELECT ON perfornmance_schenma.rpd_tables TO 'user_nane' @% ;
nmysql > GRANT SELECT ON perfornmance_schema.rpd_table_id TO 'user_nanme' @ % ;

nmysql > GRANT SELECT ON perfornmance_schema.rpd_query_stats TO 'user_nane' @ % ;
nmysql > GRANT SELECT ON perfornmance_schema.rpd_nm _stats TO 'user_nanme' @ % ;

Model Catalog Privileges

You need the following privileges to access machine learning models from the model catalog.

nysql > GRANT SELECT, | NSERT, CREATE, ALTER, UPDATE, DELETE, DROP, GRANT OPTI ON ON M._SCHEMA user_nane.* TO 'us

System Privileges

You need the following privileges for the system database where MySQL Al routines reside.

nmysql > GRANT SELECT, EXECUTE ON sys.* TO 'user_nane' @ % ;
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What's Next

What's Next

» Learn more about the following:
¢ Additional AutoML Requirements
e Supported Data Types for AutoML
» Learn how to Create a Machine Learning Model.

» Review Machine Learning Use Cases to create machine learning models with sample datasets.

4.4 Supported Data Types for AutoML
AutoML supports the following data types.

Numeric Data Types
e DECI MAL
 DOUBLE
e FLOAT
e« | NT
e | NT UNSI GNED
e TI NYI NT
e TI NYI NT UNSI GNED
e SMALLI NT
e« SMALLI NT UNSI GNED
e VEDI UM NT
e VEDI UM NT UNSI GNED
« BIG NT

* Bl G NT UNSI GNED

Temporal Data Types
* DATE

o TIME

DATETI ME

TI MESTAMP
* YEAR
String and Text Data Types

* VARCHAR
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Data Type Limitations

TI NYTEXT
. TEXT

MEDI UMTEXT
* LONGTEXT

Data Type Limitations

AutoML uses TfidfVectorizer to pre-process Tl NYTEXT, TEXT, MEDI UMTEXT, and LONGTEXT, and
appends the results to the data set. AutoML has the following limitations for text usage:

e The M__PREDI CT_TABLE m _resul t s column contains the prediction results and the data. This
combination must be fewer than 65,532 characters.

» AutoML only supports datasets in the English language.

» AutoML does not support text columns with NULL values.

» AutoML does not support a text target column.

» AutoML does not support recommendation tasks with a text column.

» For the forecasting task, endogenous_vari abl es cannot be text.

What's Next

» Learn more about the following:
« Additional AutoML Requirements
* AutoML Privileges
» Learn how to Create a Machine Learning Model.

» Review Machine Learning Use Cases to create machine learning models with sample datasets.

4.5 Creating a Machine Learning Model
The topics in this section go through the process of training and using a machine learning model.
Before going through these tasks, make sure to Review Additional AutoML Requirements.
To start using AutoML with sample datasets, see Machine Learning Use Cases.
4.5.1 Preparing Data
Review the following topics to learn more about preparing data for machine learning models.
4.5.1.1 Overview of Preparing Data
AutoML works with labeled and unlabeled data to train and score machine learning models.
Labeled Data

Labeled data is data that has values associated with it. It has feature columns and a target column (the
label), as illustrated in the following diagram:
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Preparing Data

Figure 4.2 Labeled Data

Labeled Data

feature_column_1
feature_column_2
feature_column_3
feature_column_4
target_column
Feature columns contain the input variables used to train the machine learning model. The target column

contains ground truth values or, in other words, the correct answers. This dataset can be considered the
training dataset.

A labeled dataset with ground truth values is also used to score a model (compute its accuracy and
reliability). This dataset should have the same columns as the training dataset but with a different set of
data. This dataset can be considered the validation dataset.

Labeled Data Example

A table of data for bank customers can be a labeled dataset. The feature columns in the table have data
related to job, marital status, education, and city of residence. The target column has the approval status
of a loan application, Yes or No. You can use some of the data in this table to train a classification machine
learning model. You can also use the data in the table that wasn't used for training to score the trained
machine learning model.

Unlabeled Data

Unlabeled data has feature columns but no target column (no answers), as illustrated below:

Figure 4.3 Unlabeled Data

Unlabeled Data
feature_column_1
feature_column_2
feature_column_3

feature_column_4

If you are training a machine learning model that does not require labeled data, such as models for topic
modeling or anomaly detection, you use unlabeled data. AutoML also uses unlabeled data to generate
predictions and explanations. It must have exactly the same feature columns as the training dataset but no
target column. This type of dataset can be considered the test dataset. Test data starts as labeled data,
but the label is not considered when the machine learning model generates predictions and explanations.
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Preparing Data

This allows you to compare the generated predictions and explanations with the real values in the dataset
before you start using “unseen data”.

The “unseen data” that you eventually use with your model to make predictions is also unlabeled data. Like
the test dataset, unseen data must have exactly the same feature columns as the training dataset but no

target column.

Unlabeled Data Example

A table of data for credit card transactions can be an unlabeled dataset. The feature columns in the table

have data related to the amount of the purchase and the location of the purchase. Because there is no
column identifying any transactions as anomalous or normal, it is unlabeled data. AutoML can train an

anomaly detection model on the unlabeled data to try and find unusual patterns in the data. A different set

of labeled data identifying anomalies in credit cards transactions can be used to score the trained model.
Example Datasets

To start using AutoML with sample datasets, see Machine Learning Use Cases. Alternatively, navigate
to the AutoML examples and performance benchmarks GitHub repository at https://github.com/oracle-
samples/heatwave-ml.

What's Next
» Learn how to Prepare Training and Testing Datasets.
» Learn how to Train a Model.
4.5.1.2 Preparing Training and Testing Datasets
You can automatically create training and testing datasets with the TRAI N_TEST_SPLI T routine.
Before You Begin
* Review the Requirements.
» Get the Required Privileges to use AutoML.
* Review the Data Types Supported For Machine Learning Tasks.
Overview

The TRAI N_TEST_SPLI T routine takes your datasets and prepares new tables for training and testing
machine learning models. Two new tables in the same database are created with the following names:

e [original _table _nanme]_train
e [original _table nane] test
The split of the data between training and testing datasets depends on the machine learning task.

 Classification: A stratified split of data. For each class in the dataset, 80% of the samples go into the
training dataset, and the remaining go into the testing dataset. If the number of samples in the 80%
subset is fewer than five, then five samples are inserted into the training dataset.

» Regression: A random split of data.

» Forecasting: A time-based split of data. The data is inserted in order according to dat et i ne_i ndex
values. The first 80% of the samples go into the training dataset. The remaining samples go into the
testing dataset.
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Preparing Data

» Unsupervised anomaly detection: A random split of data. 80% of the samples go into the training
dataset, and the remaining samples go into the testing dataset.

» Semi-supervised anomaly detection: A stratified split of data.

» Anomaly detection for log data: A split of data based on primary key values. The first 80% of the samples
go into the training dataset. The remaining samples go into the testing dataset. Review requirements
when running Anomaly Detection for Logs.

* Recommendations: A random split of data.
» Topic modeling: A random split of data.
Parameters to Prepare Training and Testing Datasets
To run the TRAI N_TEST_SPLI T routine, you use the following parameters:

» tabl e_nane: You must provide the fully qualified name of the table that contains the dataset to split
(schema_nane. t abl e_nane).

» target _col um_nane: Classification and semi-supervised anomaly detection tasks require a target
column. All other tasks do not require a target column. If a target column is not required, you can set this
parameter to NULL.

» opti ons: Set the following options as needed as key-value pairs in JSON object format. If no options
are needed, set this to NULL.

e t ask: Set the appropriate machine learning task: cl assi fi cati on, regressi on, forecasting,
anomal y_detection,| og_anonal y _detection,recommendati on, ortopi c_nodel i ng. If the
machine learning task is not set, the default task is cl assi fi cati on.

e dat eti nme_i ndex: Required for forecasting tasks. The column that has datetime values.
The following data types for this column are supported:
o DATETI ME
e TI MESTAMP
 DATE
o TI ME
* YEAR

e sem super vi sed: If running an anomaly detection task, set this to t r ue for semi-supervised
learning, or f al se for unsupervised learning. If this is set to NULL, then the default value of f al se is
selected.

TRAIN_TEST_SPLIT Example
To automatically generate a training and testing dataset:

1. Runthe TRAI N TEST_SPLI T routine.

mysql > CALL sys. TRAIN TEST_SPLI T(' tabl e_nane', 'target_col umm_nane', options);

Replace t abl e_nane, t ar get _col unm_nane, and opt i ons with your own values. For example:

nysqgl > CALL sys. TRAIN TEST SPLIT('data files_db.data_files_1', 'class', JSON OBJECT('task', 'classifica
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Training a Model

2. Confirm the two datasets are created ([original_table _name]_train and [original_table _name]_test) by
querying the tables in the database.

nmysql > SHOW TABLES;

| data_files_1 [
| data_files_1_ test [
| data_files_1 train [

What's Next

e Learn how to Train a Model.

4.5.2 Training a Model

Run the ML_TRAI Nroutine on a training dataset to produce a trained machine learning model.
Before You Begin

* Review how to Prepare Data.

» Review Additional AutoML Requirements.
ML_TRAIN Overview

M__TRAI N supports training of the following models:

 Classification: Assign items to defined categories.

» Regression: Generate a prediction based on the relationship between a dependent variable and one or
more independent variables.

» Forecasting: Use a timeseries dataset to generate forecasting predictions.

« Anomaly Detection: Detect unusual patterns in data.

« Recommendation: Generate user and product recommendations.

» Topic Modeling: Generate words and similar expressions that best characterize a set of documents.
The training dataset used with ML_TRAI N must reside in a table on the MySQL server.

ML_TRAI N stores machine learning models in the MODEL _CATALOGtable. See The Model Catalog to learn
more.

The time required to train a model can take a few minutes to a few hours depending on the following:

e The number of rows and columns in the dataset. AutoML supports tables up to 10 GB in size with a
maximum of 100 million rows and or 1017 columns.

* The specified ML_TRAI N parameters.

To learn more about M__TRAI N requirements and options, see ML_TRAIN or Machine Learning Use
Cases.

The quality and reliability of a trained model can be assessed using the M__ SCORE routine. For more
information, see Score a Model. ML_TRAI N displays the following message if a trained model has a low
score: Mbdel Has a |ow training score, expect |ow quality nodel explanations.
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ML_TRAIN Example

Before training a model, it is good practice to define your own model handle instead of automatically
generating one. This allows you to easily remember the model handle for future routines on the trained
model instead of having to query it, or depending on the session variable that can no longer be used when
the current connection terminates. See Defining Model Handle to learn more.

To train a machine learning model:
1. Optionally, set the value of the session variable, which sets the model handle to this same value.
nysqgl > SET @ari abl e = ' nodel _handl e';
Replace @ari abl e and nodel _handl e with your own definitions. For example:
nysql > SET @ensus_nodel = 'census_test';
The model handle is setto census_t est.
2. Runthe ML_TRAI Nroutine.
nysqgl > CALL sys. ML_TRAI N(' tabl e_nane', 'target_columm_nane', JSON OBJECT('task', 'task_nane'), @ariabl
Replace t abl e_nane, t arget _col unm_nane, t ask_nane, and var i abl e with your own values.

The following example runs M__TRAI Non the census_dat a. census_t r ai n training dataset.

nmysql > CALL sys. ML_TRAI N(' census_data.census_train', 'revenue', JSON OBJECT('task', 'classification'),

Where:

e census_dat a. census_trai n is the fully qualified name of the table that contains the training
dataset (schema_nane. t abl e_nane).

e revenue is the name of the target column, which contains ground truth values.
« JSON OBJECT('task', 'classification') specifies the machine learning task type.

e @ensus_nodel is the session variable previously set that defines the model handle to the name
defined by the user: census_t est . If you do not define the model handle before training the model,
the model handle is automatically generated, and the session variable only stores the model handle
for the duration of the connection. User variables are written as @ ar _nane. Any valid name for a
user-defined variable is permitted. See Work with Model Handles to learn more.

3. When the training completes, query the model catalog for the model handle and the name of the
trained table to confirm the model handle is correctly set. Replace user 1 with your own user name.

nysql > SELECT nodel _handl e, train_table_name FROM M._SCHEVA user 1. MODEL_CATALGCG,
o o C O CEONCE 00O OCCEOOCOC 00O COO0COO0000C00000000000000 =N F=F-F-J=ppsyepuppayep=ys +

| nodel _handl e

I
o o C O CEONCE 00O OCCEOOCOC 00O COO0COO0000C00000000000000 =N F=F-F-J=ppsyepuppayep=ys +
| census_test | census_data.census_train |
o o C O CEONCE 00O OCCEOOCOC 00O COO0COO0000C00000000000000 =N F=F-F-J=ppsyepuppayep=ys +
1 rowin set (0.0450 sec)
Tip
; When done working with a trained model, it is good practice to unload it. See

Unload a Model.
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What's Next

* For details on all training options and to view more examples for task-specific models, see ML_TRAIN.

e Learn how to Load a Model.

4.5.3 Loading a Model

You must load a machine learning model from the model catalog before running AutoML routines other
than ML_TRAI N. A model remains loaded and can be called repetitively by AutoML routines until it is
unloaded using the M._ MODEL _UNL QAD routine, or until the cluster is restarted.

A model can only be loaded by the MySQL user that created the model unless you grant access to other
users. For more information, see Grant Other Users Access to a Model.

Review ML_MODEL_LOAD parameter descriptions.

Before You Begin

» Review how to Train a Model.

Loading a Model with the Session Variable

After training a model, you set a session variable for the model handle that you can use until the current
connection ends.

The following example loads an AutoML model from the model catalog by using the session variable
nysqgl > CALL sys. M._MODEL_LOAD( @ensus_nodel , NULL);

Where:

e @ensus_nodel is the session variable that contains the model handle.

» NULL is specified in place of the user name of the model owner. You are not required to specify a user
name.

Loading a Model Handle with the Defined Model Handle Name

Before training a machine learning model, it is good practice to define a model handle name instead of
automatically generating one. This allows you to easily remember the model handle for future routines on
the trained model instead of having to query it, or depending on the session variable that can no longer be
used when the current connection terminates. See ML_TRAIN Example.

The following example uses the defined model handle name to load the model.

nmysql > CALL sys. M._MODEL LOAD(' census_test', NULL);

Loading the Model with the Automatically Generated Model Handle

If you do not define a model handle name before training a machine learning model, it is automatically
generated. If the connection for the session variable of a model handle ends, you need to load the model
with the model name.

1. Query the model handle, model owner, and the trained table name from the model catalog table.
Replace user 1 with your own user name.

34



Generating Predictions

nysql > SELECT nodel _handl e, nodel _owner, train_table_nanme FROM M._SCHEVA user 1. MODEL_CATALGCG,

o o C O CEONCE 00O OCCEOOCOC 00O COO0COO0000C00000000000000 doococcocoocooo doocococoocooooooooooooooc o +
| model _handl e | rmodel _owner | train_table_nane |
o o C O CEONCE 00O OCCEOOCOC 00O COO0COO0000C00000000000000 doococcocoocooo doocococoocooooooooooooooc o +
| census_data.census_train_adm n_1745261646953 | admi n | census_data.census_train |
| census_data.census_train_adm n_1745334557047 | admin | census_data.census_train |
| census_data. census_train_adm n_1745336500455 | admi n | census_data.census_train |
o o C O CEONCE 00O OCCEOOCOC 00O COO0COO0000C00000000000000 doococcocoocooo doocococoocooooooooooooooc o +

3 rows in set (0.0431 sec)
2. Copy the appropriate nodel _handl e and use it to load the machine learning model.
mysql > CALL sys. ML_MODEL_LOAD(' census_dat a. census_trai n_user1_1745261646953', NULL);
Verifying Model is Loaded
You have the option to verify that model is loaded by using the M__ MODEL _ACTI VE routine.
The following example verifies the model previously loaded is active.

1. Run M._MODEL_ACTI VE on all active and loaded models and assign a session variable.

mysql > CALL sys. M._MODEL_ACTIVE("all', @ariable);

Replace var i abl e with your own value. For example:

mysql > CALL sys. ML_MODEL_ACTI VE(' al | ', @mdel s);

2. Query the session variable previously created. Replace nodel s with your own value.

nmysql > SELECT @rodel s;

| [{"total nodel size(bytes)": 388948}, {"admin": [{"census_test": {"format": "HWLv2.0", "nodel _size(b

1 rowin set (0.0431 sec)

The output displays the loaded model with information on the user that trained the model, the size of
the model, the model handle, and its format.

What's Next
 For details on all model load options, see ML_MODEL_LOAD.

» Learn how to Generate Predictions.

4.5.4 Generating Predictions

Predictions are generated by running ML._PREDI CT_ROWor M__PREDI CT_TABLE on trained models. The
row or table of data must have the same feature columns as the data used to train the model. If the target
column exists in the data to run predictions on, it is not considered during prediction generation.

ML_PREDI CT_ROWgenerates predictions for one or more rows of data. M._PREDI CT_TABLE generates
predictions for an entire table of data and saves the results to an output table.

4.5.4.1 Generating Predictions for a Row of Data

M._PREDI CT_ROWgenerates predictions for one or more rows of data specified in JSON format. You
invoke the routine with the SELECT statement.
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Generating Predictions

This topic has the following sections.
» Before You Begin

» Preparing to Generate a Row Prediction

Inputting Data to Generate a Row Prediction
» Generating Predictions on One or More Rows of Data

* What's Next

Before You Begin

» Review the following:
e Prepare Data
e Train a Model

¢ Load a Model

Preparing to Generate a Row Prediction

Before running M__PREDI CT_ROW you must train, and then load the model you want to use.

1. The following example trains a dataset with the classification machine learning task.

nmysql > CALL sys. ML_TRAI N(' census_data.census_train', 'revenue',

2. The following example loads the trained model.

nysqgl > CALL sys. M._MODEL_LOAD( @ensus_nodel , NULL);

For more information about training and loading models, see Train a Model and Load a Model.

JSON_OBJECT(" task' ,

‘classification'),

After training and loading the model, you can generate predictions on one or more rows of data. For

parameter and option descriptions, see ML_PREDICT_ROW.

Inputting Data to Generate a Row Prediction

One way to generate predictions on row data is to manually enter the row data into a session variable, and

then generate a prediction by specifying the session variable.

1. Define values for each column to predict. The column names must match the feature column names in

the trained table.

nysql > SET @ariable = (JSON_OBJECT("col utm_nane", val ue,

"col um_nane",

val ue,

nmodel _handl e,

In the following example, create the @ ow_i nput session variable and enter the data to predict into the

session variable.

nysqgl > SET @ow_i nput = JSON_OBJECT(

"age", 25,

"wor kcl ass", "Private",
"fnlwgt", 226802,
"education", "11th",

"educati on- nun', 7,
"marital -status", "Never-married",
"occupation", "Mchine-op-inspct",
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"rel ationshi p", "Om-child",
"race", "Bl ack",

"sex", "Male",

“capital -gain", O,

"capital -l oss", O,

"hour s- per - week", 40,
"native-country", "United-States");

2. Run M._PREDI CT_ROWand specify the session variable set previously. Optionally, use \ Gto display
information in an easily readable format.

nysql > SELECT sys. M._PREDI CT_RON @ari able, ...), nodel _handle, options);

Replace vari abl e, nodel _handl e, and opt i ons with your own values. For example:

nmysql > SELECT sys. M._PREDI CT_RON @ ow_i nput, @ensus_nodel, NULL)\G
EEEEEEEEEEREEREEEEREEEEESEEEES] 1 rOW EEEEEEEEEEREEEEEEEREEEEEEESESES]
sys. M._PREDI CT_RON @ ow_i nput, @ensus_nodel, NULL):
{
"age": 25,
"sex": "Mal e",
"race": "Bl ack",
"fnlwgt": 226802,
"education": "11th",
"wor kcl ass": "Private",
"Prediction": "<=50K",
"m _results": {
"predictions": {
"revenue": "<=50K"
i
"probabilities": {
">50K": 0.0032,
"<=50K": 0.9968
}
i
"occupation": "Mchine-op-inspct",
"capital -gain": O,
"capital -loss": O,
"rel ati onshi p": "Om-child",
"education-nunl': 7,
"hour s- per - week": 40,
"marital -status": "Never-married",
"npative-country": "United-States"

}
1 rowin set (2.2218 sec)

Where:

e @ow_i nput is a session variable containing a row of unlabeled data. The data is specified in JSON
key-value format. The column names must match the feature column names in the training dataset.

e @ensus_nodel is the session variable that contains the model handle. Learn more about Model
Handles.

* NULL sets no options to the routine.
The prediction on the data is that the revenue is <=50K wi th a probability of 99.7%.
Generating Predictions on One or More Rows of Data

Another way to generate predictions is to create a JSON_OBJECT with specified columns and labels, and
then generate predictions on one or more rows of data in the table.

nysqgl > SELECT sys. M._PREDI CT_RON JSON_OBJECT( " out put _col _nane", schena. i nput_col nane’, "output_col nane"
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nodel _handl e, options) FROMinput_table_name LIMT N,

The following example specifies the table and columns to use for the prediction and assigns output labels
for each table-column pair. No options are set with NULL. It also defines to predict the top two rows of the
table. Optionally, use \ Gto display information in an easily readable format.

mysql > SELECT sys. M._PREDI CT_ROW JSON_OBJECT(
"age", census_train. age’,
"wor kcl ass", census_train. workclass’,
"fnlwgt", census_train. fnlwgt",
"education", census_train. education,
"educati on-nunt', census_train. education-num,
"marital -status", census_train. marital-status’,
"occupation", census_train. occupation’,
"rel ati onshi p", census_train. relationship”,
“race", census_train. race’,
"sex", census_train. sex,
"capital -gain", census_train. capital-gain’,
"capital -1 o0ss", census_train. capital-loss",
"hour s- per-week", census_train. hours-per-week",
"native-country", census_train. native-country'),
@ensus_nodel , NULL) FROM census_dat a. census_train LIMT 2\G
khkkkkhkkkhkkkhkkhkhkkhkhkkhkkkhhkhkkhkkhkkkhkkkx*x 1. I’OW khkkkkhkkkhkkkhkkhkhkkhkhkkhkhkkhhkhkkhkkhkhkkhkkkx*x
sys. M._PREDI CT_ROW JSON_OBJECT(
"age", census_train. age’,
"wor kcl ass", census_train. workclass”,
"fnlwgt", census_train. fnlwgt",
"education", census_train. education’,
"educati on-nuni', census_train. education-num,
"marital -status", census_train. marita: {

"age": 62,
"sex": "Fenmal e",
"race": "White",

"fnlwgt": 123582,
"education": "10th",
“wor kcl ass": "Private",
"Prediction": "<=50K",
"m _results": {
"predictions": {
"revenue": "<=50K"
iE
"probabilities": {
">50K": 0.0106,
"<=50K": 0.9894
}
iE
"occupation": "CQ her-service",
"capital -gain": O,
"capital -1oss": O,
“rel ati onshi p": "Unmarried",
"education-nuni: 6,
"hour s- per - week": 40,
"marital -status": "Divorced",
"pative-country": "United-States"

LEER R EEEEEE R EEE L ] FOW FXX*FdA KR KKKk ok kA XK K h ok kXK K* K

sys. M._PREDI CT_ROW JSON_OBJECT(

"age", census_train. age’,

"wor kcl ass", census_train. workclass’,
"fnlwgt", census_train. fnlwgt",

"education", census_train. education’,
"educati on-nunf', census_train. education-num,
"marital -status", census_train. marita: {

"age": 32,
"sex": "Fenmal e",
"race": "Wite",

"fnlwgt": 174215,
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2 rows in set (9.6548 sec)

"education": "Bachel ors",
"wor kcl ass": "Federal -gov",
"Prediction": "<=50K",

"m _results": {

"predictions": {
"revenue": "<=50K"

}

"probabilities": {
">50K": 0.3249,
"<=50K": 0.6751

}

"occupation": "Exec-managerial ",
"capital -gain": O,

"capital -1oss": O,

“rel ati onshi p": "Not-in-famly",
"education-nuni: 13,

"hour s- per - week": 60,

"marital -status": "Never-married",
"pative-country": "United- States"

The output generates revenue predictions for the four rows of data.

What's Next

Review ML_PREDICT_ROW for parameter descriptions and options.

 After generating predictions for a row of data, learn how to Generate Explanations for a Row of Data to
get insight into which features have the most influence on the predictions.

» Learn how to Generate Predictions for a Table.

» Learn how to Score a Model to get insight into the quality of the model.

4.5.4.2 Generating Predictions for a Table

ML_PREDI CT_TABLE generates predictions for an entire table of trained data. Predictions are performed in

parallel.

M._PREDI CT_TABLE is a compute intensive process. If M._PREDI CT_TABLE takes a long time to

complete, manually limit input tables to a maximum of 1,000 rows.

Before You Begin
* Review the following:
¢ Prepare Data
e Train a Model
* Load a Model

Input Tables and Output Tables

You can specify the output table and the input table as the same table if all the following conditions are

met:

» The input table does not have the columns that are created for the output table when generating

predictions. Output columns are specific to each machine learning task. Some of these columns include:
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e Prediction
em _results

» The input table does not have a primary key, and it does not have a column named
_4aadl9cabe_pk_i d. This is because M__PREDI CT_TABLE adds a column as the primary key with
the name _4aadl19ca6be_pk_i d to the output table.

e The input table was not trained with the | og_anonal y_det ect i on task.

If you specify the output table and the input table as the same name, the predictions are inserted into the
input table.

Preparing to Generate Predictions for a Table
Before running ML._PREDI CT_TABLE, you must train, and then load the model you want to use.
1. The following example trains a dataset with the classification machine learning task.
mysql > CALL sys. ML_TRAI N(' census_data. census_train', 'revenue', JSON OBJECT('task', 'classification'), @er

2. The following example loads the trained model.

nysqgl > CALL sys. M._MODEL_LOAD( @ensus_nodel , NULL);
For more information about training and loading models, see Train a Model and Load a Model.

After training and loading the model, you can generate predictions for a table of data. For parameter and
option descriptions, see ML_PREDICT_TABLE.

Generating Predictions for a Table

To generate predictions for a table, define the input table, the model handle, the output table, and any
additional options.

mysql > CALL sys. M._PREDI CT_TABLE(t abl e_name, nodel _handl e, output_tabl e _nanme), [options]);

The following example generates predictions for the entire table in the trained and loaded model.

nmysql > CALL sys. M._PREDI CT_TABLE(' census_dat a. census_train', @ensus_nodel, 'census_data.census_train_predicti
Where:

e census_dat a. census_trai nis the fully qualified name of the test dataset table
(schema_nane. t abl e_nane). The table must have the same feature column names as the training
dataset. The target column is not required. If it present in the table, it is not considered when generating
predictions.

 @ensus_nodel is the session variable that contains the model handle. Learn more about Model
Handles.

» census_dat a. census_trai n_predictions is the output table where predictions are stored. A fully
qualified table name must be specified (scherma_nane. t abl e_nane). If the table already exists, an
error is returned.

* NULL sets no options to the routine.

When the output table is created, you can query a sample of the table to review predictions.

nmysqgl > SELECT * FROM table_name LIMT N,
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Replace t abl e_nane with your own table name, and N with the number of rows from the table you want to
view.

The following example queries the top five rows of the output table.

nysqgl > SELECT * FROM census_train_predictions LIMT 5

e [ TR Fomm e meeeaaaas Hommmam - Fommmm e mmmeaa - E T T
_4aadl9cabe_pk_id | age | workclass | fnlwgt | education | education-num | narital-status
e [ TR Fomm e meeeaaaas Hommmam - Fommmm e mmmeaa - E T T
1| 37| Private | 99146 | Bachelors | 13 | Married-civ-spouse
2| 34| Private | 27409 | 9th | 5 | Married-civ-spouse
3| 30| Private | 299507 | Assoc-acdm | 12 | Separated
4| 62| Self-enmp-not-inc | 102631 | Some-col |l ege | 10 | W dowed |
5| 51| Private | 153486 | Sone-college | 10 | Married-civ-spouse
e [ TR Fomm e meeeaaaas Hommmam - Fommmm e mmmeaa - E T T

5 rows in set (0.0014 sec)

The predictions and associated probabilities are displayed in the M _r esul t s column. You can compare
the predicted revenue values with the real revenue values in the table. If needed, you can refine and train
different sets of data to try and generate more reliable predictions.

What's Next

Review ML_PREDICT_TABLE for parameter descriptions and options.

After generating predictions on a table, learn how to Generate Explanations on a table to get insights into
which features have the most influence on the predictions.

Learn how to Generate Predictions for a Row of Data.

Learn how to Score a Model to get insight into the quality of the model.

4.5.5 Generating Model Explanations

After the ML_TRAI Nroutine, use the M._EXPLAI N routine to train model explainers for AutoML. By default,
the ML_TRAI N routine trains the Permutation Importance model explainer.

This topic has the following sections.

Before You Begin

Explanations Overview

Model Explainers

Unsupported Model Types

Preparing to Generate a Model Explanation

Retrieve the Default Permutation Importance Explanation
Generating a Model Explanation

What's Next

Before You Begin

Review the following:
e Prepare Data

¢ Train a Model
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¢ Load a Model

Explanations Overview

Explanations help you understand which features have the most influence on a prediction. Feature
importance is presented as a value ranging from -1 to 1. A positive value indicates that a feature
contributed toward the prediction. A negative value indicates that the feature contributed toward a different
prediction. For example, if a feature in a loan approval model with two possible predictions (‘approve' and
'reject’) has a negative value for an 'approve' prediction, that feature would have a positive value for a
'reject’ prediction. A value of O or near O indicates that the feature value has no impact on the prediction to
which it applies.

Model Explainers

Model explainers are used when you run the M__EXPLAI N routine to explain what the model learned from
the training dataset. The model explainer provides a list of feature importance to show what features the
model considered important based on the entire training dataset. The M__EXPLAI Nroutine can train these
model explainers:

e The Permutation Importance model explainer, specified as per nut at i on_i nport ance, is the default
model explainer. M._ TRAI N generates this model explainer when it runs.

» The Partial Dependence model explainer, specified as parti al _dependence, shows how changing
the values of one or more columns changes the value that the model predicts. When you train this model
explainer, you need to specify some additional options. See ML_EXPLAIN to learn more.

» The SHAP model explainer, specified as shap, produces feature importance values based on Shapley
values.

» The Fast SHAP model explainer, specified as f ast _shap, is a subsampling version of the SHAP model
explainer, which usually has a faster runtime.

The model explanation is stored in the model catalog along with the machine learning model in the
nodel _expl anat i on column. See The Model Catalog. If you run M._ EXPLAI N again for the same model
handle and model explainer, the field is overwritten with the new result.

Unsupported Model Types
You cannot generate model explanations for the following model types:
» Forecasting

 Recommendation

Anomaly detection

Anomaly detection for logs
» Topic modeling
Preparing to Generate a Model Explanation
Before running ML_ EXPLAI N, you must train, and then load the model you want to use.

1. The following example trains a dataset with the classification machine learning task.

nysqgl > CALL sys. ML_TRAI N(' census_dat a. census_train', 'revenue', JSON OBJECT('task', 'classification'), @er
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2. The following example loads the trained model.

nysqgl > CALL sys. M._MODEL_LOAD( @ensus_nodel , NULL);
For more information about training and loading models, see Train a Model and Load a Model.

After training and loading the model, you can generate model explanations. For option and parameter
descriptions, see ML_EXPLAIN.

Retrieve the Default Permutation Importance Explanation

After training and loading a model, you can retrieve the default model explanation using the
per mut at i on_i nport ance explainer from the model catalog. See The Model Catalog.

nmysql > SELECT col uim FROM M__SCHENMA user 1. MODEL_CATALOG WHERE nodel _handl e=npdel _handl e;

The following example retrieves the model explainer column from the model catalog of the previously
trained model. The JSON_PRETTY parameter displays the output in an easily readable format.

nysqgl > SELECT JSON_PRETTY(nodel _expl anati on) FROM M._SCHEMA user 1. MODEL_CATALOG WHERE nodel _handl e=@ensus.

"pernutation_i nportance": {
"age": 0.0292,
"sex": 0.0023,
"race": 0.0019,
"fnlwgt": 0.0038,
"education": 0.0008,
"wor kcl ass": 0. 0068,
"occupation": 0.0223,
"capital -gain": 0.0479,
"capital -1 o0ss": 0.0117,
"rel ati onshi p": 0.0234,
"education-nuni': 0.0352,
"hour s- per-week": 0.0148,
"marital -status": 0.024,
"native-country": 0.0

1 rowin set (0.0427 sec)

Replace user 1 and @ensus_nodel with your own user name and session variable.

The explanation displays values of permutation importance for each column.
Generating a Model Explanation

To generate a model explanation, run the M__ EXPLAI N routine.

nysqgl > CALL sys. M._EXPLAIN ('table_nane', 'target_columm_nane', nodel _handle, [options]);

The following example generates a model explanation on the trained and loaded model with the shap
model explainer.

nmysqgl > CALL sys. M._EXPLAI N(' census_dat a. census_train', 'revenue', @ensus_nodel, JSON OBJECT(' nodel _expl ai |
Where:

» census_dat a. census_t rai n is the fully qualified name of the table that contains the training dataset
(schema_nane. t abl e_nane).
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e revenue is the name of the target column, which contains ground truth values.
e @ensus_nodel isthe session variable for the trained model.
» nodel _expl ai ner is set to shap for the SHAP model explainer.

After running ML_ EXPLAI N, you can view the model explanation in the Model Catalog. See The Model
Catalog. The following example views the model explanation for the previous command. It provides values
for each column representing importance values with the shap explainer.

nmysql > SELECT JSON _PRETTY( nodel _expl anati on) FROM M._SCHEMA user 1. MODEL_CATALOG WHERE nodel _handl e=@ensus_nod

"shap": {
"age": 0.0467,
"sex": 0.033,
"race": 0.0155,
"fnlwgt": 0.0185,
"education": 0.016,
"wor kcl ass": 0.0255,
"occupation": 0.0001,
"capital -gain": 0.0217,
"capital -loss": 0.0001,
"rel ati onshi p": 0.0426,
"educati on- nuni': 0. 0186,
"hour s- per - week": 0.0148,
"marital -status": 0.024,
"pative-country": 0.0

b

"permut ati on_i nportance": {
"age": -0.0057,
"sex": 0.0002,
"race": 0.0001,
"fnlwgt": 0.0103,
"education": 0.0108,
"wor kcl ass": 0.0189,
"occupation": 0.0,
"capital -gain": 0.0304,
"capital -loss": 0.0,
"rel ati onshi p": 0.0195,
"educati on- nuni': 0.0152,
"hour s- per - week": 0. 0235,
"marital -status": 0.0099,
"pative-country": 0.0

1 rowin set (0.0427 sec)

What's Next
* Review ML_EXPLAIN for parameter descriptions and options.
» Learn how to Generate Prediction Explanations.

» Learn more about the The Model Catalog.

4.5.6 Generating Prediction Explanations

Prediction explanations are generated by running M._ EXPLAI N_ROWor M._EXPLAI N_TABLE on
unlabeled data. The data must have the same feature columns as the data used to train the model. The
target column is not required.
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Prediction explanations are similar to model explanations, but rather than explain the whole model,
prediction explanations explain predictions for individual rows of data. See Explanations Overview to learn
more.

You can train the following prediction explainers:

» The Permutation Importance prediction explainer, specified as per nut at i on_i nport ance, is the
default prediction explainer, which explains the prediction for a single row or table. Right after training
and loading a model, you can run M__EXPLAI N_ROWand M._EXPLAI N_TABLE with this prediction
explainer directly without having to run M__EXPLAI N first.

» The SHAP prediction explainer, specified as shap, uses feature importance values to explain the
prediction for a single row or table. To run this prediction explainer with M_._ EXPLAI N_ROWand
M._EXPLAI N_TABLE, you must run M_._ EXPLAI N first.

ML__EXPLAI N_ROWgenerates explanations for one or more rows of data. M._ EXPLAI N_TABLE generates
explanations on an entire table of data and saves the results to an output table. M._ EXPLAI N_* routines
limit explanations to the 100 most relevant features.

4.5.6.1 Generating Prediction Explanations for a Row of Data

M._EXPLAI N_ROWexplains predictions for one or more rows of unlabeled data. You invoke the routine by
using a SELECT statement.

This topic has the following sections.
» Before You Begin
e Unsupported Model Types
» Preparing to Generate a Row Explanation
» Generating a Row Prediction Explanation with the Default Permutation Importance Explainer
» Generating a Row Prediction Explanation with the SHAP Explainer
* What's Next
Before You Begin
» Review the following:
e Prepare Data
e Train a Model
* Load a Model
Unsupported Model Types
You cannot generate prediction explanations on a row of data for the following model types:
» Forecasting
* Recommendation
* Anomaly detection

» Anomaly detection for logs
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e Topic modeling
Preparing to Generate a Row Explanation
Before running ML_ EXPLAI N_ROW you must train, and then load the model you want to use.

1. The following example trains a dataset with the classification machine learning task.

mysql > CALL sys. ML_TRAI N(' census_data. census_train', 'revenue', JSON OBJECT('task', 'classification'), @er

2. The following example loads the trained model.
nysqgl > CALL sys. M._MODEL_LOAD( @ensus_nodel , NULL);
For more information about training and loading models, see Train a Model and Load a Model.

After training and loading the model, you can generate prediction explanations for one or more rows. For
parameter and option descriptions, see ML_EXPLAIN_ROW.

Generating a Row Prediction Explanation with the Default Permutation Importance Explainer

After training and loading a model, you can run ML_EXPLAI N_ROWMo generate a row prediction
explanation with the default Permutation Importance explainer. However, if you train the shap prediction
explainer with M._EXPLAI N, you need to run M__EXPLAI N again with the per mut at i on_i nport ance
explainer before running ML_ EXPLAI N_ROMwith the same explainer.

The following example enters a row of data to explain into a session variable. The session variable is then
used in the M._ EXPLAI N_ROWroutine.

1. Define values for each column to predict. The column names must match the feature column names in
the trained table.

nysql > SET @ariable = (JSON_OBJECT("col utm_nanme", val ue, "columm_nane", value, ...), nodel handl e, options

In the following example, assign the data to analyze into the @ ow_i nput session variable.

nmysql > SET @ow_i nput = JSON_OBJECT(

"age", 31,

"wor kcl ass", "Private",

"fnlwgt", 45781,

"education", "Masters",

"educati on- nunm', 14,

"marital -status", "Married-civ-spouse",
"occupation", "Prof-specialty",
"relationship", "Not-in-famly",
"race", "Wite",

"sex", "Fenale",

"capital -gain", 14084,
"capital -l oss", 2042,

"hour s- per - week", 40,
"pative-country", "lIndia");

2. Runthe M__EXPLAI N_ROWroutine.

nysql > SELECT sys. M._EXPLAI N ROA(i nput _data, nodel _handle, [options]);

In the following example, include the session variable previously created. Optionally, use \ Gto display
the output in an easily readable format. The output is similar to the following:

nmysql > SELECT sys. M._EXPLAI N RON @ ow_i nput, @ensus_nodel, JSON OBJECT(' prediction_expl ai ner',

R R R R R R R R l r ow R R R R R R R R R R R R

sys. ML_EXPLAI N_ RON @ ow_i nput, @ensus_nodel ,
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JSON_OBJECT( ' pr edi

ction_expl ai ner',

{
"age": 31,
"sex": "Femal e",
"race": "Wiite",
"Notes": "capital -gain (14084) had the |argest
"fnlwgt": 45781,
"education": "Masters",
"wor kcl ass": "Private",

"Prediction"

“m _results"
"not es":
"predicti

"revenue":

}

"wor

: ">50K",

A

"capital -gain (14084) had the | argest
ons": {

" >50K"

"attributions": {
"age":
"sex":
"race":
“fnlwgt":
"education":

0. 34,
0,
0,
0,
0,
kcl ass": 0O

“occupation": O,

“capital -gain": 0.97,
“capital -loss": O,
“rel ati onshi p": O,
"education-nuni': 0.04,
“hour s- per - week": 0,

" mar

}
b

"occupation"

ital-status": 0

: "Prof-specialty",

“capital -gai n": 14084,

"capital -1 oss": 2042,
“relationship": "Not-in-famly",
"education-nuni': 14,

"hour s- per - week":

40,

'pernut ati on_i mportance')):

i npact towards predicting >50K",

i npact towards predicting >50K",

"marital -status":
“native-country":
"age_attribution":
"sex_attribution":
"race_attribution":

“Married-civ-spouse",
"I ndia",

0. 34,
0,
0,

“fnlwgt_attr

“education_attribution":
"wor kcl ass_attribution": 0

"capi tal -gai

i bution": O,

0,

0,

"occupation_attribution":
n_attribution": 0.97,
“capital -loss_attribution": O,
“rel ationship_attribution": O,
“educati on-num attribution": 0.04,
0,

“hour s- per-week_attribution":

"marital -status_attribution": O

1 rowin set (6.3072 sec)

The output provides an explanation on the column that had the largest impact towards the prediction, and
the column that contributed the most against the prediction.

Generating a Row Prediction Explanation with the SHAP Explainer

To generate a row prediction explanation with the SHAP explainer, you must first run the SHAP explainer

with ML_EXPLAI N.

1. Runthe ML._EXPLAI Nroutine.

nysql > CALL sys. M._EXPLAI N (

"tabl e_nane',

"target _col um_nane',

nmodel _handl e,

[options]);
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The following example runs the shap explainer.

nysqgl > CALL sys. M._EXPLAI N(' census_dat a. census_train', 'revenue', @ensus_nodel, JSON OBJECT(' prediction_ex
Where:

e census_dat a. census_trai n is the fully qualified name of the table that contains the training
dataset (schena_nane. t abl e_nane).

e revenue is the name of the target column, which contains ground truth values.
e @ensus_nodel isthe session variable for the trained model.
e prediction_explainer is setto shap for the SHAP prediction explainer.

Define values for each column to predict. The column names must match the feature column names in
the trained table.

nmysql > SET @ariable = (JSON_OBJECT("col utm_nane", val ue, "columm_nane", value, ...), nodel _handl e, options

In the following example, assign the data to analyze into the @ ow_i nput session variable.

nysql > SET @ ow_i nput = JSON_OBJECT(
"age", 25,
"wor kcl ass", "Private",
"fnlwgt", 226802,
"education", "11th",
"educati on- nun', 7,

"marital -status", "Never-married",
"occupation", "Mchine-op-inspct",
“rel ati onshi p", "Om-child",
"race", "Black",

"sex", "Male",

“capital -gain", O,

"capital -l oss", O,

"hour s- per - week", 40,
"native-country", "United-States");

Run the M__EXPLAI N_ROWroutine.

nysql > SELECT sys. M._EXPLAI N_ ROA(i nput _data, nodel _handle, [options]);

In the following example run the same shap prediction explainer. Optionally, use \ Gto display the
output in an easily readable format.
nysql > SELECT sys. M._EXPLAI N RON @ ow_i nput, @ensus_nodel, JSON OBJECT(' prediction_explainer', 'shap'))\G

R R R EEEEEEEEEEEEREEEEEEEEESESES 1 r ow R EEEEEEEEEEEEEEREEEEEEEEESESES

sys. M._EXPLAI N_ RON @ ow_i nput, @ensus_nodel ,
JSON_OBJECT( ' prediction_explainer', 'shap')):

{
"age": 25,
"sex": "Male",
“race": "Bl ack",

"fnlwgt": 226802,

“education": "11th",

“wor kcl ass": "Private",

“"Prediction": "<=50K",

"m _results": {
“predictions": {

"revenue": "<=50K"

}

"attributions": {
"age_attribution": 0.03154012309521936,
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}

"sex_attribution": -0.002995059121088509,
"race_attribution": 0.0051264089998398765,
"fnlwgt_attribution": -0.003139455788215409,
"education_attribution": 0.0013752672453250653,

"wor kcl ass_attribution": O,

"occupation_attribution": 0.020919219303459986,

“capital -gain_attribution":
"“capital -loss_attribution":
“relationship_attribution":
“educati on-num attribution":

“hour s- per-week_attribution":
"marital -status_attribution":

}
s
"occupation": "Mchine-op-inspct",
“capital -gain": O,
“capital -loss": O,
“rel ati onshi p": "Om-child",
"education-nuni: 7,
"hour s- per - week": 40,
"marital -status": "Never-married",
"pative-country": "United-States",
"age_attribution": 0.0315401231,
"sex_attribution": -0.0029950591,
"race_attribution": 0.005126409,
"fnlwgt _attribution": -0.0031394558,

0. 015089815859614985,
0. 0033537962775555263,
0. 027744370891787523,

0. 0284122832892542,
0. 009110644648945954,
0. 036222463769272406

"education_attribution": 0.0013752672,

"wor kcl ass_attribution": O,

“occupation_attribution": 0.0209192193,
“capital -gain_attribution": 0.0150898159,
"capital -loss_attribution": 0.0033537963,
"“relationship_attribution": 0.0277443709,
"“educati on-num attribution": 0.0284122833,
"hour s-per-week_attribution": 0.0091106446,
"marital -status_attribution": 0.0362224638

1 rowin set (4.3007 sec)

The output displays feature importance values for each column.

What's Next

» Review ML_EXPLAIN_ROW for parameter descriptions and options.

» Learn how to Generate Explanations for a Table.

* Learn how to Score a Model to get insight into the quality of the model.

4.5.6.2 Generating Prediction Explanations for a Table

M._EXPLAI N TABLE explains predictions for an entire table of unlabeled data. Explanations are

performed in parallel.

the input table to a maximum of 100 rows. If the input table has more than ten

Note
E M._EXPLAI N_TABLE is a very memory-intensive process. We recommend limiting
columns, limit it to ten rows.

Before You Begin
» Review the following:

e Prepare Data
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* Train a Model
e Load a Model
Unsupported Model Types
You cannot generate prediction explanations on a table for the following model types:
» Forecasting

 Recommendation

Anomaly detection

Anomaly detection for logs
» Topic modeling
Input Tables and Output Tables

You can specify the output table and the input table as the same table if all the following conditions are
met:

* The input table does not have the columns that are created for the output table when generating
predictions. Output columns are specific to each machine learning task. Some of these columns include:

e Prediction
e m results
e [input_colum_nane] attribution

» The input table does not have a primary key, and it does not have a column named
_4aadl9cabe_pk_i d. This is because M._EXPLAI N_TABLE adds a column as the primary key with
the name _4aadl19ca6e_pk_i d to the output table.

If you specify the output table and the input table as the same name, the predictions are inserted into the
input table.

Preparing to Generate Explanations for a Table
Before running ML_ EXPLAI N_TABLE, you must train, and then load the model you want to use.

1. The following example trains a dataset with the classification machine learning task.

nysql > CALL sys. M._TRAI N(' census_dat a. census_train', 'revenue', JSON OBJECT('task', 'classification' ), @ser

2. The following example loads the trained model.

nmysql > CALL sys. M._MODEL LOAD( @ensus_nodel , NULL);
For more information about training and loading models, see Train a Model and Load a Model.

After training and loading the model, you can generate prediction explanations for a table. For parameter
and option descriptions, see ML_EXPLAIN_TABLE.

Generating Explanations for a Table with the Default Permutation Importance Explainer

After training and loading a model, you can run M__EXPLAI N_TABLE to generate a table of prediction
explanations with the default Permutation Importance explainer>. However, if you train the shap prediction
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explainer with ML._EXPLAI N, you need to run M._EXPLAI N again with the per mut at i on_i nport ance
explainer before running M._ EXPLAI N_TABLE with the same explainer.

1.

Run the M__EXPLAI N_TABLE routine.
nysqgl > CALL sys. M._EXPLAI N _TABLE(t abl e_nane, nodel _handl e, output_table_nane, [options]);

The following example runs ML_ EXPLAI N_TABLE with the pernut ati on_i nport ance explainer.

nysql > CALL sys. M._EXPLAI N TABLE(' census_dat a. census_train', @ensus_nodel, 'census_data.census_train_p
JSON_OBJECT( ' predi ction_explainer', 'pernutation_inmportance'));

Where:

e census_dat a. census_trai n is the fully qualified name of the table that contains the training
dataset (schena_nane. t abl e_nane).

e @ensus_nodel isthe session variable for the trained model.

e census_dat a. census_trai n_pernutati on is the fully qualified name of the output table that
contains the explanations (scherma_nane. t abl e_nane).

e prediction_explainer issettopernutation_i nportance for the Permutation Importance
prediction explainer.

Query the output table to review a sample of the results.

nysqgl > SELECT * FROM table_nane LIMT N,

The following example queries the top three rows of the output table.

nysql > SELECT * FROM census_train_pernutation LIMT 3;

doocoocccoocooooooooo doocoo doocoococoooo doocooooo doocococoocoo doococcooococooo doococcooococooooo o o H-- - o -
| _4aadl9cabe_pk_id | age | workclass | fnlwgt | education | education-num | marital-status | occu
doocoocccoocooooooooo doocoo doocoococoooo doocooooo doocococoocoo doococcooococooo doococcooococooooo o o H-- - o -
| 1| 37| Private | 99146 | Bachelors | 13 | Married-civ-spouse | Exec
| 2| 34| Private | 27409 | 9th | 5 | Married-civ-spouse | Craf
| 3| 30| Private | 299507 | Assoc-acdm | 12 | Separated | G he
doocoocccoocooooooooo doocoo doocoococoooo doocooooo doocococoocoo doococcooococooo doococcooococooooo o o H-- - o -

The results display information on the columns that had the largest impact towards the predictions and
the columns that contributed the most against the prediction.

A warning displays if the model is of low quality.

Generating Explanations for a Table with the SHAP Explainer

To generate a table of prediction explanations with the SHAP explainer, you must first run the SHAP
explainer with M EXPLAI N.

1.

Run the M__EXPLAI Nroutine.

nysql > CALL sys. M._EXPLAIN ('table_nane', 'target_columm_nane', nodel handle, [options]);

The following example run the shap prediction explainer.

nmysql > CALL sys. ML_EXPLAI N(' census_dat a. census_train', 'revenue', @ensus_nodel, JSON OBJECT('predictio

Where:
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e census_dat a. census_trai n is the fully qualified name of the table that contains the training
dataset (schena_nane. t abl e_nane).

e revenue is the name of the target column, which contains ground truth values.
e @ensus_nodel isthe session variable for the trained model.
e prediction_explainer is setto shap for the SHAP prediction explainer.

2. Runthe ML_EXPLAI N_TABLE routine.

nysqgl > CALL sys. M._EXPLAI N _TABLE(t abl e_nane, nodel _handl e, output_table_nane, [options]);

The following example runs the shap prediction explainer.

nysqgl > CALL sys. M._EXPLAI N TABLE(' census_dat a. census_train', @ensus_nodel, 'census_data.census_train_exple
JSON_OBJECT( ' predi ction_explainer', 'shap'));

Where:

e census_dat a. census_trai n is the fully qualified name of the table that contains the training
dataset (schena_nane. t abl e_nane).

e @ensus_nodel isthe session variable for the trained model.

e census_dat a. census_trai n_expl anati ons is the fully qualified name of the output table that
contains the explanations (schema_nane. t abl e_nane).

e prediction_explainer is setto shap for the SHAP prediction explainer.

3. Query the output table to review a sample of the results.

nysqgl > SELECT * FROM table_nane LIMT N,

The following example queries the top three rows of the output table.

nysqgl > SELECT * FROM census_trai n_expl anations LIMT 3;

Fome e mmeee e aaaaa L E E Fomemmmmmaa i Fom e emee e eeaaaa [ -
| _4aadl9cabe_pk_id | age | workclass | fnlwgt | education | education-num /| narital-status | occupati
Fome e mmeee e aaaaa L E E Fomemmmmmaa i Fom e emee e eeaaaa [ -
| 1| 37| Private | 99146 | Bachelors | 13 | Married-civ-spouse | Exec-mar
| 2| 34| Private | 27409 | 9th | 5| Married-civ-spouse | Craft-re
| 3| 30| Private | 299507 | Assoc-acdm | 12 | Separated | O her-se
Fome e mmeee e aaaaa L E E Fomemmmmmaa i Fom e emee e eeaaaa [ -

The results display feature importance values for each column.
A warning displays if the model is of low quality.
What's Next
* Review ML_EXPLAIN_TABLE for parameter descriptions and options.

» Learn how to Score a Model to get insight into the quality of the model.

4.5.7 Scoring a Model

ML_ SCORE scores a model by generating predictions using the feature columns in a labeled dataset as
input and comparing the predictions to ground truth values in the target column of the labeled dataset.
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You cannot score a model with a topic modeling task type.

Before You Begin
» Review the following:
* Prepare Data
e Train a Model
* Load a Model
* Generate Predictions
* Generate Model Explanations

* Generate Prediction Explanations

ML_SCORE Overview

The dataset used with ML_ SCORE should have the same feature columns as the dataset used to train the
model, but the data sample should be different from the data used to train the model. For example, you
might reserve 20 to 30 percent of a labeled dataset for scoring.

ML_ SCORE returns a computed metric indicating the quality of the model. A value of None is reported if a
score for the specified or default metric cannot be computed. If an invalid metric is specified, the following
error message is reported: | nval i d data for the netric. Score could not be conputed.

Models with a low score can be expected to perform poorly, producing predictions and explanations that
cannot be relied upon. A low score typically indicates that the provided feature columns are not a good
predictor of the target values. In this case, consider adding more rows or more informative features to the
training dataset.

You can also run M__ SCORE on the training dataset and a labeled test dataset and compare results to
ensure that the test dataset is representative of the training dataset. A high score on a training dataset and
low score on a test dataset indicates that the test data set is not representative of the training dataset. In
this case, consider adding rows to the training dataset that better represent the test dataset.

AutoML supports a variety of scoring metrics to help you understand how your model performs across a
series of benchmarks. The metric you select to score the model must be compatible with the t ask type
and the target data. See Optimization and Scoring Metrics.

Preparing to Score a Model
Before running ML_ SCORE, you must train, and then load the trained model you want to use for scoring.
1. The following example trains a dataset with the classification machine learning task.
mysql > CALL sys. ML_TRAI N(' census_data. census_train', 'revenue', JSON OBJECT('task', 'classification'),
2. The following example loads the trained model.
nysqgl > CALL sys. M._MODEL_LOAD( @ensus_nodel , NULL);
For more information about training and loading models, see Train a Model and Load a Model.

After training and loading the model, prepare a table of labeled data to score that has a different set of data
from the trained model. This is considered the validation dataset. For parameter and option descriptions,
see ML_SCORE.
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Scoring a Model

To score a model, run the ML_ SCORE routine.

nysqgl > CALL sys. M._SCORE(t abl e_nane, target_col umm_nane, nodel _handle, netric, score, [options]);

The following example uses the accur acy metric to compute model quality:

nmysql > CALL sys. M._SCORE(' census_dat a. census_val idate', 'revenue', @ensus_nodel, 'accuracy', @core,

Where:

» census_dat a. census_val i dat e is the fully qualified name of the validation dataset table
(schema_nane. t abl e_nane).

e revenue is the name of the target column containing ground truth values.
« @ensus_nodel is the session variable that contains the model handle.

e accur acy is the scoring metric. For other supported scoring metrics, see Optimization and Scoring
Metrics.

e @cor e is the user-defined session variable that stores the computed score. The M._ SCORE routine
populates the variable. User variables are written as @ ar _nane. The examples in this guide use
@cor e as the variable name. Any valid name for a user-defined variable is permitted, for example

@ry_score.

» NULL sets no options for the routine. To view available options, see ML_SCORE.

To retrieve the computed score, query the @cor e session variable.

nmysql > SELECT @cor e;

e S +
| @core |
e S +
| 0.8888888955116272 |
e S +

1 rowin set (0.0409 sec)

Review the score value and determine if the trained model is reliable enough for generating predictions
and explanations.

What's Next

» Review ML_SCORE for parameter descriptions and options.

» Review Machine Learning Use Cases to create machine learning models with sample datasets.

4.6 Learn About MySQL Al AutoML with NL2ML

The NL2M. routine enables you to learn about MySQL Al AutoML by providing relevant citations to MySQL
Al documentation. You can also leverage the M._ GENERATE routine or an MCP server with external LLMs
to generate AutoML queries you can copy and run.

This topic has the following sections.
» Before You Begin
» Load MySQL Al Documentation

* Use NL2ML with In-Database LLMs
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* What's Next

Before You Begin

» To use this feature, you must load the appropriate version of MySQL Al documentation to the folder

defined by secure_file_priv. See Load MySQL Al Documentation.

Review the required tasks to Create a Machine Learning Model.

Load MySQL Al Documentation

Before using this feature, you must load the appropriate version of the MySQL Al documentation into the

MySQL Al directory defined by secure file priv.

To load the documentation:

=

In the top-right corner of this page, make sure that the correct verion of MySQL Al is selected.

In the bottom-left corner of this page, click the link to download the PDF version of the documentation.

Rename the downloaded PDF file to nysqgl _ai _en. pdf.

Log into your MySQL Al instance and upload the PDF file to the MySQL Al directory defined by

secure_file priv.Ensure that the file has the appropriate read access for all users, so that MySQL

Al can read the file.

If you do not know the appropriate directory, you can run the following command:

nmysql > SELECT @®ecure_file_priv

See LOAD DATA Statement.

Use NL2ML with In-Database LLMs

To use NL2M. to provide citations to MySQL HeatWave documentation, and then leverage in-database
LLMs to generate responses that include appropriate table schemas and commands, do the following:

Set the ski p_gener at e option to t r ue with the @l 2n _opt i ons session variable.

Use M._RETRI EVE_SCHEMA METADATA to retrieve the table schema related to the question asked
during the NL2ML routine.

Use GROUP_CONCAT() to build a compact context string from the citations provided by NL2M..

Use ML_ GENERATE to specify the in-database LLM and generate the response to the question, which
includes the citations, context, and retrieved table schema.

See the following example.

To use in-database LLMs with NL2M_:

1.

Specify the question and set it into a variable (@ nput ).

nysqgl > SET @nput = "How can | train a nodel to predict net worth of a singer?";

Set the ski p_gener at e option to t r ue with the @l 2nl _opt i ons session variable.

nmysql > SET @l 2m _opti ons = JSON_OBJECT("ski p_generate", true);
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Use NL2ML with In-Database LLMs

3. Runthe NL2ML routine and include the previous variable that has the question.

nysqgl > CALL sys. NL2M.( @ nput, @ut);

View the output generated from the question by selecting the @ut variable.

mysql > SELECT JSON_PRETTY( @ut) ;
JSON_PRETTY( @ut )
{
"citations": [
{
"segnent": "<segnent content>",
"di stance": 0.1023,
"docunent _nane": <nysql _ai _en. pdf >,
"segnent _nunber": <segnent nunber>
B
]

etrieval _info": {
"met hod": "n_citations",
"threshol d": 0.114
}
}

The output includes citations with the following information:
e segnent : The relevant excerpts from the MySQL Al documentation.

« di st ance: A value indicating how relevant the segment is to the question asked. A lower value
represents a more relevant segment.

e docunent _nane: A reference to the MySQL Al documentation.
e segnent _nunber : The index number identifying the segment.

Use ML_RETRI EVE_SCHEVMA METADATA to retrieve the most relevant table schema for the previous
question.

nysql > CALL sys. M._RETRI EVE_SCHEMA METADATA( @ nput, @etrieved, NULL):

Retrieve the table schema from the @ et r i eved variable.

nmysql > SELECT @etri eved;
@etrieved
CREATE TABLE "l corpus . singer  (
“Singer_ID int,
“Nanme® varchar,
"Birth_Year ™ doubl e,
"Net_Worth_MIlions  double,
“Citizenship® varchar
)
Use GROUP_CONCAT() to build a compact context string from the citations provided by NL2M..
mysql > SELECT GROUP_CONCAT(seg SEPARATOR '\n') |NTO @t x
FROM JSON_TABLE( JSON_EXTRACT( @ut, ' $.citations'),
"$[*]' COLUMNS (seg LONGTEXT PATH '$.segnent')) AS jt;

Combine the retrieved table schema and citations as the final context.

nmysql > SET @i nal _ctx = CONCAT(@tx, '\n\nRetrieved tables:\n', @etrieved);

Use M__GENERATE to specify an in-database LLM (I | ama3. 2- 3b-i nst ruct - v1) and manually
create a SQL statement that includes the citations, context, and retrieved table schema.
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What's Next

nmysql > SELECT sys. ML_GENERATE(

@ nput ,

JSON_OBJECT(

"task", "generation",

"model _id", "llama3. 2-3b-instruct-v1l",

"context", @inal_ctx

)
) INTO @esul t;

10. Generate the output and SQL text.

nysql > SELECT JSON_UNQUOTE(JSON EXTRACT(@esult,'$.text')) AS generated_sql;

gener at ed_sq|l

To train a nodel to predict the net worth of a singer, you can use the ML_TRAIN routine. First, prepare
which in this case seems to be the 'singer' table in the 'nlcorpus' schema. Ensure that the table has t
such as 'Singer_ID, 'Name', 'Birth_Year', 'Net_Wirth_MIlions', and 'Ctizenship'.

The 'Net_Worth_MIlions' colum will be your target colum for prediction. You nay need to preprocess y
for exanple, converting categorical variables like 'Name' and 'Citizenship' into numerical variables if

Then, you can call the M__TRAIN routine with the appropriate options. For a regression task like predic
you woul d specify the task as 'regression' in the JSON options. Here's a sinplified exanple:

** gl
CALL sys. ML_TRAI N(' ml cor pus. si nger"',
@model _handl e,
‘"Net_Worth_MIlions',
JSON _OBJECT('task', 'regression',
"al gorithm, ' XGBRegressor'));

Repl ace ' @mdel _handl e' with your actual nodel handle variable. This will train a nodel to predict the
based on the other colums in your 'singer' table. After training, you can use the M._PRED CT_ROWor M
to generate predictions for new, unseen data.

What's Next

» Review Machine Learning Use Cases.

» Review the syntax and examples for the NL2NL routine.
4.7 Machine Learning Use Cases
4.7.1 Classify Data

Classification models predict the discrete value of input data to specific predefined categories. Some
examples of classification include loan approvals, churn prediction, and spam detection.

The following tasks use a dataset generated by OCI GenAl using Meta Llama Models. The classification
use-case is to approve or reject loan applications for clients based on their personal and socioeconomic
status, assets, liabilities, credit rating, and past loan details.

To generate your own datasets for creating machine learning models in MySQL Al, learn how to Generate
Text-Based Content.

is subject to your Oracle agreements and this Llama license agreement: https://

Note
@ Datasets were generated using Meta Llama models. Your use of this Llama model
downloads.mysql.com/docs/LLAMA_31_8B_INSTRUCT-license.pdf.
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Classify Data

4.7.1.1 Preparing Data for a Classification Model

This topic describes how to prepare the data to use for a classification machine learning model. It uses a

data sample generated by OCI GenAl. The classification use-case is to approve or reject loan applications

for clients based on their personal and socioeconomic status, assets, liabilities, credit rating, and past
loan details. To prepare the data for this use case, you set up a training dataset and a testing dataset.
The training dataset has 20 records, and the testing dataset has 10 records. In a real-life use case, you

should prepare a larger amount of records for training and testing, and ensure the predictions are valid and

reliable before testing on unlabeled data. To ensure reliable predictions, you should create an additional
validation dataset. You can reserve 20% of the records in the training dataset to create the validation

dataset.

You have the option to automatically Prepare Training and Testing Datasets with your own data by using

the TRAI N_TEST_SPLI T routine.
Before You Begin
» Learn how to Prepare Data.
Preparing Data
To prepare the data for the classification model:
1. Connect to the MySQL Server.

2. Create and use the database to store the data.

nmysql > CREATE DATABASE cl assi fi cati on_dat a;
nmysql > USE cl assi ficati on_dat a;

3. Create the table to insert the sample data into. This is the training dataset.

nysql > CREATE TABLE Loan_Tr ai ni ng (
Client|D | NT PRI MARY KEY,
Client Age | NT NOT NULL,
Gender VARCHAR(10) NOT NULL,
Educat i on VARCHAR(50) NOT NULL,
CQccupati on VARCHAR(50) NOT NULL,
I ncome REAL NOT NULL,
Debt REAL NOT NULL,
CreditScore | NT NOT NULL,
Assets REAL NOT NULL,
Liabilities REAL NOT NULL,
LoanType VARCHAR(20) NOT NULL,
LoanAnpbunt REAL NOT NULL,
Approved VARCHAR(10) NOT NULL
DE

4. Insert the sample data into the table. Copy and paste the following commands.

I NSERT | NTO Loan_Training (CientlD, dientAge, Gender, Education, Cccupation, |ncone, Debt,
(101, 30, 'Male', 'Bachelor''s', 'Engineer', 75000, 15000, 700, 300000, 80000, 'Hone',
(102, 25, 'Fenmle', 'Master''s', 'Analyst', 60000, 10000, 680, 200000, 50000, ' Personal',

(103, 40, 'Male', 'Hi gh School', 'Manager', 80000, 20000, 650, 450000, 120000, ' Busi ness',

(104, 35, 'Fenmle', 'PhD, 'Doctor', 120000, 30000, 750, 600000, 250000, 'Car',

(105, 28, 'Male', '"College', '"IT Specialist', 55000, 8000, 620, 280000, 90000, 'Education',

(106, 45, 'Fenmle', 'Bachelor''s', 'Teacher', 70000, 15000, 720, 500000, 180000,

(107, 32, 'Male', 'Associate', 'Sales', 65000, 12000, 670, 350000, 100000, 'Vacation',
(108, 22, 'Fenmle', 'College', 'Student', 30000, 5000, 660, 150000, 40000, 'Education',
(109, 50, 'Male', 'Master''s', 'Lawyer', 110000, 40000, 780, 700000, 350000, 'Investnent',
(110, 38, 'Fenmle', 'Hi gh School', 'MNurse', 52000, 18000, 640, 220000, 120000, ' Medical",
(111, 48, 'Male', 'Diploma', 'Plunber', 48000, 10000, 600, 180000, 70000, 'Hone | nprovenent',

250000,
120000,
150000,
' Approved'),
80000,
200000,

10000,
500000,
35000,

Credi t Scor e,

/

' Approved'),
' Rej ect ec
' Appr ove

'Rej ecte
' Appr oved'
'Rejected'),

' Approved'),
'Rej ecte
' Appr oved'

25000, ' Rejec
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(112, 55, 'Fenmle', 'Bachelor''s', '"Witer', 90000, 25000, 760, 400000, 200000, 'Retirenment', 150000
(113, 36, 'Male', 'Master''s', 'Accountant', 78000, 22000, 740, 380000, 150000, 'Refinance', 200000, 'A
(114, 24, 'Femmle', 'College', 'Designer', 45000, 7000, 610, 250000, 100000, 'Startup', 50000, 'Rejecte
(115, 42, 'Male', 'PhD, 'Scientist', 130000, 50000, 800, 550000, 300000, 'Research', 400000, ' Approved
(116, 52, 'Fenmle', 'Master''s', 'Marketer', 85000, 35000, 770, 480000, 280000, ' Marketing', 120000, 'k
(117, 34, 'Male', 'Bachelor''s', 'Programmer', 68000, 16000, 690, 320000, 110000, ' Equi pnment', 85000
(118, 26, 'Fenmle', 'Associate', 'Retail', 42000, 6000, 630, 200000, 70000, 'Wedding', 28000, 'Rejected
(119, 46, 'Male', 'College', "Pilot', 100000, 45000, 710, 520000, 250000, 'Boat', 350000, ' Approved'),
(120, 58, 'Fenmle', 'PhD, 'Professor', 140000, 60000, 820, 650000, 450000, 'Real Estate', 550000, ' Rej

5. Create the table to use for generating predictions and explanations. This is the test dataset. It has
the same columns as the training dataset, but the target column, Appr oved, is not considered when
generating predictions or explanations.

nysql > CREATE TABLE Loan_Testing (
Client! D INT PRI MARY KEY
Client Age | NT NOT NULL
Gender VARCHAR(10) NOT NULL
Educat i on VARCHAR(50) NOT NULL
Cccupati on VARCHAR(50) NOT NULL
I ncome REAL NOT NULL
Debt REAL NOT NULL
Credi t Score | NT NOT NULL
Assets REAL NOT NULL
Liabilities REAL NOT NULL
LoanType VARCHAR(20) NOT NULL
LoanAnpbunt REAL NOT NULL
Approved VARCHAR(10) NOT NULL

)5
6. Insert the sample data into the table. Copy and paste the following commands.

I NSERT | NTO Loan_Testing (CientlD, CientAge, Gender, Education, Cccupation, Income, Debt, CreditScore
(201, 38, 'Male', 'College', 'Architect', 62000, 18000, 660, 380000, 160000, 'Hone', 280000, ' Approved
(202, 29, 'Female', 'Master''s', 'HR Manager', 58000, 12000, 690, 260000, 110000, ' Personal', 150000
(203, 44, 'Male', 'Bachelor''s', 'Chef', 72000, 25000, 730, 420000, 200000, 'Business', 180000, ' Approv
(204, 56, 'Fenmle', 'PhD, 'Psychologist', 105000, 35000, 790, 580000, 320000, 'Car', 40000, 'Rejected
(205, 31, 'Male', 'High School', 'Carpenter', 50000, 8000, 610, 240000, 85000, ' Education', 90000, 'App
(206, 27, 'Fenmle', 'College', 'Artist', 48000, 7000, 640, 220000, 95000, 'Art', 150000, 'Rejected')
(207, 49, 'Male', 'Associate', 'Electrician', 55000, 15000, 670, 300000, 120000, 'Home |nprovenent', 20
(208, 53, 'Female', 'Bachelor''s', 'Journalist', 88000, 30000, 750, 460000, 280000, 'Travel', 180000
(209, 37, 'Male', 'Master''s', 'Financial Advisor', 76000, 22000, 700, 360000, 150000, 'Investnent', 25
(210, 23, 'Female', 'College', 'Intern', 35000, 5000, 600, 160000, 60000, 'Education', 20000, 'Rejected

What's Next

» Learn how to Train a Classification Model.
4.7.1.2 Training a Classification Model

After preparing the data for a classification model, you can train the model.
Before You Begin

» Review and complete all the tasks to Prepare Data for a Classification Model.
Training the Model

Train the model with the M__TRAI Nroutine and use the t r ai ni ng_dat a table previously created. Before
training the model, it is good practice to define the model handle instead of automatically creating one. See
Defining Model Handle.

1. Optionally, set the value of the session variable, which sets the model handle to this same value.
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nysql > SET @ari abl e = ' nodel _handl e';

Replace @ari abl e and nodel _handl e with your own definitions. For example:

mysql > SET @mwdel =' cl assi fication_use_case';
The model handle is setto cl assi fi cati on_use_case.
2. Runthe ML_TRAI Nroutine.
nmysql > CALL sys. ML_TRAIN('tabl e_nane', 'target_col umm_nane', JSON OBJECT('task', 'task_nane'), nodel _handl €

Replace t abl e_nane, t arget col unm_nane, t ask_nane, and nodel _handl e with your own
values.

The following example runs ML_ TRAI N on the training dataset previously created.

nmysql > CALL sys. ML_TRAIN('cl assification_data.Loan_Training', 'Approved , JSON OBJECT('task', 'classificati
Where:

e classification_data.Loan_Training is the fully qualified name of the table that contains the
training dataset (dat abase_nane. t abl e_nane).

* Appr oved is the name of the target column, which contains ground truth values.
e JSON OBJECT('task', 'classification') specifies the machine learning task type.

e @odel is the session variable previously set that defines the model handle to the name defined by
the user: cl assi fi cati on_use_case. If you do not define the model handle before training the
model, the model handle is automatically generated, and the session variable only stores the model
handle for the duration of the connection. User variables are written as @ ar _nane. Any valid name
for a user-defined variable is permitted. See Work with Model Handles to learn more.

3. When the training operation finishes, the model handle is assigned to the @mdel session variable, and
the model is stored in the model catalog. View the entry in the model catalog with the following query.
Replace user 1 with your MySQL account name.

nysql > SELECT nodel _id, nodel _handl e, train_table_nane FROM M._SCHEMA user 1. MODEL_CATALOG WHERE nodel _handl

E e m e e e e e e e e e eeeemmeoeaemmeaaaaaaa em e e e e e e eeeieeeea-m-aaaaa- +
| nodel _id | nodel _handl e | train_table_name |
E e m e e e e e e e e e eeeemmeoeaemmeaaaaaaa em e e e e e e eeeieeeea-m-aaaaa- +
| 1 | classification_use_case | classification_data.Loan_Training |
E e m e e e e e e e e e eeeemmeoeaemmeaaaaaaa em e e e e e e eeeieeeea-m-aaaaa- +

What's Next
» Learn how to Generate Predictions for a Classification Model.

4.7.1.3 Generating Predictions for a Classification Model
After training the model, you can generate predictions.
To generate predictions, use the sample data from the t est i ng_dat a dataset. Even though the table has
labels for the Appr oved target column, the column is not considered when generating predictions. This
allows you to compare the predictions to the actual values in the dataset and determine if the predictions

are reliable. Once you determine the trained model is reliable for generating predictions, you can start
using unlabeled datasets for generating predictions.
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Before You Begin
Complete the following tasks:
» Prepare Data for a Classification Model
» Train a Classification Model
Generating Predictions for a Table

1. If not already done, load the model. You can use the session variable for the model that is valid for the
duration of the connection. Alternatively, you can use the model handle previously set. For the option to
set the user name, you can set it to NULL.

The following example uses the session variable.
mysql > CALL sys. M._MODEL_LOAD( @mdel , NULL);
The following example uses the model handle.
nmysql > CALL sys. ML_MODEL LOAD(' cl assification_use_case', NULL);
2. Make predictions for the test dataset by using the M__PREDI CT_TABLE routine.

nysqgl > CALL sys. M._PREDI CT_TABLE(t abl e_nane, nodel _handl e, output_table_nane), [options]);

Replace t abl e_nane, nodel _handl e, and out put _t abl e_nane with your own values. Add
opt i ons as needed.

You have the option to specify the input table and output table as the same table if specific conditions
are met. See Input Tables and Output Tables to learn more.

The following example runs M_PREDI CT_TABLE on the testing dataset previously created.
nmysql > CALL sys. M._PREDI CT_TABLE(' cl assification_data.Loan_Testing', @mwdel, 'classification_data.Loan_
Where:

e classification_data.Loan_Testi ng is the fully qualified name of the input table that contains
the data to generate predictions for (dat abase_nane. t abl e_nane).

« @mdel is the session variable for the model handle.

e classification_data.Loan_Testing_ predictions is the fully qualified name of the output
table with predictions (dat abase_nane. t abl e_nane).

* NULL sets no options for the routine.

3. Query the Approved, Predi ction,andn _resul ts columns from the output table. This allows
you to compare the real value with the generated prediction. You can also review the probabilities
for each prediction. If needed, you can also query all the columns from the table (SELECT * FROM
classification_predictions)toreview all the data at once.

nmysql > SELECT Approved, Prediction, m _results FROM Loan_Testi ng_predictions
+

oo oo P P
| Approved | Prediction | m _results

oo oo T P S
| Approved | Approved | {"predictions": {"Approved": "Approved"}, "probabilities": {"Approved": 0.983
| Rejected | Rejected | {"predictions": {"Approved': "Rejected"}, "probabilities": {"Approved": 0.113
| Approved | Approved | {"predictions": {"Approved": "Approved"}, "probabilities": {"Approved": 0.986
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| Rejected | Rejected | {"predictions": {"Approved": "Rejected"}, "probabilities": {"Approved"
| Approved | Rejected | {"predictions": {"Approved": "Rejected"}, "probabilities": {"Approved"
| Rejected | Rejected | {"predictions": {"Approved": "Rejected"}, "probabilities": {"Approved"
| Approved | Approved | {"predictions": {"Approved": "Approved"}, "probabilities": {"Approved"
| Rejected | Rejected | {"predictions": {"Approved": "Rejected"}, "probabilities": {"Approved"
| Approved | Approved | {"predictions": {"Approved": "Approved"}, "probabilities": {"Approved"
| Rejected | Approved | {"predictions": {"Approved": "Approved"}, "probabilities": {"Approved"
oo T e =

10 rows in set (0.0430 sec)
The results show that two predictions do not match up with the real values.

To learn more about generating predictions for one or more rows of data, see Generate Predictions for a
Row of Data.

What's Next

» Learn now to Query Model Explanation and Generate Prediction Explanations for a Classification Model.

4.7.1.4 Query Model Explanation and Generate Prediction Explanations for a Classification

Model

After training a classification model, you can query the default model explanation or query new model
explanations. You can also generate prediction explanations. Explanations help you understand which
features had the most influence on generating predictions.

Feature importance is presented as an attribution value. A positive value indicates that a feature
contributed toward the prediction. A negative value can have different interpretations depending on the
specific model explainer used for the model. For example, a negative value for the permutation importance
explainer means that the feature is not important.

Before You Begin

Complete the following tasks:
» Prepare Data for a Classification Model
 Train a Classification Model

» Generate Predictions for a Classification Model

Generating the Model Explanation

After training a model, you can query the default model explanation with the Permutation Importance
explainer.

To generate explanations for other model explainers, see Generate Model Explanations and
ML_EXPLAIN.

Query the nodel _expl anat i on column from the model catalog and define the model handle previously
created. Update user 1 with your own user name. Use JSON_PRETTY to view the output in an easily
readable format.

nysqgl > SELECT JSON_PRETTY(nodel _expl anati on) FROM M._SCHEMA user 1. MODEL_CATALOG
WHERE nodel handl e=' cl assi ficati on_use_case'
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I {

"permut ati on_i nportance":

"Debt": 0.5014,
"Assets": 0.0,

" Gender":
"l nconme":
"ClientlD":
"LoanType":

"CientAge": 0.1231,

"Education": 0.0,

"LoanAmount ": 0.0,
"Qccupation": 0.0,
"CreditScore": 0.0,
"Liabilities": 0.0525
}
o
o 55 CECCCECNaCOEoCOEONCEoNaN0E 00000 E00a0050C00005000000000000000000000000050000005000005000000 5000 B +

1 rowin set (0.0382 sec)

Feature importance values display for each column.

Generating Prediction Explanations for a Table

After training a model, you can generate a table of prediction explanations on the t est i ng_dat a dataset

by using the default Permutation Importance prediction explainer.

To generate explanations for other model explainers, see Generate Prediction Explanations and
ML_EXPLAIN_TABLE.

1.

If not already done, load the model. You can use the session variable for the model that is valid for the
duration of the connection. Alternatively, you can use the model handle previously set. For the option to
set the user name, you can set it to NULL.

The following example uses the session variable.

nysqgl > CALL sys. M._MODEL_LOAD( @mdel , NULL);

The following example uses the model handle.

nysql > CALL sys. M._MODEL_LOAD(' cl assi fication_use_case',

NULL) ;

Use the ML_EXPLAI N_TABLE routine to generate explanations for predictions made in the test dataset.

mysql > CALL sys. ML_EXPLAI N _TABLE(t abl e_nanme, nodel _handl e, output _tabl e_nane,

[options]);

Replace t abl e_nane, nodel _handl e, and out put _t abl e_nane with your own values. Add

opt i ons as needed.

You have the option to specify the input table and output table as the same table if specific conditions

are met. See Input Tables and Output Tables to learn more.

The following example runs M._EXPLAI N_TABLE on the testing dataset previously created.

nysqgl > CALL sys. M._EXPLAI N _TABLE(' cl assification_data.Loan_Testing', @mdel,

JSON_OBJECT( ' prediction_expl ai ner',

Query OK, 0 rows affected (12.2957 sec)

Where:

‘classification_data.Loan_

'pernutation_inmportance'));

e classification data.lLoan Testi ng is the fully qualified name of the test dataset.

« @mdel is the session variable for the model handle.
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e classification data.Loan Testing expl anati ons is the fully qualified name of the output
table with explanations.

e permutati on_i nportance is the selected prediction explainer to use to generate explanations.

Query Not es and ml _r esul t s from the output table to review which column contributed the most
against or had the largest impact towards the prediction. You can also review individual attribution
values for each column. Use \ Gto view the output in an easily readable format.

nmysql > SELECT Notes, ml _results FROM Loan_Testi ng_expl anati ons\ G
EEEEEEEEEEEEEEEEEEEEEEEESESESE] 1 rOW EEEEEEEEEEEEEEEEEEEEEEEESESESE]
Not es: Debt (18000.0) had the |argest inpact towards predicting Approved
m _results: {"attributions": {"Debt": 0.87, "Liabilities": -0.0, "ClientAge": 0.0, "LoanAnpunt": 0.0},
"predictions": {"Approved": "Approved"}, "notes": "Debt (18000.0) had the |argest inpact towar
EEEEEEEEEEEEEEEEEEEEEEEESESESE] 2 rOW EEEEEEEEEEEEEEEEEEEEEEEESESESE]
Notes: ClientAge (29) had the | argest inpact towards predicting Rejected, whereas Debt (12000.0) contr
m _results: {"attributions": {"Debt": -0.01, "Liabilities": 0.02, "CientAge": 0.17, "LoanAnpunt": 0.08},
"predictions": {"Approved": "Rejected"}, "notes": "ClientAge (29) had the | argest inpact towar
EEEEEEEEEEEEEEEEEEEEEEEESESESE] 3 rOW EEEEEEEEEEEEEEEEEEEEEEEEESESE]
Not es: Debt (25000.0) had the |argest inpact towards predicting Approved
m _results: {"attributions": {"Debt": 0.87, "Liabilities": -0.0, "ClientAge": 0.0, "LoanAnpunt": 0.0},
"predictions": {"Approved": "Approved"}, "notes": "Debt (25000.0) had the |argest inpact towar
EEEEEEEEEEEEEEEEEEEEEEEESESESE] 4 rOW EEEEEEEEEEEEEEEEEEEEEEEESESESE]
Notes: ClientAge (56) had the | argest inpact towards predicting Rejected, whereas Debt (35000.0) contr
m _results: {"attributions": {"Debt": -0.07, "Liabilities": 0.52, "CientAge": 0.75, "LoanAmpunt": 0.01},
"predictions": {"Approved": "Rejected"}, "notes": "ClientAge (56) had the | argest inpact towar
EEEEEEEEEEEEEEEEEEEEEEEESESESE] 5 rOW EEEEEEEEEEEEEEEEEEEEEEEESESESE]
Not es: LoanAnpunt (90000.0) had the |argest inpact towards predicting Rejected
m _results: {"attributions": {"Debt": 0.0, "Liabilities": 0.01, "ClientAge": 0.1, "LoanAmpunt": O0.14},
"predictions": {"Approved": "Rejected"}, "notes": "LoanAmpunt (90000.0) had the |argest inpact
EEEEEEEEEEEEEEEEEEEEEEEESESESE] 6 rOW EEEEEEEEEEEEEEEEEEEEEEEESESESE]
Notes: ClientAge (27) had the |argest inpact towards predicting Rejected
m _results: {"attributions": {"Debt": -0.0, "Liabilities": 0.01, "ClientAge": 0.16, "LoanAmbunt": 0.08},
"predictions": {"Approved": "Rejected"}, "notes": "ClientAge (27) had the | argest inpact towar
EEEEEEEEEEEEEEEEEEEEEEEESESESE] 7 rOW EEEEEEEEEEEEEEEEEEEEEEEEESESE]
Not es: Debt (15000.0) had the |argest inpact towards predicting Approved, whereas Cient Age (49) contr
m _results: {"attributions": {"Debt": 0.49, "Liabilities": -0.07, "CientAge": -0.43, "LoanAnpunt": 0.0},
"predictions": {"Approved": "Approved"}, "notes": "Debt (15000.0) had the |argest inpact towar
EEEEEEEEEEEEEEEEEEEEEEEESESESE] 8 rOW EEEEEEEEEEEEEEEEEEEEEEEESESESE]
Notes: ClientAge (53) had the |argest inpact towards predicting Rejected, whereas Debt (30000.0) contr
m _results: {"attributions": {"Debt": -0.13, "Liabilities": 0.56, "CientAge": 0.68, "LoanAnmpunt": -0.07},
"predictions": {"Approved": "Rejected"}, "notes": "ClientAge (53) had the | argest inpact towar
EEEEEEEEEEEEEEEEEEEEEEEESESESE] 9 rOW EEEEEEEEEEEEEEEEEEEEEEEESESESE]
Not es: Debt (22000.0) had the |argest inpact towards predicting Approved
m _results: {"attributions": {"Debt": 0.87, "Liabilities": -0.0, "ClientAge": 0.0, "LoanAnpunt": 0.0},
"predictions": {"Approved": "Approved"}, "notes": "Debt (22000.0) had the |argest inpact towar
EEEEEEEEEEEEEEEEEEEEEEEESESESE] 10 rOW EEEEEEEEEEEEEEEEEEEEEEEESESESE]
Notes: No features had a significant inpact on nodel prediction
m _results: {"attributions": {"Debt": 0.0, "Liabilities": 0.0, "ClientAge": 0.0, "LoanAmount": 0.0},
"predictions": {"Approved": "Approved"}, "notes": "No features had a significant inpact on noc
10 rows in set (0.0461 sec)

To generate prediction explanations for one or more rows of data, see Generate Prediction Explanations
for a Row of Data.

What's Next

Learn how to Score a Classification Model.

4.7.1.5 Scoring a Classification Model

After generating predictions and explanations, you can score the model to assess its reliability. For a list of
scoring metrics you can use with classification models, see Classification Metrics. For this use case, you
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use the test dataset for validation. In a real-world use case, you should use a separate validation dataset
that has the target column and ground truth values for the scoring validation. You should also use a larger
number of records for training and validation to get a valid score.

Before You Begin

Complete the following tasks:

» Prepare Data for a Classification Model

* Train a Classification Model

» Generate Predictions for a Classification Model

* Query Model Explanation and Generate Prediction Explanations for a Classification Model

Scoring the Model

1.

If not already done, load the model. You can use the session variable for the model that is valid for the
duration of the connection. Alternatively, you can use the model handle previously set. For the option to
set the user name, you can set it to NULL.

The following example uses the session variable.

nysqgl > CALL sys. M._MODEL_LOAD( @model , NULL);

The following example uses the model handle.

nysqgl > CALL sys. M._MODEL_LOAD(' cl assi fication_use_case', NULL);

Score the model with the M__ SCORE routine and use the accur acy metric.

nmysql > CALL sys. ML_SCORE(t abl e_nanme, target_col unmm_nanme, nodel handl e, netric, score, [options]);

Replace t abl e_nane, t arget _col unm_nane, nodel _handl e, netri c, scor e with your own
values.

The following example runs ML_ SCORE on the testing dataset previously created.

mysql > CALL sys. ML_SCORE(' cl assification_data.Loan_Testing', 'Approved , @mdel, 'accuracy', @lassific
Where:

e classification_data.Loan_Testi ng is the fully qualified name of the validation dataset.

* Approved is the target column name with ground truth values.

* @mdel is the session variable for the model handle.

e accuracy is the selected scoring metric.

e @l assification_score isthe session variable name for the score value.

« NULL means that no other options are defined for the routine.

Retrieve the score by querying the @classification_score session variable.
nmysql > SELECT @l assification_score;

| @l assification_score |
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1 rowin set (0.0431 sec)
4. If done working with the model, unload it with the M__ MODEL UNLOAD routine.
nysqgl > CALL sys. M._MODEL_UNLOAD(' cl assi fication_use_case');

To avoid consuming too much memory, it is good practice to unload a model when you are finished
using it.

What's Next

» Review other Machine Learning Use Cases.

4.7.2 Perform Regression Analysis

Machine learning regression models generate predictions based on the relationship between a dependent

variable and one or more independent variables. Some examples of regression analysis include predicting

sales during different seasons, predicting purchasing behavior on a website based on the characteristics of
website visitors, and predicting the sale price of residences based on their size.

The following tasks use a dataset generated by OCI GenAl using Meta Llama Models. The regression use-
case is to predict house prices based on the size of the house, the address of the house, and the state the
house is located in.

To generate your own datasets to create machine learning models in MySQL Al, learn how to Generate
Text-Based Content.

is subject to your Oracle agreements and this Llama license agreement: https://

Note
@ Datasets were generated using Meta Llama models. Your use of this Llama model
downloads.mysqgl.com/docs/LLAMA_31 8B _INSTRUCT-license.pdf.

4.7.2.1 Preparing Data for a Regression Model

This topic describes how to prepare the data to use for a regression machine learning model. It uses a data
sample generated by OCI GenAl. The regression use-case is to predict house prices based on the size

of the house, the address of the house, and the state the house is located in. To prepare the data for this
use case, you set up a training dataset and a testing dataset. The training dataset has 20 records, and the
testing dataset has 10 records. In a real-life use case, you should prepare a larger amount of records for
training and testing, and ensure the predictions are valid and reliable before testing on unlabeled data. To
ensure reliable predictions, you should create an additional validation dataset. You can reserve 20% of the
records in the training dataset to create the validation dataset.

You have the option to automatically Prepare Training and Testing Datasets with your own data by using
the TRAI N_TEST_SPLI T routine.

Before You Begin

» Learn how to Prepare Data.

Preparing Data

To prepare the data for the regression model:
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1. Connect to the MySQL Server.

2. Create and use the database to store the data.

nysql > CREATE DATABASE r egressi on_dat a;
nmysql > USE regressi on_dat a;

3. Create the table to insert the sample data into. This is the training dataset.

mysql > CREATE TABLE house_price_training (
id INT PRI MARY KEY,
house_si ze | NT,
addr ess TEXT,
state TEXT,
price | NT

)
4. Insert the sample data into the table. Copy and paste the following commands.

I NSERT | NTO house_price_training (id, house_size, address, state, price)
VALUES
(1, 1500, '123 Main St', 'California', 500000),
(2, 2000, '456 EIm St', 'Texas', 650000),
(3, 1800, '789 Cak Ave', 'New York', 700000),
(4, 1200, '222 Pine Rd', 'Florida', 420000),
(5, 1600, '555 Maple Lane', 'Washington', 550000),
(6, 2500, '888 River Blvd', '"California', 800000),
(7, 1300, '333 Creek St', 'Texas', 480000),
(8, 1700, '666 Muntain Rd', 'Colorado', 520000),
(9, 1400, '999 Valley View, 'New York', 580000),
(10, 1900, '111 Ccean Blvd', 'Florida', 620000),
(11, 1550, '2222 Lake Dr', '"Illinois', 540000),
(12, 2100, '3333 Forest Ave', 'Texas', 750000),
(13, 1650, '4444 Desert Rd', 'Arizona', 570000),
(14, 1250, '5555 Riverbank St', 'Washington', 450000),
(15, 1850, '6666 Sky Blvd', 'California', 720000),
(16, 1350, '7777 Meadow Lane', 'Chio', 490000),
(17, 2050, '8888 Hill St', 'New York', 850000),
(18, 1450, '9999 Creek Rd', 'Florida', 590000),
(19, 1750, '10101 Ccean Ave', 'Texas', 680000),
(20, 1580, '11111 Pine St', 'lllinois', 560000);

5. Create the table to use for generating predictions and explanations. This is the test dataset. It has
the same columns as the training dataset, but the target column, pri ce, is not considered when

generating predictions or explanations.

nmysql > CREATE TABLE house_price_testing (
id INT PRI MARY KEY,
house_si ze | NT,
addr ess TEXT,
state TEXT,
price | NT
DE

6. Insert the sample data into the table. Copy and paste the following commands.

I NSERT | NTO house_price_testing (id, house_size, address, state, price)
VALUES

(1, 1400, '500 Elm St', 'Nevada', 470000),

(2, 1900, '200 River Rd', 'California', 630000),

(3, 1600, '300 Mountain Ave', 'Colorado', 530000),

(4, 2200, '400 Lake Blvd', 'New York', 780000),

(5, 1300, '500 Creek Lane', 'Texas', 460000),

(6, 1700, '600 Valley View Rd', 'Florida', 510000),

(7, 1500, '700 Ccean St', 'Washington', 500000),

(8, 1800, '800 Sky Blvd', 'Oregon', 600000),




Perform Regression Analysis

(9, 1200, '900 Meadow Ave', 'lllinois', 430000),
(10, 2100, "'1000 Hi Il Rd", 'New Jersey', 760000);

What's Next

e Learn how to Train a Regression Model.
4.7.2.2 Training a Model for Regression

After preparing the data for a regression model, you can train the model.
Before You Begin

» Review and complete all the tasks to Prepare Data for a Regression Model.
Training the Model

Train the model with the M__ TRAI Nroutine and use the house_pri ce_trai ni ng table previously
created. Before training the model, it is good practice to define the model handle instead of automatically
creating one. See Defining Model Handle.

1. Optionally, set the value of the session variable, which sets the model handle to this same value.
nysql > SET @ari able = ' nodel _handl e';
Replace @ar i abl e and nodel _handl e with your own definitions. For example:
nysqgl > SET @mdel =' r egr essi on_use_case' ;
The model handle is setto r egr essi on_use_case.
2. Runthe ML_TRAI Nroutine.
nysqgl > CALL sys. ML_TRAI N('tabl e_nane', 'target_columm_nane', JSON OBJECT('task', 'task_nane'), @ariable);
Replace t abl e_nane, t arget _col unm_nane, t ask_nane, and var i abl e with your own values.
The following example runs M._ TRAI N on the training dataset previously created.
mysql > CALL sys. ML_TRAI N(' regressi on_dat a. house_price_training' , 'price', JSON OBJECT('task', 'regression')
Where:

e regression_data. house_price_training is the fully qualified name of the table that contains
the training dataset (dat abase_nane. t abl e_nane).

e pri ce is the name of the target column, which contains ground truth values.
« JSON OBJECT('task', 'regression') specifies the machine learning task type.

e @wodel is the session variable previously set that defines the model handle to the name defined by
the user: r egr essi on_use_case. If you do not define the model handle before training the model,
the model handle is automatically generated, and the session variable only stores the model handle
for the duration of the connection. User variables are written as @ ar _namne. Any valid name for a
user-defined variable is permitted. See Work with Model Handles to learn more.

3. When the training operation finishes, the model handle is assigned to the @mwodel session variable, and
the model is stored in the model catalog. View the entry in the model catalog with the following query.
Replace user 1 with your MySQL account name.
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nysql > SELECT nodel _i d, nodel _handl e, train_table_nane FROM M._SCHEVA user 1. MODEL_CATALOG WHERE nodel _h
doocoocoooo g =g =g R T - L L L - - - +

| rodel _id nmodel _handl e

What's Next
» Learn how to Generate Predictions for a Regression Model.
4.7.2.3 Generating Predictions for a Regression Model
After training the model, you can generate predictions.

To generate predictions, use the sample data from the house_pri ce_t esti ng dataset. Even though the
table has labels for the pri ce target column, the column is not considered when generating predictions.
This allows you to compare the predictions to the actual values in the dataset and determine if the
predictions are reliable. Once you determine the trained model is reliable for generating predictions, you
can start using unlabeled datasets for generating predictions.

Before You Begin
Complete the following tasks:
» Prepare Data for a Regression Model
» Train a Regression Model
Generating Predictions for a Table

1. If not already done, load the model. You can use the session variable for the model that is valid for the
duration of the connection. Alternatively, you can use the model handle previously set. For the option to
set the user name, you can set it to NULL.

The following example uses the session variable.
nysqgl > CALL sys. M._MODEL_LOAD( @model , NULL);
The following example uses the model handle.
mysql > CALL sys. ML_MODEL LOAD(' regression_use_case', NULL);
2. Make predictions for the test dataset by using the M__PREDI CT_TABLE routine.

nysqgl > CALL sys. M._PREDI CT_TABLE(t abl e_nane, nodel _handl e, output_table_nane), [options]);

Replace t abl e_nane, nodel _handl e, and out put _t abl e_nane with your own values. Add
opt i ons as needed.

You have the option to specify the input table and output table as the same table if specific conditions
are met. See Input Tables and Output Tables to learn more.

The following example runs M._PREDI CT_TABLE on the testing dataset previously created.

mysql > CALL sys. ML_PREDI CT_TABLE(' regressi on_dat a. house_price_testing', @mdel, 'regression_data.house_

Where:
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e regression_data. house _price_testing isthe fully qualified name of the input table that
contains the data to generate predictions for (dat abase _nane. t abl e_nan®).

@rmodel is the session variable for the model handle.

e regression_data. house _price_predictions is the fully qualified name of the output table
with predictions (dat abase nane. t abl e_nane).

* NULL sets no options for the routine.

3. Querytheprice,Prediction,andm _results columns from the output table. This allows you to
compare the real value with the generated prediction. If needed, you can also query all the columns
from the table (SELECT * FROM house_price_predi cti ons) to review all the data at once.

nysql > SELECT price, Prediction, m _results FROM house_price_predictions

doocooooo doocococoocoo o O C OO CEONCOONCOCCOONCOO 0000 COO0C000000C000 +
| price | Prediction | nl_results

doocooooo doocococoocoo o O C OO CEONCOONCOCCOONCOO 0000 COO0C000000C000 +
| 470000 | 534372 | {"predictions": {"price": 534371.5625}}

| 630000 | 669040 | {"predictions": {"price": 669040.125}}

| 530000 | 512676 | {"predictions": {"price": 512676.40625}}

| 780000 | 794059 | {"predictions": {"price": 794059.0}}

| 460000 | 489206 | {"predictions": {"price": 489206.0}}

| 510000 | 534240 | {"predictions": {"price": 534239.8125}}

| 500000 | 532544 | {"predictions": {"price": 532543.9375}}

| 600000 | 698540 | {"predictions": {"price": 698539.9375}}

| 430000 | 454276 | {"predictions": {"price": 454275.5}}

| 760000 | 794059 | {"predictions": {"price": 794059. 0}}

10 rows in set (0.0417 sec)
Review the predictions and compare with the real prices.

To learn more about generating predictions for one or more rows of data, see Generate Predictions for a
Row of Data.

What's Next

» Learn now to Query Model Explanation and Generate Prediction Explanations for a Regression Model.

4.7.2.4 Query Model Explanation and Generate Prediction Explanations for a Regression

Model

After training a regression model, you can query the default model explanation or query new model
explanations. You can also generate prediction explanations. Explanations help you understand which
features had the most influence on generating predictions.

Feature importance is presented as an attribution value ranging from -1 to 1. A positive value indicates
that a feature contributed toward the prediction. A negative value indicates that the feature contributes
positively towards one of the other possible predictions.

Before You Begin

Complete the following tasks:
* Prepare Data for a Regression Model
» Train a Regression Model

» Generate Predictions for a Regression Model
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Generating the Model Explanation

After training a model, you can query the default model explanation with the Permutation Importance
explainer.

To generate explanations for other model explainers, see Generate Model Explanations and
ML_EXPLAIN.

Query the nodel _expl anat i on column from the model catalog and define the model handle previously
created. Update user 1 with your own user name. Use JSON_PRETTY to view the output in an easily
readable format.

nysqgl > SELECT JSON_PRETTY(nodel _expl anati on) FROM M._SCHEMA user 1. MODEL_CATALOG
WHERE nodel _handl e=' r egr essi on_use_case' ;

per mut ati on_i nportance": {
"id": 0.0257,
"state": 0.0278,
"address": 0.0,
"house_si ze": 2.3762

1 rowin set (0.000 sec)
Feature importance values display for each column.
Generating Prediction Explanations for a Table

After training a model, you can generate a table of prediction explanations on the
house pri ce_testi ng dataset by using the default Permutation Importance prediction explainer.

To generate explanations for other model explainers, see Generate Prediction Explanations and
ML_EXPLAIN_TABLE.

1. If not already done, load the model. You can use the session variable for the model that is valid for the
duration of the connection. Alternatively, you can use the model handle previously set. For the option to
set the user name, you can set it to NULL.

The following example uses the session variable.

nysqgl > CALL sys. M._MODEL_LOAD( @model , NULL);

The following example uses the model handle.

nysqgl > CALL sys. M._MODEL_LOAD(' regressi on_use_case', NULL);

2. Usethe M__EXPLAI N_TABLE routine to generate explanations for predictions made in the test dataset.

nysql > CALL sys. M._EXPLAI N_TABLE(t abl e_nane, nodel _handl e, output_table_nane, [options]);

Replace t abl e_nane, nodel _handl e, and out put _t abl e_nane with your own values. Add
opt i ons as needed.

You have the option to specify the input table and output table as the same table if specific conditions
are met. See Input Tables and Output Tables to learn more.

The following example runs M._EXPLAI N_TABLE on the testing dataset previously created.
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mysql > CALL sys. ML_EXPLAI N_TABLE(' regressi on_dat a. house_price_testing', 'regression_use_case'

Where:
e regression_dat a. house_price_testing is the fully qualified name of the test dataset.
e regression_use_case is the model handle for the trained table.

e regression_data. regressi on_expl anati ons is the fully qualified name of the output table
with explanations.

e permutation_i nportance is the selected prediction explainer to use to generate explanations.

3. Query Not es and ml _resul t s from the output table to review which column contributed the most
against or had the largest impact towards the prediction. You can also review individual attribution
values for each column. Use \ Gto view the output in an easily readable format.

nmysql > SELECT Notes, ml _results FROM regression_data.regressi on_expl anati ons\ G

KR K KKk ok kkkhkhkkkkhhhkkkxhx 9 [ QWY % % % % o ook ok ok ok ok ok ok kK ok ok ok ok ok ko K ok ok ok

Not es: house_si ze (1400) increased the value the nodel predicted the npbst, whereas state (Nevada)

'regression_
JSON_OBJECT( ' predi cti on_expl ainer', 'pernutation_inportance'));

redu

m _results: {"attributions": {"house_size": 101328.28, "state": -1037.94, "id": -300.23}, “predictions": {"

KRXK KKk k kX khkhkkkkkhhkkkxxx 9 [ QWY % % % % o sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok Xk ok ok

Not es: house_si ze (1900) increased the value the nodel predicted the npst

m _results: {"attributions": {"house_size": 235996.83, "state": 16140.48, "id": 0.06}, "predictions":

KRKXK KKk kkkkhkhkkkkhhhkkkxxx 3 [ QWY % % % % o ook ok ok ok ok ok ok ok ok ok ok ok ok ok ko Kk ok ok

{"pri

Not es: house_si ze (1600) increased the value the nodel predicted the nobst, whereas state (Col orado) re
m _results: {"attributions": {"house_size": 79633.12, "state": -1220.23, "id": 5602.78}, "predictions": {"f

KhKK KKk khkkhhhkkkkkhhkkxxxx () [ QWY % % % % o ko ok ok ok ok ok ok kK ok ok ok ok ok ok kK ok ok ko

Not es: house_si ze (2200) increased the value the nodel predicted the npst

m _results: {"attributions": {"house_size": 361015.72, "state": 9903.62, "id": 12578.75}, "“predictions": {"

KRXK KKk kk Xk khhkkxkkhhkkxxx* § [ QWY % % % % o ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ko K ok ok ok

Not es: house_si ze (1300) increased the value the nodel predicted the npst

m _results: {"attributions": {"house_size": 31384.31, "state": 226.31, "id": 30184.16}, “"predictions":

KRXKK KKk kXX *hhkkkkkhkkkxxx* @G [ QWY % % % % o ook ok ok ok ok ok ok sk ok ok ok ok ok ok kK ok ok ok

Not es: house_si ze (1700) increased the value the nodel predicted the npst

m _results: {"attributions": {"house_size": 80747.0, "state": 7330.35, "id": 24427.78}, “"predictions":

KRXK KKk k kR khhkkkkkhhkkkxxx 7 [ QWY % % % % o sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok Xk ok ok

{"pr

{"pr

Not es: house_si ze (1500) increased the value the nodel predicted the npbst, whereas state (Washi ngton)
m _results: {"attributions": {"house_size": 79051.12, "state": -1316.08, "id": 28659.66}, "predictions": {"

KRk kkkkkkkkkkkkkkkhhkkxxxx g [ QWY % % % % o ok ok ok ok ok ok o ok ok ok ok ok ok ok ok kK ok ok ok

Not es: house_si ze (1800) increased the value the nodel predicted the npst

m _results: {"attributions": {"house_size": 245256.83, "state": 8604.06, "id": 12578.75}, "predictions": {"

KRXK KKk kkkkkkkkkkxkhkkkxxxx Q [ QWY % % % o ko ok ok ok ok ok ok ok ok ok ok ok ok kK ok ok ok

Notes: id (9) increased the value the nbdel predicted the nbst, whereas state (Illinois)

m _results: {"attributions": {"house_size": -0.03, "state": -0.03, "id": 21232.22}, "predictions":

KRk kkkkkxkkkkkkxkkkkkxxxk*x 10 [ QWY % % % % o sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok kX ok ok ko

Not es: house_si ze (2100) increased the value the nodel predicted the npst

reduced the v
{"price"

m _results: {"attributions": {"house_size": 339783.47, "state": 10981.75, "id": 12411.04}, "predictions": {

To generate prediction explanations for one or more rows of data, see Generate Prediction Explanations
for a Row of Data.

What's Next
» Learn how to Score a Regression Model.
4.7.2.5 Scoring a Regression Model

After generating predictions and explanations, you can score the model to assess its reliability. For a list
of scoring metrics you can use with regression models, see Regression Metrics. For this use case, you
use the test dataset for validation. In a real-world use case, you should use a separate validation dataset
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that has the target column and ground truth values for the scoring validation. You should also use a larger
number of records for training and validation to get a valid score.

Before You Begin

Complete the following tasks:

» Prepare Data for a Regression Model

» Train a Regression Model

» Generate Predictions for a Regression Model

* Query Model Explanation and Generate Prediction Explanations for a Regression Model

Scoring the Model

1.

If not already done, load the model. You can use the session variable for the model that is valid for the
duration of the connection. Alternatively, you can use the model handle previously set. For the option to
set the user name, you can set it to NULL.

The following example uses the session variable.

nysqgl > CALL sys. M._MODEL_LOAD( @model , NULL);

The following example uses the model handle.

mysql > CALL sys. ML_MODEL_LOAD(' regressi on_use_case', NULL);

Score the model with the M._ SCORE routine and use the r 2 metric.

nysqgl > CALL sys. M._SCORE('regressi on_dat a. house_price_testing', 'price', 'regression_use_case', 'r2',

Where:

e regression_data. house _price_testing isthe fully qualified name of the validation dataset.
e pri ce is the target column name with ground truth values.

e 'regression_use_case' isthe model handle for the trained model.

e 1 2 is the selected scoring metric.

e @ egression_scor e is the session variable name for the score value.

NULL means that no other options are defined for the routine.

Retrieve the score by querying the @regression_score session variable.
nysql > SELECT @ egressi on_scor €;

| @egression_score |

1 rowin set (0.0453 sec)

If done working with the model, unload it with the M. MODEL_UNLOAD routine.

nysql > CALL sys. M._MODEL_UNLOAD(' r egr essi on_use_case');
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To avoid consuming too much memory, it is good practice to unload a model when you are finished
using it.

What's Next

» Review other Machine Learning Use Cases.

4.7.3 Generating Forecasts

Forecasting models generate predictions on timeseries data. Some examples of forecasting include
predicting the closing price of a stock, predicting the number of units sold in a day, and predicting the
average price of gasoline.

The following tasks use a dataset generated by OCI GenAl using Meta Llama Models. The forecasting
use-case is a univariate forecasting model that captures the monthly demand for electricity in San
Francisco, California.

To generate your own datasets to create machine learning models in MySQL Al, learn how to Generate
Text-Based Content.

is subject to your Oracle agreements and this Llama license agreement: https://

Note
@ Datasets were generated using Meta Llama models. Your use of this Llama model
downloads.mysql.com/docs/LLAMA_31 8B_INSTRUCT-license.pdf.

4.7.3.1 Forecasting Task Types

This topic describes the types of forecasting models supported by AutoML.
Before You Begin

» Review the list of supported Forecasting Models.

You can create the following types of forecasting models.
Univariate Models

In a univariate model, you define one numeric column as an endogenous variable, specified as a
JSON_ARRAY. This is the target column that AutoML forecasts. For example, you forecast the rainfall for
the next month by using the past daily rainfall as an endogenous variable.

Multivariate Models

In a multivariate model, you define multiple columns as endogenous variables, specified as a
JSON_ARRAY. You must define one of these columns as the target column (the column with ground truth
values). For example, you forecast the rainfall for the next month by using the past rainfall, temperature
highs and lows, atmospheric pressure, and humidity. The target column is rainfall.

Univariate and Multivariate Models with Exogenous Variables
You have the option to define exogenous variables for univariate and multivariate models. These columns

have independent, non-forecast, predictive variables. For example, you forecast future sales and use
weather conditions like rainfall and high and low daily temperature values as exogenous variables.
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Selecting Forecasting Models

To specify which models that are considered for training, use the nodel | i st option and enter the
appropriate model names. If only one model is set for nodel _| i st, then only that model is considered.
Review the list of supported Forecasting Models and which type of model they support, univariate
endogenous models, univariate endogenous models with exogenous variables, and multivariate
endogenous models with exogenous variables. .

If the nodel _| i st option is not set, then M__TRAI N considers all supported models during the algorithm
selection stage. If opt i ons includes exogenous_var i abl es, all supported models are still considered,
including models that do not support exogenous_vari abl es.

For example, if opt i ons includes univariate endogenous_var i abl es with exogenous_vari abl es,
then ML_TRAI N considers Nai veFor ecast er, Thet aFor ecast er , ExpSnoot hFor ecast er,
ETSFor ecast er, STLWESFor ecast er, STLWARI MAFor ecast er , SARI MAXFor ecast er, and
O bi t Forecast er. M._TRAI Nignores exogenous_var i abl es if the model does not support them.

Similarly, if opt i ons includes multivariate endogenous_vari abl es with exogenous_vari abl es, then
M__TRAI N considers VARMAXFor ecast er and DynFact or For ecast er .

If opti ons alsoincludes i ncl ude_col umm_| i st , this forces M__TRAI N to only consider those models
that support exogenous_vari abl es.

What's Next
* Learn more about Prediction Intervals.

e Learn how to Train a Forecasting Model.
4.7.3.2 Prediction Intervals

Prediction intervals for forecasting models specify upper and lower bounds on predictions for forecasting
based on level of confidence. For example, for a prediction interval of 0.95 with a lower bound of 25 units
and an upper bound of 65 units, you are 95% confident that product ABC will sell between 25 and 65 units
on a randomly selected day.

The predi ction_interval option is included for the M._PREDI CT_TABLE routine, which specifies a
level of confidence. Predictions provide three outputs corresponding to each endogenous variable: the
forecasted value, a lower bound, and an upper bound.

For the predi ction_interval option:

* The default value is 0.95.

e The data type for this value must be FLOAT.

» The value must be greater than 0 and less than 1.0.
What's Next

» Learn how to Train a Forecasting Model.
4.7.3.3 Preparing Data for a Forecasting Model

This topic describes how to prepare the data to use for a forecasting machine learning model. It uses a
data sample generated by OCI GenAl. To prepare the data for this use case, you set up a training dataset
and a testing dataset. The training dataset has 37 records, and the testing dataset has 4 records. In a
real-life use case, you should prepare a larger amount of records for training and testing, and ensure the
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predictions are valid and reliable before testing on unlabeled data. To ensure reliable predictions, you
should create an additional validation dataset. You can reserve 20% of the records in the training dataset
to create the validation dataset.

You have the option to automatically Prepare Training and Testing Datasets with your own data by using
the TRAI N_TEST_SPLI T routine.

Before You Begin
» Learn how to Prepare Data.

Preparing Data
To prepare the data for the forecasting model:
1. Connect to the MySQL Server.

2. Create and use the database to store the data.

nysql > CREATE DATABASE f or ecasti ng_dat a;
nysql > USE forecasting_data;

3. Create the table that is the sample dataset.

nysql > CREATE TABLE el ectricity_demand (
dat e DATE PRI MARY KEY,
demand FLOAT NOT NULL
tenperature FLOAT NOT NULL

DE

4. Insert the sample data into the table. Copy and paste the following commands.

I NSERT I NTO el ectricity_denand (date, denmand, tenperature) VALUES
' 2022-01-01', 929.00, 53.53),

' 2022-01-31', 949.69, 60.80),

' 2022-03-02', 1160.84, 69.28),

' 2022-04-01', 1054.52, 74.48),

(

(

(

(

(' 2022-05-01', 1061.40, 71.06),
(' 2022-05-31', 1012.36, 58.05),
(' 2022-06-30', 1098.87, 51.90),
(' 2022-07-30', 964.31, 39.70),
(' 2022-08-29', 1026.06, 32.47),
(' 2022-09-28', 995.23, 30.82),
(' 2022-10-28', 1076.04, 32.97),
(' 2022-11-27', 1059.46, 42.91),
(' 2022-12-27', 1060.97, 51.52),
(' 2023-01-26', 1153.59, 60.24),
(' 2023-02-25', 1204.72, 68.21),
(' 2023-03-27', 1203.33, 70.67),
(' 2023-04-26', 1218.42, 70.31),
(' 2023-05-26', 1163.28, 59.59),
(' 2023-06-25', 1161.86, 50.63),
(' 2023-07-25', 1131.38, 38.29),
(' 2023-08-24', 1138.72, 27.57),
(' 2023-09-23', 1119.34, 31.31),
(' 2023-10-23', 1090.38, 34.41),
(' 2023-11-22', 1213.87, 38.52),
(' 2023-12-22', 1219.91, 54.54),
(' 2024-01-21', 1193.49, 57.09),
(' 2024-02-20', 1326.44, 67.41),
(' 2024-03-21', 1274.64, 69.63),
(' 2024-04-20', 1325.90, 70.39),
(' 2024-05-20', 1351.45, 62.94),
(' 2024-06-19', 1306. 45, 50.31),
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' 2024-07-19', 1341.97, 40.76),
' 2024-08-18', 1214.96, 30.90),
' 2024-09-17', 1300.12, 26.04),
' 2024-10-17', 1262.46, 31.98),
' 2024-11-16', 1281.46, 40.31),
'2024-12-16', 1331.06, 52.46),
' 2025-01- 15", 1379.42, 62.40),
' 2025-02-14', 1426.11, 66.55),
' 2025-03-16', 1381.74, 69.40),
' 2025- 04- 15", 1488. 34, 65.22);

NN~~~ A~~~

5. Create the table to use as the training dataset. It retrieves some of the data from the sample dataset.

nysql > CREATE TABLE el ectricity_demand_train AS SELECT * FROM el ectricity_demand WHERE date < '2025-01-

6. Create the table to use for generating predictions. This is the test dataset. It retrieves the data from the
sample dataset not used for the training dataset. It has the same columns as the training dataset, but
the target column, dermand, is not considered when generating predictions.

nysql > CREATE TABLE el ectricity_demand_test AS SELECT * FROM el ectricity_demand WHERE date >= ' 2025-01-

What's Next

» Learn how to Train a Forecasting Model.
4.7.3.4 Training a Forecasting Model

After preparing the data for a forecasting model, you can train the model.

This topic has the following sections.

» Before You Begin

» Requirements for Forecasting Training

» Forecasting Options

* Unsupported Routines

» Training the Model

* What's Next
Before You Begin

» Review and complete all the tasks to Prepare Data for a Forecasting Model.
Requirements for Forecasting Training

Define the following required parameters to train a forecasting model.

» Setthet ask parameter to f or ecast i ng.

« dat eti nme_i ndex: Define the column that has date and time data. The model uses this column as
an index for the forecast variable. The following data types for this column are supported: DATETI ME,
TI MESTAMP, DATE, Tl VE, and YEAR, or an auto-incrementing index.

The forecast models SARI MAXFor ecast er , VARMAXFor ecast er, and DynFact or For ecast er
cannot back test, that is forecast into training data, when using exogenous_var i abl es. Therefore,
the predict table must not overlap the dat et i ne_i ndex with the training table. The start date

in the predict table must be a date immediately following the last date in the training table when
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exogenous_vari abl es are used. For example, the predict table has to start with year 2024 if the
training table with YEAR data type dat et i ne_i ndex ends with year 2023. The predict table cannot start
with year, for example, 2025 or 2030, because that would miss out 1 and 6 years, respectively.

When opt i ons do not include exogenous_var i abl es , the predict table can overlap the
dat et i me_i ndex with the training table. This supports back testing, with the exception of the following
models: SARIMAXForecaster, VARMAXForecaster, and DynFactorForecaster.

The valid range of years for dat et i ne_i ndex dates must be between 1678 and 2261. An error is
returned if any part of the training table or predict table has dates outside this range. The last date in the
training table plus the predict table length must still be inside the valid year range. For example, if the
dat eti me_i ndex in the training table has YEAR data type, and the last date is year 2023, the predict
table length must be less than 238 rows: 2261 minus 2023 equals 238 rows.

endogenous_vari abl es: Define the column or columns to be forecast. One of these columns must
also be specified as the t ar get _col unm_nane.

Forecasting Options

Based on the type of forecasting model you train, set the appropriate JSON options:

* exogenous_vari abl es: Define the column or columns that have independent, non-forecast, predictive

variables. These optional variables are not forecast, but help to predict the future values of the forecast
variables. These variables affect a model without being affected by it. For example, for sales forecasting
these variables might be advertising expenditure, occurrence of promotional events, weather, or
holidays. Review Forecasting Models to see which models support exogenous variables.

nodel _|i st: Set the type of forecasting model algorithm. See Forecasting Models to review supported
algorithms.

i ncl ude_col um_1 i st : Define the columns of exogenous_var i abl es that must be included for
training and should not be dropped.

Unsupported Routines

You cannot run the following routines for a trained forecasting model:
« M._EXPLAI N

e M_L_EXPLAI N_ROW

« M._EXPLAI N _TABLE

* M__PREDI CT_ROW

Training the Model

After following the steps to Prepare Data for Forecasting Model, train the model with the ML_ TRAI N routine
and use the el ectricity_dermand_t rai ni ng table previously created. Before training the model, it

is good practice to define the model handle instead of automatically creating one. See Defining Model
Handle.

1. Optionally, set the value of the session variable, which sets the model handle to this same value.

nysqgl > SET @ari able = ' nodel _handl e';

Replace @ari abl e and nodel _handl e with your own definitions. For example:

nysqgl > SET @mdel =' f or ecasti ng_use_case' ;
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The model handle is setto f or ecasti ng_use_case.
2. Runthe M__TRAI Nroutine.

nmysql > CALL sys. ML_TRAIN('tabl e_nane', 'target_columm_nane', JSON OBJECT('task', 'task_nane'), nodel _ha

Replace t abl e_nane, t arget col unm_nane, t ask_nane, and nodel _handl e with your own
values.

The following example runs M__TRAI N on the training dataset previously created.
nysqgl > CALL sys. ML_TRAI N(' forecasting_data.electricity_demand_train', 'demand',
JSON_OBJECT('task', 'forecasting',

‘datetime_index', 'date',
' endogenous_vari abl es', JSON_ARRAY(' demand')), @mdel);

Where:

« forecasting data.electricity_demand_trai n is the fully qualified name of the table that
contains the training dataset (dat abase_nane. t abl e_nane).

« denand is the name of the target column, which contains ground truth values.
e The JSON_OBJECT defines the following:
« "task', 'forecasting' specifiesthe machine learning task type.
e "datetine_index', 'date' definesthe dat e column as the one with data and time data.

e "endogenous_variabl es', JSON ARRAY(' dermand') defines the endogenous variables in a
JSON_ARRAY. Since it is a univariate model, the only endogenous variable is denand.

« @odel is the session variable previously set that defines the model handle to the name defined by
the user: f or ecasti ng_use_case. If you do not define the model handle before training the model,
the model handle is automatically generated, and the session variable only stores the model handle
for the duration of the connection. User variables are written as @ ar _nane. Any valid name for a
user-defined variable is permitted. See Work with Model Handles to learn more.

3. When the training operation finishes, the model handle is assigned to the @mdel session variable, and
the model is stored in the model catalog. View the entry in the model catalog with the following query.
Replace user 1 with your MySQL account name.

nysql > SELECT nodel _id, nodel _handl e, train_table nane FROM M._SCHEMA user 1. MODEL_CATALOG WHERE nodel _h

b cccmmo oo e cccmmcccccmocccccmocscccmooccccmoosccomooooe-s e L e — — — - - — -
| nodel _id | nodel _handl e | train_table_name
b cccmmo oo e cccmmcccccmocccccmocscccmooccccmoosccomooooe-s e L e — — — - - — -
| 3 | forecasting_use_case | forecasting data.electricity _demand_train
b cccmmo oo e cccmmcccccmocccccmocscccmooccccmoosccomooooe-s e L e — — — - - — -
What's Next

» Learn how to Generate Predictions for a Forecasting Model.

* Review additional Syntax Examples for Forecast Training
4.7.3.5 Generating Predictions for a Forecasting Model

After training the model, you can generate predictions.
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To generate predictions, use the sample data from the el ectricity denand_t est dataset. Even
though the table has labels for the dermand target column, the column is not considered when generating
predictions. This allows you to compare the predictions to the actual values in the dataset and determine
if the predictions are reliable. Once you determine the trained model is reliable for generating predictions,
you can start using unlabeled datasets for generating predictions.

The dat eti me_i ndex column must be included. If using exogenous_var i abl es, they must also be
included. Any extra columns, for example endogenous_var i abl es, are ignored for the prediction, but
included in the output table.

Prediction interval values are included in the prediction results. See Prediction Intervals to learn more.
You cannot run M._PREDI CT_ROWwith forecasting models.
Before You Begin
Complete the following tasks:
» Prepare Data for a Forecasting Model.
» Review how to Train a Forecasting Model.
Generating Forecasts for a Table

1. If not already done, load the model. You can use the session variable for the model that is valid for the
duration of the connection. Alternatively, you can use the model handle previously set. For the option to
set the user name, you can set it to NULL.

The following example uses the session variable.
nysqgl > CALL sys. M._MODEL_LOAD( @model , NULL);
The following example uses the model handle.
nysqgl > CALL sys. M._MODEL_LOAD(' f orecasti ng_use_case', NULL);
2. Make predictions for the test dataset by using the M__PREDI CT_TABLE routine.

mysql > CALL sys. ML_PREDI CT_TABLE(t abl e_nanme, nodel _handl e, output_table_nanme), [options]);

Replace t abl e_nane, nodel _handl e, and out put _t abl e_nane with your own values. Add
opt i ons as needed.

You have the option to specify the input table and output table as the same table if specific conditions
are met. See Input Tables and Output Tables to learn more.

The following example runs M_._PREDI CT_TABLE on the testing dataset previously created.

nysqgl > CALL sys. M._PREDI CT_TABLE(' forecasti ng _data.electricity demand test', @mdel, 'forecasting_data. el ec
Where:

« forecasting data.electricity denand test isthe fully qualified name of the input table
that contains the data to generate predictions for (dat abase _nane. t abl e_nane).

« @mdel is the session variable for the model handle.

e forecasting_data.electricity_demand_predictions is the fully qualified name of the
output table with predictions (dat abase_nane. t abl e_nane).
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« NULL sets no options for the routine.

3. Query the demand, and M _resul t s columns from the output table. This allows you to compare
the real demand with the generated forecast. You can also review the lower bound and upper bound
prediction interval values for each forecast. Since no prediction interval value is set when running
M._PREDI CT_TABLE, the default value of 0.95 is used.

nmysql > SELECT demand, m _results FROM el ectricity_demand_predi ctions

| 1379.42 | {"predictions": {"demand": 1316.5263873105694, "prediction_interval demand": [1312.64875045
| 1426.11 | {"predictions": {"demand": 1322.148597544633, "prediction_interval demand": [1317.796601580
| 1381.74 | {"predictions": {"demand": 1327.6276527841787, "prediction_interval demand": [1322.84806999
|

1488.34 | {"predictions": {"demand": 1332.9671980996688, "prediction_interval _demand": [1327.79518910
drmccccccos dhecccccocoocccoococcooScCocoCSCCooSCCCoCSCCCoSCCooCSoCCCoocCCoocooccooccococooccoooooocooo oo o

What's Next
e Learn how to Score a Forecasting Model
4.7.3.6 Scoring a Forecasting Model

After generating predictions, you can score the model to assess its reliability. For a list of scoring metrics
you can use with forecasting models, see Forecasting Metrics. For this use case, you use the test dataset
for validation. In a real-world use case, you should use a separate validation dataset that has the target
column and ground truth values for the scoring validation. You should also use a larger number of records
for training and validation to get a valid score.

The M._ SCORE routine does not require at ar get _col unm_nane for forecasting, so you can set it to
NULL. However, the target column needs to be in the table to generate a valid score value.

Before You Begin
Complete the following tasks:
» Prepare Data for a Forecasting Model
 Train a Forecasting Model
» Generate Predictions for a Forecasting Model
Scoring the Model

1. If not already done, load the model. You can use the session variable for the model that is valid for the
duration of the connection. Alternatively, you can use the model handle previously set. For the option to
set the user name, you can set it to NULL.

The following example uses the session variable.
nysqgl > CALL sys. M._MODEL_LOAD( @model , NULL);
The following example uses the model handle.

nysql > CALL sys. M._MODEL_LOAD(' f orecasti ng_use_case', NULL);

2. Score the model with the ML_ SCORE routine and use the neg_sym nean_abs_percent _error
metric.
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nysqgl > CALL sys. M._SCORE(t abl e_nane, target_col um_nane, nodel _handle, netric, score, [options]);

Replace t abl e_nane, t arget _col unm_nane, nodel _handl e, netri c, scor e with your own
values.

The following example runs ML_ SCORE on the testing dataset previously created.

nysqgl > CALL sys. M._SCORE(' forecasting_data.electricity _demand_test', 'demand', @mdel, 'neg_sym mean_abs_pe
Where:

« forecasting data.electricity denand test isthe fully qualified name of the validation
dataset.

« demand is the target column name with ground truth values.

« @mdel is the session variable for the model handle.

e neg_sym nmean_abs_percent error isthe selected scoring metric.

e @orecasting_scor e is the session variable name for the score value.
* NULL means that no other options are defined for the routine.

3. Retrieve the score by querying the @forecasting_score session variable.

nysql > SELECT @ orecasti ng_score;

dimccccocccccococccooccoooe +
| @orecasting_score |
dimccccocccccococccooccoooe +
| -0.06810028851032257 |
dimccccocccccococccooccoooe +

4. If done working with the model, unload it with the M__ MODEL _UNLOAD routine.

nmysql > CALL sys. M._MODEL _UNLQOAD(' f orecasti ng_use_case');

To avoid consuming too much memory, it is good practice to unload a model when you are finished
using it.

What's Next

» Review other Machine Learning Use Cases.

4.7.4 Detect Anomalies

Anomaly detection, which is also known as outlier detection, is the machine learning task that finds unusual
patterns in data.

AutoML supports unsupervised and semi-supervised anomaly detection. See Anomaly Detection Learning
Types to learn more.

The following tasks use datasets generated by OCI GenAl using Meta Llama Models. The anomaly
detection use-cases are to find unusual patterns of purchasing behavior for credit card transactions, and to
find anomalies in log data.

To generate your own datasets to create machine learning models in MySQL Al, learn how to Generate
Text-Based Content.
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is subject to your Oracle agreements and this Llama license agreement: https://
downloads.mysqgl.com/docs/LLAMA_31 8B _INSTRUCT-license.pdf.

Note
@ ‘ Datasets were generated using Meta Llama models. Your use of this Llama model

4.7.4.1 Anomaly Detection Model Types

You can use the following anomaly detection model types:

* GkNN (Generalized kth Nearest Neighbors)

* PCA (Principal Component Analysis)

* GLOF (Generalized Local Outlier Factor)
GKkNN Model

Generalized kth Nearest Neighbors (GKNN) is an algorithm model developed at Oracle. It is a single
ensemble algorithm that outperforms state-of-the-art models on public benchmarks. It can identify common
anomaly types, such as local, global, and clustered anomalies, and can achieve an AUC score that is
similar to, or better than, when identifying the following:

» Global anomalies compared to KNN, with an optimal k hyperparameter value.
» Local anomalies compared to LOF, with an optimal k hyperparameter value.
» Clustered anomalies.

Optimal k hyperparameter values would be extremely difficult to set without labels and knowledge of the
use-case.

Other algorithms would require training and comparing scores from at least three algorithms to address
global and local anomalies, ignoring clustered anomalies: LOF for local, KNN for global, and another
generic method to establish a 2/3 voting mechanism.

What's Next
» Learn more about the following:
« Anomaly Detection Learning Types
« Anomaly Detection for Logs
4.7.4.2 Anomaly Detection Learning Types

The AutoML feature of MySQL Al provides two types of learning for anomaly detection models:
unsupervised and semi-supervised.

Unsupervised Anomaly Detection

When running an unsupervised anomaly detection model, the machine learning algorithm requires no
labeled data. When training the model, the t ar get _col unm_nane parameter must be set to NULL.

Semi-supervised Anomaly Detection

Semi-supervised learning for anomaly detection uses a specific set of labeled data along with unlabeled
data to detect anomalies. To enable this, use the experi nment al and semi super vi sed options. The
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What's Next

target col utmm_nane parameter must specify a column whose only allowed values are 0 (normal), 1
(anomalous), and NULL (unlabeled). All rows are used to train the unsupervised component, while the
rows with a value different than NULL are used to train the supervised component.

» Learn more about the following:

Anomaly Detection Algorithm Model Types

Anomaly Detection for Logs

e Learn how to Prepare Data for an Anomaly Detection Model.

4.7.4.3 Anomaly Detection for Logs

Anomaly detection for logs allows you to detect anomalies in log data. To perform anomaly detection
on logs, log data is cleaned, segmented, and encoded before running anomaly detection. This feature
leverages the log template miner Drain3.

Consider the following when running anomaly detection on logs.

» The input table can only have the following columns:

L]

The column containing the logs.

If including logs from different sources, a column containing the source of each log. The values in this
column contain the names of the sources that each log belongs to. These values are used to group
each host's logs together. If this column is not present, it is assumed that all logs originate from the
same source.

If including labeled data, a column identifying the labeled log lines. See Semi-supervised Anomaly
Detection to learn more.

At least one column must act as the primary key to establish the temporal order of logs. If the primary
key column (or columns) is not one of the previous required columns (log data, source of log, or
label), then you must use the excl ude_col unm_Il i st option when running M._TRAI Nto exclude
all primary key columns that don't include required data. See Syntax Examples for Anomaly Detection
Training to review relevant examples.

« If the input table has additional columns to the ones permitted, you must use the
excl ude_col um_|I i st option when running M__ TRAI N to exclude irrelevant columns.

» The data collected for anomaly detection can be unsupervised or semi-supervised. To run semi-
supervised anomaly detection, you can provide a separate column in the input table with labels for the
labeled log lines. This column labels identified anomalous logs with a value of 1, non-anomalous logs
with 0, and unlabeled logs with NULL. See Semi-supervised Anomaly Detection to learn more.

+ In addition to the anomaly scores included in the output table, you have the option to leverage the GenAl
feature of MySQL Al to provide textual log summaries.

« By default the following parameters are masked in the input data (training or test data): IP, DATETIME,
TIME, HEX, IPPORT, and OCID. You have the option to mask additional regex patterns with the
addi ti onal _nmaski ng_r egex option.

* MySQL Al uses a combination of a keyword feature extractor and an embedding model to train
models. This allows trained models to capture semantic meanings in log data. You have the option
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to select the keyword model and any embedding model supported by MySQL Al with the training
options keywor d_nodel and enbeddi ng_nodel . The available keyword model options are
tf-idf and NULL. To review supported embedding models, run the following query: SELECT

sys. M__LI ST_LLMS() ; and see models that have capabi | i ti es with TEXT_ENMBEDDI NGS. The
default keyword feature extractor is t f - i df , and the default embedding model is mul ti | i ngual -
e5-snmal | . Using an embedding model causes higher memory usage. You can set either

enbeddi ng_nodel or keywor d_nodel to NULL, but you cannot set both to NULL.

What's Next
» Learn more about the following:
< Anomaly Detection Algorithm Model Types
« Anomaly Detection Learning Types
» Learn how to Prepare Data for an Anomaly Detection Model.
4.7.4.4 Preparing Data for an Anomaly Detection Model

This topic describes how to prepare the data to use for two anomaly detection machine learning models:

a semi-supervised anomaly detection model, and an unsupervised anomaly detection model for logs. It
uses data samples generated by OCI GenAl. To prepare the data for this use case, you set up a training
dataset and a testing dataset. In a real-life use case, you should prepare a larger amount of records than
these data samples for training and testing, and ensure the predictions are valid and reliable before testing
on unlabeled data. To ensure reliable predictions, you should create an additional validation dataset. You
can reserve 20% of the records in the training dataset to create the validation dataset.

You have the option to automatically Prepare Training and Testing Datasets with your own data by using
the TRAI N_TEST_SPLI T routine.

This topic has the following sections.
» Before You Begin
» Preparing Data for a Semi-Supervised Anomaly Detection Model
» Preparing Data for an Unsupervised Anomaly Detection Model for Logs
* What's Next
Before You Begin
» Learn how to Prepare Data.
Preparing Data for a Semi-Supervised Anomaly Detection Model

The semi-supervised anomaly detection model looks for unusual patterns in credit card transactions. The
data has a column, t ar get , that has three possible values: 0 for normal, 1 for anomalous, and NULL for
unlabeled.

To prepare the data for the semi-supervised anomaly detection model:
1. Connect to the MySQL Server.

2. Create and use the database to store the data.

nysql > CREATE DATABASE anonal y_dat a;
nysql > USE anonal y_dat a;
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3. Create the table to insert the sample data into. This is the training dataset.

nysql > CREATE TABLE credit_card_train (
transaction_id | NT AUTO | NCREMENT PRI MARY KEY,
horme_addr ess VARCHAR(100),
pur chase_| ocati on VARCHAR(100),
pur chase_anount DECI MAL(10, 2),
purchase_ti ne DATETI ME,
target | NT

K

4. Insert the sample data to train into the table. Copy and paste the following commands.

I NSERT I NTO credit_card_train (hone_address, purchase_|location, purchase_amunt, purchase_tine, target)
VALUES
(*123 Main St, Gty A, 'Store X, Gty A, 50.75, '2023-08-01 14:30:00', 0),
(*456 EEmSt, City B, 'Cafe B, City B, 15.20, '2023-08-02 09:45:00', 1),
(789 Cak Ave, City C, 'Online Shop', 250.00, '2023-08-03 18:10:00', 0),
('222 Maple Lane, City A, '"Grocery Store A", 35.50, '2023-08-04 11:00:00', NULL),
(555 River Rd, City D, 'Electronics Store, City D, 800.50, '2023-08-05 16:20:00', 1),
(' 1010 Mbuntain View, Gty E, 'Boutique, City E, 120.30, '2023-08-06 10:35:00', 0),
('333 Ccean Blvd, City F, 'Convenience Store, City F, 20.15, '2023-08-07 19:50:00', NULL),
('666 Sky St, City G, 'Luxury Store, City G, 1500.00, '2023-08-08 12:00:00', 1),
("999 Geen Valley, Gty H, 'Hardware Store, City H, 75.90, '2023-08-09 08:40:00', 0),
(' 111 Sunset Ave, City A, '"Store X, City A, 60.40, '2023-08-10 15:10: 00", NULL),
(' 2222 Country Road, City B', 'Cafe B, City B, 28.75, '2023-08-11 07:30:00', 0),
(' 3333 Lakeside, City C, '"Online Shop', 180.25, '2023-08-12 13:20:00', 1),
(' 4444 Forest G ade, City D, 'Gocery Store, City D, 45.60, '2023-08-13 09:50:00', 0),
(' 5555 Meadow Lane, City E', 'Electronics Store, Gty E, 300.75, '2023-08-14 17:40:00', NULL),
(' 6666 Creekside, City F, 'Boutique, Cty F, 95.50, '2023-08-15 11:30:00', 1),
("7777 Hillcrest, City G, 'Convenience Store, City G, 12.80, '2023-08-16 18:50:00', 0),
('8888 Riverbank, City H, 'Luxury Store, Gty H, 2200.00, '2023-08-17 14:10:00', NULL),
('9999 Sunrise Blvd, City A", 'Hardware Store, City A, 55.25, '2023-08-18 09:30:00', 0),
(' 101010 Ccean View, City B', 'Store X, City B, 70.50, '2023-08-19 16:40:00', 1),
111111 Mountain Rd, Gty C, 'Cafe C, City C, 32.90, '2023-08-20 11:20:00', NULL),
121212 Downtown, City D, 'Online Shop', 450.00, '2023-08-21 17:50:00', 0),
131313 Lakeside Ave, City E', 'Gocery Store, City E, 28.50, '2023-08-22 10:10:00', 1),
141414 Green Park, City F', '"Electronics Store, City F', 650.75, '2023-08-23 15:30:00', 0),
151515 Skyway, Gty G, 'Boutique, Gty G, 180.40, '2023-08-24 08:50:00', NULL),
161616 Meadow View, City H , 'Convenience Store, Gty H, 35.10, '2023-08-25 13:40:00', 0),
171717 River Rd, City A, 'Luxury Store, Gty A, 1300.50, '2023-08-26 19:20:00', 1),
181818 Sunset Blvd, City B', 'Hardware Store, City B, 85.60, '2023-08-27 12:30:00', NULL),
191919 Country Lane, City C, 'Store Y, City C, 150.20, '2023-08-28 07:40:00', 0),
(' 202020 Forest Edge, Gty D, 'Cafe D, City D, 42.75, '2023-08-29 14:50:00', 1),
('212121 Lakeside View, City E, 'Online Shop', 220.50, '2023-08-30 09:20:00', 0),
(' 222222 Creekside Ave, City F', 'Gocery Store, City F', 55.90, '2023-08-31 16:10:00', NULL);

NN~~~ A~~~

5. Create the table to use for generating predictions. This is the test dataset. It has the same columns
as the training dataset. The target column, t ar get , is used for the sem-supervised component of the
training.

nysql > CREATE TABLE credit_card_test (
transaction_id | NT AUTO | NCREMENT PRI MARY KEY,
home_addr ess VARCHAR(100),
pur chase_| ocati on VARCHAR(100),
pur chase_anmount DECI MAL( 10, 2),
purchase_ti ne DATETI MVE,
target | NT

)
6. Insert the sample data to test into the table. Copy and paste the following commands.

I NSERT | NTO credit_card_test (hone_address, purchase_| ocation, purchase_anmount, purchase_tine, target)
VALUES

('3030 Riverbank Dr, City |I', 'Gocery Store, City |I', 52.30, '2023-09-01 10:30:00', 0),

(' 3131 Mountain Rd, City J', 'Electronics Store, City J', 120.50, '2023-09-02 16:45:00', 0),
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'3232 Ccean Ave, City K, 'Boutique, City K, 85. 20, '2023-09-03 11:20:00', 1),

‘3333 Green Valley, Cty L', 'Convenience Store, City L', 25.60, '2023-09-04 18:50:00', 0),
'3434 Sunset Blvd, City |I', 'Luxury Store, City |I', 1600.00, '2023-09-05 14:10:00', 1),
'3535 Country Lane, City J', 'Hardware Store, City J', 68.40, '2023-09-06 09:30:00', 0),

' 3636 Lakeside View, City K, 'Store Z, City K, 135.75, '2023-09-07 17:20:00', 0),

' 3737 Forest Gade, City L', "Cafe E, Gty L', 38.50, '2023-09-08 12:40:00', 1),

' 3838 Meadow Lane, City I', 'Online Shop', 280.50, '2023-09-09 08:50:00', 0),

' 3939 Creekside Ave, City J', "Gocery Store, Cty J', 48.75, '2023-09-10 15:30:00', 0),
'4040 River Rd, Gty K, "Electronics Store, Cty K, 720.25, '2023-09-11 11:10:00', 1),
'4141 Skyway Blvd, City L', 'Boutique, Cty L', 165.90, '2023-09-12 17:40:00', 0),

'4242 Hillcrest Rd, Gty |I', 'Convenience Store, City I', 22.50, '2023-09-13 10:20:00', 0),
'4343 Riverbank View, Gty J', 'Luxury Store, Cty J', 2100.75, '2023-09-14 16:50:00', 1),
'4444 Country Club, Cty K, 'Hardware Store, City K, 92.30, '2023-09-15 12:30:00', 0),

' 4545 Lakeside Ave, City L', 'Store Alpha, City L', 145.60, '2023-09-16 08:40:00', 0),

' 4646 Forest Edge, City I', 'Cafe F, Gty |I', 55.80, '2023-09-17 15:20:00', 1),

"4747 Creekside View, Gty J', 'Online Shop', 320.40, '2023-09-18 11:50:00', 0),

' 4848 Meadow Park, City K, 'Gocery Store, Cty K, 62.50, '2023-09-19 18:30:00', 0),
'4949 River Walk, City L', '"Electronics Store, City L', 550.30, '2023-09-20 14:10:00', 1);

NN AN AN AN AN AN A A A S~

Preparing Data for an Unsupervised Anomaly Detection Model for Logs

The anomaly detection model for logs looks for unusual patterns in log data. The model uses unsupervised
learning, so the t ar get column is excluded for training and predicting anomalies.

To prepare the data for the anomaly detection model for logs:
1. Connect to the MySQL Server.

2. If not already done, create and use the database to store the data.

nysql > CREATE DATABASE anomal y_| og_dat a
nysqgl > USE anomal y_| og_dat a

3. Create the table to insert the sample data into. This is the training dataset.

nmysql > CREATE TABLE training_data (
log_id I NT AUTO | NCREMENT PRI MARY KEY,
| og_nessage TEXT,
ti mestanp DATETI ME
target TI NYI NT

IE
4. Insert the sample data to be trained into the table. Copy and paste the following commands.

I NSERT | NTO training_data (|l og_nessage, tinestanp, target) VALUES

"User |ogin successful: adm n", "2023-08-07 09: 00: 00", 0),

"Dat abase connection established", "2023-08-07 09:05:23", 0),
"Failed login attenpt from|P: 192.168.1.20", "2023-08-07 09:12: 15", 1),
"Server load is high: 85%, "2023-08-07 09:20: 30", 1),

"Nor mal system behavior", "2023-08-07 09: 35: 00", 0),

" Anonmal ous CPU usage spi ke", "2023-08-07 10: 10: 45", 1),

"New user registered", "2023-08-07 10:25:00", 0),

"Error: File not found", "2023-08-07 11:02:10", 1),

"System startup conpl eted", "2023-08-07 11:30: 00", 0),

"Net wor k packet |oss detected", "2023-08-07 12:15:35", 1),

"User activity: John accessed dashboard", "2023-08-07 13:00:20", 0),
"Security alert: Brute force attack detected", "2023-08-07 13:45:55", 1),
"Log rotation conpleted", "2023-08-07 14:20:00", 0),

"Anonmal ous nenory usage pattern", "2023-08-07 15:05:30", 1),

"User feedback subm tted", "2023-08-07 15:40:10", 0),

"Systemerror: Qut of nenory", "2023-08-07 16:15: 25", 1),

"Net wor k connectivity restored", "2023-08-07 16:50: 00", 0),

"Unl abel ed |1 og entry", NULL, NULL),

"Potential intrusion detected", "2023-08-07 17:35:40", 1),

"User |ogout: Jane", "2023-08-07 18:10: 00", 0);

NN AN AN AN AN A A A A A A A A~
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5. Create the table to use for generating predictions. This is the test dataset. It has the same columns as
the training dataset, but the target column, t ar get , must be excluded when generating predictions.

nysql > CREATE TABLE testing data (
log_id | NT AUTO | NCREVENT PRI MARY KEY,
| og_nessage TEXT,
ti mestanp DATETI ME
target TI NYI NT
DE

6. Insert the sample data to test into the table. Copy and paste the following commands.

I NSERT | NTO testing_data (|l og_nessage, tinmestanp, target) VALUES

"User login failed: Invalid credentials", "2023-08-08 10:30: 00", 1),
"Server response time increased", "2023-08-08 11:15:45", 1),

"Nor mal dat abase query", "2023-08-08 12:00: 20", 0),

"Unusual network traffic fromIP: 10.0.0.5", "2023-08-08 12:45:30", 1),
" System updat e conpl eted successful I y", "2023-08-08 13: 30: 00", 0),
"Error log: Stack trace included", "2023-08-08 14:10:50", 1),

"User activity: Adm n accessed settings", "2023-08-08 15:00: 10", 0),
"Unl abel ed | 0og: Further investigation needed", NULL, NULL),

"Security alert: Potential malware detected", "2023-08-08 16:25:35", 1),
"System shutdown initiated", "2023-08-08 17:10: 00", 0);

NN~~~ A~

What's Next
» Learn how to Train an Anomaly Detection Model.
4.7.4.5 Training an Anomaly Detection Model
After preparing the data for an anomaly detection model, you can train the model.
This topic has the following sections.
» Before You Begin
* Requirements for Anomaly Detection Training
» Anomaly Detection Options
* Semi-supervised Learning Options
* Log Anomaly Detection Options
» Unsupported Anomaly Detection Options
» Unsupported Routines
» Training a Semi-Supervised Anomaly Detection Model
» Training an Unsupervised Anomaly Detection Model for Logs
* What's Next
Before You Begin
» Review and complete all the tasks to Prepare Data for an Anomaly Detection Model.
Requirements for Anomaly Detection Training

Consider the following based on the type of anomaly detection you are running:
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e Setthet ask parameter to anonal y_det ect i on for running anomaly detection on table data, or
| og_anonal y_det ecti on for running anomaly detection on log data.

* If running an unsupervised model, the t ar get _col unm_nane parameter must be set to NULL.
¢ If running a semi-supervised model:

e Thetarget col umm_nane parameter must specify a column whose only allowed values are
0 (normal), 1 (anomalous), and NULL (unlabeled). All rows are used to train the unsupervised
component, while the rows with a value different than NULL are used to train the supervised
component.

e The experi nment al option must be setto sem super vi sed.
* If running anomaly detection on log data, the input table can only have the following columns:
¢ The column containing the logs.

« If including logs from different sources, a column containing the source of each log. Identify this
column with the | og_sour ce_col unm option.

« If including labeled data, a column identifying the labeled log lines. See Semi-supervised Anomaly
Detection to learn more.

« At least one column must act as the primary key to establish the temporal order of logs. If the primary
key column (or columns) is not one of the previous required columns (log data, source of log, or
label), then you must use the excl ude_col unm_| i st option when running M._ TRAI N to exclude
all primary key columns that don't include required data. See Syntax Examples for Anomaly Detection
Training to review relevant examples.

« If the input table has additional columns to the ones permitted, you must use the
excl ude_col unm_I i st option to exclude irrelevant columns.

Anomaly Detection Options
Use the following JSON opt i ons:
e cont am nat i on: Represents an estimate of the percentage of outliers in the training table.

* The contamination factor is calculated as: estimated number of rows with anomalies/total number of
rows in the training table.

« The contamination value must be greater than 0 and less than 0.5. The default value is 0.01.

» nodel _|i st: Allows you to select the model for training. If no option is specified, the default model is
Generalized kth Nearest Neighbors (GKNN). Selecting more than one model or an unsupported model
produces an error. Review supported Anomaly Detection Models.

Semi-supervised Learning Options
You have the following options to train a semi-supervised anomaly detection model:

» supervi sed_subnodel _opti ons: Allows you to set optional override parameters for the supervised
model component. The only model supported is Di st anceWei ght edKNNCI assi fi er. The following
parameters are supported:

« n_nei ghbor s: Sets the desired k value that checks the k closest neighbors for each unclassified
point. The default value is 5 and the value must be an integer greater than O.
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e m n_| abel s: Sets the minimum number of labeled data points required to train the supervised
component. If fewer labeled data points are provided during training of the model, M._ TRAI N fails. The
default value is 20 and the value must be an integer greater than 0.

ensenbl e_scor e: This option specifies the metric to use to score the ensemble of unsupervised and
supervised components. It identifies the optimal weight between the two components based on the
metric. The supported metrics are accur acy, preci si on, recal |, and f 1. The default metric is f 1.

Log Anomaly Detection Options

You have the following options for anomaly detection on log data. The options are available as a separate
JSON_OBJECT named | ogad_opti ons:

addi ti onal _nmaski ng_r egex: Allows you to mask log data by using regular expression in a
JSON_ARRAY. By default, the following parameters are automatically masked during training and when
generating anomaly scores.

* IP
 DATETIME
 TIME

« HEX

e IPPORT

* OCID

wi ndow_si ze: Specifies the maximum number of log lines to be grouped for anomaly detection. The
default value is 10.

wi ndow_stri de: Specifies the stride value to use for segmenting log lines. For example, there is log A,
B, C, D, and E. The wi ndow_si ze is 3, and the wi ndow_st ri de is 2. The first row has log A, B, and
C. The second row has log C, D, and E. If this value is equal to wi ndow_si ze, there is no overlapping
of log segments. The default value is 3.

| og_sour ce_col um: Specifies the column name that contains the source identifier of the respective
log lines. Log lines are grouped according to their respective source (for example, logs from multiple
MySQL databases that are in the same table). By default, all log lines are assumed to be from the same
source.

enbeddi ng_nodel : The embedding model used to extract semantic features from log data. To review
supported embedding models in MySQL Al run the following query: SELECT sys. M._LI ST _LLMS() ;
and see models that have capabi | i ti es with TEXT ENMBEDDI NGS. The default value is

nmul tilingual -e5-snal | . Using an embedding model causes higher memory usage. If you set this to
NULL, then you cannot also set keywor d_nodel to NULL.

keywor d_nodel : The keyword feature extractor used to extract keyword features from log data. The
available options are t f - i df and NULL. The default value ist f - i df . If you set this to NULL, then you
cannot also set enbeddi ng_nodel to NULL.

Unsupported Anomaly Detection Options

The following options are not supported for anomaly detection:

excl ude_nodel |i st
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e optim zation_netric
Unsupported Routines
You cannot run the following routines for a trained anomaly detection model:
« ML_EXPLAIN
« M._EXPLAI N_ ROW
« M__EXPLAI N _TABLE
e M._PREDI CT_ROW(only for anomaly detection for logs)
Training a Semi-Supervised Anomaly Detection Model

Train the model with the M__ TRAI Nroutine and use the credi t _card_trai n table previously created.
Before training the model, it is good practice to define the model handle instead of automatically creating
one. See Defining Model Handle.

1. Optionally, set the value of the session variable, which sets the model handle to this same value.
nysql > SET @ari able = ' nodel _handl e';
Replace @ar i abl e and nodel _handl e with your own definitions. For example:

nysql > SET @eni _supervi sed_nodel =" anonal y_det ecti on_seni _supervi sed_use_case' ;
The model handle is set to anomal y_det ecti on_sem _supervi sed_use_case.

2. Runthe ML_TRAI Nroutine.

nysqgl > CALL sys. ML_TRAIN('tabl e_nane', 'target_columm_nane', JSON OBJECT('task', 'task_nane'), nodel _ha

Replace t abl e_nane, t arget col unm_nane, t ask_nane, and nodel _handl e with your own
values.

The following example runs M__TRAI N on the training dataset previously created.

nmysql > CALL sys. ML_TRAIN(' anonmal y _data.credit_card_train', "target",
CAST(' {"task": "anomaly_detection", "experinental": {"sem supervised": {}}}'
@em _supervi sed_nodel ) ;

Where:

« anomal y_data.credit_card_train is the fully qualified name of the table that contains the
training dataset (dat abase_nane. t abl e_nane).

e target isthe name of the target column, which contains ground truth values to use for semi-
supervised learning.

e CAST('{"task": "anomaly_detection", "experinental": {"sem supervised":
{}}}' as JSON) specifies the machine learning task type. The experi nent al parameter is
required to use a semi-supervised learning model. All default values are used for semi-supervised
learning.

e @em _supervi sed _nodel isthe session variable previously set that defines the model handle to
the name defined by the user: anonmal y_det ecti on_seni _supervi sed_use_case. If you do not
define the model handle before training the model, the model handle is automatically generated, and
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the session variable only stores the model handle for the duration of the connection. User variables
are written as @ ar _nane. Any valid name for a user-defined variable is permitted. See Work with
Model Handles to learn more.

3. When the training operation finishes, the model handle is assigned to the @emni _supervi sed_nodel
session variable, and the model is stored in the model catalog. View the entry in the model catalog with
the following query. Replace user 1 with your MySQL account name.

nysql > SELECT nodel _i d, nodel _handl e, train_table_name FROM M._SCHENA user 1. MODEL_CATALOG WHERE nodel _hanc

Training an Unsupervised Anomaly Detection Model for Logs

Train the model with the M__ TRAI Nroutine and use the t r ai ni ng_dat a table previously created. Before
training the model, it is good practice to define the model handle instead of automatically creating one. See
Defining Model Handle.

1. You have the option to select the keyword feature extractor and embedding model for training the
model. See Anomaly Detection for Logs to learn more. Run the following query to confirm available
models that have capabi | i ti es with TEXT _ENMBEDDI NGS.

nysql > SELECT sys. M._LI ST_LLNMS();

| [{"nodel
| {"nodel _
| {"nodel _

id: "Ilama3. 2-3b-instruct-v1l", "provider": "HeatWave", "capabilities": ["GENERATION'], "default
d': "all_mnilml12_v2", "provider": "HeatWve", "capabilities": ["TEXT_EMBEDDI NGS'], "default_r
d “mul tilingual-e5-small", "provider": "HeatWave", "capabilities": ["TEXT_EMBEDDI NGS'], "defal
The output displays two compatible models: al | _mnil ml12 v2andnultilingual -e5-snall.
2. Optionally, set the value of the session variable, which sets the model handle to this same value.
nysqgl > SET @ari abl e = ' nodel _handl e';
Replace @ar i abl e and nodel _handl e with your own definitions. For example:

nysqgl > SET @nsupervi sed_| og_nodel =" anonal y_det ecti on_| og_use_case' ;

The model handle is setto anonmal y_det ection_| og use case.

3. Runthe ML_TRAI Nroutine.

nmysql > CALL sys. ML_TRAIN('tabl e_nane', 'target_col umm_nane', JSON OBJECT('task', 'task_nane'), nodel _handl €

Replace t abl e_nane, t arget _col unm_nane, t ask_nane, and nodel _handl| e with your own
values.

The following example runs M__TRAI N on the training dataset previously created.

mysql > CALL sys. ML_TRAI N(' anormal y_| og_data. trai ni ng_data', NULL,
JSON _OBJECT('task', 'log_anomaly_detection',
"exclude_colum_list', JSON ARRAY('log_ id', "timestanp', 'target'),
'l ogad_options',
JSON_OBJECT( ' enbeddi ng_nodel ', "all_mnilml12 v2', 'keyword_nodel",

Where:
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« anonmaly | og data.traini ng_dat a is the fully qualified name of the table that contains the
training dataset (dat abase_nane. t abl e_nane).

« NULL is set for the target column because it is an unsupervised learning model, so no labeled data is
used to train the model.

e JSON OBJECT('task', 'l og anonaly detection' specifies the machine learning task type.

e "exclude_colum_list', JSON ARRAY('log id', '"tinmestanp', 'target') sets
the required options to run the model for anomaly detection on logs. The columns | og i d and
ti mest anp are excluded because they are not any of the required columns for training. See
Requirements for Anomaly Detection Training to learn more. The t ar get column is excluded
because it is an unsupervised learning model.

e "enbeddi ng_nodel ', "all_mnilml 12 v2 setsthe embedding model to one of the models
previously confirmed as available for training the model.

e "keyword_nodel ', "tf-idf' setsthe keyword feature extractor for training the model.

e @nsupervi sed_| og_nodel is the session variable previously set that defines the model handle
to the name defined by the user: anonmal y_det ection_| og _use case. If you do not define
the model handle before training the model, the model handle is automatically generated, and the
session variable only stores the model handle for the duration of the connection. User variables are
written as @ ar _nane. Any valid name for a user-defined variable is permitted. See Work with Model
Handles to learn more.

4. When the training operation finishes, the model handle is assigned to the
@insupervi sed_| og_nodel session variable, and the model is stored in the model catalog. View
the entry in the model catalog with the following query. Replace user 1 with your MySQL account
name.

nmysql > SELECT nodel _i d, nodel _handl e, train_table_name FROM M__SCHENA user 1. MODEL_CATALOG WHERE nodel _

oo oo S S P S S S +
| nodel _id | nodel _handl e | train_table_name

oo oo S S P S S S +
| 4 | anonmly_detection_|l og_use_case | anomaly_| og_dat a. trai ni ng_dat a

oo oo S S P S S S +

What's Next
» Learn how to Generate Predictions for an Anomaly Detection Model
» Review additional Syntax Examples for Anomaly Detection Training
4.7.4.6 Generating Predictions for an Anomaly Detection Model
After training the model, you can generate predictions.

To generate predictions, use the sample data from the two anomaly detection datasets:

credit _card_trainandtraini ng_dat a. Both datasets have labeled and unlabeled rows, but only
the dataset for semi-supervised learning uses this for training. The other dataset for log data is trained
using unsupervised learning. Having labels for both datasets allows you to compare the predictions to the
actual values and determine if the predictions are reliable. Once you determine the trained model is reliable
for generating predictions, you can start using it on unseen data.

Anomaly detection models produce anomaly scores, which represent the degree to which a data point
deviates from the expected normal behavior. Higher scores indicate a greater degree of abnormality,
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potentially signaling an anomaly that warrants further investigation. In the results, i s_anonal y generates
a value of 1 for an anomaly, or O for normal. The nor nal value represents the degree to which the row of
data or log segment exhibits normal behavior. The anonal y value represents the degree to which the row
of data or log segment exhibits anomalous behavior.

To detect anomalies, run the ML_PREDI CT routines on data with the same columns as the training model.
* To detect anomalies in row data, you can run the M__PREDI CT_ROWor M__PREDI CT_TABLE routines.

» To detect anomalies in log data, you can only run the M_._PREDI CT_TABLE routine.

This topic has the following sections.

» Before You Begin

» Requirements for Generating Predictions

* Anomaly Detection Model Options

» Options for Anomaly Detection on Log Data

» Generating Predictions for a Semi-Supervised Anomaly Detection Model

» Generating Predictions for an Unsupervised Anomaly Detection Model on Log Data

* What's Next

Before You Begin

Complete the following tasks:
» Prepare Data for an Anomaly Detection Model

» Train an Anomaly Detection Model.

Requirements for Generating Predictions

If you run M_PREDI CT_TABLE with the | og_anonal y_det ect i on task, at least one column must act as
the primary key to establish the temporal order of logs.

Anomaly Detection Model Options

The threshold you set on anomaly detection models determines which rows in the output table are
labeled as anomalies. The value for the threshold is the degree to which a row of data or log segment is
considered for anomaly detection. Any sample with an anomaly score above the threshold is classified an
anomaly.

There are two ways to set threshold values for anomaly detection models.
Set the Contamination Value

You can set the cont ani nat i on option for the ML_TRAI N routine. This option uses the following
calculation to set the threshold: (1 - cont am nat i on)-th percentile of all the anomaly scores.

The default cont am nat i on value is 0.01. The default t hr eshol d value based on the default
cont am nat i on value is the 0.99-th percentile of all the anomaly scores.
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Set the Threshold Value

You can set the t hr eshol d option for the M._ PREDI CT_TABLE, M._ PREDI CT_ROW and M._ SCORE
routines. The value must be greater than 0 and less than 1.

If no value is set for the t hr eshol d option, the value set for the cont am nat i on option in the M._TRAI N
routine determines the threshold.

The following additional options are available:

An alternative to t hr eshol d is t opk. The results include the top K rows with the highest anomaly
scores. The M__PREDI CT_TABLE and M__ SCORE routines include the t opk option, which is an integer
between 1 and the table length.

M._ SCORE includes an options parameter in JSON format. The options are t hr eshol d and t opk.

When running a semi-supervised model, the M_._PREDI CT_ROW M._PREDI CT_TABLE, and

ML SCORE routines have the super vi sed_subnodel wei ght option. It allows you to override the
ensenbl e_scor e weighting estimated during M__TRAI N with a new value. The value must be greater
than 0 and less than 1.

Options for Anomaly Detection on Log Data

When you run anomaly detection on log data, you have the option to leverage the GenAl feature of MySQL
Al for textual summaries of the results. To create summaries, use the following options:

summari ze_| ogs: Enable summaries by setting this to TRUE. If enabled, summaries are generated for
log segments that are labeled as an anomaly or exceed the value set for the summary_t hr eshol d.

summary_t hr eshol d: Determines the rows in the output table that are summarized. This does not
affect how the cont ami nati on and t hr eshol d options determine anomalies. You can set a value
greater than 0 and less than 1. The default value is NULL.

Summaries are generated for the following:
* All rows labeled as anomalies.

« Ifavalue is set for sunmary_t hr eshol d, any non-anomaly rows that exceed the value of the
summary_t hreshol d.

If the default NULL value is used for sunmrary t hr eshol d, then only rows labeled as anomalies are
summarized.

can potentially lead to a high number of summaries being generated, which may

Note
@ Enabling the sunmary_t hr eshol d option and setting a very low threshold value
substantially increase the time required to generate output tables.

Generating Predictions for a Semi-Supervised Anomaly Detection Model

1.

If not already done, load the model. You can use the session variable for the model that is valid for the
duration of the connection. Alternatively, you can use the model handle previously set. For the option to
set the user name, you can set it to NULL.

The following example uses the session variable.
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nysql > CALL sys. M._MODEL_LOAD( @eni _super vi sed_nodel

The following example uses the model handle.

NULL) ;

nysqgl > CALL sys. M._MODEL_LOAD(' anonal y_det ecti on_seni _supervi sed_use_case',

Make predictions for the test dataset by using the M._ PREDI CT_TABLE routine.

nmysql > CALL sys. M._PREDI CT_TABLE(t abl e_nanme, nobdel _handl e

out put _t abl e_nane),

NULL) ;

[options]);

Replace t abl e_nane, nodel _handl e, and out put _t abl e_nane with your own values. Add
opt i ons as needed.

You have the option to specify the input table and output table as the same table if specific conditions
are met. See Input Tables and Output Tables to learn more.

The following example runs M_._PREDI CT_TABLE on the testing dataset previously created.

nysql > CALL sys. M._PREDI CT_TABLE(' anonal y_data.credit_card_train'
"anomal y_data. credit_card_predictions_sem ',

Where:

Query the t arget and ml _resul t s columns from the output table. This allows you to compare the

anonmal y_data. credit_card_trai nis the fully qualified name of the input table that contains the
data to generate predictions for (dat abase_nane. t abl e_nane).

@mdel is the session variable for the model handle.

anomal y _data.credit_card predictions_sem isthe fully qualified name of the output table
with predictions (dat abase_nane. t abl e_nane).

JSON_OBJECT(' t hreshol d',

generates an anomaly score of over 55% is labeled as an anomaly.

real value with the generated anomaly prediction. Review i s_anonal y to see if the row is labeled
as an anomaly (1) or normal (0). Review the anomaly score for each prediction next to nor nal
and anonal y. If needed, you can also query all the columns from the table (SELECT * FROM
credit _card predictions_sem ) toreview all the data at once.

0. 55) sets a threshold value of 55%, which means any row that

nysql > SELECT target, m _results FROM credit_card_predictions_sem

f - e NN TS
| target | m _results

f - e NN TS
| 0| {"predictions": {"is_anomaly": 1}, "probabilities": {"normal": 0.43, "anomaly": 0.57}}

| 1| {"predictions": {"is_anonaly": 1}, “probabilities": {"normal": 0.4377, "anonmly": 0.5623}}
| 0| {"predictions": {"is_anomaly": 0}, "probabilities": {"normal": 0.8677, "anomaly": 0.1323}}
| NULL | {"predictions": {"is_anonaly": 0}, "probabilities": {"normal": 0.8652, "anonaly": 0.1348}}
| 1| {"predictions": {"is_anonaly": 0}, "“probabilities": {"normal": 0.4921, "anonuly": 0.5079}}
| 0| {"predictions": {"is_anomaly": 0}, "probabilities": {"normal": 0.8487, "anomaly": 0.1513}}
| NULL | {"predictions": {"is_anonaly": 0}, “probabilities": {"normal": 0.7622, "anonaly": 0.2378}}
| 1| {"predictions": {"is_anonaly": 0}, “probabilities": {"nornmal": 0.57, "anonaly": 0.43}}

| 0| {"predictions": {"is_anomaly": 0}, "probabilities": {"normal": 0.8317, "anomaly": 0.1683}}
| NULL | {"predictions": {"is_anonaly": 0}, "probabilities": {"normal": 0.8539, "anonaly": 0.1461}}
| 0| {"predictions": {"is_anomaly": 0}, "probabilities": {"normal": 0.9264, "anomaly": 0.0736}}
| 1| {"predictions": {"is_anonaly": 1}, “probabilities": {"nornal": 0.4079, "anonmly": 0.5921}}
| 0| {"predictions": {"is_anomaly": 0}, "probabilities": {"normal": 0.8379, "anomaly": 0.1621}}
| NULL | {"predictions": {"is_anonaly": 0}, "“probabilities": {"normal": 0.7971, "anonaly": 0.2029}}
| 1| {"predictions": {"is_anonaly": 0}, “probabilities": {"normal": 0.4623, "anonaly": 0.5377}}
| 0| {"predictions": {"is_anomaly": 0}, "probabilities": {"normal": 0.8816, "anomaly": 0.1184}}
| NULL | {"predictions": {"is_anonaly": 0}, “probabilities": {"nornal": 0.8267, "anonaly": 0.1733}}
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| 0| {"predictions": {"is_anonaly": 0}, "probabilities": {“nornal": 0.8816, "anomaly 0.1184}}
| 1| {"predictions": {"is_anomaly": 0}, "probabilities": {"normal": 0.4661, "anomaly 0. 5339} }
| NULL | {"predictions": {"is_anomaly": 0}, "probabilities": {"normal": 0.8202, "anonaly 0.1798}}
| 0| {"predictions": {"is_anonaly": 0}, "probabilities": {"nornal": 0.9113, "anomaly 0. 0887} }
| 1| {"predictions": {"is_anomaly": 0}, "probabilities": {"normal": 0.5078, "anomaly 0.4922}}
| 0| {"predictions": {"is_anonaly": 0}, "probabilities": {"nornal": 0.9378, "anomaly 0. 0622} }
| NULL | {"predictions": {"is_anomaly": 0}, "probabilities": {"normal": 0.8963, "anonaly 0.1037}}
| 0| {"predictions": {"is_anonaly": 0}, "probabilities": {"nornal": 0.5262, "anomaly 0.4738}}
| 1| {"predictions": {"is_anomaly": 0}, "probabilities": {"normal": 0.5002, "anomaly 0. 4998} }
| NULL | {"predictions": {"is_anomaly": 0}, "probabilities": {"normal": 0.8767, "anonaly 0.1233}}
| 0| {"predictions": {"is_anonaly": 0}, "probabilities": {"nornal": 0.8878, "anomaly 0.1122}}
| 1| {"predictions": {"is_anomaly": 0}, "probabilities": {"normal": 0.4661, "anomaly 0. 5339} }
| 0| {"predictions": {"is_anonaly": 0}, "probabilities": {"nornal": 0.9037, "anomaly 0. 0963} }
| NULL | {"predictions": {"is_anomaly": 1}, "probabilities": {"normal": 0.4171, "anonaly 0. 5829} }
tooiooo - S P +

To learn more about generating predictions for one or more rows of data, see Generate Predictions for a
Row of Data.

Generating Predictions for an Unsupervised Anomaly Detection Model on Log Data

1. If not already done, load the model. You can use the session variable for the model that is valid for the
duration of the connection. Alternatively, you can use the model handle previously set. For the option to
set the user name, you can set it to NULL.

nysqgl > CALL sys. M._MODEL_LOAD(' anonal y_det ecti on_| og_use_case', NULL);

2. Make predictions for the test dataset by using the M__ PREDI CT_TABLE routine.

nysqgl > CALL sys. M._PREDI CT_TABLE(t abl e_nane, nodel _handl e, output_table_nane), [options])

Replace t abl e_nane, nodel _handl e, and out put _t abl e_nane with your own values. Add
opt i ons as needed.

The following example runs M._PREDI CT_TABLE on the testing dataset previously created.

nysqgl > CALL sys. M._PREDI CT_TABLE(' anonal y_| og_data.testing_data', 'anonaly_detection_| og_use_case'
‘anonaly | og_data.l og_predictions_unsupervised'

JSON _OBJECT(' | ogad_options', JSON OBJECT('sumarize | ogs', TRUE)))

Where:

e anonel y_| og_dat a. t esti ng_dat a is the fully qualified name of the input table that contains the
data to generate predictions for (dat abase_nane. t abl e_nane).

« @mdel is the session variable for the model handle.

« anomaly | og data.l og_predictions_unsupervi sed is the fully qualified name of the output
table with predictions (dat abase _nane. t abl e_nane).

¢ JSON OBJECT(' I ogad_options', JSON OBJECT('sunmarize | ogs', TRUE)) enables
the textual summaries generated by the GenAl feature of MySQL Al. No threshold is set for the
summaries, so the default value of any labeled anomaly generates a summary.

3. Query the output table and compare the real value with the generated anomaly prediction. Use \ Gto
view the output in an easily readable format.

nysqgl > SELECT * FROM | og_pr edi cti ons_unsuper vi sed\ G
R R R l. I'OW kkhkkkhkhkhkkhkhkkhkhkdhkhkhkhhhkdhhhhhhdx*x
id: 1
parsed_| og_segnent: User login failed: Invalid credentials Server response tine increased Nornal databa
m _results: {"sunmary": "\nHere is a concise sunmary of the text:\n\nThe system encountered sev
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R R R R R R R R R R 2 r ow R R R R R R

id: 2

parsed_| og_segnent: Unusual network traffic fromIP: 10.0.0.5 System update conpl eted successfully Error
m _results: {"summary": "\nHere is a concise summary:\n\nA system update was conpl eted successfully

R R R R R R R R R 3 r ow R R R R R R R R R

id: 3

parsed_| og_segnment: User activity: Adm n accessed settings Unl abel ed | og: Further investigation needed SecL
m _results: {"summary": "\nAn admini strator has accessed the system settings, triggered a security

R R R R R R R R R 4 r ow R R R R R R R
id: 4
parsed_| og_segnment: System shutdown initiated

m _results: {"summary": "\nThe systemis shutting down.", "index_map": [10], "predictions":

The size of the output table is based on the wi ndow_si ze and wi ndow_st ri de parameters when
the model is trained. Since this use case does not set these parameters, the default values of 10 for
wi ndow_si ze and 3 for wi ndow_stri de is used. See Log Anomaly Detection Options to learn more.

Review the following in the output table:
e i s_anonul y to see if the row is labeled as an anomaly (1) or normal (0).
e normal and anomal y to see the anomaly score for each.

* i ndex_rmap to see which rows in the input table are included in the prediction based on the
wi ndow_si ze and wi ndow_stri de.

e sunmary to see the generated text summary describing the anomaly.
What's Next

» Learn how to Score an Anomaly Detection Model.
4.7.4.7 Scoring an Anomaly Detection Model

After generating predictions, you can score the model to assess its reliability. For a list of scoring metrics
you can use with anomaly detection models, see Anomaly Detection Metrics. For this use case, you use
the test dataset for validation. In a real-world use case, you should use a separate validation dataset that
has the target column and ground truth values for the scoring validation. You should also use a larger
number of records for training and validation to get a valid score.

To generate a score, the t ar get _col unm_nane column must only contain the anomaly scores as an
integer: 1 for an anomaly, or O for normal.

Before You Begin

Complete the following tasks:
» Prepare Data for an Anomaly Detection Model
» Train an Anomaly Detection Model

» Generate Predictions for an Anomaly Detection Model
Requirements for Scoring Models

If you run ML_SCORE with the | og_anonal y_det ect i on task, at least one column must act as the
primary key to establish the temporal order of logs.
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Scoring a Semi-Supervised Anomaly Detection Model

1. If not already done, load the model. You can use the session variable for the model that is valid for the
duration of the connection. Alternatively, you can use the model handle previously set. For the option to
set the user name, you can set it to NULL.

The following example uses the session variable.

nysqgl > CALL sys. M._MODEL_LOAD( @model , NULL);

The following example uses the model handle.

nysql > CALL sys. M._MODEL_LOAD(' anonal y_det ecti on_sem _supervi sed_use_case', NULL);

2. Score the model with the ML_ SCORE routine and use the accur acy metric.

nmysql > CALL sys. ML_SCORE(t abl e_nanme, target_col umm_nanme, nodel handl e, netric, score, [options]);

Replace t abl e_nane, t arget _col unm_nane, nodel _handl e, netri c, scor e with your own
values.

The following example runs ML_ SCORE on the testing dataset previously created.

nmysql > CALL sys. ML_SCORE(' anonaly_data.credit_card_test', '"target', 'anomaly_detection_sem _supervised_
‘accuracy', @nonaly score, NULL);

Where:
« anonaly _data.credit _card_test isthe fully qualified name of the validation dataset.
e target isthe target column name with ground truth values.

e "anonmal y_detection_sem _supervi sed_use_case' isthe model handle for the trained
model.

e accuracy is the selected scoring metric.
e @nonual y_scor e is the session variable name for the score value.
« NULL means that no other options are defined for the routine.

3. Retrieve the score by querying the @score session variable.

nysql > SELECT @nonal y_score;

Femm e emeeeeeeaaaa +
| @nonal y_score |
Femm e emeeeeeeaaaa +
| 0.6499999761581421 |
Femm e emeeeeeeaaaa +

1 rowin set (0.0481 sec)

4. If done working with the model, unload it with the M__ MODEL UNLOAD routine.

nysqgl > CALL sys. M._MODEL_UNLOAD(' anonal y_det ecti on_seni _supervi sed_use_case');

To avoid consuming too much memory, it is good practice to unload a model when you are finished
using it.

Scoring an Unsupervised Anomaly Detection Model for Log Data

Even though you score an unsupervised model, you must provide a labeled dataset for generating a score.
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1. If not already done, load the model. You can use the session variable for the model that is valid for the
duration of the connection. Alternatively, you can use the model handle previously set. For the option to
set the user name, you can set it to NULL.

The following example uses the session variable.

mysql > CALL sys. ML_MODEL_LOAD( @model , NULL);

The following example uses the model handle.

nmysql > CALL sys. M._MODEL LOAD(' anonal y_det ection_|l og use_case', NULL);
2. Score the model with the M__ SCORE routine and use the accur acy metric.

nmysql > CALL sys. ML_SCORE(t abl e_nanme, target_col umm_nanme, nodel handl e, netric, score, [options]);

Replace t abl e _nane, t arget col unm_nane, nodel handl e, netri c, scor e with your own
values.

The following example runs M._ SCORE on the testing dataset previously created.

nysqgl > CALL sys. M._SCORE(' anonmly_| og_data.testing data', 'target', 'anonaly_detection_|og use_case',
'f1', @nonaly_| og_score, NULL);

Where:
e anonel y_| og_dat a. t esti ng_dat a is the fully qualified name of the validation dataset.
e target isthe target column name with ground truth values.

e« "anonml y_detection_| og use case' isthe model handle for the trained model.

f 1 is the selected scoring metric.

« @nonal y_| og_scor e is the session variable name for the score value.

NULL means that no other options are defined for the routine.

3. Retrieve the score by querying the @score session variable.

nysqgl > SELECT @nonal y_| og_scor e;

1 rowin set (0.0452 sec)
4. If done working with the model, unload it with the M__ MODEL UNL OAD routine.

nysqgl > CALL sys. M._MODEL_UNLOAD(' anonal y_det ecti on_| og_use_case');

To avoid consuming too much memory, it is good practice to unload a model when you are finished
using it.

What's Next

» Review other Machine Learning Use Cases.
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4.7.5 Generating Recommendations

Recommendation models find patterns in user behavior to recommend products and users based on prior
behavior and preferences. Common examples include a streaming service recommending movies and
shows based on past viewing history, or an online shopping site recommending products based on prior
purchases.

The main goal of recommendation models is to recommend either items that a user will like, or recommend
users who may like a specific item. AutoML includes recommendation models that can recommend the
following:

e The rating that a user will give to an item.

» Users who will like an item.

Items that a user will like.

Identify similar items.
* Identify similar users.

The following tasks use a dataset generated by OCI GenAl using Meta Llama Models. The
recommendation use-case is to create a machine learning model based on users giving a rating of 1 to 10
for different items.

To generate your own datasets to create machine learning models in MySQL Al, learn how to Generate
Text-Based Content.

Note

@ Datasets were generated using Meta Llama models. Your use of this Llama model
is subject to your Oracle agreements and this Llama license agreement: https://
downloads.mysqgl.com/docs/LLAMA_31 8B _INSTRUCT-license.pdf.

4.7.5.1 Recommendation Task Types

You can create recommendation models based on either explicit or implicit feedback. See
Recommendation Models to review models that support either implicit or explicit feedback.

Recommendation Models with Explicit Feedback

Recommendation models that use explicit feedback collect data on users that directly provide ratings on
items. The user ratings can be positive or negative. The recommendation models then use the feedback to
generate predicted ratings for users and items. The ratings are specific values, and the higher the value,
the better the rating.

Recommendation Models with Implicit Feedback

Recommendation models that use implicit feedback collect data on users' behavior, such as past
purchases, clicks, and view times. Users do not have to explicitly express their taste about an item. When
a user interacts with an item, the implication is that they prefer it to an item that they do not interact with.
Therefore, only positive observations are available. The non-observed user-item interactions are a blend
of negative feedback (the user doesn't like the item) or missing values (the user might be interested in the
item). The recommendation model generates rankings for users and items. Rankings are a comparative
measure, and the lower the value, the better the ranking. Because A is better than B, the ranking for A has
a lower value than the ranking for B. AutoML derives rankings based on ratings from implicit feedback for
all ratings that are at or above the feedback threshold.
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Implicit feedback data can be in the following formats:

» Unary data: Only records if an interaction occurred or not. This type of data often uses a value of 1 to
represent an interaction, such as a click or view. Non-interactions can be represented by a value of O or
missing values.

 Binary data: Explicitly categorizes interactions as positive or negative, such as users expressing likes or
dislikes.

* Numerical data: Provides more granular information about the interaction, such as how long a user
watched a video or how many times a user listened to a song. If numerical data is used for implicit
feedback, it is important to set the f eedback_t hr eshol d option during training to distinguish
what constitutes positive feedback. This threshold determines what value is equivalent to a positive
interaction. For example, if users are tracked by how many times they have interacted with an item,
you might set the f eedback_t hr eshol d with a value of 3, which means that positive feedback is
represented by users that interact with the item more than three times.

Content-Based Recommendation Models

Content-based recommendation models allow you to include item and user descriptions in the input of the
recommendation model. This helps the model provide more accurate representations of items and users.
When training a content-based recommendation model, you can use the following models:

» TwoTower: The default training model. See Recommendation Training Models to learn more.

» Collaborative Topic Regression (CTR): This model combines the ideas of matrix factorization models
and topic modeling using Latent Dirichlet Allocation (LDA).

What's Next

» Learn how to Prepare Data for a Recommendation Model.

4.7.5.2 Preparing Data for a Recommendation Model

This topic describes how to prepare the data to use for a recommendation machine learning model using
explicit feedback. It uses a data sample generated by OCI GenAl. To prepare the data for this use case,
you set up a training dataset and a testing dataset. The training dataset has 86 records, and the testing
dataset has 40 records. In a real-life use case, you should prepare a larger amount of records for training
and testing, and ensure the predictions are valid and reliable before testing on unlabeled data. To ensure
reliable predictions, you should create an additional validation dataset. You can reserve 20% of the records
in the training dataset to create the validation dataset.

You have the option to automatically Prepare Training and Testing Datasets with your own data by using
the TRAI N_TEST_SPLI T routine.

Before You Begin

» Learn how to Prepare Data.

Preparing Data

To prepare the data for the recommendation model:
1. Connect to the MySQL Server.

2. Create and use the database to store the data.

nysql > CREATE DATABASE recommendati on_dat a;
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mysql > USE recomendati on_dat a;

Create the table to insert the sample data into. This is the training dataset. The columns for users and
items (user _i d and i t em_i d), must be in string data type.

nysql > CREATE TABLE trai ni ng_dat aset (
user _id VARCHAR(3),
itemid VARCHAR(3),
rating DECI MAL(3, 1),
PRI MARY KEY (user_id,

DS

Insert the sample data to train into the table. Copy and paste the following commands.

I NSERT | NTO traini ng_dataset (user_id,
(1,
(1,
(1,
(1,
(1,
(1,
(1,
(1,
(1,
(1,
(2,
(2,
(2,
(2,
(2,
(2,
(2,
(2,
(2,
(2,
(3,
(3,
(3,
(3,
(3,
(3,
(3,
(3,
(3,
(4,
(4,
(4,
(4,
(4,
(4,
(4,
(4,
(5,
(5,
(5,
(5,
(5,
(5,
(5,
(5,
(6,
(6,
(6,
(6,
(6,
(6,
(6,

1,
3,
S,
7,
9,

11,
13,
15,
17,
19,

2,
4l
6,
8,

10,
12,
14,
16,
18,

20

12,
14,

16,

5.0),
8.0),
2.5),
6.5),
4.0),

4.5),
7.5),
2.0),
5.5),

5.0),

, 8.5),
1.0),
, 4.0),
7.0),
, 2.5),
, 5.5),

, 8.5),

3.0),

, 6.5),
9.5),
2.0),
, 4.5),
7.5),
, 7.0),

1.5),
4.0),

, 6.0),
, 8.0),
2.5),
, 5.5),
, 9.0),
, 4.5),
, 71.5),
, 3.0),

5.5),

, 8.0),
1.5),
4.0),

7.5),
3.0,
9.0),
1.5),
5.5),

9.0),
3.5),
6.0),
1.0),
4.5),
, 8.5),
, 3.5),
, 6.5),
, 2.5),

item.id)

item.id,

rati ng) VALUES
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(6, 18, 6.5),
(7, 2, 6.0),
(7, 5, 3.5),
(7, 7, 5.0),
(7, 10, 7.5),
(7, 12, 2.0),
(7, 14, 4.5),
(7, 16, 7.0),
(7, 18, 9.5),
(8, 3, 8.5),
(8, 6, 2.5),
(8, 8, 5.0),
(8, 11, 3.5),
(8, 13, 6.5),
(8, 15, 1.0),
(8, 17, 4.5),
(8, 19, 7.0),
(9, 2, 5.0),
(9, 5 8.0),
(9, 7, 1.5),
(9, 10, 4.0),
(9, 12, 6.5),
(9, 14, 9.0),
(9, 16, 2.5),
(9, 18, 5.5),
(10, 1, 6.5),
(10, 4, 3.0),
(10, 6, 5.5),
(10, 8, 8.0),

(10, 11, 2.0),
(10, 13, 4.5),
(10, 15, 7.0),
(10, 17, 9.5),
(10, 19, 1.5);

5. Create the table to use for generating predictions. This is the test dataset. It has the same columns as
the training dataset.

nysql > CREATE TABLE testing_dataset (
user _id VARCHAR(3),
itemid VARCHAR(3),
rating DECI MAL(3, 1),
PRI MARY KEY (user_id, item.id)
)i

6. Insert the sample data to test into the table. Copy and paste the following commands.

I NSERT | NTO testing_dataset (user_id, itemid, rating) VALUES

(1, 2, 4.0),
(1, 4, 7.0),
(1, 6, 1.5),
(1, 8, 38.5),
(2, 1, 5.0),
(2, 3, 8.0),
(2, 5, 2.5),
(2, 7, 6.5),
(3, 2, 8.5),
(3, 5, 6.5),
(3, 8 2.5),
(3, 18, 7.0),
(4, 1, 5.5),
(4, 3, 8.5),
(4, 6, 2.0),
(4, 7, 5.5),
(5, 2, 7.0),
(5, 4, 1.5),
(5, 6, 4.0),
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(5, 12, 5.0),
(6, 3, 6.0),
(6, 5 1.5),
(6, 7, 4.5),
(6, 8, 7.0),
(7, 1, 6.5),
(7, 4, 3.0),
(7, 5, 5.5),
(7, 9, 8.0),
(8, 2, 8.5),
(8, 4, 2.5),
(8, 6, 5.0),
(8, 9, 3.5),
(9, 1, 5.0),
(9, 3, 8.0),
(9, 7, 2.5),
(9, 8, 5.5),
(10, 2, 6.5),
(10, 5, 3.0),
(10, 6, 5.5),

(10, 18, 1.5);
What's Next
» Learn how to Train a Recommendation Model.
4.7.5.3 Training a Recommendation Model
After preparing the data for a recommendation model, you can train the model.
This topic has the following sections.
» Before You Begin
» Requirements for Recommendation Training
» Options for All Recommendation Model Types
» Recommendation Training Models
» Options for Recommendation Models with Explicit Feedback
» Options for Recommendation Models with Implicit Feedback
» Options for Content-Based Recommendation Models
* Unsupported Routines
* Training the Model
* What's Next
Before You Begin
» Review and complete all the tasks to Prepare Data for a Recommendation Model.
Requirements for Recommendation Training
Define the following as required to train a recommendation model.
» Setthe t ask parameter to r econmendat i on to train a recommendation model.

e user s: Specifies the column name corresponding to the user IDs. Values in this column must be in a
STRI NG data type, otherwise an error is returned during training.
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it ens: Specifies the column name corresponding to the item IDs. Values in this column must be in a
STRI NG data type, otherwise an error is returned during training.

If the user s ori t ens column contains NULL values, the corresponding rows are dropped and are not be
considered during training.

Options for All Recommendation Model Types

See Common ML_TRAIN Options to view available options for training recommendation models.

Recommendation Training Models

The default recommendation training model is the TwoTower model with Pytorch. You cannot add the
TwoTower model with the nodel | i st option. Adding the model generates an error. The TwoTower
model is already set as the default recommendation model if nodel | i st is not specified. Review the list
of available Recommendation Models.

The TwoTower model is a deep learning recommender system pipeline that provides enhanced quality
and faster speed than other recommender training models. It uses user-item interactions and user-
item features to train embedding vectors for users and items, which allows for quicker predictions.

To enable faster predictions, the model generates tables with embeddings for users and items. The
tables are used as a representation for each user and item. The model also generates a table of
interactions that stores each interaction between a user and item. You can view these tables in the

M. SCHEMA MySQL_user nane database. For example, M._ SCHEMA user 1. abc123 users,
M._SCHENA user 1. abc123 itens,and M._SCHEMA user 1. abcl123 interactions. Providing
i tem net adat a and user et adat a is optional for the TwoTower model.

To review limitations related to the TwoTower model, see Routine and Query Limitations and Other
Limitations.

Options for Recommendation Models with Explicit Feedback

Define the following JSON options to train a recommendation model with explicit feedback. To learn more
about recommendation models, see Recommendation Model Types.

» feedback: Setto expl i cit. If not set, the default value isexplicit.

Options for Recommendation Models with Implicit Feedback

Define the following J SON options to train a recommendation model with implicit feedback. To learn more
about recommendation models, see Recommendation Model Types.

» feedback: Settoinplicit.

» feedback_t hreshol d: The feedback threshold for a recommendation model that uses implicit
feedback. It represents the threshold required to be considered positive feedback. For example, if
numerical data records the number of times users interact with an item, you might set a threshold with a
value of 3. This means users would need to interact with an item more than three times to be considered
positive feedback.

Options for Content-Based Recommendation Models

Define the following J SON options to train a content-based recommendation model. To learn more about
recommendation models, see Recommendation Model Types.

e i tem net adat a: Defines the table that has item descriptions. It is a JSON object that has the
t abl e_nane option as a key, which specifies the table that has item descriptions. One column must be
the same asthe i t em i d in the input table.
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e user _net adat a: Defines the table that has user descriptions. It is a JSON object that has the
t abl e_nane option as a key, which specifies the table that has user descriptions. One column must be
the same as the user _i d in the input table.

e tabl e _nane: To be used with the i t em net adat a and user _net adat a options. It specifies
the table name that has item or user descriptions. It must be a string in a fully qualified format
(schema_name.table_name) that specifies the table name.

Unsupported Routines
You cannot run the following routines for a trained recommendation model:
« M__EXPLAI N
« M._EXPLAI N_ROW
« ML_EXPLAI N TABLE
Training the Model

Train the model with the M__ TRAI Nroutine and use the t r ai ni ng_dat a table previously created. Before
training the model, it is good practice to define the model handle instead of automatically creating one. See
Defining Model Handle.

1. Optionally, set the value of the session variable, which sets the model handle to this same value.
nmysql > SET @ari able = ' nodel _handl e';
Replace @ar i abl e and nodel _handl e with your own definitions. For example:
nmysql > SET @mdel =' recormendat i on_use_case' ;
The model handle is set to r econmendat i on_use_case.
2. Runthe ML_TRAI Nroutine.
nysql > CALL sys. ML_TRAI N('tabl e_nane', 'target_columm_nane', JSON OBJECT('task', 'task_nane'), nodel _ha

Replace t abl e_nane, t arget _col unm_nane, t ask_nane, and nodel _handl| e with your own
values.

The following example runs M__TRAI N on the training dataset previously created.

mysql > CALL sys. ML_TRAI N(' reconmendat i on_data.traini ng_dataset', 'rating',
JSON _OBJECT('task', 'recommendation',
‘users', 'user_id",
‘items', 'item.id'), @mdel);
Where:

e recomendat i on_dat a. trai ni ng_dat aset is the fully qualified name of the table that contains
the training dataset (dat abase_nane. t abl e_nane).

e rating is the name of the target column, which contains ground truth values (item ratings).

¢ JSON OBJECT('task', 'recomendation', 'users', 'user_id , 'itens',
"item.id") specifies the machine learning task type and defines the user s and i t ens columns.
Since no model type is defined, the default value of a recommendation model using explicit feedback
is trained.
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e @wodel is the session variable previously set that defines the model handle to the name defined by
the user: r ecommendat i on_use_case. If you do not define the model handle before training the
model, the model handle is automatically generated, and the session variable only stores the model
handle for the duration of the connection. User variables are written as @ ar _nane. Any valid name
for a user-defined variable is permitted. See Work with Model Handles to learn more.

When the training operation finishes, the model handle is assigned to the @mdel session variable, and
the model is stored in the model catalog. View the entry in the model catalog with the following query.
Replace user 1 with your MySQL account name.

nysqgl > SELECT nodel _id, nodel _handle, train_table_name FROM M._SCHENMA user 1. MODEL_CATALOG WHERE npbdel _hanc

b cccmmo oo e cccmocccccmoocccomooooo- L L +
| nodel _id | nodel _handl e | train_table_nane |
b cccmmo oo e cccmocccccmoocccomooooo- L L +
| 5 | recommendati on_use_case | recommendati on_data. traini ng_dat aset |
b cccmmo oo e cccmocccccmoocccomooooo- L L +

If the model is trained with the TwoTower recommendation model, you can view the tables with
embeddings and the table of interactions in the M__ SCHEMA MySQL_user nane database. To view
the names of the generated tables, run the following query. Replace user 1 with your MySQL account
name.

nysqgl > SHOW TABLES FROM M._SCHENA user 1;
| Tabl es_in_M__SCHEVA admin |

+
3e094aadba_i nteracti ons |
3e094aadba_itens |
3e094aadba_users |
MODEL_ CATALOG |
MODEL_CATALOG BACKUP v3 |
cat al og_version_v1 |
cat al og_versi on_v2 |
cat al og_versi on_v3 |
nodel _obj ect _cat al og |

Run the following queries to view a sample of each generated table.

nysqgl > SELECT * FROM M._SCHEMA user 1. 3e094aa4ba_users LIMT 5;

e ccemoe== e L - L T L - - - - - - - - - - -
| user_id | enbeddi ng_vector

e ccemoe== e L - L T L - - - - - - - - - - -
| 1 | 0x543B13BDDD328D3D6B3F6CBEBS56B39BEA75052BEAA25C5BDAEB94A3D721013BE3324B23D59779D3DD35B8C3D0642€
| 10 | 0xC3551FBEDA3F34BE2FD6583EECOBC13D650262BE860F1C3D09DBEC3CAFBD803D006CD5BD3C26A5BD5FBIFC3D685A¢
| 2 | Ox73A719BECADSE33C9C71973E164E203D7C4A635BEB7 ECB53ADCA1803EF48F553E927B34BEEEFF8DBD32F474BE489D¢
| 3 | 0x520298BEA7516EBE6A7C3C3CACOCD6BD2296C63DF76ECC3DDF1C01BE79B0193D75F381BED1D4BOBD5018633D281BC
| 4 | 0x992518BE74C5FDBDAABOC73DB422B33D45F74EBE81F25FBE653D5A3E7F4134BDDAD13B3EDISE7 E3DDAL1B33D13EEF
e ccemoe== e L - L T L - - - - - - - - - - -

5 rows in set (0.0409 sec)
nysqgl > SELECT * FROM M._SCHEMA user 1. 3e094aa4ba_itens LIMT 5;

| | OxED5A45BEF6D032BE667454BE9DB66FBE62B6F13D392199BEIFE6D63D8718353E1E26CCBCIB6F133ECOFOCE3DI0DCH
| 10 | 0x80C883BC1DCE29BE126039BE1817133D70C63D3E3E795CBE62C33F3DDELD5F3C84264B3D66672A3E427B39BCA8B3:
| 11 | 0x105B08BE9084D63D126CD3BC6C0117BCCCBC683D04328B3CEES62A3E18F8FEBCE03F423D507486BD2D22443DBC28¢
| 12 | 0x757894BC9644373D7A1DA63DA3ESECBD3B978E3DIB3A0B3E4AE35343EF921CD3B2CEA753D68D0C3BD65C2F5BCDA 7 2¢
| 13 | 0x37DEEFBC545030BC2EF980BD3712923DCC0142BE9C5E143E129309BD4A3E02BESS5C001BEAL140E3ED7 3323 BEBGE2F

5 rows in set (0.0419 sec)
nysqgl > SELECT * FROM M._SCHEMA user 1. 3e094aa4ba_i nteractions LIMT 5;
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| _4aadl9cabe_pk_id | user_id | itemid |
e oioiooo oo oioiooo oo +
| 1] 1 [ 1 |
| 2| 1 | 11 |
| 3| 1 | 13 |
| 41 1 | 15 |
| 5] 1 [ 17 |
e oioiooo oo oioiooo oo +
5 rows in set (0.0454 sec)

What's Next
» Learn how to Generate Predictions for a Recommendation Model.
» Review additional Syntax Examples for Recommendation Training.
4.7.5.4 Generating Predictions for a Recommendation Model

After training the model, you can generate predictions. To generate predictions, use the sample data from
thet esti ng_dat aset dataset. NULL values for any row in the user s or i t ens columns generates an
error.

Before You Begin
Complete the following tasks:
* Prepare Data for a Recommendation Model
* Train a Recommendation Model
Options for Generating Predictions
The opt i ons for M._PREDI CT_ROWand M__PREDI CT_TABLE include the following:

« t hreshol d: The optional threshold that defines positive feedback, and a relevant sample. Only use with
ranking metrics. It can be used for either explicit or implicit feedback.

» t opk: The number of recommendations to provide. The default is 3.
* recomend: Specifies what to recommend. Permitted values are:
e ratings: Predicts ratings that users will give. This is the default value.
e i t enms: Recommends items for users.
* users: Recommends users for items.
e users_to_itens: Thisisthe sameasitens.
e itens_to_users: Thisis the same as users.
e itenms_to_itens: Recommends similar items for items.
e users_to_users: Recommends similar users for users.

» renove_seen: Ift r ue, the model does not repeat existing interactions from the training table. It only
applies to the recommendations i t ens, users,users_to itens,anditens_to_users.

* i tem net adat a: Defines the table that has item descriptions. It is a JSON object that has the
t abl e_nane option as a key, which specifies the table that has item descriptions. One column must be
the same asthe i t em i d in the input table.
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e user _net adat a: Defines the table that has user descriptions. It is a JSON object that has the
t abl e_nane option as a key, which specifies the table that has user descriptions. One column must be
the same as the user _i d in the input table.

e tabl e_nane: To be used with the i t em net adat a and user _net adat a options. It specifies
the table name that has item or user descriptions. It must be a string in a fully qualified format
(schema_name.table_name) that specifies the table name.

Generating Predictions with the TwoTower Recommendation Model

If the model is trained with the TwoTower recommendation model, keep in mind the following:

* You have the option to specify additional user and item desciptions by using the i t em net adat a and
user _net adat a options.

« If there are missing descriptions for users and items, these missing descriptions are inferred when
generating predictions.

« If user and items descriptions are provided for training, they are ignored when generating predictions.
Instead, the generated embeddings for the users and items are used to generate predictions.

» The M__PREDI CT_ROWroutine is not supported.

What's Next

» Learn about the different ways to generate specific recommendations with a recommendation model:

» Generate Predictions for Ratings and Rankings.

Generate Iltem Recommendations for Users
* Generate User Recommendations for ltems
* Generate Recommendations for Similar Items

* Generate Recommendations for Similar Users

4.7.5.5 Generating Predictions for Ratings and Rankings

This topic describes how to generate recommendations for either ratings (recommendation model with
explicit feedback) or rankings (recommendation model with implicit feedback). If generating a rating, the
output predicts the rating the user will give to an item. If generating a ranking, the output is a ranking of the
user compared to other users.

» For known users and known items, the output includes the predicted rating or ranking for an item for a
given pair of user _idanditem. d.

» For a known user with a new item, the prediction is the global average rating or ranking. The routines
can add a user bias if the model includes it.

» For a new user with a known item, the prediction is the global average rating or ranking. The routines
can add an item bias if the model includes it.

» For a new user with a new item, the prediction is the global average rating or ranking.

Before You Begin

Review and complete the following tasks:
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e Prepare Data for a Recommendation Model

e Train a Recommendation Model

» Generate Predictions for a Recommendation Model

Generating Rating Recommendations

Since the model you previously trained used explicit feedback, you generate ratings that the user is
predicted to give an item. A higher rating means a better rating. If you train a recommendation model using
implicit feedback, you generate rankings. A lower ranking means a better ranking. The steps below are the
same for both types of recommendation models. See Recommendation Task Types to learn more.

You have the option to include item and user metadata when generating predictions. These steps include
that metadata in the command to generate predictions.

1.

If not already done, load the model. You can use the session variable for the model that is valid for the
duration of the connection. Alternatively, you can use the model handle previously set. For the option to
set the user name, you can set it to NULL.

The following example uses the session variable.

nysqgl > CALL sys. M._MODEL_LOAD( @model , NULL);

The following example uses the model handle.

nysqgl > CALL sys. M._MODEL_LOAD(' r econmendati on_use_case', NULL);

Make predictions for the test dataset by using the M._PREDI CT_TABLE routine.

nysqgl > CALL sys. M._PREDI CT_TABLE(t abl e_nane, nodel _handl e, output_table_nane), [options]);

Replace t abl e_nane, nodel _handl| e, and out put _t abl e_nane with your own values. Add
opt i ons as needed.

You have the option to specify the input table and output table as the same table if specific conditions
are met. See Input Tables and Output Tables to learn more.

The following example runs M_._PREDI CT_TABLE on the testing dataset previously created.

nmysql > CALL sys. ML_PREDI CT_TABLE(' reconmendat i on_dat a. testi ng_dataset', @mdel, 'recomendati on_data.it

JSON _OBJECT(' reconmend', 'itenms', 'topk', 2,
‘user _netadata', JSON OBJECT('table_nanme', 'recommendatio
"itemnmetadata', JSON OBJECT('table_nanme', 'recommendatio

Where:

e recommendati on_dat a. t esti ng_dat aset is the fully qualified name of the input table that
contains the data to generate predictions for (dat abase _nane. t abl e_nan®).

« @mdel is the session variable for the model handle.

e recommendat i on_dat a. reconmendat i ons is the fully qualified name of the output table with
predictions (dat abase_nane. t abl e_nane).

e 'user _netadata', JSON OBJECT('table nane', 'recommendation_data.users')
specifies the table that has user metadata to use when generating predictions.

e '"itemnetadata', JSON OBJECT('table nanme', 'recomendation_data.itens')
specifies the table that has item metadata to use when generating predictions.
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3. Query the output table to review the predicted ratings that users give for each user-item pair.

nmysql > SELECT * from reconmendat i ons

doocooccooo doocooccooo doocooooo o oCoCCEO0CCN0ooO0000CO0000C0000C000 +
| user_id | itemid | rating | m _results [
doocooccocoodmoocoooao doocooooo o oCoCCEO0CCN0ooO0000CO0000C0000C000 +
1 predictions rating 71}}
1 predictions rating 43} }
1 predictions rating .6}}
1 predictions rating 71}}
10 8 predictions rating 63}}
10 predictions rating 82}}
10 predictions rating 09}}
10 predictions rating 67}}
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40 rows in set (0.0459 sec)

Review each user _idanditem.id pair and the respective r at i ng value inthe ml _results
column. For example, in the first row, user 1 is expected to give item 2 a rating of 2.71.

The values in the r at i ng column refer to the past rating the user i d gavetotheitem i d. They are
not relevant to the valuesinml _resul t s.

What's Next
» Learn how to generate different types of recommendations:
* Generate ltem Recommendations for Users
* Generate User Recommendations for Items

¢ Generate Recommendations for Similar Items
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* Generate Recommendations for Similar Users

* Learn how to Score a Recommendation Model.

4.7.5.6 Generating Item Recommendations for Users

This topic describes how to generate recommended items for users.

» For known users and known items, the output includes a list of items that the user will most likely give a

high rating and the predicted rating or ranking.

For a new user, and an explicit feedback model, the prediction is the global top K items that received the
average highest ratings.

For a new user, and an implicit feedback model, the prediction is the global top K items with the highest
number of interactions.

For a user who has tried all known items, the prediction is an empty list because it is not possible to
recommend any other items. Setr enove_seen to f al se to repeat existing interactions from the
training table.

Before You Begin

Review and complete the following tasks:

» Prepare Data for a Recommendation Model

* Train a Recommendation Model

» Generate Predictions for a Recommendation Model

Recommend Items to Users

When you run M._PREDI CT_TABLE to generate item recommendations, a default value of three items are
recommended. To change this value, set the t opk parameter.

You have the option to include item and user metadata when generating predictions. These steps include
that metadata in the command to generate predictions.

1.

If not already done, load the model. You can use the session variable for the model that is valid for the
duration of the connection. Alternatively, you can use the model handle previously set. For the option to
set the user name, you can set it to NULL.

The following example uses the session variable.

nmysql > CALL sys. M._MODEL_LOAD( @mdel , NULL);

The following example uses the model handle.

nysql > CALL sys. M._MODEL_LOAD(' reconmendat i on_use_case', NULL);

Make predictions for the test dataset by using the M._PREDI CT_TABLE routine.

nysqgl > CALL sys. M._PREDI CT_TABLE(t abl e_nane, nodel _handl e, output_table_nane), [options]);

Replace t abl e_nane, nodel _handl e, and out put _t abl e_nane with your own values. Add
opt i ons as needed.
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You have the option to specify the input table and output table as the same table if specific conditions
are met. See Input Tables and Output Tables to learn more.

The following example runs M._ PREDI CT_TABLE on the testing dataset previously created and sets
the t opk parameter to 2, so only two items are recommended.

nysqgl > CALL sys. M._PREDI CT_TABLE(' reconmendati on_data.testi ng_dataset', @mdel, 'reconmendation_data.itemr

JSON OBJECT(' reconmmend', 'itens',
"topk', 2
‘user _netadata', JSON OBJECT('tabl e _name', 'recommendation_de
"itemnetadata', JSON OBJECT('tabl e _name', 'recommendation_de

Where:

e reconmmendati on_dat a. t esti ng_dat aset is the fully qualified name of the input table that
contains the data to generate predictions for (dat abase _nane. t abl e_nane).

« @mdel is the session variable for the model handle.

e recomendat i on_data.itemreconmendati ons is the fully qualified name of the output table
with recommendations (dat abase_nane. t abl e_nane).

e JSON OBJECT('recommend', 'itens', 'topk', 2) setstherecommendation task to
recommend items to users. A maximum of two items to recommend is set.

e "user_netadata', JSON OBJECT('table nane', 'recomendati on_data.users')
specifies the table that has user metadata to use when generating predictions.

e '"itemnetadata', JSON OBJECT('table nane', 'recomendation data.itens')
specifies the table that has item metadata to use when generating predictions.

3. Query the output table to review the recommended top two items for each user in the output table.

nmysql > SELECT * fromitemrecomendations

dmccccccos dmcccccc=oo dmcccccoo dimccccccocccoocccocCcoSoccCoocCcoCSoCcCCoocCcocCoSocccoocccococccoococooooc | +
| user_id | itemid | rating | m _results |
dmccccccos dmcccccc=oo dmcccccoo dimccccccocccoocccocCcoSoccCoocCcoCSoCcCCoocCcocCoSocccoocccococccoococooooc | +
| 1 | 2 | 4.0 | {"predictions": {"item.id": ["20", "18"], "rating": [4.7, 3.48]}}

| 1 | 4 | 7.0 | {"predictions": {"item.id": ["20", "18"], "rating": [4.7, 3.48]}}

| 1 | 6 | 1.5 | {"predictions": {"itemid": ["20", "18"], "rating": [4.7, 3.48]}}

| 1 | 8 | 3.5 | {"predictions": {"item.id": ["20", "18"], "rating": [4.7, 3.48]}}

| 10 | 18 | 1.5 | {"predictions": {"itemid": ["20", "3"], "rating": [4.9, 4.65]}}

| 10 | 2 [ 6.5 | {"predictions": {"itemid": ["20", "3"], "rating": [4.9, 4.65]}}

| 10 | 5 | 3.0 | {"predictions": {"item.id": ["20", "3"], "rating": [4.9, 4.65]}}

| 10 | 6 | 5.5 | {"predictions": {"item.id": ["20", "3"], "rating": [4.9, 4.65]}}

| 2 | 1 | 5.0 | {"predictions": {"item.id": ["3", "17"], "rating": [4.65, 3.38]}}

| 2 | 3 [ 8.0 | {"predictions": {"itemid": ["3", "17"], "rating": [4.65, 3.38]}}

| 2 | 5 | 2.5 | {"predictions": {"item.id": ["3", "17"], "rating": [4.65, 3.38]}}

| 2 | 7 | 6.5 | {"predictions": {"item.id": ["3", "17"], "rating": [4.65, 3.38]}}

| 3 | 18 | 7.0 | {"predictions": {"item.id": ["20", "3"], "rating": [4.39, 4.17]}}

| 3 | 2 | 3.5 | {"predictions": {"item.id": ["20", "3"], "rating": [4.39, 4.17]}}

| 3 | 5 | 6.5 | {"predictions": {"item.id": ["20", "3"], "rating": [4.39, 4.17]}}

| 3 | 8 | 2.5 | {"predictions": {"item.id": ["20", "3"], "rating": [4.39, 4.17]}}

| 4 | 1 | 5.5 | {"predictions": {"itemid": ["20", "3"], "rating": [5.71, 5.42]}}

| 4 | 3 | 8.5 | {"predictions": {"item.id": ["20", "3"], "rating": [5.71, 5.42]}}

| 4 | 6 | 2.0 | {"predictions": {"item.id": ["20", "3"], "rating": [5.71, 5.42]}}

| 4 | 7 | 5.5 | {"predictions": {"item.id": ["20", "3"], "rating": [5.71, 5.42]}}

| 5 | 12 | 5.0 | {"predictions": {"item.id": ["20", "18"], "rating": [5.05, 3.74]}}

| 5 | 2 | 7.0 | {"predictions": {"item.id": ["20", "18"], "rating": [5.05, 3.74]}}

| 5 | 4 | 1.5 | {"predictions": {"itemid": ["20", "18"], "rating": [5.05, 3.74]}}

| 5 | 6 [ 4.0 | {"predictions": {"itemid": ["20", "18"], "rating": [5.05, 3.74]}}

| 6 | 3 | 6.0 | {"predictions": {"item.id": ["20", "3"], "rating": [5.25, 4.98]}}
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| 6 | 5 | 1.5 | {"predictions": {"itemid": ["20", "3"], "rating": [5.25, 4.98]}}
| 6 | 7 | 4.5 | {"predictions": {"item.id": ["20", "3"], “"rating": [5.25, 4.98]}}
| 6 | 8 | 7.0 | {"predictions": {"item.id": ["20", "3"], "rating": [5.25, 4.98]}}
| 7 | 1 | 6.5 | {"predictions": {"item.id": ["20", "3"], "rating": [5.41, 5.13]}}
| 7 | 4 | 3.0 | {"predictions": {"item.id": ["20", "3"], "rating": [5.41, 5.13]}}
| 7 | 5 | 5.5 | {"predictions": {"item.id": ["20", "3"], "rating": [5.41, 5.13]}}
| 7 | 9 | 8.0 | {"predictions": {"item.id": ["20", "3"], "rating": [5.41, 5.13]}}
| 8 | 2 | 8.5 | {"predictions": {"item.id": ["20", "18"], "rating": [4.53, 3.35]}}
| 8 | 4 | 2.5 | {"predictions": {"item.id": ["20", "18"], "rating": [4.53, 3.35]}}
| 8 | 6 | 5.0 | {"predictions": {"item.id": ["20", "18"], "rating": [4.53, 3.35]}}
| 8 | 9 | 3.5 | {"predictions": {"itemid": ["20", "18"], "rating": [4.53, 3.35]}}
| 9 | 1 | 5.0 | {"predictions": {"item.id": ["20", "3"], "rating": [5.09, 4.83]}}
| 9 | 3 | 8.0 | {"predictions": {"item.id": ["20", "3"], "rating": [5.09, 4.83]}}
| 9 | 7 | 2.5 | {"predictions": {"item.id": ["20", "3"], "rating": [5.09, 4.83]}}
| 9 | 8 | 5.5 | {"predictions": {"item.id": ["20", "3"], "rating": [5.09, 4.83]}}

40 rows in set (0.0387 sec)

Review the recommended items inthe M _resul t s column nexttoit em i d. For example, user

1 is predicted to like items 20 and 18. Review the ratings in the m _r esul t s column to review the
expected ratings for each recommended item. For example, user 1 is expected to rate item 20 with a
value of 4.7, and item 18 with a value of 3.48.

» Learn how to generate different types of recommendations:

L]

Generate Predictions for Ratings and Rankings
Generate User Recommendations for ltems
Generate Recommendations for Similar ltems

Generate Recommendations for Similar Users

e Learn how to Score a Recommendation Model.

4.7.5.7 Generating User Recommendations for Items

This topic describes how to generate recommended users for items.

» For known users and known items, the output includes a list of users that will most likely give a high
rating to an item and will also predict the ratings or rankings.

» For a new item, and an explicit feedback model, the prediction is the global top K users who have
provided the average highest ratings.

» For a new item, and an implicit feedback model, the prediction is the global top K users with the highest
number of interactions.

» For an item that has been tried by all known users, the prediction is an empty list because it is not
possible to recommend any other users. Set r enove_seen to f al se to repeat existing interactions from
the training table.

Before You Begin

Review and complete the following tasks:

* Prepare Data for a Recommendation Model

e Train a Recommendation Model

115



Generating Recommendations

» Generate Predictions for a Recommendation Model

Recommend Users to Items

When you run M__PREDI CT_TABLE to generate user recommendations, a default value of three users are
recommended. To change this value, set the t opk parameter.

You have the option to include item and user metadata when generating predictions. These steps include
that metadata in the command to generate predictions.

1.

If not already done, load the model. You can use the session variable for the model that is valid for the
duration of the connection. Alternatively, you can use the model handle previously set. For the option to
set the user name, you can set it to NULL.

The following example uses the session variable.

nysqgl > CALL sys. M._MODEL_LOAD( @model , NULL);

The following example uses the model handle.

nysql > CALL sys. M._MODEL_LOAD(' r econmendat i on_use_case', NULL);

Make predictions for the test dataset by using the M._ PREDI CT_TABLE routine.

nmysql > CALL sys. M._PREDI CT_TABLE(t abl e_nane, nobdel _handl e, output_table nane), [options]);

Replace t abl e_nane, nodel _handl| e, and out put _t abl e_nane with your own values. Add
opt i ons as needed.

You have the option to specify the input table and output table as the same table if specific conditions
are met. See Input Tables and Output Tables to learn more.

The following example runs M._PREDI CT_TABLE on the testing dataset previously created and sets
the t opk parameter to 2, so only two users are recommended.

nysql > CALL sys. M._PREDI CT_TABLE(' reconmendat i on_dat a.testing_dataset', @mdel, 'reconmendation_data. user_r
JSON_OBJECT(' recommend', 'users',

"topk', 2,
‘user _netadata', JSON OBJECT('tabl e_name', 'recommendation_de
‘item nmetadata', JSON OBJECT('tabl e_name', 'recommendation_ds

Where:

« recommendat i on_dat a. testi ng_dat aset is the fully qualified name of the input table that
contains the data to generate predictions for (dat abase nane. t abl e_nane).

« @mdel is the session variable for the model handle.

e recommendati on_dat a. user _reconmendat i ons is the fully qualified name of the output table
with recommendations (dat abase_nane. t abl e_nane).

e JSON OBJECT('recomend', 'wusers', 'topk', 2) setstherecommendation task to
recommend users to items. A maximum of two users to recommend is set.

e« 'user_netadata', JSON OBJECT('table_nane', 'recommendati on_data. users')
specifies the table that has user metadata to use when generating predictions.

e '"itemnetadata', JSON OBJECT('table_nanme', 'recomrendati on_data.itens')
specifies the table that has item metadata to use when generating predictions.
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3. Query the output table to review the recommended top two users for each item in the output table.

mysql > SELECT * from user _reconmendati ons

doocooccooo doocooccooo doocooooo do 0 C OO OE OO CC OO COCOCOCCCOOCOC 0000 C00000C0000C00000C0000C000000000o o ol
| user_id | itemid | rating | m _results

doocooccooo doocooccooo doocooooo do 0 C OO OE OO CC OO COCOCOCCCOOCOC 0000 C00000C0000C00000C0000C000000000o o ol
| 1 | 2 [ 4.0 | {"predictions {"user_id": ["6", "5"], "rating": [3.02, 2.9]}}
| 1 | 4 [ 7.0 | {"predictions {"user_id": ["4", "7"], "rating": [4.16, 3.95]}}
| 1 | 6 [ 1.5 | {"predictions {"user_id": ["4", "7"], "rating": [1.94, 1.84]}}
| 1 | 8 [ 3.5 | {"predictions {"user_id": ["7", "6"], "rating": [3.12, 3.03]}}
| 10 | 18 [ 1.5 | {"predictions {"user_id": ["5", "10"], "rating": [3.74, 3.63]}}
| 10 | 2 [ 6.5 | {"predictions {"user_id": ["6", "5"], "rating": [3.02, 2.9]}}
| 10 | 5 [ 3.0 | {"predictions {"user_id": ["6", "5"], "rating": [3.31, 3.19]}}
| 10 | 6 [ 5.5 | {"predictions {"user_id": ["4", "7"], "rating": [1.94, 1.84]}}
| 2 | 1 [ 5.0 | {"predictions {"user_id": ["4", "7"], "rating": [3.36, 3.18]}}
| 2 | 3 [ 8.0 | {"predictions {"user_id": ["4", "7"], "rating": [5.42, 5.13]}}
| 2 | 5 [ 2.5 | {"predictions {"user_id": ["6", "5"], "rating": [3.31, 3.19]}}
| 2 | 7 [ 6.5 | {"predictions {"user_id": ["4", "6"], "rating": [2.61, 2.4]}}
| 3 | 18 [ 7.0 | {"predictions {"user_id": ["5", "10"], "rating": [3.74, 3.63]}}
| 3 | 2 [ 3.5 | {"predictions {"user_id": ["6", "5"], "rating": [3.02, 2.9]}}
| 3 | 5 [ 6.5 | {"predictions {"user_id": ["6", "5"], "rating": [3.31, 3.19]}}
| 3 | 8 [ 2.5 | {"predictions {"user_id": ["7", "6"], "rating": [3.12, 3.03]}}
| 4 | 1 [ 5.5 | {"predictions {"user_id": ["4", "7"], "rating": [3.36, 3.18]}}
| 4 | 3 [ 8.5 | {"predictions {"user_id": ["4", "7"], "rating": [5.42, 5.13]}}
| 4 | 6 [ 2.0 | {"predictions {"user_id": ["4", "7"], "rating": [1.94, 1.84]}}
| 4 | 7 [ 5.5 | {"predictions {"user_id": ["4", "6"], "rating": [2.61, 2.4]}}
| 5 | 12 [ 5.0 | {"predictions {"user_id": ["5", "10"], "rating": [3.29, 3.2]}}
| 5 | 2 [ 7.0 | {"predictions {"user_id": ["6", "5"], "rating": [3.02, 2.9]}}
| 5 | 4 [ 1.5 | {"predictions {"user_id": ["4", "7"], "rating": [4.16, 3.95]}}
| 5 | 6 [ 4.0 | {"predictions {"user_id": ["4", "7"], "rating": [1.94, 1.84]}}
| 6 | 3 [ 6.0 | {"predictions {"user_id": ["4", "7"], "rating": [5.42, 5.13]}}
| 6 | 5 [ 1.5 | {"predictions {"user_id": ["6", "5"], "rating": [3.31, 3.19]}}
| 6 | 7 [ 4.5 | {"predictions {"user_id": ["4", "6"], "rating": [2.61, 2.4]}}
| 6 | 8 [ 7.0 | {"predictions {"user_id": ["7", "6"], "rating": [3.12, 3.03]}}
| 7 | 1 [ 6.5 | {"predictions {"user_id": ["4", "7"], "rating": [3.36, 3.18]}}
| 7 | 4 [ 3.0 | {"predictions {"user_id": ["4", "7"], "rating": [4.16, 3.95]}}
| 7 | 5 [ 5.5 | {"predictions {"user_id": ["6", "5"], "rating": [3.31, 3.19]}}
| 7 | 9 [ 8.0 | {"predictions {"user_id": ["4", "7"], "rating": [3.34, 3.17]}}
| 8 | 2 [ 8.5 | {"predictions {"user_id": ["6", "5"], "rating": [3.02, 2.9]}}
| 8 | 4 [ 2.5 | {"predictions {"user_id": ["4", "7"], "rating": [4.16, 3.95]}}
| 8 | 6 [ 5.0 | {"predictions {"user_id": ["4", "7"], "rating": [1.94, 1.84]}}
| 8 | 9 [ 3.5 | {"predictions {"user_id": ["4", "7"], "rating": [3.34, 3.17]}}
| 9 | 1 [ 5.0 | {"predictions {"user_id": ["4", "7"], "rating": [3.36, 3.18]}}
| 9 | 3 [ 8.0 | {"predictions {"user_id": ["4", "7"], "rating": [5.42, 5.13]}}
| 9 | 7 [ 2.5 | {"predictions {"user_id": ["4", "6"], "rating": [2.61, 2.4]}}
| 9 | 8 [ 5.5 | {"predictions {"user_id": ["7", "6"], "rating": [3.12, 3.03]}}

+

40 rows in set (0.0476 sec)

Review the recommended users inthe m _resul t s column next to user _i d. For example, for item

2, users 6 and 5 are the top users predicted to like it. Review the ratings inthe ml _r esul t s column to
review the expected ratings for each recommended item. For example, user 6 is expected to rate item 2
with a value of 3.02, and user 5 with a value of 2.9.

What's Next
« Learn how to generate different types of recommendations:
* Generate Predictions for Ratings and Rankings
* Generate Item Recommendations for Users

¢ Generate Recommendations for Similar Items
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» Generate Recommendations for Similar Users
* Learn how to Score a Recommendation Model.
4.7.5.8 Generating Recommendations for Similar ltems
This topic describes how to generate recommendations for similar items.

» For known items, the output includes a list of predicted items that have similar ratings and are
appreciated by similar users.

» The predictions are expressed in cosine similarity, and range from 0, very dissimilar, to 1, very similar.
» For a new item, there is no information to provide a prediction. This generates an error.
Before You Begin
Review and complete the following tasks:
» Prepare Data for a Recommendation Model
» Train a Recommendation Model
» Generate Predictions for a Recommendation Model
Generating Similar Items

When you run ML_PREDI CT_TABLE to generate similar item recommendations, a default value of three
similar items are recommended. To change this value, set the t opk parameter.

You have the option to include item and user metadata when generating predictions. These steps include
that metadata in the command to generate predictions.

1. If not already done, load the model. You can use the session variable for the model that is valid for the
duration of the connection. Alternatively, you can use the model handle previously set. For the option to
set the user name, you can set it to NULL.

The following example uses the session variable.
mysql > CALL sys. ML_MODEL_LOAD( @mdel , NULL);
The following example uses the model handle.
nysql > CALL sys. M._MODEL_LOAD(' reconmendat i on_use_case', NULL);
2. Make predictions for the test dataset by using the M__PREDI CT_TABLE routine.

nmysql > CALL sys. M._PREDI CT_TABLE(t abl e_nane, nodel _handl e, output_table _nanme), [options]);

Replace t abl e_nane, nodel _handl e, and out put _t abl e_nane with your own values. Add
opt i ons as needed.

You have the option to specify the input table and output table as the same table if specific conditions
are met. See Input Tables and Output Tables to learn more.

The following example runs M._PREDI CT_TABLE on the testing dataset previously created and sets
the t opk parameter to 2, so only two similar items are generated.

nysql > CALL sys. M._PREDI CT_TABLE(' reconmendati on_data.testi ng_dataset', @mdel, 'reconmendati on_data.sinmnle
JSON _OBJECT('reconmend', 'itens_to_itens',
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"topk', 2
'user _net adat a'
"item net adat a’'

'recommendat i o
'recommendat i o

JSON_OBJECT(' t abl e_nan®e' ,
JSON_OBJECT(' t abl e_nan®e',

Where:

e reconmendati on_dat a. t esti ng_dat aset is the fully qualified name of the input table that
contains the data to generate predictions for (dat abase_nane. t abl e_nane).

« @mdel is the session variable for the model handle.

e recommendati on_data.simlar_itemrecommendati ons is the fully qualified name of the
output table with recommendations (dat abase_nane. t abl e_nane).

* JSON _OBJECT('recommend', 'items_to_itens', 'topk', 2) setstherecommendation
task to recommend similar items. A maximum of two similar items is set.

e 'user_netadata', JSON OBJECT('table name', 'recomendati on_data.users')
specifies the table that has user metadata to use when generating predictions.

e '"itemnetadata', JSON OBJECT('table nane', 'recomendati on _data.itens')
specifies the table that has item metadata to use when generating predictions.

Query the output table to review the top two similar items for each item in the output table.

nmysql > SELECT * fromsimilar_itemreconmendati ons

H-emmeee - H-emmeee - +---ee- oo -
| user_id | itemid | rating | m _results

H-emmeee - H-emmeee - +---ee- oo -
| 1 | 2 | 4.0 | {"predictions": {"item.id": ["14", "10"], "simlarity": [0.9831, 0.965]}
| 1 | 4 | 7.0 | {"predictions": {"itemid": ["9", "6"], "simlarity": [0.6838, 0.6444]}}
| 1 | 6 | 1.5 | {"predictions": {"itemid": ["8", "17"], "simlarity": [0.8991, 0.8412]}
| 1 | 8 | 3.5 | {"predictions": {"itemid": ["6", "17"], "simlarity": [0.8991, 0.7942]}
| 10 | 18 | 1.5 | {"predictions": {"itemid": ["16", "12"], "simlarity": [0.9869, 0.9464]
| 10 | 2 | 6.5 | {"predictions": {"item.id": ["14", "10"], "simlarity": [0.9831, 0.965]}
| 10 | 5 | 3.0 | {"predictions": {"item.id": ["16", "2"], "simlarity": [0.9036, 0.8586]}
| 10 | 6 | 5.5 | {"predictions": {"itemid": ["8", "17"], "simlarity": [0.8991, 0.8412]}
| 2 | 1 | 5.0 | {"predictions": {"item.id": ["15", "17"], "simlarity": [0.8462, 0.7966]
| 2 | 3 | 8.0 | {"predictions": {"item.id": ["19", "13"], "simlarity": [0.9826, 0.8851]
| 2 | 5 | 2.5 | {"predictions": {"item.id": ["16", "2"], "simlarity": [0.9036, 0.8586]}
| 2 | 7 | 6.5 | {"predictions": {"item.id": ["11", "15"], "simlarity": [0.6959, 0.6724]
| 3 | 18 | 7.0 | {"predictions": {"item.id": ["16", "12"], "simlarity": [0.9869, 0.9464]
| 3 | 2 | 3.5 | {"predictions": {"item.id": ["14", "10"], "simlarity": [0.9831, 0.965]}
| 3 | 5 | 6.5 | {"predictions": {"item.id": ["16", "2"], "simlarity": [0.9036, 0.8586]}
| 3 | 8 | 2.5 | {"predictions": {"itemid": ["6", "17"], "simlarity": [0.8991, 0.7942]}
| 4 | 1 | 5.5 | {"predictions": {"item.id": ["15", "17"], "simlarity": [0.8462, 0.7966]
| 4 | 3 | 8.5 | {"predictions": {"itemid": ["19", "13"], "simlarity": [0.9826, 0.8851]
| 4 | 6 | 2.0 | {"predictions": {"itemid": ["8", "17"], "simlarity": [0.8991, 0.8412]}
| 4 | 7 | 5.5 | {"predictions": {"item.id": ["11", "15"], "simlarity": [0.6959, 0.6724]
| 5 | 12 | 5.0 | {"predictions": {"item.id": ["18", "16"], "simlarity": [0.9464, 0.9454]
| 5 | 2 | 7.0 | {"predictions": {"item.id": ["14", "10"], "simlarity": [0.9831, 0.965]}
| 5 | 4 | 1.5 | {"predictions": {"itemid": ["9", "6"], "simlarity": [0.6838, 0.6444]}}
| 5 | 6 | 4.0 | {"predictions": {"item.id": ["8", "17"], "simlarity": [0.8991, 0.8412]}
| 6 | 3 | 6.0 | {"predictions": {"item.id": ["19", "13"], "simlarity": [0.9826, 0.8851]
| 6 | 5 | 1.5 | {"predictions": {"itemid": ["16", "2"], "simlarity": [0.9036, 0.8586]}
| 6 | 7 | 4.5 | {"predictions": {"item.id": ["11", "15"], "similarity": [0.6959, 0.6724]
| 6 | 8 | 7.0 | {"predictions": {"item.id": ["6", "17"], "simlarity": [0.8991, 0.7942]}
| 7 | 1 | 6.5 | {"predictions": {"item.id": ["15", "17"], "simlarity": [0.8462, 0.7966]
| 7 | 4 | 3.0 | {"predictions": {"itemid": ["9", "6"], "simlarity": [0.6838, 0.6444]}}
| 7 | 5 | 5.5 | {"predictions": {"item.id": ["16", "2"], "simlarity": [0.9036, 0.8586]}
| 7 | 9 | 8.0 | {"predictions": {"itemid": ["1", "4"], "simlarity": [0.7721, 0.6838]}}
| 8 | 2 | 8.5 | {"predictions": {"item.id": ["14", "10"], "simlarity": [0.9831, 0.965]}
| 8 | 4 | 2.5 | {"predictions": {"itemid": ["9", "6"], "simlarity": [0.6838, 0.6444]}}
| 8 | 6 | 5.0 | {"predictions": {"itemid": ["8", "17"], "simlarity": [0.8991, 0.8412]}
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40 rows in set (0.0401 sec)

{"predictions":
{"predictions":
{"predictions":
{"predictions":
{"predictions":

{"item.id":
{"item.id":
{"item.id":
{"item.id":
{"item.id":

e
"15",
"19",
11",

gy, o

"17'],

"13'],

"157],
"17'],

simlarity": [0.7721, 0.6838]}}

"simlarity":

"simlarity":

"simlarity":
"simlarity":

[0.8462, 0.7966]
[0.9826, 0.8851]
[0.6959, 0.6724]

[0.8991, 0.7942]}

Review the recommended similar items inthe ml _resul t s column nexttoit em i d. For example,

for item 2, items 14 and 10 are the top items predicted to be most similar. Review the similarity values
inthem results columnnexttosinilarity toreview the how similar each item is. For example,
item 14 has a similarity value of 0.9831 to item 2, and item 10 has a similarity value of 0.965.

What's Next

» Learn how to generate different types of recommendations:

« Generate Predictions for Ratings and Rankings

Generate Iltem Recommendations for Users
* Generate User Recommendations for Iltems
¢ Generate Recommendations for Similar Users

* Learn how to Score a Recommendation Model.

4.7.5.9 Generating Recommendations for Similar Users

This topic describes how to generate recommendations for similar users.

» For known users, the output includes a list of predicted users that have similar behavior and taste.

» The predictions are expressed in cosine similarity, and range from 0, very dissimilar, to 1, very similar.

» For a new user, there is no information to provide a prediction. This generates an error.

Before You Begin

Review and complete the following tasks:
» Prepare Data for a Recommendation Model

e Train a Recommendation Model

* Generate Predictions for a Recommendation Model

Generating Similar Users

When you run M__PREDI CT_TABLE to generate similar user recommendations, a default value of three
similar users are recommended. To change this value, set the t opk parameter.

You have the option to include item and user metadata when generating predictions. These steps include
that metadata in the command to generate predictions.

1. If not already done, load the model. You can use the session variable for the model that is valid for the
duration of the connection. Alternatively, you can use the model handle previously set. For the option to

set the user name, you can set it to NULL.

The following example uses the session variable.
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mysql > CALL sys. ML_MODEL_LOAD( @mdel , NULL)

The following example uses the model handle.

nysqgl > CALL sys. M._MODEL_LOAD(' r econmendat i on_use_case', NULL)

Make predictions for the test dataset by using the M_._PREDI CT_TABLE routine.

nmysql > CALL sys. M._PREDI CT_TABLE(t abl e_nane, nodel _handl e, output_table nane), [options]);

Replace t abl e_nane, nodel _handl| e, and out put _t abl e_nane with your own values. Add
opt i ons as needed.

You have the option to specify the input table and output table as the same table if specific conditions
are met. See Input Tables and Output Tables to learn more.

The following example runs M._ PREDI CT_TABLE on the testing dataset previously created and sets
the t opk parameter to 2, so only two similar users are generated.

nysqgl > CALL sys. M._PREDI CT_TABLE(' reconmendati on_dat a.testing_dataset', @mwdel, 'reconmendation_data.s
JSON_OBJECT(' recommend', 'users_to_users'

‘topk', 2
‘user _netadata', JSON OBJECT('table_name', 'reconmendatio
‘item nmetadata', JSON OBJECT('table_name', 'recommendatio

Where:

« recommendat i on_dat a. t esti ng_dat aset is the fully qualified name of the input table that
contains the data to generate predictions for (dat abase nane. t abl e_nan®).

« @mdel is the session variable for the model handle.

e recommendati on_data.simlar_user_reconmendati ons is the fully qualified name of the
output table with recommendations (dat abase_nane. t abl e_nane).

e JSON OBJECT('recomend', 'users to users', 'topk', 2) setstherecommendation
task to recommend similar users. A maximum of two similar users is set.

e« "user_netadata', JSON OBJECT('table nane', 'recommendation_data.users')
specifies the table that has user metadata to use when generating predictions.

e "itemnetadata', JSON OBJECT('table _nane', 'recommendation_data.itens')
specifies the table that has item metadata to use when generating predictions.

Query the output table to review the top two similar users generated for each user in the output table.

nysql > SELECT * from sinilar_user_reconmendati ons

dimccccccos dimccccccos dimcccccoo dimcccccococccoocccocoocccoocCcoSSocccCoocoococoocccooccooooocoooooooeoo o |
| user_id | itemid | rating | m _results

dimccccccos dimccccccos dimcccccoo dimcccccococccoocccocoocccoocCcoSSocccCoocoococoocccooccooooocoooooooeoo o |
| 1 | 2 | 4.0 | {"predictions": {"user_id": ["3", "5"], "simlarity": [0.7922, 0.7238]}}
| 1 | 4 | 7.0 | {"predictions": {"user_id": ["3", "5"], "simlarity": [0.7922, 0.7238]}}
| 1 | 6 | 1.5 | {"predictions": {"user_id": ["3", "5"], "simlarity": [0.7922, 0.7238]}}
| 1 | 8 | 3.5 | {"predictions": {"user_id": ["3", "5"], "simlarity": [0.7922, 0.7238]}}
| 10 | 18 | 1.5 | {"predictions": {"user_id": ["3", "5"], "simlarity": [0.6827, 0.5943]}}
| 10 | 2 | 6.5 | {"predictions": {"user_id": ["3", "5"], "simlarity": [0.6827, 0.5943]}}
| 10 | 5 | 3.0 | {"predictions": {"user_id": ["3", "5"], "simlarity": [0.6827, 0.5943]}}
| 10 | 6 | 5.5 | {"predictions": {"user_id": ["3", "5"], "simlarity": [0.6827, 0.5943]}}
| 2 | 1 | 5.0 | {"predictions": {"user_id": ["7", "9"], "simlarity": [0.6473, 0.5746]}}
| 2 | 3 | 8.0 | {"predictions": {"user_id": ["7", "9"], "simlarity": [0.6473, 0.5746]}}
| 2 | 5 | 2.5 | {"predictions": {"user_id": ["7", "9"], "simlarity": [0.6473, 0.5746]}}
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| 2 | 7 | 6.5 | {"predictions": {"user_id": ["7", "9"], "simlarity": [0.6473, 0.5746]}}
| 3 | 18 | 7.0 | {"predictions": {"user_id": ["1", "10"], "simlarity": [0.7922, 0.6827]}}
| 3 | 2 | 3.5 | {"predictions": {"user_id": ["1", "10"], "simlarity": [0.7922, 0.6827]}}
| 3 | 5 | 6.5 | {"predictions": {"user_id": ["1", "10"], "simlarity": [0.7922, 0.6827]}}
| 3 | 8 | 2.5 | {"predictions": {"user_id": ["1", "10"], "simlarity": [0.7922, 0.6827]}}
| 4 | 1 | 5.5 | {"predictions": {"user_id": ["9", "7"], "simlarity": [0.9764, 0.9087]}}
| 4 | 3 | 8.5 | {"predictions": {"user_id": ["9", "7"], "simlarity": [0.9764, 0.9087]}}
| 4 | 6 | 2.0 | {"predictions": {"user_id": ["9", "7"], "simlarity": [0.9764, 0.9087]}}
| 4 | 7 | 5.5 | {"predictions": {"user_id": ["9", "7"], "simlarity": [0.9764, 0.9087]}}
| 5 | 12 | 5.0 | {"predictions": {"user_id": ["8", "1"], "simlarity": [0.992, 0.7238]}}

| 5 | 2 | 7.0 | {"predictions": {"user_id": ["8", "1"], "simlarity": [0.992, 0.7238]}}

| 5 | 4 | 1.5 | {"predictions": {"user_id": ["8", "1"], "simlarity": [0.992, 0.7238]}}

| 5 | 6 | 4.0 | {"predictions": {"user_id": ["8", "1"], "simlarity": [0.992, 0.7238]}}

| 6 | 3 | 6.0 | {"predictions": {"user_id": ["4", "9"], "simlarity": [0.5695, O0.4862]}}
| 6 | 5 | 1.5 | {"predictions": {"user_id": ["4", "9"], "simlarity": [0.5695, 0.4862]}}
| 6 | 7 | 4.5 | {"predictions": {"user_id": ["4", "9"], "simlarity": [0.5695, 0.4862]}}
| 6 | 8 | 7.0 | {"predictions": {"user_id": ["4", "9"], "simlarity": [0.5695, O0.4862]}}
| 7 | 1 | 6.5 | {"predictions": {"user_id": ["9", "4"], "simlarity": [0.9738, 0.9087]}}
| 7 | 4 | 3.0 | {"predictions": {"user_id": ["9", "4"], "simlarity": [0.9738, 0.9087]}}
| 7 | 5 | 5.5 | {"predictions": {"user_id": ["9", "4"], "simlarity": [0.9738, 0.9087]}}
| 7 | 9 | 8.0 | {"predictions": {"user_id": ["9", "4"], "simlarity": [0.9738, 0.9087]}}
| 8 | 2 | 8.5 | {"predictions": {"user_id": ["5", "1"], "simlarity": [0.992, 0.6356]}}

| 8 | 4 | 2.5 | {"predictions": {"user_id": ["5", "1"], "simlarity": [0.992, 0.6356]}}

| 8 | 6 | 5.0 | {"predictions": {"user_id": ["5", "1"], "simlarity": [0.992, 0.6356]}}

| 8 | 9 | 3.5 | {"predictions": {"user_id": ["5", "1"], "simlarity": [0.992, 0.6356]}}

| 9 | 1 | 5.0 | {"predictions": {"user_id": ["4", "7"], "simlarity": [0.9764, 0.9738]}}
| 9 | 3 | 8.0 | {"predictions": {"user_id": ["4", "7"], "simlarity": [0.9764, 0.9738]}}
| 9 | 7 | 2.5 | {"predictions": {"user_id": ["4", "7"], "simlarity": [0.9764, 0.9738]}}
| 9 | 8 | 5.5 | {"predictions": {"user_id": ["4", "7"], "simlarity": [0.9764, 0.9738]}}

+

40 rows in set (0.0414 sec)

Review the recommended similar users inthe n _r esul t s column next to user _i d. For example, for
user 1, users 3 and 5 are the top users predicted to be most similar. Review the similarity values in the
m resul ts columnnexttosim | arity toreview the how similar each user is. For example, user 3
has a similarity value of 0.7922 to user 1, and user 5 has a similarity value of 0.7238.

What's Next
» Learn how to generate different types of recommendations:
* Generate Predictions for Ratings and Rankings
« Generate Item Recommendations for Users

¢ Generate User Recommendations for Iltems

Generate Recommendations for Similar Items
» Learn how to Score a Recommendation Model.
4.7.5.10 Scoring a Recommendation Model

After generating predicted ratings/rankings and recommendations, you can score the model to assess its
reliability. For a list of scoring metrics you can use with recommendation models, see Recommendation
Model Metrics. For this use case, you use the test dataset for validation. In a real-world use case, you
should use a separate validation dataset that has the target column and ground truth values for the scoring
validation. You should also use a larger number of records for training and validation to get a valid score.

Before You Begin

Review and complete the following tasks:
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Prepare Data for a Recommendation Model

Train a Recommendation Model

Generate Predictions for a Recommendation Model
Generate Predictions for Ratings and Rankings
Generate Item Recommendations for Users
Generate User Recommendations for Items
Generate Recommendations for Similar ltems

Generate Recommendations for Similar Users

Options for Scoring Recommendation Models

The opt i ons for ML_ SCORE include the following:

t hr eshol d: The optional threshold that defines positive feedback, and a relevant sample. Only use with
ranking metrics. It can be used for either explicit or implicit feedback.

t opk: The optional top number of recommendations to provide. The default is 3. Set a positive integer
between 1 and the number of rows in the table.

Arecomendat i on task and ranking metrics can use both t hr eshol d and t opk.

renove_seen: If the input table overlaps with the training table, and r enove_seenistr ue, then the
model will not repeat existing interactions. The defaultist r ue. Setr enove_seen to f al se to repeat
existing interactions from the training table.

i t em net adat a: Defines the table that has item descriptions. It is a JSON object that has the
t abl e_nane option as a key, which specifies the table that has item descriptions. One column must be
the same asthe i t em i d in the input table.

user _net adat a: Defines the table that has user descriptions. It is a JSON object that has the
t abl e_nane option as a key, which specifies the table that has user descriptions. One column must be
the same as the user _i d in the input table.

e tabl e_nane: To be used with the i t em et adat a and user _net adat a options. It specifies
the table name that has item or user descriptions. It must be a string in a fully qualified format
(schema_name.table_name) that specifies the table name.

Scoring the Model

1.

If not already done, load the model. You can use the session variable for the model that is valid for the
duration of the connection. Alternatively, you can use the model handle previously set. For the option to
set the user name, you can set it to NULL.

The following example uses the session variable.
nysqgl > CALL sys. M._MODEL_LOAD( @model , NULL);
The following example uses the model handle.

nmysql > CALL sys. ML_MODEL LOAD(' recomendati on_use_case', NULL);

Score the model with the M__ SCORE routine and use the pr eci si on_at _k metric.

nysqgl > CALL sys. M._SCORE(t abl e_nane, target_col unm_nane, nodel handle, netric, score, [options]);
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Replace t abl e_nane, t arget col unm_nane, nodel _handl e, netri c, scor e with your own
values.

The following example runs ML_ SCORE on the testing dataset previously created.

nmysql > CALL sys. ML_SCORE(' recommendation_data.testing dataset', 'rating', @mdel, 'precision_at_k', @econm
Where:
e recomendat i on_dat a. t esti ng_dat aset is the fully qualified name of the validation dataset.

e rating is the target column name with ground truth values.

@rodel is the session variable for the model handle.
e precision_at_kisthe selected scoring metric.

e @ecommendati on_scor e is the session variable name for the score value.

NULL means that no other options are defined for the routine.

3. Retrieve the score by querying the @score session variable.

nmysql > SELECT @ econmendat i on_scor e;

dimccccccccccocccccococooo +
| @ecomendation_score |
dimccccccccccocccccococooo +
| 0.23333333432674408 |

dimccccccccccocccccococooo +

4. If done working with the model, unload it with the M__ MODEL UNL OAD routine.

nysqgl > CALL sys. M._MODEL_UNLOAD(' r econmendati on_use_case');

To avoid consuming too much memory, it is good practice to unload a model when you are finished
using it.

What's Next

» Review other Machine Learning Use Cases.

4.7.6 Topic Modeling

Topic modeling is an unsupervised machine learning technique that's capable of scanning a set of
documents, detecting word and phrase patterns within them, and automatically clustering word groups and
similar expressions that best characterize the documents.

The following tasks use a dataset generated by OCI GenAl using Meta Llama Models. The topic modeling
use-case is to summarize movie plots.

To generate your own datasets to create machine learning models in MySQL Al, learn how to Generate
Text-Based Content.

is subject to your Oracle agreements and this Llama license agreement: https://

Note
@ Datasets were generated using Meta Llama models. Your use of this Llama model
downloads.mysql.com/docs/LLAMA 31 8B INSTRUCT-license.pdf.
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Topic Modeling

4.7.6.1 Preparing Data for Topic Modeling

This topic describes how to prepare the data to use for topic modeling. The model uses a data sample
generated by OCI GenAl. To prepare the data for this use case, you set up a dataset to use for both

training and testing.

You have the option to automatically Prepare Training and Testing Datasets with your own data by using
the TRAI N_TEST_SPLI T routine.

Before You Begin

» Learn how to Prepare Data.

Preparing Data

To prepare the data for topic modeling:

1. Connect to the MySQL Server.

2. Create and use the database to store the data.

nmysql > CREATE DATABASE t opi c_nodel i ng_dat a;
nysql > USE topi c_nodel i ng_dat a;

3. Create the table to use for both training and testing.

nysql > CREATE TABLE novi es ( description TEXT );
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VALUES(' A team of scientists and explorers travel
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* Learn how to Train a Model with Topic Modeling.

4.7.6.2 Training a Model with Topic Modeling

Insert the sample data into the table. Copy and paste the following commands.

a |l one survivor nanmed Max se
man naned Neo di scovers that the world as he knows it

the Corleones, is drawn into the underworld

of scientists attenpt to harness the power of a bl ack

wonman, Alice, finds herself in a nysterious and fantas
man naned Luke Skywal ker joins forces with a group of

through a wornhol e i
Vi ki ng named Hiccup aspires to hunt dragons like his t
FBlI agent, Clarice Starling, is assigned to help find

man naned Harry Potter discovers that he is a wizard a
of crimnals are given a second chance at redenption b
wormen, Elle Wods, is determined to win back her ex-bo
of friends travel to a renote cabin in the woods for a
man naned Marty McFly accidentally travels back in tin
wormen, Katniss Everdeen, volunteers to take her younge
man naned Frodo Baggins inherits a powerful ring, whic
wormen, Jo March, and her sisters cone of age in Aneric
of astronauts on a mssion to Mars face a critical ene
man, Scott, discovers a hidden virtual world called th
of high school students fromdifferent social cliques

After preparing the data for topic modeling, you can train the model.

Before You Begin

» Review and complete all the tasks to Prepare Data for Topic Modeling.
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Requirements for Topic Modeling Training
Define the following required parameters for topic modeling.
» Setthet ask parametertot opi c_nodel i ng.

» docunent _col umm: Define the column that contains the text that the model uses to generate topics and
tags as output. The output is an array of word groups that best characterize the text.

Unsupported Topic Modeling Options

When the AutoML runs topic modeling, the operation is based on a single algorithm that does not require
the tuning of hyperparameters. Moreover, topic modeling is an unsupervised task, which means there are
no labels. Therefore, you cannot use the following options for topic modeling:

* nodel |ist
e optimzation_netric
e exclude_nodel |i st
e exclude_colum_Ii st
e include_colum_Iist
Unsupported Routines
You cannot run the following routines for topic modeling:
« M._EXPLAI N
« M._EXPLAI N_ROW
« M._EXPLAI N _TABLE
« M._SCORE
Training the Model

Train the model with the M__ TRAI Nroutine and use the novi es table previously created. Before training
the model, it is good practice to define the model handle instead of automatically creating one. See
Defining Model Handle.

1. Optionally, set the value of the session variable, which sets the model handle to this same value.
nmysql > SET @ari able = ' nodel _handl e';
Replace @ari abl e and nodel _handl e with your own definitions. For example:
nmysql > SET @mdel =' t opi c_npdel i ng_use_case' ;
The model handle is settot opi ¢c_nodel i ng_use_case.
2. Runthe ML_TRAI Nroutine.
nysqgl > CALL sys. ML_TRAI N('tabl e_nane', 'target_colum_nanme', JSON OBJECT('task', 'task_name'), nopdel _handl e

Replace t abl e_nane, t arget _col unm_nane, t ask_nane, and nodel _handl| e with your own
values.

The following example runs M__TRAI N on the dataset previously created.
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nysql > CALL sys. ML_TRAI N(' t opi c_npdel i ng_dat a. novi es', NULL
JSON _OBJECT('task', 'topic_nodeling', 'docunment_colum', 'description'), @mwd

Where:

e topi c_nodel i ng_dat a. novi es is the fully qualified hame of the table that contains the training
dataset (dat abase_nane. t abl e_nane).

« NULL is set for the target column because topic modeling uses unlabeled data, so you cannot set a
target column.

e JSON OBJECT('task', 'topic_nodeling') specifies the machine learning task type.

e @wdel is the session variable previously set that defines the model handle to the name defined by
the user: t opi ¢c_nodel i ng_use_case. If you do not define the model handle before training the
model, the model handle is automatically generated, and the session variable only stores the model
handle for the duration of the connection. User variables are written as @ ar _nane. Any valid name
for a user-defined variable is permitted. See Work with Model Handles to learn more.

3. When the training operation finishes, the model handle is assigned to the @mwodel session variable, and
the model is stored in the model catalog. View the entry in the model catalog with the following query.
Replace user 1 with your MySQL account name.

nysql > SELECT nodel _i d, nodel _handl e, train_table_nane FROM M._SCHEVA user 1. MODEL_CATALOG WHERE nodel _h

L e e e e eeeeaaaaaaa e +
| nodel _id | nodel _handl e | train_table_name |
L e e e e eeeeaaaaaaa e +
| 6 | topic_nodeling_use case | topic_nodeling_data.novies

L e e e e eeeeaaaaaaa e +

What's Next
» Learn how to Generate Predictions for Topic Modeling.
4.7.6.3 Running Topic Modeling on Trained Text
After training the model, you can run topic modeling on the trained text.
To run topic modeling, use the sample data from the novi es dataset. The dataset has no target column.
When the output table generates, you can review the generated word groups and expressions for the
trained text.
Before You Begin
Complete the following tasks:
» Prepare Data for Topic Modeling.
» Train a Model with Topic Modeling
Running Topic Modeling for a Table
1. If not already done, load the model. You can use the session variable for the model that is valid for the
duration of the connection. Alternatively, you can use the model handle previously set. For the option to

set the user name, you can set it to NULL.

The following example uses the session variable.
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nysql > CALL sys. M. MODEL_LOAD( @wodel , NULL);

The following example uses the model handle.

nmysql > CALL sys. M._MODEL LOAD('topi c_npdel i ng_use_case', NULL);

Run topic modeling on the dataset by using the M._ PREDI CT_TABLE routine.

nysqgl > CALL sys. M._PREDI CT_TABLE(t abl e_nane, nodel _handl e, output_table_nane), [options])

Replace t abl e_nane, nodel _handl| e, and out put _t abl e_nane with your own values. Add

opt i ons as needed.

You have the option to specify the input table and output table as the same table if specific conditions
are met. See Input Tables and Output Tables to learn more.

The following example runs M._PREDI CT_TABLE on the dataset previously created.

nysqgl > CALL sys. M._PREDI CT_TABLE('topi c_nbdel i ng_dat a. novi es', @mdel, 'topic_nodeling_data.topic_nopdeling_

Where:

e topi c_nodel i ng_dat a. novi es is the fully qualified name of the input table that contains the data
to run topic modeling for (dat abase nane. t abl e_nane).

* @odel is the session variable for the model handle.

e topi c_nodel i ng_dat a. t opi ¢c_nodel i ng_pr edi cti ons is the fully qualified name of the
output table with generated word groups and expressions (dat abase_nane. t abl e_nane).

« NULL sets no options for the routine.

Query the M _resul t s column from the output table. Review the generated word groups and
expressions for the movie descriptions nexttot ags.

nysqgl > SELECT ml _results FROM topi c_nodel i ng_predictions

e - = = = = = = = = = =
| ml_results
e - = = = = = = = = = =
| {"predictions {"tags": ["dangerous", “"future", "join force", "journey", "warrior", "battle", "rebel"

| {"predictions {"tags": ["machine", "world", "agent", "group rebel”, "human", "real", "real world", "pov
| {"predictions {"tags": ["fami|ly", "enpire", "rival", "crimnal", "powerful"]}}

| {"predictions {"tags": ["scientist", "astronaut", "attenpt", "humanity", "massive", "work", "earth", "e
| {"predictions {"tags": ["include", "nysterious", "strange", "world", "woman", "young woman", "young"]}}
| {"predictions {"tags": ["enpire", "force", "dark force", "evil", "group rebel", "join force", "wse",

| {"predictions {"tags": ["alien", "attenpt", "humanity", "planet", "battle", "creature", "ensure", "scie
| {"predictions {"tags": ["future", "human", "creature", "form, "learn", "secret", "discover", "young"]}
| {"predictions {"tags": ["agent", "deal personal", "murder", "personal", "strange", "victim, "form, "h
| {"predictions": {"tags": ["wi zard", "power", "dark", "learn", "school", "secret", "young", "destroy", "di
| {"predictions": {"tags": ["alien", "dangerous", "nmssive", "mssion", "planet", "work", “"crimnal", "eart
| {"predictions": {"tags": ["nurder", "student", "challenge", "help", "school", "face", "woman", "young wor
| {"predictions {"tags": ["group", “"fall", "friend", "place", "victinm, "creature", "survival", "travel"

| {"predictions {"tags": ["fall", "friend", "machine", "secure", "ensure", "scientist", "travel", "deal"

| {"predictions {"tags": ["place", "sister", "young", "fight", "woman", "young woman"]}}

| {"predictions {"tags": ["deal personal", "nmysterious", "personal", "secure", "crimnal", "powerful", "o
| {"predictions {"tags": ["wi zard", "dark force", "evil", "include", "journey", "warrior", "w se", "dark"
| {"predictions {"tags": [“"fam|y", "sister", "challenge", "deal", "woman", "young woman", "young"]}}

| {"predictions {"tags": ["astronaut", "m ssion", "earth", "face", "group"]}}

| {"predictions {"tags": ["world", "real", "real world", "rival", "challenge", "discover", "face", "join"
| {"predictions {"tags": ["student", "form, "learn", "school", "secret", "force", "group"]}}

21 rows in set (0.0472 sec)
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To modify the number of word groups in the ml_results column, you can set the t opk option. This option
must be an integer greater or equal to one. The following example uses the same trained table and adds
the option to limit the number of generated word groups to five.

mysql > CALL sys. M._PREDI CT_TABLE(' t opi c_nodel i ng_dat a. novi es', @mdel, 'topic_nodeling_data.topic_nodeling

Query the ml _resul t s column to review the top five generated word groups.

nysqgl > SELECT ml _results FROM topi c_nodel i ng_predictions_five

S S I I I i +
| m_results |
S S I I I i +
| {"predictions": {"tags ["dangerous", "future", "join force", "journey", "warrior"]}}

| {"predictions": {"tags ["machi ne", "world", "agent", "group rebel", "human"]}}

| {"predictions": {"tags [“fam |y", "enpire", "rival", "crimnal", "powerful"]}}

| {"predictions": {"tags ["scientist", "astronaut", "attenpt", "humanity", "nassive"]}}

| {"predictions": {"tags ["include", "nysterious", "strange", "world", "wonman"]}}

| {"predictions": {"tags ["empire", "force", "dark force", "evil", "group rebel"]}}

| {"predictions": {"tags [*alien", "attenpt", "humanity", "planet", "battle"]}}

| {"predictions": {"tags ["“future", "human", "creature", "fornf, "learn"]}} |
| {"predictions": {"tags ["agent", "deal personal", "nurder", "personal", "strange"]}}

| {"predictions": {"tags": ["wi zard", "power", "dark", "learn", "school"]}}

| {"predictions": {"tags": ["alien", "dangerous", "massive", "m ssion", "planet"]}}

| {"predictions": {"tags": ["nurder", "student", "challenge", "help", "school"]}}

| {"predictions": {"tags ["group", "fall", "friend", "place", "victini']}} |
| {"predictions": {"tags [“fall", "friend", "machine", "secure", "ensure"]}}

| {"predictions": {"tags": ["place", "sister", "young", "fight", "wonan"]}}

| {"predictions": {"tags": ["deal personal", "nysterious", "personal", "secure", "crimnal"]}} |
| {"predictions": {"tags": ["w zard", "dark force", "evil", "include", "journey"]}}

| {"predictions": {"tags": ["fam|y", "sister", "challenge", "deal", "woman"]}}

| {"predictions": {"tags": ["astronaut", "m ssion", "earth", "face", "group"]}}

| {"predictions": {"tags": ["world", "real", "real world", "rival", "challenge"]}}

| {"predictions": {"tags ["student", "forni, "learn", "school", "secret"]}} |
S S I I I i +

21 rows in set (0.0475 sec)

To learn more about generating predictions for one or more rows of data, see Generate Predictions for a
Row of Data.

What's Next

» Review other Machine Learning Use Cases.

4.8 Manage Machine Learning Models
The following sections describe how to manage your machine learning models.

4.8.1 The Model Catalog

AutoML stores machine learning models in a model catalog. A model catalog is a table named
MODEL _CATALOG. AutoML creates a model catalog for any user that creates a machine learning model.

The MODEL_CATALOGtable is created in a schema named M._ SCHEMA user _nane, where the
user _nane is the name of the owning user.

The fully qualified name of the model catalog table is M._ SCHEMA user _nane. MODEL_CATALOG

When a user creates a model, the ML_TRAI Nroutine creates the model catalog schema and table if they
do not exist. M__TRAI Ninserts the model as a row in the MODEL_ CATALOG table at the end of training.

A model catalog is accessible only to the owning user unless the user grants privileges on the model
catalog to another user. This means that AutoML routines can only use models that are accessible to the
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user running the routines. For information about giving access to the model catalog and trained models to
other users, see Share a Model.

A database administrator can manage a model catalog table the same way as a regular MySQL table.
4.8.1.1 The Model Catalog Table
The MODEL _CATALOGtable (M._ SCHENMVA user nane. MODEL CATALOG) has the following columns:
e nmodel _id
A primary key, and a unique auto-incrementing numeric identifier for the model.
* nmodel _handl e

A name for the model. The model handle must be unigue in the model catalog. The model handle is
generated or set by the user when the ML_ TRAI N routine runs on a training dataset. The generated
nodel handl e formatis schenaNane_t abl eNane_user Nanme_No, as in the following example:
heat wavenl bench. census_train_userl 1636729526. See Work with Model Handles to learn
more.

Note
@ The format of the generated model handle is subject to change.

* nodel _obj ect

Set to null. Models are stored in the nodel _obj ect _cat al og table.
e nmodel _owner

The user who initiated the M__ TRAI N query to create the model.
e build_tinmestanp

A timestamp indicating when the model was created (in UNIX epoch time). A model is created when the
ML_TRAI N routine finishes running.

e target _col um_nane
The name of the column in the training table that was specified as the target column.
e« train_tabl e nane
The name of the input table specified in the ML._ TRAI N query.
* nodel _obj ect_si ze
The model object size, in bytes.
* nodel _type
The type of model (algorithm) selected by M__ TRAI Nto build the model.
e task
The task type specified in the M__TRAI N query.

e col um_nanes
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The feature columns used to train the model.

nodel _expl anati on

The model explanation generated during training. See Generate Model Explanations.
| ast _accessed

The last time the model was accessed. AutoML routines update this value to the current timestamp when
accessing the model.

nodel _mnet adat a

Metadata for the model. If an error occurs during training or you cancel the training operation, AutoML
records the error status in this column. See Model Metadata.

not es

Use this column to record notes about the trained model. It also records any error messages that occur
during model training.

The Model Object Catalog Table

Models are chunked and stored uncompressed in the nodel _obj ect _cat al og table. Each chunk is
saved with the same nodel _handl e.

A call to one of the following routines upgrades the model catalog, and store the model in the
nodel _obj ect cat al og table:

M__TRAI N
M__MODEL_LQOAD
M__EXPLAI N
M__MODEL_| MPORT
M__MODEL_EXPORT

If the call to one of these routines is not successful or is aborted, then the previous model catalog is still
available.

The nodel _obj ect _cat al og table has the following columns:

See Also

chunk_id

A primary key, and an auto-incrementing numeric identifier for the chunk. It is unique for the chunks
sharing the same nodel _handl e.

nodel _handl e
A primary key, and a foreign key that references nodel _handl e in the MODEL_CATALOGtable.
nodel _obj ect

A string in JSON format containing the serialized AutoML model.

Review Model Metadata for the Model Catalog Table.
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» Review Model Handles and how to retrieve them from the Model Catalog Table.

4.8.1.2 Model Metadata

The nodel _net adat a column in the model catalog allows you to view detailed information on trained
models. For example, you can view the algorithm used to train the model, the columns in the training table,
and values for the model explanation.

When you run the M._ MODEL | MPORT routine, the imported table has a nodel _net adat a column that
stores the metadata for the table. If you import a model from a table, nodel _net adat a stores the name
of the database and table. If you import a model object, nodel _net adat a stores a JSON_OBJECT that
contains key-value pairs of the metadata See Section 8.1.4, “ML_MODEL_IMPORT” to learn more.

The default value for nodel _net adat a is NULL.
This topic has the following sections.

* Model Metadata Details

* Query Model Metadata

* See Also

Model Metadata Details

nodel _met adat a contains the following metadata as key-value pairs in JISON format:
» task: string

The task type specified in the M__TRAI N query. The default is cl assi fi cati on when used with
M._MODEL _| MPORT.

e build_tinestanp: nunber

A timestamp indicating when the model was created (UNIX epoch time). A model is created when the
M__TRAI Nroutine finishes executing.

e target _columm_nane: string

The name of the column in the training table that was specified as the target column.
e train_table nane: string

The name of the input table specified in the M__TRAI N query.
e colum_nanes: JSON array

The feature columns used to train the model.
* nodel _explanation: JSON object literal

The model explanation generated during training. See Generate Model Explanations.
e notes: string

The not es specified in the M._TRAI N query. It also records any error messages that occur during
model training.

« format: string
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The model can be in one of the following formats:

e HWMLv1.0

¢ HWMLv2.0

¢« ONNXv1.0

¢ ONNXv2.0

status: string

The status of the model. The default is Ready when used with M._ MODEL_ | MPORT.
e Creating: The model is being created.

« Ready: The model is trained and active.

e Error: Either training was canceled or an error occurred during training. Any error message appears
in the not es column. The error message also appears in nodel _net adat a not es.

nodel _quality: string

The quality of the model object for classification and regression tasks. For other tasks, this value is
NULL. The value is either | owor hi gh.

training_tinme: nunber

The time in seconds taken to train the model.

al gorithm nane: string

The name of the chosen algorithm.

trai ning_score: nunber

The cross-validation score achieved for the model by training.
n_rows: nunber

The number of rows in the training table.

n_col ums: nunber

The number of columns in the training table.

n_sel ected_rows: nunber

The number of rows selected by adaptive sampling.
n_sel ected_col ums: nunber

The number of columns selected by feature selection.
optim zation_nmetric: string

The optimization metric used for training. See Section 8.1.16, “Optimization and Scoring Metrics” to
review available metrics.
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e sel ected_col umm_nanes: JSON array
The names of the columns selected by feature selection.
e contam nation: nunber
The contamination factor for the anomaly detection task. See Anomaly Detection Options to learn more.
» options: JSON object literal
The opt i ons specified in the M__TRAI N query.
e training_parans: JSON object literal
Internal task dependent parameters used during M__ TRAI N.
e onnx_inputs_info: JSON object literal

Information about the format of the ONNX model inputs. This only applies to ONNX models. See
Manage External ONNX Models.

Do not provide onnx_i nput s_i nf o if the model is not ONNX format. This generates an error.
e data_types_nmap: JSON object literal

This maps the data type of each column to an ONNX model data type. The default value is:

JSON_OBJECT("tensor(int64)": "int64", "tensor(float)": "float32", "tensor(string)": "str_")
o onnx_out puts_info: JSON object literal

Information about the format of the ONNX model outputs. This only applies to ONNX models. See
Manage External ONNX Models.

Do not provide onnx_out put s_i nf o if the model is not ONNX format, or if t ask is NULL. This
generates an error.

e predictions_nane: string
This name determines which of the ONNX model outputs is associated with predictions.
e prediction_probabilities_nanme: string
This name determines which of the ONNX model outputs is associated with prediction probabilities.
e | abel s_map: JSON object literal
This maps prediction probabilities to predictions, known as labels.
e training_drift_nmetric: JSON object literal

Contains data drift information about the training data. See Analyze Data Drift. This only applies to
classification and regression models.

e nmean: nunber
The mean value of drift metrics of all the training data. = 0.

e vari ance: nunber
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The variance value of drift metrics of all the training data. = 0.
Both nean and var i ance should be low.
e chunks: nunber
The total number of chunks that the model has been split into.

Query Model Metadata

You can query the model metadata in the model catalog with the following command. Replace user 1 with
your own user name.

nmysqgl > SELECT JSON_PRETTY(nodel _net adata) FROM M._SCHEMA user 1. MODEL_CATALOG G
kkhkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkkk*x l r ow kkkkkkhkkhkkhkkhkkhkkhkkhkkkhkkhkkkkkkkkkkkk*x
JSON_PRETTY(nodel _netadata): {

"task": "regression",

"notes": null,

"chunks": 1,

"format": "HWLv2.0",

"n_rows": 407284,

"status": "Ready",

"options": {

"task": "regression",
"nmodel _expl ai ner": "pernutation_inportance",
"prediction_explainer": "pernutation_i nportance"

b
"n_col ums": 14,
"col um_nanes": [
"Vendor | D',
"store_and_fwd_flag",
"Rat ecodel D',
"PULocati onl D',
"DOLocati onl D',
" passenger _count",
"extra",
"nta_tax",
"tolls_amount",
"i nprovenent _surchar ge",
"trip_type",
"| pep_pi ckup_dat et i me_day",
"| pep_pi ckup_dat eti me_hour",
"| pep_pi ckup_dat eti me_m nut e"
Il
"contam nation": null,
"model _qual ity": "high",
“"training_time": 515.13427734375,
"al gorithm name": "Randonforest Regressor",
"training_score": -5.610334873199463,
"buil d_ti nestanp": 1730395944,
"n_sel ected_rows": 130931,
"traini ng_paranms": {
"recomrend": "ratings",
"force_use_X': fal se,
"recomrend_k": 3,
"renove_seen": true,
"ranki ng_t opk": 10,
"l sa_conponents": 100,
"ranki ng_t hreshol d": 1,
"feedback_t hreshol d": 1

}

rai n_tabl e_nanme": "heatwaverm _bench.nyc_taxi_train",
"nmodel _expl anation": {
"permut ati on_i nportance": {
"extra": 0.0,
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"nta_tax": 0.0019,

"Vendor | D': 0.0048,

“trip_type": 0.0003,

"Rat ecodel D': 0.0152,

"DOLocationl D': 0.4178,
"PULocationl D': 0.2714,
“tolls_anount": 0.0851,

"passenger _count": 0.0,
"store_and_fwd_flag": 0.0,

"i nprovenent _surcharge": 0.0015,

"| pep_pi ckup_dat eti me_day": 0.0,

"| pep_pi ckup_dat eti me_hour": 0.0161,
"| pep_pi ckup_dateti me_m nute": 0.0

}
b
"n_sel ected_col ums": 9,
"target_col utm_nanme": "tip_anount"”,
"optimzation_netric": "neg_nean_squared_error",

"sel ect ed_col um_nanes": [
"DOLocati onl D',
"PULocati onl D',
" Rat ecodel D',
"Vendor | D',
"i nprovenent _sur char ge",
"| pep_pi ckup_dat et i me_hour",

"nta_tax",
“tolls_anmount",
"trip_type"

Il
“"training_drift_netric": {
"mean": 0.3326,
"variance": 3.2482
}
}

LEEREEEEEEEEEEEEEEE L ] FOW HXX*hdkdkkkkkhokkkkxkhkdkkkxxkhk

JSON_PRETTY( nodel _net adata): {
"task": "regression",
"notes": null,

"chunks": 0,
“format": "HWLv2.0",

"n_rows": null,
"status": "Error",

"options": {},
"n_colums": null,
"col um_nanes": null,
“contam nation": null,
"model _qual ity": null,
“training_time": null,
"al gorithmnname": null,
“training_score": null,
“buil d_ti nestanp": 1730403865,
"n_selected_rows": null,
“traini ng_parans": null,
“"trai n_tabl e_nane": "nyc_taxi.nyc_taxi_train",
"nmodel _expl anation": {},
"n_sel ected_col ums": null,
"target_col utm_nane": "tip_anount"”,
"optimzation_metric": null,
"sel ect ed_col um_nanes": nul |,
“"training_drift_netric": {
“mean": null,
"variance": null
}
}

LEEREEEEEEEEEEEEEEE L EEEE ] FOW *XX*hdkkkkkkhokdkkkkkhhkkkxxkhk

JSON_PRETTY(nodel _net adata): {
"task": "regression",
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}
3

See Also

"notes": null,

"chunks": 0,
“format": "HWLv2.0",
"n_rows": null,
"status": "Creating",

"options": {},
"n_colums": null,
"col um_nanes": nul |,
“contam nation": null,
"model _qual ity": null,
“training_time": null,
"al gorithmnname": null,
“training_score": null,
“buil d_ti nestanp": 1730404027,
"n_selected_rows": null,
“traini ng_parans": null,
“"trai n_tabl e_nane": "nyc_taxi.nyc_taxi_train",
"nmodel _expl anation": {},
"n_sel ected_col ums": null,
"target_col utm_nane": "tip_anount"”,
"optimzation_metric": null,
"sel ect ed_col um_nanes": nul |,
“"training_drift_netric": {

“mean": null,

"variance": null

}

rows in set (0.0859 sec)

Analyze Data Drift
Manage External ONNX Models
The Model Catalog Table

Generate Model Explanations

4.8.2 Work with Model Handles

When ML_TRAI Ntrains a model, you have the option to specify a name for the model, which is the model

handle. If you do not specify a model handle name, a model handle is automatically generated that is

based on the database name, input table name, the user name training the table, and a unique numerical
identifier. You must use model handles to run AutoML routines. All model handles must be unique in the
model catalog.

This topic has the following sections.

Before You Begin

Model Handles Overview

Query the Model Handle

Defining Model Handle

Assign Session Variable to Model Handle

What's Next

Before You Begin

Review the The Model Catalog.
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Model Handles Overview

If you set the model handle name to a session variable before training a model, the model handle takes
that name. Otherwise, a unique model handle is automatically generated. To set your own model name,
see Defining Model Handle. The model handle is stored temporarily in a user-defined session variable
specified in the ML_TRAI N call. In the following example, @ensus_nodel is defined as the model handle
session variable with no set model handle name:

nysqgl > CALL sys. M._TRAI N(' heat wavenl _bench. census_train', 'revenue', JSON OBJECT('task', 'classification'), @

While the connection used to run M._ TRAI N remains active, that connection can retrieve the automatically
generated model handle by querying the session variable. For example:

nysql > SELECT @ensus_nodel ;

T e +
| @ensus_nodel |
T e +
| census_cl assi fication_nodel |
T e +

Query the Model Handle

Since the session variable for a model handle is only valid for the current session, you can query the model
handle name from the model catalog in new sessions.

The following example queries the model handle, the model owner, and the name of the training table from
the model catalog table. Replace user 1 with your own user hame.

nmysqgl > SELECT nodel _handl e, nodel _owner, train_table_name FROM M._SCHEMA user 1. MODEL_CATALGCG,

18 rows in set (0.0014 sec)

Once you have the model handle, you can use it directly in AutoML routines instead of the session
variable.

The following example runs M__PREDI CT_ROWand uses the model handle.
mysql > SELECT sys. M._PREDI CT_RON @ ow_i nput, 'census_cl assification_nodel', NULL);
Defining Model Handle

Before training a model, it is good practice to define your own model handle instead of automatically
generating one. This allows you to easily remember the model handle for future routines on the trained
model instead of having to query it, or depending on the session variable that can no longer be used when
the current connection terminates.

To define your own model handle:
1. Set the value of the session variable, which sets the model handle to this same value.
nysqgl > SET @ari abl e = ' nodel _handl e';

Replace @ ar i abl e and nodel _handl e with your own definitions. For example:

nysqgl > SET @ensus_nopdel = 'census_cl assification_nodel";

When ML_TRAI N runs with this session variable, the model handle is setto census _t est .
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If you set a model handle that already appears in the model catalog, the ML_ TRAI N routine returns an
error.

Run the ML_TRAI Nroutine.

mysql > CALL sys. ML_TRAIN('tabl e_nane', 'target_col umm_nane', JSON OBJECT('task', 'task_nane'), @ariabl
Replace t abl e_nane, t arget _col unm_nane, t ask_nane, and var i abl e with your own values.

The following example trains a model with the model handle variable previously set

nmysql > CALL sys. ML_TRAI N(' heat waverm _bench. census_train', 'revenue', JSON OBJECT('task', 'classificatio

After training the model, query the model catalog to confirm the model handle you defined is there.
Replace user 1 with your own user name.

nysql > SELECT nodel _handl e, nodel _owner, train_table_nane FROM M._SCHENMA user 1. MODEL_CATALGCG,

o ccococoooococooooCoCoSooCSCoooSCSCoSoSCoCoSoooSCoSoooScoSooooEoSoe focoococosoooe focooooc s oo o |
| nodel _handl e | nodel _owner | train_table_nanme

o ccococoooococooooCoCoSooCSCoooSCSCoSoSCoCoSoooSCoSoooScoSooooEoSoe focoococosoooe focooooc s oo o |
| census_cl assification_nodel | userl | census_dat a. census_
o ccococoooococooooCoCoSooCSCoooSCSCoSoSCoCoSoooSCoSoooScoSooooEoSoe focoococosoooe focooooc s oo o |

1 rowin set (0.0014 sec)

Assign Session Variable to Model Handle

If you lose the session variable to a model handle due to a lost connection, you have the option of
assigning a new session variable to a model handle in a new connection.

To assign a session variable to a model handle:

1.

Set a variable to the model handle. If needed Query the Model Handle.

nmysql > SET @vy_nodel = 'nodel _handl e';

The following example sets the @ry_nodel session variable to a model handle.
nysql > SET @w_nodel = 'census_cl assification_nodel";

Confirm the session variable is assigned to the model handle by querying the session variable.

nysqgl > SELECT @ry_nodel ;

d-cccoocccccmocccccmocccccmooccocmmocccomooocoooooooos +
| @ry_nodel |
d-cccoocccccmocccccmocccccmooccocmmocccomooocoooooooos +
| census_cl assification_nodel |
d-cccoocccccmocccccmocccccmooccocmmocccomooocoooooooos +

Alternatively, you can assign a session variable to the model handle for the most recently trained model.

1.

Set a variable with the query to retrieve the most recent model handle by sorting with the
bui | d_t i nmest anp parameter in the model catalog. Replace user 1 with your own user name.

nysql > SET @ari abl e = (SELECT nodel _handl e FROM M._SCHEVMA user 1. MODEL_CATALOG ORDER BY bui | d_ti nest anp

The following example sets the | at est _nodel variable.

nysql > SET @ at est _npdel = (SELECT nodel _handl e FROM M__SCHENMA user 1. MODEL_CATALOG ORDER BY tinestanp C

Confirm the session variable is assigned to the latest model handle by querying the session variable.

nysql > SELECT @ at est_nodel ;
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P +
| @ atest_nodel
P +
| recommendati on_use_case4
P +

1 rowin set (0.0454 sec)
What's Next
» Review how to Create a Machine Learning Model.

» Review Machine Learning Use Cases to create machine learning models with sample datasets.

4.8.3 Unload a Model

The ML_MODEL_ UNLQAD routine unloads a model from AutoML. Review ML_MODEL_UNLOAD parameter
descriptions.

Before You Begin
» Review the following
e Train a Model
* Load a Model
Unload a Model

You can verify what models are currently loaded with the M_._MODEL_ ACTI VE routine before and after
unloading the model.

1. Verify what models are currently loaded with the M__MODEL _ACTI VE routine.
mysql > CALL sys. ML_MODEL_ACTI VE(" al | ', @model _i nfo);

2. Select the session variable created to view all loaded models.

nysql > SELECT JSON PRETTY( @odel _i nfo0);

diecccccococccococcoccooScCcoSSScccCooScCCcoSSocccoocScocoocccoocDcocooo +
| JSON_PRETTY( @model _i nf 0)
diecccccococccococcoccooScCcoSSScccCooScCCcoSSocccoocScocoocccoocDcocooo +
| [
{

"total nodel size(bytes)": 50209
¥
{

"user1": [

{

"recomendati on_use_case": {
"format": "HWWLv2.0",
"model _si ze(byte)": 15609

}
i
{

"recommendat i on_use_case2": {
"format": "HWWLv2.0",
"model _si ze(byte)": 8766

}

i
{

"recommendat i on_use_case3": {
"format": "HWWLv2.0",
"model _si ze(byte)": 8402
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}
b
{
"recommendati on_use_case4": {
“"format": "HWWMv2.0",
"model _si ze(byte)": 17432
}
}
]
}
11
R T +

1 rowin set (0.0411 sec)

Refer to the appropriate model handle to unload. Alternatively, use the session variable for the model
handle.

The following example unloads a model by using the model handle:

mysql > CALL sys. ML_MODEL UNLQAD(' recomrmendat i on_use_case');

Where:

e recommendat i on_use_case is the model handle.

The following example unloads a model by using the session variable for the model handle:
nysql > CALL sys. M._MODEL_UNLOAD( @ econmendat i on_nodel ) ;

Where:

e @ecommendat i on_nodel is the assigned session variable for the model handle.

Run ML_MODEL_ACTI VE again to confirm the model is successfully unloaded

mysql > CALL sys. ML_MODEL_ACTI VE(' al | ', @rodel _i nfo);
nmysql > SELECT JSON_PRETTY( @model _i nf o) ;

“"total nodel size(bytes)": 34600

“user1": [
{
"recomrendat i on_use_case2": {
“format": "HWLv2.0",
"model _si ze(byte)": 8766

}
h
{
"recomrendat i on_use_case3": ({
“format": "HWLv2.0",
"model _si ze(byte)": 8402
}
h
{
"recommendat i on_use_case4": {
“format": "HWLv2.0",
"model _si ze(byte)": 17432
}
}

]
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1 rowin set (0.0411 sec)
The list of loaded models shows the model is unloaded.
What's Next
» Review how to Create a Machine Learning Model.

» Review Machine Learning Use Cases to create machine learning models with sample datasets.
4.8.4 View Model Details

To view the details for the models in your model catalog, query the MODEL CATALOGtable.
Before You Begin
» Review the following:
¢ Create a Machine Learning Model
e The Model Catalog
View Details for Your Models

The following example queries nodel i d, nodel handl e, and nodel _owner,trai n_tabl e nane
from the model catalog. Replace user 1 with your own user name.

nysql > SELECT nodel _id, nodel handl e, nbdel owner, train_table nane FROM M._SCHENMA user 1. MODEL_CATALCG

T e Fommme e eaaao T
| nodel _id | nodel _handl e | nodel _owner | train_table_nane

T e Fommme e eaaao T
| 1 | regression_use_case | root | regression_data. house_price_training

| 2 | forecasting_use_case | root | forecasting_data.electricity_demand_tr
| 3 | anonal y_detecti on_sem _supervi sed_use_case | root | anonuly_data.credit_card_train

| 4 | anomal y_detecti on_| og_use_case | root | anonml y_I og_dat a. trai ni ng_dat a

| 5 | recommendati on_use_case | root | recommendati on_dat a. trai ni ng_dat aset

| 6 | topic_nodeling_use_case | root | topic_nodeling_data.novies

T e Fommme e eaaao T
Where:

» nodel _i d is a unique numeric identifier for the model.
e nodel _owner is the user that created the model.
* nmodel _handl e is the handle by which the model is called.

e ML_SCHENA user 1. MODEL CATALOGis the fully qualified name of the MODEL _CATALOGtable. The
schema is named for the owning user.

The output displays details from only a few MODEL_ CATALOG table columns. For other columns you can
guery, see The Model Catalog.

View Model Explanations

The M__EXPLAI N routine generates model explanations and stores them in the model catalog. See
Generate Model Explanations to learn more.
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A model explanation helps you identify the features that are most important to the model overall. Feature
importance is presented as an attribution value. A positive value indicates that a feature contributed
toward the prediction. A negative value can have different interpretations depending on the specific model
explainer used for the model. For example, a negative value for the permutation importance explainer
means that the feature is not important.

To view a model explanation, you can query the nodel _expl anat i on column from the model catalog by
referencing the model handle. Review how to Query the Model Handle.

nmysql > SELECT col uimm FROM M__SCHENMA user nane. MODEL_CATALOG wher e nodel _handl e=' nodel _handl e' ;

The following example queries one of the model handles and views the model explanation for that model.
Optionally, use JSON_PRETTY to view the output in an easily readable format.

nmysql > SELECT JSON_PRETTY( nodel _expl anati on) FROM M._SCHEMA user 1. MODEL_CATALOG wher e nodel _handl e=' census.

"permut ati on_i nportance": {
"age": 0.0305,
"sex": 0.0023,
"race": 0.0017,
"fnlwgt": 0.0025,
"education": 0.0013,
"wor kcl ass": 0.0043,
"occupation": 0.0229,
"capital -gai n": 0.0495,
"capital -loss": 0.0156,
"rel ati onshi p": 0.0267,
"educati on- nuni': 0. 0371,
"hour s- per -week": 0.0142,
"marital -status": 0.0267,
"native-country": 0.0

1 rowin set (0.0447 sec)
Where:

 ML_SCHENA user 1. MODEL CATALOGis the fully qualified name of the MODEL _CATALOGtable. The
schema is named for the user that created the model.

e census_data.census_train_userl 1744548610842 is the model handle. See Work with Model
Handles.

The output displays feature importance values for each column by using the per nut at i on_i nport ance
model explainer.

Alternatively, you can query the model explanation by using the valid session variable for the model
handle. Optionally, use JSON_PRETTY to view the output in an easily readable format.

nmysql > SELECT JSON_PRETTY( nodel _expl anati on) FROM M._SCHEMA admi n. MODEL_CATALOG wher e nodel _handl e=@ensus.

e — — = - - - -
| {
"permut ati on_i nportance": {
"age": 0.0305,
"sex": 0.0023,

"race": 0.0017,
"fnlwgt": 0.0025,
"education": 0.0013,
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"wor kcl ass": 0.0043,
"occupation": 0.0229,
"capital -gai n": 0.0495,
"capital -loss": 0.0156,
"rel ati onshi p": 0.0267,
"education-nuni: 0.0371,
"hour s- per-week": 0.0142,
"marital -status": 0.0267,
"pative-country": 0.0

1 rowin set (0.0447 sec)

See Work with Model Handles to learn more.
What's Next

» Review the The Model Catalog.

* Review how to Work with Model Handles.

4.8.5 Delete a Model

Users that create models or have the required privileges to a model on the MODEL CATALOGtable can
delete them.

Before You Begin
» Review how to Create a Machine Learning Model.
* Review how to Share a Model.

Delete a Model
To delete a model from the model catalog table:

1. Query the model catalog table for the nodel i d, nodel owner,andtrai n_tabl e _nane. Identify
the nodel _i d for model you want to delete. Replace user 1 with your own user name.

nysqgl > SELECT nodel _id, nodel _owner, train_table_nane FROM M._SCHEMA user 1. MODEL_CATALGCG,

e cccmoooo-o e ccccccomoe== dfecccmocccccmocccccmmoccccmooocoomooocoooooooes- +
| nodel _id | nodel _owner | train_table_nane |
e cccmoooo-o e ccccccomoe== dfecccmocccccmocccccmmoccccmooocoomooocoooooooes- +
| 1| userl | m _benchmark. senti ment _nodel _creation |
| 2 | userl | ml_data.iris_train |
| 3 | userl | census_data.census_train |
e cccmoooo-o e ccccccomoe== dfecccmocccccmocccccmmoccccmooocoomooocoooooooes- +
)

The requested columns from the model catalog table display.
In this case, the model with nodel _i d 3 is deleted.

2. Delete the model from the model catalog table.

mysql > DELETE FROM M._SCHENMA user 1. MODEL_CATALOG WHERE nodel id = 3;
Where:

e ML_SCHEMA user 1. MODEL CATALOGis the fully qualified name of the MODEL CATALOGtable. The
schema is named for the user that created the model.
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e nodel id = 3isthe ID of the model you want to delete.

3. Confirm the model is removed from the model catalog table. Replace user 1 with your own user hame.

mysql > SELECT nodel _id, nodel _owner, train_table_nanme FROM M__SCHENMA user 1. MODEL_CATALOG

E o - mmmmeo- - o o e o e e oo e oo e oo m e e e e e mcemoomccomoco-oo-- +
| nodel _id | nmodel _owner | train_table_name |
E o - mmmmeo- - o o e o e e oo e oo e oo m e e e e e mcemoomccomoco-oo-- +
| 1| userl | m _benchnark. senti ment _nodel _creation |
| 2 | userl | m_data.iris_train |
E o - mmmmeo- - o o e o e e oo e oo e oo m e e e e e mcemoomccomoco-oo-- +

2 rows in set (0.0008 sec)
What's Next

» Review Machine Learning Use Cases to create machine learning models with sample datasets.

4.8.6 Share a Model

This topic describes how to grant other users access to a model you create.
This topic has the following sections.

» Before You Begin

» Share Your Models

» Export the Model to Share

» Set Up Other User with Required Privileges

* Importing Shared Model

* Run AutoML Routines on Imported Model

* What's Next
Before You Begin

» Review AutoML Privileges.
Share Your Models

To share a model you created, you can use the M._ MODEL _EXPORT and M__MODEL | MPORT routines.
M. MODEL _EXPORT exports the model to share to a user-defined table that both users need the required
privileges to access. M._MODEL | MPORT imports the model to the user's model catalog. The other user
can then run AutoML commands on the imported model.

In the following tasks, the adni n user gives access to their model to the user 1 user. The trained table,
bank_train,isinthe bank mnar ket i ng database.

Export the Model to Share

The admi n user needs to export the model to share to a user-defined table that both users can access. In
this use case, the user exports the model to their own model catalog.

1. Asthe adni n user, train and load the model to export. See Train a Model and Load a Model.
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2. Export the model to a table in the model catalog. Use the assigned session variable for the model

handle. If you need to query the model handle, see Work with Model Handles.

nmysql > CALL sys. M._MODEL EXPORT (nmodel _handl e, output_tabl e nane);

Replace nodel _handl e and out put _t abl e_nan® with your own values. For example:

nysqgl > CALL sys. M._MODEL_EXPORT( @ank_nodel , ' M._SCHEMA adni n. nodel _export');
Where:
e @ank_nodel isthe assigned session variable for the model handle of the trained model.

e ML_SCHEMA admi n. nodel _export is the fully qualified name of the table that contains the training
dataset (schena_nane. t abl e_nane).

Run the SHOW CREATE TABLE command to confirm the table was created with the recommended
parameters for importing. See ML_MODEL_IMPORT to learn more.

nysql > SHOW CREATE TABLE M._SCHEMA adni n. nodel _export;

| nodel _export | CREATE TABLE " nodel _export ™ (
“chunk_id" int NOT NULL AUTO_| NCREVENT,
“nodel _obj ect ™ | ongt ext,
“nodel _netadata’ j son DEFAULT NULL,
PRI MARY KEY (" chunk_id")
) ENG NE=I nnoDB AUTO | NCREMENT=2 DEFAULT CHARSET=ut f 8mb4 COLLATE=ut f 8nb4_0900_ai ci |
dooccococoocoooo S o o = — — - — = — - -
1 rowin set (0.0527 sec)

Set Up Other User with Required Privileges

The admi n user needs to grant the required privileges to user 1, so that user can access exported model
and import it into their own model catalog.

If not done already, create the other user account (userl). See CREATE USER Statement to learn
more.

2. Run these commands to grant the required privileges to the other user, so they can access the

following:
* AutoML routines on the MySQL sys schema.
* The model catalog for both users.

* The database with the trained model.

See AutoML Privileges to learn more.

nysql > GRANT SELECT, EXECUTE ON sys.* TO 'userl @ % ;

nmysql > GRANT SELECT, ALTER, |NSERT, CREATE, UPDATE, DROP, GRANT OPTI ON ON M._SCHEMA userl1l.* TO 'userl @% ;
nmysql > GRANT SELECT, ALTER, |NSERT, CREATE, UPDATE, DROP, GRANT OPTI ON ON M._SCHEMA admin.* TO 'userl @% ;
nysql > GRANT SELECT, ALTER, | NSERT, CREATE, UPDATE, DROP, GRANT OPTI ON ON bank_marketing.* TO 'userl @% ;
nysql > GRANT SELECT ON performance_schema. rpd_t ables TO 'userl' @ % ;

nysql > GRANT SELECT ON performance_schema.rpd_table_id TO 'userl @ % ;

nysql > GRANT SELECT ON per for mance_schema. rpd_query_stats TO 'userl' @ % ;

nysql > GRANT SELECT ON performance_schema. rpd_m _stats TO 'userl @ % ;

Where:
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e ML_SCHEMA userl.* and M._SCHEMA user 1. * gives access to the model catalog for both users.

< bank_nmar ket i ng is the database that contains the trained table.

Importing Shared Model

The user 1 user can now import the exported model to their own model catalog.

1. Login to the DB system as the other user (userl).

2. Import the model the admi n user previously exported into the model catalog for user 1.
nysqgl > CALL sys. M._MODEL_| MPORT (npdel _obj ect, npdel _netadata, nodel _handle);
Replace nodel _obj ect, nodel _net adat a, and nodel _handl e with your own values. For example:
nysqgl > CALL sys. M._MODEL_| MPORT(NULL, JSON OBJECT('schema', 'M._SCHEMA adnmin', 'table', 'nopdel _export')
¢ NULL means that a model from a table is imported, and not a model object.
« JSON_OBJECT sets key-value pairs for the database and table of the exported table to import.
e @ank_export is the assigned session variable for the imported model handle.

3. Load the imported model. Use the assigned session variable set for the imported model handle in the
previous command.

nysqgl > CALL sys. M._MODEL_LOAD( @ank_export, NULL);

4. Optionally, query nodel _obj ect and nodel _obj ect _si ze from the model catalog for the loaded
model to confirm the model imported successfully.
nysql > SELECT nodel _object, npdel _object_size FROM M._SCHEMA user 1. MODEL_CATALOG WHERE nodel _handl e=@a

e cccoccomooooo e T +
| nodel _object | npdel _object_size |

1 rowin set (0.0478 sec)
Confirm the nodel obj ect _si ze isnot 0.

5. Optionally, query chunk_i d and LENGTH( nodel _obj ect) from the model object catalog for the
loaded model to confirm the model imported successfully.

nmysql > SELECT chunk_i d, LENGTH( npdel _object) FROM M._SCHEMA user 1. nodel _obj ect _cat al og WHERE nodel _hand

oo oo e S +
| chunk_id | LENGTH( nodel _object) |
oo oo e S +
| 1| 331860 |
oo oo e S +

1 rowin set (0.0465 sec)
Confirm the chunk i d value is 1 and LENGTH( nodel _obj ect) is not 0.
Run AutoML Routines on Imported Model

Confirm the user 1 user can run AutoML commands. The following example generates a table of
predictions for the imported model.

mysql > CALL sys. M._PREDI CT_TABLE(t abl e_name, nodel _handl e, output_table_nanme), [options]);
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Replace t abl e_nane, nodel _handl e, out put _t abl e_nane), and opt i ons with your own values. For
example:

nmysqgl > CALL sys. M._PREDI CT_TABLE(' bank_mar ket i ng. bank_train', @ank_export, 'bank_marketing. bank_predictions’

Where:

* bank_mar ket i ng. bank_trai n is the fully qualified name of the table that contains the training
dataset (schenma_nane. t abl e_nane).

* @ank_export is the assigned session variable for the imported model handle.

» bank_nmarketing. bank _predi cti ons is the fully qualified name of the output table that contains the
predictions (schena_nane. t abl e_nane).

Optionally, use the database with the output table and query a sample.

nysql > USE bank_mar ket i ng
nysqgl > SELECT * FROM bank_predictions |limt 5;

e H--m - - Fommem e emeaa o Hommmeaa - Fommmee e s L T - F T - F T - [ Fommmmees
| _4aadl9cabe_pk_id | age | job | narital | education | default | balance | housing | |oan | contact
e H--m - - Fommem e emeaa o Hommmeaa - Fommmee e s L T - F T - F T - [ Fommmmees
| 1] 30| nanagenent | single | tertiary | no | 149 | yes | no | unknown
| 2| 46 | blue-collar | married | secondary | no | -1400 | yes | no | tel ephon
| 3| 33| entrepreneur | married | secondary | no | -118 | yes | yes | unknown
| 4| 43 | blue-collar | married | secondary | no | 2160 | no | no | cellular
| 5| 38 | managenent | narried | tertiary | no | 3452 | no | no | cellular
e H--m - - Fommem e emeaa o Hommmeaa - Fommmee e s L T - F T - F T - [ Fommmmees

5 rows in set (0.0425 sec)

What's Next

» Review Machine Learning Use Cases to create machine learning models with sample datasets.

4.8.7 Manage External ONNX Models

AutoML supports the upload of pre-trained models in ONNX (Open Neural Network Exchange) format to
the model catalog. Load them with the M._ MODEL | MPORT routine. After import, you can use AutoML
routines with ONNX models.

4.8.7.1 ONNX Models Overview

You cannot directly load models in ONNX format (. onnx) into a MySQL table. The models require string
serialization and conversion to Base64 encoding before you use the M._ MODEL | MPORT routine.

AutoML supports the following ONNX model types:
* An ONNX model that has only one input, and it is the entire MySQL table.
« An ONNX model that has more than one input, and each input is one column in the MySQL table.

For example, AutoML does not support an ONNX model that takes more than one input, and each input is
associated with more than one column in the MySQL table.

The first dimension of the input to the ONNX model provided by the ONNX model get _i nput s() API
should be the batch size. This should be None, a string, or an integer. None or string indicate a variable
batch size, and an integer indicates a fixed batch size.

Examples of input shapes:

[ None, 2]
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[' batch_size', 2, 3]

[1, 14]

All other dimensions should be integers. For example, AutoML does not support an input shape similar to
the following:

i nput shape = ['batch_size', 'sequence_|ength']

The output of an ONNX model is a list of results. The ONNX API documentation defines the results as
a numpy array, a list, a dictionary, or a sparse tensor. AutoML only supports a numpy array, a list, and a
dictionary.

e Numpy array examples:
array(['Iris-virginica', 'lris-versicolor', "lris-versicolor', "lris-versicolor'], dtype=object)
array([0, 2, 0, 0], dtype=int64)

array([[0. 8896357 , 0.11036429],
[0.28360802, 0.716392 1],
[ 0. 9404001 , 0.05959991],
[0.5655978 , 0.43440223]], dtype=fl oat32)

array([[0.96875435],
[1.081366 ],
[0.5736201 ],
[0.90711355]], dtype=fl oat 32)

» Simple list examples:
["Iris-virginica', "lris-versicolor', "lIris-versicolor', 'Iris-versicolor']
[0, 2, 0, O]

* List of lists examples:

[[0.8896357 , 0.110364],
[ 0. 28360802, 0.716392],
[ 0. 9404001 , 0.059599],
[0.5655978 , 0.434402]]

[[[0.8896357] , [0.110364]],
[[0.28360802], [0.716392]],
[[0.9404001] , [0.059599]],
[[0.5655978] , [0.434402]]]

[0.968754] ,
1. 081366] ,
0.573620]
0.907113] ]

—_————

[[0.968754]],
[1.081366]],
[0.573620]],
[0.907113]]]

—_————

 Dictionary examples:
{'"Iris-setosa': 0.0, 'Iris-versicolor': 0.0, 'Iris-virginica: 0.999}
{0: 0.1, 1: 0.9}

« List of dictionaries examples:
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[{"Iris-setosa': 0.0, "Iris-versicolor': 0.0, "Iris-virginica : 0.999}
{'"Iris-setosa': 0.0, 'lIris-versicolor': 0.999, 'Iris-virginica': 0.0},
{'"Iris-setosa': 0.0, "Iris-versicolor': 0.589, 'Iris-virginica' : 0.409},
{'Iris-setosa': 0.0, 'Iris-versicolor': 0.809, 'Iris-virginica : 0.190}]

[{0: 1.0, 1: 0.0, 2: 0.0},
{0: 0.0, 1: 0.0, 2: 1.0},
{0: 1.0, 1: 0.0, 2: 0.0},
{0: 1.0, 1: 0.0, 2: 0.0}]

[{0: 0.176, 1: 0.823},
{0: 0.176, 1: 0.823},
{0: 0.264, 1: 0.735},
{0: 0.875, 1: 0.124}]

0: 0.176, 1: 0.823},
0.176, 1: 0.823},
: 0.264, 1: 0.735},
0.875, 1: 0.124}]

A A —

[{0: 0.176, 1: 0.823},
{0: 0.176, 1: 0.823},
{0: 0.264, 1: 0.735},
{0: 0.875, 1: 0.124}]
For classification and regression tasks, AutoML only supports model explainers and scoring for variable
batch sizes.

For forecasting, anomaly detection and recommendation tasks, AutoML does not support model explainers
and scoring. The prediction column must contain a JSON object literal of name value keys. For example,
for three outputs:

{out put 1: val uel, output2: value2, output3: val ue3}

What's Next

» Learn about ONNX Model Metadata.

4.8.7.2 ONNX Model Metadata

To learn more about model metadata in the model catalog, see Model Metadata. The model metadata
includes onnx_i nput s_i nf o and onnx_out put s_i nf o.

e onnx_inputs_infoincludes data types map. See Model Metadata for the default value.

e onnx_out put s_i nf o includes predi cti ons_nane, predi cti on_probabilities_nane, and
| abel s_map.

ONNX Inputs Info

Use the dat a_t ypes_nap to map the data type of each column to an ONNX model data type. For
example, to convert inputs of the type t ensor (f | oat) tof| oat 64:

data_types_map = {"tensor(float)": "float64"}

AutoML first checks the user dat a_t ypes_nmap, and then the default dat a_t ypes_map to check if the
data type exists. AutoML supports the following numpy data types:

Table 4.1 Supported numpy data types

str_ uni code_ [int8 intl6 i nt 32 i nt 64 int_ uint 16
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ui nt 32 ui nt 64 byt e ubyt e short ushort intc uintc

ui nt | ongl ong |ul ongl onglintp uintp float16 |float32 |fl oat64
hal f singl e | ongf | oat |doubl e | ongdoubl ¢bool _ dat et i ne64conpl ex__
conpl ex64 [conpl ex12q3corrpl ex256¢csi ngl e |cdoubl e |cl ongdoublie

The use of any other numpy data type causes an error.
ONNX Outputs Info

Use pr edi cti ons_name to determine which of the ONNX model outputs is associated with predictions.
Use predi ction_probabilities_name to determine which of the ONNX model outputs is associated
with prediction probabilities. Use use a | abel s_nap to map prediction probabilities to predictions, known
as labels.

For regression tasks:

« If the ONNX model generates only one output, then pr edi ct i ons_nane is optional.

« If the ONNX model generates more than one output, then pr edi cti ons_nane is required.
» Do not provide predi cti on_probabi |l ities_nane as this causes an error.

For classification tasks:

» Use predictions_nane, prediction_probabilities_nane, orboth. Failure to provide at least
one causes an error.

« The model explainers SHAP, Fast SHAP, and Partial Dependence require
predi ction_probabilities_narme.

Only use a | abel s_nap with classification tasks. A | abel s_map requires
predictions_probabilities_nane. Theuse ofal abel s_nap with any other task, or with
predi cti ons_nane or without pr edi cti ons_probabi | ities_nane causes an error.

If the task is NULL, do not provide pr edi cti ons_nane or predi ction_probabilities_nane as this
causes an error.

An example of a predi cti ons_probabi | i ti es_nane with al abel s_map produces these labels:
predictions_probabilities_name = array([[0.35, 0.50, 0.15],

[0.10, 0.20, 0.70],

[0.90, 0.05, 0.05],

[0.55, 0.05, 0.40]], dtype=float32)
labels_map = {0:'Iris-virginica', 1:'Iris-versicolor', 2:'lris-setosa'}

| abel s=['Iris-versicolor', '"lris-setosa', 'Iris-virginica, 'lris-virginica']

AutoML adds a note for ONNX models that have inputs with four dimensions about the reshaping of data to
a suitable shape for an ONNX model. This would typically be for ONNX models that are trained on image
data.

An example of this note added to the nl _r esul t s column:

nmysqgl > CALL sys. M__PREDI CT_TABLE(' ml cor pus_v5. mi st_test_tenp', @mdel,
"m corpus_v5. mmist_predictions ', NULL);

Query OK, 0 rows affected (20.6296 sec)

nmysqgl > SELECT ml _results FROM mmi st_predi cti ons; ;
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See Also

{"predictions': {'prediction': 7}, '"Notes': 'Input data is reshaped into (1, 28, 28).', 'probabilities' : {O:

Review The Model Catalog.

4.8.7.3 Importing an External ONNX Model

This topic describes how to import an external ONNX model.

This topic has the following sections. Refer to the steps to import an ONNX model. There are also
examples for your reference.

Before You Begin

Ways to Import External ONNX Model

Workflow to Import an ONNX Model

Encoding ONNX File

Preparing to Import ONNX Model as a Pre-Processed Object
Preparing to Import ONNX Model as a Table
Defining Model Metadata

Importing ONNX Model as a Pre-processed Object
Importing ONNX Model as a Table

ONNX Import Examples

What's Next

Before You Begin

Review the following:
* ONNX Models Overview
*« ONNX Model Metadata

Review ONNX Model Metadata.

Ways to Import External ONNX Model

You have the following ways to import an external ONNX model.

Import model as a string: For smaller models, you can copy the encoded string and paste it into a
session variable or temporary table column. You can then import the table with the copied string. To do
this, you run the ML_MODEL_ | MPORT routine and import the model as a pre-processed model object.

Import model directly from a table: For larger models, you can load the entire file into a table with the
appropriate parameters. You can then import the table directly into your model catalog. If needed, you
can load the model in batches of smaller files. To do this, you run the M._ MODEL_ | MPORT routine and
import the model as a table.
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The table that you load the model into must have the following columns:

e chunk_i d: The recommended parameters are | NT AUTO | NCREMENT PRI MARY KEY. There must
be only one row in the table with chunk i d = 1.

e nodel _obj ect: The recommended parameters are LONGTEXT NOT NULL.
e nodel net adat a: The recommended parameters are JSON DEFAULT NULL.
Workflow to Import an ONNX Model
The workflow to import an ONNX model includes the following:
1. Convert the ONNX file to Base 64 encoding and carry out sting serialization. See Encoding ONNX File.

2. Depending on the size of the model, select if you want to import the model as a string in a pre-
processed model object (smaller files) or as a table (larger files). Then, refer to the appropriate section
to prepare the model file. See either Preparing to Import ONNX Model as a Pre-Processed Object or
Preparing to Import ONNX Model as a Table.

3. Define the model metadata as needed depending on the type of machine learning task for the model.
See Defining Model Metadata.

4. Import the model by using the M__MODEL_| MPORT routine. See either Importing ONNX Model as a
Pre-processed Object to import the model as a string or Importing ONNX Model as a Table.

Encoding ONNX File

Before importing an ONNX model, you must convert the ONNX file to Base 64 encoding and carry out
string serialization. Do this with the Python base64 module. Ensure you have the appropriate version of
Python installed.

To encode the ONNX file:
1. Open a terminal window (command prompt on Windows).

2. Install the ONNX library.

pi p install onnx

3. Launch Python and run the following code.

# pyt hon3 encode_onnx_base64. py
i mport onnx
i nport base64

wi th open("output_file_nane", "wb") as f:
model = onnx.load("input_file_nane")
f.write(base64. b64encode(nodel . SerializeToString()))

Replace i nput _fil e_nane with the full file path to the ONNX file and out put _fi | e_nane with the
desired file name for the encoded file. If needed, set a file path for the output file.

The following example converts the / User s/ user 1/ i ri s. onnx file and creates the output file
iris_base64. onnx.

# pyt hon3 encode_onnx_base64. py
i mport onnx
i nport base64
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with open("iris_base64.onnx", "wb") as f:
model = onnx.|oad("/Users/userl/iris.onnx")
f.wite(base64. b64encode(nodel . SerializeToString()))

After encoding the ONNX file, select the method to import the model and review the appropriate steps.

Preparing to Import ONNX Model as a Pre-Processed Object

Preparing to Import ONNX Model as a Table

Preparing to Import ONNX Model as a Pre-Processed Object

For smaller model files, you can import the ONNX model as a string into a pre-processed object.

To prepare to import the ONNX Model as a string:

1.

2.

3.

Open the encoded file and copy the string.
Connect to the MySQL server.

Copy and paste the converted string for the file into a session variable. For example:

nysql > SET @nnx_string_nodel _object="ONNX_file_string";

Alternatively, you can load the encoded file directly into a table column. Make sure you do the following:

Set the appropriate | ocal -i nfi | e setting for the client. The server setting | ocal _i nfil e=ONis
enabled by default. Verify with your admin before using these settings. See Security Considerations for
LOAD DATA LOCAL to learn more.

Upload the file to the appropriate folder in the MySQL server based on the secure_fil e_pri v setting.
To review this setting, connect to the MySQL server and run the following command:

mysql > SHOW VARI ABLES LI KE ' secure _file_priv';

To load the encoded file directly into a table column:

1.

From a terminal window, upload the ONNX file to the folder of your username in the compute instance.

$> scp -v -i ssh-key.key /Users/userl/iris_base64. onnx user1@onput el nstancePublicl P:/hone/ user 1/
Replace the following:

« ssh-key. key: The full file path to the SSH key file (.key) for the compute instance.

e [ Users/userl/iris_base64. onnx: The full file path to the ONNX file on your device.

e user 1@onput el nst ancePubl i cl P: The appropriate username and public IP for the compute
instance.

e [/ hone/ user 1/ : The appropriate file path to your username in the compute instance.

Once the upload successfully completes, SSH into the compute instance.

$> ssh -i ssh-key. key user l@onput el nst ancePublicl P
Replace the following:

« ssh-key. key: The full file path to the SSH key file (.key) for the compute instance.
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10.

e user 1@onput el nst ancePubl i cl P: The appropriate username and public IP for the compute
instance.

Change the directory to the one for your username.
$> cd /home/ user 1

Replace user 1 with your own username.

Create a copy of the ONNX file.

$> touch iris_base64. onnx

Replace i ri s_base64. onnx with the file name of the ONNX file.

Copy the ONNX file to the appropriate folder in the MySQL server based on the secure file priv
setting.

$> sudo cp iris_base64.onnx /var/lib/nysql-files

Replace the following:

e iris_base64. onnx: The file name of the ONNX file.

e /var/liblnysql-files: The file path based on the secure file_ priv setting.

Update the owner and group of the file path previously specified that has the uploaded ONNX file.
$> sudo chown -R nysql:nysql /var/lib/nysql-files

Replace /var/ i b/ mysql - fil es with the file path previously specified.

Connect to the MySQL server with the | ocal -i nfi |l e setting to 1.

> mysql -u userl -p --local-infile=1

Replace user 1 with your MySQL username.

Create and use the database to store the table. For example:

nmysql > CREATE DATABASE onnx_nodel ;
mysql > USE onnx_nodel ;

Create a table with only one column to store the string.

The following example creates the onnx_t enp table with the onnx_st ri ng column with the
LONGTEXT data type.

nysqgl > CREATE TABLE onnx_tenp (onnx_string LONGTEXT);
Use a LOAD DATA | NFI LE statement to load the pre-processed . onnx file into the temporary table.

The following example loads the i ri s_base64. onnx file with the string into the onnx_stri ng
column in the onnx_t enp table.

nysqgl > LOAD DATA I NFILE "iris_base64. onnx'
I NTO TABLE onnx_t enp
CHARACTER SET bi nary
FI ELDS TERM NATED BY '\t'
LI NES TERM NATED BY '\r' (onnx_string);

155


https://dev.mysql.com/doc/refman/9.6/en/server-system-variables.html#sysvar_secure_file_priv
https://dev.mysql.com/doc/refman/9.6/en/server-system-variables.html#sysvar_secure_file_priv

Manage External ONNX Models

11. Insert the loaded string into a session variable.

The following example loads the loaded string in the onnx_st ri ng column into the
@nnx_t abl e_nodel _obj ect session variable.

nysql > SELECT onnx_string FROM onnx_tenp | NTO @nnx_t abl e_npdel _obj ect;

After preparing the model, you can Defining Model Metadata.

Preparing to Import ONNX Model as a Table

For larger model files, you must import the model as a table. Make sure you do the following:

» Set the appropriate | ocal -i nfi | e setting for the client. The server setting | ocal _i nfil e=ONis
enabled by default. Verify with your admin before using these settings. See Security Considerations for
LOAD DATA LOCAL to learn more.

» Upload the file to the appropriate folder in the MySQL server based on the secure _fil e_pri v setting.
To review this setting, connect to the MySQL server and run the following command:

nysgl > SHOW VARI ABLES LI KE 'secure_file_priv'
To import the model as a table:

1. From a terminal window, upload the ONNX file to the folder of your username in the compute instance.

$> scp -v -i ssh-key.key /Users/userl/iris_base64.onnx userl@onputel nstancePublicl P:/honme/ user1/
Replace the following:

e ssh-key. key: The full file path to the SSH key file (.key) for the compute instance.

e /Users/userl/iris_base64. onnx: The full file path to the ONNX file on your device.

e user 1@onput el nst ancePubl i cl P: The appropriate username and public IP for the compute
instance.

e [/ hone/ user 1/ : The appropriate file path to your username in the compute instance.

2. Once the upload successfully completes, SSH into the compute instance.

$> ssh -i ssh-key. key userl@onput el nst ancePublicl P
Replace the following:
e ssh-key. key: The full file path to the SSH key file (.key) for the compute instance.

e user l@onput el nst ancePubl i cl P: The appropriate username and public IP for the compute
instance.

3. Change the directory to the one for your username.

$> cd / hone/ user1
Replace user 1 with your own username.

4. Create a copy of the ONNX file.

$> touch iris_base64. onnx

Replace i ri s_base64. onnx with the file name of the ONNX file.
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5. Copy the ONNX file to the appropriate folder in the MySQL server based on the secure file priv
setting.

$> sudo cp iris_base64.onnx /var/lib/nysql-files

Replace the following:

e iris_base64. onnx: The file name of the ONNX file.

e /var/lib/nysql-files: The file path based on the secure_file_pri v setting.

6. Update the owner and group of the file path previously specified that has the uploaded ONNX file.

$> sudo chown -R nysql:nysql /var/lib/nysql-files
Replace /var /i b/ mysql -fil es with the file path previously specified.

7. Connect to the MySQL server with the | ocal -i nfil e settingto 1.

> nysqgl -u userl -p --local-infile=1
Replace user 1 with your MySQL username.

8. Create and use the database to store the table. For example:

nysql > CREATE DATABASE onnx_nodel ;
nysgl > USE onnx_nodel ;

9. Create a table to store the model. The table must have the three required columns to store the details
for the model (chunk_i d, nodel _obj ect, and nodel _net adat a). See ML_MODEL_IMPORT
Overview. For example:

nysql > CREATE TABLE nodel table (chunk id | NT AUTO | NCREMENT PRI MARY KEY, nodel object LONGTEXT NOT NUL

10.Use a LOAD DATA | NFI LE statement to load the model. If needed, load the model in batches of files
depending on the size of the model. See LOAD DATA Statement to learn more. The following example
loads the model in three separate files into the nodel _obj ect column in the nodel _t abl e table
previously created:

nysql > LOAD DATA | NFI LE '/ onnx_exanpl es/ x00'
| NTO TABLE nodel _tabl e
CHARACTER SET bi nary
FI ELDS TERM NATED BY '\t
LI NES TERM NATED BY '\r'
(rmodel _obj ect);
Query OK, 1 row affected (34.96 sec)
Records: 1 Deleted: 0 Skipped: O Wrnings: O

nysql > LOAD DATA | NFI LE '/ onnx_exanpl es/ x01'
| NTO TABLE nodel _tabl e
CHARACTER SET bi nary
FI ELDS TERM NATED BY '\t
LI NES TERM NATED BY '\r'
(nmodel _obj ect);
Query OK, 1 row affected (32.74 sec)
Records: 1 Deleted: 0 Skipped: O Wrnings: O

nysql > LOAD DATA | NFI LE '/ onnx_exanpl es/ x02'
| NTO TABLE nodel _tabl e
CHARACTER SET bi nary
FI ELDS TERM NATED BY '\t
LI NES TERM NATED BY '\r'
(nmodel _obj ect);
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Query OK, 1 row affected (11.90 sec)
Records: 1 Deleted: 0 Skipped: O Wrnings: O

After preparing the model, you can Defining Model Metadata.
Defining Model Metadata

After preparing the ONNX model (either as a string or table), define the metadata for the model as
required. See Model Metadata and ONNX Model Metadata to learn more about requirements depending
on the task type of the model.

To define the metadata for the ONNX model:

1. Ifincluding the column names for the model in the metadata, you have the option to set them into a
JSON object as key-value pairs.

nysqgl > SET @ari abl e = JSON_OBJECT("key", "val ue"[, "key", "val ue"] ...);

For example:

nysql > SET @ol unm_names = JSON_OBJECT("0","f1", "1, "f2", "2", "f3");

2. Set the metadata for the model as required into a JSON object as key-value pairs. To learn more about
metadata requirements, see ONNX Model Metadata. You can also include additional information that
allows you to properly configure input tables and columns for generating predictions.

nysqgl > SET @ari able = JSON_OBJECT("key", "val ue"[, "key", "value"] ...);

The following example shows how to define the metadata if you import the model as a string (pre-
processed object). The predi cti ons_nane and predi cti on_probabi | ities_nane variables
are provided because it is a classification task. Including the col unm_nanes allows you to refer to
the metadata to ensure that input tables for predictions have the same details. Otherwise an error
generates.

nysql > SET @mdel _netadata = JSON OBJECT('task','classification',
"onnx_out puts_info', JSON OBJECT(' predictions_nange','label', " prec
‘target_colum_nane','target',
‘train_table nane',' m corpus. classification_3 table'"
' col um_nanes' , @ol utm_nanes,
‘notes','user notes for the nodel"',
‘training_score',0.734,
‘training_tinme', 100. 34,
'n_rows', 1000,
'n_col ums', 3,
"al gorithmnnane', ' xgboost');

The following example shows how to define the metadata if you import the model from a table. The
predi ctions_nane and predi ction_probabilities_nane variables are provided because it is
a classification task. After defining the metadata, update the metadata for the temporary table for the
row that is chunk_i d=1.

nmysql > SET @mdel _netadata = JSON _OBJECT('task','classification',
"onnx_out puts_info', JSON OBJECT(' predictions_nange','label',"prec
‘target_col um_nane', 'target');
nmysql > UPDATE ml cor pus. nodel _t abl e SET nodel _net adat a=@rodel _net adat a WHERE chunk_i d=1;
Depending on how you prepared the model, follow the appropriate steps to import the model:
« Importing ONNX Model as a Pre-processed Object

» Importing ONNX Model as a Table

158



Manage External ONNX Models

Importing ONNX Model as a Pre-processed Object

If you followed the steps to Preparing to Import ONNX Model as a Pre-Processed Object, review the
following steps to import the model as a pre-processed object.

To import the model as a pre-processed object:

1. Optionally, define the model handle for the imported model instead of automatically generating one.
See Work with Model Handles.

nysqgl > SET @ari able = ' nodel _handl e';

For example:

nmysql > SET @model = 'onnx_nodel _string';

2. Run M__MODEL | MPORT to import the model.

nmysql > CALL sys. M._MODEL | MPORT (nodel _obj ect, nodel netadata, nodel handl e);

Since you are importing a pre-processed object, the nodel _obj ect is defined by the string you
previously set in the in either the @nnx_stri ng nodel obj ect or @nnx_t abl e _nodel obj ect
session variable. The nodel _net adat a is defined by the metadata previously set in the

@model net adat a session variable. The nodel _handl e is defined by the session variable created
for the model handle.

See the following example:

mysql > CALL sys. ML_MODEL_| MPORT( @nnx_st ri ng_nodel _obj ect, @mdel _nmetadata, @mdel);

3. Confirm the model successfully loaded by querying the nodel _i d and nodel _handl e from the model
catalog. Query the model by using the model handle previously created. Replace user 1 with your own
MySQL user name.

nysql > SELECT nodel _i d, nodel _handl e FROM M._SCHEVA user 1. MODEL_CATALOG WHERE nodel _handl e=' onnx_nodel _

E e +
| nodel _id | nodel _handl e |
E e +
| 1 | onnx_nodel _table |
E e +

1 rowin set (0.0485 sec)

4. To load the model into MySQL Al so you can start using it with MySQL Al routines, run
M._MODEL_LOAD.

nysqgl > CALL sys. M._MODEL_LOAD( nodel _handl e, NULL);

For example:

mysql > CALL sys. M._MODEL_LOAD( @mdel , NULL);
Importing ONNX Model as a Table

If you followed the steps to Preparing to Import ONNX Model as a Table, review the following steps to
import the model as a table.

To import the model as a table:

1. Optionally, define the model handle for the imported model instead of automatically generating one.
See Work with Model Handles.
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nysql > SET @ari abl e = ' nodel _handl e';

For example:

nysqgl > SET @mdel = 'onnx_nodel _table';

2. Run ML_MODEL | MPORT to import the model.

nmysql > CALL sys. ML_MODEL | MPORT (nodel _obj ect, nodel _netadata, nodel _handl e);

Since you are importing a table, the nodel _obj ect is setto NULL. The nodel _net adat a is defined
by the schema name and table name storing the string for the ONNX model. The metadata for the
model is stored in the table when following the steps to Defining Model Metadata. The nodel _handl e
is defined by the session variable created for the model handle.

See the following example:

nysqgl > CALL sys. M._MODEL_| MPORT(NULL, JSON OBJECT('schema', 'onnx_nodels', 'table', 'nopdel _table'), @mdel)

3. Confirm the model successfully loaded by querying the nodel i d and nodel _handl e from the model
catalog. Query the model by using the model handle previously created. Replace user 1 with your own
MySQL user name.

nysql > SELECT nodel _i d, nodel _handl e FROM M._SCHEMA user 1. MODEL_CATALOG WHERE nodel _handl e=' onnx_nodel _t abl

E Hemm e emeee e eeaaaa +
| nodel _id | nodel _handl e |
E Hemm e emeee e eeaaaa +
| 2 | onnx_nodel _table |
E Hemm e emeee e eeaaaa +

1 rowin set (0.0485 sec)

4. To load the model into MySQL Al so you can start using it with MySQL Al routines, run
M._MODEL_LOAD.

nysqgl > CALL sys. M._MODEL_LOAD( nodel _handl e, NULL);

For example:

nysqgl > CALL sys. M._MODEL_LOAD( @model , NULL);
ONNX Import Examples
Review the following additional examples for importing ONNX models.

* In the following example, a ONNX model for classification is imported. Then, the model is used to
generate predictions, a score, and prediction explainers for a dataset in MySQL Al.

nysql > SET @mdel = 'skl earn_pipeline_classification_3 onnx';
Query OK, O rows affected (0.0003 sec)

nysql > SET @mdel _netadata = JSON _OBJECT('task','classification',
"onnx_out puts_info', JSON OBJECT(' predictions_nange','label', ' predi
Query OK, O rows affected (0.0003 sec)

nmysql > CALL sys. ML_MODEL_| MPORT( @nnx_encode_skl earn_pi pel i ne_cl assification_3, @mdel _netadata, @mdel);
Query OK, 0 rows affected (1.2438 sec)

mysql > CALL sys. M._MODEL_LOAD( @wodel , NULL);
Query OK, 0 rows affected (0.5372 sec)

nmysql > CALL sys. M._PREDI CT_TABLE(' ml corpus. classification_3 predict', @mwdel, 'mnlcorpus.predictions', NULL);
Query OK, 0 rows affected (0.8743 sec)
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nmysql > SELECT * FROM ml cor pus. predi ctions;

e T R T T e S S P S
| _4aadl9cabe_pk_ id | f1 | f2 | f3 | Prediction | m _results

e T R T T e S S P S
| 1| a | 20| 1.2 | 0| {"predictions": {"prediction": 0}, "probabilities": {
| 2| b | 21| 3.6 | 1| {"predictions": {"prediction": 1}, "probabilities": {
| 3| c | 19| 7.8 | 1| {"predictions": {"prediction": 1}, "probabilities": {
| 4| d | 18 | 9 | 0| {"predictions": {"prediction": 0}, "probabilities": {
| 5| e | 17| 3.6 | 1| {"predictions": {"prediction": 1}, "probabilities": {
e T R T T e S S P S

5 rows in set (0.0005 sec)

mysql > CALL sys. ML_SCORE(' ml corpus. classification_3 table','target', @mwdel, 'accuracy', @core, NULL);
Query OK, O rows affected (0.9573 sec)

nmysql > SELECT @cor e€;

tooiooo - +
| @core |
tooiooo - +
| 1]
tooiooo - +

1 rowin set (0.0003 sec)
mysql > CALL sys. ML_EXPLAI N(' ml cor pus. cl assification_3 table', 'target', @rmodel,

JSON_OBJECT( ' nodel _expl ai ner', 'shap', 'prediction_explainer', 'shap'));
Query OK, O rows affected (10.1771 sec)

nmysql > SELECT nodel _expl anati on FROM M._SCHEMA r oot . MODEL_CATALOG WHERE nodel _handl e=@rodel ;

S S P +
| model _expl anati on |
S S P +
| {"shap": {"f1": 0.0928, "f2": 0.0007, "f3": 0.0039}} |
S S P +

1 rowin set (0.0005 sec)

mysql > CALL sys. ML_EXPLAI N_TABLE(' m cor pus. cl assification_3 predict', @mwdel, 'mlcorpus.explanations_sha
JSON_OBJECT(' predi ction_explainer', '"shap'));

Query OK, O rows affected (7.6577 sec)

mysql > SELECT * FROM ml cor pus. expl anat i ons_shap;

e T R T T T T RS S e S (R +- -
| _4aadl9cabe_pk_ id | f1 | f2 | f3 | Prediction | f1 attribution | f2_ attribution | f3_ attribution | m
e T R T T T T RS S e S (R +- -
| 1| a | 20| 1.2 | 0 | 0.116909 | 0. 000591494 | -0.00524929 | {
| 2| b | 21| 3.6 | 1| 0.0772133 | -0.00110559 | 0. 00219658 | {
| 3] c | 19| 7.8 | 1| 0.0781372 | 0.0000000913938 | -0.00324671 | {
| 4| d | 18 | 9 | 0 | 0.115209 | -0. 000592354 | 0.00639341 | {
| 5| e | 17| 3.6 | 1| 0.0767679 | 0.00110463 | 0.00219425 | {
e T R T T T T RS S e S (R +- -

5 rows in set (0.0005 sec)

In the following example, a ONNX model for regression is imported. Then, the model is used to generate
predictions, a score, and prediction explainers for a dataset in MySQL Al

nmysql > SET @mdel = 'skl earn_pipeline_regression_2_onnx';
Query OK, O rows affected (0.0003 sec)

nysql > SET @mdel _netadata = JSON _OBJECT('task','regression', 'onnx_outputs_info',JSON OBJECT(' predictio
Query OK, O rows affected (0.0003 sec)

mysql > CALL sys. ML_MODEL_| MPORT( @nnx_encode_skl earn_pi pel i ne_regression_2, @mwdel netadata, @rodel);
Query OK, 0 rows affected (1.0652 sec)

mysql > CALL sys. M._MODEL_LOAD( @wodel , NULL);
Query OK, 0 rows affected (0.5141 sec)
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mysql > CALL sys. ML_PREDI CT_TABLE(' m cor pus.regression_2_table', @mwdel, 'mcorpus.predictions', NULL)
Query OK, O rows affected (0.8902 sec)
mysql > SELECT * FROM ml cor pus. predi ctions
e T R T tooiooo - T e S S S e S S S R
| _4aadl9cabe_pk id | f1 | f2 | f3 | target | Prediction | m _results
e T R T tooiooo - T e S S S e S S S R
| 1| a | 20| 1.2 | 22.4 | 22.262 | {"predictions": {"prediction": 22.26203918457031
| 2| b | 21| 3.6 | 32.9 | 32.4861 | {"predictions": {"prediction": 32.48611450195312
| 3| c | 19| 7.8 | 56.8 | 56.2482 | {"predictions": {"prediction": 56.24815368652344
| 4| d | 18 | 9 | 31.8 | 31.8 | {"predictions": {"prediction": 31.80000114440918
| 5| e | 17| 3.6 | 56.4 | 55.9861 | {"predictions": {"prediction": 55.98611450195312
e T R T tooiooo - T e S S S e S S S R
5 rows in set (0.0005 sec)
mysql > CALL sys. ML_SCORE(' ml corpus.regression_2_table','target', @mdel, 'r2', @core, NULL)
Query OK, O rows affected (0.8688 sec)
nmysql > SELECT @core
e +
| @core |
e +
| 0.9993192553520203
e +
1 rowin set (0.0003 sec)
mysql > CALL sys. ML_EXPLAI N(' ml cor pus. regression_2_table', 'target', @mdel
JSON_OBJECT( ' nodel _expl ainer', 'partial _dependence’
‘colums_to_explain', JSON ARRAY('f1l'),
"prediction_explainer', 'shap'));
Query OK, O rows affected (9.9860 sec)
m
mysql > CALL sys. ML_EXPLAI N _TABLE(' m cor pus.regression_2_predict', @rmodel, 'nlcorpus.explanations'
JSON_OBJECT( ' prediction_explainer', 'shap'))
Query OK, O rows affected (8.2625 sec)
nmysql > SELECT * FROM ml cor pus. expl anat i ons
e T R T T T T RS S S, S R
| _4aadl9cabe_pk_id | f1 | f2 | f3 | Prediction | f1 attribution | f2_ attribution | f3_attribution | m _res
e T R T T T T RS S S, S R
| 1| a | 20| 1.2 | 22.262 | -10. 7595 | -4.25162 | -2.48331 | {"pred
| 2| b | 21| 3.6 | 32.4861 | 2. 33657 | -8.50325 | -1.1037 | {"pred
| 3] c | 19| 7.8 | 56. 2482 | 14.8361 | 0 | 1.65554 | {"pred
| 4| d | 18 | 9 | 31.8 | -15. 2433 | 4.25162 | 3.03516 | {"pred
| 5| e | 17| 3.6 | 55. 9861 | 8. 83008 | 8. 50325 | -1.1037 | {"pred
e T R T T T T RS S S, S R
5 rows in set (0.0006 sec)
» An example with task set to NULL.
nmysql > SET @model = 'tensorfl ow recsys_onnx'
mysql > CALL sys. ML_MODEL_| MPORT( @nnx_encode_t ensor fl ow_recsys, NULL, @mdel)
Query OK, O rows affected (1.0037 sec)
mysql > CALL sys. M._MODEL_LOAD( @mdel , NULL)
Query OK, O rows affected (0.5116 sec)
mysql > CALL sys. ML_PREDI CT_TABLE(' m cor pus.recsys_predi ct', @mdel, 'nlcorpus.predictions', NULL);
Query OK, O rows affected (0.8271 sec)
mysql > SELECT * FROM ml cor pus. predi ctions
e oioiooo oo (T P e .-
| _4aadl9ca6e_pk_id | user_id | novie_title | Prediction | m_results
e oioiooo oo (T P e .-
| 1| a | A | {"output_1": ["O0.7558"]} | {"predictions": {"prediction": {"ou
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| 2| b | B | {"output_1": ["1.0443"]} | {"predictions": {"prediction":
| 3| ¢ | A | {"output_1": ["0.8483"]} | {"predictions": {"prediction":
| 4 | d | B | {"output_1": ["1.2986"]} | {"predictions": {"prediction":
| 5| e | C | {"output_1": ["1.1568"]} | {"predictions": {"prediction":
e oioiooo oo (T P S S S S S S I
5 rows in set (0.0005 sec)

What's Next
» Review how to Create a Machine Learning Model.

» Review Machine Learning Use Cases to create machine learning models with sample datasets.

4.8.8 Analyzing Data Drift
MySQL Al includes data drift detection for classification and regression models.

Before You Begin
» Review how to Create a Machine Learning Model.

* Review use cases for Classification Data and Regression Analysis.
Data Drift Detection Overview

Machine learning typically makes an assumption that the training data and test data are similar. Over time,
the similarity between the training data and the test data can decrease. This is known as data drift.

You can monitor data drift in the model catalog and when running the M__ PREDI CT_ROwWand
M__PREDI CT_TABLE routines.

For the model catalog, the nodel _net adat a column includes thetrai ni ng_drift_netri c JSON
object literal, which contains nean and var i ance numeric values. See Model Metadata.

nmean and var i ance indicate the quality of the trained drift detector, and both values should be low. The
more important value is nean, and if it is greater than 1.0, then drift evaluation for the test results might not
be reliable.

For the M__ PREDI CT_ROWand M__PREDI CT_TABLE routines, the opt i ons parameter includes the
addi ti onal _det ai | s boolean value. If this option is enabled, the M _r esul t s column includes the
drift JSON object literal, which contains the net r i ¢ numeric value and the at t ri but i on_per cent
JSON object literal.

» netri c indicates the similarity between training and test data. A low value indicates similar values. A
value grater than 1.0 indicates data drift, and the prediction results are questionable.

e attribution_percent indicates the top three features that contribute to data drift for each result. The
higher the percentage value, the greater the contribution.

Workflow to Analyze Data Drift

The workflow to analyze data drift includes the following:

1. Run M__TRAI Nto train the machine learning model with either the cl assi fi cati on orregressi on
task.

2. When training is complete, query the nodel _net adat a column and review the mean and var i ance
values.

3. Runthe ML_PREDI CT_ROWor M._PREDI CT_TABLE routines on the trained model with the
addi ti onal _detail s optionsettotrue.
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4. Reviewthedrift parameterinm results.
Analyzing Data Drift in Model Metadata
To analyze data drift in model metadata:

1. Train the model with ML_ TRAI N.

nysqgl > CALL sys. ML_TRAI N('tabl e_nane', 'target_columm_nane', JSON OBJECT('task', 'task_nane'), @ariable);

Replace t abl e_nane, t arget _col unm_nane, t ask_nane, and var i abl e with your own values.
For example:

nysqgl > CALL sys. M._TRAI N(' census_dat a. census_train', 'revenue', JSON OBJECT('task', 'classification'), @er
Where:

e census_dat a. census_trai n is the fully qualified name of the table that contains the training
dataset (schenma_nane. t abl e_nane).

e revenue is the name of the target column, which contains ground truth values.
« JSON OBJECT('task', 'classification') specifies the machine learning task type.

e @ensus_nodel isthe name of the user-defined session variable that stores the model handle for
the duration of the connection. User variables are written as @ar _nane. Any valid name for a user-
defined variable is permitted. For example, @ry_nodel . Learn more about Model Handles.

2. Query the nodel _net adat a column from the model catalog. Optionally, use JSON_PRETTY to view
the output in an easily readable format.

nysql > SELECT JSON_PRETTY( nodel _net adata) FROM M._SCHEMA user 1. MODEL_CATALOG WHERE nodel _handl e=npdel _handl

Replace user 1 with your own user name and nodel _handl e with your own model handle. For

example:
nysql > SELECT JSON_PRETTY( nodel _net adata) FROM M._SCHEVA user 1. MODEL_CATALOG WHERE nodel _handl e=@ensus_noc
dhmcccccococccoococoocoocCoocCocooSocCoococoocoSoccoococooooocoo +
| JSON_PRETTY( nodel _net adat a) |
dhmcccccococccoococoocoocCoocCocooSocCoococoocoSoccoococooooocoo +
[ {

"task": "classification",

"notes": null,

“chunks": 1

"format": "HWWLv2.0",
"n_rows": 100,
"status": "Ready",
"options": {

"task": "classification",
"model _expl ai ner": "pernutation_inmportance",
"prediction_explainer": "pernmutation_inportance"

i

"n_col ums": 14,

"col um_nanes": [
"age",
"wor kcl ass",
"fnlwgt",
"educati on",
"educati on- nunt',
"marital -status",
"occupation",
"rel ati onshi p",
"race",
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sex",
“capi tal -gain",
“capital -l oss",
"hour s- per - week",
“native-country"
I
“contam nation": null,
“model _qual ity": "high",
“training_time": 73.90254211425781,
"al gorithmnanme": "RandonforestCl assifier",
“training_score": -0.35963335633277893,
“"buil d_tinestanmp": 1744377124,
"n_sel ected_rows": 80,
“traini ng_parans": {
“recomrend": "ratings",
"force_use_X": false,
"recomrend_k": 3,
"renove_seen": true,
"ranki ng_t opk": 10,
"| sa_component s": 100,
"ranki ng_t hreshol d": 1,
"f eedback_t hreshol d": 1

}

rai n_tabl e_name": "census_data.census_train",
"model _expl anation": {
"permut ati on_i nportance": {
"age": -0.0057,
"sex": 0.0002,
"race": 0.0001,
“"fnlwgt": 0.0103,
"education": 0.0108,
"wor kcl ass": 0.0189,
“occupation": 0.0,
"capital -gain": 0.0304,
“capital -loss": 0.0,
“rel ati onshi p": 0.0195,
"education-nuni: 0.0152,
"hour s- per - week": 0.0235,
“marital -status": 0.0099,
"pative-country": 0.0

}
B
"n_sel ected_col ums": 11,
"target_col um_nane": "revenue",
"optimzation_metric": "neg_|l og_| oss",
"sel ect ed_col um_nanes": [

"age",

“capital -gain",

"education",

"educat i on- nuni',

“fnlwgt",

"hour s- per - week",

"marital -status",

"race",

“rel ati onshi p",

"sex",

"wor kcl ass"
Il

“"training_drift_netric": {
"mean": 0.3535,
"variance": 0.0597
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1 rowin set (0.0009 sec)
Where:
e JSON PRETTY displays the information in an easily readable format.

e M__SCHEMA user 1. MODEL CATALCOGrefers to the model catalog name. Replace user 1 with your
own user name.

« nmodel _handl e refers to the session variable for the trained model, @ensus_nodel . Learn more
about Model Handles.

Fortraining drift _netric,the output generates a nean value of 0.3535 and a var i ance value of
0.0597, which indicates acceptable data drift.

Analyzing Data Drift Detection with ML_PREDICT_TABLE
To analyze data drift detection with a table of predictions:
1. If not done already, train the model to use. See Analyzing Data Drift in Model Metadata.

2. Load the trained model. Update @ensus_nodel with your own session variable for the trained model.
mysql > CALL sys. ML_MODEL_LOAD( @ensus_nodel , NULL);
3. Run ML_PREDI CT_TABLE to generate a table of predictions.

nysqgl > CALL sys. M._PREDI CT_TABLE(t abl e_nane, nodel _handl e, output_tabl e _nane), [options]);

Replace t abl e_nane, nodel _handl e, out put _t abl e _nane),and opt i ons with your own values.

For example:

nysqgl > CALL sys. M._PREDI CT_TABLE(' census_data. census_test ', @ensus_npdel, 'census_data. census_test_prec
JSON_OBJECT(' addi tional _details', true));

Where:

e census_dat a. census_t est is the fully qualified name of the test dataset table
(dat abase_nan®e. t abl e_nane).

e @ensus_nodel is the session variable that contains the model handle. See Work with Model
Handles.

e census_dat a. census_test predictions is the output table where predictions are stored.

e JSON OBJECT includes the addi ti onal _detai | s optionsettotrue,somn results includes
values formetricandattributi on_percent.

4. Since anetri c value over 1.0 indicates data drift, query rows in the output table that only have a
metric value over 1.0.

nysql > SELECT ml _results FROM tabl e_nane WHERE JSON_EXTRACT(m _results, "$.drift.netric') > 1.0;

Replace t abl e_nane with your own value. For example:

nmysql > SELECT m _results FROM census_test predi cti ons WHERE JSON_EXTRACT(m _results, "$.drift.metric') > 1.
| m _results

| {"predictions": {"revenue": "<=50K"}, "probabilities": {"<=50K":
| {"predictions": {"revenue": "<=50K"}, "probabilities": {"<=50K":

7, ">50K': 0.33}, "drift": {"metric":
"S50K": 0.1}, “drift": {"metric": 1
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| {"predictions": {"revenue": "<=50K"'}, "probabilities": {"<=50K"': 0.99, ">50K"': 0.01}, "drift": {"netr
| {"predictions": {"revenue": "<=50K"'}, "probabilities": {"<=50K"': 0.78, ">50K"': 0.22}, "drift": {"netr
| {"predictions": {"revenue": "<=50K"'}, "probabilities": {"<=50K"': 0.97, ">50K"': 0.03}, "drift": {"netr
| {"predictions": {"revenue": ">50K"}, "probabilities": {"<=50K": 0.32, ">50K": 0.68}, "drift": {"netri
| {"predictions": {"revenue": "<=50K"}, "probabilities": {"<=50K": 0.96, ">50K": 0.04}, "drift": {"netr
| {"predictions": {"revenue": "<=50K"}, "probabilities": {"<=50K": 0.89, ">50K": 0.11}, "drift": {"netr
| {"predictions": {"revenue": "<=50K"}, "probabilities": {"<=50K": 0.91, ">50K": 0.09}, "drift": {"netr
| {"predictions": {"revenue": "<=50K"}, "probabilities": {"<=50K": 0.78, ">50K": 0.22}, "drift": {"netr
| {"predictions": {"revenue": "<=50K"}, "probabilities": {"<=50K": 0.89, ">50K": 0.11}, "drift": {"netr
| {"predictions": {"revenue": "<=50K"}, "probabilities": {"<=50K": 0.62, ">50K": 0.38}, "drift": {"netr
e e . - - - - -

12 rows in set (0.0014 sec)
The output displays the rows with high metric values (> 1.0), indicating data drift.
Analyzing Data Drift Detection with ML_PREDICT_ROW
To analyze data drift detection with one or more rows of predictions:
1. If not done already, train the model to use. See Analyzing Data Drift in Model Metadata.

2. Load the trained model. Update @ensus_nodel with your own session variable for the trained model.

nysqgl > CALL sys. M._MODEL_LOAD( @ensus_nodel , NULL);

3. Run ML_PREDI CT_ROWto generate predictions for a defined number of rows.

nysql > SELECT sys. M._PREDI CT_ROW JSON_OBJECT( " out put _col _nane", schema. i nput_col _nane’,
"out put _col _nanme", schenma.  input_col _name’, ...),
nmodel _handl e, options) FROMinput_table name LIMT N,

The following example generates predictions for three rows of the table. The output is similar to the
previous example.

nysql > SELECT sys. M._PREDI CT_RON JSON_OBJECT(
"age", census_test. age’,
"wor kcl ass", census_test. workclass’,
"fnlwgt", census_test. fnlwgt",
"education", census_test. education,
"educati on-nunf, census_test. education-num,
"marital -status", census_test. marital-status’,
"occupation", census_test. occupation,
"rel ationshi p", census_test. relationship’,
"race", census_test. race’,
"sex", census_test. sex ,
"capital -gain", census_test. capital-gain’,
"capital -l oss", census_test. capital-loss’,
"hour s- per-week", census_test. hours-per-week’,
"native-country", census_test. native-country’),
@ensus_nodel , JSON _OBJECT(' additional _details', TRUE))FROM census_data.census_test LIMT 3;

| sys.M._PREDI CT_RON JSON_OBJECT(

"age", census_test. age’,

"wor kcl ass", census_test. workclass’,
"fnlwgt", census_test. fnlwgt",

"education", census_test. education’,
"education-nunf', census_test. education-num,

- |
L S g =g +
| { |
[ "age": 37, [
[ "sex": "Male", [
[ "race": "Wite", [
| "fnlwgt": 99146, |
[ "education": "Bachel ors", [
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“wor kcl ass": "Private",
"Prediction": "<=50K",
"m _results": {
“drift": {
"metric": O,
“attribution_percent": ({
"age": O,
"fnlwgt": 46.67,
“capital -gain": 0}},
“predictions": {
"revenue": "<=50K"},
“probabilities": {

">50K": 0.42,

"<=50K": 0.58}},
"occupation": "Exec-managerial",
“capital -gain": O,

“capital -l oss": 1977,

“rel ati onshi p": "Husband",
"education-nuni: 13,

"hour s- per - week": 50,

“marital -status": "Married-civ-spouse",

"pative-country": "United-States"}

"age": 34,
"sex": "Mal e",
"race": "Wiite",
“fnlwgt": 27409,
"education": "9th",
"wor kcl ass": "Private",
"Prediction": "<=50K",
"m _results": {
“drift": {
"metric": 0.1,
“attribution_percent": {
“fnlwgt": 25,
"education": 33.31,
"wor kcl ass": 16.22}},
“predictions": {
"revenue": "<=50K"},
“probabilities": {

">50K": 0. 24,

"<=50K": 0.76}},
"occupation': "Craft-repair",
“capital -gain": O,

“capital -1oss": O,

“rel ati onshi p": "Husband",
"education-nuni: 5,

"hour s- per - week": 50,

“marital -status": "Married-civ-spouse",

"pative-country": "United-States"}

"age": 30,
"sex": "Femal e",
"race": "Wiite",
"fnlwgt": 299507,
"education": "Assoc-acdni,
"wor kcl ass": "Private",
"Prediction": "<=50K",
"m _results": {
“drift": {
"metric": 0.26,
“attribution_percent": ({
“rel ati onshi p": 21. 36,
"educati on- nun': 28. 33,

“hour s- per - week": 33.21}},

“predictions": {
"revenue": "<=50K"},
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“probabilities": {

">50K": 0.01,
"<=50K": 0.99}},
"occupation": "CQ her-service",

|

|

|

|

| “capital -gain": O,

| “capital -loss": O,

| “rel ationship": "Unmarried",

| “educati on-num': 12,

| "hour s- per - week": 40,

| "marital -status": "Separated",
| "pative-country": "United-States"}

10 rows in set (6.8109 sec)
Where:

e The first JSON_COBJECT has output column names and key-value pairs of the columns in the trained
table.

e @ensus_nodel is the session variable that contains the model handle. Learn more about Model
Handles.

e The second JSON_OBJECT includes the addi ti onal _det ai | s option settotrue, so
m _resul t s includes values fornetricandattribution_percent.

e census_dat a. census_t est is the fully qualified name of the test dataset table
(dat abase_nan®. t abl e_nane).

e The LI M T of 3 means that the output includes a maximum of three rows from the trained table.
The output allows you to review data drift values for the selected rows.

What's Next

» Review Machine Learning Use Cases to create machine learning models with sample datasets.

4.9 Monitoring the Status of AutoML

You can monitor the status of AutoML by querying the r api d_mnil _st at us variable or by querying the
ML_STATUS column of the per f or rance_schena. r pd_nodes table.

Query the rapid_ml_status Variable
The r api d_m _st at us variable provides the status of AutoML. Possible values are ON and OFF.
e ON: AutoML is up and running.
* OFF: AutoML is down.

The following example queries the r api d_nl _st at us status variable directly.

nmysqgl > SHOW GLOBAL STATUS LIKE 'rapid_m _status';

LT e mmo oo +
| Vari abl e_nane | Val ue |
LT e mmo oo +
| rapid_m _status | ON |
LT e mmo oo +

The following example queries the r api d_nml _st at us status through the
performance_schemna. gl obal _st at us table.
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Query the ML_STATUS Column

nysql > SELECT VARI ABLE_NAVE, VARl ABLE_VALUE
FROM per f or mance_schema. gl obal _st at us
WHERE VARI ABLE_NAME LI KE 'rapid_m _status’

dooccococooooococooo doococccooccoooooo +
| VARI ABLE_NAME | VARI ABLE VALUE |
dooccococooooococooo doococccooccoooooo +
| rapid_m _status | ON |
dooccococooooococooo doococccooccoooooo +

Query the ML_STATUS Column

The MySQL Al plugin writes AutoML status information to the M._ STATUS column of the
performance_schemna. r pd_nodes table after each AutoML query. Possible values include:

* UNAVAI L_M_STATE: AutoML is not available.

» AVAI L_M_STATE: AutoML is available.

 DOMN_M_STATE: AutoML is down.

ML_STATUS is reported for each node.

You can query the ML_ STATUS column of the per f or rance_schena. r pd_nodes table.

To following example retrieves | D, STATUS, and M._STATUS for each node from the
per f or mance_schena. r pd_nodes table:

nysqgl > SELECT | D, STATUS, M._STATUS FROM perfor mance_schena. r pd_nodes

fooocodmoooooooo00000s foococooooooooooss +
| ID| STATUS | M._STATUS |
fooocodmoooooooo00000s foococooooooooooss +
| 0| AVAIL_RNSTATE | AVAIL_M.STATE |
fooocodmoooooooo00000s foococooooooooooss +

Resolve a Down Status for AutoML

Ifrapid _m _statusis OFF or ML_STATUS reports DOAN_M_STATE for any node, you can restart the
MySQL server and Cluster. Be aware that restarting interrupts any analytics queries that are running.

See the following to learn more:
e Managing MySQL Server with systemd
* A Quick Guide to Using the MySQL Yum Repository

What's Next

» Review Machine Learning Use Cases to create machine learning models with sample datasets.

4.10 AutoML Limitations
The following limitations apply to AutoML.
Text Handling Limitations

» AutoML only supports datasets in the English language.

e MySQL HeatWave AutoML does not support TEXT columns with NULL values.
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Account Name Limitations

MySQL HeatWave AutoML does not support target columns (a column with ground truth values) with a
TEXT data type.

MySQL HeatWave AutoML does not support recommendation tasks with columns that have a TEXT data
type.

For the forecasting task, endogenous_vari abl es cannot be in TEXT.

Account Name Limitations

The ML_TRAI Nroutine does not support MySQL user names that contain a period. For example,
ausernamed' joe.smth'" @% cannotrunthe M__TRAI Nroutine. The model catalog schema
created by the ML_ TRAI N procedure incorporates the user name in the schema name (for example.,
M._SCHENA | oesni t h), and a period is not a permitted schema name character.

Memory Limitations

The table used to train a model cannot exceed 10 GB, 100 million rows, or 1017 columns.

Routine and Query Limitations

M._EXPLAI N_TABLE and M__PREDI CT_TABLE are compute intensive processes, with

M__EXPLAI N_TABLE being the most compute intensive. Limiting operations to batches of 10 to 100
rows by splitting large tables into smaller tables is recommended. Use batch processing with the
bat ch_si ze option. See the following to learn more:

« ML_PREDICT_TABLE
« ML_EXPLAIN_TABLE

M_._EXPLAI' N, M._EXPLAI N_ROW and M__EXPLAI N_TABLE routines limit explanations to the 100 most
relevant features.

The ML_PREDI CT_TABLE mM _resul t s column contains the prediction results and the data. This
combination must be less than 65,532 characters.

Concurrent MySQL Al analytics and AutoML queries are not supported. An AutoML query must wait for
MySQL Al analytics queries to finish, and vice versa. MySQL Al analytics queries are given priority over
AutoML queries.

The ML_PREDI CT_ROW M__MODEL | MPORT, and M__MODEL_EXPORT routines are not supported with
the TwoTower recommendation model.

Other Limitations

If you delete a recommendation model trained with the TwoTower model from the model catalog, you
need to run a Delete Model API to manage the generated embedding tables.
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This chapter describes the GenAl feature of MySQL Al.

5.1 About GenAl

The GenAl feature of MySQL Al lets you communicate with unstructured data using natural-language
queries. It uses a familiar SQL interface which makes it is easy to use for content generation,
summarization, and retrieval-augmented generation (RAG).

Using GenAl, you can perform natural-language searches in a single step using either in-database or
external large language models (LLMs). All the elements that are necessary to use GenAl with proprietary
data are integrated and optimized to work with each other.

Note
@ This chapter assumes that you are familiar with MySQL.

Key Features
e In-Database LLM

GenAl uses a large language model (LLM) to enable natural language communication in multiple
languages. You can use the capabilities of the LLM to search data as well as generate or summarize
content. However, as this LLM is trained on public data, the responses to your queries are generated
based on information available in the public data sources. To produce more relevant results, you can use
the LLM capabilities with the vector store functionality to perform a vector search with RAG.

* In-Database Vector Store

GenAl provides an inbuilt vector store that you can use to store enterprise-specific proprietary content
available in your local filesystem, and perform vector-based similarity search across documents. Queries
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that you ask are automatically encoded with the same embedding model as the vector store without
requiring any additional inputs or running a separate service. The vector store also provides valuable
context for the LLM for RAG use cases.

» Retrieval-Augmented Generation

GenAl retrieves content from the vector store and provides it as context to the LLM along with the query.
This process of generating an augmented prompt is called retrieval-augmented generation (RAG), and it
helps GenAl produce more contextually relevant, personalized, and accurate results.

* GenAl Chat

This is an inbuilt chatbot that extends the LLMs capabilities as well as vector store and RAG
functionalities of GenAl to let you ask multiple follow-up questions about a topic in a single session. You
can use GenAl Chat to build customized chat applications by specifying custom settings, prompt, chat
history length, and number of citations to be used for generating a response.

GenAl Chat also provides a graphical interface integrated with the Visual Studio Code plugin for MySQL
Shell.

» Accelerated Vector-Based Query Processing

GenAl lets you run queries on tables that contain vector embeddings at an accelerated pace by
offloading them to the MySQL Al Engine (Al engine). For more information, see About Accelerated
Processing of Queries on Vector-Based Tables.

Benefits

GenAl lets you integrate generative Al into the applications, providing an integrated end-to-end pipeline
including vector store generation, vector search with RAG, and an inbuilt chatbot.

Some key benefits of using the GenAl feature of MySQL Al are:

* The natural-language processing (NLP) capabilities of the LLMs let non-technical users have human-like
conversations with the system in natural language.

e The in-database integration of LLM and embedding generation eliminates the need for using external
solutions, and ensures the security of the proprietary content.

» The in-database integration of LLMs, vector store, and embedding generation simplifies complexity of
applications that use these features.

What's Next

» Review the Supported Languages, Embedding Models, and LLMs.

5.2 Additional GenAl Requirements

To use the GenAl feature of MySQL Al, you must place the files that you want to ingest into the vector
store in the local directory that you specified in the Vector Store tab in the MySQL Al installer. By default,
this directory is setto/ var/ 1 i b/ nysql -files.

Vector store can ingest files in the following formats: PPTX, PPT, TXT, HTML, DOCX, DOC, and PDF.
Each file can be up to 100 MB in size.

5.3 Required Privileges for using GenAl

To perform the following GenAl functions, ask the admin user to grant you the required privileges:
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Supported LLM, Embedding Model, and Languages

» To create a vector store, the following privileges are required:
e The FI LE privilege:
nysqgl > GRANT FILE ON *.* TO 'user_nane' @ % ;
¢ The PROCESS privilege:
mysql > GRANT PROCESS ON *.* TO 'user_nane' @ % ;
e The SELECT privilege on the per f or nance_schena schema:
mysql > GRANT SELECT ON ' perfornmance_schema'.* TO 'user_nane' @% ;
e The EXECUTE privilege on the sys schema:
nmysqgl > GRANT EXECUTE ON 'sys'.* TO 'user_nanme' @ % ;

e To run the batch queries using M._ GENERATE_TABLE, M._RAG TABLE, and M._ EMBED TABLE, the
following privileges are required:

« SELECT and ALTER privileges on the input table:

mysql > GRANT SELECT, ALTER ON i nput_schena.input _table TO 'user_nane' @ % ;

e SELECT, | NSERT, CREATE, DROP, ALTER, UPDATE privileges on the schema where the output table is
created.

nmysqgl > GRANT SELECT, | NSERT, CREATE, DROP, ALTER, UPDATE ON out put_schema.* TO 'user_nanme' @ % ;

For more information, see Privileges Provided by MySQL and Default MySQL Privileges.

5.4 Supported LLM, Embedding Model, and Languages

This topic provides the list of languages that GenAl feature of MySQL Al supports and the embedding
models as well as large language models (LLMs) that are available.

This topic contains the following sections:
» Viewing Available Models

* In-Database LLM

In-Database Embedding Model
* Languages

* What's Next

Viewing Available Models

You can view the list of available models as shown below:

nysql > SELECT * FROM sys. M._SUPPORTED LLME;

The output is similar to the following:

holoioioim oo S P S S P S S +
| provider | nodel _id | availability_date | capabilities | defaul t_nodel |
holoioioim oo S P S S P S S +
| HeatWave | |l ama3.2-3b-instruct-vl | 2025-05-20 | [" GENERATI ON'] | 1|
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https://dev.mysql.com/doc/refman/9.6/en/privileges-provided.html#priv_update
https://dev.mysql.com/doc/refman/9.6/en/privileges-provided.html
https://docs.oracle.com/en-us/iaas/mysql-database/doc/default-mysql-privileges.html

In-Database LLM

| HeatWave | all_minilml12_v2 | 2024-07-01
| HeatWave | nultilingual -e5-small | 2024-07-24

In-Database LLM

The following in-database LLM is available: | | ama3. 2- 3b-i nstruct-v1l

In-Database Embedding Model
The following in-database embedding model is available:
eall _mnilmli12 v2
e mul tilingual -e5-small

Languages

GenAl feature of MySQL Al supports natural-language communication, ingesting documents, as well as
generating text-based content in multiple languages. The quality of the generated text outputs depends on
the training and ability of the LLM to work with the language.

Following is a list of languages supported by the GenAl:
« English (en)

e French (fr)

* German (de)

¢ Hindi (hi)

* ltalian (i t)

e Portuguese (pt)

» Spanish (es)

* Thai (t h)
Note
@ To set the value of the | anguage parameter in GenAl routines that support this
parameter, do not use the language name to specify the language. Use the two-
letter | SO 639- 1 code for the language instead. For example, to use French, use
the | SO 639- 1 code for French, whichis fr.
What's Next

» Learn how to perform the following tasks:
¢ Generate Text-Based Content
e Set Up a Vector Store

¢ Generate Vector Embeddings

Perform a Vector Search

Start a Conversational Chat
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5.5 Generating Text-Based Content

For generating text-based content and summarizing text, use the the M_._ GENERATE routine uses the LLM
to generate the text output.

The sections in this topic describe how to generate and summarize text-based content using the GenAl
feature of MySQL Al.

5.5.1 Generating New Content

The following sections in this topic describe how to generate new text-based content using the GenAl
feature of MySQL Al:

» Before You Begin
» Generating Content
* Running Batch Queries

* What's Next

Before You Begin
* Review the GenAl requirements and privileges.

» For Running Batch Queries, add the natural-language queries to a column in a new or existing table.

Generating Content
To generate text-based content using GenAl, perform the following steps:
1. To define your natural-language query, set the @uer y variable:
nysqgl > SET @uery="Queryl nNat ur al Language";
Replace Quer yl nNat ur al Language with a natural-language query of your choice. For example:

nmysql > SET @uery="Wite an article on Artificial intelligence in 200 words.";

2. To generate text-based content, pass the query to the LLM using the M_._ GENERATE routine with the
t ask parameter set to gener ati on:

nysql > SELECT sys. M._GENERATE( @uery,
JSON_OBJECT("task", "generation", "nodel _id", "LLM', "language", "Language"));

Replace the following:
e LLM LLM to use, which must be the same as the one you loaded in the previous step.

e Language: the two-letter | SO 639- 1 code for the language you want to use. Default language is
en, which is English. To view the list of supported languages, see Languages.

For example:

mysql > SELECT sys. M._CGENERATE( @uery,
JSON _OBJECT("task", "generation", "model _id", "Ilam3.2-3b-instruct-v1", "language", "en"));

Text-based content that is generated by the LLM in response to your query is printed as output. It looks
similar to the text output shown below:
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| {"text": "\n**The Rise of Artificial Intelligence: Revolutionizing the Future**\n\nArtificial
intelligence (Al) has been a topic of interest for decades, and its inpact is becom ng increasingly
evident in various aspects of our lives. Al refers to the devel opnment of conputer systenms that can
performtasks that typically require human intelligence, such as |earning, problemsolving, and

deci si on- maki ng. \n\ nThe | at est advancenents in machine | earning al gorithms and natural |anguage
processi ng have enabl ed Al systens to become nore sophisticated and efficient. Applications of Al

are expanding rapidly across industries, including healthcare, finance, transportation, and education
For instance, Al-powered chatbots are being used to provide custonmer support, while self-driving

cars are being tested on roads worl dwi de.\n\nThe benefits of Al are nunerous. It can automate
repetitive tasks, inprove accuracy, and enhance productivity. Mreover, Al has the potential to solve
conpl ex probl ems that were previously unsol vabl e by hunans. However, there are al so concerns about job
di spl acenment and bias in Al decision-making.\n\nAs Al continues to evolve, it is essential to address
these chal | enges and ensure that its benefits are shared equitably anong all stakeholders. Wth
continued investment in research and devel opment, Al has the potential to transformindustries and

i mprove lives worldwi de. The future of work will be shaped by Al, and it's crucial to prepare for
this", "license": "Your use of this Llama nodel is subject to the Llama 3.2 Community License Agreenent
avail abl e at https://docs. oracl e. com cd/ E17952_01/ heat wave- 9. 4-1i cense-comen/ "}

Running Batch Queries

To run multiple gener at i on queries in parallel, use the M_ GENERATE_TABLE routine. This method is
faster than running the ML_ GENERATE routine multiple times.

To run the steps in this section, you can create a new database deno_db and table i nput _t abl e:

nysql > CREATE DATABASE deno_db

nysql > USE deno_db

nmysql > CREATE TABLE input _table (id I NT AUTO | NCREVMENT, |nput TEXT, primary key (id))

nmysql > | NSERT | NTO i nput _table (Input) VALUES(' Describe what is MySQL in 50 words.")

nmysql > | NSERT | NTO i nput _table (lnput) VALUES(' Describe Artificial Intelligence in 50 words.")
nmysql > | NSERT | NTO i nput _table (Input) VALUES(' Describe Machine Learning in 50 words."')

To run batch queries using M._ GENERATE_TABLE, perform the following steps:

1. Inthe ML._GENERATE_TABLE routine, specify the table columns containing the input queries and for
storing the generated text-based responses:

nmysql > CALL sys. ML_GENERATE TABLE(" | nput DBNane. | nput Tabl eNane. | nput Col umm", " Qut put DBNane. Qut put Tabl eNane. (
JSON _OBJECT("task", "generation", "nodel _id", "LLM', "language", "Language"));

Replace the following:

| nput DBNane: the name of the database that contains the table column where your input queries
are stored.

e | nput Tabl eNane: the name of the table that contains the column where your input queries are
stored.

« | nput Col umm: the name of the column that contains input queries.

e Qut put DBNane: the name of the database that contains the table where you want to store the
generated outputs. This can be the same as the input database.

e Qut put Tabl eNane: the name of the table where you want to create a new column to store the
generated outputs. This can be the same as the input table. If the specified table doesn't exist, a new
table is created.

e Qut put Col unm: the name for the new column where you want to store the output generated for the
input queries.

e LLM LLM to use, which must be the same as the LLM you loaded in the previous step.
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e Language: the two-letter | SO 639- 1 code for the language you want to use. Default language is

en, which is English. To view the list of supported languages, see Languages.

For example:

nysql > CALL sys. M._GENERATE_TABLE("deno_db. i nput _tabl e. | nput",
JSON _OBJECT("task", "generation", "mpdel _id", "Ilam3.2-3b-instruct-v1l", "language",

2. View the contents of the output table:

nmysql > SELECT * FROM out put _t abl e\ G

R R R R R R R R R R R R R R 1 r ow R R R R R R R R R

id: 1

Qutput: {"text": "\nMySQ. is an open-source rel ational database
managenent system (RDBMS) that allows users to store, manage,

and retrieve data in a structured format. It supports various
features |ike SQ queries, indexing, transactions, and security,
making it a popul ar choice for web applications, enterprise

sof tware, and nobi |l e apps devel oprment . ",

“error": null,

"license": "Your use of this Llama nodel is subject to the

Ll ama 3.2 Conmunity License Agreenment avail able at

https://docs. oracl e. coml cd/ E17952_01/ heat wave- 9. 4-| i cense-comen/ "}

R R R R R R R R R R R R R R 2 r ow R R R R R R R R R R R R R R R

id: 2

Qutput: {"text": "\nArtificial Intelligence (Al) refers to the
devel opment of conmputer systens that can performtasks that
typically require human intelligence, such as | earning,

probl em sol vi ng, and deci si on- naki ng. Al uses al gorithms and
data to mimc human thought processes, enabling nmachines to
anal yze, reason, and interact with humans in increasingly
sophi sti cated ways.",

error": null}
EE R R R R R R R R R R R 3 r ow R R R R R R R R R R R R R

id: 3

Qutput: {"text": "\nMachine Learning (M) is a subset of
Artificial Intelligence that enables systems to autonatically
i mprove performance on a task without being explicitly programred.

It

i nvol ves training algorithms on data, allowing themto |earn

patterns and make predictions or decisions based on new, unseen
data, w thout human intervention.",
“error": null}

"en"));

The output table generated using the M._ GENERATE_TABLE routine contains an additional details
for error reporting. In case the routine fails to generate output for specific rows, details of the errors

encountered and default values used are added for the row in the output column.

If you created a new database for testing the steps in this section, delete the database to free up space:

nysqgl > DROP DATABASE deno_db;

To learn more about the available routine options, see ML_GENERATE_TABLE Syntax.

What's Next

Learn how to Summarize Existing Content.

5.5.2 Summarizing Content

The following sections in this topic describe how to summarize exiting content using the GenAl:

» Before You Begin

"deno_db. out put _t abl e. Qut put ",
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e Summarizing Content
* Running Batch Queries
* What's Next

Before You Begin

» Review the GenAl requirements and privileges.

» For Running Batch Queries, add the natural-language queries to a column in a new or existing table.

Summarizing Content
To summarize text, perform the following steps:

1. To define the text that you want to summarize, set the @ ext variable:

nysql > SET @ ext =" Text ToSunmari ze"
Replace Text ToSunmar i ze with the text that you want to summarize.

For example:

nmysql > SET @ext="Artificial Intelligence (Al) is a rapidly growing field that has the potenti al
to revolutionize how we live and work. Al refers to the devel opnment of conputer systens

that can performtasks that typically require human intelligence, such as visual perception,
speech recognition, decision-nmaking, and | anguage translation. One of the npbst significant

devel opments in Al in recent years has been the rise of machine |earning, a subset of Al that

al l ows conputers to learn fromdata wi thout being explicitly progranmed. Machine | earning

al gorithms can anal yze vast anpunts of data and identify patterns, neking themincreasingly
accurate at predicting outcones and naki ng decisions. Al is already being used in a variety

of industries, including healthcare, finance, and transportation. In healthcare, Al is being
used to devel op personalized treatment plans for patients based on their nedical history and
genetic makeup. In finance, Al is being used to detect fraud and make investnent
recommendations In transportation, Al is being used to develop self-driving cars and i nprove
traffic flow Despite the nany benefits of Al, there are al so concerns about its potential inpact
on society. Some worry that Al could |lead to job displacement, as machi nes become nore capabl e
of performng tasks traditionally done by humans. OQthers worry that Al could be used for

mal i ci ous ";

2. To generate the text summary, pass the original text to the LLM using the ML_ GENERATE routine, with
the t ask parameter set to sumrari zat i on:

nysql > SELECT sys. M._GENERATE( @uery,
JSON_OBJECT("task", "summarization", "nodel _id", "LLM', "language", "Language"));

Replace the following:

e LLM LLM to use, which must be the same as the one you loaded in the previous step. To view the
lists of available LLMs, see In-Database LLM.

¢ Language: the two-letter | SO 639- 1 code for the language you want to use. Default language is
en, which is English. To view the list of supported languages, see Languages.

For example:

nysql > SELECT sys. M._GENERATE( @ ext ,
JSON_OBJECT("task", "summarization", "nmodel _id", "I|lanma3.2-3b-instruct-v1", "language", "en"));

A text summary generated by the LLM in response to your query is printed as output. It looks similar to
the text output shown below:
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| {"text": "\nHere is a concise sunmary of the text:\n\nArtificial Intelligence (Al) has the potential
to revol utioni ze various aspects of life and work. Al systens can performtasks that typically require
human intel ligence, such as visual perception, speech recognition, and deci sion-maki ng. Machi ne | earnin
a subset of Al, enables conputers to learn fromdata without explicit programmng. Al is already being
applied in healthcare, finance, and transportation, with applications including personalized treatmnment
pl ans, fraud detection, and self-driving cars. However, there are concerns about the inpact of Al on
society, including job displacement and potential msuse for nalicious purposes.”, "license": "Your

use of this Llama nbdel is subject to the Llama 3.2 Conmunity License Agreement available at
https://docs. oracl e. coml cd/ E17952_01/ heat wave- 9. 4-1 i cense-comen/"} |

Running Batch Queries

To run multiple sunmar i zat i on queries in parallel, use the M._ GENERATE_TABLE routine. This method
is faster than running the ML_ GENERATE routine multiple times.

To run the steps in this section, create a new database deno_db and table i nput _t abl e:

nysql > CREATE DATABASE deno_db;
nysql > USE deno_db;
nysqgl > CREATE TABLE input_table (id |INT AUTO | NCREMENT, |nput TEXT, primary key (id));
nysql > | NSERT | NTO i nput _tabl e (Input) VALUES(
CONCAT(
"MySQL is a widely used open-source rel ational database nmanagenent system or RDBMS that ',

'"is based on the SQ. standard. It is designed to be highly scalable, reliable, and secure, ',
"making it an ideal choice for businesses of all sizes. MySQL uses a client-server ',
"architecture, where the server stores and nanages the data, while clients connect to the ',
'server to access and nmani pul ate the data. The MySQ. server can be installed on a variety ',
'of operating systens, including Linux, Wndows, and macCS. One of the key features of MySQL ',

"is its support for stored procedures, which allow devel opers to create reusable bl ocks of ',

code that can be executed multiple times. This nmakes it easier to manage conpl ex database ',
operations and reduces the amount of code that needs to be witten. M/SQL al so supports ',
a wi de range of data types, including integers, floating-point nunbers, dates, and strings. ',
It also has built-in support for encryption, which helps to protect sensitive data from"',

unaut hori zed access. Another inportant feature of MySQL is its ability to handle |large ',

"ampunts of data. It can scale horizontally by adding nore servers to the cluster, or ',
"vertically by upgrading the hardware.'

)
)
nysql > | NSERT | NTO i nput _tabl e (Input) VALUES(
CONCAT(
"Artificial Intelligence or Al refers to the sinmulation of human intelligence in nmachines ',

"that are programmed to think and act |ike humans. The goal of Al is to create systens that ',
‘can function intelligently and i ndependently, exhibiting traits associated with human ',
"intelligence such as reasoning, problemsolving, perception, |earning, and understanding ',
'l anguage. There are two main types of Al: narrow or weak Al, and general or strong Al. ',
"Narrow Al is designed for a specific task and is limted in its abilities, while general ',
"Al has the capability to understand or |earn any intellectual task that a human being can. ',

"Al technol ogi es include machi ne | earning, which allows systens to i nprove their performance ',
' based on data, and deep |earning, which involves the use of neural networks to nodel conplex ',
"patterns. Gther Al techniques include natural |anguage processing, robotics, and expert systens. ',
"Al has nunerous applications across various industries, including healthcare, finance, ',
"transportation, and education. It has the potential to revolutionize the way we |ive and work ',
'by automating tasks, inproving efficiency, and enabling new i nnovati ons. However, there are ',

"al so concerns about the inpact of Al on enploynent, privacy, and safety.'

)
)
nysql > | NSERT | NTO i nput _tabl e (Input) VALUES(
CONCAT(
"Machine learning is a subset of artificial intelligence that involves the devel opnent of ',

"algorithns and statistical nodels that enable systens to i nprove their performance on a ',

"specific task over tinme by learning fromdata. At its core, machine learning is about ',

'using data to train machines to nmake predictions or decisions wthout being explicitly ',

"progranmmed to do so. There are many different types of machine |earning, including ',

supervi sed | earni ng, unsupervised | earning, and reinforcenment |earning. In supervised |earning, ',

"the algorithmis trained on | abel ed data, neaning that the input data has been categorized or ',
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"classified by a human. The goal of supervised learning is to enable the machine to nmake predictions ',
"based on this training data. Unsupervised | earning, on the other hand, involves training the ',

"al gorithmon unl abel ed data. In this case, the algorithmnust identify patterns and rel ationships ',
"in the data on its own. This type of learning is often used for tasks such as clustering or anonmaly ',
"detection. Reinforcenment |earning involves an agent interacting with an environment and |earning by ',
"trial and error. The agent receives feedback in the formof rewards or punishnments, which it uses ',
'"to inprove its behavior over tinme. This type of learning is often used in gane playing or robotics.'

)
DE

To run batch queries using M._ GENERATE_TABLE, perform the following steps:

1. Inthe ML_GENERATE_TABLE routine, specify the table columns containing the input queries and for
storing the generated text summaries:

nmysql > CALL sys. ML_GENERATE TABLE(" | nput DBNan®. | nput Tabl eNane. | nput Col umm", " Qut put DBNane. Qut put Tabl eNane. C
JSON OBJECT("task", "summarization", "nmodel id", "LLM', "language", "Language"));

Replace the following:

< | nput DBNane: the name of the database that contains the table column where your input queries
are stored.

« | nput Tabl eNane: the name of the table that contains the column where your input queries are
stored.

e | nput Col umm: the name of the column that contains input queries.

e Qut put DBNane: the name of the database that contains the table where you want to store the
generated outputs. This can be the same as the input database.

e Qut put Tabl eNane: the name of the table where you want to create a new column to store the
generated outputs. This can be the same as the input table. If the specified table doesn't exist, a new
table is created.

e Qut put Col umm: the name for the new column where you want to store the output generated for the
input queries.

e LLM LLM to use, which must be the same as the LLM you loaded in the previous step.

e Language: the two-letter | SO 639- 1 code for the language you want to use. Default language is
en, which is English. To view the list of supported languages, see Languages.

For example:

nysqgl > CALL sys. M._GENERATE_TABLE("deno_db. i nput _tabl e. | nput", "deno_db. output_tabl e. Qut put",
JSON_OBJECT("task", "summarization", "nodel _id", "I|lana3.2-3b-instruct-v1", "language", "en"));

2. View the contents of the output table:

nmysql > SELECT * FROM out put _t abl e\ G
EE R R R R R R R R R R R R 1 r ow R R R R R R R R EEEEEEEEEEEEESESE]
id: 1
Qutput: {"text": "\nHere is a concise summary:\n\nMW/SQL is an
open-source rel ati onal database managenent system (RDBMS) t hat
is widely used for its scalability, reliability, and security.
It uses a client-server architecture and supports various
operating systems. Key features include stored procedures for
efficient code reuse, support for nmultiple data types,
encryption for data protection, and the ability to handl e | arge
amounts of data through horizontal or vertical scaling."”,
“error": null,

182



Setting Up a Vector Store

"license": "Your use of this Llama nodel is subject to the

Ll ama 3.2 Conmunity License Agreenment avail able at

https://docs. oracl e. coml cd/ E17952_01/ heat wave- 9. 4-| i cense-comen/ "}

kkhkkkhkhkhkhkkhkhkhhkhkhkhkhhkdhkhhkhhhkhx*k 2 I’OW khkkkhkkhkhkhkkhkhkdhkhhkhkhhkhhkhhhhhdx*k
id: 2

Qutput: {"text": "\nHere is a concise summary:\n\nArtificial

Intelligence (Al) refers to the sinulation of human

intelligence in machines. There are two types: narrow Al

(limted to specific tasks) and general Al (capable of

under st andi ng any intellectual task). Al technol ogies include

machi ne | earni ng, deep |earning, natural |anguage processing

robotics, and expert systems. Wth nunerous applications

across industries, Al has the potential to revol utionize

various aspects of life, but also raises concerns about

enmpl oynment, privacy, and safety.",

“error": null}

kkhkkkhkkhkkhkhkkhkhkhhkhkhkhkhhkhhkhhkhhhkhx*k 3 I’OW kkhkkkhkkhkkhkhkkhkhkhhkhkhkhkhkhkhhkhhkhhhhx*k
id: 3

Qutput: {"text": "\nHere is a concise summary:\n\nMachi ne

learning is a subset of Al that enables systems to inprove

their performance over time by learning fromdata. It involves

devel opi ng al gorithms and statistical nmodels to nake predictions

or decisions wthout explicit progranm ng. There are three main

types: supervised, unsupervised, and reinforcenent |earning

Supervi sed | earning uses | abeled data for prediction, while

unsupervi sed learning identifies patterns in unl abel ed data

Rei nf orcement | earni ng i nvol ves an agent interacting with its

environment, receiving feedback to inprove behavior through trial

and error.",

“error": null}

The output table generated using the M._ GENERATE_TABLE routine contains an additional details
for error reporting. In case the routine fails to generate output for specific rows, details of the errors
encountered and default values used are added for the row in the output column.

If you created a new database for testing the steps in this section, delete the database to free up space:

nysqgl > DROP DATABASE deno_db

To learn more about the available routine options, see ML_GENERATE_TABLE Syntax.
What's Next

e Learn how to Set Up a Vector Store.

e Learn how to Generate Vector Embeddings.

5.6 Setting Up a Vector Store

Using the inbuilt vector store and retrieval-augmented generation (RAG), you can load and query
unstructured documents stored in the local filesystem using natural language within the MySQL Al
ecosystem.

The sections in this topic describe how to set up an inbuilt vector store.
5.6.1 About Vector Store and Vector Processing
This section describes the Vector Store functionality available with GenAl.

About Vector Store

A vector store is a relational database that lets you load unstructured data. It automatically parses
unstructured data formats, which include PDF (including scanned PDF files), PPT, TXT, HTML, and DOC
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file formats, from the local filesystem. Then, it segments the parsed data, creates vector embeddings, and
stores them for GenAl to perform semantic searches.

A vector store uses the native VECTOR data type to store unstructured data in a multidimensional space.
Each point in a vector store represents the vector embedding of the corresponding data. Semantically
similar data is placed closer in the vector space.

The large language models (LLMs) available in GenAl are trained on publicly available data. Therefore,
the responses generated by these LLMs are based on publicly available information. To generate content
relevant to your proprietary data, you must store your proprietary enterprise data, which has been
converted to vector embeddings, in a vector store. This enables the in-database retrieval-augmented
generation (RAG) system to perform a semantic search in the proprietary data stored in the vector stores
to find appropriate content, which is then fed to the LLM to help it generate more accurate and relevant
responses.

About Vector Processing

To create vector embeddings, GenAl uses in-database embedding models, which are encoders that
converts sequence of words and sentences from documents into numerical representations. These
numerical values are stored as vector embeddings in the vector store and capture the semantics of the
data and relationships to other data.

A vector distance function measures the similarity between vectors by calculating the mathematical
distance between two multidimensional vectors.

GenAl encodes your queries using the same embedding model that is used to encode the ingested data to
create the vector store. It then uses the right distance function to find relevant content with similar semantic
meaning from the vector store to perform RAG.

About Accelerated Processing of Queries on Vector-Based Tables

GenAl lets you run queries on tables that contain vector embeddings at an accelerated pace by offloading
them to the MySQL Al Engine (Al engine). However, for query offload to be successful, the vector table
must be offloaded to Al engine using the SECONDARY _LQOAD clause with the ALTER TABLE statement,
and the query (SELECT statement) must use at least one vector function in the SELECT LI ST, FI LTER,
or ORDER BY expression. Additionally, only simple SELECT statements with LI M T_OFFSET, FI LTER and
ORDER BY operations are offloaded to Al engine for accelerated processing.

To offload the vector table to Al engine, use the following statement:

nysql > ALTER TABLE t bl _nane SECONDARY_LOAD;

Following are examples of queries that are offloaded to Al engine for accelerated processing:
e nysql > SELECT nanme, STRI NG TO VECTOR(enbeddi ng) FROM deno_t abl e;

e nysql > SELECT nane, STRI NG TO VECTOR(enbeddi ng) FROM denp_table limt 10;

e nysql > SELECT nanme, STRI NG TO VECTOR(enbeddi ng) FROM deno_t abl e;

e nysql > SELECT name, ROUND( DI STANCE( @uery_enbeddi ng_16, STRI NG TO VECTOR(enbeddi ng)), 4)
AS di stance FROM denp_t abl e ORDER BY di st ance DESC;

Other SQL operations such as JO N, UNI ON, | NTERSECT, GROUP BY, AGGREGATE, W NDOW and so on,
are not supported for accelerated processing. Following are examples of queries that are not offloaded to
Al engine for accelerated processing:
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Ingesting Files into a Vector Store

» Query containing no vector distance function:

nysql > SELECT COVPRESS( enbeddi ng) FROM denp_t abl el;
* Query containing GROUP BY or aggregates:

mysql > SELECT nanme, COUNT( DI STI NCT enbeddi ng) FROM deno_t abl el GROUP BY nane
» Query containing JO N operation:

nmysql > SELECT ROUND( DI STANCE( deno_t abl el. enbeddi ng, UNHEX("8679613f")), 4) from denp_tablel JO N deno_ta
denp_t abl el. name = deno_t abl e2. nane;

About Optical Character Recognition

Optical Character Recognition (OCR) lets you extract and encode text from images stored in unstructured
documents. The text extracted from images is converted into vector embeddings and stored in a vector
store the same way regular text in unstructured documents is encoded and stored in a vector store.

OCR is enabled by default when you ingest files into a vector store.

However, when OCR is enabled, the loading process slows down because GenAl scans all images
available in the files and pages of scanned documents that you are ingesting into the vector store. If OCR
is not required for the documents that you are ingesting, you can disable OCR to speed up the loading
process.

GenAl supports OCR in the following unstructured data formats: PDF (including scanned PDF files), DOC,
DOCX, PPT, and PPTX. However, GenAl doesn't support OCR in TXT and HTML files. Images stored in
TXT and HTML files are ignored while ingesting the files.

OCR in GenAl also has the following limitations:

» GenAl might not be able to extract and process the text from images with 100% accuracy. However, if
there are minor character recognition errors, the overall meaning of the text is still preserved.

» In some cases, text-like figures in images might incorrectly be treated as regular text.

» GenAl doesn't support OCR for Scalable Vector Graphic (SVG) images in PDF files.
What's Next

Learn how to Ingest Files into a Vector Store.

5.6.2 Ingesting Files into a Vector Store

This section describes how to generate vector embeddings for files or folders, and load the embeddings
into a vector store table.

The following sections in this topic describe how to ingest files into a vector store:
» Before You Begin
* Ingesting Files into a Vector Store

» Cleaning Up
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* What's Next
Before You Begin
» Review the GenAl requirements and privileges.

» Place the files that you want to load in the vector store directory that you specified in the MySQL Al
installer.

Vector store can ingest files in the following formats: PDF, PPTX, PPT, TXT, HTML, DOCX, and DOC.

To test the steps in this topic, create a folder deno- di r ect or y inside the vector store director / var /
l'i b/ nysql -fil es for storing files that you want to ingest into the vector store. Then, download and
place the MySQL HeatWave user guide PDF in the deno- di r ect or y folder.

» To create and store vector store tables using the steps described in this topic, you can create a new
database deno_db:

CREATE DATABASE denp_db;
Ingesting Files into a Vector Store

The VECTOR_STORE_LQOAD routine creates and loads vector embeddings asynchronously into the vector
store. You can ingest the source files into the vector store using the following methods:

Perform the following steps:
1. To create the vector store table, use a new or existing database:
nysql > USE DBNane;
Replace DBNane with the database name.
For example:
nysql > USE deno_db;

2. Optionally, to specify a name for the vector store table and language to use, set the @pt i ons
variable:

nysql > SET @ptions = JSON OBJECT("t abl e_nane", "Vector StoreTabl eNane", "l anguage", "Language");
Replace the following:
e Vect or St or eTabl eNane: the name you want for the vector store table.

e Language: the two-letter | SO 639- 1 code for the language you want to use. Default language is
en, which is English. To view the list of supported languages, see Languages.

For example:
mysql > SET @ptions = JSON _OBJECT("tabl e_nane", "deno_enbeddi ngs", "language", "en");
To learn more about the available routine options, see VECTOR_STORE_LOAD Syntax.

3. Toimport a file from the local filesystem and create a vector store table, use the VECTOR_STORE_LQAD
routine:

nysqgl > CALL sys. VECTOR STORE _LOAD("file://FilePath", @ptions);
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Replace Fi | ePat h with the unique reference index (URI) of the files or directories to be ingested into
the vector store. A URI is considered to be one of the following:

* A glob pattern, if it contains at least one unescaped ? or * character.
« A prefix, if it is not a pattern and ends with a / character like a folder path.

« Afile path, if it is neither a glob pattern nor a prefix.

Note

@ Ensure that the documents to be loaded are present in the directory that you
specified for loading documents into the vector store during installation or using
the secure file priv server system variable.

For example:
nysqgl > CALL sys. VECTOR STORE _LOAD("“file:///var/libl/nysql-files/denp-directory/heatwave-en. pdf", @ption
This loads the specified file or files from the specified directory into the vector store table.

This creates an asynchronous task that runs in background and loads the specified file or files from the
specified directory into the vector store table. The output of the VECTOR STORE_LQOAD routine contains
the following:

« An ID of the task that is created.
« A task query that you can use to track the progress of asynchronous task.
» Atask query that you can use to view the asynchronous task logs.
4. After the task is completed, verify that embeddings are loaded in the vector store table:
nysql > SELECT COUNT(*) FROM Vect or St or eTabl eNane;
For example:

nmysql > SELECT COUNT(*) FROM denp_enbeddi ngs;

If you see a numerical value in the output, your embeddings are successfully loaded in the vector store
table.

5. To view the details of the vector store table, use the following statement:

e o L +emm - [ - Hememm o +
| Field | Type | Null | Key | Default | Extra |
e o L +emm - [ - Hememm o +
| docunent _nane | varchar(1024) | NO | | NULL | |
| netadata | json | NO | | NULL | |
| docunent_id | int unsigned | NO | PR | NULL | |
| segnent _nunber | int unsigned | NO | PR | NULL | |
| segnent | varchar(1024) | NO | | NULL | |
| segnent _enbeddi ng | vect or (384) | NO | | NULL | |
e o L +emm - [ - Hememm o +

Cleaning Up

If you created a new database for testing the steps in this topic, delete the database to free up space:
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nysql > DROP DATABASE dero_db;

What's Next

« Learn how to Update the Vector Store.
» Learn how to Perform Vector Search With Retrieval-Augmented Generation.

* Learn how to Start a Conversational Chat.

5.6.3 Updating a Vector Store

To keep up with the changes and updates in the documents in your local directory, you must update the
vector embeddings loaded in the vector store table on a regular basis. This ensures that the responses
generated by GenAl are up-to-date.

The following sections in this topic describe how to update a vector store:
» Before You Begin

» Appending a New File to the Vector Store

» Removing a File from the Vector Store

» Deleting and Recreating the Vector Store

» Cleaning Up

¢ What's Next

Before You Begin

Complete the steps to set up a vector store.

The examples in this topic use the vector store table deno_enbeddi ngs created in Ingesting Files into a
Vector Store.

Appending a New File to the Vector Store

The VECTOR_STORE_LOAD routine ingests all files that are available in the specified location and appends
vector embeddings to the specified vector store table. If you run the VECTOR_STORE_LOAD routine on

a table that contains previously ingested files, any file ingested again into the table is assigned a new
docunent _i d while retaining the same docunent _namne. To remove a previously ingested file from the
vector store table, you need to manually delete the associated rows, as described in Removing a File from
the Vector Store.

To test the steps in this topic, download and place the MySQL Al user guide PDF in the folder deno-
di r ect ory that you created earlier for storing files to ingest into the vector store.

To append a new file to the vector store table, perform the following steps:

1. Check that the vector embeddings are loaded in the vector store table you want to update:

mysql > SELECT COUNT(*) FROM Vect or St or eTabl eNane;
Replace Vect or St or eTabl eNane with the name of the vector store table you want to update.

For example:
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nysql > SELECT COUNT(*) FROM denp_enbeddi ngs;
If you see a numerical value in the output, the embeddings are loaded in the table.

2. To specify vector store table to update, set the @pt i ons variable:

nysql > SET @ptions = JSON OBJECT("schenma_nane", "DBNane", "table_nane", "Vector StoreTabl eNane", "Iangu
Replace the following:

« DBNane: the name of database that contains the vector store table.

* Vect or St or eTabl eNane: the vector store table name.

For example:

nysqgl > SET @ptions = JSON OBJECT("schena_nane", "deno_db", "table_nane", "deno_enbeddi ngs");

3. To append a new file from the local filesystem, use the VECTOR _STORE_LOAD routine:

nysqgl > CALL sys. VECTOR STORE LOAD("file://FilePath", @ptions);

Replace Fi | ePat h with the file path. For example:

nysqgl > CALL sys. VECTOR STORE _LOAD("“file:///var/libl/nysql-files/denp-directory/nysql-ai-9.4-en.pdf", @p

This call appends vector embeddings for the MySQL Al user guide to the deno_enbeddi ngs vector
store table.

4. Verify that the new vector embeddings are appended to the vector store table:

mysql > SELECT COUNT(*) FROM Vect or St or eTabl eNane;

For example:

nysqgl > SELECT COUNT(*) FROM denp_enbeddi ngs;

If you see a numerical value in the output which is different than the one you saw in step 1, then the
vector store table is successfully updated.

Removing a File from the Vector Store

To remove a previously ingested file from the vector store table, use the DELETE statement:

nysql > DELETE FROM Vect or St or eTabl eNane WHERE docunent _nane = "Fil enane" and docunent _id = Docunentl D,

For example:

nmysqgl > DELETE FROM deno_enbeddi ngs WHERE docunent _nane = "/var/li b/ nysql -fil es/denp-directory/heatwave-en,

This removes the vector embeddings and all rows and columns associated with MySQL HeatWave user
guide from the denp_enbeddi ngs vector store table.

Deleting and Recreating the Vector Store

To delete and recreate the vector store table and vector embeddings, perform the following steps:

1. Delete the vector store table:

nysqgl > DROP TABLE Vect or St or eTabl eNane;
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2. To create new embeddings for the updated documents, repeat the steps to set up a vector store.
Cleaning Up
If you created a new database for testing the steps in this topic, delete the database to free up space:
nysql > DROP DATABASE deno_db;
What's Next
e Learn how to Generate Vector Embeddings.

» Learn how to Perform Vector Search With Retrieval-Augmented Generation.

5.7 Generating Vector Embeddings

This section describes how to generate vector embeddings using the M._ EMBED ROWroutine. Vector
embeddings are a numerical representation of the text that capture the semantics of the data and
relationships to other data. You can pass the text string in the routine manually or use data from tables in
your database. To embed multiple rows of text stored in a table in a single run, you can even run a batch

query.

Using this method, you can create vector embedding tables that you can use to perform similarity searches
using the DI STANCE( ) function, without setting up a vector store.

vector embeddings for unstructured data, see Section 5.6, “Setting Up a Vector
Store”.

Note
@ This method does not support embedding unstructured data. To learn how to create
This topic contains the following sections:
» Before You Begin
» Generating a Vector Embedding for Specified Text

* Running Batch Queries

* What's Next
Before You Begin

* Review the GenAl requirements and privileges.

« For Running Batch Queries, add the text that you want to embed to a column in a new or existing table.
Generating a Vector Embedding for Specified Text

To generate a vector embedding, perform the following steps:

1. To define the text that you want to encode, set the @ ext variable:

nysqgl > SET @ ext =" Text ToEncode";

Replace Text ToEncode with the text that you want to encode. For example:
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nysql > SET @ext="MySQ. Al |lets you conmuni cate with unstructured data using natural -l anguage queries."

2. To generate a vector embedding for the specified text, pass the text to the embedding model using the
M._EMBED ROWroutine:

nysql > SELECT sys. M._EMBED RON @ ext, JSON _OBJECT("nodel _id", "Enbeddi ngMbdel ")) into @ ext_enbeddi ng;

Replace Enbeddi nghModel with ID of the embedding model you want to use. To view the lists of
available embedding models, see In-Database Embedding Model.

For example:

nysql > SELECT sys. M._EMBED RON @ext, JSON_OBJECT("nodel _id", "all_minilml12_v2")) into @ext_enbeddin
The routine returns a VECTOR, and this command stores it in the @ ext _enbeddi ng variable.

3. Print the vector embedding stored in the @ ext _enbeddi ng variable:

nysql > SELECT @ ext _enbeddi ng;

The output, which is a binary representation of the specified text, looks similar to the following:

| O0x6F57203BBF1592BD11FA93BDIFECIE3C0A43CABDF1102EBD8B0OB07BCF7 D39ABCDCBEC7BC21ACACBCA16B3FBD7 ASEL3
3CA954B23D3F428 DBDIAIE863DAE3085BC7 E68313DA6E9IBE3 C3BA2F3BC3B2DCABDFBCDD4BDOF2B593D00D95CBC2B40ES3B
8EDAAEBDDIB5D8BC695F703C3534463C7 D7 ADABBOEA7613CA4B40C3D40DD4A3D88E0SE3DBDD8 C43CF6B0863CE450ACBC3D
34B63C978D99BC1EC638BDI29CC7BD734E98BC7BIBAB3C2F3A47BD147E203D88EABD3DCF18483D42D820BD25C59BBCIEAD
ADBC7DEA643D071F02BDA843AFBC865E323C775BBC3D87B8163D69DDF13DEAE5083DDA23353D2BDBCFBD0858ADBDIS20E5S
3C1070343DE8237D3D6FA7083D1591653D90C8CE3DE4ABE34BC6681B73D5D3 CASBCC2EBC8BD9102A3BCBEOASEBD1C0189BB
29CFOF3E2AA2ACBD075834BCC85AE33C224F9CBD261FDF3C7B34033CB8FCB4BCE247663DA3C2963B598089BBAFASEABCCS
59FBBD38E72BBDD8705D3BBAB3693DEDD26C3DBICDDC3C2E51333D1A58E13CC67C6B3CA068D63C3DD35B3DBF72BCBCCBCC
16BD8276513DE1B4913DDF7B05BDE9C836BB1BFD02BDE3AFASBDBFAAG8BD7 780EB3CA39EB13COD8 CCCBD6260BCBCAA339A
BCFE3A90BDD00B333D0622AABC2C5D47BDF406FF3D5F142FBC598B083DB2BA12BC3650D3BB07223A3D3E33F53CB3F032BC
5CC6303COCC1B63DC56AF33B424554BD3DC116BDADI3303C2E4A0D3D5FF4903D414E7 C3CA315943DF69C35BD96C8473DF4
62D2BA24CF2BBCA4E340BCAD53C6BCC8FF333DDC55643D447FF1B9742F35BD14B2423BECSEOEBCC76E02BC230A2C3D663A
6EBD27E1FOBCE2FF523BC5AB9ABD6921B13CESEBA93D03A30D3E752FEC3C04151ABB14B3CEBD578BA93D31853DBCODY685
BD961AC2BCO06CEOBDA835723CDE2AA1BC39728C3D484790BD980186BD4017C1BCB61F44BBCOFBSE3BC29ACI3C6E36003E
9A0F7F3D0D23213ACE228C3CEEOEDSBDD7 7491 BDOES5834BD6680CEBD512A173D41BCB5BB4ABDAG63B7F5C1B3D2C2C013EAS
A4913D5CACFEBC611BC8BDCA3520BC1CB2D83CFFD3DEBB11998ABC4181713D5EACO03D01CFBB3C9333113C960849BDOF05
99BD7A5BC13D2472403D9AF94ABD0B1C983C0429D53B654A413D079AECBD1F991C3D0B4BCB3CA47AFCCBD1709743B291C57
3DF35C13BD17C317BD519292BD85FBB23DAB319D3C1AEDA73B82C7BD3C8B5183BD7 DE38DBC6A2AD1BB83D1F03A01718DBD
236543BB6D22803CFF69133CB485188906BFC1BC75FAF03B24FA01BEFBES3B3D04F3353CA4D67933D7 ADECBBCAC79AF3B58
AB8F3DE3C3B6BB050580BD92720C3DB0199BBC8A4790BCOD09B4BCAEC2503C1B2FAEBCI1C598BA5070223D0CB8C13D2B6E
D7BD5301553D326ECBBD6A8825BD75DE6E3C38380EBCFCE7F6BC9329FB3B1F7B3ABDF51B403D59EE873C33078CBD8CB7AS
3B8D26A63DE2633CBDDBBFCEBB7778A63C566E84BD4D66973CF29CDFBC6271523D800EDABCS7CD03BD81DB563D2BOBCABC
EB1238BC724B16BEACC15D3D8B8247BC24AAF63B29E7823C6300F13B4703193D8BD9D6BDBDD5313D68A73DBC36DBC5B981
0B36BDF940953A4B3EB2BCF9984E3C3EDD3DBD8709C83CCDE4AACBB4B8387BD48CA133D7187893C38FBOFBBF1F50CBDB650
06BDA3397B3DADB05CBD22961A3D405E16BBDF5E45BAEFC8A53D7 1FCDOBCAEE96F3D74DA0B3D724DE03C72A1653D53AF18
BCCD4A623D92033ABAF3EGAE3D68757C3D086475BDB6F9B03C1836 CE3CA9D8FF3C8BFFC53B8A9A10BCO6308EBD20FB7C3C
68610FBD5881310B1B52163D5ED0353C432D26BC31320FBCAE1ECCBCAA24A7BD480988BCEOCCB43D66 7 CEFBB865600BD56
E9FA3960BA59BDE7C40F3DF01782BD0981E0394E1C5FBC8EA1443923ED633D9F00483D662A87BD2A568D3DC3765030D9968B
4BBD1F59D7BC92216E3D448BE2BC728DEFBC8F75013BF481753D9B71213C26541ABD2B93B43B54EDBEBCFOF7423D54CA2D
3D5DAB58BC1 D488 CBC35CE69BDC6298CBD60F3ESBC5F7B003EB703003EF76FD1BCAF25A6BD8857F43C232B743CA96406BC
CA3536BD12BEC83D90FB0BBDB6 D09 EBDAE549BBD3CACE83B8ADI733D5B890DBD57D1643B6F84E2BC73CC8DBD782B3D3D67F
CD7BCE1071CBDA1C0313DB99B993CFA29A3BD |

Running Batch Queries

To encode multiple rows of text strings stored in a table column, in parallel, use the M._ EMBED TABLE
routine. This method is faster than running the M__ EMBED _ROWroutine multiple times.

To run the steps in this section, create a new database deno_db and table i nput _t abl e:

191


https://dev.mysql.com/doc/refman/9.6/en/vector.html

Running Batch Queries

nysql > CREATE DATABASE deno_db;

nysql > USE deno_db;

nmysql > CREATE TABLE input _table (id INT AUTO | NCREMENT, |nput TEXT, primary key (id));

nmysqgl > | NSERT | NTO i nput _table (Input) VALUES(' Describe what is MySQL in 50 words.");

nmysqgl > | NSERT | NTO i nput _table (Input) VALUES(' Describe Artificial Intelligence in 50 words.");
nmysqgl > | NSERT | NTO i nput _table (Input) VALUES(' Describe Machine Learning in 50 words.');

To run batch queries using M._ EMBED TABLE, perform the following steps:

1. Callthe M._EMBED TABLE routine:

nysqgl > CALL sys. M._EMBED TABLE(" | nput DBNane. | nput Tabl eNane. | nput Col umm", " Qut put DBNane. Qut put Tabl eNane. Qut |
JSON_OBJECT( " nodel _i d*, "Enbeddi ngivbdel ")) ;

Replace the following:

¢ | nput DBNane: the name of the database that contains the table column where your input queries
are stored.

« | nput Tabl eNane: the name of the table that contains the column where your input queries are
stored.

* | nput Col umm: the name of the column that contains input queries.

e Qut put DBNan®e: the name of the database that contains the table where you want to store the
generated outputs. This can be the same as the input database.

e Qut put Tabl eNane: the name of the table where you want to create a new column to store the
generated outputs. This can be the same as the input table. If the specified table doesn't exist, a new
table is created.

e Qut put Col unm: the name for the new column where you want to store the output generated for the
input queries.

e Enbeddi nghbdel : ID of the embedding model to use. To view the lists of available embedding
models, see In-Database Embedding Model.

For example:

nmysql > CALL sys. M._EMBED TABLE("deno_db. i nput _table.lnput", "denp_db. output_table.CQutput"”,
JSON_OBJECT("nodel _id", "all_mnilml12_v2"));

2. View the contents of the output table:
nysqgl > SELECT * FROM out put _t abl e;
| id | Cutput
| 1| 0x0151873DB06340BD66E860BD26DC8C3BF5110ABEBF69F83B8791B63D955C003D1DF996BDA2B8883D772CB4BD882B443A0¢

| 2 | OxEOC75E3DA70A91BDDF3996BB292AD7BA623AD1BDFB55763C85248F3DE0A85B3D5B8165BD257FCD3DB3F854BD72B556BCAZ
| 3 | OxB1CAE33CA69EBFBD36C704BD926DBDBCA824B4BD8847723D0A93273DDIED8F3CBIB384BDC300A53DF37B0ABD131E0ABCSF

The output table generated using the M._ EMBED TABLE routine contains an additional column called
det ai | s for error reporting. In case the routine fails to generate output for specific rows, details of the
errors encountered and default values used are added for the rows in this additional column.

nysql > DESCRI BE out put _t abl e;
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| id | int | NO | PRI | O | |
| Qutput | vector(2048) | YES | | NULL | |
| details | json | YES | | NULL | |
H-emmeee - S +------ +----- H-emmeee - +---e-- +

To specify the embedding model used to generate the vector embeddings, the routine adds the
following comment for the VECTOR column in the output table:

" GENAI _OPTI ONS=EMBED_MODEL_| D=Enbeddi nghbdel | D!

For example:

nmysql > SHOW CREATE TABLE out put _t abl e;

dooccococoocoooo R T L L L L L L L L L L Rl T E Ll — = — — — — -
| Table | Create Table

dooccococoocoooo R T L L L L L L L L L L Rl T E Ll — = — — — — -

| output_table | CREATE TABLE " output _table" (
“id int NOT NULL DEFAULT 'O0',
“Qut put® vector(2048) DEFAULT NULL COMVENT ' GENAI _OPTI ONS=EMBED _MODEL_| D=mi ni | mi ,
“details’ json DEFAULT NULL,
PRI MARY KEY ('id")
) ENG NE=I nnoDB DEFAULT CHARSET=ut f 8mb4 COLLATE=ut f 8nb4_0900 ai ci |
dfsccccooooooooo e _ — — - - - -

This lets you use tables generated using this routine for context retrieval while running retrieval-
augmented generation (RAG) as well as GenAl Chat.

3. If you created a new database for testing the steps in this section, delete the database to free up
space:

nmysql > DROP DATABASE deno_db;

What's Next

» Learn how to Use Your Own Embeddings With Retrieval-Augmented Generation.

» Learn how to Start a Conversational Chat.

5.8 Performing Vector Search with Retrieval-Augmented Generation

When you enter a query, GenAl performs a vector-based similarity search to retrieve similar content from
the vector store and embedding tables available in the DB system. It provides the retrieved content as
context to the LLM. This helps the LLM to produce more relevant and accurate results for your query. This
process is called as retrieval-augmented generation (RAG).

You can use both inbuilt vector store tables and tables containing your own vector embeddings for running
RAG with vector search.

The topics in this section describe how to perform RAG with vector search.

5.8.1 Running Retrieval-Augmented Generation

The M__RAGroutine runs retrieval-augmented generation which aims to generate more accurate
responses for your queries.

For context retrieval, the ML._ RAGroutine uses the name of the embedding model used to embed the input
query to find relevant vector store tables that contain vector embeddings from the same embedding model.

This topic contains the following sections:

» Before You Begin
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Retrieving Context and Generating Relevant Content
Retrieving Context Without Generating Content
Running Batch Queries

Cleaning Up

What's Next

Before You Begin

» Complete the steps to set up a vector store.

The examples in this topic use the vector store table deno_enbeddi ngs created in the section
Ingesting Files into a Vector Store.

» For Running Batch Queries, add the natural-language queries to a column in a new or existing table.

Retrieving Context and Generating Relevant Content

To enter a natural-language query, retrieve the context, and generate results using RAG, perform the
following steps:

1. Optionally, to speed up vector processing, load the vector store table in MySQL Al Engine (Al engine):

nysqgl > ALTER TABLE Vect or St or eTabl eNane SECONDARY_LOAD;
Replace Vect or St or eTabl eNane with the name of the vector store table.

For example:

mysql > ALTER TABLE deno_db. deno_enbeddi ngs SECONDARY_LOAD;

This accelerates processing of vector distance function used to compare vector embeddings and
generate relevant output later in this section.

To specify the table for retrieving the vector embeddings to use as context, set the @pt i ons variable:
nmysql > SET @pti ons = JSON_OBJECT(
"vector_store", JSON ARRAY("DBNane. Vect or St or eTabl eNane") ,
"model _options", JSON OBJECT("I| anguage", "Language")
)i
Replace the following:
« DBNane: the name of the database that contains the vector store table.
e Vect or St or eTabl eNane: the name of the vector store table.

e Language: the two-letter | SO 639- 1 code for the language you want to use. Default language is
en, which is English. To view the list of supported languages, see Languages.

For example:

nysqgl > SET @ptions = JSON_OBJECT(
"vector_store", JSON ARRAY("deno_db. denmo_enbeddi ngs"),
"model _options", JSON OBJECT("|anguage", "en")

NE

To learn more about the available routine options, see ML_RAG Syntax.
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3. To define your natural-language query, set the @uer y variable:
mysql > SET @uer y="AddYour Query"
Replace AddYour Quer y with your natural-language query.
For example:
nysql > SET @uery="Wat is AutoM.?";

4. To retrieve the augmented prompt, use the M__RAGroutine:
nysqgl > CALL sys. M._RAG @uery, @ut put, @ptions);

5. Print the output:

nmysql > SELECT JSON_PRETTY( @ut put) ;

Text-based content that is generated by the LLM in response to your query is printed as output. The
output generated by RAG is comprised of two parts:

« The text section contains the text-based content generated by the LLM as a response for your query.

« The citations section shows the segments and documents it referred to as context.

The output looks similar to the following:

| {
"text": "\nAut oM. (Automated Machi ne Learning) is a machine |earning technique that automates the pro
"license": "Your use of this Llama nodel is subject to the Llama 3.2 Conmmunity License Agreement avai
"citations": [
{
"segnment": "\"segment\": \"| { \WA"text\\\": \\\" AutoM. is a subfield of machine | earning that
"di stance": 0.0732,
“docunent _nanme": "“/var/lib/nysql-fil es/deno-directory/heatwave-en. pdf"
IE
{
"segment": "}, { \"segment\": \"| { W\ "text\\\": \\\" AutoM. is a subfield of machine |earni
"di stance": 0.0738,
"docunent _nanme": "“/var/lib/nysql-files/deno-directory/heatwave-en. pdf"
IE
{
"segnment": "| { \"text\": \" AutoM. is a machine | earning techni que that automates the process
"di stance": 0.0743,
"docunent _nane": "“/var/lib/nysql-files/deno-directory/heatwave-en. pdf"
}

s
"vector_store": [

"*denp_db" . " denp_enbeddi ngs "
]

etrieval _info": {
"met hod": "n_citations",
“threshol d': 0.0743

To continue running more queries in the same session, repeat steps 3 to 5.

Retrieving Context Without Generating Content

To enter a natural-language query and retrieve the context without generating a response for the query,
perform the following steps:
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Optionally, to speed up vector processing, load the vector store table in the Al engine:

nmysql > ALTER TABLE Vect or St or eTabl eNane SECONDARY_LOAD;
Replace Vect or St or eTabl eNane with the name of the vector store table.

For example:

mysql > ALTER TABLE deno_db. deno_enbeddi ngs SECONDARY_LOAD;

This accelerates processing of vector distance function used to compare vector embeddings and
generate relevant output later in this section.

To specify the table for retrieving the vector embeddings and to skip generation of content, set the
@pt i ons variable:

nysql > SET @ptions = JSON OBJECT("vector_store", JSON_ARRAY("DBNane. Vect or St or eTabl eNane"),

Replace the following:
+ DBNane: the name of the database that contains the vector store table.
* \Vect or St or eTabl eNane: the name of the vector store table.

For example:

"ski p_generat €

nysql > SET @pti ons = JSON _OBJECT("vector_store", JSON ARRAY("deno_db. deno_enbeddi ngs"), "skip_generate", t

To define your natural-language query, set the @uer y variable:
nysql > SET @uery="AddYour Query";

Replace AddYour Query with your natural-language query.

For example:

nmysql > SET @uery="Wat is AutoM?";

To retrieve the augmented prompt, use the M__ RAGroutine:
nysqgl > CALL sys. M._RAG( @uery, @ut put, @ptions);

Print the output:

nysql > SELECT JSON_PRETTY( @ut put);

Semantically similar text segments used as content for the query and the name of the documents they

were found in are printed as output.

The output looks similar to the following:

[ {
"citations": [

{
"segnment": "\"segment\": \"| { W\ "text\\\": \\\" AutoM. is a subfield of machine |earning that foc
"di stance": 0.0732,
"document _nane": "/var/lib/nysql-files/denp-directory/heatwave-en. pdf"

i

{
"segment": "}, { \"segrment\": \"| { WA "text\\\": \\\" AutoM. is a subfield of machine learning t

"di stance": 0.0738,
"document _nane": "/var/lib/nysql-files/denp-directory/heatwave-en. pdf"
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s

{
"segnment": "| { \"text\": \" AutoM. is a machine | earning technique that automates the process
"di stance": 0.0743,
“docunent _nane": "“/var/lib/nysql-fil es/deno-directory/heatwave-en. pdf"

}

I
"vector_store": [

"*denp_db" . " denp_enbeddi ngs "
]

’etri eval _info": {
“met hod": "n_citations",
“threshol d': 0.0743
}
P
To continue running more queries in the same session, repeat steps 3 to 5.
Running Batch Queries

To run multiple RAG queries in parallel, use the M__ RAG_TABLE routine. This method is faster than
running the ML_ RAGroutine multiple times.

To run the steps in this section, create a new table i nput _t abl e in deno_db:

nysql > USE deno_db;

nysqgl > CREATE TABLE input_table (id |INT AUTO | NCREVMENT, |nput TEXT, primary key (id));
nmysqgl > | NSERT | NTO i nput _table (Input) VALUES('Wat is Heat Wave Lakehouse?');

nmysqgl > | NSERT | NTO i nput _table (Input) VALUES(' What i s Heat Wave AutoM.?');
nmysqgl > | NSERT | NTO i nput _table (Input) VALUES(' What is Heat Wave GenAl ?');

To run batch queries using ML_RAG TABLE, perform the following steps:

1. To specify the table for retrieving the vector embeddings to use as context, set the @pt i ons variable:
nmysql > SET @pti ons = JSON_OBJECT(

"vector_store", JSON ARRAY("DBNane. Vect or St or eTabl eNane") ,

"model _options", JSON OBJECT("I| anguage", "Language")
DE
Replace the following:
« DBNane: the name of the database that contains the vector store table.
* \Vect or St or eTabl eNane: the name of the vector store table.

e Language: the two-letter | SO 639- 1 code for the language you want to use. Default language is
en, which is English. To view the list of supported languages, see Languages.

For example:
nysql > SET @ptions = JSON_OBJECT(
"vector_store", JSON ARRAY("denp_db. dempo_enbeddi ngs"),
"model _options", JSON OBJECT("|anguage", "en")
DE
To learn more about the available routine options, see ML_RAG_TABLE Syntax.

2. Inthe M._RAG TABLE routine, specify the table columns containing the input queries and for storing
the generated outputs:

nysql > CALL sys. M._RAG TABLE(" | nput DBNane. | nput Tabl eNane. | nput Col umm", " CQut put DBNane. Qut put Tabl eNane. Cu
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Replace the following:

¢ | nput DBNane: the name of the database that contains the table column where your input queries
are stored.

I nput Tabl eNane: the name of the table that contains the column where your input queries are
stored.

* | nput Col umm: the name of the column that contains input queries.

« CQut put DBName: the name of the database that contains the table where you want to store the
generated outputs. This can be the same as the input database.

¢ Qut put Tabl eNane: the name of the table where you want to create a new column to store the
generated outputs. This can be the same as the input table. If the specified table doesn't exist, a new
table is created.

e Qut put Col unm: the name for the new column where you want to store the output generated for the
input queries.

For example:
nmysql > CALL sys. ML_RAG TABLE("deno_db. i nput _table.lnput", "deno_db. output_table.Qutput", @ptions);

3. View the contents of the output table:

nmysql > SELECT * FROM out put _t abl e\ G

EE R R R R R R R R R R R R R 1 r ow EE R R R R R R R R R R R R

id: 1
Qutput: {"text": "\nHeat\Wave Lakehouse is a feature of the Heat\Wave platformthat enables query processing
“error": null,
"license": "Your use of this Llama npdel is subject to the Llama 3.2 Community License Agreenent avail able
"citations": [
{
"segnment " M- -----ai e + | 1| {\"text\": \" HeatWave Lakehouse is a feature of the He
"di stance": 0.0828,
"docunment _nanme": "“/var/lib/nysql-files/deno-directory/heatwave-en. pdf"
IE
{
BCT=Te 10T S R R T R + | 1| {\"text\": \" HeatWave Lakehouse is
"di stance": 0.0863,
"docunment _nanme": "“/var/lib/nysql-files/deno-directory/heatwave-en. pdf"
IE
{
"segment": "The Lakehouse feature of Heat\Wave enabl es query processing on data in Object Storage. |
"di stance": 0.1028,
“docunent _nane": "/var/lib/nysql-files/deno-directory/heatwave-en. pdf"
}

I
"vector_store": [" denp_db" . denp_enbeddi ngs "],
"retrieval _info": {"method": "n_citations", "threshold": 0.1028}}
EE R R R R R R R R R R R R R R 2 r ow EE R R R R R R R R R R R R R
id: 2
Qutput: {"text": "\nHeat\Wave AutoM. is a feature of MySQL Heat Wave that makes it easy to use nmchine | earni
“error": null,
"citations": [

{
"segnent": "| HeatWave AutoM. is a feature of MySQ Heat Wave that nmekes it easy to use nachine |eg
"di stance": 0.0561,
“docunment _nanme": "“/var/lib/nysql-files/deno-directory/heatwave-en. pdf"

IE

{
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"segnent": "Heat\Wave shapes and scaling, and all HeatWave AutoM. makes it easy to use machine |
"di stance": 0.0573,
“docunent _nane": "“/var/lib/nysql-fil es/deno-directory/heatwave-en. pdf"

s

{
"segment": "Heat\Wave AutoM. makes it easy to use machine | earning, whether you are a novice use
"di stance": 0.0598,
“docunent _nane": "“/var/lib/nysql-fil es/deno-directory/heatwave-en. pdf"

}

I
"vector_store": [" denp_db" . denp_enbeddi ngs "],
“retrieval _info": {"method": "n_citations", "threshold": 0.0598}}
kkhkkkhkkhkhkhkkhkhkdhkhkhkhkhhkdhkhkhkhhhkxk 3 I’OW kkhkkkhkkhkkhkhkkhkhkhhkhhkhkhhkdhkhhhkhhdx*k
id: 3
Qutput: {"text": "\nHeat\Wave GenAl is a feature of Heat\Wave that enabl es natural |anguage communi cation
“error": null,
“citations": [

{
"segnment”: "4.1 Heat Wve GenAl Overvi ew Heat Wave GenAl is a feature of Heat\Wave that lets you c
"di stance": 0.0521,
“docunent _nane": "“/var/lib/nysql-fil es/deno-directory/heatwave-en. pdf"

s

{
"segnment": "Chapter 3, HeatWave AutoM.. 1.4 Heat WAve CGenAl The Heat WAve CGenAl feature of HeatWA
"di stance": 0.0735,
“docunent _nane": "“/var/lib/nysql-fil es/deno-directory/heatwave-en. pdf"

s

{
"segnment": "Heat Wave Chat al so provides a graphical interface integrated with the Visual Studio
"di stance": 0.0781,
“docunent _nane": "“/var/lib/nysql-fil es/deno-directory/heatwave-en. pdf"

}

I
"vector_store": [" denp_db" . denp_enbeddi ngs "],
“retrieval _info": {"method": "n_citations", "threshold": 0.0781}}

The output table generated using the M._ RAG TABLE routine contains an additional details for error
reporting. In case the routine fails to generate output for specific rows, details of the errors encountered
and default values used are added for the rows in the output column.

Cleaning Up

If you created a new database for testing the steps in this topic, delete the database to free up space:

mysql > DROP DATABASE deno_db;
What's Next

» Learn how to Use Your Own Embeddings With Retrieval-Augmented Generation.

» Learn how to Start a Conversational Chat.

5.8.2 Using Your Own Embeddings with Retrieval-Augmented Generation

GenAl lets you use tables containing your own vector embedding to run retrieval-augmented generation
(RAG) with vector search. The M._ RAGand M._RAG TABLE routines let you specify the table column
names to use as filters for finding relevant tables for context retrieval.

In addition to the specified column names, the M._ RAGand M__RAG_TABLE routines use the name of the
embedding model used to embed the input query to find relevant embedding tables for context retrieval.

Following sections in this topic describe how you can use your own embedding table for context retrieval:
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» Before You Begin

» Using Embeddings From an Embedding Model Available in GenAl

» Using Embeddings From an Embedding Model Not Available in GenAl
» Using Your Embedding Table With a Vector Store Table

* Running Batch Queries

» Cleaning Up

* What's Next

Before You Begin
» Review the GenAl requirements and privileges.
* You can use a table that satisfies the following criteria:
« To qualify as a valid embedding table, the table must contain the following columns:
A string column containing the text segments.
« A vector column containing the vector embeddings of the text segments.

« A comment on the vector column must specify the name of the embedding model used to generate the
vector embeddings.

Following is an example of a valid embedding table that can be used for context retrieval:

nysql > CREATE TABLE denp_table (id | NT AUTO_ | NCREMENT,

deno_t ext TEXT,

string_enbeddi ng TEXT,

deno_enbeddi ng VECTOR (3) COMMVENT ' GENAI _OPTI ONS=EMBED_MODEL_ | D=deno_enbeddi ng_nodel ',

primary key (id));

nmysql > | NSERT | NTO deno_t abl e (denp_text, string_enbeddi ng)

VALUES(' MySQL is an open-source RDBVS that is widely used for its scalability, reliability, and security."',
nmysql > | NSERT | NTO deno_t abl e (denp_text, string_enbeddi ng)

VALUES(' Al refers to the devel opnent of nechines that can think and act |ike hunans.', '[0,0,1]");

nmysql > | NSERT | NTO deno_t abl e (denp_text, string_enbeddi ng)

VALUES(' M. is a subset of Al that uses algorithns and statistical nodels to inprove performance on tasks by
nysql > UPDATE denp_t abl e SET denp_enbeddi ng=STRI NG_TO VECTOR(stri ng_enbeddi ng) ;

nmysql > ALTER TABLE deno_t abl e DROP COLUW stri ng_enbeddi ng;

To learn how to generate vector embeddings and embedding tables using GenAl, see Generating Vector
Embeddings.

« If you want to use an inbuilt vector store table along with your own embedding table, complete the steps
to set up the vector store.

» For Running Batch Queries, add the natural-language queries to a column in a new or existing table. To
use the name of an embedding model that is not available in GenAl for running RAG, also add the vector
embeddings of the input queries to a column of the input table.

» To create and store the sample embedding tables required for running the steps in this topic, you can
create and use a new database deno_db:

nysql > CREATE DATABASE deno_db;
nysql > USE deno_db;
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Using Embeddings From an Embedding Model Available in GenAl

To use an embedding table containing vector embeddings from an embedding model that is available in
GenAl, you can set the vect or _st or e_col unms parameter to specify the columns and column names
used by the M__RAG routine to filter tables for context retrieval. However, since the inbuilt vector store
tables only use the predefined column names, if you change a column name used for filtering tables, the
inbuilt vector store tables are filtered out and not used for context retrieval.

The example in this section uses the following table:

nysqgl > CREATE TABLE deno_ninil mtable (id | NT AUTO | NCREMENT, deno_text_col umm TEXT, primary key (id));
nmysql > | NSERT | NTO deno_nini | mtabl e (deno_text_col um)

VALUES(' MySQL is an open-source RDBMS that is widely used for its scalability, reliability, and security."]
nmysqgl > | NSERT | NTO deno_nini | mtabl e (deno_text_col um)

VALUES(' Al refers to the devel opnent of machines that can think and act |ike humans.');

nmysqgl > | NSERT | NTO deno_nini | mtabl e (deno_text_col um)

VALUES(' ML is a subset of Al that uses algorithns and statistical nodels to inprove performance on tasks b
nysqgl > CALL sys. M._EMBED TABLE(' denp_db. denp_mi ni | m t abl e. denp_t ext _col um', 'denp_db. deno_mini | m t abl e. dei
JSON_OBJECT( ' model _id', "all_mnilml12_v2'));

To run RAG, perform the following steps:

1. Optionally, to speed up vector processing, load the embedding table in the MySQL Al Engine (Al
engine):

nysqgl > ALTER TABLE Enbeddi ngTabl eNane SECONDARY_LOAD,
Replace Enbeddi ngTabl eNane with the embedding table name.

For example:

nysqgl > ALTER TABLE denp_ni ni | m t abl e SECONDARY_LOAD,

This accelerates processing of vector distance function used to compare vector embeddings and
generate relevant output later in this section.

2. To change the column names to use to filter tables for context retrieval, then set the routine options as
shown below:

nysql > SET @ptions = JSON_OBJECT(
"vector_store_colums", JSON OBJECT("segnment", "TextSegnentColumNane", "segment_enbeddi ng", "VectorE
"enbed_nodel _i d", "Enmbeddi ngibdel Nane",
"model _options”, JSON OBJECT("I| anguage", "Language")

)5

Replace the following:

* Text Segnent Col unmNane: the name of the embedding table column that contains the text
segments in natural language. Default value is segnent .

e Vect or Enbeddi ngCol unmNane: the name of the embedding table column that contains vector
embeddings of the natural-language text segments. Default value is segnent _enbeddi ng.

e Enbeddi ngMbdel Nane: the name of the embedding model to use to generate the vector
embeddings for the input query. The routine uses this embedding model name to find relevant
tables for context retrieval. Default value is m ni | mif the output language is set to English and
mul tilingual -e5-snall if the output language is set to a language other than English.

For possible values, to view the list of available embedding models, see In-Database Embedding
Model.
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e Language: the two-letter | SO 639- 1 code for the language you want to use for generating the
output. The nodel _opt i on option parameter | anguage is required only if you want to use a
language other than English. Default language is en, which is English. To view the list of supported
languages, see Languages.

For example:

nysql > SET @ptions = JSON_OBJECT(
"vector_store_colums", JSON OBJECT("segnment", "denmp_text_columm", "segnment_enbeddi ng", "deno_enbeddi ng_c
"enbed_nodel _id", "all_minilml12 v2", "nodel _options", JSON OBJECT("|anguage", "en")

)

In this example, all embedding tables containing a string column deno_t ext _col unm and a vector
column deno_enbeddi ng_col umm, which contains vector embeddings fromal | _nmnilml 12 v2,
are used for context retrieval.

Similarly, you can use the vect or _st or e_col unms parameter to specify the following column names
for the routine to filter relevant tables for context retrieval:

e docunent _nane: name of a column containing the document names. This column can be of any
data type supported by MySQL. Default value is docunent _nane.

e docunent _i d: name of an integer column containing the document IDs. Default value is
document _i d.

« et adat a: name of a JSON column containing additional table metadata. Default value is
nmet adat a.

e segnent _nunber : name of an integer column containing the segment numbers. Default value is
segnent _nunber.

Since these are optional columns, if these column values are not set, then the routine does not use
these columns to filter tables.

3. To define your natural-language query, set the @uer y variable:
SET @uer y="AddYour Query";
Replace AddYour Quer y with your natural-language query.
For example:
nysql > SET @uery="Wat is AutoM.?";
4. To retrieve the augmented prompt and generate the output, use the M__ RAGroutine:
nysql > CALL sys. M._RAG @uery, @ut put, @ptions);
5. Print the output:
nysql > SELECT JSON_PRETTY( @ut put) ;
The output is similar to the following:

[ {

"text": "\nBased on the context, AutoM. stands for Automated Machine Learning. It is a subset of Al that
"license": "Your use of this Llama npodel is subject to the Llanma 3.2 Conmunity License Agreenent avail abl
"citations": [

{
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"segnent”: "Al refers to the devel opnent of machines that can think and act |ike humans.",
"di stance": 0.733,
"docunent _nane":

s

{
"segnment”: "M is a subset of Al that uses algorithms and statistical nodels to inprove perfornan
"di stance": 0.7375,
"docunent _nane":

s

{
"segnment”: "MySQL is an open-source RDBMS that is widely used for its scalability, reliability, a
"di stance": 0.8234,
"docunent _nane":

}

I
"vector_store": [
"*denp_db" . "demp_ninilmtable "

I
“retrieval _info": {
“met hod": "n_citations",
“threshol d': 0.8234

}
b

The vect or _st or e section lists the name of the embedding table that is used to retrieve context for
generating the output.

Using Embeddings From an Embedding Model Not Available in GenAl

To use a table containing vector embeddings from an embedding model that is not available in GenAl, the
ML_RAGroutine lets you provide the vector embedding of the input query and the name of the embedding
model that you used to embed the input query as well as the vector embeddings stored in your embedding
table. When you provide the vector embedding of the input query, the routine skips embedding the query
and proceeds with the similarity search, context retrieval, and RAG. However, in this case, you cannot use
the inbuilt vector store tables for context retrieval.

The example in this section uses the following table:

nysql > CREATE TABLE deno_table (id | NT AUTO | NCREMENT,

deno_t ext TEXT,

string_enbeddi ng TEXT,

deno_enbeddi ng VECTOR (3) COMMVENT ' GENAI _OPTI ONS=EMBED _MODEL _| D=deno_enbeddi ng_nodel ' ,

primary key (id));

nmysqgl > | NSERT | NTO denp_t abl e (deno_text, string_enbeddi ng)

VALUES(' MySQL is an open-source RDBMS that is widely used for its scalability, reliability, and security.",
nmysqgl > | NSERT | NTO deno_t abl e (deno_text, string_enbeddi ng)

VALUES(' Al refers to the devel opnent of nmachines that can think and act |ike humans.', '[0,0,1]");

nmysqgl > | NSERT | NTO denp_t abl e (deno_text, string_enbeddi ng)

VALUES(' ML is a subset of Al that uses algorithns and statistical nodels to inprove performance on tasks b
nysql > UPDATE deno_t abl e SET denp_enbeddi ng=STRI NG_TO VECTOR( st ri ng_enbeddi ng) ;

nmysql > ALTER TABLE denp_t abl e DROP COLUWN st ri ng_enbeddi ng;

To run RAG using a table that contains vector embeddings from an embedding model that is not available
in GenAl, perform the following steps:

1. Optionally, to speed up vector processing, load the embedding table in the Al engine:

nysql > ALTER TABLE Enbeddi ngTabl eName SECONDARY_LQAD;
Replace Enbeddi ngTabl eNane with the embedding table name.

For example:

nysql > ALTER TABLE denp_t abl e SECONDARY_LOAD;
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This accelerates processing of vector distance function used to compare vector embeddings and
generate relevant output later in this section.

Provide the vector embedding of the input query:

SET @uery_enbeddi ng = to_base64(string_to_vector (' Vector Enbeddi ngOf TheQuery'));
Replace Vect or Enbeddi ngOf TheQuer y with the vector embedding of your input query.
For example:

nmysql > SET @uery_enbedding = to_base64(string_to_vector('[0,1,0]"));

To specify column names for the M__ RAG routine to find relevant tables for context retrieval, set the
routine options:

nysql > SET @ptions = JSON_OBJECT(

"vector_store_colums", JSON OBJECT("segment", "TextSegnentColummNane", "segnent_enbeddi ng",

"enbed_nodel _i d", "Enmbeddi ngibdel Nane",

"query_enbeddi ng", @uery_enbeddi ng,

"model _options", JSON OBJECT("I| anguage", "Language")
)

Replace the following:

e Text Segnent Col utmmNane: the name of the embedding table column that contains the text
segments in natural language.

e Vect or Enbeddi ngCol unmNane: the name of the embedding table column that contains vector
embeddings of the natural-language text segments.

e Enbeddi ngMbdel Name: the name of the embedding model that you used to generate the vector
embeddings for the input query and embedding tables.

e Language: the two-letter | SO 639- 1 code for the language you want to use for generating the
output. The nodel _opt i on option parameter | anguage is required only if you want to use a
language other than English. Default language is en, which is English. To view the list of supported
languages, see Languages.

For example:

nysql > SET @ptions = JSON_OBJECT(

"Vect or Enbec

"vector_store_colums", JSON OBJECT("segment", "denp_text", "segnment_enbeddi ng", "deno_enbeddi ng"),

"enbed_nodel _id", "deno_enbeddi ng_nodel ",

"query_enbeddi ng", @uery_enbeddi ng,

"model _options", JSON OBJECT("|anguage", "en")
)

In this example, embedding tables containing a string column deno_t ext and a vector column

deno_enbeddi ngs which contains vector embeddings from deno_enbeddi ng_nodel are used for

context retrieval.

Similarly, you can use the vect or _st or e_col unms parameter to specify the following column names

for the routine to filter relevant tables for context retrieval:

e docunent nane: name of a column containing the document names. This column can be of any
data type supported by MySQL.

e docunent _i d: name of an integer column containing the document IDs.
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« et adat a: name of a JSON column containing additional table metadata.

* segnent _nunber : name of an integer column containing the segment numbers.

Since these are optional columns, if these column values are not set, then the routine does not use
these columns to filter tables.

To define your natural-language query, set the @uer y variable:
SET @uer y="AddYour Query";

Replace AddYour Quer y with your natural-language query.

For example:

nysqgl > SET @uery="\Wat is AutoM.?";

To retrieve the augmented prompt, use the M__ RAGroutine:
nysqgl > CALL sys. M._RAG( @uery, @ut put, @ptions);

Print the output:

nysql > SELECT JSON_PRETTY( @ut put ) ;

The output is similar to the following:

| {
"text": "\nBased on the context, AutoM. stands for Autonated Machine Learning. It is a subset of Al t
"license": "Your use of this Llama nodel is subject to the Llama 3.2 Conmmunity License Agreement avai
"citations": [
{
"segnment”: "MySQL is an open-source RDBMS that is widely used for its scalability, reliability, a
"di stance": 0.0,
"docunent _nane":
IE
{
"segnment”: "M is a subset of Al that uses algorithnms and statistical nodels to inprove perfornan
"di stance": 0.2929,
"docunent _nane":
IE
{
"segnent": "Al refers to the devel opnent of machines that can think and act |ike humans.",
"di stance": 1.0,
"docunent _nane":
}

s
"vector_store": [
"“denp_db" . denp_table "

]

etrieval _info": {
"met hod": "n_citations",
“threshold": 1.0

The vect or _st or e section lists the name of the embedding table that is used to retrieve context for

generating the output.
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Using Your Embedding Table With a Vector Store Table

By default, the M._RAGroutine uses all predefined columns and column names available in the inbuilt
vector store table to filter tables for context retrieval. This means that if your embedding table does not
contain all columns that are available in an inbuilt vector store table, then your embedding table is filtered
out and is not used for context retrieval by the routine.

Therefore, if you want to use an inbuilt vector store table along with your own embedding table for context
retrieval, your embedding table must satisfy the following additional requirements:

 Since the inbuilt vector store tables, use predefined column names, the column names in your
embedding tables must match the predefined inbuilt vector store table column names as given below:

e segnent : name of the mandatory string column containing the text segments.

* segnment _enbeddi ng: name of the mandatory vector column containing the vector embeddings of
the text segments.

e docunent _nane: name of the optional column containing the document names. This column can be
of any data type supported by MySQL.

e docunent _i d: name of the optional integer column containing the document IDs.
e net adat a: name of the optional JSON column containing metadata for the table.
e segnent _nunber : name of the optional integer column containing segment number.

* The vector embeddings in your embedding table must be from the same embedding model as the vector
store table.

The example in this section uses the vector store table deno_enbeddi ngs created in the section

Ingesting Files into a Vector Store, which has been loaded into the Al engine, with the following table:

nmysql > CREATE TABLE denp_e5_table (id | NT AUTO | NCREMENT, segment TEXT, prinmary key (id));

mysql > | NSERT | NTO deno_e5_t abl e (segnent)

VALUES(' MySQL is an open-source RDBMS that is widely used for its scalability, reliability, and security.');
mysql > | NSERT | NTO deno_e5_t abl e (segnent)

VALUES(' Al refers to the devel opnent of machines that can think and act |ike humans.');

mysql > | NSERT | NTO deno_e5_t abl e (segnent)

VALUES(' Machine learning is a subset of Al that uses algorithnms and statistical nodels to inprove perfornance
mysql > CALL sys. M._EMBED TABLE(' deno_db. denp_e5_t abl e. segnent', 'deno_db. denp_e5_t abl e. segnent _enbeddi ng' ,
JSON_OBJECT( ' nodel _id', '"multilingual-e5-small'));

To run RAG using an inbuilt vector store table and your embedding table, perform the following steps:

1. Optionally, to speed up vector processing, load the embedding table in the Al engine:

nysql > ALTER TABLE Enbeddi ngTabl eName SECONDARY_LOAD;
Replace Enbeddi ngTabl eNane with the embedding table name.

For example:

mysql > ALTER TABLE denp_e5_t abl e SECONDARY_LOAD;

This accelerates processing of vector distance function used to compare vector embeddings and
generate relevant output later in this section.

2. Set the routine options:
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« If your embedding table contains all the mandatory and optional columns as the inbuilt vector store
table, then set the routine options as shown below:

nmysql > SET @ptions = JSON_OBJECT(
"enbed_nodel _i d", "Enmbeddi nghbdel Nane",
"model _options", JSON OBJECT("I| anguage", "Language"
)

Dk

« Enbeddi ngModel Nane: the name of the embedding model to use to generate the vector
embeddings for the input query. The routine uses this embedding model name to find relevant
tables for context retrieval. Default value ismul ti | i ngual - e5-snal | .

For possible values, to view the list of available embedding models, see In-Database Embedding
Model.

« Language: the two-letter | SO 639- 1 code for the language you want to use for generating the
output. The nodel _opt i on option parameter | anguage is required only if you want to use a
language other than English. Default language is en, which is English. To view the list of supported
languages, see Languages.

For example:
nysqgl > SET @ptions = JSON OBJECT("enbed_nodel _id", "multilingual-e5-small", "nopdel options", JSON CE

« If your embedding table contains the same mandatory columns as that of an inbuilt vector store table,
similar to deno_e5 _t abl e, which are:

« A text column with the name segnent .

« A vector column segnent _enbeddi ng.

Then, set the routine options as shown below:

nmysql > SET @ptions = JSON_OBJECT(
"vector_store_colums", JSON OBJECT("segnment", "segnent", "segnent_enbeddi ng", "segnent_enbeddi ng")
"enbed_nodel _i d", "Enmbeddi nghbdel Nane",
"model _options", JSON OBJECT("I| anguage", "Language"
)i

For example:

nmysql > SET @ptions = JSON_OBJECT(
"vector_store_colums", JSON OBJECT("segnent", "segnent", "segnent_enbeddi ng", "segnent_enbeddi ng")
"enbed_nodel id", "multilingual -e5-small",
"nmodel _options", JSON OBJECT("| anguage", "en")

DE

In this example, both embedding tables and vector store tables that contain a string column
segnent and a vector column segnent _enbeddi ng which contains vector embeddings from
mul tilingual -e5-snmal | are used for context retrieval.
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3. To define your natural-language query, set the @uer y variable:

SET @uer y="AddYour Query";
Replace AddYour Quer y with your natural-language query.
For example:
nysql > SET @uery="Wat is AutoM.?";
4. To retrieve the augmented prompt and generate the output, use the M__ RAGroutine:
mysql > CALL sys. ML_RAG @uery, @ut put, @ptions);

5. Print the output:

nysql > SELECT JSON_PRETTY( @ut put);

The output is similar to the following:

| {
"text": "\nAut oM. (Autonated Machi ne Learning) is a machine |earning technique that automates the process
"license": "Your use of this Llama npdel is subject to the Llana 3.2 Conmmunity License Agreenent avail abl
"citations": [
{
"segnent": "\"segnent\": \"| { W\ "text\\\": \\\" AutoM. is a subfield of machine |earning that foc
"di stance": 0.0732,
"document _nanme": ""
i
{
"segment": "}, { \"segment\": \"| { WA "text\\\": \\\" AutoM. is a subfield of machine learning t
"di stance": 0.0738,
"document _nanme": ""
i
{
"segnent": "| { \"text\": \" AutoM. is a machine | earning technique that automates the process of s
"di stance": 0.0743,
"document _nanme": ""
}

4

"vector_store": [
"“denp_db" . deno_enbeddi ngs™ ",
"“denp_db . denp_e5 _table™"

4

"retrieval _info": {
"method": "n_citations",
"threshol d": 0.0743

}

oA

The vect or _st or e section lists the names of the vector store table, deno_enbeddi ngs, and
embedding table, deno_e5 t abl e that are used to retrieve context for generating the output.

Running Batch Queries

To run multiple RAG queries in parallel, use the M__RAG_TABLE routine. This method is faster than
running the ML_RAG routine multiple times.

To run the steps in this section, you can use the same sample table deno_e5_t abl e as section Using
Your Embedding Table With a Vector Store Table, and create the following table to store input queries for
batch processing:

nmysql > CREATE TABLE input _table (id INT AUTO | NCREVENT, |nput TEXT, prinmary key (id));
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mysql > | NSERT | NTO i nput _tabl e (Input) VALUES(' What is Heat Wave Lakehouse?');
mysql > | NSERT | NTO i nput _tabl e (lnput) VALUES(' What is Heat \Wave Aut oM.?');
mysql > | NSERT | NTO i nput _tabl e (Input) VALUES(' What is Heat Wave GenAl ?');

To run batch queries using ML_RAG_TABLE, perform the following steps:

1. To specify column names for the M._ RAG TABLE routine to find relevant tables for context retrieval, set
the routine options:

nmysql > SET @ptions = JSON_OBJECT(
"vector_store_colums", JSON OBJECT("segnment", "TextSegnentColumNane", "segment_enbeddi ng", "VectorE
"enbed_nodel _i d", "Enmbeddi ngibdel Nane",
"model _options", JSON OBJECT("I| anguage", "Language")

Nk

Replace the following:

e Text Segnent Col utmmNane: the name of the embedding table column that contains the text
segments in natural language. If multiple tables contain a string column with the same name, they
are all used for context retrieval. Default value is segnent .

e Vect or Embeddi ngCol urmNane: the name of the embedding table column that contains vector
embeddings of the natural-language text segments. If multiple tables contain a vector column with
the same name which contain embeddings from the specified embedding model, they are all used for
context retrieval. Default value is segnent _enbeddi ng.

« Enbeddi ngMbdel Nane: the name of the embedding model to use to generate the vector
embeddings for the input query. The routine uses this embedding model name to find tables
generated using the same model for context retrieval. Default value is m ni | mif the output language
is set to English and mul ti | i ngual - e5- snal | if the output language is set to a language other
than English.

e Language: the two-letter | SO 639- 1 code for the language you want to use for generating the
output. The nodel _opti on option parameter | anguage is required only if you want to use a
language other than English. Default language is en, which is English. To view the list of supported
languages, see Languages.

For example:

nmysql > SET @ptions = JSON_OBJECT(
"vector_store_colums", JSON OBJECT("segnment", "segment", "segnent_enbeddi ng", "segnent_enbeddi ng"),
"enbed_nodel _id", "multilingual -e5-small",

"model _options", JSON OBJECT("|anguage", "en")
Nk

In this example, only embedding tables containing a string column deno_t ext and a vector column
deno_enbeddi ngs which contains vector embeddings from mul ti | i ngual - e5-smal | are used

for context retrieval. Since the inbuilt vector store tables use predefined column names, if you change
the column names to any value other than the default value, then the vector store tables are filtered out
and are not used for context retrieval.

To learn more about the available routine options, see ML_RAG_TABLE Syntax.

Similarly, you can use the vect or _st or e_col unms parameter to specify the following column names
for the routine to filter relevant tables for context retrieval:

e docunent nane: name of a column containing the document names. This column can be of data
type supported by MySQL. Default value is docunent _nane.
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e docunent _i d: name of an integer column containing the document IDs. Default value is
docunent _i d.

< et adat a: name of a JSON column containing additional table metadata. Default value is
nmet adat a.

e segnment _nunber : name of an integer column containing the segment numbers. Default value is
segnent _nunber.

Since these are optional columns, if these column values are not set, then the routine does not use
these columns to filter tables.

If you are using an embedding model that is not available in GenAl, then you must also provide the
vector embeddings of the input queries. You can specify name of the input table column that contains
the vector embeddings of the input queries using the enbed_col unm parameter. However, in this
case, you cannot use the inbuilt vector store tables for context retrieval.

2. Inthe M._RAG _TABLE routine, specify the table columns containing the input queries and for storing
the generated outputs:

nysqgl > CALL sys. M._RAG TABLE(" | nput DBNane. | nput Tabl eNane. | nput Col utm", " Qut put DBName. Qut put Tabl eNane. Qut put

Replace the following:

e | nput DBNane: the name of the database that contains the table column where your input queries
are stored.

I nput Tabl eNane: the name of the table that contains the column where your input queries are
stored.

¢ | nput Col utm: the name of the column that contains input queries.

e Qut put DBNan®e: the name of the database that contains the table where you want to store the
generated outputs. This can be the same as the input database.

e Qut put Tabl eNane: the name of the table where you want to create a new column to store the
generated outputs. This can be the same as the input table. If the specified table doesn't exist, a new
table is created.

e Qut put Col unm: the name for the new column where you want to store the output generated for the
input queries.

For example:

nmysql > CALL sys. M._RAG TABLE("denop_db. i nput _table.lnput", "deno_db. output table.Qutput", @ptions);

View the contents of the output table:

nysqgl > SELECT * FROM out put _t abl e\ G

KAKK KKK KR KKK Kk ok kkkhkhkkkkhx ] [ QWY % % % % ok ok ok ok ok ok ok ok kK ok ok ok ok ok ko Kk ok kK

id: 1
Qutput: {"text": "\nHeat Wave Lakehouse is a feature of the Heat\Wave pl atform that enabl es query processing
“error": null,
"license": "Your use of this Llama npdel is subject to the Llama 3.2 Community License Agreenent avail able
“citations": [
{
"segment": M---------ii + | 1| {\"text\": \" Heat Wave Lakehouse is a feature of the He

“di stance": 0.0828,
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"docunent _nane":

h
{
fsegmENt " Mo + | 1| {\"text\": \" Heat\Wave Lakehouse
"di stance": 0.0863,
"docunent _nanme": ""
h
{
"segnment": "The Lakehouse feature of Heat\Wave enabl es query processing on data in Object Storag
"di stance": 0.1028,
"docunent _nanme": ""
}
I
"vector_store": [" denp_db" . denp_enbeddings ", " denp_db" . denp_e5 table "],

“retrieval _info": {"method": "n_citations", "threshold": 0.1028}}

KRKKK KKK KKK KKK KR KKKk hkkkk** D [ QWY % % % % ok ok ok ok ok ok ok ok kK ok ok ok ok ok kR ok kK kK

id: 2

Qutput: {"text": "\nHeat\Wave AutoM. is a feature of MySQL Heat Wave that makes it easy to use machine le

"error": null,
“citations": [

{
"segnment”: "| HeatWave AutoM. is a feature of MySQL Heat Wave that nmakes it easy to use nmachine
"di stance": 0.0561,
“docunent _nanme": ""
s
{
"segnent": "Heat\Wave shapes and scaling, and all HeatWave AutoM. makes it easy to use machine |
"di stance": 0.0573,
“docunent _nanme": ""
s
{
"segnment": "Heat WAve Aut oM. nmekes it easy to use machi ne | earning, whether you are a novice use
"di stance": 0.0598,
"docunent _nanme": ""
}
I
"vector_store": [" denp_db" . denp_enbeddings ", " denp_db". denp_e5 table "],

“retrieval _info": {"method": "n_citations", "threshold": 0.0598}}

ARKKK KK AR RK KKk hkkkkkkkkkkx* 3 [ QWY % % % % o ok ok ok ok ok ok ok kK ok ok ok ok ok Rk Kk ok kK

id: 3

Qutput: {"text": "\nHeat\Wave GenAl is a feature of Heat\Wave that enabl es natural |anguage communi cation

"error": null,
“citations": [

{
"segnment": "4.1 Heat Wve GenAl Overvi ew Heat Wave GenAl is a feature of Heat\Wave that lets you c
"di stance": 0.0521,
"docunent _nanme": ""
s
{
"segnment": "Chapter 3, HeatWave AutoM.. 1.4 Heat WAve CGenAl The Heat WAve CenAl feature of HeatWA
"di stance": 0.0735,
"docunent _nanme": ""
s
{
"segnment": "Heat Wave Chat al so provides a graphical interface integrated with the Visual Studio
"di stance": 0.0781,
“docunent _nanme": ""
}
I
"vector_store": [" denp_db" . denp_enbeddings ", " denp_db’ . denp_e5 table "],

“retrieval _info": {"method": "n_citations", "threshold": 0.0781}}

The output table generated using the M._RAG_TABLE routine contains an additional details for error
reporting. In case the routine fails to generate output for specific rows, details of the errors encountered
and default values used are added for the rows in the output column.
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Cleaning Up
If you created a new database for testing the steps in this topic, delete the database to free up space:
nysqgl > DROP DATABASE deno_db;

What's Next

Learn how to Start a Conversational Chat.

5.9 Starting a Conversational Chat

You can use GenAl Chat to simulate human-like conversations where you can get responses for multiple
gueries in the same session. GenAl Chat is a conversational agent that utilizes large language models
(LLMs) to understand inputs and responds in natural manner. It extends the text generation by using a chat
history that lets you ask follow-up questions, and uses the vector search functionality to draw its knowledge
from the inbuilt vector store. The responses generated by GenAl Chat are quick and secure as all the
communication and processing happens within MySQL Al service.

The sections in this topic describe how to run and manage GenAl Chat.

5.9.1 Running GenAl Chat

When you run GenAl Chat, it automatically loads the | | ama3. 2- 3b-i nstruct-v1 LLM.

By default, GenAl Chat searches for an answer to a query across all ingested documents by automatically
discovering available vector stores, and returns the answer along with relevant citations. You can limit the
scope of search to specific document collections available in certain vector stores or specify documents to
include in the search.

GenAl Chat also lets you use your own embedding tables for context retrieval. And, it uses only the name
of the embedding model used to embed the input query to find relevant tables.

If you do not have a vector store or an embedding table set up, then GenAl Chat uses information available
in public data sources to generate a response for your query.

This topic contains the following sections:
» Before You Begin
* Running the Chat
» What's Next
Before You Begin
» Review the GenAl requirements.

» To extend the vector search functionality and ask specific questions about the information available in
your proprietary documents stored in the vector store, complete the steps to set up a vector store.

In this topic, the HEATWAVE CHAT routine uses the vector store table deno_enbeddi ngs created in the
section Ingesting Files into a Vector Store for context retrieval.

» To use your own embedding table for context retrieval, create a table that satisfies the following criteria:

« The table must contain the following columns:
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A string column containing the text segments.
« A vector column containing the vector embeddings of the text segments.

« A comment on the vector column must specify the name of the embedding model used to generate the
vector embeddings.

e The vector embeddings in your embedding table must be from an embedding model supported by
GenAl. To view the list of available embedding models, see In-Database Embedding Model.

Following is an example of a valid embedding table that can be used for context retrieval:

nmysql > CREATE TABLE denp_table (id |INT AUTO | NCREVENT, deno_text TEXT, prinmary key (id));

mysqgl > | NSERT | NTO deno_t abl e (denp_text) VALUES(' What is MySQL?");

nmysqgl > | NSERT | NTO deno_t abl e (denp_text) VALUES(' What is Heat Wave?');

nmysqgl > | NSERT | NTO deno_t abl e (denp_text) VALUES(' What is Heat Wave GenAl ?');

nmysqgl > CALL sys. M._EMBED TABLE(' denp_schema. deno_t abl e. denp_text', 'denp_schema. deno_t abl e. deno_enbedd
JSON_OBJECT(' nodel _id', '"all_mnilml12_v2'));

To learn how to generate vector embeddings and embedding tables, see Generating Vector
Embeddings.

If you want to use both inbuilt vector store tables and your own embedding tables for context retrieval,
your embedding table must satisfy the following additional requirements:

 Since the inbuilt vector store tables, use predefined column names, the column names in your
embedding tables must match the predefined inbuilt vector store table column names as given below:

« segnent : name of the mandatory string column containing the text segments.

e segnent _enbeddi ng: name of the mandatory vector column containing the vector embeddings of
the text segments.

e docunent nane: name of the optional column containing the document names. This column can
be of any data type supported by MySQL.

« docunent _i d: name of the optional integer column containing the document IDs.
« net adat a: name of the optional JISON column containing metadata for the table.
e segnent _nunber : name of the optional integer column containing segment number.

* The vector embeddings in your embedding table must be from the same embedding model as the
vector store table.

Running the Chat

To run GenAl Chat, perform the following steps:

1. Optionally, to speed up vector processing, load the vector store or embedding tables that you want use
with GenAl Chat in MySQL Al Engine:

nysql > ALTER TABLE Tabl eNane SECONDARY_LOAD;
Replace Tabl eNane with the name of the vector store table.

For example:
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mysql > ALTER TABLE deno_db. deno_enbeddi ngs SECONDARY_LOAD;

This accelerates processing of vector distance function used to compare vector embeddings and
generate relevant output later in this section.

To delete previous chat output and state, if any, reset the @hat _opt i ons variable:

nysql > SET @hat _opti ons=NULL;

HEATWAVE_CHAT routine reserves this variable for specifying and saving

Note
@ Ensure that you use the name @hat _opt i ons for the variable. The
various chat parameter settings.

Optionally, set the @hat _opt i ons variable in the following scenarios:

* To use a language other than English, set the | anguage model option:

nysqgl > SET @hat_opti ons = JSON OBJECT("nopdel _options", JSON OBJECT("| anguage", "Language"));

Replace Language with the two-letter | SO 639- 1 code for the language you want to use. Default
language is en, which is English. To view the list of supported languages, see Languages.

For example, to use French set | anguage tofr:
nmysqgl > SET @hat_options = JSON OBJECT("nodel _options", JSON OBJECT("| anguage", "fr"));
This resets the @hat _opt i ons variable, and specifies the language for the chat.

« To use your own embedding tables for context retrieval, change the column names used by the
HEATWAVE_CHAT routine to filter tables by setting the vect or _st or e_col unms parameter;

nmysqgl > SET @hat _options = JSON_OBJECT(

"vector_store_colums", JSON OBJECT("segnment", "TextSegnentCol utmNane", "segnent_enbeddi ng",

"enbed_nodel _i d", "Enmbeddi nghbdel Nane"
Dk

Replace the following:

e Text Segnent Col utmNane: the name of the embedding table column that contains the text
segments in natural language. If multiple tables contain a string column with the same name, they
are all used for context retrieval. Default value is segnent .

« Vect or Enbeddi ngCol unmNane: the name of the embedding table column that contains vector
embeddings of the natural-language text segments. If multiple tables contain a vector column with
the same name which contain embeddings from the specified embedding model, they are all used
for context retrieval. Default value is segnent _enbeddi ng.

« Enbeddi ngMbdel Nane: the name of the embedding model to use to generate the vector
embeddings for the input query. The routine uses this embedding model name to find tables
generated using the same model for context retrieval. By default, the routine uses m ni | mif the
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output language is set to English and mul ti | i ngual - e5- smal | if the output language is set to a
language other than English.

By default, the routine uses all the predefined vector store column names to filter tables for context

retrieval.
For example:
nmysqgl > SET @hat _options = JSON_OBJECT(
"vector_store_colums", JSON OBJECT("segnment", "denp_text", "segnment_enbeddi ng", "deno_enbeddi ngs")

"enbed_nodel _id", "all_mnilml12_v2"

)i

This resets the @hat _opt i ons variable to specify the column names used for filtering tables for
context retrieval. In this example, all embedding tables containing a string column deno_t ext and a
vector column deno_enbeddi ngs which contains vector embeddings fromal | _minilml 12 v2
are used for context retrieval.

However, since the inbuilt vector store tables use predefined column names, if you change a column
name used for filtering tables to any value other than the default value, the inbuilt vector store tables
are filtered out and are not used for context retrieval.

4. Then, add your query to GenAl Chat by using the HEATWAVE CHAT routine:

CALL sys. HEATWAVE_CHAT( " Your Query");

For example:

nmysql > CALL sys. HEATWAVE CHAT("What i s Heat Wve AutoM.?");

The output looks similar to the following:

Heat Wave AutoM. i s an automated machine | earning (AutoM.) platformthat uses a conbinati on of human-in-
Here's a brief overview

**Key Features:**

1. **Automated Mbdel Sel ection**: Heat \Wave AutoM. al l ows users to sel ect the best-perform ng nodel for
2. **Hyperparaneter Tuning**: The platformautomatically tunes hyperparaneters for the sel ected nodel,
3. **Data Preprocessing**: Heat \WAve handl es data preprocessing tasks such as feature engineering, nornmm
4. **Model Training**: The platformtrains the sel ected nodel on the user's dataset and provides real -t
5. **Model Depl oynent**: Once a nodel is trained, Heat\Wave AutoM. deploys it to a cl oud-based environne
**Benefits:**

1. **Reduced Tine-to-Insight**: Automates the entire nmachine | earning workflow, saving users tine and e

2. **| nproved Model Performance**: Heat\Wave's automated process ensures that nodels are optimzed for p
3. **Increased Col |l aboration |

Repeat this step to ask follow-up questions using the HEATWAVE CHAT routine:

nysql > CALL sys. HEATWAVE_CHAT("What | earning al gorithnms does it use?");

The output looks similar to the following:

Heat Wave is an AutoM. (Aut omated Machi ne Learning) platformthat uses a conbinati on of various nachine

Heat Wave is built on top of several popul ar open-source |ibraries and franmeworks, including:
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1. **Scikit-learn**: A widely-used Python library for machine | earning that provides a variety of algorithn
2. **Tensor Fl owr*: An open-source nachi ne | earning franework devel oped by Googl e that provides tools for bt
3. **PyTorch**: Anot her popul ar open-source machine | earning framework that provides a dynam c conputation

Sone common machine | earning algorithms used in AutoM. platfornms |ike Heat\Wave i ncl ude:

1. **Random Forest**: An ensenbl e nmethod that combines nmultiple decision trees to inprove the accuracy and
2. **G adient Boosting**: A type of ensenble nmethod that uses gradi ent descent to optim ze the weights of i
3. **Support Vector Machines (SVMs)**: A supervised |earning algorithm |

What's Next

Learn how to View Chat Session Details.

5.9.2 Viewing Chat Session Details
This topic describes how to view a chat session details. It contains the following sections:
» Before You Begin
* Viewing Details
* What's Next
Before You Begin
» Complete the steps to run GenAl Chat.
Viewing Details
To view the chat session details, inspect the @hat _opt i ons variable:
nmysql > SELECT JSON_PRETTY( @hat _opti ons);
The output includes the following details about a chat session:
» Vector store tables: in the database which were referenced by GenAl Chat.

» Text segments: that were retrieved from the vector store and used as context to prepare responses for
your queries.

Chat history: which includes both your queries and responses generated by GenAl Chat.

LLM details: which was used by the routine to generate the responses.

The output looks similar to the following:

I {
"tables": [
"tabl e_nanme": " deno_enbeddi ngs™",
"schema_nane": " deno_db™"
}
Il
"response": "\nThe output of the foll owup question is:\n| HeatWave AutoM. uses a variety of nmachine |earnin
"docunment s": [
{
"id": "/export/home/tnp/ nmysql-fil es/deno-directory/ heatwave-en. pdf",
"title": "heatwave-en. pdf",
"segnment": "Repeat this step to ask foll owup questions using the HEATWAVE CHAT routi ne:\nCALL sys. HEATW
"di stance": 0.0622
b
{

216



Generating SQL Queries From Natural-Language Statements

"id": "/export/home/tnp/ nmysql-fil es/deno-directory/ heatwave-en. pdf ",

"title": "heatwave-en. pdf",
"segnment": "Heat Wave AutoM. nakes it easy to use machi ne | earni ng, whether you are a novice user or
"di stance": 0.0646
iE
{
"id": "/export/home/tnp/ nmysql-fil es/deno-directory/ heatwave-en. pdf ",
"title": "heatwave-en. pdf",
"segnment": "Heat Wave shapes and scaling, and all HeatWave AutoM. nmekes it easy to use nachi ne | earni!
"di stance": 0.0679
}
Il
“chat _history": [
{
"user_message": "What is Heat Wave Aut oM_?",
"chat _query_id": "7aa7824c-5d8a-11f0-a2c5-020017192bel",
"chat _bot _nmessage": "\nHeat\Wave AutoM. is a feature of MySQL Heat WAve that makes it easy to use machi
iE
{
"user_message": "What |earning algorithnms does it use?",
"chat _query_id": "93730281-5d8a- 11f 0- a2c5- 020017192bel",
"chat _bot _nessage": "\nThe output of the followup question is:\n| HeatWave AutoM. uses a variety of
}
Il
"model _options": {
"model _id": "Ilama3. 2-3b-instruct-v1"
iE
"request _conpl eted": true
o
What's Next

e Learn about Generating SQL Queries From Natural-Language Statements.

» See Chapter 8, MySQL Al Routines.

5.10 Generating SQL Queries From Natural-Language Statements

GenAl lets you generate SQL queries from natural-language statements, making it easier for you to

interact with your databases. This feature collects information on the schemas, tables, and columns that

you have access to, and then uses a Large Language Model (LLM) to generate an SQL query for the

guestion pertaining to your data. It also lets you run the generated query and view the result set.

This topic describes how to use the NL_SQL routine to generate and run SQL queries from natural-
language statements.

Note
@ This routine can generate and run SELECT statements only.

This topic contains the following sections:
» Before You Begin
» Generating and Running an SQL Query

¢ What's Next

Before You Begin

» Review the GenAl requirements and privileges.
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Generating and Running an SQL Query

 Load structured data into the DB system.

The examples in this topic uses a sample database, ai r por t that you can download from the following
locations:

« https://downloads.mysqgl.com/docs/airport-db.tar.gz

e https://downl oads. nysql . conf docs/ ai rport-db. zip

Generating and Running an SQL Query

Perform the following step:

nmysqgl > CALL sys. NL_SQ.("Nat ur al LanguageSt at enent ", @ut put, JSON _OBJECT(' schemas', JSON_ARRAY(' DBNane' ), ' nodel _i
Replace the following:

* Nat ur al LanguagesSt at enent : natural-language statement. It can be a question, statement, or query
pertaining to your data available in MySQL HeatWave.

« DBNane: database to consider for generating and running the SQL query.
* Model | D: LLM to use.

For example:

mysql > CALL sys. NL_SQ.("How many flights are there in total ?", @ut put, JSON OBJECT('schenas', JSON_ARRAY(' ai r po

The output is similar to the following:

e +
| Executing generated SQL statenent... |
e +
| SELECT COUNT( flight_id) FROM "airportdb . flight |
e +

g +
| COUNT(“flight id) |
g +
| 462553 |
g +

View the value stored in the variable @ut put :

nmysql > SELECT JSON_PRETTY( @ut put) ;

"tables": [
"airportdb. weat her dat a",
"airportdb. enpl oyee",
"airportdb. passenger”,
"airportdb. airport",
"airportdb. ai rpl ane_t ype",
"airportdb.flight",
"airportdb.airline",
"airportdb. ai rport_geo",
"airportdb. ai rport_reachabl e",
"airportdb.flight_|og",
"airportdb. flightschedul e",
"ai rportdb. booki ng",
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"airportdb. airpl ane",
"airportdb. passengerdetail s"

Il
"license": "Your use of this Llama nodel is subject to the Llama 3.2 Conmmunity License Agreenment avail abl
"schemas": [
"airportdb"
]

"model _id": "llama3. 2-3b-instruct-vl",
"sqgl _query": "SELECT COUNT( flight_id ) FROM “airportdb™. flight ",
"is_sql _valid"': 1

The output includes the following details:

« List of tables the routine considered for generating and running the SQL query.

List of databases the routine considered for generating and running the SQL query.

Model ID of the LLM used to generate the SQL query.

» The generated SQL query.

Whether the query is valid.

What's Next

Learn more about the NL_SQL routine.
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MySQL Al lets you offload vector-based tables to the MySQL Al Engine for accelerated processing of

queries that uses at least one of the vector functions. The MySQL Performance Schema collects statistics

on the usage of the Al engine and different functions that you perform with MySQL Al.

Use SQL queries to access this data and check the system status and performance.

6.1 MySQL Al Performance Schema Tables

MySQL Al Performance Schema tables provide information about Al nodes, and about tables and columns

that are currently loaded in the MySQL Al Engine (Al engine).

6.1.1 The rpd_column_id Table

The r pd_col unn_i d table provides information about columns of tables that are loaded in the MySQL Al

Engine.
The r pd_col umm_i d table has these columns:
* ID
A unique identifier for the column.
e TABLE_ I D
The ID of the table to which the column belongs.
« COLUWN_NAME
The column name.

The r pd_col unn_i d table is read-only.

6.1.2 The rpd_columns Table

The r pd_col unns table provides column encoding information for columns of tables loaded in the MySQL

Al Engine.
The r pd_col umms table has these columns:

e TABLE I D
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A unique identifier for the table.

COLUWN_| D

A unique identifier for the table column.

NDV

The number of distinct values in the column.
ENCODI NG

The type of encoding used.

DATA PLACEMENT _| NDEX

The data placement key index ID associated with the column. Index value ranges from 1 to 16. NULL
indicates that the column is not defined as a data placement key.

DI CT_SI ZE_BTYES

The dictionary size per column, in bytes.

The r pd_col unms table is read-only.

6.1.3 The rpd_ml_stats Table

Therpd_m _st at s table tracks the usage of successful MySQL Al routines. These metrics reset
whenever the respective DB system restarts.

The following AutoML routines are tracked:

M._TRAI N
M__EXPLAI N
M__PREDI CT_ROW
M__PREDI CT_TABLE
M__EXPLAI N_ROW

M._EXPLAI N_TABLE

The following GenAl routines are tracked:

M._GENERATE

M._EMVBED ROW

Therpd_ml _st at s table has these columns:

STATUS_NAME
Identifies the type of meter tracking usage.
STATUS_VALUE

Displays metrics for metering. Content is displayed in JSON format.
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Metrics in the table are entries as JSON values. The following metrics are used:
* n_cells
The total number of table cells processed by the AutoML routine for all invocations.
e n_cells_user_excl uded
The total number of table cells manually excluded for the AutoML routine.
e n_blob cells
The total number of table BLOB cells processed by the AutoML routine for all invocations.
 tabl e_size bytes
The total number of bytes of data processed by the AutoML routine for all invocations.
* bl ob_size_bhytes
The total number of bytes of BLOB/TEXT data processed by the AutoML routine for all invocations.
* nodel _size_bytes

The total number of bytes of data for the AutoML model that is trained. This includes any explainer
models. This metric only applies to the M__TRAI Nand M._ EXPLAI N AutoML routines. All other routines
will display NULL values.

e input_size_bytes
The cumulative size in bytes of all input string/document invocations ingested by the GenAl routine.
e context_size_bytes

The size in bytes of the context string referenced when generating the response. This metric only applies
to the ML GENERATE GenAl routine since the ML_ EMBED ROWroutine does not have context. The metric
will still appear for M_ENMBED_ROW but will display a value of 0.

e output_size_bytes

The cumulative size in bytes of responses generated by all invocations for the GenAl routine.
* n_invocations

The total number of times the routine has been successfully invoked on the MySQL Al Engine.
e | ast _updated_ti nmestanp

The POSIX timestamp of the last call.

6.1.4 The rpd_nodes Table

MySQL Al supports only one Al node. The r pd_nodes table provides information about the Al node.
The r pd_nodes table has these columns:
e ID

A unique identifier for the MySQL Al Engine (Al engine).
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« CORES
The number of cores used by the Al engine.
« MEMORY_USAGE

Node memory usage in bytes. The value is refreshed every four seconds. If a query starts and finishes in
the four seconds between refreshes, the memory used by the query is not accounted for in the reported
value.

« MEMORY_TOTAL
The total memory in bytes allocated to the Al engine.
» BASEREL_MEMORY_USAGE
The base relation memory footprint per node.
» STATUS
The status of the Al engine. Possible statuses include:
* NOTAVAI L_RNSTATE
Not available.
* AVAI L_RNSTATE
Available.
* DOWN_RNSTATE
Down.
 DEAD RNSTATE
The node is not operational.
< 1P
IP address of the Al engine.
« PORT
The port on which the Al engine was started.
« CLUSTER_EVENT_NUM
The number of cluster events such as node down, node up, and so on.
« NUM OBJSTORE_GETS
Number of GET requests from the Al engine to the disk.
« NUM OBJSTORE_PUTS
The number of PUT requests from the Al engine to the disk.

* NUM OBJSTORE_DELETES

224



The rpd_table_id Table

The number of DELETE requests from the Al engine to the disk.
« M__STATUS

AutoML status. Possible status values include:

« UNAVAI L_M_STATE: AutoML is not available.

e AVAI L_M_STATE: AutoML is available.

« DOMN_M_STATE: AutoML declares the node is down.
The r pd_nodes table is read-only.

The r pd_nodes table may not show the current status for a new node or newly configured node
immediately. The r pd_nodes table is updated after the node has successfully joined the cluster.

6.1.5 The rpd_table_id Table

The r pd_t abl e_i d table provides the ID, hame, and schema of the tables loaded in the MySQL Al
Engine.

The r pd_t abl e_i d table has these columns:
* |ID
A unique identifier for the table.
* NAME
The full table name including the schema.
« SCHEMA NANE
The schema name.
 TABLE_NAME
The table name.

The rpd_t abl e_i d table is read-only.

6.1.6 The rpd_tables Table

The r pd_t abl es table provides the system change number (SCN) and load pool type for tables loaded in
the MySQL Al Engine (Al engine).

The r pd_t abl es table has these columns:
* ID

A unique identifier for the table.
* SNAPSHOT_SCN

The system change number (SCN) of the table snapshot. The SCN is an internal number that represents
a point in time according to the system logical clock that the table snapshot was transactionally
consistent with the source table.
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* PERSI STED_SCN
The SCN up to which changes are persisted.
« POOL_TYPE
The load pool type of the table. Possible values are SNAPSHOT and TRANSACTI ONAL.
 DATA PLACEMENT_TYPE
The data placement type.
¢ NROWS

The number of rows that are loaded for the table. The value is set initially when the table is loaded, and
updated as changes are propagated.

« LOAD STATUS
The load status of the table. Statuses include:
* NOLOAD_RPDGSTABSTATE
The table is not yet loaded.
¢ LOADI NG_RPDGSTABSTATE
The table is being loaded.
* AVAI L_RPDGSTABSTATE
The table is loaded and available for queries.
¢ UNLOADI NG_RPDGSTABSTATE
The table is being unloaded.
* | NRECOVERY_RPDGSTABSTATE

The table is being recovered. After completion of the recovery operation, the table is placed back in
the UNAVAI L_RPDGSTABSTATE state if there are pending recoveries.

e STALE RPDGSTABSTATE
A failure during change propagation, and the table has become stale.
e UNAVAI L_RPDGSTABSTATE
The table is unavailable.
« LOAD PROGRESS
The load progress of the table expressed as a percentage value.
« S| ZE_BYTES
The amount of data loaded for the table, in bytes.

* NROWE:
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The number of rows loaded to the external table.
« QUERY_COUNT
The number of queries that referenced the table.
* LAST_QUERI ED
The timestamp of the last query that referenced the table.
« LOAD START_TI MESTAMP
The load start timestamp for the table.
« LOAD END TI MESTAMP
The load completion timestamp for the table.
* RECOVERY_SOURCE
Indicates the source of the last successful recovery for a table.
 RECOVERY_START_TI MESTAMP
The timestamp when the latest successful recovery started.
« RECOVERY_END TI MESTAMP
The timestamp when the latest successful recovery ended.

The r pd_t abl es table is read-only.

6.2 Option Tracker

The Option Tracker component provides usage information about different features and components of
MySQL Al.

For more information, see Option Tracker Component.
The integer flag usedCount er is incremented in real-time and persisted to storage every hour.

« Theoption_tracker_usage_get () function returns a value similar to the following:

nysql > SELECT option_tracker_usage_get (' Berry Picker');

L L +
| option_tracker_usage_get (' Berry Picker') |
L L +
| {"usedCounter": 30, "usedDate": "2025-14-16T09: 14:417"} |
L L +

» Theoption_tracker usage_ set () function accepts JISON-formatted string similar to the following
for the usage_dat a argument:

{
"usedCounter": "integer"
"usedDate": "|S0B601 date"

}
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Chapter 7 MySQL Al System and Status Variables

Table of Contents

7.1 System Variables

7.1 System Variables

MySQL Al maintains several variables that configure its operation.

* bul k_| oader. data_nenory_si ze

Command-Line Format --bul k_| oader. data_nenory_si ze=#
System Variable bul k_| oader. data_nenory_si ze
Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value (0.125) * #menory GB

Minimum Value 67108864

Maximum Value 1099511627776

Specifies the amount of memory to use for LOAD DATA with ALGORI THMEBULK, in bytes. See:

Section 3.1, “Bulk Ingest Data”.

e bul k_| oader. concurrency

System Variable

bul k_I oader. concurrency

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value (1/2) * #vcpus
Minimum Value 1

Maximum Value 1024

The maximum number of concurrent threads to use by one LOAD statement with ALGORI THVEBULK.

See: Section 3.1, “Bulk Ingest Data”.
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Chapter 8 MySQL Al Routines
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The sections in this chapter list and describe various routines available in MySQL Al

8.1 AutoML Routines

MySQL Al AutoML routines reside in the MySQL sys schema.

8.1.1 ML_TRAIN

Run the M__TRAI N routine on a training dataset to produce a trained machine learning model.
Before training models, make sure to review the following:

 Additional AutoML Requirements

» Supported Data Types for AutoML

* Train a Model

e Machine Learning Use Cases
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ML_TRAIN

This topic has the following sections. Refer to the appropriate sections depending on the type of machine
learning model you would like to train.

« ML_TRAIN Syntax

* Required ML_TRAIN Parameters

e Common ML_TRAIN Options

» Parameters to Train a Classification Model

» Syntax Examples for Classification Training

e Parameters to Train a Regression Model

» Syntax Examples for Regression Training

» Parameters to Train a Forecasting Model

» Syntax Examples for Forecast Training

» Parameters to Train an Anomaly Detection Model
» Syntax Examples for Anomaly Detection Training
» Parameters to Train a Recommendation Model

» Syntax Examples for Recommendation Training
» Parameters to Train a Model with Topic Modeling
» Syntax Examples for Topic Modeling Training

* ML_TRAIN and ML_EXPLAIN

» Additional Syntax Examples

* See Also

ML_TRAIN Syntax

mysql > CALL sys. ML_TRAIN ('tabl e_nanme', 'target_colum_nane', [options | NULL], nodel _handle);

options: {
JSON_OBJECT( " key", "val ue"[, "key", "val ue"] ...)
"key", "val ue": {

"task', {'classification'|'regression'|'forecasting'|'anomaly_detection'|'log_anonaly_detection'|'r
‘datetinme_index', 'colum']

' endogenous_vari abl es', JSON_ARRAY('colum'[,"'colum'] ...)]

' exogenous_vari abl es', JSON_ARRAY(' colum'[,"'colum'] ...)]

"nmodel _list', JSON_ARRAY(' nodel'[, ' nmodel'] ...)]

"exclude_nodel _list', JSON_ARRAY(' nodel'[, "' nodel'] ...)]

‘optim zation_netric', 'netric']

"include_colum_list', JSON ARRAY('colum'[,"'colum']
"exclude_colum_list', JSON _ARRAY(' columm'[,"'colum']

)]
)]

— —— — e e e e e

‘contamination', ‘'contam nation factor']

' supervi sed_subnodel _options', {'n_neighbors', 'N, 'mn_|labels', N']
' ensenbl e_score', 'ensenble netric']

‘users', 'users_colum']

"itens', 'itens_col um']

‘notes', 'notes_text']
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['feedback', {'explicit' ['inplicit'}]
[' feedback_t hreshold', 'threshold']
["item nmetadata', JSON OBJECT('table_nane'[,"'database_nane.table _name'] ...)]
['user_netadata', JSON OBJECT('table_nane'[,"'database_nane.table name'] ...)]
[' docunment _col um', ' col unm_nane' ]
['l ogad_options', JSON OBJECT(("key","value"[,"key","value"] ...)
"key", "val ue": {
[" addi tional _maski ng_regex', JSON_ARRAY('regul ar_expression'[,"'regul ar_expre:
['w ndow_size', 'N]
['w ndow_ stride', 'N]
['log_source_colum', 'colum']
[' enbeddi ng_nodel ', ' nodel ']
[' keywor d_nodel ', ' nodel ']
}

}
Required ML_TRAIN Parameters

Set the following parameters to train all machine learning models.

» tabl e_nane: The name of the table that contains the labeled training dataset. The table name must
be valid and fully qualified, so it must include the database name, dat abase nane. t abl e_nane. The
table cannot exceed 10 GB, 100 million rows, or 1017 columns.

e target_col um_nane: The name of the target column containing ground truth values.
AutoML does not support a text target column.

If training an unsupervised Anomaly detection model (unlabeled data), sett ar get _col unm_nane to
NULL.

Forecasting does not require t ar get _col urm_nane, and it can be set to NULL.

e nodel _handl e: A user-defined session variable that stores the machine learning model handle for the
duration of the connection. User variables are written as @ar _nane. Any valid name for a user-defined
variable is permitted. For example, @ry_nodel .

If you set a value to the nodel _handl e variable before calling M._TRAI N, that model handle is used for
the model. A model handle must be unique in the model catalog. We recommend this method.

If you don't set a value to the nodel _handl e variable, AutoML generates one. When ML_TRAI N
finishes executing, retrieve the generated model handle by querying the session variable. See Model
Handles to learn more.

Common ML_TRAIN Options

The following optional parameters apply to more than one type of machine learning task. They are
specified as key-value pairs in JSON format. If an option is not specified, the default setting is used. If no
options are specified, you can specify NULL in place of the JSON argument.

» t ask: Specifies the machine learning task.

e classification: The default value if a task is not set. Use this task type to assign items to defined
categories.

e regression: Use this task type if the target column is a continuous numerical value. This task
generates predictions based on the relationship between a dependent variable and one or more
independent variables.
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e forecasti ng: Use this task type if you have a date-time column that requires a timeseries forecast.
To use this task, you must set a target column, the date-time column (dat et i ne_i ndex), and
endogenous variables (endogenous_vari abl es).

« anonmal y_det ecti on: Use this task type to detect unusual patterns in data.
e | og_anonul y_det ect i on: Use this task to detect unusual patterns in log data.
e recommendat i on: Use this task type for generate recommendations for users and items.

e topi c_nodel i ng: Use this task to cluster word groups and similar expressions that best characterize
the documents.

» nodel _| i st: The type of model to be trained. If more than one model is specified, the best model type
is selected from the list. See Model Types.

This option cannot be used together with the excl ude_nodel _|i st option.

» exclude nodel |i st: Model types that should not be trained. Specified model types are excluded
from consideration during model selection. See Model Types.

This option cannot be specified together with the nodel _[ i st option.

e optim zation_netric: The scoring metric to optimize for when training a machine learning model.
The metric must be compatible with the t ask type and the target data. See Section 8.1.16, “Optimization
and Scoring Metrics”.

This is not supported for anonal y_det ect i on tasks. Instead, metrics for anomaly detection can only
be used with the M__ SCORE routine.

e include_colum_Iist:M._TRAI Nmustinclude this list of columns.

Forcl assi fication,regression,anonal y _detecti onandrecomendati on tasks,
i ncl ude_col um_|i st ensures that M._ TRAI Nwill not drop these columns.

For f orecast i ng tasks, i ncl ude_col unm_I i st can only include exogenous_vari abl es. If

i nclude _colum_|i st isincluded in the ML._TRAI N options for a f or ecast i ng task with at least
one exogenous_vari abl es, this forces M._ TRAI Nto only consider those models that support
exogenous_vari abl es.

All columns ini ncl ude_col unm_I i st must be included in the training table.
e exclude _col um_|i st : Feature columns of the training dataset to exclude from consideration when
training a model. Columns that are excluded using excl ude_col urm_| i st do not also need to be

excluded from the dataset used for predictions.

The excl ude_col unm_1 i st cannot contain any columns provided in endogenous_var i abl es,
exogenous_vari abl es,and i ncl ude_col umm_l i st.

* not es: Add notes to the nodel _net adat a for your own reference.
Refer to the following model-specific parameters to train different types of machine learning models.
Parameters to Train a Classification Model

To train a classification model, set the t ask to cl assi fi cati on.
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If the t ask is set to NULL, or if all training options is set to NULL, a classification model is trained by
default.

Syntax Examples for Classification Training

» The following example sets the model handle before training, which is good practice. See Defining Model
Handle. The t ask is setto cl assi fi cati on.

nysqgl > SET @ensus_nodel = 'census_nanual ';
nysqgl > CALL sys. ML_TRAI N(' census_dat a. census_train', 'revenue', JSON OBJECT('task', 'classification'), G

» The following example sets all options to NULL, so ML_TRAI Nruns the cl assi fi cati on task option by
default.

nysqgl > CALL sys. ML_TRAI N(' census_dat a. census_train', 'revenue', NULL, @ensus_nodel);
Parameters to Train a Regression Model
To train a regression model, set the t ask to r egr essi on.
Syntax Examples for Regression Training
» The following example specifies the r egr essi on task type.
nysqgl > CALL sys. ML_TRAIN(' nyc_taxi.nyc_taxi _train', '"tip_amunt', JSON OBJECT('task', 'regression'), @y
Parameters to Train a Forecasting Model
See the following to learn more about forecasting models:
» Forecasting Task Types
» Prediction Intervals
 Train a Forecasting Model
To train a forecasting model, setthe t ask to f or ecast i ng and set the following required parameters.

» dateti nme_i ndex: The column name for a datetime column that acts as an index for the forecast
variable. The column can be one of the supported datetime column types, DATETI MVE, TI MESTAMP,
DATE, Tl ME, and YEAR, or an auto-incrementing index.

The forecast models SARI MAXFor ecast er , VARMAXFor ecast er, and DynFact or For ecast er
cannot back test, that is forecast into training data, when using exogenous_var i abl es. Therefore,
the predict table must not overlap the dat et i ne_i ndex with the training table. The start date

in the predict table must be a date immediately following the last date in the training table when
exogenous_vari abl es are used. For example, the predict table has to start with year 2024 if the
training table with YEAR data type dat et i ne_i ndex ends with year 2023.

The dat et i me_i ndex for the predict table must not have missing dates after the last date in the
training table. For example, the predict table has to start with year 2024 if the training table with YEAR
data type dat et i me_i ndex ends with year 2023. The predict table cannot start with year, for example,
2025 or 2030, because that would miss out 1 and 6 years, respectively.

When opt i ons do not include exogenous_var i abl es , the predict table can overlap the
dat et i me_i ndex with the training table. This supports back testing.

The valid range of years for dat et i ne_i ndex dates must be between 1678 and 2261. It will cause an
error if any part of the training table or predict table has dates outside this range. The last date in the

235



ML_TRAIN

training table plus the predict table length must still be inside the valid year range. For example, if the
dat et i me_i ndex in the training table has YEAR data type, and the last date is year 2023, the predict
table length must be less than 238 rows: 2261 minus 2023 equals 238 rows.

e endogenous_vari abl es: The column or columns to be forecast.

Univariate forecasting models support a single numeric column, specified as a JSON_ARRAY. This
column must also be specified as the t ar get _col unm_nane, because that field is required, but it is not
used in that location.

Multivariate forecasting models support multiple numeric columns, specified as a JSON_ARRAY. One of
these columns must also be specified as the t ar get _col urm_narne.

endogenous_vari abl es cannot be text.
Set the following forecasting options as required to train forecasting models.

* exogenous_vari abl es: For forecasting tasks, the column or columns of independent, non-forecast,
predictive variables, specified as a JSON_ARRAY. These optional variables are not forecast, but help to
predict the future values of the forecast variables. These variables affect a model without being affected
by it. For example, for sales forecasting these variables might be advertising expenditure, occurrence of
promotional events, weather, or holidays.

M._TRAI N will consider all supported models during the algorithm selection stage if opt i ons includes
exogenous_vari abl es, including models that do not support exogenous_vari abl es.

For example, if opt i ons includes univariate endogenous_var i abl es with exogenous_vari abl es,
then ML_ TRAI N will consider Nai veFor ecast er, Thet aFor ecast er, ExpSnoot hFor ecast er,
ETSFor ecast er , STLWESFor ecast er , STLWARI MAFor ecast er, and SARI MAXFor ecast er .
M._TRAI N will ignore exogenous_var i abl es if the model does not support them.

Similarly, if opt i ons includes multivariate endogenous_var i abl es with exogenous_vari abl es,
then ML_TRAI N will consider VARMAXFor ecast er and DynFact or For ecast er .

If opt i ons also includes i ncl ude_col umtm_| i st , this will force M._ TRAI Nto only consider those
models that support exogenous_vari abl es.

e include_colum_li st:Can onlyinclude exogenous_vari abl es. Ifi ncl ude_col umtm_1 i st
contains at least one exogenous_var i abl es, this will force M__TRAI Nto only consider those models
that support exogenous_vari abl es.

Syntax Examples for Forecast Training

» The following example specifies the f or ecast i ng task type, and the additional required parameters,
dat eti nme_i ndex and endogenous_vari abl es.

nysqgl > CALL sys. M._TRAI N(' ml _dat a. opsd_gernmany_dai ly_train', 'consunption',
JSON _OBJECT('task', 'forecasting',
‘datetinme_index', 'ddate',
' endogenous_vari abl es', JSON ARRAY(' consunption')), @ orecast_nodel);

» The following example specifies the Or bi t For ecast er forecasting model with exogenous variables.

mysql > CALL sys. ML_TRAIN(' m cor pus. opsd_gernmany_dai ly_train', NULL,
JSON_OBJECT('task', 'forecasting',

datetime_i ndex', 'ddate',
' endogenous_vari abl es', JSON_ARRAY(' consunption'),
' exogenous_vari abl es', JSON ARRAY('wind', 'solar', 'wind_solar'),

‘model _list', JSON_ARRAY(' OrbitForecaster')), @rodel);
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» The following example specifies the Or bi t For ecast er forecasting model without exogenous

variables.
nysqgl > CALL sys. ML_TRAI N(' m cor pus. "datetine_train ', 'Cl',
JSON_OBJECT('task', 'forecasting',
‘datetine_index', 'C0',

' endogenous_vari abl es', JSON_ARRAY('Cl'),
"model _list', JSON_ARRAY(' OrbitForecaster')), @latetine_nodel);

Parameters to Train an Anomaly Detection Model
See the following to learn more about anomaly detection models:
» Anomaly Detection Model Types
« Anomaly Detection Learning Types
» Anomaly Detection for Logs

To train an anomaly detection model, set the appropriate required parameters depending on the type of
anomaly detection model to train.

» Setthet ask parameter to anonel y_det ect i on for running anomaly detection on table data, or
| og_anonel y_det ect i on for running anomaly detection on log data.

* If running an unsupervised model, the t ar get _col unm_nane parameter must be set to NULL.
* If running a semi-supervised model:

e The t arget _col unm_nane parameter must specify a column whose only allowed values are 0
(normal), 1 (anomalous), and NULL (unlabeled). All rows will be used to train the unsupervised
component, while the rows with a value different than NULL will be used to train the supervised
component.

e The experi nment al option must be setto sem super vi sed.
« If running anomaly detection on log data, the input table can only have the following columns:
¢ The column containing the logs.

« If including logs from different sources, a column containing the source of each log. Identify this
column with the | og_sour ce_col unm option.

« If including labeled data, a column identifying the labeled log lines. See Semi-supervised Anomaly
Detection to learn more.

« Atleast one column must act as the primary key to establish the temporal order of logs. If the primary
key column (or columns) is not one of the previous required columns (log data, source of log, or
label), then you must use the excl ude_col unm_1| i st option when running ML_ TRAI N to exclude
all primary key columns that don't include required data. See Syntax Examples for Anomaly Detection
Training to review relevant examples.

« If the input table has additional columns to the ones permitted, you must use the
excl ude_col unm_I i st option to exclude irrelevant columns.

Set the following options as needed for anomaly detection models:

e cont am nat i on: Represents an estimate of the percentage of outliers in the training table.
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* The contamination factor is calculated as: estimated number of rows with anomalies/total number of
rows in the training table.

« The contamination value must be greater than 0 and less than 0.5. The default value is 0.01.

» nodel _|ist: You can select the Principal Component Analysis (PCA), Generalized Local Outlier Factor
(GLOF), or Generalized kth Nearest Neighbors (GKNN) model. If no option is specified, the default model
is GKNN. Selecting more than one model or an unsupported model produces an error.

To train a semi-supervised anomaly detection model, set the following options:

» supervi sed_subnodel _opti ons: Allows you to set optional override parameters for the supervised
model component. The only model supported is Di st anceWi ght edKNNC! assi fi er. The following
parameters are supported:

« n_nei ghbor s: Sets the desired k value that checks the k closest neighbors for each unclassified
point. The default value is 5 and the value must be an integer greater than 0.

« m n_| abel s: Sets the minimum number of labeled data points required to train the supervised
component. If fewer labeled data points are provided during training of the model, M._ TRAI N fails. The
default value is 20 and the value must be an integer greater than 0.

» ensenbl e_scor e: This option specifies the metric to use to score the ensemble of unsupervised and
supervised components. It identifies the optimal weight between the two components based on the
metric. The supported metrics are accur acy, preci si on,recal |, and f 1. The default metric is f 1.

To train a model for anomaly detection on log data, set the following options:
e | ogad_options: A JSON _OBJECT that allows you to configure the following options.

e addi tional _maski ng_r egex: Allows you to mask log data in a JSON_ARRAY. By default, the
following parameters are automatically masked during training.

< IP
« DATETIME
. TIME

« HEX

« IPPORT

. OCID

« wi ndow_si ze: Specifies the maximum number of log lines to be grouped for anomaly detection. The
default value is 10.

« wi ndow_st ri de: Specifies the stride value to use for segmenting log lines. For example, there is
log A, B, C, D, and E. The wi ndow_si ze is 3, and the wi ndow_st ri de is 2. The first row has log
A, B, and C. The second row has log C, D, and E. If this value is equal to wi ndow_si ze, there is no
overlapping of log segments. The default value is 3.

¢ | og_sour ce_col um: Specifies the column name that contains the source identifier of the respective
log lines. Log lines are grouped according to their respective source (for example, logs from multiple
MySQL databases that are in the same table). By default, all log lines are assumed to be from the
same source.
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« enbeddi ng_nodel : The embedding model used to extract semantic features from log data.
To review supported embedding models in MySQL Al, run the following query: SELECT
sys. M__LI ST_LLMS(); and see models that have capabi | i ti es with TEXT_ENMBEDDI NGS. The
default value is nul ti | i ngual - e5- snal | . Using an embedding model causes higher memory
usage. If you set this to NULL, then you cannot also set keywor d_nodel to NULL.

« keywor d_nodel : The keyword feature extractor used to extract keyword features from log data. The
available options are t f - i df and NULL. The default value ist f - i df . If you set this to NULL, then
you cannot also set enbeddi ng_nodel to NULL.

Anomaly detection models don't support the following options during training:
e exclude nodel |i st

e optimzation_netric
Syntax Examples for Anomaly Detection Training

» The following example specifies the anonal y_det ect i on task type.

nysqgl > CALL sys. ML_TRAI N(' ml cor pus_anonal y_det ecti on. vol canoes-b3_anomal y_train', NULL,
JSON_OBJECT(' task', 'anonmly_detection',
"exclude_colum_list', JSON ARRAY('target')), @nonaly);
Query OK, 0 rows affected (46.59 sec)

» The following example specifies the anonal y_det ect i on task with a cont ani nat i on option. Query
the model catalog metadata to check the value of the cont ani nat i on option.

nysqgl > CALL sys. ML_TRAI N(' ml cor pus_anonal y_det ecti on. vol canoes-b3_anomal y_train', NULL,
JSON_OBJECT(' task', 'anonmly_detection',
'contam nation', 0.013,
" exclude_colum_list', JSON ARRAY('target')), @nomaly_wth_contan
Query OK, 0 rows affected (50.22 sec)

nysqgl > SELECT JSON_EXTRACT( nodel _netadata, '$.contami nation') FROM M._SCHEMA root. MODEL_CATALOG WHERE np

T +
| JSON_EXTRACT(nodel _netadata, '$.contam nation') |
T +
| 0.013000000268220901 |
T +

1 rowin set (0.00 sec)

» The following example enables semi-supervised learning using all defaults. The t ar get _col urm_nane
issettotarget. The experi nmental optionis settosemn supervi sed.

nysqgl > CALL sys. ML_TRAI N(' m cor pus. anonaly_train_with_partial _target', "target",
CAST(' {"task": "anomaly_detection", "experinmental": {"sem supervised": {}}}' a

» The following example enables semi-supervised learning with additional options.

nysqgl > CALL sys. ML_TRAI N(' ml corpus. "anonaly_train_with_partial _target ', "target",
CAST(' {"task": "anomaly_detection", "experinmental": {"sem supervised": {"super
{""m n_|l abel s": 10, "n_nei ghbors": 3}, "ensenble_score": "recall"}}}' as JSON)
@en supervi sed_nodel _options);

Where:
e The supervi sed_subnodel _opti ons parameter m n_| abel s is set to 10.

e The supervi sed_subnodel opti ons parameter n_nei ghbor s is set to 3.
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e The ensenbl e_scor e option is set to the r ecal | metric.

» The following example selects the PCA (Principal Component Analysis) anomaly detection model.

nysqgl > CALL sys. M._TRAI N(' ml cor pus_anonal y_det ecti on_v1.  vol canoes-b3_anomaly train ', NULL,
JSON_OBJECT(' task', 'anomaly_detection',
"exclude_colum_list', JSON ARRAY('target'), 'nodel _list', JSON_ARRAY(

» The following example selects the GLOF (Generalized Local Outlier Factor) anomaly detection model.

mysql > CALL sys. ML_TRAI N(' ml cor pus_anonal y_det ecti on_v1. vol canoes-b3_anomal y_train ', NULL,
JSON_OBJECT(' task', 'anomaly_detection',
"exclude_colum_list', JSON ARRAY('target'),
"model _list', JSON_ARRAY(' GLOF')), @nomaly_ gl of);

» The following example does not specify an algorithm model for the nodel _| i st option. If no model is
specified, the default model GKNN is used.

nmysql > CALL sys. ML_TRAIN(' ml cor pus_anonal y_det ecti on_v1. vol canoes-b3_anomaly train ', NULL,
JSON _OBJECT(' task', 'anonmly_detection',
"exclude_colum_list', JSON ARRAY('target'),
"model _list', JSON_ARRAY()), @nonaly enpty list);

e The following example runs the | og_anonal y_det ect i on task with available default values.

nysqgl > CALL sys. M._TRAI N(' ml cor pus. " | og_anonal y_just_patterns’ ', NULL, JSON OBJECT('task', 'log_anonaly_dete

» The following example runs the | og_anonal y_det ect i on task with the PCA anomaly detection
model.

nysqgl > CALL sys. ML_TRAI N(' ml corpus. | og_anonaly_just_patterns’ ', NULL,
JSON_OBJECT('task', 'log_anomaly_detection',
"model _list', JSON_ARRAY(' PCA')), @ ogad_nodel);

* An M__TRAI N example that excludes two primary key columns: pri mary_key_col unml and
primary_key_col unm2. These columns must be excluded because they do not have one of the
required items of data for training: the log data, the source of the log, or the label.

mysql >CALL sys. ML_TRAI N(' ml cor pus. | og_anomal y_two_primary', NULL,
JSON_OBJECT('task', 'log_anomaly_detection',
'l ogad_options', JSON OBJECT('w ndow size', 2, 'wi ndow stride', 1),
"exclude_colum_list', JSON _ARRAY(' primary_key columl', 'prinmary_key c

» The following example runs the | og_anonal y_det ect i on task and masks log data with the
addi ti onal _rmaski ng_r egex option. In addition to the default parameters that are automatically
masked, email addresses from Yahoo, Hotmail, and Gmail are also masked. The | og_sour ce_col umm
option is also included, which specifies the column that identifies the respective source of the log line.

nysqgl > CALL sys. M._TRAI N(' ml corpus. " | og_anonmal y_sourced ', NULL,
JSON _OBJECT('task', 'log_anomaly_detection',
'l ogad_options', JSON OBJECT('additional _maski ng_regex',
JSON_ARRAY(" (\W ) [\w.\-]1{0, 25} @ yahoo| hot mai | | gmai | )\.con(\W$)"),
'l og_source_colum', 'source')), @og_anonaly_us);

» The following example sets semi-supervised learning for training log data for anomaly detection. The
window size is also set to a value of 4, and the window stride is set to 1.

nmysql > CALL sys. ML_TRAIN(' m corpus. | og_anonaly_sem "', "label",
JSON OBJECT('task', 'log_anomaly_detection',
'l ogad_options', JSON OBJECT('w ndow size', 4, 'wi ndow stride', 1),
"experinmental ", JSON OBJECT("sem supervised", JSON OBJECT("supervised_
JSON _OBJECT("mi n_l abel s, 10)))), @og_anomaly_us);
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» The following example sets unsupervised learning for training log data for anomaly detection. A query
reviews supported embedding models. Theal | _mnil m| 12 v2 embedding model and t f -i df
keyword model are selected for training.

nysql > SELECT sys. M._LI ST_LLMS();

| [{"nodel _id": "Ilana3.2-3b-instruct-v1", "provider": "HeatWave", "capabilities": ["GENERATION'], "defa
| {"nodel _id": "all_minilml12_v2", "provider": "HeatWave", "capabilities": ["TEXT_EMBEDDI NGS"], "defaul:
| {"nodel _id "multilingual -e5-small", "provider": "HeatWve", "capabilities": ["TEXT_EMBEDDI NGS"], "de

nysql > SET @mdel =' | og_enbeddi ng_nodel ' ;
Query OK, 0 rows affected (0.0490 sec)
nysqgl > CALL sys. ML_TRAI N(' anonal y_| og_enbeddi ng. trai ni ng_data', NULL,

JSON _OBJECT('task', 'log_anomaly_detection',
"exclude_colum_list', JSON ARRAY('log_id', 'tinmestanp', 'target'),
'l ogad_options', JSON OBJECT('enbeddi ng_nodel', 'all_mnilml12 v2', 'keyword_nodel',

Query OK, 0 rows affected (27.0830 sec)

Parameters to Train a Recommendation Model
See Recommendation Task Types to learn more about recommendation models.

To train a recommendation model, set the t ask to r econmendat i on and set the following required
parameters.

» user s: Specifies the column name corresponding to the user ids. Values in this column must be in a
STRI NGdata type, otherwise an error will be generated during training.

This must be a valid column name, and it must be different from the i t ens column name.

e it ens: Specifies the column name corresponding to the item ids. Values in this column must be in a
STRI NGdata type, otherwise an error will be generated during training.

This must be a valid column name, and it must be different from the user s column name.

To train a recommendation model with explicit feedback, set f eedback to explicit.If f eedback is not
set, the default value is explicit.

To train a recommendation model with implicit feedback, set f eedback to i npl i ci t and set the following
option as needed:

» feedback_t hreshol d: The feedback threshold for a recommendation model that uses implicit
feedback. It represents the threshold required to be considered positive feedback. For example, if
numerical data records the number of times users interact with an item, you might set a threshold with a
value of 3. This means users would need to interact with an item more than three times to be considered
positive feedback.

To train a content-based recommendation model, set f eedback toi npl i ci t and set the following
required parameters:

* i tem net adat a: Defines the table that has item descriptions. It is a JSON object that has the
t abl e_namne option as a key, which specifies the table that has item descriptions. One column must be
the same as the i t em_ i d in the input table.

e user _net adat a: Defines the table that has user descriptions. It is a JSON object that has the
t abl e_nane option as a key, which specifies the table that has user descriptions. One column must be
the same as the user _i d in the input table.
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e tabl e_nane: To be used with the i t em net adat a and user _net adat a options. It specifies
the table name that has item or user descriptions. It must be a string in a fully qualified format
(database_name.table_name) that specifies the table name.

Syntax Examples for Recommendation Training

» The following example specifies the SVD recommendation model type. The default model is TwoTower .

nysqgl > SET @ec_nodel = 'rec_nodel";
nysqgl > CALL sys. ML_TRAI N(' novi el ens_dat a. novi el ens_train', 'rating',
JSON_OBJECT(' task', 'recommendation',
‘users', 'user_id',
‘items', 'itemid' ), @ec_nodel);
Query OK, 0 rows affected (14.4091 sec)

nysqgl > SELECT nodel _handl e, nodel _type FROM M._SCHEMA adni n. MODEL_CATALOG WHERE npdel _handl e=' r ec_nodel ' ;

e dhecccmmoomo== +
| nodel _handl e | nodel _type |
e dhecccmmoomo== +
| rec_nodel | TwoTower |
e dhecccmmoomo== +

1 rowin set (0.0395 sec)

» The following example specifies the SVDpp recommendation model type.

nysqgl > CALL sys. M._TRAI N(' m cor pus. foursquare_NYC train', 'rating',
JSON OBJECT(' task', 'recommendation',
‘users', 'user_id",
‘itens', 'item.id',
‘model list', JSON_ARRAY(' SVDpp')), @mdel);
Query OK, 0 rows affected (13.97 sec)

nysql > SELECT nodel _type FROM M._SCHEMA r oot . MODEL_CATALOG WHERE nodel _handl e=@mdel ;

Fomem e mmaa o +
| nodel _type |
Fomem e mmaa o +
| SVDpp |
Fomem e mmaa o +

1 rowin set (0.00 sec)

» The following example specifies the NMF recommendation model type.

nmysql > CALL sys. ML_TRAIN(' m cor pus. foursquare_NYC train', 'rating',
JSON _OBJECT(' task', 'recommendation',
‘users', 'user_id",
‘itens', 'item.id',
"nodel _list', JSON_ARRAY('NVF')), @mwdel);
Query OK, O rows affected (12.28 sec)

nmysql > SELECT nodel _type FROM M._SCHEMA r oot . MODEL CATALOG WHERE nodel _handl e=@rodel ;

Fomemm e meaaa +
| nodel _type |
Fomemm e meaaa +
[ NVF |
Fomemm e meaaa +

1 rowin set (0.00 sec)

» The following example specifies three models for the nodel | i st option. From those three
recommendation models, the SVD model is automatically selected for training.

nysql > SET @l | owed_nodel s = JSON ARRAY(' SVD , ' SVDpp', ' NWVF');

mysql > CALL sys. ML_TRAIN(' m cor pus. foursquare_NYC train', 'rating',
JSON _OBJECT(' task', 'recommendation',
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‘users', 'user_id',

‘itens', 'itemid',

‘model _list', CAST(@l | owed_nodels AS JSON)), @rodel);
Query OK, 0 rows affected (14.88 sec)

nmysql > SELECT nodel _type FROM M._SCHEMA r oot . MODEL_CATALOG WHERE nodel _handl e=@rodel ;

T +
| nodel _type |
T +
| SvD |
T +

1 rowin set (0.00 sec)

» The following example specifies five models for the excl ude_nodel _|i st option. The SVDpp
recommendation model is automatically selected from the remaining available models.

nysqgl > SET @xcl ude_nopdel s= JSON_ARRAY(' Nor mal Predi ctor', 'Baseline', 'SlopeOne', 'CoClustering', 'SVD)

nysqgl > CALL sys. ML_TRAI N(' m cor pus. foursquare_NYC train', 'rating',
JSON_OBJECT(' task', 'recommendation',
‘users', 'user_id',
‘itens', 'item.id',
" excl ude_nodel _|ist', CAST(@xclude_nodels AS JSON)), @mdel);
Query OK, 0 rows affected (14.71 sec)

nysql > SELECT nodel _type FROM M._SCHEMA r oot . MODEL_CATALOG WHERE nodel _handl e=@mdel ;

dhcccmmoooo== +
| nodel _type |
dhcccmmoooo== +
| SVDpp |
dhcccmmoooo== +

1 rowin set (0.00 sec)

» The following example specifies the r econmendat i on task with implicit feedback.

nysqgl > CALL sys. ML_TRAIN(' ml corpus.training_table', 'rating',
JSON OBJECT(' task', 'recommendation',

‘users', 'user_id",
‘itens', 'item.id',
‘feedback', 'inplicit'), @mdel);

Query OK, 0 rows affected (2 min 13.6415 sec)

» The following example trains a content-based recommendation model by specifying a table with
item descriptions (m cor pus_recsys. "citeul i ke_itens_sanpl e). The optimization metric
hit_ratio_at_k is used. The model must use implicit feedback.

nmysql > CALL sys. ML_TRAIN(' ml corpus_recsys. "citeulike train_sanple ', 'rating',
JSON _OBJECT(' task', 'recommendation',
"nodel _list', JSON ARRAY('CTR ),
‘users', 'user_id",
‘itens', 'item.id',
'feedback', "inmplicit',
‘optimzation_netric', "hit_ratio_at k',
"itemnetadata', JSON OBJECT('table_nanme', 'mlcorpus_recsys. citeul

Parameters to Train a Model with Topic Modeling

To train a machine learning model with topic modeling, set the t ask tot opi c_nodel i ng and set the
following required parameter:

» docunent _col umm: Specify the column name that contains the text to train.

The following parameters are not supported for training machine learning models with topic modeling:

243



ML_TRAIN

e nmodel _|i st

e optimzation_netric
e exclude_nodel |i st
e exclude_colum_|li st

e include_colum_|ist
Syntax Examples for Topic Modeling Training

The following example runs the t opi ¢c_nodel i ng task with the required defined parameters.

nmysqgl > CALL sys. ML_TRAI N('topi c_npdel i ng_data.text_types_train', NULL,
JSON_OBJECT(' task', 'topic_nodeling', 'docunment_colum', 'DO0'), @opic_nodel);

ML_TRAIN and ML_EXPLAIN

The ML_TRAI Nroutine also runs the M__EXPLAI Nroutine with the default Permutation Importance

model for prediction explainers and model explainers. See Generate Model Explanations. To train other
prediction explainers and model explainers use the ML_EXPLAI N routine with the preferred explainer after
M__TRAI N.

ML__EXPLAI N does not support the anonal y_det ecti on and r econmendat i on tasks, and M._TRAI N
does not run ML_EXPLAI N.

Additional Syntax Examples

» The nodel _|i st option permits specifying the type of model to be trained. If more than one type of
model specified, the best model type is selected from the list. For a list of supported model types, see
Model Types. This option cannot be used together with the excl ude_nodel _| i st option.

The following example trains either an XGBCl assi fi er or LGBMCl assi fi er model.

nysqgl > CALL sys. M._TRAIN('ml _data.iris_train', 'class',
JSON_OBJECT(' task','classification',
‘model _list', JSON_ARRAY(' XGBCl assifier', 'LGBMI assifier')), @ris_no

» The excl ude_nodel _|i st option specifies types of models that should not be trained. Specified
model types are excluded from consideration. For a list of model types you can specify, see Model
Types. This option cannot be used together with the nodel | i st option.

The following example excludes the Logi st i cRegr essi on and Gaussi anNB models.

nysqgl > CALL sys. M._TRAIN(' ml _data.iris_train', 'class',
JSON_OBJECT('task','classification',
"exclude_nodel _list', JSON ARRAY(' Logi sticRegression', 'GaussianNB)),

 Theoptim zati on_mnetri c option specifies a scoring metric to optimize for. See: Optimization and
Scoring Metrics.

The following example optimizes for the neg | og_| oss metric.

nysqgl > CALL sys. M._TRAI N(' aut oml _bench. census_train', 'revenue',
JSON_OBJECT('task','classification',
‘optimzation_netric', 'neg_log_loss'), @ensus_nodel);

* The excl ude_col unm_I i st option specifies feature columns to exclude from consideration when
training a model.
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The following example excludes the ' age' column from consideration when training a model for the
census dataset.

nysql > CALL sys. ML_TRAI N(' aut oml _bench. census_train', 'revenue',
JSON_OBJECT(' task','classification',
"exclude_colum_list', JSON ARRAY('age')), @ensus_nodel);

The i ncl ude_col unm_1 i st option specifies feature columns that must be considered for training and
should not be dropped.

The following example specifies to consider the ' j ob' column when training a model for the census
dataset.

nysql > CALL sys. ML_TRAI N(' aut oml _bench. census_train', 'revenue',
JSON_OBJECT(' task','classification',
"include_colum_list', JSON ARRAY('job')), @ensus_nodel);

The following example adds not es to the nodel _net adat a.
nysql > CALL sys. M._TRAIN(' ml _data.iris_train', 'class',
JSON_OBJECT(' task', 'classification',
‘notes', 'classification nodel'), @mdel);

Query OK, O rows affected (1 min 42.53 sec)

nysql > SELECT nodel _net adata FROM M._SCHEMA user 1. MODEL_CATALOG WHERE nodel _handl e=@mdel ;

o o C OO CE OO CO O OCOCCOONCOO 00O COOOCOC0000C000C000000C0000000a 0 +
| JSON_PRETTY( npdel _net adat a) |
o o C OO CE OO CO O OCOCCOONCOO 00O COOOCOC0000C000C000000C0000000a 0 +
| {

"task": "classification",

"notes": "classification nodel ",

"chunks": 1,

"format": "HWWLv2.0",

"n_rows": 120,
"status": "Ready",
"options": {

"task": "classification",

"notes": "classification nodel",

"nmodel _expl ai ner": "pernutation_inportance",
“prediction_explainer": "permutation_inportance"

}

_colums": 4,

"col um_nanes": [
"sepal |ength",
"sepal w dth",
"petal |ength",
"petal w dth"

I

“contam nation": null,

"model _quality": "high",

“training_time": 15.591492652893066,

“al gorithmname": "SVC',

“training_score": -0.03133905306458473,

"build_timestanmp": 1751897493,

"hyper paraneters": {

"C': 47.004275502593885,

"gamma": 0.000030517578125,

"cache_si ze": 800,

"class_wei ght": "bal anced"

}

_sel ected_rows": 96,
“training_paranms": {
"recomend": "ratings",
"force_use_X": false,
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"recomrend_k": 3,
"renove_seen": true,
“ranki ng_t opk": 10,

"| sa_component s": 100,
"ranki ng_t hreshol d": 1,
"f eedback_t hreshol d": 1

}

rain_table_name": "m _data.iris_train",
"model _expl anation": {
"permut ati on_i nportance": {
"petal width": 0.4194,
"sepal width": 0.0,
"petal length": 0.4192,
"sepal length": 0.0415

}
h
"n_sel ected_col ums": 3,
“target_col um_nane": "cl ass",
"optimzation_metric": "neg_|l og_| oss",

"sel ect ed_col um_nanes": [
"petal |ength",
"petal wdth",
"sepal |ength"

]

raining_drift_metric": {
"mean": 0.0749,
"variance": 0.0083

1 rowin set (0.0416 sec)

See Also
e Train a Model

» The Model Catalog

8.1.2 ML_EXPLAIN

Running the M__ EXPLAI Nroutine on a model and dataset trains a prediction explainer and model
explainer, and adds a model explanation to the model catalog. See Generate Model Explanations and
Generate Prediction Explanations to learn more.

ML__EXPLAI N does not support recommendation, anomaly detection, and topic modeling models. A call
with one of these models produces an error.

ML_EXPLAIN Syntax

nysqgl > CALL sys. M._EXPLAIN ('table_nane', 'target_col umm_nane',
nodel _handl e, [options]);

options: {
JSON _OBJECT("key", "val ue"[, "key", "val ue"] ...)
"key", "val ue": {
[" nodel _expl ainer', {'pernutation_inportance'|'partial_dependence'|'shap'|'fast_shap'}| NULL]
["prediction_explainer', {'pernutation_inportance'|"'shap'}]

['colums_to_explain', JSON ARRAY('columm'[,'colum'] ...)]
['target_value', 'target_class']
}
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When the ML_ TRAI Nroutine runs, M._EXPLAI N also runs with the Permutation Importance model
explainer and prediction explainer. To run ML_ EXPLAI N_ROWand M._EXPLAI N_TABLE with a different
explainer, you must first run ML_ EXPLAI N with the same explainer. See Generate Model Explanations and
Generate Prediction Explanations to learn more.

Required ML_EXPLAIN Parameters

Set the following required parameters:

» tabl e_nane: You must define the table that you previously trained. The table name must be valid and
fully qualified, so it must include the database name (dat abase_ nane.t abl e_nane).

» target col um_nane: Define the name of the target column in the training dataset that contains
ground truth values.

e nodel _handl e: Enter the model handle for the trained model. The model explanation is stored in this
model metadata. The model must be loaded first. For example:

nysql > CALL sys. M._MODEL_LOAD(' ml _data.iris_train_userl 1636729526', NULL);
See Load a Model and Work with Model Handles to learn more.

If you run M__EXPLAI N again with the same model handle and model explainer, the model explanation
field is overwritten with the new result.

ML_EXPLAIN Options

Optional parameters are specified as key-value pairs in JSON format. If an option is not specified, the
default setting is used. If you specify NULL in place of the JSON argument, the default Permutation
Importance model explainer is trained, and no prediction explainer is trained.

Set the following options as needed:
e nodel _expl ai ner : Specifies one of the following model explainers:
e pernutation_inportance: The default model explainer.

« shap: The SHAP model explainer, which produces feature importance values based on Shapley
values.

e fast shap: The Fast SHAP model explainer, which is a subsampling version of the SHAP model
explainer. It usually has a faster runtime.

e partial dependence: Explains how changing the values in one or more columns will change the
value predicted by the model. The following additional arguments are required:

e colums_t o_expl ai n: A JSON array of one or more column names in the table specified by
t abl e_name. The model explainer explains how changing the value in this column or columns
affects the model.

e target val ue: A valid value that the target column containing ground truth values, as specified by
target _col unm_nane, can take.

» prediction_expl ai ner: Specifies one of the following prediction explainers:

e permut ati on_i nportance: The default prediction explainer.
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« shap: The SHAP prediction explainer, which produces feature importance values based on Shapley
values.

Syntax Examples

Before running these examples, you must train and load the model first. See Train a Model and Load a
Model.

» The following example sets NULL for the options, which trains the default Permutation Importance model
explainer and no prediction explainer.

nysqgl > CALL sys. M._EXPLAI N(' bank_narketing_test.bank_train', 'y', @ank_test, NULL);

» The following example trains the Fast SHAP model explainer and SHAP prediction explainer.

nysqgl > CALL sys. ML_EXPLAI N(' bank_narketing_test.bank _train', 'y', @ank_test,
JSON_OBJECT( ' nodel _expl ai ner', 'fast_shap',
‘prediction_explainer', 'shap'));

» The following example trains the Partial Dependence model explainer (which requires extra options) and
the SHAP prediction explainer. In this example, sepal wi dt h is the column to explain and the target
value toinclude inlri s_set osa.

mysql > CALL sys. ML_EXPLAIN(' ml _data.iris_train', 'class', @ris_nodel,
JSON_OBJECT(' col uims_t o_expl ain', JSON_ARRAY('sepal width'),

‘target_value', 'Iris-setosa',
' model _expl ainer', 'partial _dependence',
"prediction_explainer', '"shap'));

* You can query the model explanation from the model catalog. The JSON_PRETTY parameter displays
the output in an easily readable format. See View Model Explanations.

nmysql > SELECT JSON_PRETTY( nodel _expl anati on) FROM M._SCHEMA user 1. MODEL_CATALOG WHERE nodel _handl e=@ensus_n

"permut ati on_i nportance": {
"age": 0.0292,
"sex": 0.0023,
"race": 0.0019,
"fnlwgt": 0.0038,
"education": 0.0008,
"wor kcl ass": 0.0068,
"occupation": 0.0223,
"capital -gain": 0.0479,
"capital -loss": 0.0117,
"rel ati onshi p": 0.0234,
"educati on-num': 0. 0352,
"hour s- per-week": 0.0148,
"marital -status": 0.024,
"native-country": 0.0

1 rowin set (0.0427 sec)

* An ML_EXPLAI N example that stores the model in the nodel _obj ect cat al og.

nysql > SET @xpl ai n_option = JSON _OBJECT(' nodel _expl ai ner', 'shap', 'prediction_explainer', 'shap');
Query OK, 0 rows affected (0.00 sec)

nysqgl > CALL sys. M._EXPLAIN(' ml corpus.iris_train', 'class', @ris_nodel, @xplain_option);
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Query OK, O rows affected (11.51 sec)

nmysql > SELECT nodel _obj ect, nodel _obj ect_size
FROM M._SCHENA user 1. MODEL_CATALOG
WHERE nodel handl e=@ri s_nodel ;

T e +
| nodel _obj ect | nodel _object_size |
T e +
| NULL | 348954 |
T e +

1 rowin set (0.00 sec)

nysql > SELECT nodel _netadata->>'$.format', nodel _netadata->>'$. chunks'
FROM M._SCHEMA user 1. MODEL_CATALOG

dmccocococcococsococoocooooooe dmccocococcococsococoocooooooe +
| nodel _netadata->>'$.format' | nodel _nmet adat a- >>' $. chunks' |
fmccocococcococsococoocooooooe dmccocococcococsococoocooooooe +
| HWWLv2.0 | 1 |
dmccocococcococsococoocooooooe fmccocococcococsococoocooooooe +

1 rowin set (0.00 sec)

nmysql > SELECT chunk_i d, | ength(nodel _object)
FROM M__SCHEMA user 1. nodel _obj ect _cat al og
WHERE nodel handl e=@ri s_nodel ;

oo e e +
| chunk_id | |ength(nodel _object) |
oo e e +
| 1| 348954 |
oo e e +

1 rowin set (0.00 sec)

See Also
» Generate Model Explanations

» Generate Prediction Explanations

8.1.3 ML_MODEL_EXPORT

Use the ML_MODEL _EXPORT routine to export a model from the model catalog to a user defined table.
To learn how to use M._ MODEL _ EXPCORT to share models, see Grant Other Users Access to a Model.
ML_MODEL_EXPORT Overview
After you run ML_ MODEL_EXPORT, the output table has these columns and formats:
e chunk_i d:
I NT AUTO_I NCREMENT PRI MARY KEY
* nodel _object:
LONGTEXT DEFAULT NULL
* nodel net adat a:
JSON

See Model Metadata.
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M. MODEL_EXPORT should work regardless of nodel _net adat a. st at us:

« If there is no corresponding row in the nodel _obj ect _cat al og for an existing nodel _handl e in the
MODEL_ CATALOG:

There should be only one row in the output table with chunk_i d =0, nodel _obj ect = NULL and
nodel _met adat a = MODEL _CATALOG. nodel _net adat a.

« If there is at least one row in the nodel _obj ect _cat al og for an existing nodel _handl e in the
MODEL _CATALOG:

e There should be N rows in the output table with chunk_i d being 1 to N.
e M._MODEL_EXPORT copies the nodel _obj ect from nodel _obj ect _cat al og to the output table.

* nmodel net adat a in the row with chunk i d = 1 should be the same as in the MODEL CATALCG.

ML_MODEL_EXPORT Syntax

nysqgl > CALL sys. M._MODEL_EXPORT (nodel _handl e, output_tabl e_nane);
M._MODEL_EXPORT parameters:
» nmodel _handl e: The model handle for the model. See Work with Model Handles.

e out put _t abl e_nane: The name for the output table.

Syntax Examples

* An example that exports an AutoML model with metadata to the model catalog
(ML_SCHEMA _userl.model_export). The output table name is nodel _expor t. You can then use
SHOW CREATE_TABLE to view information on the table for the exported model.

nysqgl > CALL sys. M._MODEL_EXPORT(@ri s_nodel, 'M._SCHEVA user 1. nodel _export');
Query OK, 0 rows affected (0.06 sec)

nysql > SHOW CREATE TABLE M._SCHEMA user 1. nodel _export;
fmccccccccccocc fmccccccccccccccccccccccccoocooooococccccccoccCoEcocoocccccoccccoocee +

| Table | Create Table

e cccoccomooooo L LT T L +
| nodel _export | CREATE TABLE " nodel _export ™ (

“chunk_id® int NOT NULL AUTO_| NCREMENT,

“nmodel _obj ect” | ongt ext,

“nmodel _netadata’ json DEFAULT NULL,

PRI MARY KEY (chunk_id")

) ENG NE=I nnoDB AUTO_ | NCREMENT=2 DEFAULT CHARSET=ut f8nmb4 COLLATE=utf8mb4_0900_ai _ci

e cccoccomooooo L LT T L +

1 rowin set (0.00 sec)
See Also

» Grant Other Users Access to a Model

» Manage External ONNX Models

8.1.4 ML_MODEL_IMPORT

Use the ML_MODEL | MPORT routine to import a pre-trained model into your model catalog.

To learn how to use M._ MODEL | MPORT to share models, see Grant Other Users Access to a Model.
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ML_MODEL_IMPORT Overview

MySQL Al supports the import of AutoML and Open Neural Network Exchange (ONNX) format models.
After import, all the AutoML routines can be used with an ONNX model.

Models in ONNX format (. onnx) cannot be loaded directly into a MySQL table. They require string
serialization and conversion to Base64 binary encoding. Before running M._ MODEL_ | MPORT, follow the
instructions in Import an External ONNX Model to pre-process and then load the model into a temporary
table to use with AutoML.

The table to import should have the following columns, and their recommended parameters:
e chunk_i d:
I NT AUTO_I NCREMENT PRI MARY KEY
» nodel _object:
LONGTEXT NOT NULL
* nodel net adat a:
JSON DEFAULT NULL
See Model Metadata.
The table must meet the following criteria:
* There must be only one row in the table with chunk_i d = 1.

e The nodel _net adat a corresponding to chunk_i d = 1 must have the correct JSON key-value pair for
the model format.

ML_MODEL | MPORT stores the nodel _net adat a corresponding to chunk_i d = 1 in the model catalog,
and ignores the nodel _net adat a from other rows.

If chunks in the nodel _net adat a corresponding to chunk i d =1 is not set, it is set to the number of
rows in the input table.

If ML__MODEL_ | MPORT fails or is canceled, there is no change to the MODEL_CATALOG and to the
nodel _obj ect _cat al og.

ML_MODEL_IMPORT Syntax
nmysql > CALL sys. M._MODEL_| MPORT (nodel _obj ect, nodel _netadata, nodel _handle);

nodel _nmet adata (nodel froma table): {

JSON_OBJECT("key", "val ue"[, "key", "val ue"] ...)
"key", "val ue": {
[' dat abase', 'database']
["table', "table']
}
}

nodel _net adata (preprocessed nodel object): {
JSON _OBJECT("key", "val ue"[, "key", "val ue"] ...)

"key", "val ue": {
['task', {'classification'|'regression'|'forecasting'|'anomaly_detection'|'recomrendation'}| NULL]
["build_timestanp', 'tinestanp']
['target_col um_nane', 'colum']
["train_table_name', 'table']
[" col utm_nanes', JSON_ARRAY(' columm'[,'colum'] ...)]
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" nmodel _expl anation', m _explain_options]
‘notes', 'notes']

‘"format', 'format']

"status', {'creating' |'ready'|'error'}|NULL]
"nmodel _quality', 'quality']

"training_time', 'tinme']

"al gorithmname', "algorithmn]
"training_score', 'score']

‘n_rows', 'rows']

‘n_colums', 'colums']

‘n_selected_rows', 'rows']

'n_sel ected_col ums', 'colums']

‘optim zation_netric', 'netric']

' sel ect ed_col utm_nanes', JSON_ARRAY(' colum'[,"'colum'] ...)]
‘contam nation', 'contam nation']

‘options', m _train_options]
"training_parans', nl_train_parans]

"onnx_i nputs_info', data_types_map]

— e e e e e e e e e )

"onnx_out puts_info', |abels_map]
"training_drift_netric', JSON OBJECT('nean', 'value', 'variance', 'value')]
' chunks', 'chunks']

}
ML_MODEL_IMPORT Parameters
Set the following parameters:
e nmodel _obj ect:
e To import a model from a table: Set to NULL.
e To import a model object: Define the preprocessed model object.
* nodel net adat a:
e To import a model from a table:
» dat abase: The name of the database.
« t abl e: The name of the table.

« To import a model object: An optional JSON object literal that contains key-value pairs with model
metadata. See Model Metadata.

* nodel _handl e: The model handle for the model. The model is stored in the model catalog under this
name and accessed using it. Specify a model handle that does not already exist in the model catalog.
Set to NULL for to generate a unique model handle. See Work with Model Handles.

Syntax Examples

« An example that exports a model to a table, switches users, and then imports the model from that table.
To learn more, see Share a Model.

nysqgl > CALL sys. M._MODEL_EXPORT(@ri s_nodel, ' M._SCHEVA user 1. nodel _export');
Query OK, 0 rows affected (0.06 sec)

nysql > SHOW CREATE TABLE M._SCHEMA user 1. nodel _export;

Femem e mmeaaa - e m e e e e e e e e e e e e e eeeeeemmemememmemes-am-em--me-meme-aa-aa-- +
| Table | Create Table

Femem e mmeaaa - e m e e e e e e e e e e e e e eeeeeemmemememmemes-am-em--me-meme-aa-aa-- +
| nodel _export | CREATE TABLE " nodel _export™ (

“chunk_id® int NOT NULL AUTO_| NCREMENT,

“nodel _obj ect” | ongtext,
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“nmodel _netadata® json DEFAULT NULL,
PRI MARY KEY (" chunk_id")
) ENG NE=I nnoDB AUTO | NCREMENT=2 DEFAULT CHARSET=utf 8mb4 COLLATE=utf 8nb4_ 0900 ai ci |

1 rowin set (0.00 sec)
# switch to user2

mysql > CALL sys. M._MODEL_| MPORT( NULL, JSON OBJECT(' schema', 'M._SCHEMA userl', 'table', 'nodel _export'),
Query OK, O rows affected (0.19 sec)

mysql > CALL sys. ML_MODEL_LOAD( @ ri s_export, NULL);
Query OK, O rows affected (0.63 sec)

mysql > SELECT nodel _obj ect, nodel _obj ect_size FROM M._SCHEMA user 2. MODEL_CATALOG WHERE nodel _handl e=@r i

1 rowin set (0.00 sec)

mysql > SELECT chunk_i d, LENGTH(npdel _object) FROM M._SCHEMA user 2. nodel _obj ect _cat al og WHERE nodel _handl

| chunk_id | LENGTH( nodel _object) |

1 rowin set (0.00 sec)

An example that imports a model in ONNX format from a table. To learn more, see Import an External
ONNX Model.

nysql > DROP TABLE | F EXI STS model _t abl e;

nmysql > CREATE TABLE nodel _table (
chunk_i d | NT AUTO_ | NCREMENT PRI MARY KEY,
nmodel _obj ect LONGTEXT NOT NULL,
nmodel _net adata JSON DEFAULT NULL);

nmysql > LOAD DATA | NFI LE '/ onnx_exanpl es/ x00'
| NTO TABLE nodel _t abl e
CHARACTER SET bi nary
FI ELDS TERM NATED BY '\t
LI NES TERM NATED BY '\r'
(nmodel _obj ect) ;
Query OK, 1 row affected (34.96 sec)
Records: 1 Deleted: O Skipped: 0 Warnings: 0O

nmysql > LOAD DATA | NFI LE '/ onnx_exanpl es/ x01'
| NTO TABLE nodel _t abl e
CHARACTER SET bi nary
FI ELDS TERM NATED BY '\t
LI NES TERM NATED BY '\r'
(nmodel _obj ect);
Query OK, 1 row affected (32.74 sec)
Records: 1 Deleted: O Skipped: 0 Warnings: O

nmysql > LOAD DATA | NFI LE '/ onnx_exanpl es/ x02'
| NTO TABLE nodel _t abl e
CHARACTER SET bi nary
FI ELDS TERM NATED BY '\t
LI NES TERM NATED BY '\r'
(rmodel _obj ect);
Query OK, 1 row affected (11.90 sec)
Records: 1 Deleted: O Skipped: 0 Warnings: 0O
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nmysql > SET @mdel _netadata = JSON _OBJECT(' task','classification',
‘onnx_out puts_info', JSON OBJECT(' predictions_nange','|abel",
" prediction_probabilities_nane',
‘target_col um_nane', 'target');
nmysql > UPDATE ml cor pus. nodel _t abl e SET nodel _net adat a=@rodel _net adat a WHERE chunk_i d=1;

mysql > CALL sys. ML_MODEL_| MPORT( NULL, JSON OBJECT(' schema', 'mcorpus', 'table', 'nodel _table'), @nnx_nodel
Query OK, O rows affected (18 min 7.29 sec)

mysql > CALL sys. M._MODEL_LOAD( @nnx_nodel , NULL) ;
Query OK, O rows affected (6 min 51.37 sec)

nmysql > SELECT COUNT(*) FROM M__SCHENA root . nodel _obj ect_cat al og WHERE nodel _handl e=@nnx_nodel ;

1 rowin set (0.01 sec)

mysql > SELECT SUM LENGTH( nodel _obj ect)) FROM M._SCHEMA r oot . nodel _obj ect _cat al og WHERE nodel _handl e=@nnx_no

1 rowin set (57.36 sec)

8.1.5 ML_PREDICT_ROW

M._PREDI CT_ROWgenerates predictions for one or more rows of unlabeled data specified in JSON format.
Invoke M__PREDI CT_ROWwith a SELECT statement.

A call to M._PREDI CT_ROWCcan include columns that were not present during ML_ TRAI N. A table can
include extra columns, and still use the AutoML model. This allows side by side comparisons of target
column labels, ground truth, and predictions in the same table. M._PREDI CT_ROWignores any extra
columns, and appends them to the results.

M._PREDI CT_ROWdoes not support the following model types:

Forecasting
Anomaly detection for logs

Recommendation models trained with the TwoTower mdoel.

This topic has the following sections.

ML_PREDICT_ROW Syntax

Required ML_PREDICT_ROW Parameters

ML_PREDICT ROW Option for Data Drift Detection
ML_PREDICT_ROW Options for Recommendation Models
Options for Anomaly Detection Models

Syntax Examples

See Also
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ML_PREDICT_ROW Syntax
mysql > SELECT sys. M__PREDI CT_ROW i nput _data, nodel _handl e), [options])

options: {
JSON_OBJECT("key", "val ue"[, "key", "val ue"] ...)
"key", "val ue": {
"threshold', 'N]
"topk', 'N]
‘recommend', {'ratings'|'itenms'|'users'|'users_to_itens'|'itenms_to_users'|'itens_to_itens'|'users_t
'renove_seen', {'true'|'false'}]
"additional _details', {'true'|'false'}]

) — ————

}
Required ML_PREDICT_ROW Parameters
Set the following required parameters:

e i nput _dat a: Define the data to generate predictions for. The column names must match the feature
column names in the table used to train the model. You can define the input data in the following ways:

Specify a single row of data in JSON format.

mysql > SELECT sys. M._PREDI CT_ROW JSON_OBJECT( " col um_nane", val ue, "colum_nane", value, ...), nodel _han

Run ML_PREDI CT_ROWon multiple rows of data by specifying the columns as key-value pairs in JSON
format and select from a table.

nmysql > SELECT sys. M._PREDI CT_ROW JSON_OBJECT( " out put _col _nanme", schenm. input_col _name’, "output_col _nam
nmodel _handl e, options) FROM input_table name LIMT N

» nodel handl e: Define the model handle or a session variable that contains the model handle. See
Work with Model Handles.

Review the following options in JSON format.
ML_PREDICT ROW Option for Data Drift Detection

To view data drift detection values for classification and regression models, set the
addi tional _detail s optiontotrue. Thenl _results includesthedrift JSON object literal. See
Analyze Data Drift.

ML_PREDICT_ROW Options for Recommendation Models
Set the following options as needed for Recommendation models.
» t opk: Specify the number of recommendations to provide as a positive integer. The default is 3.
» recomend: Specify what to recommend.
e ratings: Use this option to predict ratings. This is the default value.
The target column is pr edi ct i on, and the values are f | oat .

The input table must contain at least two columns with the same names as the user column and item
column from the training model.

e it ens: Use this option to recommend items for users.

The target columnisi t em r ecommendat i on, and the values are:
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JSON_OBJECT("col um_i tem i d_name", JSON ARRAY("item 1", ... , "itemk"), "columm_rating_nanme"

The input table must contain at least one column with the same name as the user column from the
training model.

e user s: Use this option to recommend users for items.

The target column is user _r ecomrmendat i on, and the values are:

JSON_OBJECT("col um_user _i d_nanme", JSON ARRAY("user_1", ... , "user_k"), "colum_rating_nane"

The input table must contain at least one column with the same name as the item column from the
training model.

e users _to itens: Thisisthesameasitens.

e itens_to_users: Thisis the same as users.

e itens_to_itens: Use this option to recommend similar items for items.
The target columnisi t em r ecommendat i on, and the values are:
JSON_OBJECT("col urm_i tem i d_name", JSON ARRAY("item 1", ... , "itemk"))

The input table must contain at least contain a column with the same name as the item column from
the training model.

e users_to_users: Use this option to recommend similar users for users.

The target column is user _r ecomrmendat i on, and the values are:

JSON_OBJECT("col um_user _i d_nane", JSON ARRAY("user_1", ... , "user_k"))

The input table must contain at least one column with the same name as the user column from the
training model.

* renove_seen: If the input table overlaps with the training table, and r enove_seen ist r ue, then the
model will not repeat existing interactions. The defaultist r ue. Setrenove_seen to f al se to repeat
existing interactions from the training table.

Options for Anomaly Detection Models

Set the following options as needed for anomaly detection models.

» t hreshol d: The threshold you set on anomaly detection models determines which rows in the output
table are labeled as anomalies with an anomaly score of 1, or normal with an anomaly score of 0. The
value for the threshold is the degree to which a row of data or log segment is considered for anomaly
detection. Any sample with an anomaly score above the threshold is classified an anomaly. The default
value is (1 - cont ami nat i on)-th percentile of all the anomaly scores.

Syntax Examples

» The following example generates a prediction on a single row of data. The results include the
m _resul t s field, which uses JSON format. Optionally use \ Gto display the information in an easily
readable format.

nysqgl > SET @ ow_i nput = JSON_OBJECT(
"age", 25,
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"wor kcl ass", "Private",
"fnlwgt", 226802,
"education", "11th",
"educati on- num', 7,

"marital -status", "Never-married",
"occupation", "Mchine-op-inspct",
"rel ati onshi p", "Om-child",
"race", "Black",

"sex", "Male",

“capital -gain", O,
“capital -l oss", O,
"hour s- per - week", 40,
"native-country", "United-States");
nmysql > SELECT sys. M._PREDI CT_RON @ ow_i nput, @ensus_nodel, NULL)\G

R R R R R R R R l r ow R R R R R R R R

sys. M._PREDI CT_RON @ ow_i nput, @ensus_nodel, NULL):

{
"age": 25,
"sex": "Male",
"race": "Black",
"fnlwgt": 226802,
“education": "11th",
"wor kcl ass": "Private",
"Prediction": "<=50K",
"m _results": {
“predictions": {
"revenue": "<=50K"
s
“probabilities": {
">50K": 0.0032,
"<=50K": 0.9968
}
s
“occupation": "Mchine-op-inspct",
“capital -gain": O,
“capital -loss": O,
“rel ati onshi p": "Om-child",
“educati on-nunt': 7,
"hour s- per - week": 40,
"marital -status": "Never-married",
"pative-country": "United-States"
}

1 rowin set (2.2218 sec)

» The following example generates predictions on two rows of data from the input table. Optionally use \ G
to display the information in an easily readable format.

nysql > SELECT sys. M._PREDI CT_ROW JSON_OBJECT(
"age", census_train. age’,
"wor kcl ass", census_train. workclass’,
"fnlwgt", census_train. fnlwgt",
"education", census_train. education’,
"educati on-nunl', census_train. education-num,
"marital -status", census_train. marital-status’,
"occupation", census_train. occupation ,
"rel ationshi p", census_train. relationship,
"race", census_train. race’,

sex", census_train. sex ,
"capital -gain", census_train. capital-gain,
"capital -l oss", census_train. capital-loss’,
"hour s- per-week", census_train. hours-per-week",
"npative-country", census_train. native-country’),
@ensus_nodel , NULL) FROM census_dat a.census_train LIMT 2\ G
EE R R R R R R R R R R R R 1 r ow EE R R R R R R R R R R R R R
sys. M_PREDI CT_ROW JSON_OBJECT(
"age", census_train. age’,
"wor kcl ass", census_train. workclass’,
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"fnlwgt", census_train. fnlwgt",
"education", census_train. education’,

"education-nun', census_train. education-num,

"marital -status", census_train. marita: {

khkkkkhhkhkhkhkhhkhhhhkhhhkhhkhhkhkhkk*x

sys. M._PREDI CT_ROW JSON_OBJECT(

"age", census_train. age’,

"wor kcl ass", census_train. workclass’,
"fnlwgt", census_train. fnlwgt",
"education", census_train. education’,

"age": 62,
"sex": "Femal e",
"race": "Wiite",

"fnlwgt": 123582,
"education": "10th",
“wor kcl ass": "Private",
"Prediction": "<=50K",
"m _results": {
“predictions": {
"revenue": "<=50K"
s
“probabilities": {
">50K": 0.0106,
"<=50K": 0.9894
}
s
"occupation": "CQ her-service",
“capital -gain": O,
“capital -loss": O,
“rel ationship": "Unmarried",
"education-nuni: 6,
"hour s- per - week": 40,
"marital -status": "Divorced",
"pative-country": "United-States"

khkkkkkkhkkkkkkkkkkkkkkkkkk*
row

"education-nunl', census_train. education-num,

"marital -status", census_train. marita: {

2 rows in set (9.6548 sec)

"age": 32,

"sex": "Femal e",

"race": "Wiite",

"fnlwgt": 174215,
"education": "Bachel ors",
"wor kcl ass": "Federal - gov",

"Prediction": "<=50K",
"m _results": {
“predictions": {
"revenue": "<=50K"
s
“probabilities": {
">50K": 0.3249,
"<=50K": 0.6751
}
s
"occupation": "Exec-managerial",
“capital -gain": O,
“capital -loss": O,
“relationship": "Not-in-famly",
"education-nuni: 13,
"hour s- per - week": 60,
"marital -status": "Never-married",
"pative-country": "United-States"
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» The following example uses explicit feedback and runs the ML_PREDI CT_ROWroutine to predict the top

See Also

3 items that a particular user will like with the users_t o_i t ens option.

nysql > SELECT sys. M._PREDI CT_ROWN(' {"user _id": "846"}', @mwdel, JSON OBJECT("recommend", "users_to_itens"
| sys. M__PREDI CT_ROW' {"user_id": "846"}', @mwdel, JSON OBJECT("reconmmend", "users_to_itens", "topk", 3
| {"user_id": "846", "nl _results": "{"predictions": {"item.id": ["313", "483", "64"], "rating": [4.06, 4

1 rowin set (0.2811 sec)

The following example generates predictions on ten rows from an input table. The
addi tional _detai |l s parameteris setto TRUE, so you can review data drift details.

nysql > SELECT sys. M._PREDI CT_ROW JSON_OBJECT(
"age", census_test. age’

"wor kcl ass", census_test. workclass®

"fnlwgt", census_test. fnlwgt",

"education", census_test. education’

"educati on-nunl', census_test. education-num
"marital -status", census_test. marital-status’
"occupation", census_test. occupation’

"rel ationshi p", census_test. relationship’
"race", census_test. race’

"sex", census_test. sex’

"capital -gain", census_test. capital-gain’
"capital -l oss", census_test. capital-Iloss’
"hour s- per -week", census_test. hours-per-week’
"pative-country", census_test. native-country’),
@ensus_nodel , JSON_OBJECT(' additional _details', TRUE))FROM census_data.census_test LIMT 10

| sys.M._PREDI CT_RON JSON_OBJECT(

"age", census_test. age

"wor kcl ass", census_test. workcl ass’
"fnlwgt", census_test. fnlwgt"

"education", census_test. education’
"education-nunf, census_test. educati on-num
" ma

{"age": 37, "sex": "Male", "race": "Wiite", "fnlwyt": 99146, "education": "Bachel ors", "workclass": "P
{"age": 34, "sex": "Male", "race": "Wiite", "fnlwgt": 27409, "education": "9th", "workclass": "Private

{"age": 30, "sex": "Female", "race": "Wiite", "fnlwgt": 299507, "education": "Assoc-acdni, "workclass"
{"age": 62, "sex": "Female", "race": "Wiite", "fnlwgt": 102631, "education": "Some-college", "workclas
{"age": 51, "sex": "Male", "race": "Wiite", "fnlwgt": 153486, "education": "Sone-college", "workclass"

|
|
|
|
|
| {"age": 34, "sex": "Male", "race": "Black", "fnlwyt": 434292, "education": "HS-grad", "workclass": "Pr
| {"age": 28, "sex": "Male", "race": "White", "fnlwgt": 240172, "education": "Masters", "workclass": "Se
| {"age": 56, "sex": "Male", "race": "White", "fnlwgt": 219426, "education": "10th", "workclass": "Priva
| {"age": 46, "sex": "Female", "race": "Wite", "fnlwgt": 295791, "education": "HS-grad", "workclass": "
| {"age": 46, "sex": "Male", "race": "Wiite", "fnlwgt": 114032, "education": "Sone-college", "workclass"
+

10 rows in set (6.8109 sec)

» Generate Predictions for a Row of Data

» Analyze Data Drift

8.1.6 ML_PREDICT_TABLE

ML_PREDI CT_TABLE generates predictions for an entire table of unlabeled data. AutoML performs the
predictions in parallel.

This topic has the following sections.

259



ML_PREDICT_TABLE

* ML_PREDICT_TABLE Overview

« ML_PREDICT_TABLE Syntax

» Required ML_PREDICT_TABLE Parameters

« ML_PREDICT_TABLE Options

» Options for Recommendation Models

» Requirements and Options for Anomaly Detection Models
» Options for Forecasting Models

» Syntax Examples

* See Also

ML_PREDICT_TABLE Overview

M._PREDI CT_TABLE is a compute intensive process. If M._PREDI CT_TABLE takes a long time to
complete, manually limit input tables to a maximum of 1,000 rows.

A call to M._PREDI CT_TABLE can include columns that were not present during ML_ TRAI N. A table can
include extra columns, and still use the AutoML model. This allows side by side comparisons of target
column labels, ground truth, and predictions in the same table. M._PREDI CT_TABLE ignores any extra
columns, and appends them to the results.

The output table includes a primary key:
« If the input table has a primary key, the output table has the same primary key.

« If the input table does not have a primary key, the output table has a new primary key column that auto
increments. The name of the new primary key column is _4aad19ca6e_pk_i d. The input table must
not have a column with the name _4aadl19ca6e_pk_i d that is not a primary key.

The output of predictions includes the ml _r esul t s column, which contains the prediction results and the
data. The combination of results and data must be less than 65,532 characters.

You have the option to specify the input table and output table as the same table if specific conditions are
met. See Input Tables and Output Tables to learn more.

M._PREDI CT_TABLE supports data drift detection for classification and regression models with the
following:

* The opt i ons parameter includes the addi ti onal _det ai | s boolean value.
e Them _results columnincludes the dri ft JSON object literal.

See Analyze Data Drift.
ML_PREDICT_TABLE Syntax

mysql > CALL sys. M._PREDI CT_TABLE(t abl e_nanme, nodel _handl e, output_tabl e_nanme), [options])

options: {
JSON_OBJECT("key", "val ue"[, "key", "val ue"] ...)
"key", "val ue": {
["threshold, 'N]
["topk', "N ]
['recommend', {'ratings'|'itens'|'users'|'users_to_items'|'itens_to_users'|'itens_to_itens'|"'users_t
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['renpve_seen', {'true'|'false'}]
['additional _details', {"true'|'false'}]

["prediction_interval', 'N]

["item nmetadata', JSON OBJECT('table_nane'[,"'database_nane.table_name'] ...)]
['user_netadata', JSON OBJECT('table_nane'[,"'database_nane.table _name'] ...)]
['l ogad_options', JSON OBJECT(("key","value"[,"key","value"] ...)

"key", "val ue": {
['sunmarize_|ogs', {'true'|'false'}]
['summary_t hreshold', 'N ]

}
}

Required ML_PREDICT_TABLE Parameters
Set the following required parameters:

» tabl e_nane: Specifies the fully qualified name of the input table (dat abase_nane. t abl e_nane).
The input table should contain the same feature columns as the training dataset. If the target column is
included in the input table, it is not considered when generating predictions.

« nodel handl e: Specifies the model handle or a session variable containing the model handle. See
Work with Model Handles.

» out put _tabl e _nane: Specifies the table where predictions are stored. A fully qualified table name
must be specified (dat abase _nane. t abl e_nan®). You have the option to specify the input table and
output table as the same table if specific conditions are met. See Input Tables and Output Tables to
learn more.

ML_PREDICT_TABLE Options
Set the following options in JSON format as needed.

» To view data drift detection values for classification and regression models, set the
addi tional detail soptiontotrue. Them results includesthedrift JSON object literal.

Additional options are available for recommendation, anomaly detection, and forecasting models.
Options for Recommendation Models

Set the following options as needed for recommendation models.

» t hreshol d: The optional threshold that defines positive feedback, and a relevant sample. Only use with
ranking metrics. It can be used for either explicit or implicit feedback.

» t opk: The optional top number of recommendations to provide. The default is 3. Set a positive integer
between 1 and the number of rows in the table.

A recommendat i on task with implicit feedback can use both t hr eshol d and t opk.
» recomend: Specify what to recommend.
e ratings: Use this option to predict ratings. This is the default value.
The target column is pr edi cti on, and the values are f | oat .

The input table must contain at least two columns with the same names as the user column and item
column from the training model.

e it ens: Use this option to recommend items for users.
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The target columnisi t em r ecommendat i on, and the values are:

JSON_OBJECT("col umm_i tem i d_name", JSON ARRAY("item 1", ... , "itemk"), "colum_rating_name" , JSON_ARRAY

The input table must contain at least one column with the same name as the user column from the
training model.

e user s: Use this option to recommend users for items.

The target column is user _r econmrendat i on, and the values are:

JSON_OBJECT( " col umm_user _i d_nanme", JSON_ARRAY("user_1", ... , "user_k"), "colum_rating_name" , JSON_ARRAY

The input table must contain at least one column with the same name as the item column from the
training model.

e users_to_ itens: Thisisthe sameasitens.

e itens_to_users: Thisisthe same as users.

e itenms_to_itens: Use this option to recommend similar items for items.
The target columnisi t em r ecommendat i on, and the values are:
JSON_OBJECT("col um_item.id_nanme", JSON ARRAY("item1", ... , "itemk"))

The input table must contain at least one column with the same name as the item column from the
training model.

e users_to_users: Use this option to recommend similar users for users.

The target column is user _r ecommendat i on, and the values are:

JSON_OBJECT("col umm_user _i d_nanme", JSON _ARRAY("user_1", ... , "user_k"))

The input table must at least contain a column with the same name as the user column from the
training model.

* renove_seen: If the input table overlaps with the training table, and r enove_seenist r ue, then the
model will not repeat existing interactions. The defaultist r ue. Setrenove_seen to f al se to repeat
existing interactions from the training table.

* i tem net adat a: Defines the table that has item descriptions. It is a JSON object that has the
t abl e_namne option as a key, which specifies the table that has item descriptions. One column must be
the same asthe i t em i d in the input table.

» user _net adat a: Defines the table that has user descriptions. It is a JSON object that has the
t abl e_namne option as a key, which specifies the table that has user descriptions. One column must be
the same as the user _i d in the input table.

e tabl e _name: To be used with the i t em net adat a and user _net adat a options. It specifies
the table name that has item or user descriptions. It must be a string in a fully qualified format
(schema_name.table_name) that specifies the table name.

Requirements and Options for Anomaly Detection Models

If you run M__PREDI CT_TABLE with the | og_anonal y_det ect i on task, at least one column must act as
the primary key to establish the temporal order of logs.
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Set the following options as needed for anomaly detection models.

» t hreshol d: The threshold you set on anomaly detection models determines which rows in the output
table are labeled as anomalies with an anomaly score of 1, or normal with an anomaly score of 0. The
value for the threshold is the degree to which a row of data or log segment is considered for anomaly
detection. Any sample with an anomaly score above the threshold is classified an anomaly. The default
value is (1 - cont ami nat i on)-th percentile of all the anomaly scores.

» t opk: The optional top K rows to display with the highest anomaly scores. Set a positive integer
between 1 and the number of rows in the table. If t opk is not set, M._ PREDI CT_TABLE uses
t hreshol d.

Do not set both t hr eshol d and t opk. Use t hr eshol d ort opk, or set opt i ons to NULL.

* | ogad_options: AJSON OBJECT that allows you to configure the following options for running an
anomaly detection model on log data.

e sunmari ze_| ogs: Allows you to leverage GenAl to generate textual summaries of results.
Enable this option by setting it to TRUE. If enabled, summaries are generated for log segments
that are labeled as an anomaly or have anomaly scores higher than the value set for the
sumrary_t hreshol d.

e sunmary_t hreshol d: Determines the rows in the output table that are summarized. This does not
affect how the cont ami nat i on and t hr eshol d options determine anomalies. You can set a value
greater than 0 and less than 1. The default value is NULL. If NULL is selected, only the log segments
tagged with i s_anonal y are used to generate summaries.

Options for Forecasting Models
Set the following options as needed for forecasting models.

e prediction_interval : Use this to generate forecasted values with lower and upper bounds based
on a specific prediction interval (level of confidence). For the predi cti on_i nt erval value:

e The default value is 0.95.
¢ The data type for this value must be FLOAT.

e The value must be greater than 0 and less than 1.
Syntax Examples

» Atypical usage example that specifies the fully qualified name of the table to generate predictions for,
the session variable containing the model handle, and the fully qualified output table name.

mysql > CALL sys. ML_PREDI CT_TABLE(' census_dat a. census_train', @ensus_nodel, 'census_data.census_train_pr

To view M._PREDI CT_TABLE results, query the output table. The table shows the predictions
and the feature column values used to make each prediction. The table includes the primary key,
_4aadl9cabe pk_id,andthem results column, which uses JSON format:

nmysql > SELECT * FROM census_train_predictions LIMT 5

e +-ooo - T oo T T dhe oo oo e o o [
| _4aadl9cabe_pk_id | age | workcl ass | fnlwgt | education | education-num | marital-status
e +-ooo - T oo T T dhe oo oo e o o [
| 1| 37| Private | 99146 | Bachel ors | 13 | Married-civ-spous
| 2| 34| Private | 27409 | 9th | 5 | Married-civ-spous
| 3| 30| Private | 299507 | Assoc-acdm | 12 | Separated
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| 62 | Self-enp-not-inc | 102631 | Sone-coll ege | 10 | W dowed |

| 51| Private | 153486 | Sone-coll ege | 10 | Married-civ-spouse
S +----- S +---ee- oo S [ . +-
5 rows in set (0.0014 sec)

| 4
5

» The following example generates a table of recommendations. The output recommends the top three
items that particular users will like.
nysql > CALL sys. M._PREDI CT_TABLE(' ml corpus.test_sanple', @mwdel, 'nlcorpus.table_predictions_users'
JSON_OBJECT("reconmend", "itens", "topk", 3));
Query OK, 0 rows affected (5.0672 sec)

nysqgl > SELECT * FROM ml cor pus. tabl e_predictions_users LIMT 3

foccccooocccocooocoooo heccoocooo heccoocooo hocccoooo L - — — = = = = = = = =
| _4aadl9cabe_pk id | user_id | itemid | rating | m _results

foccccooocccocooocoooo heccoocooo heccoocooo hocccoooo L - — — = = = = = = = =
| 1| 1026 | 13763 | 1| {"predictions": {"itemid": ["10", "14", "11"], "rating"
| 2 | 992 | 16114 | 1| {"predictions": {"itemid": ["10", "14", "11"], "rating"
| 3| 1863 | 4527 | 1| {"predictions": {"itemid": ["10", "14", "11"], "rating"
foccccooocccocooocoooo heccoocooo heccoocooo hocccoooo L - — — = = = = = = = =

» The following example generates a table of anomaly detection predictions. A threshold value of 1% is
specified.

nysqgl > CALL sys. M._PREDI CT_TABLE(' m cor pus_anonal y_det ecti on. vol canoes-b3_anonal y_train', @nonaly, 'nlcorpu
JSON_OBJECT(' threshol d', 0.01))
Query OK, 0 rows affected (12.77 sec)

nysql > SELECT * FROM nl cor pus_anonal y_det ecti on. vol canoes- predi cti ons_threshold LIMT 5

802 | 0.47255
642 | 0.387302

| 1| | | "predictions': {'is_anomaly': 1}, 'probabilities’
| 2 | | |

| 3| 438 | 959 | 0.556034

| 4| | |

| 5 | | |

0| { {

0| {'predictions': {'is_anomaly': 1}, 'probabilities’

0| {'predictions': {'is_anomaly': 1}, 'probabilities’
779 | 0.407626 0| { {
933 | 0.383843 0| { {

"predictions': {'is_anomaly': 1}, 'probabilities’
‘"predictions': {'is_anomaly': 1}, 'probabilities’

5 rows in set (0.00 sec)

» The following example generates a table of anomaly detection predictions by using semi-supervised
learning. It overrides the ensenbl e_scor e value from the M__TRAI N routine to a new value of 0.5.

mysql > CALL sys. ML_PREDI CT_TABLE(' m cor pus. anomal y_train', @enmsup_gknn, 'm corpus. preds_gknn_wei ght ed'
CAST(' {"experinmental ": {"sem supervised": {"supervised_subnodel weight": O

» The following example generates a table of anomaly detection predictions for log data. It disables log
summaries in the results.

nysql > CALL sys. M._PREDI CT_TABLE(' ml corpus. "I og_anonal y_just_patterns’ ', @ ogad_nodel, 'nlcorpus.|og_anonaly
JSON_OBJECT(' | ogad_options', JSON OBJECT('summarize_ | ogs', FALSE)));
nysql > SELECT * FROM ml cor pus. | og_anomaly_test_out LIMT 1

1 | 2024-04-11T14: 39: 45. 4435972
| 2024-04-11T14: 39: 45. 4436182
2024- 04- 11T14: 39: 45. 4436317
2024- 04- 11T14: 39: 45. 4436357
2024-04-11T14: 39: 45. 4436467

1 [Note] [MY-013546] [InnoDB] Atomic wite enabled

1 [Note] [My-012932] [InnoDB] PUNCH HOLE support avail abl e
[ 1 [Note] [My-012944] [InnoDB] Uses event mnutexes
[ 1 [Note] [My-012945] [InnoDB] GCC builtin __atomic_thread_fence() is used
| 1 [Note] [MY-012948] [|nnoDB] Conpressed tables use zlib 1.2.13
| 2024-04-11T14: 40: 25. 128143Z 0 [ Note] [ MY-010264] [Server] - '127.0.0.1' resolves to '127.0.0.1
| 2024-04-11T14: 40: 25. 128182Z 0 [ Note] [ My-010251] [Server] Server socket created on IP: '127.0.0.1
| 2024-04-11T14: 40: 25. 128245Z 0 [Note] [MY-010252] [Server] Server hostnane (bind-address): '10.0.1.125
| 0 [Note] [MY-010264] [Server] - '10.0.1.125" resolves to '10.0.1.125
[ 0 [Warni ng] [My-015116] [Server] Background hi st ogram update on nexus.fet
| try restarting transaction

2024-04-11T14: 40: 25. 1282722
2024-04-26T13: 01: 30. 2873252
Lock wait tineout exceeded
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See Also
» Generate Predictions for a Table

* Analyze Data Drift

8.1.7 ML_EXPLAIN_ROW

The ML_EXPLAI N_ROWroutine generates explanations for one or more rows of unlabeled data. Invoke
M._EXPLAI N ROMwith a SELECT statement. It limits explanations to the 100 most relevant features.

A loaded and trained model with the appropriate prediction explainer is required to run M__ EXPLAI N_ROW
See Generate Prediction Explanations for a Row of Data.

ML_EXPLAI N_ROWdoes not support recommendation, anomaly detection and topic modeling models. A
call with one of these models produces an error.

A call to ML_EXPLAI N_ROWecan include columns that were not present during ML._ TRAI N. A table can
include extra columns, and still use the AutoML model. This allows side by side comparisons of target
column labels, ground truth, and explanations in the same table. M._ EXPLAI N_ROWignores any extra
columns, and appends them to the results.

ML_EXPLAIN_ROW Syntax
nmysql > SELECT sys. M._EXPLAI N_RON i nput _data, nodel _handl e, [options]);
options: {
JSON_OBJECT("key", "val ue"[, "key", "val ue"] ...)
"key", "val ue": {
[' prediction_explainer', {'pernutation_inportance'|"'shap'}| NULL]

}
}

Required ML_EXPLAIN_ROW Parameters
Set the following required parameters:

e i nput _dat a: Define the data to generate explanations for. The column names must match the feature
column names in the table used to train the model. You can define the input data in the following ways:

Specify a single row of data in JSON format:

nysql > SELECT sys. M._EXPLAI N_ROAJSON_OBJECT( " col umm_nane", val ue, "columm_nanme", value, ...)', nodel _ha

To run M__EXPLAI N_ROWon multiple rows of data, specify the columns in JSON key-value format and
select from an input table:

nysql > SELECT sys. M._EXPLAI N_ROAN JSON_OBJECT( " out put _col _nanme", schema. input_col _name’, output_col _name
nmodel _handl e, options) FROMinput_table name LIMT N,

e nodel _handl e: Specifies the model handle or a session variable containing the model handle. See
Work with Model Handles.

ML_EXPLAIN_ROW Options

You can set the following option in JSON format as needed:
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e prediction_expl ai ner: The name of the prediction explainer that you have trained for this model
using ML_EXPLAI N.

e permutation_i nport ance: The default prediction explainer.

« shap: The SHAP prediction explainer, which produces feature importance values based on Shapley

values.

Syntax Examples

» The following example generates a prediction explainer on a single row of data with the default
Permutation Importance prediction explainer. The results include the m _r esul t s field, which uses
JSON format. Optionally, use \ Gto display the output in an easily readable format.

nysql > SET @ow_i nput = JSON_OBJECT(

nysql > SELECT sys. M._EXPLAI N_ RON @ ow_i nput,

"age", 31,

"wor kcl ass", "Private",
"fnlwgt", 45781,
"education", "Masters",

"educati on- nun', 14,

"marital -status",
"occupation",
"rel ationshi p",
"race",
"sex",

"capital -gain",
"capital -1o0ss",

"White",
"Femal e",

"Married-civ-spouse",
" Pr of -

speci al ty",

"Not-in-famly",

14084,
2042,

"hour s- per - week", 40,
"pative-country", "I

EE R R R R R R R R R R R R R R 1

sys. M._EXPLAI N_RON @ ow_i nput ,

JSON_OBJECT( ' predi ction_expl ai ner',

{

ndi a") ;

@ensus_nodel ,

JSON_OBJECT( "' predi cti on_expl ai ner', 'permutation

r ow EE R R R R R R R R R R R R

@ensus_nodel ,

‘permutation_i nportance')):

"age": 31,

"sex": "Femal e",

"race": "Wiite",

"Notes": "capital-gain (14084) had the |argest inpact towards predicting >50K",

"fnlwgt": 45781,

"education": "Masters",

"wor kcl ass": "Private",

"Prediction": ">50K",

"m _results": {

"notes": "capital-gain (14084) had the |argest inpact towards predicting >50K",
“predictions": {
"revenue": ">50K"
IE
"attributions": {
"age": 0.34,
"sex": O,
"race": O,
"fnlwgt": O,
"education": O,
"wor kcl ass": 0O,
"occupation": O,
“capital -gain": 0.97,
"capital -loss": O,
“rel ationship": O,
"education-nuni': 0.04,
“hour s- per - week": 0,
"marital -status": 0O
}
IE
"occupation": "Prof-specialty",

“capital -gain"

: 14084,
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"capital -l oss": 2042,
“relationship": "Not-in-famly",
"education-nuni': 14,

"hour s- per - week": 40,

"marital -status":
“pative-country": "India",
"age_attribution": 0.34,
"sex_attribution": O,
"race_attribution": O,
"fnlwgt _attribution": O,
“education_attribution": O,
"wor kcl ass_attribution": O,
"occupation_attribution": O,
“capital -gain_attribution": 0.97,
“capital -loss_attribution": O,
“rel ationship_attribution": O,
"educati on-num attribution": 0.04,
"hour s- per-week_attribution": O,
"marital -status_attribution": O

1 rowin set (6.3072 sec)

“Married-civ-spouse",

* The following example generates prediction explainers on two rows of the input table with the SHAP

prediction explainer.

nysql > SELECT sys. M._EXPLAI N_ROA JSON_OBJECTY(

"age", census_train. age’,

"wor kcl ass", census_train. workclass’,
"fnlwgt", census_train. fnlwgt",
"education", census_train. education,

"educati on-nunl', census_train. education-num,
"marital -status", census_train. marital-status’,
"occupation", census_train. occupation,

"rel ationshi p", census_train. relationship,
"race", census_train. race’,

"sex", census_train. sex ,

"capital -gain", census_train. capital-gain,
"capital -l oss", census_train. capital-loss’,
"hour s- per-week", census_train. hours-per-week",
"npative-country", census_train. native-country’),
@ensus_nodel , JSON_OBJECT(' predi cti on_expl ai ner',

EE R R R E R R R R R R R R 1

sys. ML_EXPLAI N_ROW JSON_OBJECT( "age",

"age": 22,

"sex": "Fenal e",
"race": "Bl ack",
"fnlwgt": 310380,
"education": "HS-grad",
"wor kcl ass": "Private",
"Prediction": "<=50K",

"m _results": {
"predictions": {
"revenue": "<=50K"
}

“"attributions": {

‘shap')) FROM census_dat a. census_train LIMT 2\G

r ow EE R R R R R R R R R R R R

census_train. age’,

"wor kcl ass", census_train. workclass,

"fnlwy

"age_attribution":
"sex_attribution":
"race_attribution":

0. 055990096751945995,
0. 011676016319165776,
0. 005258734090653583,

"fnlwgt_attribution": O,

"education_attri but
"wor kcl ass_attri but

"occupation_attribution":

"capital -gain_attri
"capital -loss_attri
"relationship_attri
"education-numattr
"hour s- per-week_at t

ion": O,
ion": O,
0. 0036531218497025536,

bution": 0.017052572967215754,
bution": O,
bution": 0.03019321048408115,

i bution":
ribution":

0. 01749651048882997,
0. 003671861337781857,
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"marital -status_attribution": 0.03869036669327783

}
s
"“occupation": "Admclerical",
“capital -gain": O,
“capital -loss": O,
“rel ationship": "Unmarried",
"education-nuni: 9,
"hour s- per - week": 40,
"marital -status": "Never-married",
"pative-country": "United-States",
"age_attribution": 0.0559900968,
"sex_attribution": 0.0116760163,
"race_attribution": 0.0052587341,
“fnlwgt _attribution": O,
“education_attribution": O,
"wor kcl ass_attribution": O,
"occupation_attribution": 0.0036531218,
“capital -gain_attribution": 0.017052573,
“capital -loss_attribution": O,
"“relationship_attribution": 0.0301932105,
"educati on-num attribution": 0.0174965105,
“hour s- per-week_attribution": 0.0036718613,
"marital -status_attribution": 0.0386903667

KRKKK KKK KKK KKK KR KKKk hkkkkk* D [ QWY % % % % ok ok ok ok ok ok ok ok kK ok ok ok ok ok ko kK ok ok

sys. M._EXPLAI N RON JSON _OBJECT( "age", census_train. age , "workclass", census_train. workclass , "fnlwgt",

"age": 45,

"sex": "Mal e",

"race": "Wiite",
"fnlwgt": 182100,
"education": "Bachel ors",
"wor kcl ass": "Local - gov",

"Prediction": ">50K",
"m _results": {
“predictions": {
"revenue": ">50K"
s
“attributions": {
"age_attribution": 0.10591945090998228,
"sex_attribution": 0.013172526260700925,
"race_attribution": 0.007606345008707882,
"fnlwgt_attribution": 0.018097167152459265,
"education_attribution": -0.007944704365873384,
"workcl ass_attribution": 0.01615429281764716,
"occupation_attribution": 0.08573874801531925,
“capital -gain_attribution": -0.003364275424074914,
“capital -loss_attribution": O,
“relationship_attribution": 0.099373669980131,
“education-num attribution": 0.1380689603088001,
"hour s-per-week_attribution": 0.0124334565747376,
"marital -status_attribution": 0.0938256104928338
}
s
"occupation": "Sales",
“capital -gain": O,
“capital -loss": O,
“rel ati onshi p": "Husband",
"education-nuni': 13,
"hour s- per - week": 40,
“marital -status": "Married-civ-spouse",
"pative-country": "United-States",
"age_attribution": 0.1059194509,
"sex_attribution": 0.01317252683,
"race_attribution": 0.007606345,
"fnlwgt _attribution': 0.0180971672,
“education_attribution": -0.0079447044,
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"workcl ass_attribution": 0.0161542928
"occupation_attribution": 0.085738748
“capital -gain_attribution": -0.0033642754,
"“capital -loss_attribution": 0
“relationship_attribution": 0.09937367
“education-num attribution": 0.1380689603
“hour s- per-week_attribution": 0.0124334566
"marital -status_attribution": 0.0938256105

}
2 rows in set (5.5382 sec)

See Also

» Generate Prediction Explanations for a Row of Data
8.1.8 ML_EXPLAIN _TABLE

M._EXPLAI N_TABLE explains predictions for an entire table of unlabeled data. It limits explanations to the
100 most relevant features.

ML_EXPLAIN_TABLE Overview

the input table to a maximum of 100 rows. If the input table has more than ten

Note
@ M._EXPLAI N_TABLE is a very memory-intensive process. We recommend limiting
columns, limit it to ten rows.

A call to M._EXPLAI N_TABLE can include columns that were not present during ML_TRAI N. A table can
include extra columns, and still use the AutoML model. This allows side by side comparisons of target
column labels, ground truth, and explanations in the same table. M._EXPLAI N_TABLE ignores any extra
columns, and appends them to the results.

A loaded model and trained with the appropriate prediction explainer is required to run
M__EXPLAI N_TABLE. See Generate Prediction Explanations for a Table.

The output table includes a primary key:
« If the input table has a primary key, the output table will have the same primary key.

« If the input table does not have a primary key, the output table will have a new primary key column that
auto increments. The name of the new primary key column is _4aadl19ca6e_pk i d. The input table
must not have a column with the name _4aad19ca6e_ pk_i d that is not a primary key.

You have the option to specify the input table and output table as the same table if specific conditions are
met. See Input Tables and Output Tables to learn more.

M._EXPLAI N_TABLE does not support recommendation, anomaly detection, and topic modeling models. A
call with one of these models produces an error.

ML_EXPLAIN_TABLE Syntax

mysql > CALL sys. ML_EXPLAI N _TABLE(t abl e_nanme, nodel _handl e, output_tabl e_nanme, [options])

options: {
JSON_OBJECT("key", "val ue"[, "key", "val ue"] ...)
"key", "val ue": {
[' prediction_explainer', {'pernutation_inportance'|"'shap'}| NULL]
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Required ML_EXPLAIN_TABLE Parameters
Set the following required parameters.

« tabl e_nane: Specifies the fully qualified name of the input table (dat abase_nane. t abl e_nane).
The input table should contain the same feature columns as the table used to train the model. If the
target column is included in the input table, it is not considered when generating prediction explanations.

» nodel _handl| e: Specifies the model handle or a session variable containing the model handle. See
Work with Model Handles.

* out put _t abl e_nane: Specifies the table where explanation data is stored. A fully qualified table name
must be specified (dat abase_nane. t abl e_nan®). You have the option to specify the input table and
output table as the same table if specific conditions are met. See Input Tables and Output Tables to
learn more.

ML_EXPLAIN_TABLE Options

Set the following options as needed.

» prediction_expl ai ner: The name of the prediction explainer that you have trained for this model
using ML_EXPLAI N.

e permutation_i nportance: The default prediction explainer.

« shap: The SHAP prediction explainer, which produces feature importance values based on Shapley
values.

Syntax Examples

» The following example generates explanations for a table of data with the default Permutation
Importance prediction explainer. The ML_EXPLAI N_TABLE call specifies the fully qualified name of
the table to generate explanations for, the session variable containing the model handle, and the fully
qualified output table name.

nmysql > CALL sys. ML_EXPLAI N_TABLE(' census_data. census_train', @ensus_nodel, 'census_data.census_train_pernut
JSON_OBJECT( ' predi ction_explainer', 'pernutation_inmportance'));

To view M__EXPLAI N_TABLE results, query the output table. The SELECT statement retrieves
explanation data from the output table. The table includes the primary key, 4aadl19ca6e pk_id, and
the M _resul t s column, which uses JSON format:

nysql > SELECT * FROM census_train_pernutation LIMT 3;

+emm - L Femmeee o Fomme e emeeaa e e eeeee e eeaaa L
| _4aadl9cabe_pk_id | age | workclass | fnlwgt | education | education-num| narital-status | occupatio
S +emm - L Femmeee o Fomme e emeeaa e e eeeee e eeaaa L
| 1| 37| Private | 99146 | Bachelors | 13 | Married-civ-spouse | Exec-mana
| 2| 34| Private | 27409 | 9th | 5 | Married-civ-spouse | Craft-rep
| 3| 30| Private | 299507 | Assoc-acdm | 12 | Separated | Qther-ser
S +emm - L Femmeee o Fomme e emeeaa e e eeeee e eeaaa L

See Also

» Generate Predictions Explanations for a Table
8.1.9 ML_SCORE

ML_ SCORE scores a model by generating predictions using the feature columns in a labeled dataset as
input and comparing the predictions to ground truth values in the target column of the labeled dataset. The
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dataset used with M__ SCORE should have the same feature columns as the dataset used to train the model
but the data should be different. For example, you might reserve 20 to 30 percent of the labeled training
data for scoring.

ML_ SCORE returns a computed metric indicating the quality of the model.

ML_SCORE Syntax

nysqgl > CALL sys. M._SCORE(t abl e_nane, target_col umm_nane, nodel _handle, netric, score, [options])

options: {

JSON _OBJECT("key", "val ue"[, "key", "val ue"] ...)
"key", "val ue": {

"threshold', 'N]

[

["topk', "N]

['renove_seen', {'true'|'false'}]

["item nmetadata', JSON OBJECT('tabl e_nane'[,'database_nane.table_nane'] ...)]
["user_netadata', JSON OBJECT('table_nane'[,'database_nane.table_nane'] ...)]
}

}
Required ML_SCORE Parameters
Set the following required parameters.

» tabl e_nane: Specifies the fully qualified name of the table used to compute model quality
(dat abase_nane. t abl e_nane). The table must contain the same columns as the training dataset.

e target col umm_nane: If scoring a supervised or semi-supervised model, specify the name of the
target column containing ground truth values. If scoring an unsupervised model, set to NULL. See
AutoML Learning Types.

» nodel _handl e: Specifies the model handle or a session variable containing the model handle. See
Work with Model Handles.

» netri c: Specifies the name of the metric. The metric selected must be compatible with the t ask type
used for training the model. See Optimization and Scoring Metrics.

» scor e: Specifies the user-defined variable name for the computed score. The M__ SCORE routine
populates the variable. User variables are written as @ ar _nane. Any valid name for a user-defined
variable is permitted.

The following options in JSON format are available for recommendation and anomaly detection models.
Options for Recommendation Models
Set the following options as needed for recommendation models.

» t hreshol d: The optional threshold that defines positive feedback, and a relevant sample. Only use with
ranking metrics. It can be used for either explicit or implicit feedback.

» t opk: The optional top nhumber of recommendations to provide. The default is 3. Set a positive integer
between 1 and the number of rows in the table.

Arecomendat i on task and ranking metrics can use both t hr eshol d and t opk.

e renove_seen: If the input table overlaps with the training table, and r enove_seenistr ue, then the
model will not repeat existing interactions. The defaultis t r ue. Setr enove _seen to f al se to repeat
existing interactions from the training table.
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e i tem net adat a: Defines the table that has item descriptions. It is a JSON object that has the
t abl e_nane option as a key, which specifies the table that has item descriptions. One column must be
the same asthe i t em i d in the input table.

e user _net adat a: Defines the table that has user descriptions. It is a JSON object that has the
t abl e_nane option as a key, which specifies the table that has user descriptions. One column must be
the same as the user _i d in the input table.

e tabl e_nane: To be used with the i t em net adat a and user _net adat a options. It specifies
the table name that has item or user descriptions. It must be a string in a fully qualified format
(schema_name.table_name) that specifies the table name.

Options for Anomaly Detection Models
Set the following options as needed for anomaly detection models.

» t hreshol d: The threshold you set on anomaly detection models determines which rows in the output
table are labeled as anomalies with an anomaly score of 1, or normal with an anomaly score of 0. The
value for the threshold is the degree to which a row of data or log segment is considered for anomaly
detection. Any sample with an anomaly score above the threshold is classified an anomaly. The default
value is (1 - cont ami nat i on)-th percentile of all the anomaly scores.

» t opk: The optional top K rows to display with the highest anomaly scores. Set a positive integer
between 1 and the number of rows in the table. If t opk is not set, M._SCORE uses t hr eshol d.

Do not set both t hr eshol d and t opk. Use t hreshol d or t opk, or set opti ons to NULL.
Syntax Examples

» The following example runs generates a score by using the bal anced_accur acy metric. Query the
score with the session variable for the M._ SCORE routine.

mysql > CALL sys. ML_SCORE(' census_data.census_train', 'revenue', 'census_data.census_train_adm n_174543994517
' bal anced_accuracy', @core, NULL);

Query OK, O rows affected (3.0536 sec)

nmysql > SELECT @cor e€;

dooccoocooocococoooooo +
| @core [
dooccoocooocococoooooo +
| 0.8151071071624756 |
dooccoocooocococoooooo +

1 rowin set (0.0411 sec)

» The following example uses the accur acy metric with at hr eshol d set to 90%.
nysqgl > CALL sys. M._SCORE(' ml cor pus_anonal y_det ecti on. vol canoes-b3_anonaly_train', 'target', @nonaly,
‘accuracy', @core, JSON OBJECT('threshold', 0.9));
Query OK, 0 rows affected (1.86 sec)

nysql > SELECT @cor e;

Femm e emeee e eeaaaa +
| @core |
Femm e emeee e eeaaaa +
| 0.9791129231452942 |
Femm e emeee e eeaaaa +

1 rowin set (0.00 sec)

» The following example uses the pr eci si on_at _k metric with a t opk value of 10.

mysql > CALL sys. ML_SCORE(' ml cor pus_anonal y_det ecti on. vol canoes-b3_anonaly_train', 'target', @nonaly,
"precision_at_k', @core, JSON OBJECT('topk', 10));
Query OK, O rows affected (5.84 sec)
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nmysql > SELECT @cor e;

e +
| @core |
e +
| 0 |
e +

1 rowin set (0.00 sec)

» The following example overrides the ensenbl e_scor e value from the ML_TRAI Nroutine to a new
value of 0.5.

nysqgl > CALL sys. M._SCORE(' ml corpus. anonaly_train_with_ target', "target", @ensup_gknn,
‘precision_at_k', @ensup_score_gknn_wei ght ed,
CAST(' {"topk": 10, "experinmental": {"sem supervised": {"supervised_subnodel we

See Also

» Score a Model

8.1.10 ML_MODEL_LOAD

The M__MODEL L QOAD routine loads a model from the model catalog. A model remains loaded until the
model is unloaded using the ML_MODEL__UNLOAD routine

Use ML_MODEL_ ACTI VE to check which models are active for which users. All active users and models
share the amount of memory defined by the shape, and it might be necessary to schedule users.
M._MODEL _LOAD generates an error if there are memory limitations.

ML_MODEL_LOAD Syntax

nysql > CALL sys. M._MODEL_LOAD( nodel _handl e, user);
ML_MODEL_LOAD Parameters

Set the following parameters.

» nodel _handl e: Specifies the model handle or a session variable containing the model handle. To look
up a model handle, see Query the Model Handle.

e user: The MySQL user name of the model owner. You can set this to NULL. To learn how to share
models with other users, see Grant Other Users Access to a Model.

Syntax Examples

» An example that specifies the model handle and sets the user parameter to NULL.

nysql > CALL sys. M._MODEL_LOAD(' ml _data.iris_train_userl 1636729526', NULL);

« An example that specifies a session variable containing the model handle.

nysqgl > CALL sys. M._MODEL_LOAD( @ri s_nodel, NULL);
* An example that specifies the model handle and the model owner.
nmysql > CALL sys. M._MODEL LOAD('ml _data.iris_train_userl 1636729526', userl);
See Also
» Load a Model
* Work with Model Handles
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8.1.11 ML_MODEL_UNLOAD

M. MODEL _UNLQAD unloads a model from AutoML.

catalog. If it is not, M._ MODEL _UNL QAD will succeed, but will not unload any model.

Note
@ M. MODEL UNLQAD does not check whether the model specified is in the model
Use ML_MODEL _ACTI VE to check which models are active and owned by the user.

ML_MODEL_UNLOAD Syntax

nmysqgl > CALL sys. M._MODEL_UNLOAD( nodel _handl e);

To run M__MODEL_UNLQOAD, define the nodel _handl e. To look up a model handle, see Query the Model
Handle.

Syntax Examples

* An example that specifies the model handle.
mysql > CALL sys. ML_MODEL_UNLOAD(' ml _data.iris_train_userl _1636729526');
* An example that specifies a session variable containing the model handle.

nysql > CALL sys. M._MODEL_UNLOAD( @ri s_nodel );

8.1.12 ML_MODEL_ACTIVE

Use the ML_MODEL _ ACTI VE routine to check which models are loaded and active for which users. All
active users and models share the amount of memory defined by the shape, and it might be necessary to
schedule users.

ML_MODEL_ACTIVE Syntax
nysqgl > CALL sys. M._MODEL_ACTI VE (user, nodel _info);
M._ MODEL_ACTI VE parameters:

» user: The user to provide information for. Setto current oral | or NULL. NULL is equivalent to
current.

» nodel _i nf o: The name of the JSON array session variable that contains the active user and model
information. There are two JSON object literals.

If user is setto current or NULL, the following information displays.
* A JSON obiject literal that displays:
» Key: The total model size (bytes).
* Value: The sum of model sizes for the current user.
« A second JSON obiject literal that displays:
« Key: The model handle for a loaded and active model owned by the current user.
e Value: The nodel net adat a for the model.

If user is setto al | , the following information displays.
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« A JSON obiject literal that displays:
» Key: The total model size (bytes).
* Value: The sum of model sizes for all users.
* A second JSON obiject literal that displays:
« Key: The name of a user who has loaded and active models.

» Value: A list of JSON object literals of the model handle and brief model metadata for each loaded
and active model.

Syntax Examples

» user 1 checks their own models:

mysql > CALL sys. M._MODEL_ACTI VE(' current', @mdel _info);
Query OK, O rows affected (0.10 sec)

nmysql > SELECT JSON_PRETTY( @model _i nf o) ;

fieccccoocoocooccoccoccoocoocoocoocooccoccoocooooooooooooooos +
| JSON_PRETTY( @model _i nf o) [
fieccccoocoocooccoccoccoocoocoocoocooccoccoocooooooooooooooos +
| [ |
{ |
“"total nodel size(bytes)": 348954 [
b |
{ |
"iris_export_userl": {

"task": "classification",

"notes": "",

"chunks": 1,

"format": "HWWLv2.0",

"n_rows": 120,

“status": "Ready",

“options": {
"model _expl ai ner": "pernutation_inportance, shap",
“prediction_expl ainer": "shap"

}

_col ums": 4,
"pos_class": null,
“col um_nanes": [

“sepal |ength",

"sepal w dth",

“petal |ength",

“petal w dth"
I.
“contam nation": null,
“model _qual ity": "high",
“training_time": 18.363686,
“al gorithmnanme": "ExtraTreesd assifier",
“training_score": -0.10970368035588404,
“buil d_tinestanmp”: 1697524180,
"n_sel ected_rows": 96,
“traini ng_paranms": {
“sp_arr": null,
“tinmezone": null,
“recomrend": "ratings",
"force_use X": fal se,
"recommend_k": 3,
"renmove_seen": true,
“contam nation": null,
"feedback_t hreshold": 1
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}

rain_table_name": "mcorpus.iris_train",

"model _expl anation": {

"shap": {
"petal width": 0.3139,
"sepal width": 0.0296,
"petal length": 0.2787,
"sepal length": 0.0462

h

"permut ati on_i nportance": {
"“petal width": 0.2301,
"sepal width": 0.0056,
"petal length": 0.2192,
"sepal |ength": 0.0056

}

nmodel _obj ect _si ze": 348954,

"n_sel ected_col ums": 4,

“target_col um_nane": "cl ass",
"optimzation_metric": "neg_|l og_| oss",
"sel ect ed_col um_nanes": [

"petal |ength",

"petal wdth",

"sepal |ength",

"sepal w dth"

1 rowin set (0.00 sec)

» user 1 checks their own models, and extracts specific information:

nysql > CALL sys. M._MODEL_ACTI VE(' current', @mdel _info);
Query OK, 0 rows affected (0.12 sec)

nysql > SELECT JSON_KEYS(JSON EXTRACT( @wdel _info, '$[1]'));

e
| JSON_KEYS(JSON_EXTRACT( @mdel _info, "'$[1]"'))
e
| ["iris_export", "mlcorpus.iris_train_userl_1697524152037"]
e

1 rowin set (0.00 sec)

nysql > SELECT JSON_EXTRACT( @mdel _i nfo, '$[0]");

diecccccococcccocscccooccccocooccccocoooooo +
| JSON_EXTRACT( @mdel _info, '$[0]") |
diecccccococcccocscccooccccocooccccocoooooo +
| {"total nodel size(bytes)": 697908} |
diecccccococcccocscccooccccocooccccocoooooo +

1 rowin set (0.01 sec)

» user 1 checks the models for all users:

nysqgl > CALL sys. M._MODEL_ACTI VE(' al |', @mdel _i nfo);
Query OK, 0 rows affected (0.11 sec)

nysql > SELECT JSON_PRETTY( @model _i nf o) ;

doccccccccccccccccccccccccccocococococcccoocococococococooocoooooc +
| JSON_PRETTY( @model _i nf 0) |
doccccccccccccccccccccccccccocococococcccoocococococococooocoooooc +
| [ |
{ |
"total nodel size(bytes)": 1046862 |

Jis |

{ |
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"user2": [
{
"iris_export_user2": {
"format": "HWWLv2.0",
"model _si ze(byte)": 348954
}
}
]

serl": [
{
“mcorpus.iris_train_userl_1697524152037": {
“format": "HWLv2.0",
"model _si ze(byte)": 348954
}
s
{
"iris_export": {
“format": "HWLv2.0",
"model _si ze(byte)": 348954
}

1 rowin set (0.00 sec)

8.1.13 TRAIN_TEST_SPLIT

The TRAI N_TEST_SPLI T routine automatically splits your data into training and testing datasets.

Two new tables in the same database are created with the following names:

[original _table nane] train

[original _table_nane] test

The split of the data between training and testing datasets depends on the machine learning task.

Classification: A stratified split of data. For each class in the dataset, 80% of the samples goes into the
training dataset, and the remaining goes into the testing dataset. If the number of samples in the 80%
subset is fewer than 5, then instead select 5 of the samples for the training dataset.

Regression: A random split of data.

Forecasting: A time-based split of data. Order the table by the dat et i me_i ndex values and select the
first 80% of the samples for the training dataset. Insert the subsequent samples into the testing dataset.

Unsupervised anomaly detection: A random split of data. Select 80% of the samples for the training
dataset, and select the remaining samples for the testing dataset.

Semi-supervised anomaly detection: A stratified split of data.

Anomaly detection for log data: A split of data based on primary key values. The first 80% of the samples
go into the training dataset. The remaining samples go into the testing dataset. Review requirements
when running Anomaly Detection for Logs.

Recommendations: A random split of data.

Topic modeling: A random split of data.

277



TRAIN_TEST_SPLIT

TRAIN_TEST_SPLIT Syntax
nysqgl > CALL sys. TRAIN TEST_SPLIT ('table_nane', 'target_columm_nane', [options | NULL]);
options: {
JSON _OBJECT("key", "val ue"[, "key", "val ue"] ...)

"key", "val ue": {
["task', {'classification'|'regression'|'forecasting'|'anonaly_detection'|'log_anonaly_detection'|'r
['datetime_i ndex', 'colum']
['sem supervised', {'true'|'false'}]

TRAI' N_TEST_SPLI T parameters:

» tabl e_nane: You must provide the fully qualified name of the table that contains the dataset to split
(schenma_nane. t abl e_nane).

» target _col um_nane: Classification and semi-supervised anomaly detection tasks require a target
column. All other tasks do not require a target column. If a target column is not required, you can set this
parameter to NULL.

» opti ons: Set the following options as needed as key-value pairs in JSON object format. If no options
are needed, set this to NULL.

» task: If the machine learning task is not set, the default task is cl assi fi cati on.

e dat eti me_i ndex: The column that has datetime values. This parameter is required for forecasting
tasks.

The following data types for this column are supported:
o DATETI ME

o TI MESTAWMP

 DATE

« TIME

* YEAR

e sem super vi sed: If running an anomaly detection task, set this to t r ue for semi-supervised
learning, or f al se for unsupervised learning. If this is set to NULL, then the default value of f al se is
selected.

Syntax Examples

» A classification task:

nysqgl > CALL sys. TRAIN TEST_SPLI T('data_files_db.data_files_1', 'class', JSON OBJECT('task', 'classification'
nysql > SHOW TABLES;

| data_files_1 |
| data_files_ 1 test |
| data_files_1 train |

» Aregression task:

nysqgl > CALL sys. TRAIN TEST_SPLI T('data_files_db.food_delivery data', NULL, JSON OBJECT('task', 'regression')
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mysql > SHOW TABLES;

| food_delivery_ data |
| food_delivery data_test |
| food_delivery data_train |

A forecasting task:

nysqgl > CALL sys. TRAIN TEST SPLIT('data_files_db.forecasting data', NULL,
JSON_OBJECT('task', 'forecasting',

‘datetime_index', 'timestanp'));
nysql > SHOW TABLES;
oo e +
| Tables_in_data files_db |
oo e +

| forecasting_data |
| forecasting_data_test |
| forecasting data_train |

An unsupervised anomaly detection task:

nysqgl > CALL sys. TRAIN TEST SPLI T('data_files_db. anomal y_detecti on_data', NULL, JSON OBJECT('task', 'anom
nysql > SHOW TABLES;

| anonmal y_det ecti on_dat a |
| anonal y_detection_data_test |
| anonmaly_detection_data_train |

A semi-supervised anomaly detection task:

nysqgl > CALL sys. TRAIN TEST_SPLI T('data_fil es_db. anonal y_detecti on_senmi ', 'anomaly',
JSON_OBJECT(' task', 'anonaly_detection',
‘sem supervised' , 'true'));
nysql > SHOW TABLES;
e e e ieeeeeaaaaoas +
| Tables_in_data_files_db |
e e e ieeeeeaaaaoas +

| anonml y_det ecti on_semi |
| anonal y_detection_sem _test |
| anonal y_detection_sem _train |

A task for anomaly detection on log data:

nysqgl > CALL sys. TRAIN TEST _SPLI T('data_files_db. anomal y_detection_|l ogs', NULL, JSON OBJECT('task', 'log_
nysql > SHOW TABLES;

fmcccccccccccccccccccccccccccox +

| Tables_in_data_files_db |

fmcccccccccccccccccccccccccccox +

| anonal y_det ecti on_| ogs |
| anonal y_detection_| ogs_test |
| anonal y_detection_|logs_train |

A recommendation task:

nysqgl > CALL sys. TRAIN TEST_SPLI T('data_files_db.rec_data', NULL, JSON OBJECT('task', 'reconmendation'));
nysql > SHOW TABLES;
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| Tables_in_data files_db |

| rec_data |
| rec_data_test |
| rec_data_train |

* A topic modeling task:

nysqgl > CALL sys. TRAIN TEST_SPLI T('data_files_db.text_data', NULL, JSON OBJECT('task', 'topic_nodeling));
nysql > SHOW TABLES;

| text_data |
| text_data_test |
| text_data_train |

8.1.14 NL2ML

The NL2ML. (natural language to machine learning) routine allows you to ask questions and receive
relevant citations from MySQL Al documentation.

Note

@ To use this feature, you must load the appropriate version of MySQL Al
documentation to the folder defined by secure _file priv. See Load MySQL Al
Documentation.

NL2ML Syntax
nmysqgl > CALL sys.NL2M. (query, response);
NL2M. parameters:

» query: Enter a question in natural language related to MySQL HeatWave AutoML. For example, "What
are the different types of machine learning models | can create?".

* response: The name of the JISON object session variable that contains the response to the question.

The nl2ml_options Session Variable

To use the NL2ML_ routine, you must set the ski p_gener at e option to t r ue. The default value is f al se.
Review the following syntax example and see Use NL2ML with In-Database LLMs.

Syntax Example

After generating citations with NL2VL, retrieve a relevant table schema related to the question
(M__RETRI EVE_SCHENA_METADATA), build a compact context string from the citations (GROUP_CONCAT),
and generate a response that includes the citations, context, and retrieved table schema (M__ GENERATE).

nmysqgl > SET @nput = "How can | train a nodel to predict net worth of a singer?";
nmysqgl > SET @l 2m _options = JSON OBJECT("ski p_generate", true);
nmysqgl > CALL sys. NL2M.( @ nput, @ut);

mysql > SELECT JSON_PRETTY( @ut ) ;
JSON_PRETTY( @ut)
{

"citations": [

{
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"segnent": "<segnent content>",

"di stance": 0.1023,

"docunent _nane": <nysql _ai _en. pdf >,
"segnent _nunber": <segnent nunber>

b
L

"retrieval _info": {
"method": "n_citations",
“threshol d": 0.114

}

}
mysql > CALL sys. M._RETRI EVE_SCHEMA METADATA( @ nput, @etrieved, NULL);

nmysql > SELECT @etri eved;
@etrieved
CREATE TABLE "l corpus’ . singer (
“Singer_ID int,
“Name® varchar,
"Birth_Year® doubl e,
"Net_Worth_MIlions  double,
“Citizenship varchar

)i

nysql > SELECT GROUP_CONCAT(seg SEPARATOR '\n') | NTO @t x

FROM JSON_TABLE( JSON_EXTRACT( @ut, "' $.citations'),

"$[*]' COLUWMNS (seg LONGTEXT PATH '$.segnent')) AS jt;

mysql > SET @inal _ctx = CONCAT(@tx, '\n\nRetrieved tables:\n', @etrieved);

mysql > SELECT sys. M._ GENERATE(

@ nput ,

JSON_OBJECT(

"task", "generation",

"nodel _id", "lIlam3.2-3b-instruct-vi1",

"context", @inal _ctx

)
) INTO @esult;

nmysql > SELECT JSON_UNQUOTE(JSON EXTRACT(@esult,'$.text')) AS generated_sql;

gener at ed_sql

To train a nodel to predict the net worth of a singer, you can use the M__TRAIN routine. First, prepare yo
which in this case seens to be the 'singer' table in the 'nlcorpus' schema. Ensure that the table has the |
such as 'Singer_ID, 'Name', 'Birth_Year', 'Net_Wrth_MIlions', and 'Ctizenship'.

The 'Net _Worth_MIlions' colum wll be your target column for prediction. You may need to preprocess your
for exanple, converting categorical variables like 'Name' and 'Citizenship' into numerical variables if ne

Then, you can call the M__TRAIN routine with the appropriate options. For a regression task |ike predictin
you woul d specify the task as 'regression’ in the JSON options. Here's a sinplified exanple:

gl
CALL sys. ML_TRAI N(' ml cor pus. si nger',
@model _handl e,
"Net_Worth_MI1lions',
JSON_OBJECT(' task', 'regression',
"al gorithm , 'XGBRegressor'));

Repl ace ' @model _handl e’ with your actual nodel handle variable. This will train a nodel to predict the ' Nef
based on the other colums in your 'singer' table. After training, you can use the M._PREDH CT_ROWor M_PR
to generate predictions for new, unseen data.

See Also

e Learn About MySQL Al AutoML with NL2ML
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8.1.15 Model Types

AutoML supports the following training models. When training AutoML a model, use the M__TRAI N
nodel _|ist and excl ude_nodel _| i st options to specify the training models to consider or exclude.
The Model Metadata includes the al gori t hm nane field, which defines the model type.

Classification Models
 LogisticRegression
» GaussianNB
» DecisionTreeClassifier
» RandomForestClassifier
» XGBClassifier
* LGBMClassifier
« SVC
* LinearSVC
» ExtraTreesClassifier
Regression Models
» DecisionTreeRegressor
» RandomForestRegressor
 LinearRegression
* LGBMRegressor
* XGBRegressor
* SVR
* LinearSVR

* ExtraTreesRegressor

Forecasting Models
Univariate endogenous models:
* NaiveForecaster
» ThetaForecaster
» ExpSmoothForecaster
» ETSForecaster
e STLWESFor ecast er : STLForecast with ExponentialSmoothing substructure
» STLWARI MAFor ecast er : STLForecast with ARIMA substructure
Univariate endogenous with exogenous models:

« SARIMAXForecaster

282


https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://xgboost.readthedocs.io/en/stable/
https://lightgbm.readthedocs.io/en/latest/
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html
https://lightgbm.readthedocs.io/en/latest/
https://xgboost.readthedocs.io/en/stable/
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVR.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesRegressor.html
https://www.sktime.net/en/latest/api_reference/auto_generated/sktime.forecasting.naive.NaiveForecaster.html
https://www.sktime.net/en/latest/api_reference/auto_generated/sktime.forecasting.theta.ThetaForecaster.html
https://www.sktime.net/en/latest/api_reference/auto_generated/sktime.forecasting.exp_smoothing.ExponentialSmoothing.html
https://www.statsmodels.org/dev/generated/statsmodels.tsa.exponential_smoothing.ets.ETSModel.html
https://www.statsmodels.org/dev/generated/statsmodels.tsa.forecasting.stl.STLForecast.html
https://www.statsmodels.org/dev/generated/statsmodels.tsa.statespace.exponential_smoothing.ExponentialSmoothing.html
https://www.statsmodels.org/dev/generated/statsmodels.tsa.forecasting.stl.STLForecast.html
https://www.statsmodels.org/dev/generated/statsmodels.tsa.arima.model.ARIMA.html
https://www.statsmodels.org/stable/generated/statsmodels.tsa.statespace.sarimax.SARIMAX.html

Optimization and Scoring Metrics

* OrbitForecaster
Multivariate endogenous with exogenous models:
* VARMAXForecaster
Univariate or multivariate endogenous with exogenous models:
* DynFactorForecaster
Anomaly Detection Models
» GkNN: Generalized kth Nearest Neighbors
» PCA: Principal Component Analysis

* GLOF: Generalized Local Outlier Factor

Recommendation Models

The TwoTower model is the default model and can generate recommendations with implicit or explicit
feedback. See Recommendation Training Models to learn more.

Recommendation models that rate users or items to use with explicit feedback:
» Baseline
» CoClustering
* NormalPredictor
» SlopeOne
» Matrix factorization models:
e SVD
* SVDpp
* NMF
Recommendation models that rank users or items to use with implicit feedback:
» BPR: Bayesian Personalized Ranking from Implicit Feedback

e CTR: Collaborative Topic Regression

8.1.16 Optimization and Scoring Metrics

The M__TRAI Nroutine includes the opti m zat i on_netri c option, and the M__ SCORE routine includes
the met r i ¢ option. Both of these options define a metric that must be compatible with the t ask type and
the target data. Model Metadata includes the opt i m zati on_netri c field.

For more information about scoring metrics, see: scikit-learn.org. For more information about forecasting
metrics, see: sktime.org and statsmodels.org.

Classification Metrics
Binary-only metrics:

o f1
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Optimization and Scoring Metrics

precision
recall

roc_auc

Binary and multi-class metrics:

accuracy

balanced_accuracy (M._ SCORE only)

f1_macro

f1_micro

fl_samples (M._ SCORE only)
f1_weighted

neg_log_loss
precision_macro

precision_micro

precision_samples (M._ SCORE only)

precision_weighted
recall_macro

recall_micro

recall_samples (M._ SCORE only)

recall_weighted

Regression Metrics

neg_mean_absolute_error

neg_mean_squared_error

neg_mean_squared_log_error

neg_median_absolute_error

r2

Forecasting Metrics

neg_max_absolute_error

neg_mean_absolute_error

neg_mean_abs_scaled_error

neg_mean_squared_error

neg_root_mean_squared_error

neg_root_mean_squared_percent_error
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Optimization and Scoring Metrics

neg_sym_mean_abs_percent_error

Anomaly Detection Metrics

Metrics for anomaly detection can only be used with the M__ SCORE routine. They cannot be used with the
M__TRAI Nroutine.

roc_auc: You must not specify t hr eshol d or t opk options.

preci si on_k: An Oracle implementation of a common metric for fraud detection and lead scoring. You
must use the t opk option. You cannot use the t hr eshol d option.

The following metrics can use the t hr eshol d option, but cannot use the t opk option:

accuracy
balanced_accuracy
fl

neg_log_loss
precision

recall

Recommendation Model Metrics

The following rating metrics can be used for explicit feedback:

neg_mean_absolute_error
neg_mean_squared_error
neg_root_mean_squared_error

r2

For recommendation models that use implicit feedback:

If a user and item combination in the input table is not unique, the input table is grouped by user and
item columns, and the result is the average of the rankings.

If the input table overlaps with the training table, and r enove_seen is t r ue, which is the default setting,
then the model will not repeat a recommendation and it ignores the overlap items.

The following ranking metrics can be used for implicit and explicit feedback:

preci si on_at _k is the number of relevant t opk recommended items divided by the total t opk
recommended items for a particular user:

preci sion_at_ k =(relevant t opk recommended items) / (total t opk recommended items)
For example, if 7 out of 10 items are relevant for a user, and t opk is 10, then pr eci si on_at _k is 70%.

The preci si on_at _k value for the input table is the average for all users. If r enove _seen is
t r ue, the default setting, then the average only includes users for whom the model can make a
recommendation. If a user has implicitly ranked every item in the training table, the model cannot
recommend any more items for that user, and they are ignored from the average calculation if
renobve_seenistrue.
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e recal | _at k is the number of relevant t opk recommended items divided by the total relevant items
for a particular user:

recal | _at k = (relevantt opk recommended items) / (total relevant items)

For example, there is a total of 20 relevant items for a user. If t opk is 10, and 7 of those items are
relevant, thenrecal | _at kis7/20 = 35%.

Therecal | _at k value for the input table is the average for all users.

« hit _ratio_at_ k isthe number of relevant t opk recommended items divided by the total relevant
items for all users:

hit ratio_at k =(relevantt opk recommended items, all users) / (total relevant items, all users)

The average of hit _ratio_at k forthe inputtableisrecal | _at k. If there is only one user,
hit ratio_at kisthesameasrecal |l at k.

* ndcg_at _k is normalized discounted cumulative gain, which is the discounted cumulative gain of the
relevant t opk recommended items divided by the discounted cumulative gain of the relevant t opk items
for a particular user.

The discounted gain of an item is the true rating divided by log,(r+1) where r is the ranking of this item in
the relevant t opk items. If a user prefers a particular item, the rating is higher, and the ranking is lower.

The ndcg_at _k value for the input table is the average for all users.

8.2 GenAl Routines

GenAl routines reside in the MySQL sys schema.

MySQL JavaScript Stored Programs include a GenAl API that you can use to call different GenAl routines
using JavaScript functions. For more information, see JavaScript GenAl API.

8.2.1 ML_GENERATE

The ML_ GENERATE routine uses the specified large language model (LLM) to generate text-based content
as a response for the given natural-language query.

This topic contains the following sections:
* ML_GENERATE Syntax
» Syntax Examples

» See Also

ML_GENERATE Syntax
nysqgl > SELECT sys. M._GENERATE("' Queryl nNat ur al Language', options);

options: {JSON OBJECT(keyval ue[, keyval ue]...)| NULL}
keyval ue

"task', {'generation'|'summarization'}
| * nodel _id', 'LargelLanguageModel | D

| *context', 'Context'

| ' I anguage', 'Language

| *tenperature', Tenperature

| " max_t okens', MaxTokens
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}

"top_k', K

"top_p', P

'repeat _penalty', RepeatPenalty

'frequency_penal ty', FrequencyPenalty

' st op_sequences', JSON_ARRAY(' St opSequence'[, 'StopSequence'] ...)
' specul ati ve_decoding', {true|false}

Following are M. GENERATE parameters:

e Queryl nNat ur al Language: specifies the natural-language query that is passed to the large language
model (LLM) handle.

» opti ons: specifies optional parameters as key-value pairs in JSON format. It can include the following
parameters:

t ask: specifies the task expected from the LLM. Default value is gener at i on. Possible values are:
* gener at i on: generates text-based content.
e summari zat i on: generates a summary for existing text-based content.

nodel i d: specifies the LLM to use for the task. Default and possible value is | | ana3. 2- 3b-
i nstruct-vl.

To view the lists of available LLMs, see In-Database LLM.

cont ext : specifies the context to be used for augmenting the query and guide the text generation of
the LLM. Default value is NULL.

| anguage: specifies the language to be used for writing queries, ingesting documents, and generating
the output. To set the value of the | anguage parameter, use the two-letter | SO 639- 1 code for the
language.

Default value is en.

For possible values, to view the list of supported languages, see Section 5.4, “Supported LLM,
Embedding Model, and Languages”.

t enper at ur e: specifies a non-negative float that tunes the degree of randomness in generation.
Lower temperatures mean less random generations.

Default value is O for all LLMs.

Possible values are float values between 0 and 5 for the In-Database LLM.

It is suggested that:

» To generate the same output for a particular prompt every time you run it, set the temperature to O.

* To generate a random new statement for a particular prompt every time you run it, increase the
temperature.

max_t okens: specifies the maximum number of tokens to predict per generation using an estimate of
three tokens per word. Default value is 256. Possible values are integer values betweenl and 4096.

t op_k: specifies the number of top most likely tokens to consider for text generation at each step.
Default value is 40, which means that top 40 most likely tokens are considered for text generation at
each step. Possible values are integer values between 0 and 32000.
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e t op_p: specifies a number, p, and ensures that only the most likely tokens with the sum of
probabilities p are considered for generation at each step. A higher value of p introduces more
randomness into the output. Default value is 0. 95. Possible values are float values between 0 and 1.

* To disable this method, setto 1. 0 or O.

« To eliminate tokens with low likelihood, assign p a lower value. For example, if set to 0. 1, tokens
within top 10% probability are included.

« To include tokens with low likelihood, assign p a higher value. For example, if set to 0. 9, tokens
within top 90% probability are included.

If you are also specifying the t op_k parameter, the LLM considers only the top tokens whose
probabilities add up to p percent. It ignores the rest of the k tokens.

e repeat penal ty: assigns a penalty when a token appears repeatedly. High penalties encourage
less repeated tokens and produce more random outputs. Default value is 1. 1. Possible values are
float values between 0 and 2.

e frequency_penal ty: assigns a penalty when a token appears frequently. High penalties encourage
less repeated tokens and produce more random outputs. Default value is 0. Possible values are float
values between 0 and 1.

* stop_sequences: specifies a list of characters such as a word, a phrase, a newline, or a period that
tells the LLM when to end the generated output. If you have more than one stop sequence, then the
LLM stops when it reaches any of those sequences. Default value is NULL.

Syntax Examples

» Generating text-based content in English using the | | ana3. 2- 3b-i nst ruct - vl model:

nysql > SELECT sys. M._GENERATE("Wat is Al ?", JSON OBJECT("task", "generation", "model _id", "Ilama3.2-3b-inst

» Summarizing English text using the | | ama3. 2- 3b-i nstruct - vl model:

nysql > SELECT sys. M._GENERATE( @ ext, JSON OBJECT("task", "summarization", "nodel _id", "Ilama3.2-3b-instruct-

Where, @ ext is set as shown below:

SET @ext="Artificial Intelligence (Al) is arapidly growing field that has the potential to

revol utioni ze how we |ive and work. Al refers to the devel opnent of conputer systens that can
performtasks that typically require human intelligence, such as visual perception, speech

recogni ti on, decision-naking, and | anguage transl ation.\n\nOne of the nbst significant devel opnents in
Al in recent years has been the rise of machine |earning, a subset of Al that allows conputers to learn
fromdata w thout being explicitly programmed. Machine |earning algorithnms can anal yze vast anounts

of data and identify patterns, making themincreasingly accurate at predicting outconmes and maki ng
decisions.\n\nAl is already being used in a variety of industries, including healthcare, finance, and
transportation. In healthcare, Al is being used to devel op personalized treatnent plans for patients
based on their nedical history and genetic makeup. In finance, Al is being used to detect fraud and make
i nvest nent reconmendations. In transportation, Al is being used to devel op self-driving cars and i nprove
traffic flow \n\nDespite the many benefits of Al, there are also concerns about its potential inpact on
society. Some worry that Al could lead to job displacenent, as machi nes becone nore capabl e of perform ng
tasks traditionally done by humans. Others worry that Al could be used for nalicious “;

See Also

» Section 5.5, “Generating Text-Based Content”

» Section 8.2.2, “ML_GENERATE_TABLE”"
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8.2.2 ML_GENERATE_TABLE

The ML_ GENERATE_TABLE routine runs multiple text generation or summarization queries in a batch,
in parallel. The output generated for every input query is the same as the output generated by the
ML_ GENERATE routine.

This topic contains the following sections:

« ML_GENERATE_TABLE Syntax

» Syntax Examples

* See Also

To learn about the privileges you need to run this routine, see Section 5.3, “Required Privileges for using

GenAl”.

ML_GENERATE_TABLE Syntax

nmysql > CALL sys. ML_GENERATE _TABLE(' | nput Tabl eCol utmm', ' Qut put Tabl eCol um', options);

options: {JSON OBJECT(keyval ue[, keyvalue]...)| NULL}
keyval ue:

{

}

"task', {'generation'|'sunmarization'}

'model _id', 'LargelLanguageMdel | D
' context _columm', ' Context Col um'
'l anguage', 'Language'
'tenperature', Tenperature

' max_t okens', MaxTokens

I
I
I
I
I
|"top_k', K
|

I
I
I
I
I

top_p', P

'repeat _penalty', RepeatPenalty

'frequency_penal ty', FrequencyPenalty

' st op_sequences', JSON _ARRAY(' StopSequence'[, 'StopSequence'] ...)
'batch_size', BatchSize

' specul ati ve_decodi ng', {true|fal se}

Following are M. GENERATE_TABLE parameters:

* | nput Tabl eCol umm: specifies the names of the input database, table, and column that contains
the natural-language queries. The | nput Tabl eCol um is specified in the following format:
DBNane.Tabl eNanme.Col urmNane.

Qut put Tabl eCol unm: specifies the names of the database, table, and column where the generated

The specified input table can be an internal or external table.
The specified input table must already exist, must not be empty, and must have a primary key.
The input column must already exist and must contain t ext or var char values.

The input column must not be a part of the primary key and must not have NULL values or empty
strings.

There must be no backticks used in the DBNane, Tabl eNane, or Col uitmNane and there must be no

period used in the DBNane or Tabl eNane.

text-based response is stored. The Cut put Tabl eCol unm is specified in the following format:
DBNane.Tabl eNanme.Col urmNarnre.




ML_GENERATE_TABLE

The specified output table must be an internal table.

If the specified output table already exists, then it must be the same as the input table. And, the
specified output column must not already exist in the input table. A new JSON column is added to the
table. External tables are read only. So if input table is an external table, then it cannot be used to
store the output.

If the specified output table doesn't exist, then a new table is created. The new output table has key
columns which contains the same primary key values as the input table and a JSON column that
stores the generated text-based responses.

There must be no backticks used in the DBNane, Tabl eNane, or Col utmNane and there must be no
period used in the DBNane or Tabl eNane.
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e opti ons: specifies optional parameters as key-value pairs in JSON format. It can include the following
parameters:

t ask: specifies the task expected from the large language model (LLM). Default value is
gener at i on. Possible values are:

e gener ati on: generates text-based content.
e sunmmari zat i on: generates a summary for existing text-based content.

nodel i d: specifies the LLM to use for the task. Default and possible value is | | ana3. 2- 3b-
i nstruct-vl.

To view the lists of available LLMs, see In-Database LLM.

cont ext _col umm: specifies the table column that contains the context to be used for augmenting the
queries and guiding the text generation of the LLM. The specified column must be an existing column
in the input table. Default value is NULL.

| anguage: specifies the language to be used for writing queries, ingesting documents, and generating
the output. To set the value of the | anguage parameter, use the two-letter | SO 639- 1 code for the
language.

Default value is en.

For possible values, to view the list of supported languages, see Section 5.4, “Supported LLM,
Embedding Model, and Languages”.

t enper at ur e: specifies a non-negative float that tunes the degree of randomness in generation.
Lower temperatures mean less random generations.

Default value is O for all LLMs.
Possible values are float values between 0 and 5 For the In-Database LLM.

It is suggested that:
» To generate the same output for a particular prompt every time you run it, set the temperature to O.

« To generate a random new statement for a particular prompt every time you run it, increase the
temperature.

max_t okens: specifies the maximum number of tokens to predict per generation using an estimate of
three tokens per word. Default value is 256. Possible values are integer values betweenl and 4096.

t op_k: specifies the number of top most likely tokens to consider for text generation at each step.
Default value is 40, which means that top 40 most likely tokens are considered for text generation at
each step. Possible values are integer values between 0 and 32000.

t op_p: specifies a number, p, and ensures that only the most likely tokens with the sum of
probabilities p are considered for generation at each step. A higher value of p introduces more
randomness into the output. Default value is 0. 95. Possible values are float values between 0 and 1.

* To disable this method, setto 1. 0 or O.

» To eliminate tokens with low likelihood, assign p a lower value. For example, if set to 0. 1, tokens
within top 10% probability are included.
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« To include tokens with low likelihood, assign p a higher value. For example, if set to 0. 9, tokens
within top 90% probability are included.

If you are also specifying the t op_k parameter, the LLM considers only the top tokens whose
probabilities add up to p percent. It ignores the rest of the k tokens.

e repeat _penal ty: assigns a penalty when a token appears repeatedly. High penalties encourage
less repeated tokens and produce more random outputs. Default value is 1. 1. Possible values are
float values between 0 and 2.

e frequency_penal ty: assigns a penalty when a token appears frequently. High penalties encourage
less repeated tokens and produce more random outputs. Default value is 0. Possible values are float
values between 0 and 1.

e stop_sequences: specifies a list of characters such as a word, a phrase, a newline, or a period that
tells the LLM when to end the generated output. If you have more than one stop sequence, then the
LLM stops when it reaches any of those sequences. Default value is NULL.

e bat ch_si ze: specifies the batch size for the routine. This option is supported for internal tables only.
Default value is 1000. Possible values are integer values between 1 and 1000.

Syntax Examples

Generate English text-based content in a batch using the | | ana3. 2- 3b-i nst r uct - v1 model for queries
stored in deno_db. i nput _t abl e:

nysqgl > CALL sys. M._GENERATE_TABLE("deno_db. i nput _tabl e. | nput", "deno_db. output_table. Qutput”, JSON OBJECT("tas
See Also

» Generate New Text - Run Batch Queries

e Summarize Content - Run Batch Queries

» Section 8.2.1, “ML_GENERATE”"

8.2.3 VECTOR_STORE_LOAD

The VECTOR_STORE_LOAD routine generates vector embedding for the specified files or folders that are ,
and loads the embeddings into a new vector store table.

This routine creates an asynchronous task which loads vector store tables in the background. It also
returns a query that you can run to track the status of the vector store load task that is running in the
background.

This topic contains the following sections:
* VECTOR_STORE_LOAD Syntax

e Syntax Examples

* See Also

To learn about the privileges you need to run this routine, see Section 5.3, “Required Privileges for using
GenAl”.
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VECTOR_STORE_LOAD Syntax

mysql > CALL sys. VECTOR _STORE LOAD(' URI', options);

options: {JSON OBJECT(keyval ue[, keyval ue]...)| NULL}

keyval ue:
{
"format', ' Format'
' schema_nane', ' SchemaNane'
"tabl e_nanme', ' Tabl eNane'
'l anguage', 'Language’

}

enbed_nodel _id', 'Mdell D

‘description', 'Description'
"ocr', {true|fal se}

Following are VECTOR_STORE_LQAD parameters:

* URI : specifies a single unique reference index (URI) pertaining to a file or folder to be ingested into the
vector store, or a JSON array of URIs pertaining to multiple files or folders to be ingested into the vector
store.

A URI is considered to be one of the following:

A glob pattern, if it contains at least one unescaped ? or * character.
A prefix, if it is not a pattern and ends with a/ character like a folder path.

A file path, if it is neither a glob pattern nor a prefix.

» opti ons: specifies optional parameters as key-value pairs in JSON format. It can include the following
parameters:

f or mat : specifies the format of files to be loaded. Default value is aut o_unst r uct ur ed, which
means all supported types of files are loaded. Possible values are pdf , ppt x, ppt, t xt, ht m , docx,
doc, and aut o_unstruct ur ed.

schena_nane: specifies the name of the schema where the vector embeddings are to be loaded. By
default, this procedure uses the current schema from the session.

t abl e_nane: specifies the name of the vector store table to create. By default, the routine generates
a unique table name with format vect or _st ore_dat a_x, where x is a counter.

| anguage: specifies the text content language used in the files to be ingested into the vector store. To
set the value of the | anguage parameter, use the two-letter | SO 639- 1 code for the language.

Default value is en.

For possible values, to view the list of supported languages, see Section 5.4, “Supported LLM,
Embedding Model, and Languages”.

enbed _nodel i d: specifies the embedding model to use for encoding the text. Default value is
mul tilingual -e5-snall.

For possible values, to view the list of available embedding models, see In-Database Embedding
Model.

descri pti on: specifies a description of document collection being loaded. Default value is NULL.
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« ocr : specifies whether to enable or disable Optical Character Recognition (OCR). If setto f al se,
disables OCR. Default value is t r ue, which means OCR is enabled by default. Default value is t r ue.

Syntax Examples

» Specifying the file to ingest, using the current database, auto-generated name for the vector store table,
and default values for all options:

nysqgl > CALL sys. VECTOR STORE LOAD('file:///var/libl/nysql-files/denp-directory/heatwave-en.pdf', NULL);

» Specifying the file to ingest, using the current database, and specifying the name of the vector store
table to be created:

mysql > CALL sys. VECTOR _STORE LOAD(' file:///var/lib/nysqgl-files/deno-directory/heatwave-en.pdf', '{"table_nan

» Specifying additional options such the schema name, table name, language, format, and table
description in VECTOR_STORE_LQAD:

nmysql > CALL sys. VECTOR STORE LOAD('file:///var/libl/nysql-files/german_files/de*', '{"schena_nanme": "deno_db"

» Tracking the progress of a load task by using the task query displayed as output for the
VECTOR_STORE_LOAD routine:

SELECT nysql _tasks.task_status_brief ("TasklD");

L L T L L L L +
| nysql _tasks.task_status_brief (" Taskl D") |

L L T L L L L +
| {"data": null, "status": "COWPLETED', "nessage": "Execution finished.", "progress": 100} |
L L T L L L L +

See Also

Ingesting Files into a Vector Store

8.2.4 ML_RAG

The M__RAGroutine performs retrieval-augmented generation (RAG) by:

1. Taking a natural-language query.

2. Retrieving context from relevant documents using semantic search.

3. Generating a response that integrates information from the retrieved documents.

This routine aims to provide detailed, accurate, and contextually relevant answers by augmenting a
generative model with information retrieved from a comprehensive knowledge base.

This topic contains the following sections:
* ML_RAG Syntax
» Syntax Examples
* See Also
ML_RAG Syntax
nysqgl > CALL sys. M._RAG(' Queryl nNat ur al Language', 'Qutput', options);

options: {JSON OBJECT(keyval ue[, keyval ue]...)| NULL}
keyval ue:
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{

"vector_store', JSON_ARRAY(' Vector StoreTabl eNanme' [, ' Vector StoreTabl eNane']...)

}

'schema', JSON_ARRAY(' SchemaNane' [, ' SchemaNane']...)
"n_citations', NunberOfCitations

"distance_netric', {' COSINE |'DOT' |' EUCLI DEAN }

" docunent _nane', JSON_ARRAY(' Documnent Nane' [, 'DocunentNane']...)
' skip_generate', {true|false}

' nmodel _options', nodel options

excl ude_vector_store', JSON _ARRAY(' Excl udeVect or St or eTabl eNane' [, ' Excl udeVect or St or eTabl eNane'] . . .
" excl ude_document _nane', JSON_ARRAY(' Excl udeDocunent Name' [, ' Excl udeDocunent Nane']...)
"retrieval _options', retrieval options

'vector_store_colums', vscoptions

' enbed_nodel _id', 'Enbeddi nghbdel | D

' query_enbeddi ng', ' QueryEnbeddi ng'

Following are M__ RAG parameters:

* Queryl nNat ur al Langugae: specifies the natural-language query.

» Qut put : stores the generated output. The output contains the following segments:

t ext : the generated text-based response.
ci t at i ons: contains the following details:

* segnent : the textual content that is retrieved from the vector store through semantic search, and
used as context generating the response.

« di st ance: the distance between the query embedding the segment embedding.
e docunent _nane: the name of the document from which the segment is retrieved.

vect or _st or e: the list of vector store tables used for context retrieval.

» opti ons: specifies optional parameters as key-value pairs in JSON format. It can include the following
parameters:

vect or _st or e: specifies a list of loaded vector store tables to use for context retrieval. The routine
ignores invalid table names. By default, the routine performs a global search across all the available
vector store tables in the DB system.

schema: specifies a list of schemas to check for loaded vector store tables. By default, the routine
performs a global search across all the available vector store tables in all the schemas that are
available in the DB system.

n_ci tati ons: specifies the number of segments to consider for context retrieval. Default value is 3.
Possible values are integer values between 0 and 100.

di stance_netri c: specifies the distance metrics to use for context retrieval. Default value is
COSI NE. Possible values are COSI NE, DOT, and EUCL| DEAN.

docunent _nane: limits the documents to use for context retrieval. Only the specified documents are
used. By default, the routine performs a global search across all the available documents stored in all
the available vector stores in the DB system.

ski p_gener at e: specifies whether to skip generation of the text-based response, and only perform
context retrieval from the available or specified vector stores, schemas, or documents. Default value is
fal se.
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nodel _opti ons: additional options that you can set for generating the text-based response. These
are the same options that are available in the M._ GENERATE routine, which alter the text-based
response per the specified settings. Default value is ' { " nodel id": "Il am3. 2-3b-instruct-
v1"}' . To view the list of supported models, see Section 5.4, “Supported LLM, Embedding Model,
and Languages”.

However, the cont ext model option is not supported as an M._ RAG model option.

excl ude_vect or _st or e: specifies a list of loaded vector store tables to exclude from context
retrieval. The routine ignores invalid table names. Default value is NULL.

excl ude_docunent _nane: specifies a list of documents to exclude from context retrieval. Default
value is NULL.

retrieval options: specifies optional context retrieval parameters as key-value pairs in JSON
format. If a parameter value inretri eval _opti ons is set to aut o, the default value for that
parameter is used.

It can include the following parameters:

retrieval options: JSON OBJECT(retrieval optkeyval ue[, retrieval optkeyval ue]...)
retrieval opt keyval ue:

{
"max_di stance', MaxDi stance
| ' percent age_di st ance', PercentageDi stance
| * segnent _overl ap', Segnent Overl ap

}

e max_di st ance: specifies a maximum distance threshold for filtering out segments from context
retrieval. Segments for which the distance from the input query exceeds the specified maximum
distance threshold are excluded from content retrieval. This ensures that only the segments that are
closer to the input query are included during context retrieval. However, if no segments are found
within the specified distance, the routine fails to run.

Note
@ If this parameter is set, the default value of the n_ci t at i ons parameter is
automatically updated to 10.

Default value is 0. 6 for all distance metrics.

Possible values are decimal values between 0 and 999999. 9999.
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e percent age_di st ance: specifies what percentage of distance to the nearest segment is to be
used to determine the maximum distance threshold for filtering out segments from context retrieval.

Following is the formula used for calculating the maximum distance threshold:

Maxi munDi st anceThr eshol d =Di st anceOf | nput Quer yToNear est Segnent +
[(per cent age_di st ance /100) * Di st anceCf | nput Quer yToNear est Segnent |

Which means that the segments for which the distance to the input query exceeds the distance of
the input query to the nearest segment by the specified percentage are filtered out from context
retrieval.

Note
@ If this parameter is set, the default value of the n_ci t at i ons parameter is
automatically updated to 10.

Default value is 20 for all distance metrics.

Possible values are decimal values between 0 and 999999. 9999.

Note
@ If both max_di st ance and per cent age_di st ance are set, the smaller
threshold value is considered for filtering out the segments.

e segnent over | ap: specifies the number of additional segments adjacent to the nearest segments
to the input query to be included in context retrieval. These additional segments provide more
continuous context for the input query. Default value is 1. Possible values are integer values
between 0 and 5.

e vect or_store_col ums: specifies column names for finding relevant vector and embedding tables
for context retrieval as key-value pairs in JSON format. If multiple tables contain columns with the
same name and data type, then all such tables are used for context retrieval.

It can include the following parameters:

vscoptions: JSON OBJECT(' segnent', 'Segnent Col Nane', 'segnent_enbeddi ng', 'Enbeddi ngCol Nane' [, vsckeyv
vsckeyval ue:

{

' docunent _nanme', ' Docunent Nange'
| * docunent _id', Docunentl|D
| " netadata', ' Metadata'

| segnent _nunber', Segnent Nunber
* segnent : specifies the name of the mandatory string column that contains the text segments.
Default value is segnent .

e segnent _enbeddi ng: specifies the name of the mandatory vector column that contains vector
embeddings of the text segments. Default value is segnent _enbeddi ng.

- docunent nane: specifies the name of the optional column that contains the document names.
This column can be of any data type supported by MySQL. Default value is docunent _nane.

« docunent _i d: specifies the name of the optional integer column that contains the document IDs.
Default value is docunent _i d.
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« net adat a: specifies the name of the optional JSON column that contains additional table metadata.
Default value is et adat a.

e segnent _nunber : specifies the name of the optional integer column that contains the segment
numbers. Default value is segnent _nunber .

Default value is { "segnment ": "segnent", "segnent_enbeddi ng":
"segnent _enbeddi ng", "docunent id: "docunent id", "segnment_nunber":
"segnent _nunber", "netadata": "netadata"}, which means that by default, the routine uses

the default values of all column names to find relevant tables for context retrieval.

e enbed_nodel i d: specifies the embedding model to use for embedding the input query. If you are
providing the query embedding, then set this parameter to specify the embedding model to use to
embed the query. The routine uses vector store tables and embedding tables created using the same
embedding model for context retrieval. Default value ismul ti | i ngual - e5-smal | .

To view the list of available embedding models, see In-Database Embedding Model.

e query_enbeddi ng: specifies the vector embedding of the input query. If this parameter is set, then
the routine skips generating the vector embeddings of the input query. Instead, it uses this embedding
for context retrieval from valid vector store and embedding tables that contain vector embeddings
created using the same embedding model.

Syntax Examples

Retrieving context and generating output:

nysqgl > CALL sys. M._RAG("What is AutoM.", @ut put, @ptions);

Where, @pt i ons is set to specify the vector store table to use using vect or _st or e key, as shown
below:

nysqgl > SET @ptions = JSON OBJECT("vector_store", JSON ARRAY("deno_db. deno_enbeddi ngs"));

See Also

e Section 5.8, “Performing Vector Search with Retrieval-Augmented Generation”

» Section 8.2.5, “ML_RAG_TABLFE”

8.2.5 ML_RAG_TABLE

The ML._RAG_TABLE routine runs multiple retrieval-augmented generation (RAG) queries in a batch, in
parallel. The output generated for every input query is the same as the output generated by the M._RAG
routine.

This topic contains the following sections:
« ML_RAG_TABLE Syntax

» Syntax Examples

* See Also

To learn about the privileges you need to run this routine, see Section 5.3, “Required Privileges for using
GenAl”.
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ML_RAG_TABLE Syntax

nmysqgl > CALL sys. M._RAG TABLE(' | nput Tabl eCol unm', ' Qut put Tabl eCol utm', opti ons);

options: {JSON OBJECT(keyval ue[, keyval ue]...)| NULL}
keyval ue:

{

}

‘vector_store', JSON _ARRAY(' Vector StoreTabl eNanme' [, 'Vector StoreTabl eNane']...)

‘schema', JSON_ARRAY(' SchemaNane'[, 'SchemaNane']...)
‘n_citations', NunberOCitations

‘distance_metric', {' COSINE |' DOT'|' EUCLI DEAN }

" docunent _nane', JSON_ARRAY(' Docunent Nanme' [, 'DocunentNanme']...)
' skip_generate', {true|false}

' nmodel _options', nodel options

|
|
|
|
|
|
| " excl ude_vector_store', JSON ARRAY(' Excl udeVect or St or eTabl eNane' [, ' Excl udeVect or St or eTabl eNane' ] . ..
|

|
|
|
|
|
[

excl ude_docunent _nane', JSON _ARRAY(' Excl udeDocunent Nanme' [, ' Excl udeDocunent Nanme']...)

' batch_si ze', BatchSize

"retrieval _options', retrieval options
'vector_store_colums', vscoptions

" enbed_nodel _id', 'Enbeddi nghbdel | D

" enbed_col um', ' EnbeddedQueri esCol unmNane'
'fail _on_enbeddi ng_error', {true|false}

Following are M_._ RAG _TABLE parameters:

e | nput Tabl eCol umm: specifies the names of the input database, table, and column that contains
the natural-language queries. The | nput Tabl eCol um is specified in the following format:
DBNane.Tabl eNane.Col unmNarne.

The specified input table can be an internal or external table.
The specified input table must already exist, must not be empty, and must have a primary key.
The input column must already exist and must contain t ext or var char values.

The input column must not be a part of the primary key and must not have NULL values or empty
strings.

There must be no backticks used in the DBNane, Tabl eNane, or Col utmNanme and there must be no
period used in the DBNane or Tabl eNane.

Qut put Tabl eCol unm: specifies the names of the database, table, and column where the generated
text-based response is stored. The CQut put Tabl eCol unm is specified in the following format:
DBNane.Tabl eNane.Col unmNarne.

The specified output table must be an internal table.

If the specified output table already exists, then it must be the same as the input table. And, the
specified output column must not already exist in the input table. A new JSON column is added to the
table. External tables are read only. So if input table is an external table, then it cannot be used to
store the output.

If the specified output table doesn't exist, then a new table is created. The new output table has key
columns which contains the same primary key values as the input table and a JSON column that
stores the generated text-based responses.

There must be no backticks used in the DBNane, Tabl eNane, or Col utmNane and there must be no
period used in the DBNane or Tabl eNane.
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opt i ons: specifies optional parameters as key-value pairs in JSON format. It can include the following
parameters:

vect or _st or e: specifies a list of loaded vector store tables to use for context retrieval. The routine
ignores invalid table names. By default, the routine performs a global search across all the available
vector store tables in the DB system.

schena: specifies a list of schemas to check for loaded vector store tables. By default, the routine
performs a global search across all the available vector store tables in all the schemas that are
available in the DB system.

n_citati ons: specifies the number of segments to consider for context retrieval. Default value is 3.
Possible values are integer values between 0 and 100.

di stance_netri c: specifies the distance metrics to use for context retrieval. Default value is
COSI NE. Possible values are COSI NE, DOT, and EUCL| DEAN.

docunent _nane: limits the documents to use for context retrieval. Only the specified documents are
used. By default, the routine performs a global search across all the available documents stored in all
the available vector stores in the DB system.

ski p_gener at e: specifies whether to skip generation of the text-based response, and only perform
context retrieval from the available or specified vector stores, schemas, or documents. Default value is
fal se.

nodel _opti ons: additional options that you can set for generating the text-based response.
These are the same options that are available in the M._ GENERATE routine, which alter the text-
based response per the specified settings. However, the cont ext option is not supported as an
M._RAG TABLE model option. Default value is ' { " nodel _id": "Il ana3. 2-3b-instruct -
vi'}'.

excl ude_vect or _st or e: specifies a list of loaded vector store tables to exclude from context
retrieval. The routine ignores invalid table names. Default value is NULL.

excl ude_docunent _nane: specifies a list of documents to exclude from context retrieval. Default
value is NULL.

bat ch_si ze: specifies the batch size for the routine. This option is supported for internal tables only.
Default value is 1000. Possible values are integer values between 1 and 1000.

retrieval _opti ons: specifies optional context retrieval parameters as key-value pairs in JSON
format. If a parameter value inretri eval _opti ons is set to aut o, the default value for that
parameter is used.

It can include the following parameters:

retrieval options: JSON OBJECT(retrieval optkeyval ue[, retrieval optkeyval ue]...)
retrieval opt keyval ue:

{

"max_di stance', MaxDi stance
| ' percent age_di st ance', Percent ageDi st ance
| segnent _overl ap', Segnent Overl ap

}

« max_di st ance: specifies a maximum distance threshold for filtering out segments from context
retrieval. Segments for which the distance from the input query exceeds the specified maximum
distance threshold are excluded from content retrieval. This ensures that only the segments that are
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closer to the input query are included during context retrieval. However, if no segments are found
within the specified distance, the routine generates an output without using any context.

Note
@ If this parameter is set, the default value of the n_ci t at i ons parameter is
automatically updated to 10.

Default value is 0. 6 for all distance metrics.

Possible values are decimal values between 0 and 999999. 9999.

e percent age_di st ance: specifies what percentage of distance to the nearest segment is to be
used to determine the maximum distance threshold for filtering out segments from context retrieval.

Following is the formula used for calculating the maximum distance threshold:

Maxi munDi st anceThr eshol d = Di st anceOf | nput Quer yToNear est Segnent +
[(per cent age_di st ance /100) * Di st anceCf | nput Quer yToNear est Segnent ]

Which means that the segments for which the distance to the input query exceeds the distance of
the input query to the nearest segment by the specified percentage are filtered out from context
retrieval.

Note
@ If this parameter is set, the default value of the n_ci t at i ons parameter is
automatically updated to 10.

Default value is 20 for all distance metrics.

Possible values are decimal values between 0 and 999999. 9999.

Note
@ If both max_di st ance and per cent age_di st ance are set, the smaller
threshold value is considered for filtering out the segments.

e segnent _over | ap: specifies the number of additional segments adjacent to the nearest segments
to the input query to be included in context retrieval. These additional segments provide more
continuous context for the input query. Default value is 1. Possible values are integer values
between 0 and 5.

vect or _store_col umms: specifies column names for finding relevant vector and embedding tables
for context retrieval as key-value pairs in JSON format. If multiple tables contain columns with the
same name and data type, then all such tables are used for context retrieval.

It can include the following parameters:

vscoptions: JSON OBJECT(' segnment', ' Segment Col Name', 'segment_enbeddi ng', ' Enbeddi ngCol Nanme' [, vsckeyv
vsckeyval ue:

{

' docunent _nane', ' Docunent Nange'
| " docunent _id', Docunentl|D
|' metadata', ' Metadata'

| ' segnent _nunber', Segnent Nunber
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« segnent : specifies the name of the mandatory string column that contains the text segments.
Default value is segnent .

« segnment _enbeddi ng: specifies the name of the mandatory vector column that contains vector
embeddings of the text segments. Default value is segnent _enbeddi ng.

« docunent _nane: specifies the name of the optional column that contains the document names.
This column can be of any data type supported by MySQL. Default value is docunent _narne.

« docunent i d: specifies the name of the optional integer column that contains the document IDs.
Default value is docunent _i d.

e net adat a: specifies the name of the optional JSON column that contains additional table metadata.
Default value is net adat a.

e segnent _nunber : specifies the name of the optional integer column that contains the segment
numbers. Default value is segnent _nunber .

Default value is { "segnent ": "segnent", "segnent enbeddi ng":
"segnment _enbeddi ng", "docunent id: "document _id", "segnment_nunber":
"segnent _nunber", "netadata": "netadata"}, which means that by default, the routine uses

the default values of all column names to find relevant tables for context retrieval.

« enbed nodel i d: specifies the embedding model to use for embedding the input queries. If you
are providing the query embeddings, then set this option to specify the embedding model to use to
embed the queries. The routine uses vector store tables and embedding tables created using the
same embedding model for context retrieval. Default value ismul ti | i ngual - e5-snal | .

To view the list of available embedding models, see In-Database Embedding Model.

« enbed_col umm: specifies the name of the input table column which contains vector embeddings
of the input queries. If this option is set, then the routine skips generating the vector embeddings of
the input queries. Instead, it uses the embeddings stored in this column for context retrieval from
valid vector store and embedding tables that contain vector embeddings created using the same
embedding model.

« fail _on_enbeddi ng _error:ifsettotrue, stops the batch processing of input queries and throws
an error in case an error is encountered for an input row. If set to f al se, allows the batch processing
to partially fail for rows where errors are encountered, and lets the routine continue with processing the
other rows. Default value is t r ue.

Syntax Examples

Running retrieval-augmented generation in a batch of 10:

nmysql > CALL sys. M._RAG TABLE("deno_db. i nput table.lnput”, "deno_db. output_table.Qutput”, JSON OBJECT("vector_s

In this example, the routine performs RAG for 10 input queries stored in the
deno_db. i nput _tabl e. | nput column, and creates a column of 10 rows
deno_db. out put _t abl e. Qut put where it stores the generated outputs.

See Also
* Run Retrieval-Augmented Generation - Run Batch Queries

» Use Your Own Embeddings with Retrieval-Augmented Generation - Run Batch Queries
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+ Section 8.2.4, “ML_RAG”

8.2.6 HEATWAVE_CHAT

The HEATWAVE_CHAT routine automatically calls the M__RAGroutine which loads an LLM and runs a
semantic search on the available vector stores by default. If the routine cannot find a vector store, then
it calls the M__ GENERATE routine and uses information available in LLM training data, which is primarily
information that is available in public data sources, to generate a response for the entered query.

This topic contains the following sections:

» HEATWAVE_CHAT Syntax

» @chat_options Parameters

e Syntax Examples

* See Also

HEATWAVE_CHAT Syntax

nmysqgl > CALL sys. HEATWAVE CHAT("' Queryl nNat ur al Language' ) ;

The HEATWAVE_CHAT routine accepts one input parameter:

* Queryl nNat ur al Language: specifies the query in natural language.

For specifying additional chat parameter settings, the HEATWAVE CHAT routine reserves a variable,
@hat _opti ons. When you run the routine, it also updates the @hat _opt i ons variable with any
additional information that is used or collected by the routine to generate the response.

@chat_options Parameters

Following is a list of all the parameters that you can set in the @hat opt i ons variable:

e Input only: you can set these parameters to control the chat behavior. The routine cannot change the
values of these parameters.

schena_nane: specifies the name of a schema. If set, the routine searches for vector store tables in
this schema. This parameter cannot be used in combination with the t abl es parameter. Default value
is NULL

report _progress: specifies whether information such as routine progress detail is to be reported.
Default value is f al se.

ski p_gener at e: specifies whether response generation is skipped. If setto t r ue, the routine does
not generate a response. Default value is f al se.

ret urn_pr onpt : specifies whether to return the prompt that was passed to the M__RAG or
M__GENERATE routines. Default value is f al se.

re_run:if settotrue, it indicates that the request is a re-run of the previous request. For example, a
re-run of a query with some different parameters. The new query and response replaces the last entry
stored in the chat _hi st ory parameter. Default value is f al se.

i ncl ude_docunent _uri s: limits the documents used for context retrieval by including only the
specified document URIs. Default value is NULL.
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retrieve_top_k: specifies the context size. The default value is the value of the n_ci t ati ons
parameter of the M__ RAGroutine. Possible values are integer values between 0 and 100.

chat query i d: specifies the chat query ID to be printed with the chat _hi st ory in the GUI. This
parameter is reserved for GUI use. By default, the routine generates random IDs.

hi st ory_I| engt h: specifies the maximum history length, which is the number of question and
answers, to include in the chat history. The specified value must be greater than or equal to 0. Default
value is 3.

vect or _store_col umms: optional parameter which specifies column names for finding relevant
vector and embedding tables for context retrieval as key-value pairs in JSON format. If multiple tables
contain columns with the same name and data type, then all such tables are used for context retrieval.

It can include the following parameters:

JSON_OBJECT( ' segnment', ' Segnent Col Nanme', 'segment_enbeddi ng', ' Enbeddi ngCol Nanme' [, vsckeyval ue]. ..

vsckeyval ue:

{

' docunent _nane', ' Docunent Nange'
| " docunent _id', Docunentl|D
|' metadata', ' Metadata'

| ' segnent _nunber', Segnent Nunber
« segnent : specifies the name of the mandatory string column that contains the text segments.
Default value is segnent .

« segnment enbeddi ng: specifies the name of the mandatory vector column that contains vector
embeddings of the text segments. Default value is segnment _enbeddi ng.

« docunent _nane: specifies the name of the optional column that contains the document names.
This column can be of any data type supported by MySQL. Default value is docunent _narne.

« docunent i d: specifies the name of the optional integer column that contains the document IDs.
Default value is docunent _i d.

e net adat a: specifies the name of the optional JSON column that contains additional table metadata.
Default value is net adat a.

* segnent _nunber : specifies the name of the optional integer column that contains the segment
numbers. Default value is segnent _nunber .

Default value is { "segnment ": "segnent", "segnent enbeddi ng":
"segnent _enbeddi ng", "docunent _id: "docunent _id", "segnment_nunber":

304



HEATWAVE_CHAT

"segnent _nunber", "netadata": "netadata"}, which means that by default, the routine uses
the default values of all column names to find relevant tables for context retrieval.

enmbed_nodel _i d: specifies the embedding model to use for embedding the input query. The routine
uses vector store tables and embedding tables created using the same embedding model for context
retrieval. Default value is nul ti | i ngual - e5-smal | .

To view the list of available embedding models, see In-Database Embedding Model.

retrieval _opti ons: specifies optional context retrieval parameters as key-value pairs in JSON
format. If a parameter value inretri eval _opti ons is set to aut o, the default value for that
parameter is used.

It can include the following parameters:

JSON_OBJECT(retrieval opt keyval ue[, retrieval optkeyval ue]...)
retrieval opt keyval ue:

{
"max_di stance', MaxDi stance
| ' percent age_di st ance', Percent ageDi st ance
| segnent _overl ap', Segnent Overl ap

}

« max_di st ance: specifies a maximum distance threshold for filtering out segments from context
retrieval. Segments for which the distance from the input query exceeds the specified maximum
distance threshold are excluded from content retrieval. This ensures that only the segments that are
closer to the input query are included during context retrieval. However, if no segments are found
within the specified distance, the routine fails to run.

Note
@ If this parameter is set, the default value of the n_ci t at i ons parameter is
automatically updated to 10.

Default value is 0. 6 for all distance metrics.

Possible values are decimal values between 0 and 999999. 9999.
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e percent age_di st ance: specifies what percentage of distance to the nearest segment is to be

used to determine the maximum distance threshold for filtering out segments from context retrieval.
Following is the formula used for calculating the maximum distance threshold:

Maxi munDi st anceThr eshol d =Di st anceO | nput Quer yToNear est Segnent +
[(per cent age_di st ance /100) * Di st anceCf | nput Quer yToNear est Segnent |

Which means that the segments for which the distance to the input query exceeds the distance of
the input query to the nearest segment by the specified percentage are filtered out from context
retrieval.

Note
@ If this parameter is set, the default value of the n_ci t at i ons parameter is
automatically updated to 10.

Default value is 20 for all distance metrics.

Possible values are decimal values between 0 and 999999. 9999.

Note
@ If both max_di st ance and per cent age_di st ance are set, the smaller
threshold value is considered for filtering out the segments.

segnent _over | ap: specifies the number of additional segments adjacent to the nearest segments
to the input query to be included in context retrieval. These additional segments provide more
continuous context for the input query. Default value is 1. Possible values are integer values
between 0 and 5.

» Input-output: both you and the routine can change the values of these parameters.

e chat _hi st ory: JSON array that represents the current chat history. Default value is NULL.

Syntax for each object in the chat _hi st ory array is as follows:

JSON_OBJECT(' key','value'[,"'key','value'] ...)

"key','value': {

[' user _message', ' Message']

[' chat _bot _nessage', ' Message' ]
["chat _query_id ,'ID]

Each parameter value in the array holds the following keys and their values:
e user_nessage: message entered by the user.
e chat _bot nessage: message generated by the chat bot.

e chat _query_id:aqueryID.

306



HEATWAVE_CHAT

e tabl es: JSON array that represents the following:

« For providing input, represents the list of vector store schema or table names to consider for context
retrieval.

« As routine output, represents the list of discovered vector store tables, if any. Otherwise, it holds the
same values as input.

Default value is NULL.

Syntax for each object in the t abl es array is as follows:

JSON_OBJECT(' key','value'[,"'key','value'] ...)
"key','value': {
[' schema_nane', ' SchemaNane' ]
['tabl e_nane',"' Tabl eNane' ]

}

Each parameter values in the array holds the following keys and their values:
e schema_nane: name of the schema.

e tabl e_nane: name of the vector store table.

t ask: specifies the task performed by the LLM. Default value is gener at i on. Possible value is
gener ati on.

nodel _opti ons: optional model parameters specified as key-value pairs in JSON format. These are
the same options that are available in the M._ GENERATE routine, which alter the text-based response
per the specified settings. Default value is' {"nodel _id": "Il am3. 2-3b-instruct-v1"}'.

» Output only: only the routine can set or change values of these parameters.

i nf o: contains information messages such as routine progress information. Default value is NULL.
This parameter is populated only if r eport _progress issettotrue.

err or : contains the error message if an error occurred. Default value is NULL.
error _code: contains the error code if an error occurred. Default value is NULL.

pr onpt : contains the prompt passed to the M._ RAGor M__ GENERATE routine. Default value is NULL.
This parameter is populated only if r eport _pronpt issettotr ue.

docunent s: contains the names of the documents as well as segments used as context by the LLM
for response generation. Default value is NULL.

request _conpl et ed: settot r ue when a response is the last response message to a request.
Default value is NULL.

r esponse: contains the final response from the routine. Default value is NULL.

Syntax Examples

» Entering a natural-language query using the HEATWAVE_CHAT routine:

nysgl > CALL sys. HEATWAVE_CHAT("What i s Lakehouse?");

* Modifying chat parameters using the @hat _opt i ons variable:
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next chat session:

nysqgl > SET @hat_options = '{"tables": [{"tabl e_nane": "denp_enbeddi ngs", "schenma_nane":

This example resets the chat session and uses the specified vector store table in the new chat

session.

« Modifying a chat parameter, t abl es, to specify the vector store table to use for context retrieval in the

“deno_db"}1}";

Modifying a chat parameter, t abl es, to specify the vector store table to use for context retrieval in the

same chat session:

nysql > SET @hat _opti ons = JSON_SET( @hat _opti ons, '

$. tables', JSON ARRAY(JSON OBJECT("t abl e_nane", "denp_e

This example uses the specified vector store table in the ongoing chat session. It does not reset the

chat session.

Modifying a chat parameter, t enper at ur e, without resetting the chat session:

nysqgl > SET @hat_options = json_set(@hat_options,

* Viewing the chat parameters and session details:

See Also

mysql > SELECT JSON_PRETTY( @hat _opti ons);

» Section 5.9, “Starting a Conversational Chat”

'$. nodel _options. tenperature',

0.5);

» For more information about the output generated by this command, see Section 5.9.2, “Viewing Chat

Session Details”.

8.2.7 ML_EMBED_ROW

The M_._EMBED_ ROWroutine uses the specified embedding model to encode the specified text or query
into a vector embedding. The routine returns a VECTOR that contains a numerical representation of the
specified text.

This topic contains the following sections:

« ML_EMBED_ROW Syntax

* Syntax Examples

* See Also

ML_EMBED_ROW Syntax

nmysqgl > SELECT sys. M._EMBED ROW' Text' [, options]);

options: JSON OBJECT(keyval ue[, keyvalue] ...)
keyval ue:

{
"nodel _id', {'MdellD}
|"truncate', {true|false}

}

Following are M._ EMBED ROWparameters:

e Text : specifies the text to encode.
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e opti ons: specifies optional parameters as key-value pairs in JSON format. It can include the following

parameters:

e nodel i d: specifies the embedding model to use for encoding the text. Default value is
mul tilingual -e5-smal | . Possible values are:

eall mnilmli12 v2
e mul tilingual -e5-small
To view the lists of available embedding models, see In-Database Embedding Model.

e truncat e: specifies whether to truncate inputs longer than the maximum token size. Default value is
true.

Syntax Examples

» Embed an English query usingthe al | _mi ni | m | 12 v2 embedding model, and store the generated

See Also

embedding in the @ ext _enbeddi ng variable:

mysql > SELECT sys. M._EMBED RON "What is artificial intelligence?", JSON OBJECT("nodel _id", "all_minilml

Print the embedding stored in the @ ext _enbeddi ng variable:

nysql > SELECT @ ext _enbeddi ng;

The output, which is a binary representation of the specified text, looks similar to the following:

To convert the binary representation of this embedding into its string representation, use the
VECTOR_TO_STRI N&() function:

mysql > SELECT VECTOR TO _STRI N§ @ ext _enbeddi ng) ;

The output is similar to the following:

eSS S _ - - - - - .
| VECTOR _TO_STRI NG @ ext _enbeddi ng)

eSS S _ - - - - - .
| [-1.35008e-02,-4.81091e-02, -1. 87244e-02, 1. 53858e- 02, - 2. 73258e- 02, - 4. 71801e- 02, 3. 78558e- 02, 6. 18583e- 02, -
eSS S _ - - - - - .

The string representation of the embedding consists of a list one or more comma-separated float values,
encased in square brackets ([ ]). The values are expressed using decimal or scientific notation.

Section 5.7, “Generating Vector Embeddings”

8.2.8 ML_EMBED_TABLE

The ML_EMBED_ TABLE routine runs multiple embedding generations in a batch, in parallel.

This topic contains the following sections:
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¢« ML_EMBED_TABLE Syntax
» Syntax Examples
» See Also

To learn about the privileges you need to run this routine, see Section 5.3, “Required Privileges for using
GenAl”.

ML_EMBED_TABLE Syntax

nysqgl > CALL sys. M._EMBED TABLE(' | nput Tabl eCol umm', ' Qut put Tabl eCol umm' [, options]);

options: JSON OBJECT(keyval ue[, keyvalue] ...)
keyval ue:

{
"model _id', {'MdellD}
|"truncate', {true|false}
| * bat ch_si ze', BatchSize
| *details_colum', 'ErrorDetail sCol umNang'

}
Following are M._ EMBED TABLE parameters:

* | nput Tabl eCol umm: specifies the names of the input database, table, and column that
contains the text to encode. The | nput Tabl eCol umm is specified in the following format:
DBNane.Tabl eNane.Col unmNarre.

« The specified input table can be an internal or external table.
« The specified input table must already exist, must not be empty, and must have a primary key.
e The input column must already exist and must contain t ext or var char values.

e The input column must not be a part of the primary key and must not have NULL values or empty
strings.

* There must be no backticks used in the DBNanme, Tabl eNane, or Col unmNanme and there must be no
period used in the DBNane or Tabl eNane.

» Cut put Tabl eCol umm: specifies the names of the database, table, and column where the
generated embeddings are stored. The Qut put Tabl eCol umm is specified in the following format:
DBNarne.Tabl eNane.Col unmNarre.

* The specified output table must be an internal table.

« If the specified output table already exists, then it must be the same as the input table. And, the
specified output column must not already exist in the input table. A new VECTOR column is added to
the table. External tables are read only. So if input table is an external table, then it cannot be used to
store the output.

« If the specified output table doesn't exist, then a new table is created. The new output table has key
columns which contains the same primary key values as the input table and a VECTOR column that
stores the generated embeddings.

* There must be no backticks used in the DBNane, Tabl eNane, or Col unmNane and there must be no
period used in the DBNane or Tabl eNane.

» opti ons: specifies optional parameters as key-value pairs in JSON format. It can include the following
parameters:
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e nodel _i d: specifies the embedding model to use for encoding the text. Default value is
mul tilingual -e5-snal |l . Possible values are:

eall mnilml1l2 v2orninilm
e nultilingual -e5-snall
To view the lists of available embedding models, see In-Database Embedding Model.

e truncat e: specifies whether to truncate inputs longer than the maximum token size. Default value is
true.

» bat ch_si ze: specifies the batch size for the routine. This option is supported for internal tables only.
Default value is 1000. Possible values are integer values between 1 and 1000.

e detai | s_col um: specifies a name for the output table column that is created for adding details of
errors encountered for rows that aren't processed successfully by the routine. Ensure that a column by
the specified name does not already exist in the table. Default value is det ai | s.

Syntax Examples

Generate embeddings for text stored in deno_db. i nput _t abl e. | nput using the
all _mnilml 12 v2 embedding model, and save the generated embeddings in the output table
deno_db. out put _t abl e. Qut put:

mysql > CALL sys. M._EMBED TABLE("deno_db. i nput _table.lnput”, "denop_db. output_table.Qutput", JSON OBJECT(" no
See Also

Generate Vector Embeddings - Run Batch Queries

8.2.9 NL_SQL

Generates SQL queries using natural-language statements. The routine also runs the generated SQL
statement and displays the result set. You can use this routine for generating and running SQL queries
only for databases and tables that you have access to.

Note
@ This routine can generate and run SELECT statements only.

The LLM-generated SQL statements might contain syntax errors. The routine automatically detects
these errors, and retries the SQL generation until a syntactically valid SQL statement is generated, with a
maximum of 3 generation attempts.

This topic contains the following sections:
* NL_SQL Syntax
» Syntax Examples
* See Also
NL_SQL Syntax
nmysqgl > CALL sys. NL_SQ.("Nat ural LanguageSt at enent", @ut put, options);

options: {JSON OBJECT(keyval ue[, keyvalue]...)| NULL}
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keyval ue
{
"execute', {true|false}
'schemas', JSON_ARRAY(' DBNane'[, 'DBNane'] ...)

I

| "tables', JSON _ARRAY(Tabl eJSON[, Tabl eJSON] ...)
| "nodel _id', 'MdellD

| 'verbose', {0]|1]|2}

| "include_comments', {true|false}

| "use_retry', {true|false}

}
Following are NL_SQL parameters:

e Nat ur al LanguageQuer y: natural-language query pertaining to your data available in MySQL
HeatWave that you want to convert to an SQL query.

e @ut put : output parameter that includes the list of tables and databases considered for generating the
SQL query, Model ID of the Large Language Model (LLM) used for generating the query, the generated
SQL query, and whether the generated SQL query is valid.

» opti ons: specifies optional parameters as key-value pairs in JSON format. It can include the following
parameters:

* execut e: specifies whether the procedure automatically runs the generated SQL statement. Default
valueistrue.

« schemas: specifies the databases to consider for generating and running SQL queries. You can
specify up to five databases. By default, databases that the routine finds most relevant to the entered
natural-language statement are considered.

« t abl es: specifies the tables to consider for generating and running SQL queries in JSON format.
You can specify up to 50 tables. By default, tables that the routine finds most relevant to the entered
natural-language statement are considered.

Tabl eJSON: JSON_OBJECT(' schenma_nane', 'DBNanme', 'table_nane', 'Tabl eNane')

or the t abl es option to specify the tables to consider. If you set both these

Note
@ You can either use the schenas option to specify the databases to consider
options, the routine fails.

« nodel _i d: specifies the LLM to use for generating the SQL query. Default value is | | ana3. 2- 3b-
i nstruct-vl.

« ver bose: specifies whether to print an output. Possible values are: 0: prints nothing, 1: prints the
generated SQL statement, and 2: prints debugging information. Default value is 1.

e incl ude_conment s: specifies whether comments are to be included during metadata collection for
columns or tables. Default value is t r ue.

e use_retry: specifies whether generation retries for syntactically invalid SQL statements can be
attempted. Default value is t r ue.

Syntax Examples
The examples in this topic uses a sample database, ai r port .

» Following example specifies the database to consider for the SQL query:
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nysqgl > CALL sys.NL_SQ.("How many flights are there in total ?", @utput, JSON OBJECT('schemas', JSON _ARRAY(

o o C O CEONCE 00O OCCEOOCOC 00O COO0COO0000C00000000000000 +
| Executing generated SQL statement... |
o o C O CEONCE 00O OCCEOOCOC 00O COO0COO0000C00000000000000 +
| SELECT COUNT( flight_id) FROM "airportdb . flight |
o o C O CEONCE 00O OCCEOOCOC 00O COO0COO0000C00000000000000 +

o e e e +
| COUNT(“flight id') |
o e e e +
| 462553 |
o e e e +

View the value stored in the variable @ut put :

nmysql > SELECT JSON_PRETTY( @ut put) ;

“"tables": [

"airportdb. weat her dat a",

"airportdb. enpl oyee",

"airportdb. passenger”,

“airportdb.airport",

"airportdb. ai rpl ane_t ype",

"airportdb.flight",

“airportdb.airline",

"airportdb. ai rport_geo",

"airportdb. ai rport _reachabl e",

"airportdb.flight_|og",

"airportdb. flightschedul e",

"ai rportdb. booki ng",

"airportdb. ai rpl ane",

"airportdb. passengerdetail s"
I
“license": "Your use of this Llama nodel is subject to the Llama 3.2 Community License Agreenent avail
"schemas": [

"airportdb"
I
“model _id": "Ilama3. 2-3b-instruct-v1",
"sqgl _query": "SELECT COUNT( flight_id ) FROM “airportdb . flight ",
"is_sql_valid"': 1

» Following example specifies the tables to consider for the SQL query:

nysqgl > CALL sys.NL_SQ.("List five airlines that have the hi ghest number of Airbus A330 aircrafts with th
@ut put, JSON_OBJECT('tables',
JSON_ARRAY(JSON_OBJECT("schema_nane", "airportdb", "tabl e_nane", "airlines"),
JSON_OBJECT( " schenma_nane", "ai rportdb", "t abl e_name", "ai rpl ane"),
JSON_OBJECT("schema_nane", "ai rportdb", "t abl e_nane", "airpl ane_type")),
‘model _id',"'llana3. 2-3b-instruct-vl'));

| SELECT "T1 . airline_id , COUNT(*) AS "num airbus_a330° FROM “airportdb . airplane® AS "T1" JON airp
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| 55 | 11 |
| 46 | 11 |
| 33 | 10 |
| 73 | 10 |
froccooooooooo frocoocooooooooooooo +

View the value stored in the variable @ut put :

nmysql > SELECT JSON PRETTY( @ut put) ;

g g g g g SN PSS SNPENIIPNPNPIPIY | _ - = = = = = = = =
| JSON_PRETTY( @ut put )
g g g g g SN PSS SNPENIIPNPNPIPIY | _ - = = = = = = = =
| {
“tables": [
"airportdb. airpl ane_type",
"airportdb. ai rpl ane"
Il
"license": "Your use of this Llama nodel is subject to the Llama 3.2 Conmmunity License Agreenent avail able
"schemas": [
"airportdb"
Il
“model _id": "llama3. 2-3b-instruct-vl",
"sqgl _query": "SELECT "T1 . airline_id, COUNT(*) AS "num airbus_a330° FROM "airportdb’. airplane’ AS "T1
"is_sqgl _valid': 1
oA
g g g g g SN PSS SNPENIIPNPNPIPIY | _ - = = = = = = = =

See Also

Section 5.10, “Generating SQL Queries From Natural-Language Statements”

8.2.10 ML_RETRIEVE_SCHEMA_METADATA

Retrieves the most relevant tables to a given natural-language statement and ranks them in the order of
their relevance.

The output generated by the routine can be used to enhance large language model (LLM) prompts,
NL_SQL workflows, and retrieval-augmented generation (RAG)-based analytics.

This routine is available as of MySQL 9.5.2.
ML_RETRIEVE_SCHEMA_METADATA Syntax

nmysql > CALL sys. M._RETRI EVE_SCHEMA METADATA( " Nat ur al LanguagesSt at enment ", @ut put, options);

options: {JSON OBJECT(keyval ue[, keyvalue]...)|NULL}
keyval ue:

{
‘schemas’, JSON_ARRAY(' DBNane'[, 'DBNane'] ...)
| "tables', JSON _ARRAY(Tabl eJSON[, Tabl eJSON] ...)
| "include_comments', {true|false}

}
Following are M._ RETRI EVE_SCHEMA METADATA parameters:
» Nat ur al LanguageQuer y: natural-language query that you want to use to find relevant tables.

* @ut put : output parameter that includes the most relevant tables and databases. This output consists
of a concise set of abridged CREATE TABLE statements for the tables that are most relevant to a
natural-language statement, ranked in order of relevance.

» opti ons: specifies optional parameters as key-value pairs in JSON format. It can include the following
parameters:
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« schenas: specifies the databases to consider for retrieving most relevant tables. You can specify up
to 128 databases. By default, all available databases are considered for retrieving the most relevant
tables.

e t abl es: specifies the tables to consider for retrieving most relevant tables. You can specify up to 128
tables. By default, all tables in all available databases are considered for retrieving the most relevant
tables.

Tabl eJSON: JSON_OBJECT(' schena_nane', 'DBNane', 'table_nane', 'Tabl eNane')

or the t abl es option to specify the tables to consider. If you set both these

Note
g You can either use the schemas option to specify the databases to consider
options, the routine fails.

e incl ude_conment s: specifies whether table and column comments are used for retrieving the most
relevant tables and also whether the comments are included with the generated output. Default value
istrue.

Syntax Examples

» Following example specifies only a natural-language statement for retrieving the most relevant tables:

nysqgl > CALL sys. M._RETRI EVE_SCHEVMA METADATA("How many flights are there in total ?", @utput, NULL);

View the value stored in the variable @ut put :

nmysql > SELECT @ut put ;

| CREATE TABLE “airportdb . flightschedul e (
“flightno  char,
“from snmallint,
“to smallint,
“departure’ tine,
“arrival " tinme,
“airline_id smallint,
“nmonday” tinyint,
“tuesday  tinyint,
“wednesday” tinyint,
“thursday’ tinyint,
“friday  tinyint,
“saturday  tinyint,
“sunday” tinyint,
FOREI GN KEY ("airline_id ) REFERENCES "airportdb’ . airline (“airline_id),
FOREI GN KEY ("to') REFERENCES "airportdb . airport (Tairport_id),
FOREI GN KEY (" from ) REFERENCES "airportdb’ . airport (“airport_id")
) COMMENT ' Fl ughafen DB by Stefan Proll, Eva Zangerle, Wl fgang Gassler is |icensed under CC BY 4.0. To !

CREATE TABLE “airportdb™ . flight (
“flight_id int,
“flightno  char,
“from snmallint,
“to smallint,
“departure’ datetine,
“arrival® datetine,
“airline_id smallint,
“airplane_id int,
FOREI GN KEY (" flightno') REFERENCES "airportdb . flightschedule ("flightno'),
FOREI GN KEY (" airplane_id ) REFERENCES "airportdb’ . airplane (" airplane_id),
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FOREI GN KEY ("airline_id) REFERENCES "airportdb’ . airline (airline_id),
FOREI GN KEY ("to') REFERENCES "airportdb . airport (“airport_id),
FOREI GN KEY (" from ) REFERENCES "airportdb’ . airport ( airport_id")
) COWMMENT ' Fl ughafen DB by Stefan Préoll, Eva Zangerle, Wl fgang Gassler is |licensed under CC BY 4.0. To view

CREATE TABLE "airportdb™ . airplane (
“airplane_id int,
‘capacity nediumnt,
“type_id int,
“airline_id int,
FOREI GN KEY ( "type_id ) REFERENCES "airportdb’ . airplane_type ("type_id)
) COWMENT ' Fl ughafen DB by Stefan Préoll, Eva Zangerle, Wl fgang Gassler is |licensed under CC BY 4.0. To view

1 rowin set (0.000 sec)

Following example specifies the database to use for retrieving most relevant tables for the given natural-
language statement:

nysql > CALL sys. M._RETRI EVE_SCHEVMA METADATA("How many t hreads are active?", @utput, JSON OBJECT('schenas',J

View the value stored in the variable @ut put :

nysql > SELECT @ut put;

| CREATE TABLE " perfornmance_schena . status_by_thread (
*THREAD | D' bi gi nt,
" VARI ABLE_NAMVE' var char,
“VARI ABLE_VALUE® var char

Ik

CREATE TABLE " performance_schema . variabl es_by_thread" (
*THREAD | D' bi gi nt,
" VARI ABLE_NAMVE' var char,
“VARI ABLE_VALUE® var char

Ik

CREATE TABLE " performance_schema . user_variabl es_by_thread (
*THREAD | D' bi gi nt,
" VARI ABLE_NAMVE' var char,
“VARI ABLE_VALUE" | ongbl ob

DE

1 rowin set (0.000 sec)
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The sections in this chapter describe how to troubleshoot MySQL Al errors.

9.1 AutoML Error Messages

Each error message includes an error number, SQLSTATE value, and message string, as described in
Error Message Sources and Elements.

* Error number: ML001016; SQLSTATE: HY000
Message: Only classification, regression, and forecasting tasks are supported.

Example: ERROR HYO000: M.001016: Only classification, regression, and
forecasting tasks are support ed.

Check the t ask option in the ML_TRAI N call to ensure that it is specified correctly.
e Error number: ML001031; SQLSTATE: HY000

Message: Running as a classification task. % classes have less than % samples per class, and cannot
be trained on. For a real valued target column, the task parameter in the options JSON should be set to
regression.

Example: ERROR HYO000: M.001031: Running as a classification task. 189 cl asses
have | ess than 5 sanples per class, and cannot be trained on. For a real

val ued target colum, the task parameter in the options JSON should be set to
regression.

If a classification model is intended, add more samples to the data to increase the minority class count;
that is, add more rows with the under-represented target column value. If a classification model was not
intended, run M__ TRAI N with the regression task option.

e Error number: ML001051; SQLSTATE: HY000
Message: One or more rows contain all NaN values. Imputation is not possible on such rows.

Example: ERROR HYO00: M.001051: One or nore rows contain all NaN val ues.
I mputation is not possible on such rows.

MySQL does not support NaN values. Replace with NULL.
e Error number: ML001052; SQLSTATE: HY000
Message: All columns are dropped. They are constant, mostly unique, or have a lot of missing values!

Example: ERROR HYO000: M.001052: All columms are dropped. They are constant,
nostly unique, or have a |l ot of m ssing val ues!

M__TRAI Nignores columns with certain characteristics such as columns missing more than 20% of
values and columns containing the same single value. See Section 4.5.1, “Preparing Data”.
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e Error number: ML001053; SQLSTATE: HY000

Message: Unlabeled samples detected in the training data. (Values in target column can not be NULL).

Example: ERROR HY000: M.001053: Unl abel ed sanpl es detected in the training
data. (Values in target columm can not be NULL).

Training data must be labeled. See Section 4.5.1, “Preparing Data”.

Error number: MLO03000; SQLSTATE: HY000
Message: Number of offloaded datasets has reached the limit!

Example: ERROR HYO000: M.003000: Nunber of of fl oaded datasets has reached the
[imt!

Error number: ML0O03011; SQLSTATE: HY000

Message: Columns of provided data need to match those used for training. Provided - ['%', '%', '%'] vs
Trained - [%', '%'].

Example: ERROR HYO000: M_003011: Col ums of provided data need to match those
used for training. Provided - ['petal length', '"petal width', 'sepal length',
"sepal width'] vs Trained - ['petal length', 'sepal length', 'sepal width'].

The input data columns do not match the columns of training dataset used to train the model. Compare
the input data to the training data to identify the discrepancy.

Error number: ML003012; SQLSTATE: HY000
Message: The table (%) is NULL or has not been loaded.

Example: ERROR HYO000: M.003012: The table (mcorpus.iris_train) is NULL or has
not been | oaded.

There is no data in the specified table.

Error number: ML003014; SQLSTATE: HY000
Message: The size of model generated is larger than the maximum allowed.

Example: ERROR HY000: M.003014: The size of nodel generated is larger than the
maxi mum al | owed.

Models greater than 4 GB in size are not supported.

Error number: ML0O03015; SQLSTATE: HY000

Message: The input column types do not match the column types of dataset which the model was
trained on. ['%', '%'] vs ['%', '%.

Example: ERROR HYO00: M_003015: The input colum types do not match the col um
types of dataset which the nodel was trained on. ['nunerical', 'nunerical',
‘categorical', 'nunerical'] vs ['nunerical', 'nunerical', 'nunerical',
"nunerical '].
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Error number: ML003016; SQLSTATE: HY000

Message: Missing argument \"row_json\" in input JSON -> dict_keys(['%', '%"]).

Example: ERROR HYO000: M.003016: M ssing argunent \"row json\" in input
JSON -> dict_keys(['operation', 'user_nane', 'table_nane', 'schena_nane',
"nodel _handle']).

Error number: ML0O03017; SQLSTATE: HY000

Message: The corresponding value of row_json should be a string!

Example: ERROR HYO000: M.003017: The correspondi ng val ue of row_json should be
a string!

Error number: ML003018; SQLSTATE: HY000
Message: The corresponding value of row_json is NOT a valid JSON!

Example: ERROR HYO000: M_003018: The correspondi ng value of row json is NOT a
valid JSON!

Error number: ML003019; SQLSTATE: HY000
Message: Invalid data for the metric (%). Score could not be computed.

Example: ERROR HYO000: M.003019: Invalid data for the netric (roc_auc). Score
coul d not be conput ed.

The scoring metric is legal and supported, but the data provided is not suitable to calculate such a score.
For example: ROC_AUC for multi-class classification. Try a different scoring metric.

Error number: ML003020; SQLSTATE: HY000
Message: Unsupported scoring function (%) for current task (%s).

Example: ERROR HYO00: M_003020: Unsupported scoring function (accuracy) for
current task (regression).

The scoring metric is legal and supported, but the task provided is not suitable to calculate such a score;
for example: Using the accur acy metric for ar egr essi on model.

Error number: ML003021; SQLSTATE: HY000
Message: Cannot train a regression task with a non-numeric target column.

Example: ERROR HYO00: M_003021: Cannot train a regression task with a non-
nuneric target colum.

M._TRAI N was run with the regression task type on a training dataset with a non-numeric target column.
Regression models require a humeric target column.

Error number: ML003022; SQLSTATE: HY000
Message: At least 2 target classes are needed for classification task

Example: ERROR HYO000: M.003022: At |east 2 target classes are needed for
classification task.
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M__TRAI N was run with the classification task type on a training dataset where the target column did not
have at least two possible values.

Error number: ML003023; SQLSTATE: 3877 ( HY000)

Message: Unknown option given. Allowed options for training are: [task’, ‘model_list',
‘exclude_model_list', 'optimization_metric', '‘exclude_column_list', 'datetime_index’,
‘endogenous_variables', '‘exogenous_variables', 'positive_class', 'users', 'items', 'user_columns',
‘item_columns'].

Example: ERROR 3877 (HY000): M.003023: Unknown option given. Allowed

options for training are: ['task', 'nodel list', 'exclude_nodel list',
‘optimzation_netric', 'exclude_colum_list', 'datetine_index",

" endogenous_vari abl es', 'exogenous_vari ables', 'positive_class', 'users',
"itenms', 'user_colums', 'itemcolums'].

The ML_TRAI N call specified an unknown option.
Error number: ML003024; SQLSTATE: HY000
Message: Not enough available memory, unloading any RAPID tables will help to free up memory.

Example: ERROR HY000: M_003024: Not enough avail abl e nenory, unl oadi ng any
RAPID tables will help to free up nenory.

There is not enough memory on the MySQL Al Engine to perform the operation. Try unloading data that
was loaded to free up space.

There might not be enough memory on your system to train the model with large data sets. If this error
message appears AutoML, see the system requirements.

Error number: ML003027; SQLSTATE: 3877 ( HY000)
Message: JSON attribute (item_columns) must be in JSON_ARRAY type.

Example: ERROR 3877 (HY000): M.003027: JSON attribute (itemcolums) nust be
i n JSON_ARRAY type.

Specify the i t em _col utms JSON attribute as a JSON array.
Error number: ML003027; SQLSTATE: 3877 ( HY000)
Message: JSON attribute (user_columns) must be in JISON_ARRAY type.

Example: ERROR 3877 (HYO00): M.003027: JSON attribute (user_colums) nust be
in JSON_ARRAY type.

Specify the user _col unms JSON attribute as a JSON array.
Error number: MLO03039; SQLSTATE: HY000
Message: Not all user specified columns are present in the input table - missing columns are {%}.

Example: ERROR HYO000: M_003039: Not all wuser specified colums are present in
the input table - mssing colums are {C4}.

The syntax includes a column that is not available.
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Error number: ML003047; SQLSTATE: HY000
Message: All columns cannot be excluded. User provided exclude_column_list is ['%', '%'].

Example: ERROR HYO000: M.003047: All columms cannot be excluded. User provided
exclude _colum list is['CO', '"C1', 'C", "C3'].

The syntax includes an excl ude_col unm_|I i st that attempts to exclude too many columns.
Error number: ML003048; SQLSTATE: HY000
Message: exclude_column_list JSON attribute must be of JISON_ARRAY type.

Example: ERROR HY000: M.003048: exclude _colum_l|ist JSON attribute nmust be of
JSON_ARRAY type.

The syntax includes a malformed JSON_ARRAY for the excl ude_col umm_Ii st.
Error number: ML003048; SQLSTATE: HY000
Message: include_column_list JSON attribute must be of JISON_ARRAY type.

Example: ERROR HY000: M_003048: include_colum_list JSON attribute nmust be of
JSON_ARRAY type.

The syntax includes a malformed JSON_ARRAY for the i ncl ude_col umm_l i st.
Error number: ML003049; SQLSTATE: HY000

Message: One or more columns in include_column_list ([%]) does not exist. Existing columns are (['%',
l%l]).

Example: ERROR HYO000: M.003049: One or nore colums in include_colum |ist
([C15]) does not exist. Existing colums are (['CO', 'C1', 'C2', "C3']).

The syntax includes an i ncl ude_col unm_I i st that expects a column that does not exist.
Error number: MLO03050; SQLSTATE: HY000
Message: include_column_list must be a subset of exogenous_variables for forecasting task.

Example: ERROR HYO000: M.003050: include_colum_list nust be a subset of
exogenous_vari abl es for forecasting task.

The syntax for a forecasting task includes an i ncl ude_col utm_| i st that expects one or more
columns that are not defined by exogenous_vari abl es.

Error number: ML003052; SQLSTATE: HY000

Message: Target column provided % is one of the independent variables used to train the model [%, %,
%].

Example: ERROR HYO00: M_003052: Target colum provided LSTAT is one of the
i ndependent variables used to train the nodel [RM RAD, LSTAT].

The syntax defines at ar get _col unm_nane that is one of the independent variables used to train the
model.

Error number: ML003053; SQLSTATE: HY000
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Message: datetime_index must be specified by the user for forecasting task and must be a column in the
training table.

Example: ERROR HY000: M.003053: datetine_index nust be specified by the user
for forecasting task and nust be a colum in the training table.

The syntax for a forecasting task must include dat et i me_i ndex, and this must be a column in the
training table.

Error number: ML003054; SQLSTATE: HY000

Message: endogenous_variables must be specified by the user for forecasting task and must be
column(s) in the training table.

Example: ERROR HY000: M.003054: endogenous_vari abl es nmust be specified by the
user for forecasting task and nust be columm(s) in the training table.

The syntax for a forecasting task must include the endogenous_var i abl es option, and these must be
a column or columns in the training table.

Error number: MLO03055; SQLSTATE: HY000
Message: endogenous_variables / exogenous_variables option must be of JSON_ARRAY type.

Example: ERROR HY000: M_003055: endogenous_vari abl es / exogenous_vari abl es
option nust be of JSON ARRAY type.

The syntax for a forecasting task includes endogenous_vari abl es or exogenous_vari abl es that
do not have valid JSON format.

Error number: ML003056; SQLSTATE: HY000

Message: exclude_column_list cannot contain any of endogenous or exogenous variables for
forecasting task.

Example: ERROR HYO000: M.003056: exclude colum_list cannot contain any of
endogenous or exogenous variables for forecasting task.

The syntax for a forecasting task includes excl ude_col urm_| i st that contains columns that are also
in endogenous_vari abl es or exogenous_vari abl es.

Error number: ML0O03057; SQLSTATE: HY000

Message: endogenous and exogenous variables may not have any common columns for forecasting
task.

Example: ERROR HY000: M.003057: endogenous and exogenous vari abl es may not
have any common colums for forecasting task.

The syntax for a forecasting task includes endogenous_vari abl es and exogenous_vari abl es,
and they have one or more columns in common.
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e Error number: MLO03058; SQLSTATE: HY000
Message: Can not train a forecasting task with non-numeric endogenous_variables column(s).

Example: ERROR HYO000: M.003058: Can not train a forecasting task with non-
nuneri ¢ endogenous_vari abl es col um(s).

The syntax for a forecasting task includes endogenous_vari abl es and some of the columns are not
defined as numeric.

e Error number: ML003059; SQLSTATE: HY000

Message: User provided list of models [ThetaForecaster', 'ETSForecaster', 'SARIMAXForecaster’,
'‘ExpSmoothForecaster’] does not include any supported models for the task. Supported models for the
given task and table are ['DynFactorForecaster', 'VARMAXForecaster.

Example: ERROR HY000: M.003059: User provided |list of nodels

[' Thet aForecaster', 'ETSForecaster', 'SARI MAXForecaster',

' ExpSnoot hForecaster'] does not include any supported nodels for the task.
Supported nodels for the given task and table are ['DynFactor Forecaster',
" VARMAXFor ecaster'].

The syntax for a forecasting task includes multivariate endogenous_var i abl es, but the provided
models only support univariate endogenous_vari abl es.

» Error number: MLO03060; SQLSTATE: HY000
Message:: endogenous_variables may not contain repeated column names ['%1', '%2', '%11.

Example: ERROR HY000: M_003060: endogenous_vari abl es may not contain repeated
colum nanes ['wind', 'solar', "wind].

The syntax for a forecasting task includes endogenous_var i abl es with a repeated column.
e Error number: MLO03061; SQLSTATE: HY000

Message: exogenous_variables may not contain repeated column names [‘consumption’, ‘wind_solar',
‘consumption’].

Example: ERROR HYO000: M.003061: exogenous_vari abl es nmay not contain repeated
colum nanes ['consunption', 'wind_solar', 'consunption'].

The syntax for a forecasting task includes exogenous_var i abl es with a repeated column.
e Error number: ML003062; SQLSTATE: HY000
Message: endogenous_variables argument must not be NULL.

Example: ERROR HY000: M.003062: endogenous_vari abl es argunent nust not be
NULL.

The syntax for a forecasting task includes endogenous_vari abl es with a NULL argument.
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e Error number: MLO03063; SQLSTATE: HY000

Message: exogenous_variables argument must not be NULL when provided by user.

Example: ERROR HY000: M.003063: exogenous_vari abl es argunment nust not be NULL
when provi ded by user.

The syntax for a forecasting task includes user provided exogenous_vari abl es with a NULL
argument.

Error number: ML003064; SQLSTATE: HY000
Message: Cannot exclude all models.
Example: ERROR HY000: M.003064: Cannot exclude all nodels.

The syntax for a forecasting task must include at least one model.

Error number: ML0O03065; SQLSTATE: HY000

Message: Prediction table cannot have overlapping datetime_index with train table when
exogenous_variables are used. It can only forecast into future.

Example: ERROR HYO00: M_003065: Prediction table cannot have overl appi ng
datetinme_index with train table when exogenous_variables are used. It can
only forecast into future.

The syntax for a forecasting task includes exogenous_var i abl es and the prediction table contains
values in the dat et i ne_i ndex column that overlap with values in the dat et i me_i ndex column in the
training table.

Error number: ML003066; SQLSTATE: HY000

Message: datetime_index for test table must not have missing dates after the last date in training table.
Please ensure test table starts on or before 2034-01-01 00:00:00. Currently, start date in the test table is
2036-01-01 00:00:00.

Example: ERROR HYO000: M.003066: datetine_index for test table nmust not have

m ssing dates after the last date in training table. Please ensure test table
starts on or before 2034-01-01 00:00:00. Currently, start date in the test
table is 2036-01-01 00: 00: 00.

The syntax for a forecasting task includes a prediction table that contains values in the
dat eti me_i ndex column that leave a gap to the values in the dat et i ne_i ndex column in the
training table.

Error number: ML0O03067; SQLSTATE: HY000
Message: datetime_index for forecasting task must be between year 1678 and 2261.

Example: ERROR HYO00: M.003067: datetinme_index for forecasting task nust be
bet ween year 1678 and 2261.

The syntax for a forecasting task includes values in a dat et i me_i ndex column that are outside the
date range from 1678 to 2261.
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Error number: ML003068; SQLSTATE: HY000

Message: Last date of datetime_index in the training table 2151-01-01 00:00:00 plus the length of the
table 135 must be between year 1678 and 2261.

Example: ERROR HY000: M.003068: Last date of datetine_index in the training
tabl e 2151-01-01 00:00: 00 plus the length of the table 135 nust be between
year 1678 and 2261.

The syntax for a forecasting task includes a prediction table that has too many rows, and the values in
the dat et i me_i ndex column would be outside the date range from 1678 to 2261.

Error number: ML003070; SQLSTATE: 3877 ( HY00O0)
Message: For recommendation tasks both user and item column names should be provided.

Example: ERROR 3877 (HYO00): M.003070: For reconmendation tasks both user and
item col um nanes shoul d be provided.

Error number: ML0O03071; SQLSTATE: HY000
Message: contamination must be numeric value greater than 0 and less than 0.5.

Example: ERROR HY000: M.003071: contam nation nust be nuneric val ue greater
than 0 and |l ess than 0.5.

Error number: ML003071; SQLSTATE: 3877 ( HY000)
Message: item_columns can not contain repeated column names ['C4', 'C4'].

Example: ERROR 3877 (HYO00): M.003071: item colums can not contain repeated
colum nanes ['C4', "CA'].

Error number: MLO03071; SQLSTATE: 3877 ( HY000)
Message: user_columns can not contain repeated column names ['C4', 'C41.

Example: ERROR 3877 (HYO00): M.003071: user_columms can not contain repeated
colum nanes ['C4', "CA'].

Error number: MLO03072; SQLSTATE: HY000

Message: Can not use more than one threshold method.

Example: ERROR HY000: M.003072: Can not use nore than one threshol d nethod.
Error number: ML003072; SQLSTATE: 3877 ( HY000)

Message: Target column C3 can not be specified as a user or item column.

Example: ERROR 3877 (HY000): M.003072: Target columm C3 can not be specified
as a user or item col um.

Error number: ML0O03073; SQLSTATE: HY000
Message: topk must be an integer value between 1 and length of the table, inclusively (1 <= topk <= 20).

Example: ERROR HY000: M.003073: topk must be an integer value between 1 and
length of the table, inclusively (1 <= topk <= 20).
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Error number: ML003073; SQLSTATE: 3877 ( HY000)
Message: The users and items columns should be different.

Example: ERROR 3877 (HYO00): M.003073: The users and itens colums shoul d be
different.

Error number: ML003074; SQLSTATE: HY000
Message: threshold must be a numeric value between 0 and 1, inclusively (0 <= threshold <= 1).

Example: ERROR HYO000: M_003074: threshold nust be a nuneric val ue between 0
and 1, inclusively (0 <= threshold <= 1).

Error number: ML003074; SQLSTATE: 3877 ( HY000)
Message: Unsupported ML Operation for recommendation task.

Example: ERROR 3877 (HYO00): M.003074: Unsupported M. Operation for
reconmendati on task.

Error number: MLO03075; SQLSTATE: HY000
Message: Unknown option given. This scoring metric only allows for these options: ['topk’].

Example: ERROR HYO000: M_003075: Unknown option given. This scoring nmetric only
allows for these options: ['topk'].

Error number: ML003075; SQLSTATE: 3877 ( HY000)
Message: Unknown option given. Allowed options for recommendations are ['recommend', 'top'].

Example: ERROR 3877 (HYO00): M.003075: Unknown option given. Allowed options
for recomendations are ['recomrend', 'top'].

Error number: ML003076; SQLSTATE: HY000

Message: ML_EXPLAIN, ML_EXPLAIN_ROW and ML_EXPLAIN_TABLE are not supported for
anomaly_detection task.

Example: ERROR HY000: M.003076: M._EXPLAIN, M__EXPLAI N_ROW and
M._EXPLAI N_TABLE are not supported for anonmaly_detection task.

Error number: ML003076; SQLSTATE: 3877 ( HY000)
Message: The recommend option should be provided when a value for topk is assigned.

Example: ERROR 3877 (HYO00): M.003076: The reconmend option should be provided
when a value for topk is assigned.

Error number: MLO03077; SQLSTATE: HY000
Message: topk must be provided as an option when metric is set as precision_at_k.

Example: ERROR HYO00: M_003077: topk nust be provided as an option when metric
is set as precision_at_Kk.

Error number: MLO03077; SQLSTATE: 3877 ( HY000)
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Message: Unknown recommend value given. Allowed values for recommend are ['ratings', 'items’,
'users'].

Example: ERROR 3877 (HYO00): M.003077: Unknown recommend val ue given. Allowed
val ues for recommend are ['ratings', 'itenms', 'users'].

Error number: ML003078; SQLSTATE: HY000

Message: anomaly_detection only allows 0 (normal) and 1 (anomaly) for labels in target column with any
metric used, and they have to be integer values.

Example: ERROR HY000: M_003078: anommly_detection only allows O (normal) and 1
(anomaly) for labels in target colum with any metric used, and they have to
be integer val ues.

Error number: MLO03078; SQLSTATE: 3877 ( HY000)
Message: Should not provide a value for topk when the recommend option is set to ratings.

Example: ERROR 3877 (HYO00): M.003078: Should not provide a value for topk
when the recomrend option is set to ratings.

Error number: MLO03079; SQLSTATE: 3877 ( HY000)
Message: Provided value for option topk is not a strictly positive integer.

Example: ERROR 3877 (HYO00): M.003079: Provided value for option topk is not a
strictly positive integer.

Error number: MLO03080; SQLSTATE: 3877 ( HY000)

Message: One or more rows contains NULL or empty values. Please provide inputs without NULL or
empty values for recommendation.

Example: ERROR 3877 (HYO00): M.003080: One or nore rows contains NULL or
enpty val ues. Please provide inputs w thout NULL or enpty val ues for
reconmendat i on.

Error number: MLO03081; SQLSTATE: 3877 ( HY000)
Message: Options should be NULL. Options are currently not supported for this task classification.

Example: ERROR 3877 (HYO00): M.003081: options should be NULL. Options are
currently not supported for this task classification.

Error number: ML003082; SQLSTATE: 3877 ( HY000)
Message: All supported models are excluded, but at least one model should be included.

Example: ERROR 3877 (HYO00): M.003082: All supported nodel s are excluded, but
at | east one nodel should be included.

Error number: ML003083; SQLSTATE: HY000
Message: Both user column name ['C3'] and item column name CO must be provided as string.

Example: ERROR HY000: M_003083: Both user columm nane ['C3'] and item col um
nane CO nust be provided as string.
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» Error number: ML003105; SQLSTATE: 3877 ( HY000)
Message: Cannot recommend users to a user not present in the training table.

Example: ERROR: 3877 (HY000): M.003105: Cannot recommend users to a user not
present in the training table.

* Error number: ML003106; SQLSTATE: 3877 ( HY000)
Message: Cannot recommend items to an item not present in the training table.

Example: ERROR 3877 (HYO00): M.003106: Cannot reconmend itens to an item not
present in the training table.

e Error number: ML003107; SQLSTATE: 3877 ( HY000)
Message: Users to users recommendation is not supported, please retrain your model.

Example: ERROR 3877 (HYO000): M.003107: Users to users recomendation i s not
supported, please retrain your nodel.

 Error number: ML003108; SQLSTATE: 3877 ( HY000)
Message: Items to items recommendation is not supported, please retrain your model.

Example: ERROR 3877 (HYO00): M.003108: Itens to itens reconmendation i s not
supported, please retrain your nodel.

e Error number: ML003109; SQLSTATE: HY000
Message: Invalid Model format.
Example: HYO00: M.003109: Invalid Mdel format.
e Error number: ML003111; SQLSTATE: HY000
Message: Unknown option given. Allowed options are ['batch_size".

Example: ERROR HY000: M.003111: Unknown option given. Allowed options are
["batch_size'].

e Error number: ML003112; SQLSTATE: HY000
Message: NULL values are not supported for text columns.

Example: ERROR HYO00: M.003112: NULL val ues are not supported for text
col ums.

e Error number: ML003114; SQLSTATE: HY000

Message: Error while parsing text. One of the text columns only contains stop words like the, is, and, a,
an, in, has, etc.

Example: ERROR HYO00: M.003114: Error while parsing text. One of the text
colums only contains stop words like the, is, and, a, an, in, has, etc.

e Error number: ML003115; SQLSTATE: HY000

Message: Empty input table after applying threshold.
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Example: ERROR HYO000: M.003115: Enpty input table after applying threshold.

Error number: ML003116; SQLSTATE: HY000
Message: The feedback_threshold option can only be set for implicit feedback.

Example: ERROR HY000: M.003116: The feedback threshold option can only be set
for inplicit feedback.

Error number: ML003117; SQLSTATE: HY000

Message: The remove_seen option can only be used with the following recommendation [items’, 'users’,
‘'users_to_items', 'items_to_users'].

Example: ERROR HYO00: M.003117: The renove_seen option can only be used
with the followi ng recormendation ["itens', 'users', 'users_to_ itens',
"itens_to_users'].

Error number: ML003118; SQLSTATE: HY000

Message: The remove_seen option must be set to either True or False. Provided i nput .

Example: ERROR HYO00: M.003118: The renpbve_seen option nust be set to either
True or Fal se. Provided input.

Error number: ML003119; SQLSTATE: HY000
Message: The feedback option must either be set to explicit or implicit. Provided i nput .

Example: ERROR HYO000: M.003119: The feedback option nust either be set to
explicit or inplicit. Provided input.

Error number: ML003120; SQLSTATE: HY000
Message: The input table needs to contain strictly more than one unique item.

Example: ERROR HY000: M.003120: The input table needs to contain strictly nore
than one unique item

Error number: ML003121; SQLSTATE: HY000
Message: The input table needs to contain at least one unknown or negative rating.

Example: ERROR HY000: M.003121: The input table needs to contain at |east one
unknown or negative rating.

Error number: ML003122; SQLSTATE: HY000
Message: The feedback_threshold option must be numeric.

Example: ERROR HY000: M.003122: The feedback threshol d option nust be nuneric.

Error number: ML003123; SQLSTATE: HY000
Message: User and item columns should contain strings.

Example: ERROR HY000: M.003123: User and item columms shoul d contain strings.
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Error number: ML003124; SQLSTATE: HY000

Message: Calculation for precision_at_k metric could not complete because there are no recommended
items.

Example: ERROR HY000: M.003124: Calcul ation for precision_at _k netric could
not conpl ete because there are no recomended itens.

Error number: ML004002; SQLSTATE: HY000

Message: Output format of onnx model is not supported
(output_name={%]},output_shape={%},output_type={%}).

Example: HY0O00: M_.004002: CQutput format of onnx nodel is not supported
(out put _nanme={ %, out put _shape={% , out put _type={%).

Error number: ML004003; SQLSTATE: HY000

Message: This ONNX model only supports fixed batch size=%.

Example: HY0O00: M_.004003: This ONNX nodel only supports fixed batch size=%
Error number: ML004005; SQLSTATE: HY000

Message: The type % in data_types_map is not supported.

Example: HY0O00: M_004005: The type % in data types map i s not supported.
Error number: ML004006; SQLSTATE: HY000

Message: ML_SCORE is not supported for an onnx model that does not support batch inference.

Example: HY0O00: M.004006: M._SCORE is not supported for an onnx nodel that
does not support batch inference.

Error number: ML004007; SQLSTATE: HY000
Message: ML_EXPLAIN is not supported for an onnx model that does not support batch inference.

Example: HY0O00: M.004007: M__EXPLAIN i s not supported for an onnx nodel that
does not support batch inference.

Error number: ML004008; SQLSTATE: HY000

Message: onnx model input type=% is not supported! Providing the appropriate types map using
'data_types_map' in model_metadata may resolve the issue.

Example: HY0O00: M_004008: onnx nodel input type=%is not supported! Providing
the appropriate types map using 'data_types map' in nodel netadata may
resol ve the issue.

Error number: ML004009; SQLSTATE: HY000

Message: Input format of onnx model is not supported (onnx_input_name={%},
expected_input_shape={%}, expected_input_type={%}, data_shape={%}).

Example: HY0O00: M.004009: | nput format of onnx nodel is not supported
(onnx_i nput _name={% , expected_input_shape={%, expected_ input_type={%,
dat a_shape={%) .
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Error number: ML004010; SQLSTATE: HY000
Message: Output being sparse tensor with batch size > 1 is not supported.

Example: HY0O00: M.004010: CQutput being sparse tensor with batch size > 1 is
not supported.

Error number: ML004010; SQLSTATE: 3877 ( HY000)
Message: Received data exceeds maximum allowed length 943718400.

Example: ERROR 3877 (HYO000): M.004010: Received data exceeds maxi mum al | owed
| engt h 943718400.

Error number: ML004011; SQLSTATE: HY000

Message: predictions_name=% is not valid.

Example: HY0O00: M_004011: predictions_name=%is not valid.

Error number: ML004012; SQLSTATE: HY000

Message: prediction_probabilities_name=% is not valid.

Example: HY0O00: M.004012: prediction_probabilities name=%is not valid.
Error number: ML004013; SQLSTATE: HY000

Message: predictions_name should be provided when task=regression and onnx model generates more
than one output.

Example: HY0O00: M_004013: predictions_nane shoul d be provi ded when
task=regressi on and onnx nodel generates nore than one output.

Error number: ML004014; SQLSTATE: HY000

Message: Missing expected JSON key (%)

Example: ERROR HYO00: M_004014: M ssing expected JSON key (schenma_nane).
Error number: ML004014; SQLSTATE: HY000

Message: Incorrect labels_map. labels_map should include the key %

Example: HY0O00: M.004014: Incorrect |abels nmap. |abels _nap should include the
key %

Error number: ML004015; SQLSTATE: HY000
Message: Expected JSON string type value for key (%)

Example: ERROR HYO00: M.004015: Expected JSON string type value for key
(schema_nane) .
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e Error number: ML004015; SQLSTATE: HY000

Message: When task=classification, if the user does not provide prediction_probabilities_name for the
onnx model, ML_EXPLAIN method=% will not be supported.

Example: HY0O00: M.004015: When task=classification, if the user does not
provi de prediction_probabilities_nanme for the onnx nodel, M._EXPLAI N nmet hod=%

wi || not be supported. % can be "shap", "fast_shap" or "partial_dependence"

e Error number: ML004016; SQLSTATE: HY000
Message: Invalid base64-encoded ONNX string.

Example: HY0O00: M.004016: |nvalid base64-encoded ONNX string.

e Error number: ML004017; SQLSTATE: HY000
Message: Invalid ONNX model.

Example: HYO00: M_004017: Invalid ONNX nodel .

e Error number: ML004018; SQLSTATE: HY000
Message: Parsing JSON arg: Invalid value. failed!

Example: ERROR HYO000: M.004018: Parsing JSON arg: Invalid value. failed!

e Error number: ML004018; SQLSTATE: HY000

Message: There are issues in running inference session for the onnx model. This might have happened
due to inference on inputs with incorrect names, shapes or types.

Example: HY0O00: M_004018: There are issues in running inference session for
the onnx nodel. This m ght have happened due to inference on inputs with
i ncorrect names, shapes or types.

» Error number: ML004019; SQLSTATE: HY000
Message: Expected JSON object type value for key (%)

Example: ERROR HYO00: M_004019: Expected JSON object type value for key (JSON
root).

e Error number: ML004019; SQLSTATE: HY000

Message: The computed predictions do not have the right format. This might have happened because
the provided predictions_name is not correct.

Example: HY000: M.004019: The conputed predictions do not have the right
format. This m ght have happened because the provided predictions_nanme is not
correct.
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Error number: ML004020; SQLSTATE: HY000
Message: Operation was interrupted by the user.
Example: ERROR HYO000: M.004020: Operation was interrupted by the user.

If a user-initiated interruption, Ct r | - C, is detected during the first phase of AutoML model and table load
where a MySQL parallel scan is used in the MySQL Al Engine to read data as of MySQL database and
send it to the Al engine, error messaging is handled by the MySQL parallel scan function and directed

to ERROR 1317 (70100): Query execution was interrupted..The ERROR 1317 (70100)
message is reported to the client instead of the ML004020 error message.

Error number: ML004020; SQLSTATE: HY000

Message: The computed prediction probabilities do not have the right format. This might have happened
because the provided prediction_probabilities_name is not correct.

Example: HY0O00: M_.004020: The conputed prediction probabilities do not
have the right format. This m ght have happened because the provided
prediction_probabilities name is not correct.

Error number: ML004021; SQLSTATE: HY000

Message: The onnx model and dataset do not match. The onnx model's input=% is not a column in the
dataset.

Example: HY0O00: M_004021: The onnx nodel and dataset do not nmatch. The onnx
nodel 's input=%is not a columm in the dataset.

Error number: ML004022; SQLSTATE: HY000
Message: The user does not have access privileges to %.

Example: ERROR HYO00: M.004022: The user does not have access privileges to
m . f oo.

Error number: ML004022; SQLSTATE: HY000

Message: Labels iny_true and y_pred should be of the same type. Goty true=% and y_pred=YYY.
Make sure that the predictions provided by the classifier coincides with the true labels.

Example: HY0O00: M.004022: Labels in y true and y _pred should be of the sane
type. Got y true=% and y_pred=YYY. Make sure that the predictions provided by
the classifier coincides with the true |abels.

Error number: ML004026; SQLSTATE: HY000

Message: A column (%) with an unsupported column type (%) detected!

Example: ERROR HY000: M_004026: A columm (D1) with an unsupported colum type
(Bl NARY) det ect ed!

Error number: ML004051; SQLSTATE: HY000
Message: Invalid operation.

Example: ERROR HY000: M_004051: Invalid operation.
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Error number: ML004999; SQLSTATE: HY000

Message: Error during Machine Learning.

Example: ERROR HYO00: M.004999: Error during Machi ne Learni ng.

Error number: MLO06006; SQLSTATE: 45000

Message: target_column_name should be NULL or empty.

Example: ERROR 45000: M.006006: target_col um_nane should be NULL or enpty.
Error number: ML0O06017; SQLSTATE: 45000

Message: model_handle already exists in the Model Catalog.

Example: 45000: M.006017: nodel handl e already exists in the Mdel Catal og.
Error number: ML006020; SQLSTATE: 45000

Message: model_metadata should be a JSON object.

Example: 45000: M.006020: nodel netadata shoul d be a JSON obj ect.

Error number: ML006021; SQLSTATE: 45000

Message: contamination has to be passed with anomaly_detection task.

Example: ERROR 45000: M.006021: contamnination has to be passed with
anomal y_det ection task.

Error number: ML006022; SQLSTATE: 45000

Message: Unsupported task.

Example: ERROR 45000: M_006022: Unsupported task.

Error number: ML006023; SQLSTATE: 45000

Message: "No model object found" will be raised.

Example: 45000: M.006023: "No nodel object found" will be raised.
Error number: ML006027; SQLSTATE: 1644 (45000)

Message: Received results exceed ‘'max_allowed_packet'. Please increase it or lower input options
value to reduce result size.

Example: ERROR 1644 (45000): M.006027: Received results exceed
“max_al | owed_packet ". Please increase it or lower input options value to
reduce result size.

Error number: ML006029; SQLSTATE: 45000
Message: model_handle is not Ready.
Example: 45000: M_006029: nodel _handl e is not Ready.

Error number: MLO06030; SQLSTATE: 45000
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Message: onnx_inputs_info must be a json object.

Example: ERROR 45000: M.006030: onnx_inputs_info nust be a json object.
Error number: ML006031; SQLSTATE: 45000

Message: Unsupported format.

Example: 45000: M_006031: Unsupported format.

Error number: ML006031; SQLSTATE: 45000

Message: onnx_outputs_info must be a json object.

Example: ERROR 45000: M.006031: onnx_outputs_info nust be a json object.
Error number: ML006032; SQLSTATE: 45000

Message: data_types_map must be a json object.

Example: ERROR 45000: M_006032: data_types_map nust be a json object.
Error number: MLO06033; SQLSTATE: 45000

Message: labels_map must be a json object.

Example: ERROR 45000: M.006033: | abels nap nmust be a json object.

Error number: ML006034; SQLSTATE: 45000

Message: onnx_outputs_info must be provided for task=classification.

Example: ERROR 45000: M.006034: onnx_outputs_info nust be provided for
task=cl assification.

Error number: ML006035; SQLSTATE: 45000
Message: onnx_outputs_info must only be provided for classification and regression tasks.

Example: ERROR 45000: M.006035: onnx_outputs_info nust only be provided for
classification and regression tasks.

Error number: ML0O06036; SQLSTATE: 45000

Message: % is not a valid key in onnx_inputs_info.

Example: ERROR 45000: M.006036: % is not a valid key in onnx_inputs_info.
Error number: ML0O06037; SQLSTATE: 45000

Message: % is not a valid key in onnx_outputs_info.

Example: ERROR 45000: M.006037: %is not a valid key in onnx_outputs_info.
Error number: MLO06038; SQLSTATE: 45000

Message: For task=classification, at least one of predictions_name and prediction_probabilities_name
must be provided.
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Example: ERROR 45000: M.006038: For task=classification, at |east one of
predi cti ons_nanme and prediction_probabilities_name nust be provided.

Error number: ML0O06039; SQLSTATE: 45000
Message: prediction_probabilities_name must only be provided for task=classification.

Example: ERROR 45000: M.006039: prediction_probabilities nanme must only be
provi ded for task=classification.

Error number: ML0O06040; SQLSTATE: 45000

Message: predictions_name must not be an empty string.

Example: ERROR 45000: M.006040: predictions_name nust not be an enpty string.
Error number: ML006041; SQLSTATE: 45000

Message: prediction_probabilities_name must not be an empty string.

Example: ERROR 45000: M.006041: prediction_probabilities name nust not be an
enpty string.

Error number: ML006042; SQLSTATE: 45000
Message: labels_map must only be provided for task=classification.

Example: ERROR 45000: M.006042: | abels map nust only be provided for

t ask=cl assi fi cati on.

Error number: ML006043; SQLSTATE: 45000
Message: When labels_map is provided, prediction_probabilities_name must also be provided.

Example: ERROR 45000: M.006043: Wen | abels map is provided,
predi ction_probabilities_nanme nust al so be provided.

Error number: ML006044; SQLSTATE: 45000
Message: When labels_map is provided, predictions_name must not be provided.

Example: ERROR 45000: M.006044: When | abels map is provided, predictions_nane
nmust not be provided.

Error number: ML0O06045; SQLSTATE: 45000

Message: ML_SCORE is not supported for a % task.

Example: ERROR 45000: M.006045: M. _SCORE is not supported for a %task.
Error number: ML006046; SQLSTATE: 45000

Message: ML_EXPLAIN is not supported for a % task.

Example: ERROR 45000: M.006046: M. _EXPLAIN i s not supported for a %t ask.
Error number: ML006047; SQLSTATE: 45000

Message: onnx_inputs_info must only be provided when format="ONNX".
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Example: ERROR 45000: M.006047: onnx_inputs_info nust only be provi ded when
format="ONNX .

Error number: ML006048; SQLSTATE: 45000
Message: onnx_outputs_info must only be provided when format="ONNX'.

Example: ERROR 45000: M_006048: onnx_outputs_info nust only be provided when
format="ONNX .

Error number: ML006049; SQLSTATE: 45000
Message: The length of a key provided in onnx_inputs_info should not be greater than 32 characters.

Example: ERROR 45000: M.006049: The length of a key provided in
onnx_i nputs_info should not be greater than 32 characters.

Error number: MLO06050; SQLSTATE: 45000
Message: The length of a key provided in onnx_outputs_info should not be greater than 32 characters.

Example: ERROR 45000: M.006050: The length of a key provided in
onnx_out puts_info should not be greater than 32 characters.

Error number: ML0O06051; SQLSTATE: 45000

Message: Invalid ONNX model.

Example: ERROR 45000: M_006051: Invalid ONNX nodel .

Error number: MLO06052; SQLSTATE: 45000

Message: Input table is empty. Please provide a table with at least one row.

Example: ERROR 45000: M.006052: Input table is enpty. Please provide a table
with at | east one row.

Error number: ML0O06053; SQLSTATE: 45000

Message: Insufficient access rights. Grant user with correct privileges (SELECT, DROP, CREATE,
INSERT, ALTER) on input schema.

Example: ERROR 45000: M_006053: Insufficient access rights. Grant user wth
correct privileges (SELECT, DROP, CREATE, |NSERT, ALTER) on input schena.

Error number: ML006054; SQLSTATE: 45000

Message: input table already contains a column named °_4aad19ca6e_pk_id". Please provide an input
table without such column.

Example: ERROR 45000: M_006054: |Input table already contains a colum naned
" _4aadl9cabe _pk_id . Please provide an input table w thout such colum.

Error number: ML0O06055; SQLSTATE: 45000
Message: Options must be a JISON_OBJECT.

Example: ERROR 45000: M.006055: Options nust be a JSON OBJECT.
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Error number: MLO06056; SQLSTATE: 45000

Message: batch_size must be an integer between 1 and %.

Example: ERROR 45000: M.006056: batch_size nust be an integer between 1 and %
Error number: MLO06070; SQLSTATE: 45000

Message: model_list is currently not supported for anomaly_detection.

Example: ERROR 45000: M.006070: nodel list is currently not supported for
anomal y_det ecti on.

Error number: MLO06071; SQLSTATE: 45000
Message: exclude_model_list is currently not supported for anomaly_detection.

Example: ERROR 45000: M_006071: exclude_nodel list is currently not supported
for anomaly_detection.

Error number: MLO06072; SQLSTATE: 45000
Message: optimization_metric is currently not supported for anomaly_detection.

Example: ERROR 45000: M.006072: optim zation netric is currently not supported
for anomal y_det ecti on.

9.2 GenAl Issues

This section describes some commonly encountered issues and errors for GenAl and their workarounds.

* Issue: When you try to verify whether the vector embeddings were correctly loaded, if you see a

message which indicates that the vector embeddings or table did not load in MySQL Al, then it could be
due one of the following reasons:

« The task that loads the vector embeddings into the vector store table might still be running.

Workaround: Check the task status by using the query that was printed by the VECTOR _STORE_LOAD
routine:

SELECT * from nysql _task_managenent.task_status where id = TasklD;

Or, to see the log messages, check the task logs table:

SELECT * from nysql _task_managenent.task_| og where task_id = TasklD;

Replace Taskl D with the ID for the task which was printed by the VECTOR_STORE_LOAD routine.

e The folder you are trying to load might contain unsupported format files or the file that you are trying to
load might be of an unsupported format.

Workaround: The supported file formats are: PDF, TXT, PPT, HTML, and DOC.

If you find unsupported format files, then try one of the following:

» Delete the files with unsupported formats from the folder, and run the VECTOR _STCORE_LQAD
command again to load the vector embeddings into the vector store table again.
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« Move the files with supported formats to another folder, create a new PAR and run the
VECTOR_STORE_LOAD command with the new PAR to load the vector embeddings into the vector
store table again.

¢ Issue: the VECTOR_STORE_LOAD command fails unexpectedly.

Workaround: Ensure that you use the - - sql ¢ flag when you connect to your database system:

nysql sh -uAdni n -pPassword -hPrivatel P --sqglc
Replace the following:

¢ Adm n: the admin name.

« Passwor d: the database system password.

e Privat el P: the private IP address of the database system.
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