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Abstract

This document describes how to use MySQL AI. It covers how to load data, run queries, optimize analytics
workloads, and use machine learning and generative AI capabilities.

For legal information, see the Preface and Legal Notices.

For help with using MySQL, please visit the MySQL Forums, where you can discuss your issues with other
MySQL users.
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Preface and Legal Notices
This is the user manual for MySQL AI.

Licensing information.  This product may include third-party software, used under license. See the
MySQL AI License Information User Manual for licensing information, including licensing information
relating to third-party software that may be included in this MySQL AI release.

Legal Notices

Copyright © 2006, 2026, Oracle and/or its affiliates.

License Restrictions

This software and related documentation are provided under a license agreement containing
restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly
permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,
broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any
form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless
required by law for interoperability, is prohibited.

Warranty Disclaimer

The information contained herein is subject to change without notice and is not warranted to be error-
free. If you find any errors, please report them to us in writing.

Restricted Rights Notice

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or
related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the
U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications
of such programs) and Oracle computer documentation or other Oracle data delivered to or accessed
by U.S. Government end users are "commercial computer software," "commercial computer software
documentation," or "limited rights data" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, the use, reproduction, duplication, release, display,
disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle programs
(including any operating system, integrated software, any programs embedded, installed, or activated
on delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/
or iii) other Oracle data, is subject to the rights and limitations specified in the license contained in
the applicable contract. The terms governing the U.S. Government's use of Oracle cloud services
are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

Hazardous Applications Notice

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Trademark Notice

Oracle, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other
names may be trademarks of their respective owners.
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Documentation Accessibility

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC
trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. AMD, Epyc, and the AMD logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

Third-Party Content, Products, and Services Disclaimer

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible
for and expressly disclaim all warranties of any kind with respect to third-party content, products,
and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to
your access to or use of third-party content, products, or services, except as set forth in an applicable
agreement between you and Oracle.

Use of This Documentation

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the
following terms:

You may create a printed copy of this documentation solely for your own personal use. Conversion
to other formats is allowed as long as the actual content is not altered or edited in any way. You shall
not publish or distribute this documentation in any form or on any media, except if you distribute the
documentation in a manner similar to how Oracle disseminates it (that is, electronically for download
on a Web site with the software) or on a CD-ROM or similar medium, provided however that the
documentation is disseminated together with the software on the same medium. Any other use, such
as any dissemination of printed copies or use of this documentation, in whole or in part, in another
publication, requires the prior written consent from an authorized representative of Oracle. Oracle and/
or its affiliates reserve any and all rights to this documentation not expressly granted above.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program
website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support for Accessibility

Oracle customers that have purchased support have access to electronic support through My Oracle
Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/
topic/lookup?ctx=acc&id=trs if you are hearing impaired.
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Chapter 1 Introduction to MySQL AI
This chapter describes MySQL AI.

MySQL AI consists of the following components:

• MySQL Enterprise Edition for MySQL AI, which contains the following AI components:

• MySQL Commercial Server

• AI Engine

• MySQL AI Plugin

• MySQL Shell AI Edition, which supports MySQL Shell Workbench.

• MySQL Router AI Edition, which supports MySQL REST Service

Important

The responses produced by generative artificial intelligence (AI) models may
not always be accurate, complete, current, or appropriate for Your intended
use. You are responsible for Your use of AI output and for reviewing and
independently verifying the accuracy and appropriateness of AI output before
Your use. AI output may not be unique, and other customers may receive
similar output.
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Chapter 2 Installing MySQL AI

Table of Contents
2.1 Supported Platforms and Requirements ................................................................................... 3
2.2 Installing MySQL AI ................................................................................................................ 3
2.3 Command-line Installation ....................................................................................................... 7

This chapter describes how to install MySQL AI.

2.1 Supported Platforms and Requirements
MySQL AI is supported on the following:

• Oracle Linux 8

• Red Hat Enterprise Linux 8

The installation requires the following:

• Your system satisfies the platform requirements and the following system requirements for MySQL
AI:

• CPUs: 32 logical, or virtual, CPU cores

• RAM: 128GB

• Storage: 512GB

• You have a license for the MySQL Enterprise Edition.

• You are a sudoer on your system.

• You have TLS certificates and keys that satisfy the MySQL requirements. See Creating SSL and
RSA Certificates and Keys if you want to configure encrypted communication with the MySQL AI
components using your own certificates and keys.

Warning

In this installation of MySQL AI, the MySQL Shell GUI server and the MySQL
REST server both run on the same host as the MySQL Server, and they allow
a user to access the MySQL server through them from a remote host, even if
the user has been restricted to connect only from localhost (or 127.0.0.1
for IPv4, or ::1 for IPV6). System administrators may want to prevent that
from happening, especially if their systems are going on production. Possible
measures that can be taken include:

• Disallow certain users (for example, the server administrator) from connecting
by HTTP connections, but only allow connections by, for example, Unix
sockets with the auth_socket authentication plugin. See Socket Peer-
Credential Pluggable Authentication.

• Do not install the MySQL Shell GUI and MySQL REST Service.

2.2 Installing MySQL AI
Installing MySQL AI requires the following steps:

1. Install the MySQL AI installer. See MySQL AI Installer.

3

https://dev.mysql.com/doc/refman/9.6/en/creating-ssl-rsa-files.html
https://dev.mysql.com/doc/refman/9.6/en/creating-ssl-rsa-files.html
https://dev.mysql.com/doc/refman/9.6/en/socket-pluggable-authentication.html
https://dev.mysql.com/doc/refman/9.6/en/socket-pluggable-authentication.html


MySQL AI Installer

2. Run the MySQL AI installer to install and configure MySQL AI server and tools. The MySQL AI
installer can be run in the following ways:

• GUI Installer: a graphical installer which enables you to configure and install MySQL AI. See
MySQL AI GUI Installation

• Command-line installer: command line installer which enables you to configure and install MySQL
AI from the command line. See Section 2.3, “Command-line Installation”

MySQL AI Installer

This section describes how to install the MySQL AI installer. The MySQL AI installer enables you to
install and configure MySQL AI.

To install the MySQL AI installer do the following:

1. Download the MySQL AI RPM bundles from My Oracle Support (MOS) or Oracle Software Delivery
Cloud.

2. Extract all RPMs from the downloaded archive.

3. Install the MySQL AI Installer with the following command:

$> sudo dnf localinstall mysql-ai-setup-version.distro.arch.rpm

The MySQL AI Installer is installed.

4. Run the MySQL AI Installer to install and configure all the components of MySQL AI. It can be run
in GUI mode or in command-line mode.

MySQL AI GUI Installation

To run the MySQL AI installer GUI, start the installer GUI in the folder where you have extracted the
RPMs with the following command:

$> sudo mysql-ai-setup

Note

You must run the installer in the same directory as the extracted RPMs.

The installer guides you through the following configuration pages:

1. Introduction: Click Continue.

2. System Requirements: Checks your system for hardware requirements. Click Continue to
proceed if your system meets all the minimum requirements.

A report is given if the minimum requirements are not satisfied. In that case, choose Continue
Anyway or Cancel.

Warning

MySQL AI might not work or experience performance issues if installed on a
system that does not satisfy the minimum requirements.

The installer also checks if any default ports used for communication with the MySQL AI
components are already in use, and reports to you if that is the case.

3. User & password: Define a user name and password for the MySQL root user. The password
must satisfy the MEDIUM level policy of the validate_password component.

4
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MySQL AI GUI Installation

You can choose to Only allow local connections for this user (see the Warning near the
beginning of Chapter 2, Installing MySQL AI).

Click Continue to proceed.

4. MySQL Studio: Install and configure the MySQL Studio.

You can replace the default port number (8080). A warning is displayed if the port you entered is
already in use or will be used by another MySQL AI component.

5. Router & Shell: Install and configure the MySQL Shell GUI and MySQL Router for MySQL AI

Note

Check Warning before proceeding with the installation of the MySQL Shell
GUI and MySQL Router (MySQL REST Service).

Select to install both, either, or neither, by going through the following pages:

• MySQL Shell GUI: Select Install the MySQL Shell GUI web service to install the component.

You can replace the default port number (8000) with another number for MySQL Shell GUI web
server to listen for connections. A warning is displayed if the port you entered is already in use or
will be used by another MySQL AI component.

• MySQL Router (MySQL REST Service): Select  Install MySQL Router and configure it for
MySQL REST Service to install the component.

You can replace the default HTTPS port number (8443) with another number for the MySQL
REST Service web server to listen to connections. A warning is displayed if the port you entered
is already in use or will be used by another MySQL AI component.

You can enter a secret for JSON Web Secret (JWS) tokens. If you do not enter one, a random
secret will be created.

Click Continue to proceed.

6. Vector Store: Specify the directory for loading documents into the vector store. The location must
be configured by the server system variable secure_file_priv for mysqld to import data
securely from it. The default location is /var/lib/mysql-files. If you specify a directory that
does not exist, it will be created.

Click Continue to proceed.

7. Certificates: Configure TLS certificates for encrypted communication with each of the following
components of MySQL AI.

Note

• The certificates and keys you provide must satisfy MySQL requirements.
See Creating SSL and RSA Certificates and Keys.

• The certificate, key, and bundle files specified must be readable by the
root user who installs MySQL AI; adjust their file permissions if needed.

• The certificate, key, and bundle files must not be passphrase protected.

• A file path to a certificate bundle file is expected in the certificate field.
However, the path can also point to either a certificate file or a bundle
file that does not contain the private key, in which case a separate field
appears for you to provide the file path for the private key or, for the PEM

5
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Finalizing Installation

format only, the actual key string (pasted keys are represented by icons
on the screen).

• The Common Name (CN) for your certificate is shown. The user can verify
that the CN is correct and, for the MySQL AI plugin and MySQL Machine
Learning Services, correct it if the installer misreads it.

• MySQL Server: Provide the path to the certificate bundle in PEM or PKSC#12 format for
communication between the server and other components using the mysql and mysqlx
protocols. If no certificate is supplied, a self-signed certificate is generated.

• MySQL Server Plugin (for MySQL AI) and MySQL Machine Learning Services: Provide
paths to the certificate bundles in PEM or PKSC#12 format. Two distinct certificate bundles
are required for the two components. If no certificates are provided, encrypted communication
between MySQL AI components will be disabled.

• MySQL Studio,MySQL Shell GUI and MySQL REST Service: Provide the paths to the
certificate bundles in PEM or PKSC#12 format. If either of the certificates is not supplied, a self-
signed certificate will be created for the respective service.

Click Continue to proceed.

8. Finalize Installation: Confirm selections and begin the installation procedure. The following issues
are reported if they occur:

• Networking ports are assigned multiple times. Use the Previous button to go back to earlier
pages and correct the port assignments.

• Internal communication between MySQL Server and the Machine Learning and AI
subsystem should not be encrypted because no certificates were given. Use the Previous
button to go back and supply the certificates, or select the note to confirm this.

Click Finalize to start installation of MySQL AI.

Finalizing Installation

The installer completes and presents a message containing information on URLs and endpoints for the
selected components.

For example, if you selected MySQL Studio, MySQL Shell Workbench, and MySQL Router (MySQL
REST Service):

==============================================================================
Installation finished.
==============================================================================

To access MySQL Studio, navigate to the following
URL in a web browser:

    https://hostAddress:8080/

To access a SQL shell for this MySQL AI instance, navigate to the following
URL in a web browser:

    https://hostAddress:8000/

The MySQL REST Service endpoint is:

    https://hostAddress:8443/

==============================================================================
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Customizing the GUI Installer

Customizing the GUI Installer

The installer GUI can also take command-line installer options to populate fields, skip specific elements
of the installation, and so on. The following example instructs the installer to run without the option to
install MySQL Studio and MySQL Router, and sets the root username to John:

        sudo mysql-ai-setup --skip-mysql-studio --skip-mysql-router --mysql-root-user=John
      

2.3 Command-line Installation

The MySQL AI Installer can also be run in command-line mode, without invoking the installation GUI.
Execute the following command in the folder where you have extracted the RPMs from the MySQL AI
RPM bundle:

$> sudo mysql-ai-setup --cli [options]
options:
        --option-long-name[=value-list]
    |   -option-short-name [value-list]

value-list:
    value[,value[,...]]

The command options are described in groups below (use the -h or --help option to see the option
descriptions):

Installation Type

• --skip-install: Do not install anything. This is useful for testing system requirements and
installation options.

Install Without Satisfying Minimum Requirements

• --skip-requirements: Install even if the system does not satisfy the minimum requirements.

Warning

MySQL AI might not work or might have performance issues if installed on a
system that does not satisfy the minimum requirements.

User and Password

• --mysql-root-user=username: User name and password for the MySQL root user.

• --mysql-root-password=password: Password for the MySQL root user. The password must
satisfy the MEDIUM level policy of the validate_password component.

• --mysql-root-allow-remote-connection: The root user is allowed to connect from hosts
other than localhost. See the Warning near the beginning of Chapter 2, Installing MySQL AI.

MySQL Studio, MySQL Shell Workbench and MySQL Router (MySQL REST
Service)

Note

Check the Warning near the beginning of Chapter 2, Installing MySQL AI before
installing the MySQL Shell GUI and MySQL Router (MySQL REST Service).

• --install-mysql-studio: Install the MySQL Studio service.

7
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Vector Store

• --mysql-studio-port=port#: Replace the default port number (8000) with another one for
MySQL Studio's server to listen for connections. A warning is displayed if the port you entered is
already in use or will be used by another MySQL AI component.

• --skip-mysql-studio: Skip installing MySQL Studio.

• --install-mysql-shell-gui: Install the MySQL Shell Workbench service.

• --skip-mysql-shell-gui: Skip installing MySQL Shell Workbench.

• --mysql-shell-gui-port=port#: Replace the default port number (8000) with another one for
MySQL Shell GUI web server to listen for connections. A warning is displayed if the port you entered
is already in use or will be used by another MySQL AI component.

• --skip-mysql-router: Skip installing MySQL Router and MySQL REST Service.

• --mysql-router-port=port#: Replace the default HTTPS port number (8443) with another one
for the MySQL REST Service web server to listen to connections. A warning is displayed if the port
you entered is already in use or will be used by another MySQL AI component.

• --mysql-router-jwt-secret=jwt-secret: Provide a secret for JSON Web Secret (JWS)
tokens. If this option is not specified, a random secret will be created by default.

Vector Store

• --secure-file-priv=filepath: Specify the directory for loading documents into the vector
store. The location must be configured by the server system variable secure_file_priv for
mysqld to import data securely from it. If the option is not specified, the default location is /var/
lib/mysql-files. If you specify a directory that does not exist, it will be created.

Certificates

Configure TLS certificates for encrypted communication with each of the following components of
MySQL AI.

Notes

• The certificate, key, and bundle files specified must be readable by root user
who installs MySQL AI; adjust their file permissions if needed.

• The certificate, key, and bundle files must not be passphrase protected.

• A file path to a certificate bundle file is expected in the *-certificate
option. However, the path can also point to either a certificate file or a
bundle file that does not contain the private key, in which case use the  *-
private-key to provide the file path for the private key or, for the PEM
format only, the actual key string.

MySQL AI uses certificates keystore in p12 for encryption purposes. Two entities are required for
creating certificates:

• AI_PLUGIN (CN = ai_plugin)

• AI_ENGINE (CN = ai_engine)

To create certificates, you first need to create a config file with the details of the Root CA (Certificate
Authority). See the example below:

[ req ]
distinguished_name=req_distinguished_name
x509_extensions=v3_ca
prompt = no

8
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Certificates

[ req_distinguished_name ]
C=US
L=San Francisco
CN=MyRootCA

[ v3_ca ]
basicConstraints=CA:TRUE
keyUsage=keyCertSign,cRLSign
subjectAltName=@alt_names

[ alt_names ]
DNS.1=MyRootCA_Alt

The CN value, MyRootCA, identifies the RootCA itself. You can customize this value to your
specification.

After creating the config file, you can generate the Root CA certificate with the following command:

openssl req -x509 -config ca.conf -sha256 -nodes -days 3650 -newkey rsa:2048 -keyout ca_private_key.pem -out cert_chain.pem

The value 3650 specifies the expiry duration for the certificate (about 10 years). You can change this
value to your specification.

After running this command, two new files are generated: ca_private_key.pem (private key) and
cert_chain.pem (public key certificate chain signed by self).

After generating the Root CA certificates, you can run the script to generate a certificate for an entity
signed by the previous Root CA. See the following example:

#!/bin/sh

generate_cert() {
    local CN="$1"

    if [[ "$CN" == "" ]]; then
      CN=$(hostname)
    fi

    # Determine subject for the client certificate
    local SUBJECT="/C=US/O=Oracle/UID=${CN}/CN=${CN}"

    # 1. Create a new private key and corresponding CSR for the client
    openssl req -newkey rsa:2048 -sha256 -nodes \
        -keyout "private_key.pem" \
        -out "client_cert.csr" \
        -subj "$SUBJECT"

    # 2. Create SAN configuration file
    local SAN_CONFIG_FILE="$(mktemp)"
    echo "
keyUsage=digitalSignature,keyEncipherment
" > "$SAN_CONFIG_FILE"

    # 3. Sign the client CSR using the MyRootCA, creating a client certificate
    openssl x509 -req \
        -CA "cert_chain.pem" \
        -CAkey "ca_private_key.pem" \
        -in "client_cert.csr" \
        -out "certificate.pem" \
        -days 365 \
        -CAcreateserial \
        -extfile "$SAN_CONFIG_FILE"
    rm "$SAN_CONFIG_FILE"

    # 4. Package the client key and certificate into a PKCS12 file
    openssl pkcs12 -export \
        -out "${CN}_keystore.p12" \
        -inkey "private_key.pem" \

9



Certificates

        -in "certificate.pem" \
        -certfile "cert_chain.pem" \
        -name "keystore" \
        -password pass:

    # Cleanup
    rm client_cert.csr certificate.pem private_key.pem cert_chain.srl

    chmod 644 "${CN}_keystore.p12"
}

generate_cert "$@"

In the example, -days 365 refers to the expiry duration of the certificate. You can customize this
value to your specification. You must run the script in the same directory where the Root CA certificates
were generated.

After generating the certificate, you can run the following script to generate the certificate for the AI
Plugin (CN = ai_plugin):

bash create_certs.sh ai_engine

This generates the .p12 file ai_plugin_keystore.p12.

Generating the Root CA certificate is a one-time activity. To renew certificates, you must save and
use the the Root CA certificates using the previous steps. If you place renewed certificates in the
appropriate location, they are automatically loaded before the expiration date.

Certificates for MySQL Server.  Provide the certificate and private key in PEM or PKSC#12 format
for communication with MySQL Server using the mysql and mysqlx protocols. If no certificate is
supplied, a self-signed certificate is generated.

• --mysql-server-tls-certificate=filepath: Location of the certificate bundle used for
HTTPS communication by MySQL Server.

• --mysql-server-tls-private-key=filepath: The private key used for HTTPS
communication by MySQL Server. This option is needed only if --mysql-server-tls-
certificate points to a certificate file, or a bundle file that does not contain the private key.
Provide with this option the file path for the private key or, for PEM format only, the actual key string.

Certificates for AI Plugin and Machine Learning Services.  Provide the certificates in PEM or
PKSC#12 format. Two distinct certificate bundles are required for the two components. If no
certificates and keys are provided for any of the two components, encrypted communication with the
component is disabled, unless self-signed certificates, with specified common names, are requested.

• --skip-ai-encryption: Use this option to explicitly turn off encryption for communication with
the AI plugin and Machine Learning services. If this command line option is absent, installer will quit
without installing MySQL AI unless certificates are provided or self-signed certificates are requested
(see options below).

• --ai-plugin-certificate=filepath: Location of the certificate bundle used for HTTPS
communication with the AI plugin.

• --ai-plugin-private-key=filepath: The private key used for HTTPS communication with
the AI plugin. This option is needed only if --ai-plugin-certificate points to a certificate file,
or a bundle file that does not contain the private key. Provide with this option the file path for the
private key or, for PEM format only, the actual key string.

• --ai-plugin-common-name=string: Common name for the certificate for communication with
the AI plugin. This option is only needed if you want to correct the installer's reading of the common
name from your certificate.

• --ai-plugin-create-self-signed-certificate=Common_Name: Create a self-signed
certificate for communication with the AI plugin with the common name specified by this option.
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• --ai-services-certificate=filepath: Location of the certificate bundle used for HTTPS
communication with the Machine Learning Service.

• --ai-services-private-key=filepath. The private key used for HTTPS communication with
the AI plugin. This option is needed only if --ai-services-certificate points to a certificate
file, or a bundle file that does not contain the private key. Provide with this option the file path for the
private key or, for the PEM format only, the actual key string.

• --ai-services-common-name=string: Common name for the certificate for communication
with the Machine Learning service. This option is only needed if you want to correct the installer's
reading of the common name from your certificate.

• --ai-services-create-self-signed-certificate=Common_Name: Create a self-signed
certificate for communication with the Machine Learning service with the common name specified by
this option.

Certificates for MySQL Studio, MySQL Shell Workbench, and MySQL Router (MySQL REST
Service):  Provide the certificate and private key in PEM or PKSC#12 format. If either of the
certificates is not supplied, a self-signed certificate will be created for the respective service.

• --mysql-studio-https-certificate=filepath: Location of the certificate bundle used for
HTTPS communication by the MySQL Studio.

• --mysql-studio-https-private-key=filepath: The private key used for HTTPS
communication by MySQL Studio. This option is needed only if --mysql-studio-https-
certificate points to a certificate file, or a bundle file that does not contain the private key.
Provide with this option the file path for the private key or, for the PEM format only, the actual key
string.

• --mysql-shell-https-certificate=filepath: Location of the certificate bundle used for
HTTPS communication by the MySQL Shell Workbench service.

• --mysql-shell-https-private-key=filepath: The private key used for HTTPS
communication by the MySQL Shell Workbench service. This option is needed only if --mysql-
shell-https-certificate points to a certificate file, or a bundle file that does not contain the
private key. Provide with this option the file path for the private key or, for the PEM format only, the
actual key string.

• --mysql-router-https-certificate=filepath: Location of the certificate bundle used for
HTTPS communication by MySQL Router (MySQL REST Service).

• --mysql-router-https-private-key=filepath: The private key used for HTTPS
communication by MySQL Router (MySQL REST Service). This option is needed only if --mysql-
router-https-certificate points to a certificate file, or a bundle file that does not contain the
private key. Provide with this option the file path for the private key or, for the PEM format only, the
actual key string.

Certificate Revocation Lists.  Optionally, add a Certificate Revocation List (CRL) to enable clients
to check whether a certificate has been revoked before its expiration date. This helps ensure that
compromised or invalid certificates are not trusted, even if they have not yet expired, allowing for
improved certificate management and timely response to security issues.

• You must provide the CRL, which contains the serial numbers of revoked certificates, to both the AI
plugin and the MySQL server. If you need to replace revoked certificates with new certificates, the
new certificates should have the same names and be placed in the same location as the originals.
If revoked certificates are not properly replaced, connections may fail or the AI Services may shut
down.

• --sslCrl=filepath: The path to the CRL file when configuring MySQL server (AI Engine). For
AI plugin, configure the file in the rapid_ssl_crl global variable. To configure the variable, the
state of rapid_bootstrap must be IDLE or OFF.
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• If you create a new CRL or update a CRL, the latest CRL file is reloaded, and all existing TLS
connections are refreshed by closing the current SSL context and recreating it.

• If the CRL is invalid, (for example it is signed by a different Root CA, it is corrupted or empty, or it is
expired), no connection can occur, and any existing connections will break.

• The CRL file must be encrypted without a passphrase. The file and file path must be no more than
256 bytes.

• You can use the following template to create a CRL.

#!/bin/sh

# Copyright (c) 2025, Oracle and/or its affiliates.

generate_crl() {
  local OUTPUT_DIR="$1"
  local KEYSTORE_TO_BE_REVOKED="$2"
  if [[ ! -e ${OUTPUT_DIR}/index.txt ]]; then
    touch ${OUTPUT_DIR}/index.txt
  fi
  echo "
[ ca ]
default_ca = "MyRootCA"

[ MyRootCA ]
dir = ${OUTPUT_DIR}
certs = ${OUTPUT_DIR}
crl_dir = ${OUTPUT_DIR}
new_certs_dir = ${OUTPUT_DIR}
database = ${OUTPUT_DIR}/index.txt

private_key = ${OUTPUT_DIR}/ca_private_key.pem
certificate = ${OUTPUT_DIR}/cert_chain.pem

default_crl_days = 30

default_md        = sha256
" > "$OUTPUT_DIR/ca.cnf"
  #  Extract the certificate from the revoked keystore file
  openssl pkcs12 -in "$KEYSTORE_TO_BE_REVOKED" -out "$OUTPUT_DIR/certificate.pem" -clcerts -nokeys -passout pass: -passin pass:
  openssl ca -config "$OUTPUT_DIR/ca.cnf" -revoke "$OUTPUT_DIR/certificate.pem"
  openssl ca -gencrl -out "$OUTPUT_DIR/crl.pem" -config "$OUTPUT_DIR/ca.cnf"
  rm "$OUTPUT_DIR/ca.cnf" "$OUTPUT_DIR/certificate.pem"
}
generate_crl "$@"
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The sections in this chapter describe how to load data in MySQL AI.

3.1 Bulk Ingest Data
MySQL includes a bulk load extension to the LOAD DATA statement. It can do the following:

• Optimize the loading of data sorted by primary key.

• Optimize the loading of unsorted data.

• Optimize the loading of data from an object store.

• Optimize the loading of data from a series of files.

• Load a MySQL Shell dump file.

• Load ZSTD compressed CSV files.

• Monitor bulk load progress with the Performance Schema.

• Large data support.

Use a second session to monitor bulk load progress:

• If the data is sorted, there is a single stage: loading.

• If the data is unsorted, there are two stages: sorting and loading.

Bulk Ingest Data Type Support

LOAD DATA with ALGORITHM=BULK supports tables with at least one column with the VECTOR data
type. If you attempt to load a table without at least one column with the VECTOR data type, an error
occurs.

In addition to the requirement to have at least one VECTOR column, LOAD DATA with
ALGORITHM=BULK supports the following data types:

• INT

• SMALLINT

• TINYINT

• BIGINT

• CHAR

• BINARY

• VARCHAR

• VARBINARY

• NUMERIC
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• DECIMAL

• UNSIGNED NUMERIC

• UNSIGNED DECIMAL

• DOUBLE

• FLOAT

• DATE

• DATETIME

• BIT

• ENUM

• JSON

• SET

• TIMESTAMP

• YEAR

• TINYBLOB

• BLOB

• MEDIUMBLOB

• LONGBLOB

• TINYTEXT

• TEXT

• MEDIUMTEXT

• LONGTEXT

• GEOMETRY

• GEOMETRYCOLLECTION

• POINT

• MULTIPOINT

• LINESTRING

• MULTILINESTRING

• POLYGON

• MULTIPOLYGON

• VECTOR

Bulk Ingest Syntax
mysql> LOAD DATA
  [LOW_PRIORITY | CONCURRENT]
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  [FROM]
  INFILE | URL | S3 'file_prefix' | 'options' [COUNT N]
  [IN PRIMARY KEY ORDER]
  INTO TABLE tbl_name
  [CHARACTER SET charset_name] [COMPRESSION = {'ZSTD'}]
  [{FIELDS | COLUMNS}
      [TERMINATED BY 'string']
      [[OPTIONALLY] ENCLOSED BY 'char']
      [ESCAPED BY 'char']
  ]
  [LINES
      [TERMINATED BY 'string']
  ]
  [IGNORE number {LINES | ROWS}]
  [PARALLEL = number]
  [MEMORY = M]
  [ALGORITHM = BULK]

options: {
   JSON_OBJECT("key","value"[,"key","value"] ...)
        "key","value": {
        "url-prefix","prefix"
        ["url-sequence-start",0]
        ["url-suffix","suffix"]
        ["url-prefix-last-append","@"]
        ["is-dryrun",{true|false}]
        }
}

The additional LOAD DATA clauses are:

• FROM: Makes the statement more readable.

• URL: A URL accessible with a HTTP GET request.

• S3: The AWS S3 file location.

This requires the user privilege LOAD_FROM_S3.

• COUNT: The number of files in a series of files.

For COUNT 5 and file_prefix set to data.csv., the five files would be: data.csv.1,
data.csv.2, data.csv.3, data.csv.4, and data.csv.5.

• IN PRIMARY KEY ORDER: Use when the data is already sorted. The values should be in ascending
order within the file.

For a file series, the primary keys in each file must be disjoint and in ascending order from one file to
the next.

• PARALLEL: The number of concurrent threads to use. A typical value might be 16, 32 or 48. The
default value is 16.

PARALLEL does not require CONCURRENT.

• MEMORY: The amount of memory to use. A typical value might be 512M or 4G. The default value is
1G.

• ALGORITHM: Set to BULK for bulk load. The file format is CSV.

• COMPRESSION: The file compression algorithm. Bulk load supports the ZSTD algorithm.

• options is a JSON object literal that includes:

• url-prefix: The common URL prefix for the files to load.

• url-sequence-start: The sequence number for the first file.
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The default value is 1, and the minimum value is 0. The value cannot be a negative number. The
value can be a string or a number, for example, "134", or "default".

• url-suffix: The file suffix.

• url-prefix-last-append: The string to append to the prefix of the last file.

This supports MySQL Shell dump files.

• is-dryrun: Set to true to run basic checks and report if bulk load is possible on the given table.
The default value is false.

To enable is-dryrun, use any of the following values: true, "true", "1", "on" or 1.

To disable is-dryrun, use any of the following values: false, "false", "0", "off" or 0.

LOAD DATA with ALGORITHM=BULK does not support these clauses:

LOAD DATA
  [LOCAL]
  [REPLACE | IGNORE]
  [PARTITION (partition_name [, partition_name] ...)]
  ]
  [LINES
      [STARTING BY 'string']
  ]
  [(col_name_or_user_var
      [, col_name_or_user_var] ...)]
  [SET col_name={expr | DEFAULT}
      [, col_name={expr | DEFAULT}] ...]

Syntax Examples

• An example that loads unsorted data from AWS S3 with 48 concurrent threads and 4G of memory:

mysql> GRANT LOAD_FROM_S3 ON *.* TO load_user@localhost;

mysql> LOAD DATA FROM S3 's3-us-east-1://innodb-bulkload-dev-1/lineitem.tbl'
        INTO TABLE lineitem
        FIELDS TERMINATED BY "|"
        OPTIONALLY ENCLOSED BY '"'
        LINES TERMINATED BY '\n'
        PARALLEL = 48
        MEMORY = 4G
        ALGORITHM=BULK;

• An example that loads eight files of sorted data from AWS S3. The file_prefix ends with a
period. The files are lineitem.tbl.1, lineitem.tbl.2, ... lineitem.tbl.8:

mysql> GRANT LOAD_FROM_S3 ON *.* TO load_user@localhost;

mysql> LOAD DATA FROM S3 's3-us-east-1://innodb-bulkload-dev-1/lineitem.tbl.' COUNT 8
        IN PRIMARY KEY ORDER
        INTO TABLE lineitem
        FIELDS TERMINATED BY "|"
        OPTIONALLY ENCLOSED BY '"'
        LINES TERMINATED BY '\n'
        ALGORITHM=BULK;

• An example that performs a dry run on a sequence of MySQL Shell dump files compressed with the
ZSTD algorithm:

mysql> GRANT LOAD_FROM_URL ON *.* TO load_user@localhost;

mysql> LOAD DATA FROM URL 
        '{"url-prefix","https://example.com/bucket/test@lineitem@","url-sequence-start",0,"url-suffix",".tsv.zst","url-prefix-last-append","@","is-dryrun",true}'
        COUNT 20

16

https://dev.mysql.com/doc/refman/9.6/en/load-data.html


Bulk Ingest Data to MySQL Server Limitations

        INTO TABLE lineitem
        CHARACTER SET ???? COMPRESSION = {'ZSTD'}
        FIELDS TERMINATED BY "|"
        OPTIONALLY ENCLOSED BY '"'
        LINES TERMINATED BY '\n'
        IGNORE 20000 LINES
        ALGORITHM=BULK;

• An example that loads data with the URI keyword (supported as of MySQL 9.4.0):

mysql> GRANT LOAD_FROM_URL ON *.* TO load_user@localhost;
  
mysql> LOAD DATA FROM URI 'https://data_files.com/data_files_1.tbl'
        INTO TABLE lineitem
        FIELDS TERMINATED BY "|"
        OPTIONALLY ENCLOSED BY '"'
        LINES TERMINATED BY '\n'
        ALGORITHM=BULK;

• An example that monitors bulk load progress in a second session.

• Review the list of stages with the following query:

mysql> SELECT NAME, ENABLED, TIMED FROM performance_schema.setup_instruments
        WHERE ENABLED='YES' AND NAME LIKE "stage/bulk_load%";

• Enable the events_stages_current with the following query:

mysql> UPDATE performance_schema.setup_consumers
        SET ENABLED = 'YES' WHERE NAME LIKE 'events_stages_current';

• Use one session to run bulk load, and monitor progress in a second session:

mysql> SELECT thread_id, event_id, event_name, WORK_ESTIMATED,  WORK_COMPLETED 
        FROM performance_schema.events_stages_current;
--------------
SELECT thread_id, event_id, event_name, WORK_ESTIMATED,  WORK_COMPLETED FROM performance_schema.events_stages_current
--------------

+-----------+----------+----------------------------------+----------------+----------------+
| thread_id | event_id | event_name                       | WORK_ESTIMATED | WORK_COMPLETED |
+-----------+----------+----------------------------------+----------------+----------------+
|        49 |        5 | stage/bulk_load_unsorted/sorting |     1207551343 |      583008145 |
+-----------+----------+----------------------------------+----------------+----------------+
1 row in set (0.00 sec)

3.2 Bulk Ingest Data to MySQL Server Limitations
• LOAD DATA with ALGORITHM=BULK supports tables with at least one column with the VECTOR data

type. If you attempt to load a table without at least one column with the VECTOR data type, an error
occurs.

• LOAD DATA with ALGORITHM=BULK has the following limitations:

• It locks the target table exclusively and does not allow other operations on the table.

• It does not support automatic rounding or truncation of the input data. It fails if the input data
requires rounding or truncation in order to be loaded.

• It does not support temporary tables.

• It is atomic but not transactional. It commits any transaction that is already running. On failure the
LOAD DATA statement is completely rolled back.

• It cannot execute when the target table is explicitly locked by a LOCK TABLES statement.

• The target table for LOAD DATA with ALGORITHM=BULK has the following limitations:

17

https://dev.mysql.com/doc/refman/9.6/en/load-data.html
https://dev.mysql.com/doc/refman/9.6/en/vector.html
https://dev.mysql.com/doc/refman/9.6/en/vector.html
https://dev.mysql.com/doc/refman/9.6/en/load-data.html
https://dev.mysql.com/doc/refman/9.6/en/load-data.html
https://dev.mysql.com/doc/refman/9.6/en/lock-tables.html
https://dev.mysql.com/doc/refman/9.6/en/load-data.html


Bulk Ingest Data to MySQL Server Limitations

• It must be empty. The state of the table should be as though it has been freshly created. If the
table has instantly added/dropped column, call TRUNCATE before calling LOAD DATA with
ALGORITHM=BULK.

• It must not be partitioned.

• It must not contain secondary indexes.

• It must be in a file_per_tablespace, and must not be in a shared tablespace.

• It must have the default row format, ROW_FORMAT=DYNAMIC. Use ALTER TABLE to make any
changes to the table after LOAD DATA with ALGORITHM=BULK.

• It must not contain virtual or stored generated columns.

• It must not contain foreign keys.

• It must not contain CHECK constraints.

• It must not contain triggers.

• It is not replicated to other nodes.
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This chapter describes how to create and manage machine learning models with the AutoML feature of
MySQL AI.

4.1 About AutoML

The AutoML feature of MySQL AI makes it easy to use machine learning (ML), whether you are
a novice user or an experienced ML practitioner. You provide the data, and AutoML analyzes the
characteristics of the data and creates an optimized machine learning model that you can use to
generate predictions and explanations. An ML model makes predictions by identifying patterns in your
data and applying those patterns to unseen data. AutoML explanations help you understand how these
predictions are made, such as which features of a dataset contribute most to a prediction. You can
score machine learning models to get a better understanding of the quality of the model and its ability
to generate reliable predictions.

With AutoML, you can do the following:
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• Classify Data

• Perform Regression Analysis

• Generate Forecasts

• Detect Anomalies

• Generate Recommendations

• Topic Modeling

4.1.1 AutoML Ease of Use

The AutoML feature of MySQL AI is purpose-built for ease of use. It requires no machine learning
expertise, specialized tools, or algorithms. With AutoML and a set of training data, you can train a
predictive machine learning model with a single call to the ML_TRAIN SQL routine.

For example:

CALL sys.ML_TRAIN('heatwaveml_bench.census_train', 'revenue', NULL, @census_model);

The ML_TRAIN routine leverages Oracle AutoML technology to automate training of machine learning
models. Learn more about Oracle AutoML.

You can use a model created by ML_TRAIN with other AutoML routines to generate predictions and
explanations. For example, the following call to the ML_PREDICT_TABLE routine generates predictions
for a table of input data:

CALL sys.ML_PREDICT_TABLE('heatwaveml_bench.census_test', @census_model, 
'heatwaveml_bench.census_predictions', NULL);

All AutoML operations are initiated by running CALL or SELECT statements, which can be easily
integrated into your applications. AutoML routines reside in the MySQL sys schema. Learn more about
AutoML Routines.

In addition, with AutoML, there is no need to move or reformat your data, which saves you time and
effort while keeping your data and models secure.

To start using AutoML with sample datasets, see Machine Learning Use Cases.

What's Next

• Learn more about the following:

• AutoML Supervised Learning

• AutoML Workflow

• Oracle AutoML

• Learn how to Create a Machine Learning Model.

4.1.2 AutoML Workflow

A typical AutoML workflow is described below:

1. When you run the ML_TRAIN routine, AutoML retrieves the data to use for training. The training
data is then distributed across the cluster, which performs machine learning computation in parallel.
See Train a Model.

2. AutoML analyzes the training data, trains an optimized machine learning model, and stores the
model in a model catalog. See Model Catalog.
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AutoML Learning Types

3. AutoML ML_PREDICT_* and ML_EXPLAIN_* routines use the trained model to generate
predictions and explanations on test or unseen data. See Generate Predictions and Generate
Explanations.

4. Predictions and explanations are returned to the user or application that issued the query.

Optionally, the ML_SCORE routine can be used to compute the quality of a model to ensure that
predictions and explanations are reliable. See Score a Model.

To start using AutoML with sample datasets, see Machine Learning Use Cases.

What's Next

• Learn more about the following:

• AutoML Learning Types

• AutoML Ease of Use

• Oracle AutoML

• Learn how to Create a Machine Learning Model.

4.1.3 AutoML Learning Types

AutoML supports the following types of machine learning: supervised, unsupervised, and semi-
supervised.

Supervised Learning

Supervised learning creates a machine learning model by analyzing a labeled dataset to learn patterns.
This means that the dataset has values associated with the column (the label) that the machine
learning model eventually generates predictions for. The model is able to predict labels based on the
features of the dataset. For example, a census and income dataset may have features such as age,
education, occupation, and country that you can use to predict the income of an individual (the label).
The income label in this dataset already has values that the machine learning model uses for training.

Once a machine learning model is trained, it can be used on unseen data, where the label is unknown,
to make predictions. In a business setting, predictive models have a variety of possible applications
such as predicting customer churn, approving or rejecting credit applications, predicting customer wait
times, and so on.

See Labeled Data and Unlabeled Data to learn more.

Unsupervised Learning

Unsupervised learning is available for forecasting, anomaly detection and topic modeling use cases.
This type of learning requires no labeled data. This means that the column (the label) the machine
learning model eventually generates predictions for has no values in the dataset for training. For
example, a dataset of credit card transactions that you use for anomaly detection has a column
indicating if the transaction is anomalous or normal, but the column has no data (unlabeled). See
Generate Forecasts, Detect Anomalies, and Topic Modeling to learn more.

Semi-Supervised Learning

Semi-supervised learning for anomaly detection uses a specific set of labeled data along with
unlabeled data to detect anomalies. The dataset for this type of model must have a column whose only
allowed values are 0 (normal), 1, (anomalous), and NULL (unlabeled). All rows in the dataset are used
to train the unsupervised component, while the rows with a value different than NULL are used to train
the supervised component. See Detect Anomalies and Anomaly Detection Model Types to learn more.
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What's Next

• Learn more about the following:

• AutoML Ease of Use

• AutoML Workflow

• Oracle AutoML

• Learn how to Create a Machine Learning Model.

• Review Machine Learning Use Cases to create machine learning models with sample datasets.

4.1.4 Oracle AutoML

The AutoML ML_TRAIN routine leverages Oracle AutoML technology to automate the process of
training a machine learning model. Oracle AutoML replaces the laborious and time consuming tasks of
the data analyst, whose workflow is as follows:

1. Selecting a model from a large number of viable candidate models.

2. For each model, tuning hyperparameters.

3. Selecting only predictive features to speed up the pipeline and reduce over-fitting.

4. Ensuring the model performs well on unseen data (also called generalization).

Oracle AutoML automates this workflow, providing you with an optimal model given a time budget.
When you run the AutoML ML_TRAIN routine, that triggers the Oracle AutoML pipeline to run the
following stages in a single command:

• Data pre-processing

• Algorithm selection

• Adaptive data reduction

• Hyperparameter optimization

• Model and prediction explanations

Figure 4.1 Oracle AutoML Pipeline

Oracle AutoML also produces high quality models very efficiently, which is achieved through a scalable
design and intelligent choices that reduce trials at each stage in the pipeline.

• Scalable design: The Oracle AutoML pipeline is able to exploit both MySQL AI internode and
intranode parallelism, which improves scalability and reduces runtime.

• Intelligent choices reduce trials in each stage: Algorithms and parameters are chosen based on
dataset characteristics, which ensures that the model is accurate and efficiently selected. This is
achieved using meta-learning throughout the pipeline.

For additional information about Oracle AutoML, refer to Yakovlev, Anatoly, et al. "Oracle AutoML: A
Fast and Predictive AutoML Pipeline." Proceedings of the VLDB Endowment 13.12 (2020): 3166-3180.

22

http://www.vldb.org/pvldb/vol13/p3166-yakovlev.pdf
http://www.vldb.org/pvldb/vol13/p3166-yakovlev.pdf


Additional AutoML Requirements

What's Next

• Learn more about the following:

• AutoML Learning Types

• AutoML Ease of Use

• AutoML Workflow

• Learn how to Create a Machine Learning Model.

• Review Machine Learning Use Cases to create machine learning models with sample datasets.

4.2 Additional AutoML Requirements

Before You Begin

Model and Table Sizes

• The table used to train a model cannot exceed 10 GB, 100 million rows, or 1017 columns.

Data Requirements

• Each dataset must reside in a single table on the MySQL server. AutoML routines operate on a
single table.

• Table columns must use supported data types. See Supported Data Types for AutoML to learn more.

• NaN (Not a Number) values are not recognized by MySQL and should be replaced by NULL.

• Refer to the following requirements for specific machine learning models.

• Classification models: Must have at least two distinct values, and each distinct value should
appear in at least five rows.

• Regression models: The target column must be numeric.

Note

The ML_TRAIN routine ignores columns missing more than 20% of its values
and columns with the same value in each row. Missing values in numerical
columns are replaced with the average value of the column, standardized to
a mean of 0 and with a standard deviation of 1. Missing values in categorical
columns are replaced with the most frequent value, and either one-hot or ordinal
encoding is used to convert categorical values to numeric values. The input
data as it exists in the MySQL database is not modified by ML_TRAIN.

MySQL User Names

To use AutoML, ensure that the MySQL user name that trains a model does not have a period
character ("."). For example, a user named 'joesmith'@'%' is permitted to train a model, but a user
named 'joe.smith'@'%' is not. The model catalog schema created by the ML_TRAIN procedure
incorporates the user name in the schema name (for example, ML_SCHEMA_joesmith), and a period
is not a permitted schema name character.

What's Next

• Learn more about the following:

23



AutoML Privileges

• AutoML Privileges

• Supported Data Types for AutoML

• Learn how to Create a Machine Learning Model.

• Review Machine Learning Use Cases to create machine learning models with sample datasets.

4.3 AutoML Privileges
To use AutoML, ask the admin user to grant you the following privileges. Replace user_name and
database_name in the commands with the appropriate user name and database name.

Database Privileges

You need the following privileges to access the database that stores the input tables (training
datasets).

mysql> GRANT SELECT, ALTER ON database_name.* TO 'user_name'@'%';

You need the following privileges to access the database that stores the output tables of generated
predictions and explanations.

mysql> GRANT CREATE, DROP, INSERT, SELECT, ALTER, DELETE, UPDATE ON database_name.* TO 'user_name'@'%';

Tracking and Monitoring Privileges

You need the following privileges to track/monitor the status of AutoML and AutoML routines..

mysql> GRANT SELECT ON performance_schema.rpd_tables TO 'user_name'@'%';
mysql> GRANT SELECT ON performance_schema.rpd_table_id TO 'user_name'@'%';
mysql> GRANT SELECT ON performance_schema.rpd_query_stats TO 'user_name'@'%';
mysql> GRANT SELECT ON performance_schema.rpd_ml_stats TO 'user_name'@'%';

Model Catalog Privileges

You need the following privileges to access machine learning models from the model catalog.

mysql> GRANT SELECT, INSERT, CREATE, ALTER, UPDATE, DELETE, DROP, GRANT OPTION ON ML_SCHEMA_user_name.* TO 'user_name'@'%';

System Privileges

You need the following privileges for the system database where MySQL AI routines reside.

mysql> GRANT SELECT, EXECUTE ON sys.* TO 'user_name'@'%';

What's Next

• Learn more about the following:

• Additional AutoML Requirements

• Supported Data Types for AutoML

• Learn how to Create a Machine Learning Model.

• Review Machine Learning Use Cases to create machine learning models with sample datasets.

4.4 Supported Data Types for AutoML
AutoML supports the following data types.

24



Numeric Data Types

Numeric Data Types

• DECIMAL

• DOUBLE

• FLOAT

• INT

• INT UNSIGNED

• TINYINT

• TINYINT UNSIGNED

• SMALLINT

• SMALLINT UNSIGNED

• MEDIUMINT

• MEDIUMINT UNSIGNED

• BIGINT

• BIGINT UNSIGNED

Temporal Data Types

• DATE

• TIME

• DATETIME

• TIMESTAMP

• YEAR

String and Text Data Types

• VARCHAR

• CHAR

• TINYTEXT

• TEXT

• MEDIUMTEXT

• LONGTEXT

Data Type Limitations

AutoML uses TfidfVectorizer to pre-process TINYTEXT, TEXT, MEDIUMTEXT, and LONGTEXT, and
appends the results to the data set. AutoML has the following limitations for text usage:

• The ML_PREDICT_TABLE ml_results column contains the prediction results and the data. This
combination must be fewer than 65,532 characters.

• AutoML only supports datasets in the English language.

• AutoML does not support text columns with NULL values.
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What's Next

• AutoML does not support a text target column.

• AutoML does not support recommendation tasks with a text column.

• For the forecasting task, endogenous_variables cannot be text.

What's Next

• Learn more about the following:

• Additional AutoML Requirements

• AutoML Privileges

• Learn how to Create a Machine Learning Model.

• Review Machine Learning Use Cases to create machine learning models with sample datasets.

4.5 Creating a Machine Learning Model
The topics in this section go through the process of training and using a machine learning model.

Before going through these tasks, make sure to Review Additional AutoML Requirements.

To start using AutoML with sample datasets, see Machine Learning Use Cases.

4.5.1 Preparing Data

Review the following topics to learn more about preparing data for machine learning models.

4.5.1.1 Overview of Preparing Data

AutoML works with labeled and unlabeled data to train and score machine learning models.

Labeled Data

Labeled data is data that has values associated with it. It has feature columns and a target column (the
label), as illustrated in the following diagram:

Figure 4.2 Labeled Data

Feature columns contain the input variables used to train the machine learning model. The target
column contains ground truth values or, in other words, the correct answers. This dataset can be
considered the training dataset.

A labeled dataset with ground truth values is also used to score a model (compute its accuracy and
reliability). This dataset should have the same columns as the training dataset but with a different set of
data. This dataset can be considered the validation dataset.

26



Preparing Data

Labeled Data Example

A table of data for bank customers can be a labeled dataset. The feature columns in the table have
data related to job, marital status, education, and city of residence. The target column has the
approval status of a loan application, Yes or No. You can use some of the data in this table to train
a classification machine learning model. You can also use the data in the table that wasn't used for
training to score the trained machine learning model.

Unlabeled Data

Unlabeled data has feature columns but no target column (no answers), as illustrated below:

Figure 4.3 Unlabeled Data

If you are training a machine learning model that does not require labeled data, such as models for
topic modeling or anomaly detection, you use unlabeled data. AutoML also uses unlabeled data to
generate predictions and explanations. It must have exactly the same feature columns as the training
dataset but no target column. This type of dataset can be considered the test dataset. Test data starts
as labeled data, but the label is not considered when the machine learning model generates predictions
and explanations. This allows you to compare the generated predictions and explanations with the real
values in the dataset before you start using “unseen data”.

The “unseen data” that you eventually use with your model to make predictions is also unlabeled data.
Like the test dataset, unseen data must have exactly the same feature columns as the training dataset
but no target column.

Unlabeled Data Example

A table of data for credit card transactions can be an unlabeled dataset. The feature columns in the
table have data related to the amount of the purchase and the location of the purchase. Because there
is no column identifying any transactions as anomalous or normal, it is unlabeled data. AutoML can
train an anomaly detection model on the unlabeled data to try and find unusual patterns in the data. A
different set of labeled data identifying anomalies in credit cards transactions can be used to score the
trained model.

Example Datasets

To start using AutoML with sample datasets, see Machine Learning Use Cases. Alternatively, navigate
to the AutoML examples and performance benchmarks GitHub repository at https://github.com/oracle-
samples/heatwave-ml.

What's Next

• Learn how to  Prepare Training and Testing Datasets.

• Learn how to Train a Model.

4.5.1.2 Preparing Training and Testing Datasets

You can automatically create training and testing datasets with the TRAIN_TEST_SPLIT routine.
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Preparing Data

Before You Begin

• Review the Requirements.

• Get the Required Privileges to use AutoML.

• Review the Data Types Supported For Machine Learning Tasks.

Overview

The TRAIN_TEST_SPLIT routine takes your datasets and prepares new tables for training and testing
machine learning models. Two new tables in the same database are created with the following names:

• [original_table_name]_train

• [original_table_name]_test

The split of the data between training and testing datasets depends on the machine learning task.

• Classification: A stratified split of data. For each class in the dataset, 80% of the samples go into the
training dataset, and the remaining go into the testing dataset. If the number of samples in the 80%
subset is fewer than five, then five samples are inserted into the training dataset.

• Regression: A random split of data.

• Forecasting: A time-based split of data. The data is inserted in order according to datetime_index
values. The first 80% of the samples go into the training dataset. The remaining samples go into the
testing dataset.

• Unsupervised anomaly detection: A random split of data. 80% of the samples go into the training
dataset, and the remaining samples go into the testing dataset.

• Semi-supervised anomaly detection: A stratified split of data.

• Anomaly detection for log data: A split of data based on primary key values. The first 80% of the
samples go into the training dataset. The remaining samples go into the testing dataset. Review
requirements when running Anomaly Detection for Logs.

• Recommendations: A random split of data.

• Topic modeling: A random split of data.

Parameters to Prepare Training and Testing Datasets

To run the TRAIN_TEST_SPLIT routine, you use the following parameters:

• table_name: You must provide the fully qualified name of the table that contains the dataset to split
(schema_name.table_name).

• target_column_name: Classification and semi-supervised anomaly detection tasks require a
target column. All other tasks do not require a target column. If a target column is not required, you
can set this parameter to NULL.

• options: Set the following options as needed as key-value pairs in JSON object format. If no
options are needed, set this to NULL.

• task: Set the appropriate machine learning task: classification, regression,
forecasting, anomaly_detection, log_anomaly_detection, recommendation, or
topic_modeling. If the machine learning task is not set, the default task is classification.

• datetime_index: Required for forecasting tasks. The column that has datetime values.

The following data types for this column are supported:
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• DATETIME

• TIMESTAMP

• DATE

• TIME

• YEAR

• semisupervised: If running an anomaly detection task, set this to true for semi-supervised
learning, or false for unsupervised learning. If this is set to NULL, then the default value of false
is selected.

TRAIN_TEST_SPLIT Example

To automatically generate a training and testing dataset:

1. Run the TRAIN_TEST_SPLIT routine.

mysql> CALL sys.TRAIN_TEST_SPLIT('table_name', 'target_column_name', options);

Replace table_name, target_column_name, and options with your own values. For example:

mysql> CALL sys.TRAIN_TEST_SPLIT('data_files_db.data_files_1', 'class', JSON_OBJECT('task', 'classification'));

2. Confirm the two datasets are created ([original_table_name]_train and [original_table_name]_test)
by querying the tables in the database.

mysql> SHOW TABLES;
+-------------------------+
| Tables_in_data_files_db |
+-------------------------+
| data_files_1            |
| data_files_1_test       |
| data_files_1_train      |
+-------------------------+

What's Next

• Learn how to Train a Model.

4.5.2 Training a Model

Run the ML_TRAIN routine on a training dataset to produce a trained machine learning model.

Before You Begin

• Review how to Prepare Data.

• Review Additional AutoML Requirements.

ML_TRAIN Overview

ML_TRAIN supports training of the following models:

• Classification: Assign items to defined categories.

• Regression: Generate a prediction based on the relationship between a dependent variable and one
or more independent variables.

• Forecasting: Use a timeseries dataset to generate forecasting predictions.

• Anomaly Detection: Detect unusual patterns in data.
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Training a Model

• Recommendation: Generate user and product recommendations.

• Topic Modeling: Generate words and similar expressions that best characterize a set of documents.

The training dataset used with ML_TRAIN must reside in a table on the MySQL server.

ML_TRAIN stores machine learning models in the MODEL_CATALOG table. See The Model Catalog to
learn more.

The time required to train a model can take a few minutes to a few hours depending on the following:

• The number of rows and columns in the dataset. AutoML supports tables up to 10 GB in size with a
maximum of 100 million rows and or 1017 columns.

• The specified ML_TRAIN parameters.

To learn more about ML_TRAIN requirements and options, see ML_TRAIN or Machine Learning Use
Cases.

The quality and reliability of a trained model can be assessed using the ML_SCORE routine. For more
information, see Score a Model. ML_TRAIN displays the following message if a trained model has a low
score: Model Has a low training score, expect low quality model explanations.

ML_TRAIN Example

Before training a model, it is good practice to define your own model handle instead of automatically
generating one. This allows you to easily remember the model handle for future routines on the trained
model instead of having to query it, or depending on the session variable that can no longer be used
when the current connection terminates. See Defining Model Handle to learn more.

To train a machine learning model:

1. Optionally, set the value of the session variable, which sets the model handle to this same value.

mysql> SET @variable = 'model_handle';

Replace @variable and model_handle with your own definitions. For example:

mysql> SET @census_model = 'census_test';

The model handle is set to census_test.

2. Run the ML_TRAIN routine.

mysql> CALL sys.ML_TRAIN('table_name', 'target_column_name', JSON_OBJECT('task', 'task_name'), @variable);

Replace table_name, target_column_name, task_name, and variable with your own
values.

The following example runs ML_TRAIN on the census_data.census_train training dataset.

mysql> CALL sys.ML_TRAIN('census_data.census_train', 'revenue', JSON_OBJECT('task', 'classification'), @census_model);

Where:

• census_data.census_train is the fully qualified name of the table that contains the training
dataset (schema_name.table_name).

• revenue is the name of the target column, which contains ground truth values.

• JSON_OBJECT('task', 'classification') specifies the machine learning task type.

• @census_model is the session variable previously set that defines the model handle to the
name defined by the user: census_test. If you do not define the model handle before training
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the model, the model handle is automatically generated, and the session variable only stores the
model handle for the duration of the connection. User variables are written as @var_name. Any
valid name for a user-defined variable is permitted. See Work with Model Handles to learn more.

3. When the training completes, query the model catalog for the model handle and the name of the
trained table to confirm the model handle is correctly set. Replace user1 with your own user name.

mysql> SELECT model_handle, train_table_name FROM ML_SCHEMA_user1.MODEL_CATALOG;
+-----------------------------------------------------+---------------------------------+
| model_handle                                        | train_table_name                |
+-----------------------------------------------------+---------------------------------+
| census_test                                         | census_data.census_train        |
+-----------------------------------------------------+---------------------------------+
1 row in set (0.0450 sec)

Tip

When done working with a trained model, it is good practice to unload it. See
Unload a Model.

What's Next

• For details on all training options and to view more examples for task-specific models, see
ML_TRAIN.

• Learn how to Load a Model.

4.5.3 Loading a Model

You must load a machine learning model from the model catalog before running AutoML routines other
than ML_TRAIN. A model remains loaded and can be called repetitively by AutoML routines until it is
unloaded using the ML_MODEL_UNLOAD routine, or until the cluster is restarted.

A model can only be loaded by the MySQL user that created the model unless you grant access to
other users. For more information, see Grant Other Users Access to a Model.

Review ML_MODEL_LOAD parameter descriptions.

Before You Begin

• Review how to Train a Model.

Loading a Model with the Session Variable

After training a model, you set a session variable for the model handle that you can use until the
current connection ends.

The following example loads an AutoML model from the model catalog by using the session variable

mysql> CALL sys.ML_MODEL_LOAD(@census_model, NULL);

Where:

• @census_model is the session variable that contains the model handle.

• NULL is specified in place of the user name of the model owner. You are not required to specify a
user name.

Loading a Model Handle with the Defined Model Handle Name

Before training a machine learning model, it is good practice to define a model handle name instead of
automatically generating one. This allows you to easily remember the model handle for future routines
on the trained model instead of having to query it, or depending on the session variable that can no
longer be used when the current connection terminates. See ML_TRAIN Example.
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The following example uses the defined model handle name to load the model.

mysql> CALL sys.ML_MODEL_LOAD('census_test', NULL);

Loading the Model with the Automatically Generated Model Handle

If you do not define a model handle name before training a machine learning model, it is automatically
generated. If the connection for the session variable of a model handle ends, you need to load the
model with the model name.

1. Query the model handle, model owner, and the trained table name from the model catalog table.
Replace user1 with your own user name.

mysql> SELECT model_handle, model_owner, train_table_name FROM ML_SCHEMA_user1.MODEL_CATALOG;
+-----------------------------------------------------+-------------+---------------------------------+
| model_handle                                        | model_owner | train_table_name                |
+-----------------------------------------------------+-------------+---------------------------------+
| census_data.census_train_admin_1745261646953        | admin       | census_data.census_train        |
| census_data.census_train_admin_1745334557047        | admin       | census_data.census_train        |
| census_data.census_train_admin_1745336500455        | admin       | census_data.census_train        |
+-----------------------------------------------------+-------------+---------------------------------+
3 rows in set (0.0431 sec)

2. Copy the appropriate model_handle and use it to load the machine learning model.

mysql> CALL sys.ML_MODEL_LOAD('census_data.census_train_user1_1745261646953', NULL);

Verifying Model is Loaded

You have the option to verify that model is loaded by using the ML_MODEL_ACTIVE routine.

The following example verifies the model previously loaded is active.

1. Run ML_MODEL_ACTIVE on all active and loaded models and assign a session variable.

mysql> CALL sys.ML_MODEL_ACTIVE('all', @variable);

Replace variable with your own value. For example:

mysql> CALL sys.ML_MODEL_ACTIVE('all', @models);

2. Query the session variable previously created. Replace models with your own value.

mysql> SELECT @models;
+-------------------------------------------------------------------------------------------------------------------------+
| @models                                                                                                                 |
+-------------------------------------------------------------------------------------------------------------------------+
| [{"total model size(bytes)": 388948}, {"admin": [{"census_test": {"format": "HWMLv2.0", "model_size(byte)": 388948}}]}] |
+-------------------------------------------------------------------------------------------------------------------------+
1 row in set (0.0431 sec)

The output displays the loaded model with information on the user that trained the model, the size
of the model, the model handle, and its format.

What's Next

• For details on all model load options, see ML_MODEL_LOAD.

• Learn how to Generate Predictions.

4.5.4 Generating Predictions

Predictions are generated by running ML_PREDICT_ROW or ML_PREDICT_TABLE on trained models.
The row or table of data must have the same feature columns as the data used to train the model. If the
target column exists in the data to run predictions on, it is not considered during prediction generation.

32



Generating Predictions

ML_PREDICT_ROW generates predictions for one or more rows of data. ML_PREDICT_TABLE
generates predictions for an entire table of data and saves the results to an output table.

4.5.4.1 Generating Predictions for a Row of Data

ML_PREDICT_ROW generates predictions for one or more rows of data specified in JSON format. You
invoke the routine with the SELECT statement.

This topic has the following sections.

• Before You Begin

• Preparing to Generate a Row Prediction

• Inputting Data to Generate a Row Prediction

• Generating Predictions on One or More Rows of Data

• What's Next

Before You Begin

• Review the following:

• Prepare Data

• Train a Model

• Load a Model

Preparing to Generate a Row Prediction

Before running ML_PREDICT_ROW, you must train, and then load the model you want to use.

1. The following example trains a dataset with the classification machine learning task.

mysql> CALL sys.ML_TRAIN('census_data.census_train', 'revenue', JSON_OBJECT('task', 'classification'), @census_model);

2. The following example loads the trained model.

mysql> CALL sys.ML_MODEL_LOAD(@census_model, NULL);

For more information about training and loading models, see Train a Model and Load a Model.

After training and loading the model, you can generate predictions on one or more rows of data. For
parameter and option descriptions, see ML_PREDICT_ROW.

Inputting Data to Generate a Row Prediction

One way to generate predictions on row data is to manually enter the row data into a session variable,
and then generate a prediction by specifying the session variable.

1. Define values for each column to predict. The column names must match the feature column
names in the trained table.

mysql> SET @variable = (JSON_OBJECT("column_name", value, "column_name", value, ...), model_handle, options);

In the following example, create the @row_input session variable and enter the data to predict
into the session variable.

mysql> SET @row_input = JSON_OBJECT( 
          "age", 25, 
          "workclass", "Private", 
          "fnlwgt", 226802, 
          "education", "11th", 
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          "education-num", 7, 
          "marital-status", "Never-married", 
          "occupation", "Machine-op-inspct", 
          "relationship", "Own-child", 
          "race", "Black", 
          "sex", "Male", 
          "capital-gain", 0, 
          "capital-loss", 0, 
          "hours-per-week", 40, 
          "native-country", "United-States"); 

2. Run ML_PREDICT_ROW and specify the session variable set previously. Optionally, use \G to
display information in an easily readable format.

mysql> SELECT sys.ML_PREDICT_ROW(@variable, ...), model_handle, options);

Replace variable, model_handle, and options with your own values. For example:

mysql> SELECT sys.ML_PREDICT_ROW(@row_input, @census_model, NULL)\G
*************************** 1. row ***************************
sys.ML_PREDICT_ROW(@row_input, @census_model, NULL): 
{
    "age": 25,
    "sex": "Male",
    "race": "Black",
    "fnlwgt": 226802,
    "education": "11th",
    "workclass": "Private",
    "Prediction": "<=50K",
    "ml_results": {
        "predictions": {
            "revenue": "<=50K"
        },
        "probabilities": {
            ">50K": 0.0032,
            "<=50K": 0.9968
        }
    },
    "occupation": "Machine-op-inspct",
    "capital-gain": 0,
    "capital-loss": 0,
    "relationship": "Own-child",
    "education-num": 7,
    "hours-per-week": 40,
    "marital-status": "Never-married",
    "native-country": "United-States"
}
1 row in set (2.2218 sec)

Where:

• @row_input is a session variable containing a row of unlabeled data. The data is specified in
JSON key-value format. The column names must match the feature column names in the training
dataset.

• @census_model is the session variable that contains the model handle. Learn more about
Model Handles.

• NULL sets no options to the routine.

The prediction on the data is that the revenue is <=50K with a probability of 99.7%..

Generating Predictions on One or More Rows of Data

Another way to generate predictions is to create a JSON_OBJECT with specified columns and labels,
and then generate predictions on one or more rows of data in the table.

mysql> SELECT sys.ML_PREDICT_ROW(JSON_OBJECT("output_col_name", schema.`input_col_name`, "output_col_name", schema.`input_col_name`, ...), 
                                              model_handle, options) FROM input_table_name LIMIT N;
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The following example specifies the table and columns to use for the prediction and assigns output
labels for each table-column pair. No options are set with NULL. It also defines to predict the top two
rows of the table. Optionally, use \G to display information in an easily readable format.

mysql> SELECT sys.ML_PREDICT_ROW(JSON_OBJECT(
 "age", census_train.`age`,
 "workclass", census_train.`workclass`,
 "fnlwgt", census_train.`fnlwgt`,
 "education", census_train.`education`,
 "education-num", census_train.`education-num`,
 "marital-status", census_train.`marital-status`,
 "occupation", census_train.`occupation`,
 "relationship", census_train.`relationship`,
 "race", census_train.`race`,
 "sex", census_train.`sex`,
 "capital-gain", census_train.`capital-gain`,
 "capital-loss", census_train.`capital-loss`,
 "hours-per-week", census_train.`hours-per-week`,
 "native-country", census_train.`native-country`),
 @census_model, NULL)FROM census_data.census_train LIMIT 2\G
*************************** 1. row ***************************
sys.ML_PREDICT_ROW(JSON_OBJECT(
"age", census_train.`age`,
"workclass", census_train.`workclass`,
"fnlwgt", census_train.`fnlwgt`,
"education", census_train.`education`,
"education-num", census_train.`education-num`,
"marital-status", census_train.`marita: {
                                            "age": 62,
                                            "sex": "Female",
                                            "race": "White",
                                            "fnlwgt": 123582,
                                            "education": "10th",
                                            "workclass": "Private",
                                            "Prediction": "<=50K",
                                            "ml_results": {
                                                "predictions": {
                                                    "revenue": "<=50K"
                                                },
                                                "probabilities": {
                                                    ">50K": 0.0106,
                                                    "<=50K": 0.9894
                                                }
                                            },
                                            "occupation": "Other-service",
                                            "capital-gain": 0,
                                            "capital-loss": 0,
                                            "relationship": "Unmarried",
                                            "education-num": 6,
                                            "hours-per-week": 40,
                                            "marital-status": "Divorced",
                                            "native-country": "United-States"
                                        }
*************************** 2. row ***************************
sys.ML_PREDICT_ROW(JSON_OBJECT(
"age", census_train.`age`,
"workclass", census_train.`workclass`,
"fnlwgt", census_train.`fnlwgt`,
"education", census_train.`education`,
"education-num", census_train.`education-num`,
"marital-status", census_train.`marita: {
                                            "age": 32,
                                            "sex": "Female",
                                            "race": "White",
                                            "fnlwgt": 174215,
                                            "education": "Bachelors",
                                            "workclass": "Federal-gov",
                                            "Prediction": "<=50K",
                                            "ml_results": {
                                                "predictions": {
                                                    "revenue": "<=50K"
                                                },
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                                                "probabilities": {
                                                    ">50K": 0.3249,
                                                    "<=50K": 0.6751
                                                }
                                            },
                                            "occupation": "Exec-managerial",
                                            "capital-gain": 0,
                                            "capital-loss": 0,
                                            "relationship": "Not-in-family",
                                            "education-num": 13,
                                            "hours-per-week": 60,
                                            "marital-status": "Never-married",
                                            "native-country": "United-States"
                                        }
2 rows in set (9.6548 sec)

The output generates revenue predictions for the four rows of data.

What's Next

• Review ML_PREDICT_ROW for parameter descriptions and options.

• After generating predictions for a row of data, learn how to Generate Explanations for a Row of Data
to get insight into which features have the most influence on the predictions.

• Learn how to Generate Predictions for a Table.

• Learn how to Score a Model to get insight into the quality of the model.

4.5.4.2 Generating Predictions for a Table

ML_PREDICT_TABLE generates predictions for an entire table of trained data. Predictions are
performed in parallel.

ML_PREDICT_TABLE is a compute intensive process. If ML_PREDICT_TABLE takes a long time to
complete, manually limit input tables to a maximum of 1,000 rows.

Before You Begin

• Review the following:

• Prepare Data

• Train a Model

• Load a Model

Input Tables and Output Tables

You can specify the output table and the input table as the same table if all the following conditions are
met:

• The input table does not have the columns that are created for the output table when generating
predictions. Output columns are specific to each machine learning task. Some of these columns
include:

• Prediction

• ml_results

• The input table does not have a primary key, and it does not have a column named
_4aad19ca6e_pk_id. This is because ML_PREDICT_TABLE adds a column as the primary key
with the name _4aad19ca6e_pk_id to the output table.

• The input table was not trained with the log_anomaly_detection task.
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If you specify the output table and the input table as the same name, the predictions are inserted into
the input table.

Preparing to Generate Predictions for a Table

Before running ML_PREDICT_TABLE, you must train, and then load the model you want to use.

1. The following example trains a dataset with the classification machine learning task.

mysql> CALL sys.ML_TRAIN('census_data.census_train', 'revenue', JSON_OBJECT('task', 'classification'), @census_model);

2. The following example loads the trained model.

mysql> CALL sys.ML_MODEL_LOAD(@census_model, NULL);

For more information about training and loading models, see Train a Model and Load a Model.

After training and loading the model, you can generate predictions for a table of data. For parameter
and option descriptions, see ML_PREDICT_TABLE.

Generating Predictions for a Table

To generate predictions for a table, define the input table, the model handle, the output table, and any
additional options.

mysql> CALL sys.ML_PREDICT_TABLE(table_name, model_handle, output_table_name), [options]);

The following example generates predictions for the entire table in the trained and loaded model.

mysql> CALL sys.ML_PREDICT_TABLE('census_data.census_train', @census_model, 'census_data.census_train_predictions', NULL);

Where:

• census_data.census_train is the fully qualified name of the test dataset table
(schema_name.table_name). The table must have the same feature column names as the
training dataset. The target column is not required. If it present in the table, it is not considered when
generating predictions.

• @census_model is the session variable that contains the model handle. Learn more about Model
Handles.

• census_data.census_train_predictions is the output table where predictions are stored.
A fully qualified table name must be specified (schema_name.table_name). If the table already
exists, an error is returned.

• NULL sets no options to the routine.

When the output table is created, you can query a sample of the table to review predictions.

mysql> SELECT * FROM table_name LIMIT N;

Replace table_name with your own table name, and N with the number of rows from the table you
want to view.

The following example queries the top five rows of the output table.

mysql> SELECT * FROM census_train_predictions LIMIT 5;
+-------------------+-----+------------------+--------+--------------+---------------+--------------------+-------------------+--------------+-------+--------+--------------+--------------+----------------+----------------+---------+------------+---------------------------------------------------------------------------------------+
| _4aad19ca6e_pk_id | age | workclass        | fnlwgt | education    | education-num | marital-status     | occupation        | relationship | race  | sex    | capital-gain | capital-loss | hours-per-week | native-country | revenue | Prediction | ml_results                                                                            |
+-------------------+-----+------------------+--------+--------------+---------------+--------------------+-------------------+--------------+-------+--------+--------------+--------------+----------------+----------------+---------+------------+---------------------------------------------------------------------------------------+
|                 1 |  37 | Private          |  99146 | Bachelors    |            13 | Married-civ-spouse | Exec-managerial   | Husband      | White | Male   |            0 |         1977 |             50 | United-States  | >50K    | <=50K      | {"predictions": {"revenue": "<=50K"}, "probabilities": {"<=50K": 0.58, ">50K": 0.42}} |
|                 2 |  34 | Private          |  27409 | 9th          |             5 | Married-civ-spouse | Craft-repair      | Husband      | White | Male   |            0 |            0 |             50 | United-States  | <=50K   | <=50K      | {"predictions": {"revenue": "<=50K"}, "probabilities": {"<=50K": 0.76, ">50K": 0.24}} |
|                 3 |  30 | Private          | 299507 | Assoc-acdm   |            12 | Separated          | Other-service     | Unmarried    | White | Female |            0 |            0 |             40 | United-States  | <=50K   | <=50K      | {"predictions": {"revenue": "<=50K"}, "probabilities": {"<=50K": 0.99, ">50K": 0.01}} |
|                 4 |  62 | Self-emp-not-inc | 102631 | Some-college |            10 | Widowed            | Farming-fishing   | Unmarried    | White | Female |            0 |            0 |             50 | United-States  | <=50K   | <=50K      | {"predictions": {"revenue": "<=50K"}, "probabilities": {"<=50K": 0.9, ">50K": 0.1}}   |
|                 5 |  51 | Private          | 153486 | Some-college |            10 | Married-civ-spouse | Handlers-cleaners | Husband      | White | Male   |            0 |            0 |             40 | United-States  | <=50K   | <=50K      | {"predictions": {"revenue": "<=50K"}, "probabilities": {"<=50K": 0.7, ">50K": 0.3}}   |
+-------------------+-----+------------------+--------+--------------+---------------+--------------------+-------------------+--------------+-------+--------+--------------+--------------+----------------+----------------+---------+------------+---------------------------------------------------------------------------------------+
5 rows in set (0.0014 sec)
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The predictions and associated probabilities are displayed in the ml_results column. You can
compare the predicted revenue values with the real revenue values in the table. If needed, you can
refine and train different sets of data to try and generate more reliable predictions.

What's Next

• Review ML_PREDICT_TABLE for parameter descriptions and options.

• After generating predictions on a table, learn how to Generate Explanations on a table to get insights
into which features have the most influence on the predictions.

• Learn how to Generate Predictions for a Row of Data.

• Learn how to Score a Model to get insight into the quality of the model.

4.5.5 Generating Model Explanations

After the ML_TRAIN routine, use the ML_EXPLAIN routine to train model explainers for AutoML. By
default, the ML_TRAIN routine trains the Permutation Importance model explainer.

This topic has the following sections.

• Before You Begin

• Explanations Overview

• Model Explainers

• Unsupported Model Types

• Preparing to Generate a Model Explanation

• Retrieve the Default Permutation Importance Explanation

• Generating a Model Explanation

• What's Next

Before You Begin

• Review the following:

• Prepare Data

• Train a Model

• Load a Model

Explanations Overview

Explanations help you understand which features have the most influence on a prediction. Feature
importance is presented as a value ranging from -1 to 1. A positive value indicates that a feature
contributed toward the prediction. A negative value indicates that the feature contributed toward a
different prediction. For example, if a feature in a loan approval model with two possible predictions
('approve' and 'reject') has a negative value for an 'approve' prediction, that feature would have a
positive value for a 'reject' prediction. A value of 0 or near 0 indicates that the feature value has no
impact on the prediction to which it applies.

Model Explainers

Model explainers are used when you run the ML_EXPLAIN routine to explain what the model learned
from the training dataset. The model explainer provides a list of feature importance to show what
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features the model considered important based on the entire training dataset. The ML_EXPLAIN
routine can train these model explainers:

• The Permutation Importance model explainer, specified as permutation_importance, is the
default model explainer. ML_TRAIN generates this model explainer when it runs.

• The Partial Dependence model explainer, specified as partial_dependence, shows how
changing the values of one or more columns changes the value that the model predicts. When you
train this model explainer, you need to specify some additional options. See ML_EXPLAIN to learn
more.

• The SHAP model explainer, specified as shap, produces feature importance values based on
Shapley values.

• The Fast SHAP model explainer, specified as fast_shap, is a subsampling version of the SHAP
model explainer, which usually has a faster runtime.

The model explanation is stored in the model catalog along with the machine learning model in the
model_explanation column. See The Model Catalog. If you run ML_EXPLAIN again for the same
model handle and model explainer, the field is overwritten with the new result.

Unsupported Model Types

You cannot generate model explanations for the following model types:

• Forecasting

• Recommendation

• Anomaly detection

• Anomaly detection for logs

• Topic modeling

Preparing to Generate a Model Explanation

Before running ML_EXPLAIN, you must train, and then load the model you want to use.

1. The following example trains a dataset with the classification machine learning task.

mysql> CALL sys.ML_TRAIN('census_data.census_train', 'revenue', JSON_OBJECT('task', 'classification'), @census_model);

2. The following example loads the trained model.

mysql> CALL sys.ML_MODEL_LOAD(@census_model, NULL);

For more information about training and loading models, see Train a Model and Load a Model.

After training and loading the model, you can generate model explanations. For option and parameter
descriptions, see ML_EXPLAIN.

Retrieve the Default Permutation Importance Explanation

After training and loading a model, you can retrieve the default model explanation using the
permutation_importance explainer from the model catalog. See The Model Catalog.

mysql> SELECT column FROM ML_SCHEMA_user1.MODEL_CATALOG WHERE model_handle=model_handle;

The following example retrieves the model explainer column from the model catalog of the previously
trained model. The JSON_PRETTY parameter displays the output in an easily readable format.

mysql> SELECT JSON_PRETTY(model_explanation) FROM ML_SCHEMA_user1.MODEL_CATALOG WHERE model_handle=@census_model;
+---------------------------------------------------------------------------------------------------------------------------------+
| JSON_PRETTY(model_explanation)                                                                                                  |
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+---------------------------------------------------------------------------------------------------------------------------------+
| {
  "permutation_importance": {
    "age": 0.0292,
    "sex": 0.0023,
    "race": 0.0019,
    "fnlwgt": 0.0038,
    "education": 0.0008,
    "workclass": 0.0068,
    "occupation": 0.0223,
    "capital-gain": 0.0479,
    "capital-loss": 0.0117,
    "relationship": 0.0234,
    "education-num": 0.0352,
    "hours-per-week": 0.0148,
    "marital-status": 0.024,
    "native-country": 0.0
  }
} |
+---------------------------------------------------------------------------------------------------------------------------------+
1 row in set (0.0427 sec)

Replace user1 and @census_model with your own user name and session variable.

The explanation displays values of permutation importance for each column.

Generating a Model Explanation

To generate a model explanation, run the ML_EXPLAIN routine.

mysql> CALL sys.ML_EXPLAIN ('table_name', 'target_column_name', model_handle, [options]);

The following example generates a model explanation on the trained and loaded model with the shap
model explainer.

mysql> CALL sys.ML_EXPLAIN('census_data.census_train', 'revenue', @census_model, JSON_OBJECT('model_explainer', 'shap'));

Where:

• census_data.census_train is the fully qualified name of the table that contains the training
dataset (schema_name.table_name).

• revenue is the name of the target column, which contains ground truth values.

• @census_model  is the session variable for the trained model.

• model_explainer is set to shap for the SHAP model explainer.

After running ML_EXPLAIN, you can view the model explanation in the Model Catalog. See The Model
Catalog. The following example views the model explanation for the previous command. It provides
values for each column representing importance values with the shap explainer.

mysql> SELECT JSON_PRETTY(model_explanation) FROM ML_SCHEMA_user1.MODEL_CATALOG WHERE model_handle=@census_model;
+---------------------------------------------------------------------------------------------------------------------------------+
| JSON_PRETTY(model_explanation)                                                                                                  |
+---------------------------------------------------------------------------------------------------------------------------------+
| {
  "shap": {
    "age": 0.0467,
    "sex": 0.033,
    "race": 0.0155,
    "fnlwgt": 0.0185,
    "education": 0.016,
    "workclass": 0.0255,
    "occupation": 0.0001,
    "capital-gain": 0.0217,
    "capital-loss": 0.0001,
    "relationship": 0.0426,
    "education-num": 0.0186,
    "hours-per-week": 0.0148,
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    "marital-status": 0.024,
    "native-country": 0.0
  },
  "permutation_importance": {
    "age": -0.0057, 
    "sex": 0.0002, 
    "race": 0.0001, 
    "fnlwgt": 0.0103, 
    "education": 0.0108, 
    "workclass": 0.0189, 
    "occupation": 0.0, 
    "capital-gain": 0.0304, 
    "capital-loss": 0.0, 
    "relationship": 0.0195, 
    "education-num": 0.0152, 
    "hours-per-week": 0.0235, 
    "marital-status": 0.0099, 
    "native-country": 0.0
   }
} |
+---------------------------------------------------------------------------------------------------------------------------------+
1 row in set (0.0427 sec)

What's Next

• Review ML_EXPLAIN for parameter descriptions and options.

• Learn how to Generate Prediction Explanations.

• Learn more about the The Model Catalog.

4.5.6 Generating Prediction Explanations

Prediction explanations are generated by running ML_EXPLAIN_ROW or ML_EXPLAIN_TABLE on
unlabeled data. The data must have the same feature columns as the data used to train the model. The
target column is not required.

Prediction explanations are similar to model explanations, but rather than explain the whole model,
prediction explanations explain predictions for individual rows of data. See Explanations Overview to
learn more.

You can train the following prediction explainers:

• The Permutation Importance prediction explainer, specified as permutation_importance, is the
default prediction explainer, which explains the prediction for a single row or table. Right after training
and loading a model, you can run ML_EXPLAIN_ROW and ML_EXPLAIN_TABLE with this prediction
explainer directly without having to run ML_EXPLAIN first.

• The SHAP prediction explainer, specified as shap, uses feature importance values to explain the
prediction for a single row or table. To run this prediction explainer with ML_EXPLAIN_ROW and
ML_EXPLAIN_TABLE, you must run ML_EXPLAIN first.

ML_EXPLAIN_ROW generates explanations for one or more rows of data. ML_EXPLAIN_TABLE
generates explanations on an entire table of data and saves the results to an output table.
ML_EXPLAIN_* routines limit explanations to the 100 most relevant features.

4.5.6.1 Generating Prediction Explanations for a Row of Data

ML_EXPLAIN_ROW explains predictions for one or more rows of unlabeled data. You invoke the routine
by using a SELECT statement.

This topic has the following sections.

• Before You Begin

• Unsupported Model Types
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• Preparing to Generate a Row Explanation

• Generating a Row Prediction Explanation with the Default Permutation Importance Explainer

• Generating a Row Prediction Explanation with the SHAP Explainer

• What's Next

Before You Begin

• Review the following:

• Prepare Data

• Train a Model

• Load a Model

Unsupported Model Types

You cannot generate prediction explanations on a row of data for the following model types:

• Forecasting

• Recommendation

• Anomaly detection

• Anomaly detection for logs

• Topic modeling

Preparing to Generate a Row Explanation

Before running ML_EXPLAIN_ROW, you must train, and then load the model you want to use.

1. The following example trains a dataset with the classification machine learning task.

mysql> CALL sys.ML_TRAIN('census_data.census_train', 'revenue', JSON_OBJECT('task', 'classification'), @census_model);

2. The following example loads the trained model.

mysql> CALL sys.ML_MODEL_LOAD(@census_model, NULL);

For more information about training and loading models, see Train a Model and Load a Model.

After training and loading the model, you can generate prediction explanations for one or more rows.
For parameter and option descriptions, see ML_EXPLAIN_ROW.

Generating a Row Prediction Explanation with the Default Permutation Importance Explainer

After training and loading a model, you can run ML_EXPLAIN_ROW to generate a row prediction
explanation with the default Permutation Importance explainer. However, if you train the
shap prediction explainer with ML_EXPLAIN, you need to run ML_EXPLAIN again with the
permutation_importance explainer before running ML_EXPLAIN_ROW with the same explainer.

The following example enters a row of data to explain into a session variable. The session variable is
then used in the ML_EXPLAIN_ROW routine.

1. Define values for each column to predict. The column names must match the feature column
names in the trained table.

mysql> SET @variable = (JSON_OBJECT("column_name", value, "column_name", value, ...), model_handle, options);

In the following example, assign the data to analyze into the @row_input session variable.
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mysql> SET @row_input = JSON_OBJECT( 
          "age", 31, 
          "workclass", "Private", 
          "fnlwgt", 45781, 
          "education", "Masters", 
          "education-num", 14, 
          "marital-status", "Married-civ-spouse", 
          "occupation", "Prof-specialty", 
          "relationship", "Not-in-family", 
          "race", "White", 
          "sex", "Female", 
          "capital-gain", 14084, 
          "capital-loss", 2042, 
          "hours-per-week", 40, 
          "native-country", "India");

2. Run the ML_EXPLAIN_ROW routine.

mysql> SELECT sys.ML_EXPLAIN_ROW(input_data, model_handle, [options]);

In the following example, include the session variable previously created. Optionally, use \G to
display the output in an easily readable format. The output is similar to the following:

mysql> SELECT sys.ML_EXPLAIN_ROW(@row_input, @census_model, JSON_OBJECT('prediction_explainer', 'permutation_importance'))\G
*************************** 1. row ***************************
sys.ML_EXPLAIN_ROW(@row_input, @census_model, 
          JSON_OBJECT('prediction_explainer', 'permutation_importance')): 
          {
                "age": 31,
                "sex": "Female",
                "race": "White",
                "Notes": "capital-gain (14084) had the largest impact towards predicting >50K",
                "fnlwgt": 45781,
                "education": "Masters",
                "workclass": "Private",
                "Prediction": ">50K",
                "ml_results": {
                   "notes": "capital-gain (14084) had the largest impact towards predicting >50K",
                   "predictions": {
                       "revenue": ">50K"
                    },
                    "attributions": {
                        "age": 0.34,
                        "sex": 0,
                        "race": 0,
                        "fnlwgt": 0,
                        "education": 0,
                        "workclass": 0,
                        "occupation": 0,
                        "capital-gain": 0.97,
                        "capital-loss": 0,
                        "relationship": 0,
                        "education-num": 0.04,
                        "hours-per-week": 0,
                        "marital-status": 0
                    }
                },
                "occupation": "Prof-specialty",
                "capital-gain": 14084,
                "capital-loss": 2042,
                "relationship": "Not-in-family",
                "education-num": 14,
                "hours-per-week": 40,
                "marital-status": "Married-civ-spouse",
                "native-country": "India",
                "age_attribution": 0.34,
                "sex_attribution": 0,
                "race_attribution": 0,
                "fnlwgt_attribution": 0,
                "education_attribution": 0,
                "workclass_attribution": 0,
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                "occupation_attribution": 0,
                "capital-gain_attribution": 0.97,
                "capital-loss_attribution": 0,
                "relationship_attribution": 0,
                "education-num_attribution": 0.04,
                "hours-per-week_attribution": 0,
                "marital-status_attribution": 0
          }
1 row in set (6.3072 sec)

The output provides an explanation on the column that had the largest impact towards the prediction,
and the column that contributed the most against the prediction.

Generating a Row Prediction Explanation with the SHAP Explainer

To generate a row prediction explanation with the SHAP explainer, you must first run the SHAP
explainer with ML_EXPLAIN.

1. Run the ML_EXPLAIN routine.

mysql> CALL sys.ML_EXPLAIN ('table_name', 'target_column_name', model_handle, [options]);

The following example runs the shap explainer.

mysql> CALL sys.ML_EXPLAIN('census_data.census_train', 'revenue', @census_model, JSON_OBJECT('prediction_explainer', 'shap'));

Where:

• census_data.census_train is the fully qualified name of the table that contains the training
dataset (schema_name.table_name).

• revenue is the name of the target column, which contains ground truth values.

• @census_model  is the session variable for the trained model.

• prediction_explainer is set to shap for the SHAP prediction explainer.

2. Define values for each column to predict. The column names must match the feature column
names in the trained table.

mysql> SET @variable = (JSON_OBJECT("column_name", value, "column_name", value, ...), model_handle, options);

In the following example, assign the data to analyze into the @row_input session variable.

mysql> SET @row_input = JSON_OBJECT( 
          "age", 25, 
          "workclass", "Private", 
          "fnlwgt", 226802, 
          "education", "11th", 
          "education-num", 7, 
          "marital-status", "Never-married", 
          "occupation", "Machine-op-inspct", 
          "relationship", "Own-child", 
          "race", "Black", 
          "sex", "Male", 
          "capital-gain", 0, 
          "capital-loss", 0, 
          "hours-per-week", 40, 
          "native-country", "United-States");

3. Run the ML_EXPLAIN_ROW routine.

mysql> SELECT sys.ML_EXPLAIN_ROW(input_data, model_handle, [options]);

In the following example run the same shap prediction explainer. Optionally, use \G to display the
output in an easily readable format.

mysql> SELECT sys.ML_EXPLAIN_ROW(@row_input, @census_model, JSON_OBJECT('prediction_explainer', 'shap'))\G
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*************************** 1. row ***************************
sys.ML_EXPLAIN_ROW(@row_input, @census_model, 
  JSON_OBJECT('prediction_explainer', 'shap')): 
  {
    "age": 25,
    "sex": "Male",
    "race": "Black",
    "fnlwgt": 226802,
    "education": "11th",
    "workclass": "Private",
    "Prediction": "<=50K",
    "ml_results": {
        "predictions": {
            "revenue": "<=50K"
        },
        "attributions": {
            "age_attribution": 0.03154012309521936,
            "sex_attribution": -0.002995059121088509,
            "race_attribution": 0.0051264089998398765,
            "fnlwgt_attribution": -0.003139455788215409,
            "education_attribution": 0.0013752672453250653,
            "workclass_attribution": 0,
            "occupation_attribution": 0.020919219303459986,
            "capital-gain_attribution": 0.015089815859614985,
            "capital-loss_attribution": 0.0033537962775555263,
            "relationship_attribution": 0.027744370891787523,
            "education-num_attribution": 0.0284122832892542,
            "hours-per-week_attribution": 0.009110644648945954,
            "marital-status_attribution": 0.036222463769272406
        }
    },
    "occupation": "Machine-op-inspct",
    "capital-gain": 0,
    "capital-loss": 0,
    "relationship": "Own-child",
    "education-num": 7,
    "hours-per-week": 40,
    "marital-status": "Never-married",
    "native-country": "United-States",
    "age_attribution": 0.0315401231,
    "sex_attribution": -0.0029950591,
    "race_attribution": 0.005126409,
    "fnlwgt_attribution": -0.0031394558,
    "education_attribution": 0.0013752672,
    "workclass_attribution": 0,
    "occupation_attribution": 0.0209192193,
    "capital-gain_attribution": 0.0150898159,
    "capital-loss_attribution": 0.0033537963,
    "relationship_attribution": 0.0277443709,
    "education-num_attribution": 0.0284122833,
    "hours-per-week_attribution": 0.0091106446,
    "marital-status_attribution": 0.0362224638
}
1 row in set (4.3007 sec)

The output displays feature importance values for each column.

What's Next

• Review ML_EXPLAIN_ROW for parameter descriptions and options.

• Learn how to Generate Explanations for a Table.

• Learn how to Score a Model to get insight into the quality of the model.

4.5.6.2 Generating Prediction Explanations for a Table

ML_EXPLAIN_TABLE explains predictions for an entire table of unlabeled data. Explanations are
performed in parallel.
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Note

ML_EXPLAIN_TABLE is a very memory-intensive process. We recommend
limiting the input table to a maximum of 100 rows. If the input table has more
than ten columns, limit it to ten rows.

Before You Begin

• Review the following:

• Prepare Data

• Train a Model

• Load a Model

Unsupported Model Types

You cannot generate prediction explanations on a table for the following model types:

• Forecasting

• Recommendation

• Anomaly detection

• Anomaly detection for logs

• Topic modeling

Input Tables and Output Tables

You can specify the output table and the input table as the same table if all the following conditions are
met:

• The input table does not have the columns that are created for the output table when generating
predictions. Output columns are specific to each machine learning task. Some of these columns
include:

• Prediction

• ml_results

• [input_column_name]_attribution

• The input table does not have a primary key, and it does not have a column named
_4aad19ca6e_pk_id. This is because ML_EXPLAIN_TABLE adds a column as the primary key
with the name _4aad19ca6e_pk_id to the output table.

If you specify the output table and the input table as the same name, the predictions are inserted into
the input table.

Preparing to Generate Explanations for a Table

Before running ML_EXPLAIN_TABLE, you must train, and then load the model you want to use.

1. The following example trains a dataset with the classification machine learning task.

mysql> CALL sys.ML_TRAIN('census_data.census_train', 'revenue', JSON_OBJECT('task', 'classification'), @census_model);

2. The following example loads the trained model.

mysql> CALL sys.ML_MODEL_LOAD(@census_model, NULL);

For more information about training and loading models, see Train a Model and Load a Model.
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After training and loading the model, you can generate prediction explanations for a table. For
parameter and option descriptions, see ML_EXPLAIN_TABLE.

Generating Explanations for a Table with the Default Permutation Importance Explainer

After training and loading a model, you can run ML_EXPLAIN_TABLE to generate a table of
prediction explanations with the default Permutation Importance explainer>. However, if you train
the shap prediction explainer with ML_EXPLAIN, you need to run ML_EXPLAIN again with the
permutation_importance explainer before running ML_EXPLAIN_TABLE with the same explainer.

1. Run the ML_EXPLAIN_TABLE routine.

mysql> CALL sys.ML_EXPLAIN_TABLE(table_name, model_handle, output_table_name, [options]);

The following example runs ML_EXPLAIN_TABLE with the  permutation_importance
explainer.

mysql> CALL sys.ML_EXPLAIN_TABLE('census_data.census_train', @census_model, 'census_data.census_train_permutation', 
                                  JSON_OBJECT('prediction_explainer', 'permutation_importance'));

Where:

• census_data.census_train is the fully qualified name of the table that contains the training
dataset (schema_name.table_name).

• @census_model  is the session variable for the trained model.

• census_data.census_train_permutation is the fully qualified name of the output table
that contains the explanations (schema_name.table_name).

• prediction_explainer is set to permutation_importance for the Permutation
Importance prediction explainer.

2. Query the output table to review a sample of the results.

mysql> SELECT * FROM table_name LIMIT N;

The following example queries the top three rows of the output table.

mysql> SELECT * FROM census_train_permutation LIMIT 3;

| _4aad19ca6e_pk_id | age | workclass | fnlwgt | education  | education-num | marital-status     | occupation      | relationship | race  | sex    | capital-gain | capital-loss | hours-per-week | native-country | revenue | Prediction | age_attribution | education-num_attribution | marital-status_attribution | education_attribution | hours-per-week_attribution | relationship_attribution | race_attribution | sex_attribution | workclass_attribution | fnlwgt_attribution | capital-gain_attribution | Notes                                                                                                                                                      | ml_results                                                                                                                                                                                                                                                                                                                                                                                                                                     |

|                 1 |  37 | Private   |  99146 | Bachelors  |            13 | Married-civ-spouse | Exec-managerial | Husband      | White | Male   |            0 |         1977 |             50 | United-States  | >50K    | <=50K      |            -0.1 |                     -0.08 |                      -0.05 |                 -0.05 |                      -0.03 |                    -0.03 |             0.02 |           -0.02 |                  0.01 |                  0 |                        0 | race (White) had the largest impact towards predicting <=50K, whereas age (37) contributed the most against predicting <=50K                               | {"attributions": {"age": -0.1, "education-num": -0.08, "marital-status": -0.05, "education": -0.05, "hours-per-week": -0.03, "relationship": -0.03, "race": 0.02, "sex": -0.02, "workclass": 0.01, "fnlwgt": 0.0, "capital-gain": 0.0}, "predictions": {"revenue": "<=50K"}, "notes": "race (White) had the largest impact towards predicting <=50K, whereas age (37) contributed the most against predicting <=50K"}                          |
|                 2 |  34 | Private   |  27409 | 9th        |             5 | Married-civ-spouse | Craft-repair    | Husband      | White | Male   |            0 |            0 |             50 | United-States  | <=50K   | <=50K      |               0 |                         0 |                      -0.04 |                  0.06 |                      -0.03 |                     0.02 |             0.02 |           -0.02 |                  0.01 |                  0 |                        0 | education (9th) had the largest impact towards predicting <=50K, whereas marital-status (Married-civ-spouse) contributed the most against predicting <=50K | {"attributions": {"age": 0.0, "education-num": 0.0, "marital-status": -0.04, "education": 0.06, "hours-per-week": -0.03, "relationship": 0.02, "race": 0.02, "sex": -0.02, "workclass": 0.01, "fnlwgt": 0.0, "capital-gain": 0.0}, "predictions": {"revenue": "<=50K"}, "notes": "education (9th) had the largest impact towards predicting <=50K, whereas marital-status (Married-civ-spouse) contributed the most against predicting <=50K"} |
|                 3 |  30 | Private   | 299507 | Assoc-acdm |            12 | Separated          | Other-service   | Unmarried    | White | Female |            0 |            0 |             40 | United-States  | <=50K   | <=50K      |               0 |                         0 |                          0 |                     0 |                          0 |                     0.03 |             0.01 |            0.02 |                     0 |                  0 |                        0 | relationship (Unmarried) had the largest impact towards predicting <=50K                                                                                   | {"attributions": {"age": 0.0, "education-num": 0.0, "marital-status": 0.0, "education": 0.0, "hours-per-week": 0.0, "relationship": 0.03, "race": 0.01, "sex": 0.02, "workclass": 0.0, "fnlwgt": -0.0, "capital-gain": 0.0}, "predictions": {"revenue": "<=50K"}, "notes": "relationship (Unmarried) had the largest impact towards predicting <=50K"}                                                                                         |


The results display information on the columns that had the largest impact towards the predictions
and the columns that contributed the most against the prediction.

A warning displays if the model is of low quality.

Generating Explanations for a Table with the SHAP Explainer

To generate a table of prediction explanations with the SHAP explainer, you must first run the SHAP
explainer with ML_EXPLAIN.

1. Run the ML_EXPLAIN routine.

mysql> CALL sys.ML_EXPLAIN ('table_name', 'target_column_name', model_handle, [options]);

The following example run the shap prediction explainer.

mysql> CALL sys.ML_EXPLAIN('census_data.census_train', 'revenue', @census_model, JSON_OBJECT('prediction_explainer', 'shap'));
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Where:

• census_data.census_train is the fully qualified name of the table that contains the training
dataset (schema_name.table_name).

• revenue is the name of the target column, which contains ground truth values.

• @census_model  is the session variable for the trained model.

• prediction_explainer is set to shap for the SHAP prediction explainer.

2. Run the ML_EXPLAIN_TABLE routine.

mysql> CALL sys.ML_EXPLAIN_TABLE(table_name, model_handle, output_table_name, [options]);

The following example runs the shap prediction explainer.

mysql> CALL sys.ML_EXPLAIN_TABLE('census_data.census_train', @census_model, 'census_data.census_train_explanations', 
                                  JSON_OBJECT('prediction_explainer', 'shap'));

Where:

• census_data.census_train is the fully qualified name of the table that contains the training
dataset (schema_name.table_name).

• @census_model  is the session variable for the trained model.

• census_data.census_train_explanations is the fully qualified name of the output table
that contains the explanations (schema_name.table_name).

• prediction_explainer is set to shap for the SHAP prediction explainer.

3. Query the output table to review a sample of the results.

mysql> SELECT * FROM table_name LIMIT N;

The following example queries the top three rows of the output table.

mysql> SELECT * FROM census_train_explanations LIMIT 3;

| _4aad19ca6e_pk_id | age | workclass | fnlwgt | education  | education-num | marital-status     | occupation      | relationship | race  | sex    | capital-gain | capital-loss | hours-per-week | native-country | revenue | Prediction | age_attribution | capital-gain_attribution | education_attribution | education-num_attribution | fnlwgt_attribution | hours-per-week_attribution | marital-status_attribution | race_attribution | relationship_attribution | sex_attribution | workclass_attribution | ml_results|

|                 1 |  37 | Private   |  99146 | Bachelors  |            13 | Married-civ-spouse | Exec-managerial | Husband      | White | Male   |            0 |         1977 |             50 | United-States  | >50K    | <=50K      |      -0.0302428 |                0.0105781 |            -0.0250973 |                -0.0307275 |         -0.0394281 |                 -0.0115214 |                 -0.0417846 |       0.00787589 |               -0.0510622 |      -0.0265045 |             0.0125372 | {"predictions": {"revenue": "<=50K"}, "attributions": {"age_attribution": -0.03024279141207572, "capital-gain_attribution": 0.01057805203258716, "education_attribution": -0.025097336669631397, "education-num_attribution": -0.03072748073245629, "fnlwgt_attribution": -0.03942808683149933, "hours-per-week_attribution": -0.01152140445039615, "marital-status_attribution": -0.041784639464290424, "race_attribution": 0.00787588729783209, "relationship_attribution": -0.05106219218656989, "sex_attribution": -0.026504470317501083, "workclass_attribution": 0.012537165912050216}}   |
|                 2 |  34 | Private   |  27409 | 9th        |             5 | Married-civ-spouse | Craft-repair    | Husband      | White | Male   |            0 |            0 |             50 | United-States  | <=50K   | <=50K      |       0.0208705 |                0.0108355 |             0.0445232 |                0.00589651 |          -0.042798 |                 -0.0120815 |                 -0.0419652 |       0.00772465 |               -0.0284059 |      -0.0263092 |             0.0133885 | {"predictions": {"revenue": "<=50K"}, "attributions": {"age_attribution": 0.020870525610603933, "capital-gain_attribution": 0.010835454035912382, "education_attribution": 0.044523246311996556, "education-num_attribution": 0.005896512933976113, "fnlwgt_attribution": -0.04279802962032341, "hours-per-week_attribution": -0.012081540592359136, "marital-status_attribution": -0.04196518165858853, "race_attribution": 0.007724645581626567, "relationship_attribution": -0.028405864878017332, "sex_attribution": -0.026309175183378983, "workclass_attribution": 0.013388466297739862}} |
|                 3 |  30 | Private   | 299507 | Assoc-acdm |            12 | Separated          | Other-service   | Unmarried    | White | Female |            0 |            0 |             40 | United-States  | <=50K   | <=50K      |       0.0415136 |                0.0104095 |             0.0205295 |                0.00435879 |        -0.00299281 |                  0.0095282 |                  0.0237676 |       0.00823583 |                0.0288422 |       0.0345606 |            0.00340862 | {"predictions": {"revenue": "<=50K"}, "attributions": {"age_attribution": 0.04151362477220458, "capital-gain_attribution": 0.01040951100227322, "education_attribution": 0.020529478225449593, "education-num_attribution": 0.004358785226045173, "fnlwgt_attribution": -0.0029928127703645266, "hours-per-week_attribution": 0.009528199786418556, "marital-status_attribution": 0.023767622241075377, "race_attribution": 0.008235833643263954, "relationship_attribution": 0.028842206656526016, "sex_attribution": 0.03456064630884248, "workclass_attribution": 0.0034086183477553336}}    |


The results display feature importance values for each column.

A warning displays if the model is of low quality.

What's Next

• Review ML_EXPLAIN_TABLE for parameter descriptions and options.

• Learn how to Score a Model to get insight into the quality of the model.

4.5.7 Scoring a Model

ML_SCORE scores a model by generating predictions using the feature columns in a labeled dataset as
input and comparing the predictions to ground truth values in the target column of the labeled dataset.

You cannot score a model with a topic modeling task type.
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Before You Begin

• Review the following:

• Prepare Data

• Train a Model

• Load a Model

• Generate Predictions

• Generate Model Explanations

• Generate Prediction Explanations

ML_SCORE Overview

The dataset used with ML_SCORE should have the same feature columns as the dataset used to train
the model, but the data sample should be different from the data used to train the model. For example,
you might reserve 20 to 30 percent of a labeled dataset for scoring.

ML_SCORE returns a computed metric indicating the quality of the model. A value of None is reported
if a score for the specified or default metric cannot be computed. If an invalid metric is specified, the
following error message is reported: Invalid data for the metric. Score could not be
computed.

Models with a low score can be expected to perform poorly, producing predictions and explanations
that cannot be relied upon. A low score typically indicates that the provided feature columns are not
a good predictor of the target values. In this case, consider adding more rows or more informative
features to the training dataset.

You can also run ML_SCORE on the training dataset and a labeled test dataset and compare results to
ensure that the test dataset is representative of the training dataset. A high score on a training dataset
and low score on a test dataset indicates that the test data set is not representative of the training
dataset. In this case, consider adding rows to the training dataset that better represent the test dataset.

AutoML supports a variety of scoring metrics to help you understand how your model performs across
a series of benchmarks. The metric you select to score the model must be compatible with the task
type and the target data. See Optimization and Scoring Metrics.

Preparing to Score a Model

Before running ML_SCORE, you must train, and then load the trained model you want to use for scoring.

1. The following example trains a dataset with the classification machine learning task.

mysql> CALL sys.ML_TRAIN('census_data.census_train', 'revenue', JSON_OBJECT('task', 'classification'), @census_model);

2. The following example loads the trained model.

mysql> CALL sys.ML_MODEL_LOAD(@census_model, NULL);

For more information about training and loading models, see Train a Model and Load a Model.

After training and loading the model, prepare a table of labeled data to score that has a different set
of data from the trained model. This is considered the validation dataset. For parameter and option
descriptions, see ML_SCORE.

Scoring a Model

To score a model, run the ML_SCORE routine.

49



Learn About MySQL AI AutoML with NL2ML

mysql> CALL sys.ML_SCORE(table_name, target_column_name, model_handle, metric, score, [options]);

The following example uses the accuracy metric to compute model quality:

mysql> CALL sys.ML_SCORE('census_data.census_validate', 'revenue', @census_model, 'accuracy', @score, NULL);

Where:

• census_data.census_validate is the fully qualified name of the validation dataset table
(schema_name.table_name).

• revenue is the name of the target column containing ground truth values.

• @census_model is the session variable that contains the model handle.

• accuracy is the scoring metric. For other supported scoring metrics, see Optimization and Scoring
Metrics.

• @score is the user-defined session variable that stores the computed score. The ML_SCORE routine
populates the variable. User variables are written as @var_name. The examples in this guide use
@score as the variable name. Any valid name for a user-defined variable is permitted, for example
@my_score.

• NULL sets no options for the routine. To view available options, see ML_SCORE.

To retrieve the computed score, query the @score session variable.

mysql> SELECT @score;
+--------------------+
| @score             |
+--------------------+
| 0.8888888955116272 |
+--------------------+
1 row in set (0.0409 sec)

Review the score value and determine if the trained model is reliable enough for generating predictions
and explanations.

What's Next

• Review ML_SCORE for parameter descriptions and options.

• Review Machine Learning Use Cases to create machine learning models with sample datasets.

4.6 Learn About MySQL AI AutoML with NL2ML
The NL2ML routine enables you to learn about MySQL AI AutoML by providing relevant citations to
MySQL AI documentation. You can also leverage the ML_GENERATE routine or an MCP server with
external LLMs to generate AutoML queries you can copy and run.

This topic has the following sections.

• Before You Begin

• Load MySQL AI Documentation

• Use NL2ML with In-Database LLMs

• What's Next

Before You Begin

• To use this feature, you must load the appropriate version of MySQL AI documentation to the folder
defined by secure_file_priv. See Load MySQL AI Documentation.
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• Review the required tasks to Create a Machine Learning Model.

Load MySQL AI Documentation

Before using this feature, you must load the appropriate version of the MySQL AI documentation into
the MySQL AI directory defined by secure_file_priv.

To load the documentation:

1. In the top-right corner of this page, make sure that the correct verion of MySQL AI is selected.

2. In the bottom-left corner of this page, click the link to download the PDF version of the
documentation.

3. Rename the downloaded PDF file to mysql_ai_en.pdf.

4. Log into your MySQL AI instance and upload the PDF file to the MySQL AI directory defined by
secure_file_priv. Ensure that the file has the appropriate read access for all users, so that
MySQL AI can read the file.

If you do not know the appropriate directory, you can run the following command:

mysql> SELECT @@secure_file_priv

See LOAD DATA Statement.

Use NL2ML with In-Database LLMs

To use NL2ML to provide citations to MySQL HeatWave documentation, and then leverage in-database
LLMs to generate responses that include appropriate table schemas and commands, do the following:

• Set the skip_generate option to true with the @nl2ml_options session variable.

• Use ML_RETRIEVE_SCHEMA_METADATA to retrieve the table schema related to the question asked
during the NL2ML routine.

• Use GROUP_CONCAT() to build a compact context string from the citations provided by NL2ML.

• Use ML_GENERATE to specify the in-database LLM and generate the response to the question,
which includes the citations, context, and retrieved table schema.

See the following example.

To use in-database LLMs with NL2ML:

1. Specify the question and set it into a variable (@input).

mysql> SET @input = "How can I train a model to predict net worth of a singer?";

2. Set the skip_generate option to true with the @nl2ml_options session variable.

mysql> SET @nl2ml_options = JSON_OBJECT("skip_generate", true);

3. Run the NL2ML routine and include the previous variable that has the question.

mysql> CALL sys.NL2ML(@input, @out);

4. View the output generated from the question by selecting the @out variable.

mysql> SELECT JSON_PRETTY(@out);
JSON_PRETTY(@out)
{
  "citations": [
    {
      "segment": "<segment content>",
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      "distance": 0.1023,
      "document_name": <mysql_ai_en.pdf>,
      "segment_number": <segment number>
    },
    ...
  ],
  "retrieval_info": {
    "method": "n_citations",
    "threshold": 0.114
  }
}

The output includes citations with the following information:

• segment: The relevant excerpts from the MySQL AI documentation.

• distance: A value indicating how relevant the segment is to the question asked. A lower value
represents a more relevant segment.

• document_name: A reference to the MySQL AI documentation.

• segment_number: The index number identifying the segment.

5. Use ML_RETRIEVE_SCHEMA_METADATA to retrieve the most relevant table schema for the
previous question.

mysql> CALL sys.ML_RETRIEVE_SCHEMA_METADATA(@input, @retrieved, NULL);

6. Retrieve the table schema from the @retrieved variable.

mysql> SELECT @retrieved;
@retrieved
CREATE TABLE `mlcorpus`.`singer`(
  `Singer_ID` int,
  `Name` varchar,
  `Birth_Year` double,
  `Net_Worth_Millions` double,
  `Citizenship` varchar
);

7. Use GROUP_CONCAT() to build a compact context string from the citations provided by NL2ML.

mysql> SELECT GROUP_CONCAT(seg SEPARATOR '\n') INTO @ctx
FROM JSON_TABLE(JSON_EXTRACT(@out,'$.citations'),
'$[*]' COLUMNS (seg LONGTEXT PATH '$.segment')) AS jt;

8. Combine the retrieved table schema and citations as the final context.

mysql> SET @final_ctx = CONCAT(@ctx, '\n\nRetrieved tables:\n', @retrieved);

9. Use ML_GENERATE to specify an in-database LLM (llama3.2-3b-instruct-v1) and manually
create a SQL statement that includes the citations, context, and retrieved table schema.

mysql> SELECT sys.ML_GENERATE(
@input,
JSON_OBJECT(
"task", "generation",
"model_id", "llama3.2-3b-instruct-v1",
"context", @final_ctx
)
) INTO @result;

10. Generate the output and SQL text.

mysql> SELECT JSON_UNQUOTE(JSON_EXTRACT(@result,'$.text')) AS generated_sql;
generated_sql
To train a model to predict the net worth of a singer, you can use the ML_TRAIN routine. First, prepare your dataset, 
which in this case seems to be the 'singer' table in the 'mlcorpus' schema. Ensure that the table has the necessary columns, 
such as 'Singer_ID', 'Name', 'Birth_Year', 'Net_Worth_Millions', and 'Citizenship'. 
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The 'Net_Worth_Millions' column will be your target column for prediction. You may need to preprocess your data, 
for example, converting categorical variables like 'Name' and 'Citizenship' into numerical variables if necessary.

Then, you can call the ML_TRAIN routine with the appropriate options. For a regression task like predicting net worth, 
you would specify the task as 'regression' in the JSON options. Here's a simplified example:

```sql
CALL sys.ML_TRAIN('mlcorpus.singer', 
                  @model_handle, 
                  'Net_Worth_Millions', 
                  JSON_OBJECT('task', 'regression', 
                              'algorithm', 'XGBRegressor'));
```

Replace '@model_handle' with your actual model handle variable. This will train a model to predict the 'Net_Worth_Millions' 
based on the other columns in your 'singer' table. After training, you can use the ML_PREDICT_ROW or ML_PREDICT_TABLE routine 
to generate predictions for new, unseen data.

What's Next

• Review Machine Learning Use Cases.

• Review the syntax and examples for the NL2ML routine.

4.7 Machine Learning Use Cases

4.7.1 Classify Data

Classification models predict the discrete value of input data to specific predefined categories. Some
examples of classification include loan approvals, churn prediction, and spam detection.

The following tasks use a dataset generated by OCI GenAI using Meta Llama Models. The
classification use-case is to approve or reject loan applications for clients based on their personal and
socioeconomic status, assets, liabilities, credit rating, and past loan details.

To generate your own datasets for creating machine learning models in MySQL AI, learn how to
Generate Text-Based Content.

Note

Datasets were generated using Meta Llama models. Your use of this Llama
model is subject to your Oracle agreements and this Llama license agreement:
https://downloads.mysql.com/docs/LLAMA_31_8B_INSTRUCT-license.pdf.

4.7.1.1 Preparing Data for a Classification Model

This topic describes how to prepare the data to use for a classification machine learning model. It
uses a data sample generated by OCI GenAI. The classification use-case is to approve or reject loan
applications for clients based on their personal and socioeconomic status, assets, liabilities, credit
rating, and past loan details. To prepare the data for this use case, you set up a training dataset and
a testing dataset. The training dataset has 20 records, and the testing dataset has 10 records. In a
real-life use case, you should prepare a larger amount of records for training and testing, and ensure
the predictions are valid and reliable before testing on unlabeled data. To ensure reliable predictions,
you should create an additional validation dataset. You can reserve 20% of the records in the training
dataset to create the validation dataset.

You have the option to automatically Prepare Training and Testing Datasets with your own data by
using the TRAIN_TEST_SPLIT routine.

Before You Begin

• Learn how to Prepare Data.
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Preparing Data

To prepare the data for the classification model:

1. Connect to the MySQL Server.

2. Create and use the database to store the data.

mysql> CREATE DATABASE classification_data;
mysql> USE classification_data;

3. Create the table to insert the sample data into. This is the training dataset.

mysql> CREATE TABLE Loan_Training (
    ClientID INT PRIMARY KEY,
    ClientAge INT NOT NULL,
    Gender VARCHAR(10) NOT NULL,
    Education VARCHAR(50) NOT NULL,
    Occupation VARCHAR(50) NOT NULL,
    Income REAL NOT NULL,
    Debt REAL NOT NULL,
    CreditScore INT NOT NULL,
    Assets REAL NOT NULL,
    Liabilities REAL NOT NULL,
    LoanType VARCHAR(20) NOT NULL,
    LoanAmount REAL NOT NULL,
    Approved VARCHAR(10) NOT NULL
);

4. Insert the sample data into the table. Copy and paste the following commands.

INSERT INTO Loan_Training (ClientID, ClientAge, Gender, Education, Occupation, Income, Debt, CreditScore, Assets, Liabilities, LoanType, LoanAmount, Approved) VALUES
(101, 30, 'Male', 'Bachelor''s', 'Engineer', 75000, 15000, 700, 300000, 80000, 'Home', 250000, 'Approved'),
(102, 25, 'Female', 'Master''s', 'Analyst', 60000, 10000, 680, 200000, 50000, 'Personal', 120000, 'Rejected'),
(103, 40, 'Male', 'High School', 'Manager', 80000, 20000, 650, 450000, 120000, 'Business', 150000, 'Approved'),
(104, 35, 'Female', 'PhD', 'Doctor', 120000, 30000, 750, 600000, 250000, 'Car', 30000, 'Approved'),
(105, 28, 'Male', 'College', 'IT Specialist', 55000, 8000, 620, 280000, 90000, 'Education', 80000, 'Rejected'),
(106, 45, 'Female', 'Bachelor''s', 'Teacher', 70000, 15000, 720, 500000, 180000, 'Home', 200000, 'Approved'),
(107, 32, 'Male', 'Associate', 'Sales', 65000, 12000, 670, 350000, 100000, 'Vacation', 18000, 'Rejected'),
(108, 22, 'Female', 'College', 'Student', 30000, 5000, 660, 150000, 40000, 'Education', 10000, 'Approved'),
(109, 50, 'Male', 'Master''s', 'Lawyer', 110000, 40000, 780, 700000, 350000, 'Investment', 500000, 'Rejected'),
(110, 38, 'Female', 'High School', 'Nurse', 52000, 18000, 640, 220000, 120000, 'Medical', 35000, 'Approved'),
(111, 48, 'Male', 'Diploma', 'Plumber', 48000, 10000, 600, 180000, 70000, 'Home Improvement', 25000, 'Rejected'),
(112, 55, 'Female', 'Bachelor''s', 'Writer', 90000, 25000, 760, 400000, 200000, 'Retirement', 150000, 'Approved'),
(113, 36, 'Male', 'Master''s', 'Accountant', 78000, 22000, 740, 380000, 150000, 'Refinance', 200000, 'Approved'),
(114, 24, 'Female', 'College', 'Designer', 45000, 7000, 610, 250000, 100000, 'Startup', 50000, 'Rejected'),
(115, 42, 'Male', 'PhD', 'Scientist', 130000, 50000, 800, 550000, 300000, 'Research', 400000, 'Approved'),
(116, 52, 'Female', 'Master''s', 'Marketer', 85000, 35000, 770, 480000, 280000, 'Marketing', 120000, 'Rejected'),
(117, 34, 'Male', 'Bachelor''s', 'Programmer', 68000, 16000, 690, 320000, 110000, 'Equipment', 85000, 'Approved'),
(118, 26, 'Female', 'Associate', 'Retail', 42000, 6000, 630, 200000, 70000, 'Wedding', 28000, 'Rejected'),
(119, 46, 'Male', 'College', 'Pilot', 100000, 45000, 710, 520000, 250000, 'Boat', 350000, 'Approved'),
(120, 58, 'Female', 'PhD', 'Professor', 140000, 60000, 820, 650000, 450000, 'Real Estate', 550000, 'Rejected');

5. Create the table to use for generating predictions and explanations. This is the test dataset. It has
the same columns as the training dataset, but the target column, Approved, is not considered
when generating predictions or explanations.

mysql> CREATE TABLE Loan_Testing (
    ClientID INT PRIMARY KEY,
    ClientAge INT NOT NULL,
    Gender VARCHAR(10) NOT NULL,
    Education VARCHAR(50) NOT NULL,
    Occupation VARCHAR(50) NOT NULL,
    Income REAL NOT NULL,
    Debt REAL NOT NULL,
    CreditScore INT NOT NULL,
    Assets REAL NOT NULL,
    Liabilities REAL NOT NULL,
    LoanType VARCHAR(20) NOT NULL,
    LoanAmount REAL NOT NULL,
    Approved VARCHAR(10) NOT NULL
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);

6. Insert the sample data into the table. Copy and paste the following commands.

INSERT INTO Loan_Testing (ClientID, ClientAge, Gender, Education, Occupation, Income, Debt, CreditScore, Assets, Liabilities, LoanType, LoanAmount, Approved) VALUES
(201, 38, 'Male', 'College', 'Architect', 62000, 18000, 660, 380000, 160000, 'Home', 280000, 'Approved'),
(202, 29, 'Female', 'Master''s', 'HR Manager', 58000, 12000, 690, 260000, 110000, 'Personal', 150000, 'Rejected'),
(203, 44, 'Male', 'Bachelor''s', 'Chef', 72000, 25000, 730, 420000, 200000, 'Business', 180000, 'Approved'),
(204, 56, 'Female', 'PhD', 'Psychologist', 105000, 35000, 790, 580000, 320000, 'Car', 40000, 'Rejected'),
(205, 31, 'Male', 'High School', 'Carpenter', 50000, 8000, 610, 240000, 85000, 'Education', 90000, 'Approved'),
(206, 27, 'Female', 'College', 'Artist', 48000, 7000, 640, 220000, 95000, 'Art', 150000, 'Rejected'),
(207, 49, 'Male', 'Associate', 'Electrician', 55000, 15000, 670, 300000, 120000, 'Home Improvement', 20000, 'Approved'),
(208, 53, 'Female', 'Bachelor''s', 'Journalist', 88000, 30000, 750, 460000, 280000, 'Travel', 180000, 'Rejected'),
(209, 37, 'Male', 'Master''s', 'Financial Advisor', 76000, 22000, 700, 360000, 150000, 'Investment', 250000, 'Approved'),
(210, 23, 'Female', 'College', 'Intern', 35000, 5000, 600, 160000, 60000, 'Education', 20000, 'Rejected');

What's Next

• Learn how to Train a Classification Model.

4.7.1.2 Training a Classification Model

After preparing the data for a classification model, you can train the model.

Before You Begin

• Review and complete all the tasks to Prepare Data for a Classification Model.

Training the Model

Train the model with the ML_TRAIN routine and use the training_data table previously created.
Before training the model, it is good practice to define the model handle instead of automatically
creating one. See Defining Model Handle.

1. Optionally, set the value of the session variable, which sets the model handle to this same value.

mysql> SET @variable = 'model_handle';

Replace @variable and model_handle with your own definitions. For example:

mysql> SET @model='classification_use_case';

The model handle is set to classification_use_case.

2. Run the ML_TRAIN routine.

mysql> CALL sys.ML_TRAIN('table_name', 'target_column_name', JSON_OBJECT('task', 'task_name'), model_handle);

Replace table_name, target_column_name, task_name, and model_handle with your own
values.

The following example runs ML_TRAIN on the training dataset previously created.

mysql> CALL sys.ML_TRAIN('classification_data.Loan_Training', 'Approved', JSON_OBJECT('task', 'classification'), @model);

Where:

• classification_data.Loan_Training is the fully qualified name of the table that contains
the training dataset (database_name.table_name).

• Approved is the name of the target column, which contains ground truth values.

• JSON_OBJECT('task', 'classification') specifies the machine learning task type.

• @model is the session variable previously set that defines the model handle to the name defined
by the user: classification_use_case. If you do not define the model handle before training
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the model, the model handle is automatically generated, and the session variable only stores the
model handle for the duration of the connection. User variables are written as @var_name. Any
valid name for a user-defined variable is permitted. See Work with Model Handles to learn more.

3. When the training operation finishes, the model handle is assigned to the @model session variable,
and the model is stored in the model catalog. View the entry in the model catalog with the following
query. Replace user1 with your MySQL account name.

mysql> SELECT model_id, model_handle, train_table_name FROM ML_SCHEMA_user1.MODEL_CATALOG WHERE model_handle = 'classification_use_case';
+----------+----------------------------------------------+-------------------------------------+
| model_id | model_handle                                 | train_table_name                    |
+----------+----------------------------------------------+-------------------------------------+
|        1 | classification_use_case                      | classification_data.Loan_Training   |
+----------+----------------------------------------------+-------------------------------------+

What's Next

• Learn how to Generate Predictions for a Classification Model.

4.7.1.3 Generating Predictions for a Classification Model

After training the model, you can generate predictions.

To generate predictions, use the sample data from the testing_data dataset. Even though the table
has labels for the Approved target column, the column is not considered when generating predictions.
This allows you to compare the predictions to the actual values in the dataset and determine if the
predictions are reliable. Once you determine the trained model is reliable for generating predictions,
you can start using unlabeled datasets for generating predictions.

Before You Begin

Complete the following tasks:

• Prepare Data for a Classification Model

• Train a Classification Model

Generating Predictions for a Table

1. If not already done, load the model. You can use the session variable for the model that is valid for
the duration of the connection. Alternatively, you can use the model handle previously set. For the
option to set the user name, you can set it to NULL.

The following example uses the session variable.

mysql> CALL sys.ML_MODEL_LOAD(@model, NULL);

The following example uses the model handle.

mysql> CALL sys.ML_MODEL_LOAD('classification_use_case', NULL);

2. Make predictions for the test dataset by using the ML_PREDICT_TABLE routine.

mysql> CALL sys.ML_PREDICT_TABLE(table_name, model_handle, output_table_name), [options]);

Replace table_name, model_handle, and output_table_name with your own values. Add
options as needed.

You have the option to specify the input table and output table as the same table if specific
conditions are met. See Input Tables and Output Tables to learn more.

The following example runs ML_PREDICT_TABLE on the testing dataset previously created.

mysql> CALL sys.ML_PREDICT_TABLE('classification_data.Loan_Testing', @model, 'classification_data.Loan_Testing_predictions',NULL);
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Where:

• classification_data.Loan_Testing is the fully qualified name of the input table that
contains the data to generate predictions for (database_name.table_name).

• @model is the session variable for the model handle.

• classification_data.Loan_Testing_predictions is the fully qualified name of the
output table with predictions (database_name.table_name).

• NULL sets no options for the routine.

3. Query the Approved, Prediction, and ml_results columns from the output table. This allows
you to compare the real value with the generated prediction. You can also review the probabilities
for each prediction. If needed, you can also query all the columns from the table (SELECT * FROM
classification_predictions) to review all the data at once.

mysql> SELECT Approved, Prediction, ml_results FROM Loan_Testing_predictions;
+----------+------------+------------------------------------------------------------------------------------------------------+
| Approved | Prediction | ml_results                                                                                           |
+----------+------------+------------------------------------------------------------------------------------------------------+
| Approved | Approved   | {"predictions": {"Approved": "Approved"}, "probabilities": {"Approved": 0.9838, "Rejected": 0.0162}} |
| Rejected | Rejected   | {"predictions": {"Approved": "Rejected"}, "probabilities": {"Approved": 0.1135, "Rejected": 0.8865}} |
| Approved | Approved   | {"predictions": {"Approved": "Approved"}, "probabilities": {"Approved": 0.986, "Rejected": 0.014}}   |
| Rejected | Rejected   | {"predictions": {"Approved": "Rejected"}, "probabilities": {"Approved": 0.0962, "Rejected": 0.9038}} |
| Approved | Rejected   | {"predictions": {"Approved": "Rejected"}, "probabilities": {"Approved": 0.0409, "Rejected": 0.9591}} |
| Rejected | Rejected   | {"predictions": {"Approved": "Rejected"}, "probabilities": {"Approved": 0.1082, "Rejected": 0.8918}} |
| Approved | Approved   | {"predictions": {"Approved": "Approved"}, "probabilities": {"Approved": 0.5535, "Rejected": 0.4465}} |
| Rejected | Rejected   | {"predictions": {"Approved": "Rejected"}, "probabilities": {"Approved": 0.1695, "Rejected": 0.8305}} |
| Approved | Approved   | {"predictions": {"Approved": "Approved"}, "probabilities": {"Approved": 0.9838, "Rejected": 0.0162}} |
| Rejected | Approved   | {"predictions": {"Approved": "Approved"}, "probabilities": {"Approved": 0.5542, "Rejected": 0.4458}} |
+----------+------------+------------------------------------------------------------------------------------------------------+
10 rows in set (0.0430 sec)

The results show that two predictions do not match up with the real values.

To learn more about generating predictions for one or more rows of data, see Generate Predictions for
a Row of Data.

What's Next

• Learn now to Query Model Explanation and Generate Prediction Explanations for a Classification
Model.

4.7.1.4 Query Model Explanation and Generate Prediction Explanations for a
Classification Model

After training a classification model, you can query the default model explanation or query new model
explanations. You can also generate prediction explanations. Explanations help you understand which
features had the most influence on generating predictions.

Feature importance is presented as an attribution value. A positive value indicates that a feature
contributed toward the prediction. A negative value can have different interpretations depending on
the specific model explainer used for the model. For example, a negative value for the permutation
importance explainer means that the feature is not important.

Before You Begin

Complete the following tasks:

• Prepare Data for a Classification Model

• Train a Classification Model
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• Generate Predictions for a Classification Model

Generating the Model Explanation

After training a model, you can query the default model explanation with the Permutation Importance
explainer.

To generate explanations for other model explainers, see  Generate Model Explanations and
ML_EXPLAIN.

Query the model_explanation column from the model catalog and define the model handle
previously created. Update user1 with your own user name. Use JSON_PRETTY to view the output in
an easily readable format.

mysql> SELECT JSON_PRETTY(model_explanation) FROM ML_SCHEMA_user1.MODEL_CATALOG 
     WHERE model_handle='classification_use_case';
+---------------------------------------------------------------------------------------------------+
| JSON_PRETTY(model_explanation)                                                                    |
+---------------------------------------------------------------------------------------------------+
| {
  "permutation_importance": {
    "Debt": 0.5014,
    "Assets": 0.0,
    "Gender": 0.0,
    "Income": 0.0,
    "ClientID": 0.0,
    "LoanType": 0.0,
    "ClientAge": 0.1231,
    "Education": 0.0,
    "LoanAmount": 0.0,
    "Occupation": 0.0,
    "CreditScore": 0.0,
    "Liabilities": 0.0525
  }
} |
+---------------------------------------------------------------------------------------------------+
1 row in set (0.0382 sec)

Feature importance values display for each column.

Generating Prediction Explanations for a Table

After training a model, you can generate a table of prediction explanations on the testing_data
dataset by using the default Permutation Importance prediction explainer.

To generate explanations for other model explainers, see  Generate Prediction Explanations and
ML_EXPLAIN_TABLE.

1. If not already done, load the model. You can use the session variable for the model that is valid for
the duration of the connection. Alternatively, you can use the model handle previously set. For the
option to set the user name, you can set it to NULL.

The following example uses the session variable.

mysql> CALL sys.ML_MODEL_LOAD(@model, NULL);

The following example uses the model handle.

mysql> CALL sys.ML_MODEL_LOAD('classification_use_case', NULL);

2. Use the ML_EXPLAIN_TABLE routine to generate explanations for predictions made in the test
dataset.

mysql> CALL sys.ML_EXPLAIN_TABLE(table_name, model_handle, output_table_name, [options]);

Replace table_name, model_handle, and output_table_name with your own values. Add
options as needed.
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You have the option to specify the input table and output table as the same table if specific
conditions are met. See Input Tables and Output Tables to learn more.

The following example runs ML_EXPLAIN_TABLE on the testing dataset previously created.

mysql> CALL sys.ML_EXPLAIN_TABLE('classification_data.Loan_Testing', @model, 'classification_data.Loan_Testing_explanations',
                                  JSON_OBJECT('prediction_explainer', 'permutation_importance'));
Query OK, 0 rows affected (12.2957 sec)

Where:

• classification_data.Loan_Testing is the fully qualified name of the test dataset.

• @model is the session variable for the model handle.

• classification_data.Loan_Testing_explanations is the fully qualified name of the
output table with explanations.

• permutation_importance is the selected prediction explainer to use to generate
explanations.

3. Query Notes and ml_results from the output table to review which column contributed the most
against or had the largest impact towards the prediction. You can also review individual attribution
values for each column. Use \G to view the output in an easily readable format.

mysql> SELECT Notes, ml_results FROM Loan_Testing_explanations\G
*************************** 1. row ***************************
     Notes: Debt (18000.0) had the largest impact towards predicting Approved
ml_results: {"attributions": {"Debt": 0.87, "Liabilities": -0.0, "ClientAge": 0.0, "LoanAmount": 0.0}, 
             "predictions": {"Approved": "Approved"}, "notes": "Debt (18000.0) had the largest impact towards predicting Approved"}
*************************** 2. row ***************************
     Notes: ClientAge (29) had the largest impact towards predicting Rejected, whereas Debt (12000.0) contributed the most against predicting Rejected
ml_results: {"attributions": {"Debt": -0.01, "Liabilities": 0.02, "ClientAge": 0.17, "LoanAmount": 0.08}, 
             "predictions": {"Approved": "Rejected"}, "notes": "ClientAge (29) had the largest impact towards predicting Rejected, whereas Debt (12000.0) contributed the most against predicting Rejected"}
*************************** 3. row ***************************
     Notes: Debt (25000.0) had the largest impact towards predicting Approved
ml_results: {"attributions": {"Debt": 0.87, "Liabilities": -0.0, "ClientAge": 0.0, "LoanAmount": 0.0}, 
             "predictions": {"Approved": "Approved"}, "notes": "Debt (25000.0) had the largest impact towards predicting Approved"}
*************************** 4. row ***************************
     Notes: ClientAge (56) had the largest impact towards predicting Rejected, whereas Debt (35000.0) contributed the most against predicting Rejected
ml_results: {"attributions": {"Debt": -0.07, "Liabilities": 0.52, "ClientAge": 0.75, "LoanAmount": 0.01}, 
             "predictions": {"Approved": "Rejected"}, "notes": "ClientAge (56) had the largest impact towards predicting Rejected, whereas Debt (35000.0) contributed the most against predicting Rejected"}
*************************** 5. row ***************************
     Notes: LoanAmount (90000.0) had the largest impact towards predicting Rejected
ml_results: {"attributions": {"Debt": 0.0, "Liabilities": 0.01, "ClientAge": 0.1, "LoanAmount": 0.14}, 
             "predictions": {"Approved": "Rejected"}, "notes": "LoanAmount (90000.0) had the largest impact towards predicting Rejected"}
*************************** 6. row ***************************
     Notes: ClientAge (27) had the largest impact towards predicting Rejected
ml_results: {"attributions": {"Debt": -0.0, "Liabilities": 0.01, "ClientAge": 0.16, "LoanAmount": 0.08}, 
             "predictions": {"Approved": "Rejected"}, "notes": "ClientAge (27) had the largest impact towards predicting Rejected"}
*************************** 7. row ***************************
     Notes: Debt (15000.0) had the largest impact towards predicting Approved, whereas ClientAge (49) contributed the most against predicting Approved
ml_results: {"attributions": {"Debt": 0.49, "Liabilities": -0.07, "ClientAge": -0.43, "LoanAmount": 0.0}, 
             "predictions": {"Approved": "Approved"}, "notes": "Debt (15000.0) had the largest impact towards predicting Approved, whereas ClientAge (49) contributed the most against predicting Approved"}
*************************** 8. row ***************************
     Notes: ClientAge (53) had the largest impact towards predicting Rejected, whereas Debt (30000.0) contributed the most against predicting Rejected
ml_results: {"attributions": {"Debt": -0.13, "Liabilities": 0.56, "ClientAge": 0.68, "LoanAmount": -0.07}, 
             "predictions": {"Approved": "Rejected"}, "notes": "ClientAge (53) had the largest impact towards predicting Rejected, whereas Debt (30000.0) contributed the most against predicting Rejected"}
*************************** 9. row ***************************
     Notes: Debt (22000.0) had the largest impact towards predicting Approved
ml_results: {"attributions": {"Debt": 0.87, "Liabilities": -0.0, "ClientAge": 0.0, "LoanAmount": 0.0}, 
             "predictions": {"Approved": "Approved"}, "notes": "Debt (22000.0) had the largest impact towards predicting Approved"}
*************************** 10. row ***************************
     Notes: No features had a significant impact on model prediction
ml_results: {"attributions": {"Debt": 0.0, "Liabilities": 0.0, "ClientAge": 0.0, "LoanAmount": 0.0}, 
             "predictions": {"Approved": "Approved"}, "notes": "No features had a significant impact on model prediction"}
10 rows in set (0.0461 sec)
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To generate prediction explanations for one or more rows of data, see Generate Prediction
Explanations for a Row of Data.

What's Next

• Learn how to Score a Classification Model.

4.7.1.5 Scoring a Classification Model

After generating predictions and explanations, you can score the model to assess its reliability. For
a list of scoring metrics you can use with classification models, see Classification Metrics. For this
use case, you use the test dataset for validation. In a real-world use case, you should use a separate
validation dataset that has the target column and ground truth values for the scoring validation. You
should also use a larger number of records for training and validation to get a valid score.

Before You Begin

Complete the following tasks:

• Prepare Data for a Classification Model

• Train a Classification Model

• Generate Predictions for a Classification Model

• Query Model Explanation and Generate Prediction Explanations for a Classification Model

Scoring the Model

1. If not already done, load the model. You can use the session variable for the model that is valid for
the duration of the connection. Alternatively, you can use the model handle previously set. For the
option to set the user name, you can set it to NULL.

The following example uses the session variable.

mysql> CALL sys.ML_MODEL_LOAD(@model, NULL);

The following example uses the model handle.

mysql> CALL sys.ML_MODEL_LOAD('classification_use_case', NULL);

2. Score the model with the ML_SCORE routine and use the accuracy metric.

mysql> CALL sys.ML_SCORE(table_name, target_column_name, model_handle, metric, score, [options]);

Replace table_name, target_column_name, model_handle, metric, score with your own
values.

The following example runs ML_SCORE on the testing dataset previously created.

mysql> CALL sys.ML_SCORE('classification_data.Loan_Testing', 'Approved', @model, 'accuracy', @classification_score, NULL);

Where:

• classification_data.Loan_Testing is the fully qualified name of the validation dataset.

• Approved is the target column name with ground truth values.

• @model is the session variable for the model handle.

• accuracy is the selected scoring metric.

• @classification_score is the session variable name for the score value.
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• NULL means that no other options are defined for the routine.

3. Retrieve the score by querying the @classification_score session variable.

mysql> SELECT @classification_score;
+-----------------------+
| @classification_score |
+-----------------------+
|     0.800000011920929 |
+-----------------------+
1 row in set (0.0431 sec)

4. If done working with the model, unload it with the ML_MODEL_UNLOAD routine.

mysql> CALL sys.ML_MODEL_UNLOAD('classification_use_case');

To avoid consuming too much memory, it is good practice to unload a model when you are finished
using it.

What's Next

• Review other Machine Learning Use Cases.

4.7.2 Perform Regression Analysis

Machine learning regression models generate predictions based on the relationship between a
dependent variable and one or more independent variables. Some examples of regression analysis
include predicting sales during different seasons, predicting purchasing behavior on a website based
on the characteristics of website visitors, and predicting the sale price of residences based on their
size.

The following tasks use a dataset generated by OCI GenAI using Meta Llama Models. The regression
use-case is to predict house prices based on the size of the house, the address of the house, and the
state the house is located in.

To generate your own datasets to create machine learning models in MySQL AI, learn how to Generate
Text-Based Content.

Note

Datasets were generated using Meta Llama models. Your use of this Llama
model is subject to your Oracle agreements and this Llama license agreement:
https://downloads.mysql.com/docs/LLAMA_31_8B_INSTRUCT-license.pdf.

4.7.2.1 Preparing Data for a Regression Model

This topic describes how to prepare the data to use for a regression machine learning model. It uses
a data sample generated by OCI GenAI. The regression use-case is to predict house prices based on
the size of the house, the address of the house, and the state the house is located in. To prepare the
data for this use case, you set up a training dataset and a testing dataset. The training dataset has 20
records, and the testing dataset has 10 records. In a real-life use case, you should prepare a larger
amount of records for training and testing, and ensure the predictions are valid and reliable before
testing on unlabeled data. To ensure reliable predictions, you should create an additional validation
dataset. You can reserve 20% of the records in the training dataset to create the validation dataset.

You have the option to automatically Prepare Training and Testing Datasets with your own data by
using the TRAIN_TEST_SPLIT routine.

Before You Begin

• Learn how to Prepare Data.
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Preparing Data

To prepare the data for the regression model:

1. Connect to the MySQL Server.

2. Create and use the database to store the data.

mysql> CREATE DATABASE regression_data;
mysql> USE regression_data;

3. Create the table to insert the sample data into. This is the training dataset.

mysql> CREATE TABLE house_price_training (
    id INT PRIMARY KEY,
    house_size INT,
    address TEXT,
    state TEXT,
    price INT
);

4. Insert the sample data into the table. Copy and paste the following commands.

INSERT INTO house_price_training (id, house_size, address, state, price)
VALUES 
    (1, 1500, '123 Main St', 'California', 500000),
    (2, 2000, '456 Elm St', 'Texas', 650000),
    (3, 1800, '789 Oak Ave', 'New York', 700000),
    (4, 1200, '222 Pine Rd', 'Florida', 420000),
    (5, 1600, '555 Maple Lane', 'Washington', 550000),
    (6, 2500, '888 River Blvd', 'California', 800000),
    (7, 1300, '333 Creek St', 'Texas', 480000),
    (8, 1700, '666 Mountain Rd', 'Colorado', 520000),
    (9, 1400, '999 Valley View', 'New York', 580000),
    (10, 1900, '111 Ocean Blvd', 'Florida', 620000),
    (11, 1550, '2222 Lake Dr', 'Illinois', 540000),
    (12, 2100, '3333 Forest Ave', 'Texas', 750000),
    (13, 1650, '4444 Desert Rd', 'Arizona', 570000),
    (14, 1250, '5555 Riverbank St', 'Washington', 450000),
    (15, 1850, '6666 Sky Blvd', 'California', 720000),
    (16, 1350, '7777 Meadow Lane', 'Ohio', 490000),
    (17, 2050, '8888 Hill St', 'New York', 850000),
    (18, 1450, '9999 Creek Rd', 'Florida', 590000),
    (19, 1750, '10101 Ocean Ave', 'Texas', 680000),
    (20, 1580, '11111 Pine St', 'Illinois', 560000);

5. Create the table to use for generating predictions and explanations. This is the test dataset. It has
the same columns as the training dataset, but the target column, price, is not considered when
generating predictions or explanations.

mysql> CREATE TABLE house_price_testing (
    id INT PRIMARY KEY,
    house_size INT,
    address TEXT,
    state TEXT,
    price INT
);

6. Insert the sample data into the table. Copy and paste the following commands.

INSERT INTO house_price_testing (id, house_size, address, state, price)
VALUES 
    (1, 1400, '500 Elm St', 'Nevada', 470000),
    (2, 1900, '200 River Rd', 'California', 630000),
    (3, 1600, '300 Mountain Ave', 'Colorado', 530000),
    (4, 2200, '400 Lake Blvd', 'New York', 780000),
    (5, 1300, '500 Creek Lane', 'Texas', 460000),
    (6, 1700, '600 Valley View Rd', 'Florida', 510000),
    (7, 1500, '700 Ocean St', 'Washington', 500000),
    (8, 1800, '800 Sky Blvd', 'Oregon', 600000),
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    (9, 1200, '900 Meadow Ave', 'Illinois', 430000),
    (10, 2100, '1000 Hill Rd', 'New Jersey', 760000);

What's Next

• Learn how to Train a Regression Model.

4.7.2.2 Training a Model for Regression

After preparing the data for a regression model, you can train the model.

Before You Begin

• Review and complete all the tasks to Prepare Data for a Regression Model.

Training the Model

Train the model with the ML_TRAIN routine and use the house_price_training table previously
created. Before training the model, it is good practice to define the model handle instead of
automatically creating one. See Defining Model Handle.

1. Optionally, set the value of the session variable, which sets the model handle to this same value.

mysql> SET @variable = 'model_handle';

Replace @variable and model_handle with your own definitions. For example:

mysql> SET @model='regression_use_case';

The model handle is set to regression_use_case.

2. Run the ML_TRAIN routine.

mysql> CALL sys.ML_TRAIN('table_name', 'target_column_name', JSON_OBJECT('task', 'task_name'), @variable);

Replace table_name, target_column_name, task_name, and variable with your own
values.

The following example runs ML_TRAIN on the training dataset previously created.

mysql> CALL sys.ML_TRAIN('regression_data.house_price_training', 'price', JSON_OBJECT('task', 'regression'), @model);

Where:

• regression_data.house_price_training is the fully qualified name of the table that
contains the training dataset (database_name.table_name).

• price is the name of the target column, which contains ground truth values.

• JSON_OBJECT('task', 'regression') specifies the machine learning task type.

• @model is the session variable previously set that defines the model handle to the name defined
by the user: regression_use_case. If you do not define the model handle before training the
model, the model handle is automatically generated, and the session variable only stores the
model handle for the duration of the connection. User variables are written as @var_name. Any
valid name for a user-defined variable is permitted. See Work with Model Handles to learn more.

3. When the training operation finishes, the model handle is assigned to the @model session variable,
and the model is stored in the model catalog. View the entry in the model catalog with the following
query. Replace user1 with your MySQL account name.

mysql> SELECT model_id, model_handle, train_table_name FROM ML_SCHEMA_user1.MODEL_CATALOG WHERE model_handle = 'regression_use_case';
+----------+----------------------------------------------+----------------------------------------+
| model_id | model_handle                                 | train_table_name                       |

63



Perform Regression Analysis

+----------+----------------------------------------------+----------------------------------------+
|        2 | regression_use_case                          | regression_data.house_price_training   |
+----------+----------------------------------------------+----------------------------------------+

What's Next

• Learn how to Generate Predictions for a Regression Model.

4.7.2.3 Generating Predictions for a Regression Model

After training the model, you can generate predictions.

To generate predictions, use the sample data from the house_price_testing dataset. Even though
the table has labels for the price target column, the column is not considered when generating
predictions. This allows you to compare the predictions to the actual values in the dataset and
determine if the predictions are reliable. Once you determine the trained model is reliable for
generating predictions, you can start using unlabeled datasets for generating predictions.

Before You Begin

Complete the following tasks:

• Prepare Data for a Regression Model

• Train a Regression Model

Generating Predictions for a Table

1. If not already done, load the model. You can use the session variable for the model that is valid for
the duration of the connection. Alternatively, you can use the model handle previously set. For the
option to set the user name, you can set it to NULL.

The following example uses the session variable.

mysql> CALL sys.ML_MODEL_LOAD(@model, NULL);

The following example uses the model handle.

mysql> CALL sys.ML_MODEL_LOAD('regression_use_case', NULL);

2. Make predictions for the test dataset by using the ML_PREDICT_TABLE routine.

mysql> CALL sys.ML_PREDICT_TABLE(table_name, model_handle, output_table_name), [options]);

Replace table_name, model_handle, and output_table_name with your own values. Add
options as needed.

You have the option to specify the input table and output table as the same table if specific
conditions are met. See Input Tables and Output Tables to learn more.

The following example runs ML_PREDICT_TABLE on the testing dataset previously created.

mysql> CALL sys.ML_PREDICT_TABLE('regression_data.house_price_testing', @model, 'regression_data.house_price_predictions', NULL);

Where:

• regression_data.house_price_testing is the fully qualified name of the input table that
contains the data to generate predictions for (database_name.table_name).

• @model is the session variable for the model handle.

• regression_data.house_price_predictions is the fully qualified name of the output
table with predictions (database_name.table_name).
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• NULL sets no options for the routine.

3. Query the price, Prediction, and ml_results columns from the output table. This allows
you to compare the real value with the generated prediction. If needed, you can also query all the
columns from the table (SELECT * FROM house_price_predictions) to review all the data at
once.

mysql> SELECT price, Prediction, ml_results FROM house_price_predictions;
+--------+------------+------------------------------------------+
| price  | Prediction | ml_results                               |
+--------+------------+------------------------------------------+
| 470000 |     534372 | {"predictions": {"price": 534371.5625}}  |
| 630000 |     669040 | {"predictions": {"price": 669040.125}}   |
| 530000 |     512676 | {"predictions": {"price": 512676.40625}} |
| 780000 |     794059 | {"predictions": {"price": 794059.0}}     |
| 460000 |     489206 | {"predictions": {"price": 489206.0}}     |
| 510000 |     534240 | {"predictions": {"price": 534239.8125}}  |
| 500000 |     532544 | {"predictions": {"price": 532543.9375}}  |
| 600000 |     698540 | {"predictions": {"price": 698539.9375}}  |
| 430000 |     454276 | {"predictions": {"price": 454275.5}}     |
| 760000 |     794059 | {"predictions": {"price": 794059.0}}     |
+--------+------------+------------------------------------------+
10 rows in set (0.0417 sec)

Review the predictions and compare with the real prices.

To learn more about generating predictions for one or more rows of data, see Generate Predictions for
a Row of Data.

What's Next

• Learn now to Query Model Explanation and Generate Prediction Explanations for a Regression
Model.

4.7.2.4 Query Model Explanation and Generate Prediction Explanations for a Regression
Model

After training a regression model, you can query the default model explanation or query new model
explanations. You can also generate prediction explanations. Explanations help you understand which
features had the most influence on generating predictions.

Feature importance is presented as an attribution value ranging from -1 to 1. A positive value indicates
that a feature contributed toward the prediction. A negative value indicates that the feature contributes
positively towards one of the other possible predictions.

Before You Begin

Complete the following tasks:

• Prepare Data for a Regression Model

• Train a Regression Model

• Generate Predictions for a Regression Model

Generating the Model Explanation

After training a model, you can query the default model explanation with the Permutation Importance
explainer.

To generate explanations for other model explainers, see  Generate Model Explanations and
ML_EXPLAIN.
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Query the model_explanation column from the model catalog and define the model handle
previously created. Update user1 with your own user name. Use JSON_PRETTY to view the output in
an easily readable format.

mysql> SELECT JSON_PRETTY(model_explanation) FROM ML_SCHEMA_user1.MODEL_CATALOG 
                     WHERE model_handle='regression_use_case';
+------------------------------------------------------------------------------------------------------------------------+
| JSON_PRETTY(model_explanation)                                                                                         |
+------------------------------------------------------------------------------------------------------------------------+
| {
  "permutation_importance": {
    "id": 0.0257,
    "state": 0.0278,
    "address": 0.0,
    "house_size": 2.3762
  }
} |
+------------------------------------------------------------------------------------------------------------------------+
1 row in set (0.000 sec)

Feature importance values display for each column.

Generating Prediction Explanations for a Table

After training a model, you can generate a table of prediction explanations on the
house_price_testing dataset by using the default Permutation Importance prediction explainer.

To generate explanations for other model explainers, see  Generate Prediction Explanations and
ML_EXPLAIN_TABLE.

1. If not already done, load the model. You can use the session variable for the model that is valid for
the duration of the connection. Alternatively, you can use the model handle previously set. For the
option to set the user name, you can set it to NULL.

The following example uses the session variable.

mysql> CALL sys.ML_MODEL_LOAD(@model, NULL);

The following example uses the model handle.

mysql> CALL sys.ML_MODEL_LOAD('regression_use_case', NULL);

2. Use the ML_EXPLAIN_TABLE routine to generate explanations for predictions made in the test
dataset.

mysql> CALL sys.ML_EXPLAIN_TABLE(table_name, model_handle, output_table_name, [options]);

Replace table_name, model_handle, and output_table_name with your own values. Add
options as needed.

You have the option to specify the input table and output table as the same table if specific
conditions are met. See Input Tables and Output Tables to learn more.

The following example runs ML_EXPLAIN_TABLE on the testing dataset previously created.

mysql> CALL sys.ML_EXPLAIN_TABLE('regression_data.house_price_testing', 'regression_use_case', 'regression_data.regression_explanations', 
                                  JSON_OBJECT('prediction_explainer', 'permutation_importance'));

Where:

• regression_data.house_price_testing is the fully qualified name of the test dataset.

• regression_use_case is the model handle for the trained table.

• regression_data.regression_explanations is the fully qualified name of the output
table with explanations.
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• permutation_importance is the selected prediction explainer to use to generate
explanations.

3. Query Notes and ml_results from the output table to review which column contributed the most
against or had the largest impact towards the prediction. You can also review individual attribution
values for each column. Use \G to view the output in an easily readable format.

mysql> SELECT Notes, ml_results FROM regression_data.regression_explanations\G
*************************** 1. row ***************************
     Notes: house_size (1400) increased the value the model predicted the most, whereas state (Nevada) reduced the value the model predicted the most
ml_results: {"attributions": {"house_size": 101328.28, "state": -1037.94, "id": -300.23}, "predictions": {"price": 534371.5625}, "notes": "house_size (1400) increased the value the model predicted the most, whereas state (Nevada) reduced the value the model predicted the most"}
*************************** 2. row ***************************
     Notes: house_size (1900) increased the value the model predicted the most
ml_results: {"attributions": {"house_size": 235996.83, "state": 16140.48, "id": 0.06}, "predictions": {"price": 669040.125}, "notes": "house_size (1900) increased the value the model predicted the most"}
*************************** 3. row ***************************
     Notes: house_size (1600) increased the value the model predicted the most, whereas state (Colorado) reduced the value the model predicted the most
ml_results: {"attributions": {"house_size": 79633.12, "state": -1220.23, "id": 5602.78}, "predictions": {"price": 512676.40625}, "notes": "house_size (1600) increased the value the model predicted the most, whereas state (Colorado) reduced the value the model predicted the most"}
*************************** 4. row ***************************
     Notes: house_size (2200) increased the value the model predicted the most
ml_results: {"attributions": {"house_size": 361015.72, "state": 9903.62, "id": 12578.75}, "predictions": {"price": 794059.0}, "notes": "house_size (2200) increased the value the model predicted the most"}
*************************** 5. row ***************************
     Notes: house_size (1300) increased the value the model predicted the most
ml_results: {"attributions": {"house_size": 31384.31, "state": 226.31, "id": 30184.16}, "predictions": {"price": 489206.0}, "notes": "house_size (1300) increased the value the model predicted the most"}
*************************** 6. row ***************************
     Notes: house_size (1700) increased the value the model predicted the most
ml_results: {"attributions": {"house_size": 80747.0, "state": 7330.35, "id": 24427.78}, "predictions": {"price": 534239.8125}, "notes": "house_size (1700) increased the value the model predicted the most"}
*************************** 7. row ***************************
     Notes: house_size (1500) increased the value the model predicted the most, whereas state (Washington) reduced the value the model predicted the most
ml_results: {"attributions": {"house_size": 79051.12, "state": -1316.08, "id": 28659.66}, "predictions": {"price": 532543.9375}, "notes": "house_size (1500) increased the value the model predicted the most, whereas state (Washington) reduced the value the model predicted the most"}
*************************** 8. row ***************************
     Notes: house_size (1800) increased the value the model predicted the most
ml_results: {"attributions": {"house_size": 245256.83, "state": 8604.06, "id": 12578.75}, "predictions": {"price": 698539.9375}, "notes": "house_size (1800) increased the value the model predicted the most"}
*************************** 9. row ***************************
     Notes: id (9) increased the value the model predicted the most, whereas state (Illinois) reduced the value the model predicted the most
ml_results: {"attributions": {"house_size": -0.03, "state": -0.03, "id": 21232.22}, "predictions": {"price": 454275.5}, "notes": "id (9) increased the value the model predicted the most, whereas state (Illinois) reduced the value the model predicted the most"}
*************************** 10. row ***************************
     Notes: house_size (2100) increased the value the model predicted the most
ml_results: {"attributions": {"house_size": 339783.47, "state": 10981.75, "id": 12411.04}, "predictions": {"price": 794059.0}, "notes": "house_size (2100) increased the value the model predicted the most"}

To generate prediction explanations for one or more rows of data, see Generate Prediction
Explanations for a Row of Data.

What's Next

• Learn how to Score a Regression Model.

4.7.2.5 Scoring a Regression Model

After generating predictions and explanations, you can score the model to assess its reliability. For a
list of scoring metrics you can use with regression models, see Regression Metrics. For this use case,
you use the test dataset for validation. In a real-world use case, you should use a separate validation
dataset that has the target column and ground truth values for the scoring validation. You should also
use a larger number of records for training and validation to get a valid score.

Before You Begin

Complete the following tasks:

• Prepare Data for a Regression Model

• Train a Regression Model

• Generate Predictions for a Regression Model

• Query Model Explanation and Generate Prediction Explanations for a Regression Model
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Scoring the Model

1. If not already done, load the model. You can use the session variable for the model that is valid for
the duration of the connection. Alternatively, you can use the model handle previously set. For the
option to set the user name, you can set it to NULL.

The following example uses the session variable.

mysql> CALL sys.ML_MODEL_LOAD(@model, NULL);

The following example uses the model handle.

mysql> CALL sys.ML_MODEL_LOAD('regression_use_case', NULL);

2. Score the model with the ML_SCORE routine and use the r2 metric.

mysql> CALL sys.ML_SCORE('regression_data.house_price_testing', 'price', 'regression_use_case', 'r2', @regression_score, NULL);

Where:

• regression_data.house_price_testing is the fully qualified name of the validation
dataset.

• price is the target column name with ground truth values.

• 'regression_use_case' is the model handle for the trained model.

• r2 is the selected scoring metric.

• @regression_score is the session variable name for the score value.

• NULL means that no other options are defined for the routine.

3. Retrieve the score by querying the @regression_score session variable.

mysql> SELECT @regression_score;
+--------------------+
| @regression_score  |
+--------------------+
| 0.8524690866470337 |
+--------------------+
1 row in set (0.0453 sec)

4. If done working with the model, unload it with the ML_MODEL_UNLOAD routine.

mysql> CALL sys.ML_MODEL_UNLOAD('regression_use_case');

To avoid consuming too much memory, it is good practice to unload a model when you are finished
using it.

What's Next

• Review other Machine Learning Use Cases.

4.7.3 Generating Forecasts

Forecasting models generate predictions on timeseries data. Some examples of forecasting include
predicting the closing price of a stock, predicting the number of units sold in a day, and predicting the
average price of gasoline.

The following tasks use a dataset generated by OCI GenAI using Meta Llama Models. The forecasting
use-case is a univariate forecasting model that captures the monthly demand for electricity in San
Francisco, California.
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To generate your own datasets to create machine learning models in MySQL AI, learn how to Generate
Text-Based Content.

Note

Datasets were generated using Meta Llama models. Your use of this Llama
model is subject to your Oracle agreements and this Llama license agreement:
https://downloads.mysql.com/docs/LLAMA_31_8B_INSTRUCT-license.pdf.

4.7.3.1 Forecasting Task Types

This topic describes the types of forecasting models supported by AutoML.

Before You Begin

• Review the list of supported Forecasting Models.

You can create the following types of forecasting models.

Univariate Models

In a univariate model, you define one numeric column as an endogenous variable, specified as a
JSON_ARRAY. This is the target column that AutoML forecasts. For example, you forecast the rainfall
for the next month by using the past daily rainfall as an endogenous variable.

Multivariate Models

In a multivariate model, you define multiple columns as endogenous variables, specified as a
JSON_ARRAY. You must define one of these columns as the target column (the column with ground
truth values). For example, you forecast the rainfall for the next month by using the past rainfall,
temperature highs and lows, atmospheric pressure, and humidity. The target column is rainfall.

Univariate and Multivariate Models with Exogenous Variables

You have the option to define exogenous variables for univariate and multivariate models. These
columns have independent, non-forecast, predictive variables. For example, you forecast future sales
and use weather conditions like rainfall and high and low daily temperature values as exogenous
variables.

Selecting Forecasting Models

To specify which models that are considered for training, use the model_list option and enter
the appropriate model names. If only one model is set for model_list, then only that model is
considered. Review the list of supported Forecasting Models and which type of model they support,
univariate endogenous models, univariate endogenous models with exogenous variables, and
multivariate endogenous models with exogenous variables. .

If the model_list option is not set, then ML_TRAIN considers all supported models during the
algorithm selection stage. If options includes exogenous_variables, all supported models are still
considered, including models that do not support exogenous_variables.

For example, if options includes univariate endogenous_variables with
exogenous_variables, then ML_TRAIN considers NaiveForecaster, ThetaForecaster,
ExpSmoothForecaster, ETSForecaster, STLwESForecaster, STLwARIMAForecaster,
SARIMAXForecaster, and OrbitForecaster. ML_TRAIN ignores exogenous_variables if the
model does not support them.

Similarly, if options includes multivariate endogenous_variables with exogenous_variables,
then ML_TRAIN considers VARMAXForecaster and DynFactorForecaster.

If options also includes include_column_list, this forces ML_TRAIN to only consider those
models that support exogenous_variables.
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What's Next

• Learn more about Prediction Intervals.

• Learn how to Train a Forecasting Model.

4.7.3.2 Prediction Intervals

Prediction intervals for forecasting models specify upper and lower bounds on predictions for
forecasting based on level of confidence. For example, for a prediction interval of 0.95 with a lower
bound of 25 units and an upper bound of 65 units, you are 95% confident that product ABC will sell
between 25 and 65 units on a randomly selected day.

The prediction_interval option is included for the ML_PREDICT_TABLE routine, which specifies
a level of confidence. Predictions provide three outputs corresponding to each endogenous variable:
the forecasted value, a lower bound, and an upper bound.

For the prediction_interval option:

• The default value is 0.95.

• The data type for this value must be FLOAT.

• The value must be greater than 0 and less than 1.0.

What's Next

• Learn how to Train a Forecasting Model.

4.7.3.3 Preparing Data for a Forecasting Model

This topic describes how to prepare the data to use for a forecasting machine learning model. It uses
a data sample generated by OCI GenAI. To prepare the data for this use case, you set up a training
dataset and a testing dataset. The training dataset has 37 records, and the testing dataset has 4
records. In a real-life use case, you should prepare a larger amount of records for training and testing,
and ensure the predictions are valid and reliable before testing on unlabeled data. To ensure reliable
predictions, you should create an additional validation dataset. You can reserve 20% of the records in
the training dataset to create the validation dataset.

You have the option to automatically Prepare Training and Testing Datasets with your own data by
using the TRAIN_TEST_SPLIT routine.

Before You Begin

• Learn how to Prepare Data.

Preparing Data

To prepare the data for the forecasting model:

1. Connect to the MySQL Server.

2. Create and use the database to store the data.

mysql> CREATE DATABASE forecasting_data;
mysql> USE forecasting_data;

3. Create the table that is the sample dataset.

mysql> CREATE TABLE electricity_demand (
    date DATE PRIMARY KEY,
    demand FLOAT NOT NULL,
    temperature FLOAT NOT NULL
);
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4. Insert the sample data into the table. Copy and paste the following commands.

INSERT INTO electricity_demand (date, demand, temperature) VALUES 
('2022-01-01', 929.00, 53.53),
('2022-01-31', 949.69, 60.80),
('2022-03-02', 1160.84, 69.28),
('2022-04-01', 1054.52, 74.48),
('2022-05-01', 1061.40, 71.06),
('2022-05-31', 1012.36, 58.05),
('2022-06-30', 1098.87, 51.90),
('2022-07-30', 964.31, 39.70),
('2022-08-29', 1026.06, 32.47),
('2022-09-28', 995.23, 30.82),
('2022-10-28', 1076.04, 32.97),
('2022-11-27', 1059.46, 42.91),
('2022-12-27', 1060.97, 51.52),
('2023-01-26', 1153.59, 60.24),
('2023-02-25', 1204.72, 68.21),
('2023-03-27', 1203.33, 70.67),
('2023-04-26', 1218.42, 70.31),
('2023-05-26', 1163.28, 59.59),
('2023-06-25', 1161.86, 50.63),
('2023-07-25', 1131.38, 38.29),
('2023-08-24', 1138.72, 27.57),
('2023-09-23', 1119.34, 31.31),
('2023-10-23', 1090.38, 34.41),
('2023-11-22', 1213.87, 38.52),
('2023-12-22', 1219.91, 54.54),
('2024-01-21', 1193.49, 57.09),
('2024-02-20', 1326.44, 67.41),
('2024-03-21', 1274.64, 69.63),
('2024-04-20', 1325.90, 70.39),
('2024-05-20', 1351.45, 62.94),
('2024-06-19', 1306.45, 50.31),
('2024-07-19', 1341.97, 40.76),
('2024-08-18', 1214.96, 30.90),
('2024-09-17', 1300.12, 26.04),
('2024-10-17', 1262.46, 31.98),
('2024-11-16', 1281.46, 40.31),
('2024-12-16', 1331.06, 52.46),
('2025-01-15', 1379.42, 62.40),
('2025-02-14', 1426.11, 66.55),
('2025-03-16', 1381.74, 69.40),
('2025-04-15', 1488.34, 65.22);

5. Create the table to use as the training dataset. It retrieves some of the data from the sample
dataset.

mysql> CREATE TABLE electricity_demand_train AS SELECT * FROM electricity_demand WHERE date < '2025-01-01';

6. Create the table to use for generating predictions. This is the test dataset. It retrieves the data
from the sample dataset not used for the training dataset. It has the same columns as the training
dataset, but the target column, demand, is not considered when generating predictions.

mysql> CREATE TABLE electricity_demand_test AS SELECT * FROM electricity_demand WHERE date >= '2025-01-01';

What's Next

• Learn how to Train a Forecasting Model.

4.7.3.4 Training a Forecasting Model

After preparing the data for a forecasting model, you can train the model.

This topic has the following sections.

• Before You Begin

• Requirements for Forecasting Training
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• Forecasting Options

• Unsupported Routines

• Training the Model

• What's Next

Before You Begin

• Review and complete all the tasks to Prepare Data for a Forecasting Model.

Requirements for Forecasting Training

Define the following required parameters to train a forecasting model.

• Set the task parameter to forecasting.

• datetime_index: Define the column that has date and time data. The model uses this column as
an index for the forecast variable. The following data types for this column are supported: DATETIME,
TIMESTAMP, DATE, TIME, and YEAR, or an auto-incrementing index.

The forecast models SARIMAXForecaster, VARMAXForecaster, and DynFactorForecaster
cannot back test, that is forecast into training data, when using exogenous_variables. Therefore,
the predict table must not overlap the datetime_index with the training table. The start date
in the predict table must be a date immediately following the last date in the training table when
exogenous_variables are used. For example, the predict table has to start with year 2024 if the
training table with YEAR data type datetime_index ends with year 2023. The predict table cannot
start with year, for example, 2025 or 2030, because that would miss out 1 and 6 years, respectively.

When options do not include exogenous_variables , the predict table can overlap the
datetime_index with the training table. This supports back testing, with the exception of the
following models: SARIMAXForecaster, VARMAXForecaster, and DynFactorForecaster.

The valid range of years for datetime_index dates must be between 1678 and 2261. An error is
returned if any part of the training table or predict table has dates outside this range. The last date in
the training table plus the predict table length must still be inside the valid year range. For example,
if the datetime_index in the training table has YEAR data type, and the last date is year 2023, the
predict table length must be less than 238 rows: 2261 minus 2023 equals 238 rows.

• endogenous_variables: Define the column or columns to be forecast. One of these columns
must also be specified as the target_column_name.

Forecasting Options

Based on the type of forecasting model you train, set the appropriate JSON options:

• exogenous_variables: Define the column or columns that have independent, non-forecast,
predictive variables. These optional variables are not forecast, but help to predict the future values
of the forecast variables. These variables affect a model without being affected by it. For example,
for sales forecasting these variables might be advertising expenditure, occurrence of promotional
events, weather, or holidays. Review Forecasting Models to see which models support exogenous
variables.

• model_list: Set the type of forecasting model algorithm. See Forecasting Models to review
supported algorithms.

• include_column_list: Define the columns of exogenous_variables that must be included for
training and should not be dropped.

Unsupported Routines

You cannot run the following routines for a trained forecasting model:
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• ML_EXPLAIN

• ML_EXPLAIN_ROW

• ML_EXPLAIN_TABLE

• ML_PREDICT_ROW

Training the Model

After following the steps to Prepare Data for Forecasting Model, train the model with the ML_TRAIN
routine and use the electricity_demand_training table previously created. Before training
the model, it is good practice to define the model handle instead of automatically creating one. See
Defining Model Handle.

1. Optionally, set the value of the session variable, which sets the model handle to this same value.

mysql> SET @variable = 'model_handle';

Replace @variable and model_handle with your own definitions. For example:

mysql> SET @model='forecasting_use_case';

The model handle is set to forecasting_use_case.

2. Run the ML_TRAIN routine.

mysql> CALL sys.ML_TRAIN('table_name', 'target_column_name', JSON_OBJECT('task', 'task_name'), model_handle);

Replace table_name, target_column_name, task_name, and model_handle with your own
values.

The following example runs ML_TRAIN on the training dataset previously created.

mysql> CALL sys.ML_TRAIN('forecasting_data.electricity_demand_train', 'demand', 
                          JSON_OBJECT('task', 'forecasting', 
                                      'datetime_index', 'date', 
                                      'endogenous_variables', JSON_ARRAY('demand')), @model);

Where:

• forecasting_data.electricity_demand_train is the fully qualified name of the table
that contains the training dataset (database_name.table_name).

• demand is the name of the target column, which contains ground truth values.

• The JSON_OBJECT defines the following:

• 'task', 'forecasting' specifies the machine learning task type.

• 'datetime_index', 'date' defines the date column as the one with data and time data.

• 'endogenous_variables', JSON_ARRAY('demand') defines the endogenous variables
in a JSON_ARRAY. Since it is a univariate model, the only endogenous variable is demand.

• @model is the session variable previously set that defines the model handle to the name defined
by the user: forecasting_use_case. If you do not define the model handle before training
the model, the model handle is automatically generated, and the session variable only stores the
model handle for the duration of the connection. User variables are written as @var_name. Any
valid name for a user-defined variable is permitted. See Work with Model Handles to learn more.

3. When the training operation finishes, the model handle is assigned to the @model session variable,
and the model is stored in the model catalog. View the entry in the model catalog with the following
query. Replace user1 with your MySQL account name.
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mysql> SELECT model_id, model_handle, train_table_name FROM ML_SCHEMA_user1.MODEL_CATALOG WHERE model_handle = 'forecasting_use_case';
+----------+----------------------------------------------+--------------------------------------------+
| model_id | model_handle                                 | train_table_name                           |
+----------+----------------------------------------------+--------------------------------------------+
|        3 | forecasting_use_case                         | forecasting_data.electricity_demand_train  |
+----------+----------------------------------------------+--------------------------------------------+

What's Next

• Learn how to Generate Predictions for a Forecasting Model.

• Review additional Syntax Examples for Forecast Training

4.7.3.5 Generating Predictions for a Forecasting Model

After training the model, you can generate predictions.

To generate predictions, use the sample data from the electricity_demand_test dataset.
Even though the table has labels for the demand target column, the column is not considered when
generating predictions. This allows you to compare the predictions to the actual values in the dataset
and determine if the predictions are reliable. Once you determine the trained model is reliable for
generating predictions, you can start using unlabeled datasets for generating predictions.

The datetime_index column must be included. If using exogenous_variables, they must also
be included. Any extra columns, for example endogenous_variables, are ignored for the prediction,
but included in the output table.

Prediction interval values are included in the prediction results. See Prediction Intervals to learn more.

You cannot run ML_PREDICT_ROW with forecasting models.

Before You Begin

Complete the following tasks:

• Prepare Data for a Forecasting Model.

• Review how to Train a Forecasting Model.

Generating Forecasts for a Table

1. If not already done, load the model. You can use the session variable for the model that is valid for
the duration of the connection. Alternatively, you can use the model handle previously set. For the
option to set the user name, you can set it to NULL.

The following example uses the session variable.

mysql> CALL sys.ML_MODEL_LOAD(@model, NULL);

The following example uses the model handle.

mysql> CALL sys.ML_MODEL_LOAD('forecasting_use_case', NULL);

2. Make predictions for the test dataset by using the ML_PREDICT_TABLE routine.

mysql> CALL sys.ML_PREDICT_TABLE(table_name, model_handle, output_table_name), [options]);

Replace table_name, model_handle, and output_table_name with your own values. Add
options as needed.

You have the option to specify the input table and output table as the same table if specific
conditions are met. See Input Tables and Output Tables to learn more.
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The following example runs ML_PREDICT_TABLE on the testing dataset previously created.

mysql> CALL sys.ML_PREDICT_TABLE('forecasting_data.electricity_demand_test', @model, 'forecasting_data.electricity_demand_predictions', NULL);

Where:

• forecasting_data.electricity_demand_test is the fully qualified name of the input
table that contains the data to generate predictions for (database_name.table_name).

• @model is the session variable for the model handle.

• forecasting_data.electricity_demand_predictions is the fully qualified name of the
output table with predictions (database_name.table_name).

• NULL sets no options for the routine.

3. Query the demand, and ml_results columns from the output table. This allows you to compare
the real demand with the generated forecast. You can also review the lower bound and upper
bound prediction interval values for each forecast. Since no prediction interval value is set when
running ML_PREDICT_TABLE, the default value of 0.95 is used.

mysql> SELECT demand, ml_results FROM electricity_demand_predictions;
+---------+-------------------------------------------------------------------------------------------------------------------------+
| demand  | ml_results                                                                                                              |
+---------+-------------------------------------------------------------------------------------------------------------------------+
| 1379.42 | {"predictions": {"demand": 1316.5263873105694, "prediction_interval_demand": [1312.6487504526897, 1320.404024168449]}}  |
| 1426.11 | {"predictions": {"demand": 1322.148597544633, "prediction_interval_demand": [1317.7966015800637, 1326.5005935092024]}}  |
| 1381.74 | {"predictions": {"demand": 1327.6276527841787, "prediction_interval_demand": [1322.8480699970519, 1332.4072355713056]}} |
| 1488.34 | {"predictions": {"demand": 1332.9671980996688, "prediction_interval_demand": [1327.7951891070384, 1338.1392070922993]}} |
+---------+-------------------------------------------------------------------------------------------------------------------------+

What's Next

• Learn how to Score a Forecasting Model

4.7.3.6 Scoring a Forecasting Model

After generating predictions, you can score the model to assess its reliability. For a list of scoring
metrics you can use with forecasting models, see Forecasting Metrics. For this use case, you use the
test dataset for validation. In a real-world use case, you should use a separate validation dataset that
has the target column and ground truth values for the scoring validation. You should also use a larger
number of records for training and validation to get a valid score.

The ML_SCORE routine does not require a target_column_name for forecasting, so you can set it to
NULL. However, the target column needs to be in the table to generate a valid score value.

Before You Begin

Complete the following tasks:

• Prepare Data for a Forecasting Model

• Train a Forecasting Model

• Generate Predictions for a Forecasting Model

Scoring the Model

1. If not already done, load the model. You can use the session variable for the model that is valid for
the duration of the connection. Alternatively, you can use the model handle previously set. For the
option to set the user name, you can set it to NULL.

The following example uses the session variable.
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mysql> CALL sys.ML_MODEL_LOAD(@model, NULL);

The following example uses the model handle.

mysql> CALL sys.ML_MODEL_LOAD('forecasting_use_case', NULL);

2. Score the model with the ML_SCORE routine and use the neg_sym_mean_abs_percent_error
metric.

mysql> CALL sys.ML_SCORE(table_name, target_column_name, model_handle, metric, score, [options]);

Replace table_name, target_column_name, model_handle, metric, score with your own
values.

The following example runs ML_SCORE on the testing dataset previously created.

mysql> CALL sys.ML_SCORE('forecasting_data.electricity_demand_test', 'demand', @model, 'neg_sym_mean_abs_percent_error', @forecasting_score, NULL);

Where:

• forecasting_data.electricity_demand_test is the fully qualified name of the validation
dataset.

• demand is the target column name with ground truth values.

• @model is the session variable for the model handle.

• neg_sym_mean_abs_percent_error is the selected scoring metric.

• @forecasting_score is the session variable name for the score value.

• NULL means that no other options are defined for the routine.

3. Retrieve the score by querying the @forecasting_score session variable.

mysql> SELECT @forecasting_score;
+----------------------+
| @forecasting_score   |
+----------------------+
| -0.06810028851032257 |
+----------------------+

4. If done working with the model, unload it with the ML_MODEL_UNLOAD routine.

mysql> CALL sys.ML_MODEL_UNLOAD('forecasting_use_case');

To avoid consuming too much memory, it is good practice to unload a model when you are finished
using it.

What's Next

• Review other Machine Learning Use Cases.

4.7.4 Detect Anomalies

Anomaly detection, which is also known as outlier detection, is the machine learning task that finds
unusual patterns in data.

AutoML supports unsupervised and semi-supervised anomaly detection. See Anomaly Detection
Learning Types to learn more.

The following tasks use datasets generated by OCI GenAI using Meta Llama Models. The anomaly
detection use-cases are to find unusual patterns of purchasing behavior for credit card transactions,
and to find anomalies in log data.
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To generate your own datasets to create machine learning models in MySQL AI, learn how to Generate
Text-Based Content.

Note

Datasets were generated using Meta Llama models. Your use of this Llama
model is subject to your Oracle agreements and this Llama license agreement:
https://downloads.mysql.com/docs/LLAMA_31_8B_INSTRUCT-license.pdf.

4.7.4.1 Anomaly Detection Model Types

You can use the following anomaly detection model types:

• GkNN (Generalized kth Nearest Neighbors)

• PCA (Principal Component Analysis)

• GLOF (Generalized Local Outlier Factor)

GkNN Model

Generalized kth Nearest Neighbors (GkNN) is an algorithm model developed at Oracle. It is a single
ensemble algorithm that outperforms state-of-the-art models on public benchmarks. It can identify
common anomaly types, such as local, global, and clustered anomalies, and can achieve an AUC
score that is similar to, or better than, when identifying the following:

• Global anomalies compared to KNN, with an optimal k hyperparameter value.

• Local anomalies compared to LOF, with an optimal k hyperparameter value.

• Clustered anomalies.

Optimal k hyperparameter values would be extremely difficult to set without labels and knowledge of
the use-case.

Other algorithms would require training and comparing scores from at least three algorithms to address
global and local anomalies, ignoring clustered anomalies: LOF for local, KNN for global, and another
generic method to establish a 2/3 voting mechanism.

What's Next

• Learn more about the following:

• Anomaly Detection Learning Types

• Anomaly Detection for Logs

4.7.4.2 Anomaly Detection Learning Types

The AutoML feature of MySQL AI provides two types of learning for anomaly detection models:
unsupervised and semi-supervised.

Unsupervised Anomaly Detection

When running an unsupervised anomaly detection model, the machine learning algorithm requires no
labeled data. When training the model, the target_column_name parameter must be set to NULL.

Semi-supervised Anomaly Detection

Semi-supervised learning for anomaly detection uses a specific set of labeled data along with
unlabeled data to detect anomalies. To enable this, use the experimental and semisupervised
options. The target_column_name parameter must specify a column whose only allowed values
are 0 (normal), 1 (anomalous), and NULL (unlabeled). All rows are used to train the unsupervised
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component, while the rows with a value different than NULL are used to train the supervised
component.

What's Next

• Learn more about the following:

• Anomaly Detection Algorithm Model Types

• Anomaly Detection for Logs

• Learn how to Prepare Data for an Anomaly Detection Model.

4.7.4.3 Anomaly Detection for Logs

Anomaly detection for logs allows you to detect anomalies in log data. To perform anomaly detection
on logs, log data is cleaned, segmented, and encoded before running anomaly detection. This feature
leverages the log template miner Drain3.

Consider the following when running anomaly detection on logs.

• The input table can only have the following columns:

• The column containing the logs.

• If including logs from different sources, a column containing the source of each log. The values in
this column contain the names of the sources that each log belongs to. These values are used to
group each host's logs together. If this column is not present, it is assumed that all logs originate
from the same source.

• If including labeled data, a column identifying the labeled log lines. See Semi-supervised Anomaly
Detection to learn more.

• At least one column must act as the primary key to establish the temporal order of logs. If the
primary key column (or columns) is not one of the previous required columns (log data, source of
log, or label), then you must use the exclude_column_list option when running ML_TRAIN
to exclude all primary key columns that don't include required data. See Syntax Examples for
Anomaly Detection Training to review relevant examples.

• If the input table has additional columns to the ones permitted, you must use the
exclude_column_list option when running ML_TRAIN to exclude irrelevant columns.

• The data collected for anomaly detection can be unsupervised or semi-supervised. To run semi-
supervised anomaly detection, you can provide a separate column in the input table with labels for
the labeled log lines. This column labels identified anomalous logs with a value of 1, non-anomalous
logs with 0, and unlabeled logs with NULL. See Semi-supervised Anomaly Detection to learn more.

• In addition to the anomaly scores included in the output table, you have the option to leverage the
GenAI feature of MySQL AI to provide textual log summaries.

• By default the following parameters are masked in the input data (training or test data): IP,
DATETIME, TIME, HEX, IPPORT, and OCID. You have the option to mask additional regex patterns
with the additional_masking_regex option.

• MySQL AI uses a combination of a keyword feature extractor and an embedding model to train
models. This allows trained models to capture semantic meanings in log data. You have the option
to select the keyword model and any embedding model supported by MySQL AI with the training
options keyword_model and embedding_model. The available keyword model options are
tf-idf and NULL. To review supported embedding models, run the following query: SELECT
sys.ML_LIST_LLMS(); and see models that have capabilities with TEXT_EMBEDDINGS. The
default keyword feature extractor is tf-idf, and the default embedding model is multilingual-
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e5-small. Using an embedding model causes higher memory usage. You can set either
embedding_model or keyword_model to NULL, but you cannot set both to NULL.

What's Next

• Learn more about the following:

• Anomaly Detection Algorithm Model Types

• Anomaly Detection Learning Types

• Learn how to Prepare Data for an Anomaly Detection Model.

4.7.4.4 Preparing Data for an Anomaly Detection Model

This topic describes how to prepare the data to use for two anomaly detection machine learning
models: a semi-supervised anomaly detection model, and an unsupervised anomaly detection model
for logs. It uses data samples generated by OCI GenAI. To prepare the data for this use case, you
set up a training dataset and a testing dataset. In a real-life use case, you should prepare a larger
amount of records than these data samples for training and testing, and ensure the predictions are
valid and reliable before testing on unlabeled data. To ensure reliable predictions, you should create an
additional validation dataset. You can reserve 20% of the records in the training dataset to create the
validation dataset.

You have the option to automatically Prepare Training and Testing Datasets with your own data by
using the TRAIN_TEST_SPLIT routine.

This topic has the following sections.

• Before You Begin

• Preparing Data for a Semi-Supervised Anomaly Detection Model

• Preparing Data for an Unsupervised Anomaly Detection Model for Logs

• What's Next

Before You Begin

• Learn how to Prepare Data.

Preparing Data for a Semi-Supervised Anomaly Detection Model

The semi-supervised anomaly detection model looks for unusual patterns in credit card transactions.
The data has a column, target, that has three possible values: 0 for normal, 1 for anomalous, and
NULL for unlabeled.

To prepare the data for the semi-supervised anomaly detection model:

1. Connect to the MySQL Server.

2. Create and use the database to store the data.

mysql> CREATE DATABASE anomaly_data;
mysql> USE anomaly_data;

3. Create the table to insert the sample data into. This is the training dataset.

mysql> CREATE TABLE credit_card_train (
    transaction_id INT AUTO_INCREMENT PRIMARY KEY,
    home_address VARCHAR(100),
    purchase_location VARCHAR(100),
    purchase_amount DECIMAL(10, 2),
    purchase_time DATETIME,
    target INT
);
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4. Insert the sample data to train into the table. Copy and paste the following commands.

INSERT INTO credit_card_train (home_address, purchase_location, purchase_amount, purchase_time, target)
VALUES
    ('123 Main St, City A', 'Store X, City A', 50.75, '2023-08-01 14:30:00', 0),
    ('456 Elm St, City B', 'Cafe B, City B', 15.20, '2023-08-02 09:45:00', 1),
    ('789 Oak Ave, City C', 'Online Shop', 250.00, '2023-08-03 18:10:00', 0),
    ('222 Maple Lane, City A', 'Grocery Store A', 35.50, '2023-08-04 11:00:00', NULL),
    ('555 River Rd, City D', 'Electronics Store, City D', 800.50, '2023-08-05 16:20:00', 1),
    ('1010 Mountain View, City E', 'Boutique, City E', 120.30, '2023-08-06 10:35:00', 0),
    ('333 Ocean Blvd, City F', 'Convenience Store, City F', 20.15, '2023-08-07 19:50:00', NULL),
    ('666 Sky St, City G', 'Luxury Store, City G', 1500.00, '2023-08-08 12:00:00', 1),
    ('999 Green Valley, City H', 'Hardware Store, City H', 75.90, '2023-08-09 08:40:00', 0),
    ('111 Sunset Ave, City A', 'Store X, City A', 60.40, '2023-08-10 15:10:00', NULL),
    ('2222 Country Road, City B', 'Cafe B, City B', 28.75, '2023-08-11 07:30:00', 0),
    ('3333 Lakeside, City C', 'Online Shop', 180.25, '2023-08-12 13:20:00', 1),
    ('4444 Forest Glade, City D', 'Grocery Store, City D', 45.60, '2023-08-13 09:50:00', 0),
    ('5555 Meadow Lane, City E', 'Electronics Store, City E', 300.75, '2023-08-14 17:40:00', NULL),
    ('6666 Creekside, City F', 'Boutique, City F', 95.50, '2023-08-15 11:30:00', 1),
    ('7777 Hillcrest, City G', 'Convenience Store, City G', 12.80, '2023-08-16 18:50:00', 0),
    ('8888 Riverbank, City H', 'Luxury Store, City H', 2200.00, '2023-08-17 14:10:00', NULL),
    ('9999 Sunrise Blvd, City A', 'Hardware Store, City A', 55.25, '2023-08-18 09:30:00', 0),
    ('101010 Ocean View, City B', 'Store X, City B', 70.50, '2023-08-19 16:40:00', 1),
    ('111111 Mountain Rd, City C', 'Cafe C, City C', 32.90, '2023-08-20 11:20:00', NULL),
    ('121212 Downtown, City D', 'Online Shop', 450.00, '2023-08-21 17:50:00', 0),
    ('131313 Lakeside Ave, City E', 'Grocery Store, City E', 28.50, '2023-08-22 10:10:00', 1),
    ('141414 Green Park, City F', 'Electronics Store, City F', 650.75, '2023-08-23 15:30:00', 0),
    ('151515 Skyway, City G', 'Boutique, City G', 180.40, '2023-08-24 08:50:00', NULL),
    ('161616 Meadow View, City H', 'Convenience Store, City H', 35.10, '2023-08-25 13:40:00', 0),
    ('171717 River Rd, City A', 'Luxury Store, City A', 1300.50, '2023-08-26 19:20:00', 1),
    ('181818 Sunset Blvd, City B', 'Hardware Store, City B', 85.60, '2023-08-27 12:30:00', NULL),
    ('191919 Country Lane, City C', 'Store Y, City C', 150.20, '2023-08-28 07:40:00', 0),
    ('202020 Forest Edge, City D', 'Cafe D, City D', 42.75, '2023-08-29 14:50:00', 1),
    ('212121 Lakeside View, City E', 'Online Shop', 220.50, '2023-08-30 09:20:00', 0),
    ('222222 Creekside Ave, City F', 'Grocery Store, City F', 55.90, '2023-08-31 16:10:00', NULL);

5. Create the table to use for generating predictions. This is the test dataset. It has the same columns
as the training dataset. The target column, target, is used for the sem-supervised component of
the training.

mysql> CREATE TABLE credit_card_test (
    transaction_id INT AUTO_INCREMENT PRIMARY KEY,
    home_address VARCHAR(100),
    purchase_location VARCHAR(100),
    purchase_amount DECIMAL(10, 2),
    purchase_time DATETIME,
    target INT
);

6. Insert the sample data to test into the table. Copy and paste the following commands.

INSERT INTO credit_card_test (home_address, purchase_location, purchase_amount, purchase_time, target)
VALUES
    ('3030 Riverbank Dr, City I', 'Grocery Store, City I', 52.30, '2023-09-01 10:30:00', 0),
    ('3131 Mountain Rd, City J', 'Electronics Store, City J', 120.50, '2023-09-02 16:45:00', 0),
    ('3232 Ocean Ave, City K', 'Boutique, City K', 85.20, '2023-09-03 11:20:00', 1),
    ('3333 Green Valley, City L', 'Convenience Store, City L', 25.60, '2023-09-04 18:50:00', 0),
    ('3434 Sunset Blvd, City I', 'Luxury Store, City I', 1600.00, '2023-09-05 14:10:00', 1),
    ('3535 Country Lane, City J', 'Hardware Store, City J', 68.40, '2023-09-06 09:30:00', 0),
    ('3636 Lakeside View, City K', 'Store Z, City K', 135.75, '2023-09-07 17:20:00', 0),
    ('3737 Forest Glade, City L', 'Cafe E, City L', 38.50, '2023-09-08 12:40:00', 1),
    ('3838 Meadow Lane, City I', 'Online Shop', 280.50, '2023-09-09 08:50:00', 0),
    ('3939 Creekside Ave, City J', 'Grocery Store, City J', 48.75, '2023-09-10 15:30:00', 0),
    ('4040 River Rd, City K', 'Electronics Store, City K', 720.25, '2023-09-11 11:10:00', 1),
    ('4141 Skyway Blvd, City L', 'Boutique, City L', 165.90, '2023-09-12 17:40:00', 0),
    ('4242 Hillcrest Rd, City I', 'Convenience Store, City I', 22.50, '2023-09-13 10:20:00', 0),
    ('4343 Riverbank View, City J', 'Luxury Store, City J', 2100.75, '2023-09-14 16:50:00', 1),
    ('4444 Country Club, City K', 'Hardware Store, City K', 92.30, '2023-09-15 12:30:00', 0),
    ('4545 Lakeside Ave, City L', 'Store Alpha, City L', 145.60, '2023-09-16 08:40:00', 0),
    ('4646 Forest Edge, City I', 'Cafe F, City I', 55.80, '2023-09-17 15:20:00', 1),
    ('4747 Creekside View, City J', 'Online Shop', 320.40, '2023-09-18 11:50:00', 0),
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    ('4848 Meadow Park, City K', 'Grocery Store, City K', 62.50, '2023-09-19 18:30:00', 0),
    ('4949 River Walk, City L', 'Electronics Store, City L', 550.30, '2023-09-20 14:10:00', 1);

Preparing Data for an Unsupervised Anomaly Detection Model for Logs

The anomaly detection model for logs looks for unusual patterns in log data. The model uses
unsupervised learning, so the target column is excluded for training and predicting anomalies.

To prepare the data for the anomaly detection model for logs:

1. Connect to the MySQL Server.

2. If not already done, create and use the database to store the data.

mysql> CREATE DATABASE anomaly_log_data;
mysql> USE anomaly_log_data;

3. Create the table to insert the sample data into. This is the training dataset.

mysql> CREATE TABLE training_data (
    log_id INT AUTO_INCREMENT PRIMARY KEY,
    log_message TEXT,
    timestamp DATETIME,
    target TINYINT 
);

4. Insert the sample data to be trained into the table. Copy and paste the following commands.

INSERT INTO training_data (log_message, timestamp, target) VALUES
    ("User login successful: admin", "2023-08-07 09:00:00", 0),
    ("Database connection established", "2023-08-07 09:05:23", 0),
    ("Failed login attempt from IP: 192.168.1.20", "2023-08-07 09:12:15", 1),
    ("Server load is high: 85%", "2023-08-07 09:20:30", 1),
    ("Normal system behavior", "2023-08-07 09:35:00", 0),
    ("Anomalous CPU usage spike", "2023-08-07 10:10:45", 1),
    ("New user registered", "2023-08-07 10:25:00", 0),
    ("Error: File not found", "2023-08-07 11:02:10", 1),
    ("System startup completed", "2023-08-07 11:30:00", 0),
    ("Network packet loss detected", "2023-08-07 12:15:35", 1),
    ("User activity: John accessed dashboard", "2023-08-07 13:00:20", 0),
    ("Security alert: Brute force attack detected", "2023-08-07 13:45:55", 1),
    ("Log rotation completed", "2023-08-07 14:20:00", 0),
    ("Anomalous memory usage pattern", "2023-08-07 15:05:30", 1),
    ("User feedback submitted", "2023-08-07 15:40:10", 0),
    ("System error: Out of memory", "2023-08-07 16:15:25", 1),
    ("Network connectivity restored", "2023-08-07 16:50:00", 0),
    ("Unlabeled log entry", NULL, NULL),
    ("Potential intrusion detected", "2023-08-07 17:35:40", 1),
    ("User logout: Jane", "2023-08-07 18:10:00", 0);

5. Create the table to use for generating predictions. This is the test dataset. It has the same columns
as the training dataset, but the target column, target, must be excluded when generating
predictions.

mysql> CREATE TABLE testing_data (
    log_id INT AUTO_INCREMENT PRIMARY KEY,
    log_message TEXT,
    timestamp DATETIME,
    target TINYINT 
);

6. Insert the sample data to test into the table. Copy and paste the following commands.

INSERT INTO testing_data (log_message, timestamp, target) VALUES
    ("User login failed: Invalid credentials", "2023-08-08 10:30:00", 1),
    ("Server response time increased", "2023-08-08 11:15:45", 1),
    ("Normal database query", "2023-08-08 12:00:20", 0),
    ("Unusual network traffic from IP: 10.0.0.5", "2023-08-08 12:45:30", 1),
    ("System update completed successfully", "2023-08-08 13:30:00", 0),
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    ("Error log: Stack trace included", "2023-08-08 14:10:50", 1),
    ("User activity: Admin accessed settings", "2023-08-08 15:00:10", 0),
    ("Unlabeled log: Further investigation needed", NULL, NULL),
    ("Security alert: Potential malware detected", "2023-08-08 16:25:35", 1),
    ("System shutdown initiated", "2023-08-08 17:10:00", 0);

What's Next

• Learn how to Train an Anomaly Detection Model.

4.7.4.5 Training an Anomaly Detection Model

After preparing the data for an anomaly detection model, you can train the model.

This topic has the following sections.

• Before You Begin

• Requirements for Anomaly Detection Training

• Anomaly Detection Options

• Semi-supervised Learning Options

• Log Anomaly Detection Options

• Unsupported Anomaly Detection Options

• Unsupported Routines

• Training a Semi-Supervised Anomaly Detection Model

• Training an Unsupervised Anomaly Detection Model for Logs

• What's Next

Before You Begin

• Review and complete all the tasks to Prepare Data for an Anomaly Detection Model.

Requirements for Anomaly Detection Training

Consider the following based on the type of anomaly detection you are running:

• Set the task parameter to anomaly_detection for running anomaly detection on table data, or
log_anomaly_detection for running anomaly detection on log data.

• If running an unsupervised model, the target_column_name parameter must be set to NULL.

• If running a semi-supervised model:

• The target_column_name parameter must specify a column whose only allowed values are
0 (normal), 1 (anomalous), and NULL (unlabeled). All rows are used to train the unsupervised
component, while the rows with a value different than NULL are used to train the supervised
component.

• The experimental option must be set to semisupervised.

• If running anomaly detection on log data, the input table can only have the following columns:

• The column containing the logs.

• If including logs from different sources, a column containing the source of each log. Identify this
column with the log_source_column option.
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• If including labeled data, a column identifying the labeled log lines. See Semi-supervised Anomaly
Detection to learn more.

• At least one column must act as the primary key to establish the temporal order of logs. If the
primary key column (or columns) is not one of the previous required columns (log data, source of
log, or label), then you must use the exclude_column_list option when running ML_TRAIN
to exclude all primary key columns that don't include required data. See Syntax Examples for
Anomaly Detection Training to review relevant examples.

• If the input table has additional columns to the ones permitted, you must use the
exclude_column_list option to exclude irrelevant columns.

Anomaly Detection Options

Use the following JSON options:

• contamination: Represents an estimate of the percentage of outliers in the training table.

• The contamination factor is calculated as: estimated number of rows with anomalies/total number
of rows in the training table.

• The contamination value must be greater than 0 and less than 0.5. The default value is 0.01.

• model_list: Allows you to select the model for training. If no option is specified, the default model
is Generalized kth Nearest Neighbors (GkNN). Selecting more than one model or an unsupported
model produces an error. Review supported Anomaly Detection Models.

Semi-supervised Learning Options

You have the following options to train a semi-supervised anomaly detection model:

• supervised_submodel_options: Allows you to set optional override parameters for the
supervised model component. The only model supported is DistanceWeightedKNNClassifier.
The following parameters are supported:

• n_neighbors: Sets the desired k value that checks the k closest neighbors for each unclassified
point. The default value is 5 and the value must be an integer greater than 0.

• min_labels: Sets the minimum number of labeled data points required to train the supervised
component. If fewer labeled data points are provided during training of the model, ML_TRAIN fails.
The default value is 20 and the value must be an integer greater than 0.

• ensemble_score: This option specifies the metric to use to score the ensemble of unsupervised
and supervised components. It identifies the optimal weight between the two components based on
the metric. The supported metrics are accuracy, precision, recall, and f1. The default metric
is f1.

Log Anomaly Detection Options

You have the following options for anomaly detection on log data. The options are available as a
separate JSON_OBJECT named logad_options:

• additional_masking_regex: Allows you to mask log data by using regular expression in a
JSON_ARRAY. By default, the following parameters are automatically masked during training and
when generating anomaly scores.

• IP

• DATETIME

• TIME
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• HEX

• IPPORT

• OCID

• window_size: Specifies the maximum number of log lines to be grouped for anomaly detection.
The default value is 10.

• window_stride: Specifies the stride value to use for segmenting log lines. For example, there is
log A, B, C, D, and E. The window_size is 3, and the window_stride is 2. The first row has log
A, B, and C. The second row has log C, D, and E. If this value is equal to window_size, there is no
overlapping of log segments. The default value is 3.

• log_source_column: Specifies the column name that contains the source identifier of the
respective log lines. Log lines are grouped according to their respective source (for example, logs
from multiple MySQL databases that are in the same table). By default, all log lines are assumed to
be from the same source.

• embedding_model: The embedding model used to extract semantic features from log data.
To review supported embedding models in MySQL AI, run the following query: SELECT
sys.ML_LIST_LLMS(); and see models that have capabilities with TEXT_EMBEDDINGS. The
default value is multilingual-e5-small. Using an embedding model causes higher memory
usage. If you set this to NULL, then you cannot also set keyword_model to NULL.

• keyword_model: The keyword feature extractor used to extract keyword features from log data.
The available options are tf-idf and NULL. The default value is tf-idf. If you set this to NULL,
then you cannot also set embedding_model to NULL.

Unsupported Anomaly Detection Options

The following options are not supported for anomaly detection:

• exclude_model_list

• optimization_metric

Unsupported Routines

You cannot run the following routines for a trained anomaly detection model:

• ML_EXPLAIN

• ML_EXPLAIN_ROW

• ML_EXPLAIN_TABLE

• ML_PREDICT_ROW (only for anomaly detection for logs)

Training a Semi-Supervised Anomaly Detection Model

Train the model with the ML_TRAIN routine and use the credit_card_train table previously
created. Before training the model, it is good practice to define the model handle instead of
automatically creating one. See Defining Model Handle.

1. Optionally, set the value of the session variable, which sets the model handle to this same value.

mysql> SET @variable = 'model_handle';

Replace @variable and model_handle with your own definitions. For example:
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mysql> SET @semi_supervised_model='anomaly_detection_semi_supervised_use_case';

The model handle is set to anomaly_detection_semi_supervised_use_case.

2. Run the ML_TRAIN routine.

mysql> CALL sys.ML_TRAIN('table_name', 'target_column_name', JSON_OBJECT('task', 'task_name'), model_handle);

Replace table_name, target_column_name, task_name, and model_handle with your own
values.

The following example runs ML_TRAIN on the training dataset previously created.

mysql> CALL sys.ML_TRAIN('anomaly_data.credit_card_train', "target", 
                          CAST('{"task": "anomaly_detection", "experimental": {"semisupervised": {}}}' as JSON), 
                          @semi_supervised_model);

Where:

• anomaly_data.credit_card_train is the fully qualified name of the table that contains the
training dataset (database_name.table_name).

• target is the name of the target column, which contains ground truth values to use for semi-
supervised learning.

• CAST('{"task": "anomaly_detection", "experimental": {"semisupervised":
{}}}' as JSON) specifies the machine learning task type. The experimental parameter
is required to use a semi-supervised learning model. All default values are used for semi-
supervised learning.

• @semi_supervised_model is the session variable previously set that defines the model handle
to the name defined by the user: anomaly_detection_semi_supervised_use_case. If
you do not define the model handle before training the model, the model handle is automatically
generated, and the session variable only stores the model handle for the duration of the
connection. User variables are written as @var_name. Any valid name for a user-defined variable
is permitted. See Work with Model Handles to learn more.

3. When the training operation finishes, the model handle is assigned to the
@semi_supervised_model session variable, and the model is stored in the model catalog. View
the entry in the model catalog with the following query. Replace user1 with your MySQL account
name.

mysql> SELECT model_id, model_handle, train_table_name FROM ML_SCHEMA_user1.MODEL_CATALOG  WHERE model_handle = 'anomaly_detection_semi_supervised_use_case';
+----------+----------------------------------------------+-------------------------------------+
| model_id | model_handle                                 | train_table_name                    |
+----------+----------------------------------------------+-------------------------------------+
|        3 | anomaly_detection_semi_supervised_use_case   | anomaly_data.credit_card_train      |
+----------+----------------------------------------------+-------------------------------------+

Training an Unsupervised Anomaly Detection Model for Logs

Train the model with the ML_TRAIN routine and use the training_data table previously created.
Before training the model, it is good practice to define the model handle instead of automatically
creating one. See Defining Model Handle.

1. You have the option to select the keyword feature extractor and embedding model for training the
model. See Anomaly Detection for Logs to learn more. Run the following query to confirm available
models that have capabilities with TEXT_EMBEDDINGS.

mysql> SELECT sys.ML_LIST_LLMS();
+---------------------------------------------------------------------------------------------------------------------------------------------------------------+
| sys.ML_LIST_LLMS()                                                                                                                                            |
+---------------------------------------------------------------------------------------------------------------------------------------------------------------+
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| [{"model_id": "llama3.2-3b-instruct-v1", "provider": "HeatWave", "capabilities": ["GENERATION"], "default_model": true, "availability_date": "2025-05-20"},   | 
| {"model_id": "all_minilm_l12_v2", "provider": "HeatWave", "capabilities": ["TEXT_EMBEDDINGS"], "default_model": false, "availability_date": "2024-07-01"},    |
| {"model_id": "multilingual-e5-small", "provider": "HeatWave", "capabilities": ["TEXT_EMBEDDINGS"], "default_model": true, "availability_date": "2024-07-24"}] |
+---------------------------------------------------------------------------------------------------------------------------------------------------------------+

The output displays two compatible models: all_minilm_l12_v2 and multilingual-e5-
small.

2. Optionally, set the value of the session variable, which sets the model handle to this same value.

mysql> SET @variable = 'model_handle';

Replace @variable and model_handle with your own definitions. For example:

mysql> SET @unsupervised_log_model='anomaly_detection_log_use_case';

The model handle is set to anomaly_detection_log_use_case.

3. Run the ML_TRAIN routine.

mysql> CALL sys.ML_TRAIN('table_name', 'target_column_name', JSON_OBJECT('task', 'task_name'), model_handle);

Replace table_name, target_column_name, task_name, and model_handle with your own
values.

The following example runs ML_TRAIN on the training dataset previously created.

mysql> CALL sys.ML_TRAIN('anomaly_log_data.training_data', NULL, 
                          JSON_OBJECT('task', 'log_anomaly_detection', 
                                      'exclude_column_list', JSON_ARRAY('log_id', 'timestamp', 'target'),
                                      'logad_options', 
                                      JSON_OBJECT('embedding_model', 'all_minilm_l12_v2', 'keyword_model', 'tf-idf')), @unsupervised_log_model);

Where:

• anomaly_log_data.training_data is the fully qualified name of the table that contains the
training dataset (database_name.table_name).

• NULL is set for the target column because it is an unsupervised learning model, so no labeled
data is used to train the model.

• JSON_OBJECT('task', 'log_anomaly_detection' specifies the machine learning task
type.

• 'exclude_column_list', JSON_ARRAY('log_id', 'timestamp', 'target') sets
the required options to run the model for anomaly detection on logs. The columns log_id and
timestamp are excluded because they are not any of the required columns for training. See
Requirements for Anomaly Detection Training to learn more. The target column is excluded
because it is an unsupervised learning model.

• 'embedding_model', 'all_minilm_l12_v2 sets the embedding model to one of the
models previously confirmed as available for training the model.

• 'keyword_model', 'tf-idf' sets the keyword feature extractor for training the model.

• @unsupervised_log_model is the session variable previously set that defines the model
handle to the name defined by the user: anomaly_detection_log_use_case. If you do not
define the model handle before training the model, the model handle is automatically generated,
and the session variable only stores the model handle for the duration of the connection. User
variables are written as @var_name. Any valid name for a user-defined variable is permitted. See
Work with Model Handles to learn more.

4. When the training operation finishes, the model handle is assigned to the
@unsupervised_log_model session variable, and the model is stored in the model catalog.
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View the entry in the model catalog with the following query. Replace user1 with your MySQL
account name.

mysql> SELECT model_id, model_handle, train_table_name FROM ML_SCHEMA_user1.MODEL_CATALOG  WHERE model_handle = 'anomaly_detection_log_use_case';
+----------+----------------------------------------------+-------------------------------------+
| model_id | model_handle                                 | train_table_name                    |
+----------+----------------------------------------------+-------------------------------------+
|        4 | anomaly_detection_log_use_case               | anomaly_log_data.training_data      |
+----------+----------------------------------------------+-------------------------------------+

What's Next

• Learn how to Generate Predictions for an Anomaly Detection Model

• Review additional Syntax Examples for Anomaly Detection Training

4.7.4.6 Generating Predictions for an Anomaly Detection Model

After training the model, you can generate predictions.

To generate predictions, use the sample data from the two anomaly detection datasets:
credit_card_train and training_data. Both datasets have labeled and unlabeled rows, but
only the dataset for semi-supervised learning uses this for training. The other dataset for log data
is trained using unsupervised learning. Having labels for both datasets allows you to compare the
predictions to the actual values and determine if the predictions are reliable. Once you determine the
trained model is reliable for generating predictions, you can start using it on unseen data.

Anomaly detection models produce anomaly scores, which represent the degree to which a data point
deviates from the expected normal behavior. Higher scores indicate a greater degree of abnormality,
potentially signaling an anomaly that warrants further investigation. In the results, is_anomaly
generates a value of 1 for an anomaly, or 0 for normal. The normal value represents the degree to
which the row of data or log segment exhibits normal behavior. The anomaly value represents the
degree to which the row of data or log segment exhibits anomalous behavior.

To detect anomalies, run the ML_PREDICT routines on data with the same columns as the training
model.

• To detect anomalies in row data, you can run the ML_PREDICT_ROW or ML_PREDICT_TABLE
routines.

• To detect anomalies in log data, you can only run the ML_PREDICT_TABLE routine.

This topic has the following sections.

• Before You Begin

• Requirements for Generating Predictions

• Anomaly Detection Model Options

• Options for Anomaly Detection on Log Data

• Generating Predictions for a Semi-Supervised Anomaly Detection Model

• Generating Predictions for an Unsupervised Anomaly Detection Model on Log Data

• What's Next

Before You Begin

Complete the following tasks:

• Prepare Data for an Anomaly Detection Model

• Train an Anomaly Detection Model.
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Requirements for Generating Predictions

If you run ML_PREDICT_TABLE with the log_anomaly_detection task, at least one column must
act as the primary key to establish the temporal order of logs.

Anomaly Detection Model Options

The threshold you set on anomaly detection models determines which rows in the output table are
labeled as anomalies. The value for the threshold is the degree to which a row of data or log segment
is considered for anomaly detection. Any sample with an anomaly score above the threshold is
classified an anomaly.

There are two ways to set threshold values for anomaly detection models.

Set the Contamination Value

You can set the contamination option for the ML_TRAIN routine. This option uses the following
calculation to set the threshold: (1 - contamination)-th percentile of all the anomaly scores.

The default contamination value is 0.01. The default threshold value based on the default
contamination value is the 0.99-th percentile of all the anomaly scores.

Set the Threshold Value

You can set the threshold option for the ML_PREDICT_TABLE, ML_PREDICT_ROW, and ML_SCORE
routines. The value must be greater than 0 and less than 1.

If no value is set for the threshold option, the value set for the contamination option in the
ML_TRAIN routine determines the threshold.

The following additional options are available:

• An alternative to threshold is topk. The results include the top K rows with the highest anomaly
scores. The ML_PREDICT_TABLE and ML_SCORE routines include the topk option, which is an
integer between 1 and the table length.

• ML_SCORE includes an options parameter in JSON format. The options are threshold and topk.

• When running a semi-supervised model, the ML_PREDICT_ROW, ML_PREDICT_TABLE, and
ML_SCORE routines have the supervised_submodel_weight option. It allows you to override
the ensemble_score weighting estimated during ML_TRAIN with a new value. The value must be
greater than 0 and less than 1.

Options for Anomaly Detection on Log Data

When you run anomaly detection on log data, you have the option to leverage the GenAI feature of
MySQL AI for textual summaries of the results. To create summaries, use the following options:

• summarize_logs: Enable summaries by setting this to TRUE. If enabled, summaries are
generated for log segments that are labeled as an anomaly or exceed the value set for the
summary_threshold.

• summary_threshold: Determines the rows in the output table that are summarized. This does not
affect how the contamination and threshold options determine anomalies. You can set a value
greater than 0 and less than 1. The default value is NULL.

Summaries are generated for the following:

• All rows labeled as anomalies.

• If a value is set for summary_threshold, any non-anomaly rows that exceed the value of the
summary_threshold.
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If the default NULL value is used for summary_threshold, then only rows labeled as anomalies are
summarized.

Note

Enabling the summary_threshold option and setting a very low threshold
value can potentially lead to a high number of summaries being generated,
which may substantially increase the time required to generate output tables.

Generating Predictions for a Semi-Supervised Anomaly Detection Model

1. If not already done, load the model. You can use the session variable for the model that is valid for
the duration of the connection. Alternatively, you can use the model handle previously set. For the
option to set the user name, you can set it to NULL.

The following example uses the session variable.

mysql> CALL sys.ML_MODEL_LOAD(@semi_supervised_model, NULL);

The following example uses the model handle.

mysql> CALL sys.ML_MODEL_LOAD('anomaly_detection_semi_supervised_use_case', NULL);

2. Make predictions for the test dataset by using the ML_PREDICT_TABLE routine.

mysql> CALL sys.ML_PREDICT_TABLE(table_name, model_handle, output_table_name), [options]);

Replace table_name, model_handle, and output_table_name with your own values. Add
options as needed.

You have the option to specify the input table and output table as the same table if specific
conditions are met. See Input Tables and Output Tables to learn more.

The following example runs ML_PREDICT_TABLE on the testing dataset previously created.

mysql> CALL sys.ML_PREDICT_TABLE('anomaly_data.credit_card_train', 'anomaly_detection_semi_supervised_use_case', 
                                  'anomaly_data.credit_card_predictions_semi', JSON_OBJECT('threshold', 0.55));

Where:

• anomaly_data.credit_card_train is the fully qualified name of the input table that contains
the data to generate predictions for (database_name.table_name).

• @model is the session variable for the model handle.

• anomaly_data.credit_card_predictions_semi is the fully qualified name of the output
table with predictions (database_name.table_name).

• JSON_OBJECT('threshold', 0.55) sets a threshold value of 55%, which means any row
that generates an anomaly score of over 55% is labeled as an anomaly.

3. Query the target and ml_results columns from the output table. This allows you to compare
the real value with the generated anomaly prediction. Review is_anomaly to see if the row is
labeled as an anomaly (1) or normal (0). Review the anomaly score for each prediction next to
normal and anomaly. If needed, you can also query all the columns from the table (SELECT *
FROM credit_card_predictions_semi) to review all the data at once.

mysql> SELECT target, ml_results FROM credit_card_predictions_semi;
+--------+--------------------------------------------------------------------------------------------+
| target | ml_results                                                                                 |
+--------+--------------------------------------------------------------------------------------------+
|      0 | {"predictions": {"is_anomaly": 1}, "probabilities": {"normal": 0.43, "anomaly": 0.57}}     |
|      1 | {"predictions": {"is_anomaly": 1}, "probabilities": {"normal": 0.4377, "anomaly": 0.5623}} |
|      0 | {"predictions": {"is_anomaly": 0}, "probabilities": {"normal": 0.8677, "anomaly": 0.1323}} |
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|   NULL | {"predictions": {"is_anomaly": 0}, "probabilities": {"normal": 0.8652, "anomaly": 0.1348}} |
|      1 | {"predictions": {"is_anomaly": 0}, "probabilities": {"normal": 0.4921, "anomaly": 0.5079}} |
|      0 | {"predictions": {"is_anomaly": 0}, "probabilities": {"normal": 0.8487, "anomaly": 0.1513}} |
|   NULL | {"predictions": {"is_anomaly": 0}, "probabilities": {"normal": 0.7622, "anomaly": 0.2378}} |
|      1 | {"predictions": {"is_anomaly": 0}, "probabilities": {"normal": 0.57, "anomaly": 0.43}}     |
|      0 | {"predictions": {"is_anomaly": 0}, "probabilities": {"normal": 0.8317, "anomaly": 0.1683}} |
|   NULL | {"predictions": {"is_anomaly": 0}, "probabilities": {"normal": 0.8539, "anomaly": 0.1461}} |
|      0 | {"predictions": {"is_anomaly": 0}, "probabilities": {"normal": 0.9264, "anomaly": 0.0736}} |
|      1 | {"predictions": {"is_anomaly": 1}, "probabilities": {"normal": 0.4079, "anomaly": 0.5921}} |
|      0 | {"predictions": {"is_anomaly": 0}, "probabilities": {"normal": 0.8379, "anomaly": 0.1621}} |
|   NULL | {"predictions": {"is_anomaly": 0}, "probabilities": {"normal": 0.7971, "anomaly": 0.2029}} |
|      1 | {"predictions": {"is_anomaly": 0}, "probabilities": {"normal": 0.4623, "anomaly": 0.5377}} |
|      0 | {"predictions": {"is_anomaly": 0}, "probabilities": {"normal": 0.8816, "anomaly": 0.1184}} |
|   NULL | {"predictions": {"is_anomaly": 0}, "probabilities": {"normal": 0.8267, "anomaly": 0.1733}} |
|      0 | {"predictions": {"is_anomaly": 0}, "probabilities": {"normal": 0.8816, "anomaly": 0.1184}} |
|      1 | {"predictions": {"is_anomaly": 0}, "probabilities": {"normal": 0.4661, "anomaly": 0.5339}} |
|   NULL | {"predictions": {"is_anomaly": 0}, "probabilities": {"normal": 0.8202, "anomaly": 0.1798}} |
|      0 | {"predictions": {"is_anomaly": 0}, "probabilities": {"normal": 0.9113, "anomaly": 0.0887}} |
|      1 | {"predictions": {"is_anomaly": 0}, "probabilities": {"normal": 0.5078, "anomaly": 0.4922}} |
|      0 | {"predictions": {"is_anomaly": 0}, "probabilities": {"normal": 0.9378, "anomaly": 0.0622}} |
|   NULL | {"predictions": {"is_anomaly": 0}, "probabilities": {"normal": 0.8963, "anomaly": 0.1037}} |
|      0 | {"predictions": {"is_anomaly": 0}, "probabilities": {"normal": 0.5262, "anomaly": 0.4738}} |
|      1 | {"predictions": {"is_anomaly": 0}, "probabilities": {"normal": 0.5002, "anomaly": 0.4998}} |
|   NULL | {"predictions": {"is_anomaly": 0}, "probabilities": {"normal": 0.8767, "anomaly": 0.1233}} |
|      0 | {"predictions": {"is_anomaly": 0}, "probabilities": {"normal": 0.8878, "anomaly": 0.1122}} |
|      1 | {"predictions": {"is_anomaly": 0}, "probabilities": {"normal": 0.4661, "anomaly": 0.5339}} |
|      0 | {"predictions": {"is_anomaly": 0}, "probabilities": {"normal": 0.9037, "anomaly": 0.0963}} |
|   NULL | {"predictions": {"is_anomaly": 1}, "probabilities": {"normal": 0.4171, "anomaly": 0.5829}} |
+--------+--------------------------------------------------------------------------------------------+

To learn more about generating predictions for one or more rows of data, see Generate Predictions for
a Row of Data.

Generating Predictions for an Unsupervised Anomaly Detection Model on Log Data

1. If not already done, load the model. You can use the session variable for the model that is valid for
the duration of the connection. Alternatively, you can use the model handle previously set. For the
option to set the user name, you can set it to NULL.

mysql> CALL sys.ML_MODEL_LOAD('anomaly_detection_log_use_case', NULL);

2. Make predictions for the test dataset by using the ML_PREDICT_TABLE routine.

mysql> CALL sys.ML_PREDICT_TABLE(table_name, model_handle, output_table_name), [options]);

Replace table_name, model_handle, and output_table_name with your own values. Add
options as needed.

The following example runs ML_PREDICT_TABLE on the testing dataset previously created.

mysql> CALL sys.ML_PREDICT_TABLE('anomaly_log_data.testing_data', 'anomaly_detection_log_use_case', 
                                  'anomaly_log_data.log_predictions_unsupervised', 
                                  JSON_OBJECT('logad_options', JSON_OBJECT('summarize_logs', TRUE)));

Where:

• anomaly_log_data.testing_data is the fully qualified name of the input table that contains
the data to generate predictions for (database_name.table_name).

• @model is the session variable for the model handle.

• anomaly_log_data.log_predictions_unsupervised is the fully qualified name of the
output table with predictions (database_name.table_name).

• JSON_OBJECT('logad_options', JSON_OBJECT('summarize_logs', TRUE)) enables
the textual summaries generated by the GenAI feature of MySQL AI. No threshold is set for the
summaries, so the default value of any labeled anomaly generates a summary.
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3. Query the output table and compare the real value with the generated anomaly prediction. Use \G
to view the output in an easily readable format.

mysql> SELECT * FROM log_predictions_unsupervised\G
*************************** 1. row ***************************
                id: 1
parsed_log_segment: User login failed: Invalid credentials Server response time increased Normal database query Unusual network traffic from IP: 10.0.0.5 System update completed successfully Error log: Stack trace included User activity: Admin accessed settings Unlabeled log: Further investigation needed Security alert: Potential malware detected System shutdown initiated
        ml_results: {"summary": "\nHere is a concise summary of the text:\n\nThe system encountered several issues, including an invalid login attempt, increased server response time, and unusual network traffic. A potential malware detection was also triggered, prompting a security alert. The system has been shut down for further investigation.", "index_map": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], "predictions": {"is_anomaly": 1}, "probabilities": {"normal": 0.0, "anomaly": 1.0}}
*************************** 2. row ***************************
                id: 2
parsed_log_segment: Unusual network traffic from IP: 10.0.0.5 System update completed successfully Error log: Stack trace included User activity: Admin accessed settings Unlabeled log: Further investigation needed Security alert: Potential malware detected System shutdown initiated
        ml_results: {"summary": "\nHere is a concise summary:\n\nA system update was completed successfully, but an error log indicates potential malware detection and requires further investigation.", "index_map": [4, 5, 6, 7, 8, 9, 10], "predictions": {"is_anomaly": 1}, "probabilities": {"normal": 0.0, "anomaly": 1.0}}
*************************** 3. row ***************************
                id: 3
parsed_log_segment: User activity: Admin accessed settings Unlabeled log: Further investigation needed Security alert: Potential malware detected System shutdown initiated
        ml_results: {"summary": "\nAn administrator has accessed the system settings, triggered a security alert for potential malware detection, and initiated a system shutdown.", "index_map": [7, 8, 9, 10], "predictions": {"is_anomaly": 1}, "probabilities": {"normal": 0.0, "anomaly": 1.0}}
*************************** 4. row ***************************
                id: 4
parsed_log_segment: System shutdown initiated
        ml_results: {"summary": "\nThe system is shutting down.", "index_map": [10], "predictions": {"is_anomaly": 1}, "probabilities": {"normal": 0.0, "anomaly": 1.0}}

The size of the output table is based on the window_size and window_stride parameters when
the model is trained. Since this use case does not set these parameters, the default values of 10 for
window_size and 3 for window_stride is used. See Log Anomaly Detection Options to learn
more.

Review the following in the output table:

• is_anomaly to see if the row is labeled as an anomaly (1) or normal (0).

• normal and anomaly to see the anomaly score for each.

• index_map to see which rows in the input table are included in the prediction based on the
window_size and window_stride.

• summary to see the generated text summary describing the anomaly.

What's Next

• Learn how to Score an Anomaly Detection Model.

4.7.4.7 Scoring an Anomaly Detection Model

After generating predictions, you can score the model to assess its reliability. For a list of scoring
metrics you can use with anomaly detection models, see Anomaly Detection Metrics. For this use case,
you use the test dataset for validation. In a real-world use case, you should use a separate validation
dataset that has the target column and ground truth values for the scoring validation. You should also
use a larger number of records for training and validation to get a valid score.

To generate a score, the target_column_name column must only contain the anomaly scores as an
integer: 1 for an anomaly, or 0 for normal.

Before You Begin

Complete the following tasks:

• Prepare Data for an Anomaly Detection Model

• Train an Anomaly Detection Model

• Generate Predictions for an Anomaly Detection Model

Requirements for Scoring Models

If you run ML_SCORE with the log_anomaly_detection task, at least one column must act as the
primary key to establish the temporal order of logs.
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Scoring a Semi-Supervised Anomaly Detection Model

1. If not already done, load the model. You can use the session variable for the model that is valid for
the duration of the connection. Alternatively, you can use the model handle previously set. For the
option to set the user name, you can set it to NULL.

The following example uses the session variable.

mysql> CALL sys.ML_MODEL_LOAD(@model, NULL);

The following example uses the model handle.

mysql> CALL sys.ML_MODEL_LOAD('anomaly_detection_semi_supervised_use_case', NULL);

2. Score the model with the ML_SCORE routine and use the accuracy metric.

mysql> CALL sys.ML_SCORE(table_name, target_column_name, model_handle, metric, score, [options]);

Replace table_name, target_column_name, model_handle, metric, score with your own
values.

The following example runs ML_SCORE on the testing dataset previously created.

mysql> CALL sys.ML_SCORE('anomaly_data.credit_card_test', 'target', 'anomaly_detection_semi_supervised_use_case', 
                          'accuracy', @anomaly_score, NULL);

Where:

• anomaly_data.credit_card_test is the fully qualified name of the validation dataset.

• target is the target column name with ground truth values.

• 'anomaly_detection_semi_supervised_use_case' is the model handle for the trained
model.

• accuracy is the selected scoring metric.

• @anomaly_score is the session variable name for the score value.

• NULL means that no other options are defined for the routine.

3. Retrieve the score by querying the @score session variable.

mysql> SELECT @anomaly_score;
+--------------------+
| @anomaly_score     |
+--------------------+
| 0.6499999761581421 |
+--------------------+
1 row in set (0.0481 sec)

4. If done working with the model, unload it with the ML_MODEL_UNLOAD routine.

mysql> CALL sys.ML_MODEL_UNLOAD('anomaly_detection_semi_supervised_use_case');

To avoid consuming too much memory, it is good practice to unload a model when you are finished
using it.

Scoring an Unsupervised Anomaly Detection Model for Log Data

Even though you score an unsupervised model, you must provide a labeled dataset for generating a
score.
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1. If not already done, load the model. You can use the session variable for the model that is valid for
the duration of the connection. Alternatively, you can use the model handle previously set. For the
option to set the user name, you can set it to NULL.

The following example uses the session variable.

mysql> CALL sys.ML_MODEL_LOAD(@model, NULL);

The following example uses the model handle.

mysql> CALL sys.ML_MODEL_LOAD('anomaly_detection_log_use_case', NULL);

2. Score the model with the ML_SCORE routine and use the accuracy metric.

mysql> CALL sys.ML_SCORE(table_name, target_column_name, model_handle, metric, score, [options]);

Replace table_name, target_column_name, model_handle, metric, score with your own
values.

The following example runs ML_SCORE on the testing dataset previously created.

mysql> CALL sys.ML_SCORE('anomaly_log_data.testing_data', 'target', 'anomaly_detection_log_use_case', 
                          'f1', @anomaly_log_score, NULL);

Where:

• anomaly_log_data.testing_data is the fully qualified name of the validation dataset.

• target is the target column name with ground truth values.

• 'anomaly_detection_log_use_case' is the model handle for the trained model.

• f1 is the selected scoring metric.

• @anomaly_log_score is the session variable name for the score value.

• NULL means that no other options are defined for the routine.

3. Retrieve the score by querying the @score session variable.

mysql> SELECT @anomaly_log_score;
+--------------------+
| @anomaly_log_score |
+--------------------+
| 0.8571428656578064 |
+--------------------+
1 row in set (0.0452 sec)

4. If done working with the model, unload it with the ML_MODEL_UNLOAD routine.

mysql> CALL sys.ML_MODEL_UNLOAD('anomaly_detection_log_use_case');

To avoid consuming too much memory, it is good practice to unload a model when you are finished
using it.

What's Next

• Review other Machine Learning Use Cases.

4.7.5 Generating Recommendations

Recommendation models find patterns in user behavior to recommend products and users based on
prior behavior and preferences. Common examples include a streaming service recommending movies
and shows based on past viewing history, or an online shopping site recommending products based on
prior purchases.
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The main goal of recommendation models is to recommend either items that a user will like, or
recommend users who may like a specific item. AutoML includes recommendation models that can
recommend the following:

• The rating that a user will give to an item.

• Users who will like an item.

• Items that a user will like.

• Identify similar items.

• Identify similar users.

The following tasks use a dataset generated by OCI GenAI using Meta Llama Models. The
recommendation use-case is to create a machine learning model based on users giving a rating of 1 to
10 for different items.

To generate your own datasets to create machine learning models in MySQL AI, learn how to Generate
Text-Based Content.

Note

Datasets were generated using Meta Llama models. Your use of this Llama
model is subject to your Oracle agreements and this Llama license agreement:
https://downloads.mysql.com/docs/LLAMA_31_8B_INSTRUCT-license.pdf.

4.7.5.1 Recommendation Task Types

You can create recommendation models based on either explicit or implicit feedback. See
Recommendation Models to review models that support either implicit or explicit feedback.

Recommendation Models with Explicit Feedback

Recommendation models that use explicit feedback collect data on users that directly provide ratings
on items. The user ratings can be positive or negative. The recommendation models then use the
feedback to generate predicted ratings for users and items. The ratings are specific values, and the
higher the value, the better the rating.

Recommendation Models with Implicit Feedback

Recommendation models that use implicit feedback collect data on users' behavior, such as past
purchases, clicks, and view times. Users do not have to explicitly express their taste about an item.
When a user interacts with an item, the implication is that they prefer it to an item that they do not
interact with. Therefore, only positive observations are available. The non-observed user-item
interactions are a blend of negative feedback (the user doesn't like the item) or missing values (the
user might be interested in the item). The recommendation model generates rankings for users and
items. Rankings are a comparative measure, and the lower the value, the better the ranking. Because
A is better than B, the ranking for A has a lower value than the ranking for B. AutoML derives rankings
based on ratings from implicit feedback for all ratings that are at or above the feedback threshold.

Implicit feedback data can be in the following formats:

• Unary data: Only records if an interaction occurred or not. This type of data often uses a value of 1 to
represent an interaction, such as a click or view. Non-interactions can be represented by a value of 0
or missing values.

• Binary data: Explicitly categorizes interactions as positive or negative, such as users expressing likes
or dislikes.

• Numerical data: Provides more granular information about the interaction, such as how long a user
watched a video or how many times a user listened to a song. If numerical data is used for implicit
feedback, it is important to set the feedback_threshold option during training to distinguish
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what constitutes positive feedback. This threshold determines what value is equivalent to a positive
interaction. For example, if users are tracked by how many times they have interacted with an item,
you might set the feedback_threshold with a value of 3, which means that positive feedback is
represented by users that interact with the item more than three times.

Content-Based Recommendation Models

Content-based recommendation models allow you to include item and user descriptions in the input of
the recommendation model. This helps the model provide more accurate representations of items and
users. When training a content-based recommendation model, you can use the following models:

• TwoTower: The default training model. See Recommendation Training Models to learn more.

• Collaborative Topic Regression (CTR): This model combines the ideas of matrix factorization models
and topic modeling using Latent Dirichlet Allocation (LDA).

What's Next

• Learn how to Prepare Data for a Recommendation Model.

4.7.5.2 Preparing Data for a Recommendation Model

This topic describes how to prepare the data to use for a recommendation machine learning model
using explicit feedback. It uses a data sample generated by OCI GenAI. To prepare the data for this
use case, you set up a training dataset and a testing dataset. The training dataset has 86 records,
and the testing dataset has 40 records. In a real-life use case, you should prepare a larger amount
of records for training and testing, and ensure the predictions are valid and reliable before testing on
unlabeled data. To ensure reliable predictions, you should create an additional validation dataset. You
can reserve 20% of the records in the training dataset to create the validation dataset.

You have the option to automatically Prepare Training and Testing Datasets with your own data by
using the TRAIN_TEST_SPLIT routine.

Before You Begin

• Learn how to Prepare Data.

Preparing Data

To prepare the data for the recommendation model:

1. Connect to the MySQL Server.

2. Create and use the database to store the data.

mysql> CREATE DATABASE recommendation_data;
mysql> USE recommendation_data;

3. Create the table to insert the sample data into. This is the training dataset. The columns for users
and items (user_id and item_id), must be in string data type.

mysql> CREATE TABLE training_dataset (
    user_id VARCHAR(3),
    item_id VARCHAR(3),
    rating DECIMAL(3, 1),
    PRIMARY KEY (user_id, item_id)
);

4. Insert the sample data to train into the table. Copy and paste the following commands.

INSERT INTO training_dataset (user_id, item_id, rating) VALUES
    (1, 1, 5.0),
    (1, 3, 8.0),
    (1, 5, 2.5),
    (1, 7, 6.5),
    (1, 9, 4.0),
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    (1, 11, 7.5),
    (1, 13, 3.0),
    (1, 15, 9.0),
    (1, 17, 1.5),
    (1, 19, 5.5),
    (2, 2, 4.5),
    (2, 4, 7.5),
    (2, 6, 2.0),
    (2, 8, 5.5),
    (2, 10, 9.0),
    (2, 12, 3.5),
    (2, 14, 6.0),
    (2, 16, 1.0),
    (2, 18, 4.5),
    (2, 20, 8.5),
    (3, 1, 3.5),
    (3, 4, 6.5),
    (3, 7, 2.5),
    (3, 9, 5.0),
    (3, 11, 8.5),
    (3, 13, 1.0),
    (3, 15, 4.0),
    (3, 17, 7.0),
    (3, 19, 2.5),
    (4, 2, 5.5),
    (4, 5, 8.5),
    (4, 8, 3.0),
    (4, 10, 6.5),
    (4, 12, 9.5),
    (4, 14, 2.0),
    (4, 16, 4.5),
    (4, 18, 7.5),
    (5, 3, 7.0),
    (5, 6, 1.5),
    (5, 8, 4.0),
    (5, 11, 6.0),
    (5, 13, 8.0),
    (5, 15, 2.5),
    (5, 17, 5.5),
    (5, 19, 9.0),
    (6, 1, 4.5),
    (6, 4, 7.5),
    (6, 6, 3.0),
    (6, 9, 5.5),
    (6, 12, 8.0),
    (6, 14, 1.5),
    (6, 16, 4.0),
    (6, 18, 6.5),
    (7, 2, 6.0),
    (7, 5, 3.5),
    (7, 7, 5.0),
    (7, 10, 7.5),
    (7, 12, 2.0),
    (7, 14, 4.5),
    (7, 16, 7.0),
    (7, 18, 9.5),
    (8, 3, 8.5),
    (8, 6, 2.5),
    (8, 8, 5.0),
    (8, 11, 3.5),
    (8, 13, 6.5),
    (8, 15, 1.0),
    (8, 17, 4.5),
    (8, 19, 7.0),
    (9, 2, 5.0),
    (9, 5, 8.0),
    (9, 7, 1.5),
    (9, 10, 4.0),
    (9, 12, 6.5),
    (9, 14, 9.0),
    (9, 16, 2.5),
    (9, 18, 5.5),
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    (10, 1, 6.5),
    (10, 4, 3.0),
    (10, 6, 5.5),
    (10, 8, 8.0),
    (10, 11, 2.0),
    (10, 13, 4.5),
    (10, 15, 7.0),
    (10, 17, 9.5),
    (10, 19, 1.5);

5. Create the table to use for generating predictions. This is the test dataset. It has the same columns
as the training dataset.

mysql> CREATE TABLE testing_dataset (
    user_id VARCHAR(3),
    item_id VARCHAR(3),
    rating DECIMAL(3, 1),
    PRIMARY KEY (user_id, item_id)
);

6. Insert the sample data to test into the table. Copy and paste the following commands.

INSERT INTO testing_dataset (user_id, item_id, rating) VALUES
    (1, 2, 4.0),
    (1, 4, 7.0),
    (1, 6, 1.5),
    (1, 8, 3.5),
    (2, 1, 5.0),
    (2, 3, 8.0),
    (2, 5, 2.5),
    (2, 7, 6.5),
    (3, 2, 3.5),
    (3, 5, 6.5),
    (3, 8, 2.5),
    (3, 18, 7.0),     
    (4, 1, 5.5),
    (4, 3, 8.5),
    (4, 6, 2.0),
    (4, 7, 5.5),
    (5, 2, 7.0),
    (5, 4, 1.5),
    (5, 6, 4.0),
    (5, 12, 5.0),
    (6, 3, 6.0),
    (6, 5, 1.5),
    (6, 7, 4.5),
    (6, 8, 7.0),
    (7, 1, 6.5),
    (7, 4, 3.0),
    (7, 5, 5.5),
    (7, 9, 8.0),
    (8, 2, 8.5),
    (8, 4, 2.5),
    (8, 6, 5.0),
    (8, 9, 3.5),
    (9, 1, 5.0),
    (9, 3, 8.0),
    (9, 7, 2.5),
    (9, 8, 5.5),
    (10, 2, 6.5),
    (10, 5, 3.0),
    (10, 6, 5.5),
    (10, 18, 1.5);

What's Next

• Learn how to Train a Recommendation Model.

4.7.5.3 Training a Recommendation Model

After preparing the data for a recommendation model, you can train the model.

97



Generating Recommendations

This topic has the following sections.

• Before You Begin

• Requirements for Recommendation Training

• Options for All Recommendation Model Types

• Recommendation Training Models

• Options for Recommendation Models with Explicit Feedback

• Options for Recommendation Models with Implicit Feedback

• Options for Content-Based Recommendation Models

• Unsupported Routines

• Training the Model

• What's Next

Before You Begin

• Review and complete all the tasks to Prepare Data for a Recommendation Model.

Requirements for Recommendation Training

Define the following as required to train a recommendation model.

• Set the task parameter to recommendation to train a recommendation model.

• users: Specifies the column name corresponding to the user IDs. Values in this column must be in a
STRING data type, otherwise an error is returned during training.

• items: Specifies the column name corresponding to the item IDs. Values in this column must be in a
STRING data type, otherwise an error is returned during training.

If the users or items column contains NULL values, the corresponding rows are dropped and are not
be considered during training.

Options for All Recommendation Model Types

See Common ML_TRAIN Options to view available options for training recommendation models.

Recommendation Training Models

The default recommendation training model is the TwoTower model with Pytorch. You cannot add the
TwoTower model with the model_list option. Adding the model generates an error. The TwoTower
model is already set as the default recommendation model if model_list is not specified. Review the
list of available Recommendation Models.

The TwoTower model is a deep learning recommender system pipeline that provides enhanced quality
and faster speed than other recommender training models. It uses user-item interactions and user-
item features to train embedding vectors for users and items, which allows for quicker predictions.
To enable faster predictions, the model generates tables with embeddings for users and items. The
tables are used as a representation for each user and item. The model also generates a table of
interactions that stores each interaction between a user and item. You can view these tables in the
ML_SCHEMA_MySQL_username database. For example, ML_SCHEMA_user1.abc123_users,
ML_SCHEMA_user1.abc123_items, and ML_SCHEMA_user1.abc123_interactions. Providing
item_metadata and user_metadata is optional for the TwoTower model.
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To review limitations related to the TwoTower model, see Routine and Query Limitations and Other
Limitations.

Options for Recommendation Models with Explicit Feedback

Define the following JSON options to train a recommendation model with explicit feedback. To learn
more about recommendation models, see Recommendation Model Types.

• feedback: Set to explicit. If not set, the default value is explicit.

Options for Recommendation Models with Implicit Feedback

Define the following JSON options to train a recommendation model with implicit feedback. To learn
more about recommendation models, see Recommendation Model Types.

• feedback: Set to implicit.

• feedback_threshold: The feedback threshold for a recommendation model that uses implicit
feedback. It represents the threshold required to be considered positive feedback. For example, if
numerical data records the number of times users interact with an item, you might set a threshold
with a value of 3. This means users would need to interact with an item more than three times to be
considered positive feedback.

Options for Content-Based Recommendation Models

Define the following JSON options to train a content-based recommendation model. To learn more
about recommendation models, see Recommendation Model Types.

• item_metadata: Defines the table that has item descriptions. It is a JSON object that has the
table_name option as a key, which specifies the table that has item descriptions. One column must
be the same as the item_id in the input table.

• user_metadata: Defines the table that has user descriptions. It is a JSON object that has the
table_name option as a key, which specifies the table that has user descriptions. One column must
be the same as the user_id in the input table.

• table_name: To be used with the item_metadata and user_metadata options. It specifies
the table name that has item or user descriptions. It must be a string in a fully qualified format
(schema_name.table_name) that specifies the table name.

Unsupported Routines

You cannot run the following routines for a trained recommendation model:

• ML_EXPLAIN

• ML_EXPLAIN_ROW

• ML_EXPLAIN_TABLE

Training the Model

Train the model with the ML_TRAIN routine and use the training_data table previously created.
Before training the model, it is good practice to define the model handle instead of automatically
creating one. See Defining Model Handle.

1. Optionally, set the value of the session variable, which sets the model handle to this same value.

mysql> SET @variable = 'model_handle';

Replace @variable and model_handle with your own definitions. For example:
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mysql> SET @model='recommendation_use_case';

The model handle is set to recommendation_use_case.

2. Run the ML_TRAIN routine.

mysql> CALL sys.ML_TRAIN('table_name', 'target_column_name', JSON_OBJECT('task', 'task_name'), model_handle);

Replace table_name, target_column_name, task_name, and model_handle with your own
values.

The following example runs ML_TRAIN on the training dataset previously created.

mysql> CALL sys.ML_TRAIN('recommendation_data.training_dataset', 'rating', 
                          JSON_OBJECT('task', 'recommendation', 
                                      'users', 'user_id', 
                                      'items', 'item_id'), @model);

Where:

• recommendation_data.training_dataset is the fully qualified name of the table that
contains the training dataset (database_name.table_name).

• rating is the name of the target column, which contains ground truth values (item ratings).

• JSON_OBJECT('task', 'recommendation', 'users', 'user_id', 'items',
'item_id') specifies the machine learning task type and defines the users and items
columns. Since no model type is defined, the default value of a recommendation model using
explicit feedback is trained.

• @model is the session variable previously set that defines the model handle to the name defined
by the user: recommendation_use_case. If you do not define the model handle before training
the model, the model handle is automatically generated, and the session variable only stores the
model handle for the duration of the connection. User variables are written as @var_name. Any
valid name for a user-defined variable is permitted. See Work with Model Handles to learn more.

3. When the training operation finishes, the model handle is assigned to the @model session variable,
and the model is stored in the model catalog. View the entry in the model catalog with the following
query. Replace user1 with your MySQL account name.

mysql> SELECT model_id, model_handle, train_table_name FROM ML_SCHEMA_user1.MODEL_CATALOG  WHERE model_handle = 'recommendation_use_case';
+----------+-------------------------+--------------------------------------+
| model_id | model_handle            | train_table_name                     |
+----------+-------------------------+--------------------------------------+
|        5 | recommendation_use_case | recommendation_data.training_dataset |
+----------+-------------------------+--------------------------------------+

4. If the model is trained with the TwoTower recommendation model, you can view the tables with
embeddings and the table of interactions in the ML_SCHEMA_MySQL_username database. To
view the names of the generated tables, run the following query. Replace user1 with your MySQL
account name.

mysql> SHOW TABLES FROM ML_SCHEMA_user1;
+---------------------------+
| Tables_in_ML_SCHEMA_admin |
+---------------------------+
| 3e094aa4ba_interactions   |
| 3e094aa4ba_items          |
| 3e094aa4ba_users          |
| MODEL_CATALOG             |
| MODEL_CATALOG_BACKUP_v3   |
| catalog_version_v1        |
| catalog_version_v2        |
| catalog_version_v3        |
| model_object_catalog      |
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+---------------------------+

5. Run the following queries to view a sample of each generated table.

mysql> SELECT * FROM ML_SCHEMA_user1.3e094aa4ba_users LIMIT 5;

| user_id | embedding_vector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

| 1       | 0x543B13BDDD328D3D6B3F6CBEB56B39BEA75052BEAA25C5BDAE894A3D721013BE3324B23D59779D3DD35B8C3D0642643E1299073EE00EFB3D8B22AFBD2948A13DA3F1A3BDC83D28BEED5B753E30197D3D98FA59BEC7D9C2BECA80F8BD9AE9E9BAE8BFB03E460549BE5ABD17BB852DECBDB75E3CBD2D8B5EBE91550BBEC33994BD11EA29BEDD93CABD5DE6353E5833D43DD70610BE897B543EDDB9893D2A10B43D61C8E53D6C68B03D5AE1BCBD3DEB86BEB24BE83D906F66BDD714723EB293963EC814F6BD19EDD03D69239DBCC038F7BD4B9701BE993B30BECD4E673D99B6D9BD1F61353EE5B60E3E19EC8C3DFF572B3ED8905D3C7BD08CBDF5B978BD72EA93BC |
| 10      | 0xC3551FBEDA3F34BE2FD6583EEC0BC13D650262BE860F1C3D09DBEC3CAFBD803D006CD5BD3C26A5BD5FB9FC3D685A67BE5C9DB43BD8C2A93DBF8428BE5627363D7C9FFABDE6BA323DDD8846BEDC774FBD5145073CE01456BDF7F697BD9715163C1D4C13BAA0EB873D096BEABC996B5B3DC4A29ABEF4F3D03D35E65FBC48A7B33D49CC23BE0835D33D28806BBDA9A2423E8FC7C4BB0D2302BE154323BE057E09BCDC4DC93DFA79B13B1BB09EBE45EA3FBEF0B6683ECE76FE3D18486B3CC1A37CBEF31C84BEA10E11BE133202BE091F3B3EC5C8F9BC5A24E1BDB1720BBE48631ABEBCCA393D0B46263E56A1953D2DA68ABE8A8D5EBBE5EA53BE0B36A7BE8DE2AABD |
| 2       |  |
| 3       | 0x|
| 4       | 0x|

5 rows in set (0.0409 sec)
mysql> SELECT * FROM ML_SCHEMA_user1.3e094aa4ba_items LIMIT 5;

| item_id | embedding_vector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
+---------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| 1       | 0xED5A45BEF6D032BE667454BE9DB66FBE62B6F13D392199BE9FE6D63D8718353E1E26CCBC9B6F133EC0F0CE3D90DC79BE561E8CBB94F39ABD86E82B3D4D5BE0BC8D6EA43D929C74BDCA30B43E90B87FBE0B336EBEB6ACA6BD960A9BBC165BF93D4F12833E5143A4BD4050643ECF13803E3BA084BEFDD228BEDA468BBDB708ABBDC3480CBE362B8C3BA5C4CA3DD8B05CBEA58439BEB887853DEC22E6BD17E179BBD12B4BBEDB5416BD4B6B35BEB721A8BD491B383E71293A3DBCE5B8BDE26B95BD8BF54B3C8B58643EE3C82F3E43B341BDDB8AD43D0F75253EF1FD15BE2915883DC3F6AC3DD11BAC3D135C41BCC9FEC3BD8DD2E43D0B5D813DFC49AABDA52291BD |
| 10      | |
| 11      |  |
| 12      | 0x|
| 13      |  |

5 rows in set (0.0419 sec)
mysql> SELECT * FROM ML_SCHEMA_user1.3e094aa4ba_interactions LIMIT 5;
+-------------------+---------+---------+
| _4aad19ca6e_pk_id | user_id | item_id |
+-------------------+---------+---------+
|                 1 | 1       | 1       |
|                 2 | 1       | 11      |
|                 3 | 1       | 13      |
|                 4 | 1       | 15      |
|                 5 | 1       | 17      |
+-------------------+---------+---------+
5 rows in set (0.0454 sec)

What's Next

• Learn how to Generate Predictions for a Recommendation Model.

• Review additional Syntax Examples for Recommendation Training.

4.7.5.4 Generating Predictions for a Recommendation Model

After training the model, you can generate predictions. To generate predictions, use the sample data
from the testing_dataset dataset. NULL values for any row in the users or items columns
generates an error.

Before You Begin

Complete the following tasks:

• Prepare Data for a Recommendation Model

• Train a Recommendation Model

Options for Generating Predictions

The options for ML_PREDICT_ROW and ML_PREDICT_TABLE include the following:

• threshold: The optional threshold that defines positive feedback, and a relevant sample. Only use
with ranking metrics. It can be used for either explicit or implicit feedback.

• topk: The number of recommendations to provide. The default is 3.

• recommend: Specifies what to recommend. Permitted values are:
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• ratings: Predicts ratings that users will give. This is the default value.

• items: Recommends items for users.

• users: Recommends users for items.

• users_to_items: This is the same as items.

• items_to_users: This is the same as users.

• items_to_items: Recommends similar items for items.

• users_to_users: Recommends similar users for users.

• remove_seen: If true, the model does not repeat existing interactions from the training table. It
only applies to the recommendations items, users, users_to_items, and items_to_users.

• item_metadata: Defines the table that has item descriptions. It is a JSON object that has the
table_name option as a key, which specifies the table that has item descriptions. One column must
be the same as the item_id in the input table.

• user_metadata: Defines the table that has user descriptions. It is a JSON object that has the
table_name option as a key, which specifies the table that has user descriptions. One column must
be the same as the user_id in the input table.

• table_name: To be used with the item_metadata and user_metadata options. It specifies
the table name that has item or user descriptions. It must be a string in a fully qualified format
(schema_name.table_name) that specifies the table name.

Generating Predictions with the TwoTower Recommendation Model

If the model is trained with the TwoTower recommendation model, keep in mind the following:

• You have the option to specify additional user and item desciptions by using the item_metadata
and user_metadata options.

• If there are missing descriptions for users and items, these missing descriptions are inferred when
generating predictions.

• If user and items descriptions are provided for training, they are ignored when generating predictions.
Instead, the generated embeddings for the users and items are used to generate predictions.

• The ML_PREDICT_ROW routine is not supported.

What's Next

• Learn about the different ways to generate specific recommendations with a recommendation model:

• Generate Predictions for Ratings and Rankings.

• Generate Item Recommendations for Users

• Generate User Recommendations for Items

• Generate Recommendations for Similar Items

• Generate Recommendations for Similar Users

4.7.5.5 Generating Predictions for Ratings and Rankings

This topic describes how to generate recommendations for either ratings (recommendation model
with explicit feedback) or rankings (recommendation model with implicit feedback). If generating a
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rating, the output predicts the rating the user will give to an item. If generating a ranking, the output is a
ranking of the user compared to other users.

• For known users and known items, the output includes the predicted rating or ranking for an item for
a given pair of user_id and item_id.

• For a known user with a new item, the prediction is the global average rating or ranking. The routines
can add a user bias if the model includes it.

• For a new user with a known item, the prediction is the global average rating or ranking. The routines
can add an item bias if the model includes it.

• For a new user with a new item, the prediction is the global average rating or ranking.

Before You Begin

Review and complete the following tasks:

• Prepare Data for a Recommendation Model

• Train a Recommendation Model

• Generate Predictions for a Recommendation Model

Generating Rating Recommendations

Since the model you previously trained used explicit feedback, you generate ratings that the user is
predicted to give an item. A higher rating means a better rating. If you train a recommendation model
using implicit feedback, you generate rankings. A lower ranking means a better ranking. The steps
below are the same for both types of recommendation models. See Recommendation Task Types to
learn more.

You have the option to include item and user metadata when generating predictions. These steps
include that metadata in the command to generate predictions.

1. If not already done, load the model. You can use the session variable for the model that is valid for
the duration of the connection. Alternatively, you can use the model handle previously set. For the
option to set the user name, you can set it to NULL.

The following example uses the session variable.

mysql> CALL sys.ML_MODEL_LOAD(@model, NULL);

The following example uses the model handle.

mysql> CALL sys.ML_MODEL_LOAD('recommendation_use_case', NULL);

2. Make predictions for the test dataset by using the ML_PREDICT_TABLE routine.

mysql> CALL sys.ML_PREDICT_TABLE(table_name, model_handle, output_table_name), [options]);

Replace table_name, model_handle, and output_table_name with your own values. Add
options as needed.

You have the option to specify the input table and output table as the same table if specific
conditions are met. See Input Tables and Output Tables to learn more.

The following example runs ML_PREDICT_TABLE on the testing dataset previously created.

mysql> CALL sys.ML_PREDICT_TABLE('recommendation_data.testing_dataset', @model, 'recommendation_data.item_recommendations', 
                                  JSON_OBJECT('recommend', 'items', 'topk', 2, 
                                              'user_metadata', JSON_OBJECT('table_name', 'recommendation_data.users'), 
                                              'item_metadata', JSON_OBJECT('table_name', 'recommendation_data.items')));

Where:
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• recommendation_data.testing_dataset is the fully qualified name of the input table that
contains the data to generate predictions for (database_name.table_name).

• @model is the session variable for the model handle.

• recommendation_data.recommendations is the fully qualified name of the output table with
predictions (database_name.table_name).

• 'user_metadata', JSON_OBJECT('table_name', 'recommendation_data.users')
specifies the table that has user metadata to use when generating predictions.

• 'item_metadata', JSON_OBJECT('table_name', 'recommendation_data.items')
specifies the table that has item metadata to use when generating predictions.

3. Query the output table to review the predicted ratings that users give for each user-item pair.

mysql> SELECT * from recommendations;
+---------+---------+--------+-----------------------------------+
| user_id | item_id | rating | ml_results                        |
+---------+---------+--------+-----------------------------------+
| 1       | 2       |    4.0 | {"predictions": {"rating": 2.71}} |
| 1       | 4       |    7.0 | {"predictions": {"rating": 3.43}} |
| 1       | 6       |    1.5 | {"predictions": {"rating": 1.6}}  |
| 1       | 8       |    3.5 | {"predictions": {"rating": 2.71}} |
| 10      | 18      |    1.5 | {"predictions": {"rating": 3.63}} |
| 10      | 2       |    6.5 | {"predictions": {"rating": 2.82}} |
| 10      | 5       |    3.0 | {"predictions": {"rating": 3.09}} |
| 10      | 6       |    5.5 | {"predictions": {"rating": 1.67}} |
| 2       | 1       |    5.0 | {"predictions": {"rating": 2.88}} |
| 2       | 3       |    8.0 | {"predictions": {"rating": 4.65}} |
| 2       | 5       |    2.5 | {"predictions": {"rating": 3.09}} |
| 2       | 7       |    6.5 | {"predictions": {"rating": 2.23}} |
| 3       | 18      |    7.0 | {"predictions": {"rating": 3.25}} |
| 3       | 2       |    3.5 | {"predictions": {"rating": 2.53}} |
| 3       | 5       |    6.5 | {"predictions": {"rating": 2.77}} |
| 3       | 8       |    2.5 | {"predictions": {"rating": 2.53}} |
| 4       | 1       |    5.5 | {"predictions": {"rating": 3.36}} |
| 4       | 3       |    8.5 | {"predictions": {"rating": 5.42}} |
| 4       | 6       |    2.0 | {"predictions": {"rating": 1.94}} |
| 4       | 7       |    5.5 | {"predictions": {"rating": 2.61}} |
| 5       | 12      |    5.0 | {"predictions": {"rating": 3.29}} |
| 5       | 2       |    7.0 | {"predictions": {"rating": 2.9}}  |
| 5       | 4       |    1.5 | {"predictions": {"rating": 3.68}} |
| 5       | 6       |    4.0 | {"predictions": {"rating": 1.72}} |
| 6       | 3       |    6.0 | {"predictions": {"rating": 4.98}} |
| 6       | 5       |    1.5 | {"predictions": {"rating": 3.31}} |
| 6       | 7       |    4.5 | {"predictions": {"rating": 2.4}}  |
| 6       | 8       |    7.0 | {"predictions": {"rating": 3.03}} |
| 7       | 1       |    6.5 | {"predictions": {"rating": 3.18}} |
| 7       | 4       |    3.0 | {"predictions": {"rating": 3.95}} |
| 7       | 5       |    5.5 | {"predictions": {"rating": 3.41}} |
| 7       | 9       |    8.0 | {"predictions": {"rating": 3.17}} |
| 8       | 2       |    8.5 | {"predictions": {"rating": 2.6}}  |
| 8       | 4       |    2.5 | {"predictions": {"rating": 3.3}}  |
| 8       | 6       |    5.0 | {"predictions": {"rating": 1.54}} |
| 8       | 9       |    3.5 | {"predictions": {"rating": 2.65}} |
| 9       | 1       |    5.0 | {"predictions": {"rating": 2.99}} |
| 9       | 3       |    8.0 | {"predictions": {"rating": 4.83}} |
| 9       | 7       |    2.5 | {"predictions": {"rating": 2.32}} |
| 9       | 8       |    5.5 | {"predictions": {"rating": 2.93}} |
+---------+---------+--------+-----------------------------------+
40 rows in set (0.0459 sec)

Review each user_id and item_id pair and the respective rating value in the ml_results
column. For example, in the first row, user 1 is expected to give item 2 a rating of 2.71.

The values in the rating column refer to the past rating the user_id gave to the item_id. They
are not relevant to the values in ml_results.
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What's Next

• Learn how to generate different types of recommendations:

• Generate Item Recommendations for Users

• Generate User Recommendations for Items

• Generate Recommendations for Similar Items

• Generate Recommendations for Similar Users

• Learn how to Score a Recommendation Model.

4.7.5.6 Generating Item Recommendations for Users

This topic describes how to generate recommended items for users.

• For known users and known items, the output includes a list of items that the user will most likely
give a high rating and the predicted rating or ranking.

• For a new user, and an explicit feedback model, the prediction is the global top K items that received
the average highest ratings.

• For a new user, and an implicit feedback model, the prediction is the global top K items with the
highest number of interactions.

• For a user who has tried all known items, the prediction is an empty list because it is not possible to
recommend any other items. Set remove_seen to false to repeat existing interactions from the
training table.

Before You Begin

Review and complete the following tasks:

• Prepare Data for a Recommendation Model

• Train a Recommendation Model

• Generate Predictions for a Recommendation Model

Recommend Items to Users

When you run ML_PREDICT_TABLE to generate item recommendations, a default value of three items
are recommended. To change this value, set the topk parameter.

You have the option to include item and user metadata when generating predictions. These steps
include that metadata in the command to generate predictions.

1. If not already done, load the model. You can use the session variable for the model that is valid for
the duration of the connection. Alternatively, you can use the model handle previously set. For the
option to set the user name, you can set it to NULL.

The following example uses the session variable.

mysql> CALL sys.ML_MODEL_LOAD(@model, NULL);

The following example uses the model handle.

mysql> CALL sys.ML_MODEL_LOAD('recommendation_use_case', NULL);

2. Make predictions for the test dataset by using the ML_PREDICT_TABLE routine.

mysql> CALL sys.ML_PREDICT_TABLE(table_name, model_handle, output_table_name), [options]);
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Replace table_name, model_handle, and output_table_name with your own values. Add
options as needed.

You have the option to specify the input table and output table as the same table if specific
conditions are met. See Input Tables and Output Tables to learn more.

The following example runs ML_PREDICT_TABLE on the testing dataset previously created and
sets the topk parameter to 2, so only two items are recommended.

mysql> CALL sys.ML_PREDICT_TABLE('recommendation_data.testing_dataset', @model, 'recommendation_data.item_recommendations', 
                                  JSON_OBJECT('recommend', 'items', 
                                              'topk', 2, 
                                              'user_metadata', JSON_OBJECT('table_name', 'recommendation_data.users'), 
                                              'item_metadata', JSON_OBJECT('table_name', 'recommendation_data.items')));

Where:

• recommendation_data.testing_dataset is the fully qualified name of the input table that
contains the data to generate predictions for (database_name.table_name).

• @model is the session variable for the model handle.

• recommendation_data.item_recommendations is the fully qualified name of the output
table with recommendations (database_name.table_name).

• JSON_OBJECT('recommend', 'items', 'topk', 2) sets the recommendation task to
recommend items to users. A maximum of two items to recommend is set.

• 'user_metadata', JSON_OBJECT('table_name', 'recommendation_data.users')
specifies the table that has user metadata to use when generating predictions.

• 'item_metadata', JSON_OBJECT('table_name', 'recommendation_data.items')
specifies the table that has item metadata to use when generating predictions.

3. Query the output table to review the recommended top two items for each user in the output table.

mysql> SELECT * from item_recommendations;
+---------+---------+--------+--------------------------------------------------------------------+
| user_id | item_id | rating | ml_results                                                         |
+---------+---------+--------+--------------------------------------------------------------------+
| 1       | 2       |    4.0 | {"predictions": {"item_id": ["20", "18"], "rating": [4.7, 3.48]}}  |
| 1       | 4       |    7.0 | {"predictions": {"item_id": ["20", "18"], "rating": [4.7, 3.48]}}  |
| 1       | 6       |    1.5 | {"predictions": {"item_id": ["20", "18"], "rating": [4.7, 3.48]}}  |
| 1       | 8       |    3.5 | {"predictions": {"item_id": ["20", "18"], "rating": [4.7, 3.48]}}  |
| 10      | 18      |    1.5 | {"predictions": {"item_id": ["20", "3"], "rating": [4.9, 4.65]}}   |
| 10      | 2       |    6.5 | {"predictions": {"item_id": ["20", "3"], "rating": [4.9, 4.65]}}   |
| 10      | 5       |    3.0 | {"predictions": {"item_id": ["20", "3"], "rating": [4.9, 4.65]}}   |
| 10      | 6       |    5.5 | {"predictions": {"item_id": ["20", "3"], "rating": [4.9, 4.65]}}   |
| 2       | 1       |    5.0 | {"predictions": {"item_id": ["3", "17"], "rating": [4.65, 3.38]}}  |
| 2       | 3       |    8.0 | {"predictions": {"item_id": ["3", "17"], "rating": [4.65, 3.38]}}  |
| 2       | 5       |    2.5 | {"predictions": {"item_id": ["3", "17"], "rating": [4.65, 3.38]}}  |
| 2       | 7       |    6.5 | {"predictions": {"item_id": ["3", "17"], "rating": [4.65, 3.38]}}  |
| 3       | 18      |    7.0 | {"predictions": {"item_id": ["20", "3"], "rating": [4.39, 4.17]}}  |
| 3       | 2       |    3.5 | {"predictions": {"item_id": ["20", "3"], "rating": [4.39, 4.17]}}  |
| 3       | 5       |    6.5 | {"predictions": {"item_id": ["20", "3"], "rating": [4.39, 4.17]}}  |
| 3       | 8       |    2.5 | {"predictions": {"item_id": ["20", "3"], "rating": [4.39, 4.17]}}  |
| 4       | 1       |    5.5 | {"predictions": {"item_id": ["20", "3"], "rating": [5.71, 5.42]}}  |
| 4       | 3       |    8.5 | {"predictions": {"item_id": ["20", "3"], "rating": [5.71, 5.42]}}  |
| 4       | 6       |    2.0 | {"predictions": {"item_id": ["20", "3"], "rating": [5.71, 5.42]}}  |
| 4       | 7       |    5.5 | {"predictions": {"item_id": ["20", "3"], "rating": [5.71, 5.42]}}  |
| 5       | 12      |    5.0 | {"predictions": {"item_id": ["20", "18"], "rating": [5.05, 3.74]}} |
| 5       | 2       |    7.0 | {"predictions": {"item_id": ["20", "18"], "rating": [5.05, 3.74]}} |
| 5       | 4       |    1.5 | {"predictions": {"item_id": ["20", "18"], "rating": [5.05, 3.74]}} |
| 5       | 6       |    4.0 | {"predictions": {"item_id": ["20", "18"], "rating": [5.05, 3.74]}} |
| 6       | 3       |    6.0 | {"predictions": {"item_id": ["20", "3"], "rating": [5.25, 4.98]}}  |
| 6       | 5       |    1.5 | {"predictions": {"item_id": ["20", "3"], "rating": [5.25, 4.98]}}  |
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| 6       | 7       |    4.5 | {"predictions": {"item_id": ["20", "3"], "rating": [5.25, 4.98]}}  |
| 6       | 8       |    7.0 | {"predictions": {"item_id": ["20", "3"], "rating": [5.25, 4.98]}}  |
| 7       | 1       |    6.5 | {"predictions": {"item_id": ["20", "3"], "rating": [5.41, 5.13]}}  |
| 7       | 4       |    3.0 | {"predictions": {"item_id": ["20", "3"], "rating": [5.41, 5.13]}}  |
| 7       | 5       |    5.5 | {"predictions": {"item_id": ["20", "3"], "rating": [5.41, 5.13]}}  |
| 7       | 9       |    8.0 | {"predictions": {"item_id": ["20", "3"], "rating": [5.41, 5.13]}}  |
| 8       | 2       |    8.5 | {"predictions": {"item_id": ["20", "18"], "rating": [4.53, 3.35]}} |
| 8       | 4       |    2.5 | {"predictions": {"item_id": ["20", "18"], "rating": [4.53, 3.35]}} |
| 8       | 6       |    5.0 | {"predictions": {"item_id": ["20", "18"], "rating": [4.53, 3.35]}} |
| 8       | 9       |    3.5 | {"predictions": {"item_id": ["20", "18"], "rating": [4.53, 3.35]}} |
| 9       | 1       |    5.0 | {"predictions": {"item_id": ["20", "3"], "rating": [5.09, 4.83]}}  |
| 9       | 3       |    8.0 | {"predictions": {"item_id": ["20", "3"], "rating": [5.09, 4.83]}}  |
| 9       | 7       |    2.5 | {"predictions": {"item_id": ["20", "3"], "rating": [5.09, 4.83]}}  |
| 9       | 8       |    5.5 | {"predictions": {"item_id": ["20", "3"], "rating": [5.09, 4.83]}}  |
+---------+---------+--------+--------------------------------------------------------------------+
40 rows in set (0.0387 sec)

Review the recommended items in the ml_results column next to item_id. For example, user
1 is predicted to like items 20 and 18. Review the ratings in the ml_results column to review the
expected ratings for each recommended item. For example, user 1 is expected to rate item 20 with
a value of 4.7, and item 18 with a value of 3.48.

What's Next

• Learn how to generate different types of recommendations:

• Generate Predictions for Ratings and Rankings

• Generate User Recommendations for Items

• Generate Recommendations for Similar Items

• Generate Recommendations for Similar Users

• Learn how to Score a Recommendation Model.

4.7.5.7 Generating User Recommendations for Items

This topic describes how to generate recommended users for items.

• For known users and known items, the output includes a list of users that will most likely give a high
rating to an item and will also predict the ratings or rankings.

• For a new item, and an explicit feedback model, the prediction is the global top K users who have
provided the average highest ratings.

• For a new item, and an implicit feedback model, the prediction is the global top K users with the
highest number of interactions.

• For an item that has been tried by all known users, the prediction is an empty list because it is not
possible to recommend any other users. Set remove_seen to false to repeat existing interactions
from the training table.

Before You Begin

Review and complete the following tasks:

• Prepare Data for a Recommendation Model

• Train a Recommendation Model

• Generate Predictions for a Recommendation Model
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Recommend Users to Items

When you run ML_PREDICT_TABLE to generate user recommendations, a default value of three users
are recommended. To change this value, set the topk parameter.

You have the option to include item and user metadata when generating predictions. These steps
include that metadata in the command to generate predictions.

1. If not already done, load the model. You can use the session variable for the model that is valid for
the duration of the connection. Alternatively, you can use the model handle previously set. For the
option to set the user name, you can set it to NULL.

The following example uses the session variable.

mysql> CALL sys.ML_MODEL_LOAD(@model, NULL);

The following example uses the model handle.

mysql> CALL sys.ML_MODEL_LOAD('recommendation_use_case', NULL);

2. Make predictions for the test dataset by using the ML_PREDICT_TABLE routine.

mysql> CALL sys.ML_PREDICT_TABLE(table_name, model_handle, output_table_name), [options]);

Replace table_name, model_handle, and output_table_name with your own values. Add
options as needed.

You have the option to specify the input table and output table as the same table if specific
conditions are met. See Input Tables and Output Tables to learn more.

The following example runs ML_PREDICT_TABLE on the testing dataset previously created and
sets the topk parameter to 2, so only two users are recommended.

mysql> CALL sys.ML_PREDICT_TABLE('recommendation_data.testing_dataset', @model, 'recommendation_data.user_recommendations', 
                                  JSON_OBJECT('recommend', 'users', 
                                              'topk', 2, 
                                              'user_metadata', JSON_OBJECT('table_name', 'recommendation_data.users'), 
                                              'item_metadata', JSON_OBJECT('table_name', 'recommendation_data.items')));

Where:

• recommendation_data.testing_dataset is the fully qualified name of the input table that
contains the data to generate predictions for (database_name.table_name).

• @model is the session variable for the model handle.

• recommendation_data.user_recommendations is the fully qualified name of the output
table with recommendations (database_name.table_name).

• JSON_OBJECT('recommend', 'users', 'topk', 2) sets the recommendation task to
recommend users to items. A maximum of two users to recommend is set.

• 'user_metadata', JSON_OBJECT('table_name', 'recommendation_data.users')
specifies the table that has user metadata to use when generating predictions.

• 'item_metadata', JSON_OBJECT('table_name', 'recommendation_data.items')
specifies the table that has item metadata to use when generating predictions.

3. Query the output table to review the recommended top two users for each item in the output table.

mysql> SELECT * from user_recommendations;
+---------+---------+--------+-------------------------------------------------------------------+
| user_id | item_id | rating | ml_results                                                        |
+---------+---------+--------+-------------------------------------------------------------------+
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| 1       | 2       |    4.0 | {"predictions": {"user_id": ["6", "5"], "rating": [3.02, 2.9]}}   |
| 1       | 4       |    7.0 | {"predictions": {"user_id": ["4", "7"], "rating": [4.16, 3.95]}}  |
| 1       | 6       |    1.5 | {"predictions": {"user_id": ["4", "7"], "rating": [1.94, 1.84]}}  |
| 1       | 8       |    3.5 | {"predictions": {"user_id": ["7", "6"], "rating": [3.12, 3.03]}}  |
| 10      | 18      |    1.5 | {"predictions": {"user_id": ["5", "10"], "rating": [3.74, 3.63]}} |
| 10      | 2       |    6.5 | {"predictions": {"user_id": ["6", "5"], "rating": [3.02, 2.9]}}   |
| 10      | 5       |    3.0 | {"predictions": {"user_id": ["6", "5"], "rating": [3.31, 3.19]}}  |
| 10      | 6       |    5.5 | {"predictions": {"user_id": ["4", "7"], "rating": [1.94, 1.84]}}  |
| 2       | 1       |    5.0 | {"predictions": {"user_id": ["4", "7"], "rating": [3.36, 3.18]}}  |
| 2       | 3       |    8.0 | {"predictions": {"user_id": ["4", "7"], "rating": [5.42, 5.13]}}  |
| 2       | 5       |    2.5 | {"predictions": {"user_id": ["6", "5"], "rating": [3.31, 3.19]}}  |
| 2       | 7       |    6.5 | {"predictions": {"user_id": ["4", "6"], "rating": [2.61, 2.4]}}   |
| 3       | 18      |    7.0 | {"predictions": {"user_id": ["5", "10"], "rating": [3.74, 3.63]}} |
| 3       | 2       |    3.5 | {"predictions": {"user_id": ["6", "5"], "rating": [3.02, 2.9]}}   |
| 3       | 5       |    6.5 | {"predictions": {"user_id": ["6", "5"], "rating": [3.31, 3.19]}}  |
| 3       | 8       |    2.5 | {"predictions": {"user_id": ["7", "6"], "rating": [3.12, 3.03]}}  |
| 4       | 1       |    5.5 | {"predictions": {"user_id": ["4", "7"], "rating": [3.36, 3.18]}}  |
| 4       | 3       |    8.5 | {"predictions": {"user_id": ["4", "7"], "rating": [5.42, 5.13]}}  |
| 4       | 6       |    2.0 | {"predictions": {"user_id": ["4", "7"], "rating": [1.94, 1.84]}}  |
| 4       | 7       |    5.5 | {"predictions": {"user_id": ["4", "6"], "rating": [2.61, 2.4]}}   |
| 5       | 12      |    5.0 | {"predictions": {"user_id": ["5", "10"], "rating": [3.29, 3.2]}}  |
| 5       | 2       |    7.0 | {"predictions": {"user_id": ["6", "5"], "rating": [3.02, 2.9]}}   |
| 5       | 4       |    1.5 | {"predictions": {"user_id": ["4", "7"], "rating": [4.16, 3.95]}}  |
| 5       | 6       |    4.0 | {"predictions": {"user_id": ["4", "7"], "rating": [1.94, 1.84]}}  |
| 6       | 3       |    6.0 | {"predictions": {"user_id": ["4", "7"], "rating": [5.42, 5.13]}}  |
| 6       | 5       |    1.5 | {"predictions": {"user_id": ["6", "5"], "rating": [3.31, 3.19]}}  |
| 6       | 7       |    4.5 | {"predictions": {"user_id": ["4", "6"], "rating": [2.61, 2.4]}}   |
| 6       | 8       |    7.0 | {"predictions": {"user_id": ["7", "6"], "rating": [3.12, 3.03]}}  |
| 7       | 1       |    6.5 | {"predictions": {"user_id": ["4", "7"], "rating": [3.36, 3.18]}}  |
| 7       | 4       |    3.0 | {"predictions": {"user_id": ["4", "7"], "rating": [4.16, 3.95]}}  |
| 7       | 5       |    5.5 | {"predictions": {"user_id": ["6", "5"], "rating": [3.31, 3.19]}}  |
| 7       | 9       |    8.0 | {"predictions": {"user_id": ["4", "7"], "rating": [3.34, 3.17]}}  |
| 8       | 2       |    8.5 | {"predictions": {"user_id": ["6", "5"], "rating": [3.02, 2.9]}}   |
| 8       | 4       |    2.5 | {"predictions": {"user_id": ["4", "7"], "rating": [4.16, 3.95]}}  |
| 8       | 6       |    5.0 | {"predictions": {"user_id": ["4", "7"], "rating": [1.94, 1.84]}}  |
| 8       | 9       |    3.5 | {"predictions": {"user_id": ["4", "7"], "rating": [3.34, 3.17]}}  |
| 9       | 1       |    5.0 | {"predictions": {"user_id": ["4", "7"], "rating": [3.36, 3.18]}}  |
| 9       | 3       |    8.0 | {"predictions": {"user_id": ["4", "7"], "rating": [5.42, 5.13]}}  |
| 9       | 7       |    2.5 | {"predictions": {"user_id": ["4", "6"], "rating": [2.61, 2.4]}}   |
| 9       | 8       |    5.5 | {"predictions": {"user_id": ["7", "6"], "rating": [3.12, 3.03]}}  |
+---------+---------+--------+-------------------------------------------------------------------+
40 rows in set (0.0476 sec)

Review the recommended users in the ml_results column next to user_id. For example, for
item 2, users 6 and 5 are the top users predicted to like it. Review the ratings in the ml_results
column to review the expected ratings for each recommended item. For example, user 6 is
expected to rate item 2 with a value of 3.02, and user 5 with a value of 2.9.

What's Next

• Learn how to generate different types of recommendations:

• Generate Predictions for Ratings and Rankings

• Generate Item Recommendations for Users

• Generate Recommendations for Similar Items

• Generate Recommendations for Similar Users

• Learn how to Score a Recommendation Model.

4.7.5.8 Generating Recommendations for Similar Items

This topic describes how to generate recommendations for similar items.

• For known items, the output includes a list of predicted items that have similar ratings and are
appreciated by similar users.
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• The predictions are expressed in cosine similarity, and range from 0, very dissimilar, to 1, very
similar.

• For a new item, there is no information to provide a prediction. This generates an error.

Before You Begin

Review and complete the following tasks:

• Prepare Data for a Recommendation Model

• Train a Recommendation Model

• Generate Predictions for a Recommendation Model

Generating Similar Items

When you run ML_PREDICT_TABLE to generate similar item recommendations, a default value of three
similar items are recommended. To change this value, set the topk parameter.

You have the option to include item and user metadata when generating predictions. These steps
include that metadata in the command to generate predictions.

1. If not already done, load the model. You can use the session variable for the model that is valid for
the duration of the connection. Alternatively, you can use the model handle previously set. For the
option to set the user name, you can set it to NULL.

The following example uses the session variable.

mysql> CALL sys.ML_MODEL_LOAD(@model, NULL);

The following example uses the model handle.

mysql> CALL sys.ML_MODEL_LOAD('recommendation_use_case', NULL);

2. Make predictions for the test dataset by using the ML_PREDICT_TABLE routine.

mysql> CALL sys.ML_PREDICT_TABLE(table_name, model_handle, output_table_name), [options]);

Replace table_name, model_handle, and output_table_name with your own values. Add
options as needed.

You have the option to specify the input table and output table as the same table if specific
conditions are met. See Input Tables and Output Tables to learn more.

The following example runs ML_PREDICT_TABLE on the testing dataset previously created and
sets the topk parameter to 2, so only two similar items are generated.

mysql> CALL sys.ML_PREDICT_TABLE('recommendation_data.testing_dataset', @model, 'recommendation_data.similar_item_recommendations', 
                                  JSON_OBJECT('recommend', 'items_to_items', 
                                              'topk', 2, 
                                              'user_metadata', JSON_OBJECT('table_name', 'recommendation_data.users'), 
                                              'item_metadata', JSON_OBJECT('table_name', 'recommendation_data.items')));

Where:

• recommendation_data.testing_dataset is the fully qualified name of the input table that
contains the data to generate predictions for (database_name.table_name).

• @model is the session variable for the model handle.

• recommendation_data.similar_item_recommendations is the fully qualified name of the
output table with recommendations (database_name.table_name).
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• JSON_OBJECT('recommend', 'items_to_items', 'topk', 2) sets the
recommendation task to recommend similar items. A maximum of two similar items is set.

• 'user_metadata', JSON_OBJECT('table_name', 'recommendation_data.users')
specifies the table that has user metadata to use when generating predictions.

• 'item_metadata', JSON_OBJECT('table_name', 'recommendation_data.items')
specifies the table that has item metadata to use when generating predictions.

3. Query the output table to review the top two similar items for each item in the output table.

mysql> SELECT * from similar_item_recommendations;
+---------+---------+--------+----------------------------------------------------------------------------+
| user_id | item_id | rating | ml_results                                                                 |
+---------+---------+--------+----------------------------------------------------------------------------+
| 1       | 2       |    4.0 | {"predictions": {"item_id": ["14", "10"], "similarity": [0.9831, 0.965]}}  |
| 1       | 4       |    7.0 | {"predictions": {"item_id": ["9", "6"], "similarity": [0.6838, 0.6444]}}   |
| 1       | 6       |    1.5 | {"predictions": {"item_id": ["8", "17"], "similarity": [0.8991, 0.8412]}}  |
| 1       | 8       |    3.5 | {"predictions": {"item_id": ["6", "17"], "similarity": [0.8991, 0.7942]}}  |
| 10      | 18      |    1.5 | {"predictions": {"item_id": ["16", "12"], "similarity": [0.9869, 0.9464]}} |
| 10      | 2       |    6.5 | {"predictions": {"item_id": ["14", "10"], "similarity": [0.9831, 0.965]}}  |
| 10      | 5       |    3.0 | {"predictions": {"item_id": ["16", "2"], "similarity": [0.9036, 0.8586]}}  |
| 10      | 6       |    5.5 | {"predictions": {"item_id": ["8", "17"], "similarity": [0.8991, 0.8412]}}  |
| 2       | 1       |    5.0 | {"predictions": {"item_id": ["15", "17"], "similarity": [0.8462, 0.7966]}} |
| 2       | 3       |    8.0 | {"predictions": {"item_id": ["19", "13"], "similarity": [0.9826, 0.8851]}} |
| 2       | 5       |    2.5 | {"predictions": {"item_id": ["16", "2"], "similarity": [0.9036, 0.8586]}}  |
| 2       | 7       |    6.5 | {"predictions": {"item_id": ["11", "15"], "similarity": [0.6959, 0.6724]}} |
| 3       | 18      |    7.0 | {"predictions": {"item_id": ["16", "12"], "similarity": [0.9869, 0.9464]}} |
| 3       | 2       |    3.5 | {"predictions": {"item_id": ["14", "10"], "similarity": [0.9831, 0.965]}}  |
| 3       | 5       |    6.5 | {"predictions": {"item_id": ["16", "2"], "similarity": [0.9036, 0.8586]}}  |
| 3       | 8       |    2.5 | {"predictions": {"item_id": ["6", "17"], "similarity": [0.8991, 0.7942]}}  |
| 4       | 1       |    5.5 | {"predictions": {"item_id": ["15", "17"], "similarity": [0.8462, 0.7966]}} |
| 4       | 3       |    8.5 | {"predictions": {"item_id": ["19", "13"], "similarity": [0.9826, 0.8851]}} |
| 4       | 6       |    2.0 | {"predictions": {"item_id": ["8", "17"], "similarity": [0.8991, 0.8412]}}  |
| 4       | 7       |    5.5 | {"predictions": {"item_id": ["11", "15"], "similarity": [0.6959, 0.6724]}} |
| 5       | 12      |    5.0 | {"predictions": {"item_id": ["18", "16"], "similarity": [0.9464, 0.9454]}} |
| 5       | 2       |    7.0 | {"predictions": {"item_id": ["14", "10"], "similarity": [0.9831, 0.965]}}  |
| 5       | 4       |    1.5 | {"predictions": {"item_id": ["9", "6"], "similarity": [0.6838, 0.6444]}}   |
| 5       | 6       |    4.0 | {"predictions": {"item_id": ["8", "17"], "similarity": [0.8991, 0.8412]}}  |
| 6       | 3       |    6.0 | {"predictions": {"item_id": ["19", "13"], "similarity": [0.9826, 0.8851]}} |
| 6       | 5       |    1.5 | {"predictions": {"item_id": ["16", "2"], "similarity": [0.9036, 0.8586]}}  |
| 6       | 7       |    4.5 | {"predictions": {"item_id": ["11", "15"], "similarity": [0.6959, 0.6724]}} |
| 6       | 8       |    7.0 | {"predictions": {"item_id": ["6", "17"], "similarity": [0.8991, 0.7942]}}  |
| 7       | 1       |    6.5 | {"predictions": {"item_id": ["15", "17"], "similarity": [0.8462, 0.7966]}} |
| 7       | 4       |    3.0 | {"predictions": {"item_id": ["9", "6"], "similarity": [0.6838, 0.6444]}}   |
| 7       | 5       |    5.5 | {"predictions": {"item_id": ["16", "2"], "similarity": [0.9036, 0.8586]}}  |
| 7       | 9       |    8.0 | {"predictions": {"item_id": ["1", "4"], "similarity": [0.7721, 0.6838]}}   |
| 8       | 2       |    8.5 | {"predictions": {"item_id": ["14", "10"], "similarity": [0.9831, 0.965]}}  |
| 8       | 4       |    2.5 | {"predictions": {"item_id": ["9", "6"], "similarity": [0.6838, 0.6444]}}   |
| 8       | 6       |    5.0 | {"predictions": {"item_id": ["8", "17"], "similarity": [0.8991, 0.8412]}}  |
| 8       | 9       |    3.5 | {"predictions": {"item_id": ["1", "4"], "similarity": [0.7721, 0.6838]}}   |
| 9       | 1       |    5.0 | {"predictions": {"item_id": ["15", "17"], "similarity": [0.8462, 0.7966]}} |
| 9       | 3       |    8.0 | {"predictions": {"item_id": ["19", "13"], "similarity": [0.9826, 0.8851]}} |
| 9       | 7       |    2.5 | {"predictions": {"item_id": ["11", "15"], "similarity": [0.6959, 0.6724]}} |
| 9       | 8       |    5.5 | {"predictions": {"item_id": ["6", "17"], "similarity": [0.8991, 0.7942]}}  |
+---------+---------+--------+----------------------------------------------------------------------------+
40 rows in set (0.0401 sec)

Review the recommended similar items in the ml_results column next to item_id. For example,
for item 2, items 14 and 10 are the top items predicted to be most similar. Review the similarity
values in the ml_results column next to similarity to review the how similar each item is. For
example, item 14 has a similarity value of 0.9831 to item 2, and item 10 has a similarity value of
0.965.

What's Next

• Learn how to generate different types of recommendations:
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• Generate Predictions for Ratings and Rankings

• Generate Item Recommendations for Users

• Generate User Recommendations for Items

• Generate Recommendations for Similar Users

• Learn how to Score a Recommendation Model.

4.7.5.9 Generating Recommendations for Similar Users

This topic describes how to generate recommendations for similar users.

• For known users, the output includes a list of predicted users that have similar behavior and taste.

• The predictions are expressed in cosine similarity, and range from 0, very dissimilar, to 1, very
similar.

• For a new user, there is no information to provide a prediction. This generates an error.

Before You Begin

Review and complete the following tasks:

• Prepare Data for a Recommendation Model

• Train a Recommendation Model

• Generate Predictions for a Recommendation Model

Generating Similar Users

When you run ML_PREDICT_TABLE to generate similar user recommendations, a default value of
three similar users are recommended. To change this value, set the topk parameter.

You have the option to include item and user metadata when generating predictions. These steps
include that metadata in the command to generate predictions.

1. If not already done, load the model. You can use the session variable for the model that is valid for
the duration of the connection. Alternatively, you can use the model handle previously set. For the
option to set the user name, you can set it to NULL.

The following example uses the session variable.

mysql> CALL sys.ML_MODEL_LOAD(@model, NULL);

The following example uses the model handle.

mysql> CALL sys.ML_MODEL_LOAD('recommendation_use_case', NULL);

2. Make predictions for the test dataset by using the ML_PREDICT_TABLE routine.

mysql> CALL sys.ML_PREDICT_TABLE(table_name, model_handle, output_table_name), [options]);

Replace table_name, model_handle, and output_table_name with your own values. Add
options as needed.

You have the option to specify the input table and output table as the same table if specific
conditions are met. See Input Tables and Output Tables to learn more.

The following example runs ML_PREDICT_TABLE on the testing dataset previously created and
sets the topk parameter to 2, so only two similar users are generated.
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mysql> CALL sys.ML_PREDICT_TABLE('recommendation_data.testing_dataset', @model, 'recommendation_data.similar_user_recommendations', 
                                  JSON_OBJECT('recommend', 'users_to_users', 
                                              'topk', 2, 
                                              'user_metadata', JSON_OBJECT('table_name', 'recommendation_data.users'), 
                                              'item_metadata', JSON_OBJECT('table_name', 'recommendation_data.items')));

Where:

• recommendation_data.testing_dataset is the fully qualified name of the input table that
contains the data to generate predictions for (database_name.table_name).

• @model is the session variable for the model handle.

• recommendation_data.similar_user_recommendations is the fully qualified name of the
output table with recommendations (database_name.table_name).

• JSON_OBJECT('recommend', 'users_to_users', 'topk', 2) sets the
recommendation task to recommend similar users. A maximum of two similar users is set.

• 'user_metadata', JSON_OBJECT('table_name', 'recommendation_data.users')
specifies the table that has user metadata to use when generating predictions.

• 'item_metadata', JSON_OBJECT('table_name', 'recommendation_data.items')
specifies the table that has item metadata to use when generating predictions.

3. Query the output table to review the top two similar users generated for each user in the output
table.

mysql> SELECT * from similar_user_recommendations;
+---------+---------+--------+---------------------------------------------------------------------------+
| user_id | item_id | rating | ml_results                                                                |
+---------+---------+--------+---------------------------------------------------------------------------+
| 1       | 2       |    4.0 | {"predictions": {"user_id": ["3", "5"], "similarity": [0.7922, 0.7238]}}  |
| 1       | 4       |    7.0 | {"predictions": {"user_id": ["3", "5"], "similarity": [0.7922, 0.7238]}}  |
| 1       | 6       |    1.5 | {"predictions": {"user_id": ["3", "5"], "similarity": [0.7922, 0.7238]}}  |
| 1       | 8       |    3.5 | {"predictions": {"user_id": ["3", "5"], "similarity": [0.7922, 0.7238]}}  |
| 10      | 18      |    1.5 | {"predictions": {"user_id": ["3", "5"], "similarity": [0.6827, 0.5943]}}  |
| 10      | 2       |    6.5 | {"predictions": {"user_id": ["3", "5"], "similarity": [0.6827, 0.5943]}}  |
| 10      | 5       |    3.0 | {"predictions": {"user_id": ["3", "5"], "similarity": [0.6827, 0.5943]}}  |
| 10      | 6       |    5.5 | {"predictions": {"user_id": ["3", "5"], "similarity": [0.6827, 0.5943]}}  |
| 2       | 1       |    5.0 | {"predictions": {"user_id": ["7", "9"], "similarity": [0.6473, 0.5746]}}  |
| 2       | 3       |    8.0 | {"predictions": {"user_id": ["7", "9"], "similarity": [0.6473, 0.5746]}}  |
| 2       | 5       |    2.5 | {"predictions": {"user_id": ["7", "9"], "similarity": [0.6473, 0.5746]}}  |
| 2       | 7       |    6.5 | {"predictions": {"user_id": ["7", "9"], "similarity": [0.6473, 0.5746]}}  |
| 3       | 18      |    7.0 | {"predictions": {"user_id": ["1", "10"], "similarity": [0.7922, 0.6827]}} |
| 3       | 2       |    3.5 | {"predictions": {"user_id": ["1", "10"], "similarity": [0.7922, 0.6827]}} |
| 3       | 5       |    6.5 | {"predictions": {"user_id": ["1", "10"], "similarity": [0.7922, 0.6827]}} |
| 3       | 8       |    2.5 | {"predictions": {"user_id": ["1", "10"], "similarity": [0.7922, 0.6827]}} |
| 4       | 1       |    5.5 | {"predictions": {"user_id": ["9", "7"], "similarity": [0.9764, 0.9087]}}  |
| 4       | 3       |    8.5 | {"predictions": {"user_id": ["9", "7"], "similarity": [0.9764, 0.9087]}}  |
| 4       | 6       |    2.0 | {"predictions": {"user_id": ["9", "7"], "similarity": [0.9764, 0.9087]}}  |
| 4       | 7       |    5.5 | {"predictions": {"user_id": ["9", "7"], "similarity": [0.9764, 0.9087]}}  |
| 5       | 12      |    5.0 | {"predictions": {"user_id": ["8", "1"], "similarity": [0.992, 0.7238]}}   |
| 5       | 2       |    7.0 | {"predictions": {"user_id": ["8", "1"], "similarity": [0.992, 0.7238]}}   |
| 5       | 4       |    1.5 | {"predictions": {"user_id": ["8", "1"], "similarity": [0.992, 0.7238]}}   |
| 5       | 6       |    4.0 | {"predictions": {"user_id": ["8", "1"], "similarity": [0.992, 0.7238]}}   |
| 6       | 3       |    6.0 | {"predictions": {"user_id": ["4", "9"], "similarity": [0.5695, 0.4862]}}  |
| 6       | 5       |    1.5 | {"predictions": {"user_id": ["4", "9"], "similarity": [0.5695, 0.4862]}}  |
| 6       | 7       |    4.5 | {"predictions": {"user_id": ["4", "9"], "similarity": [0.5695, 0.4862]}}  |
| 6       | 8       |    7.0 | {"predictions": {"user_id": ["4", "9"], "similarity": [0.5695, 0.4862]}}  |
| 7       | 1       |    6.5 | {"predictions": {"user_id": ["9", "4"], "similarity": [0.9738, 0.9087]}}  |
| 7       | 4       |    3.0 | {"predictions": {"user_id": ["9", "4"], "similarity": [0.9738, 0.9087]}}  |
| 7       | 5       |    5.5 | {"predictions": {"user_id": ["9", "4"], "similarity": [0.9738, 0.9087]}}  |
| 7       | 9       |    8.0 | {"predictions": {"user_id": ["9", "4"], "similarity": [0.9738, 0.9087]}}  |
| 8       | 2       |    8.5 | {"predictions": {"user_id": ["5", "1"], "similarity": [0.992, 0.6356]}}   |
| 8       | 4       |    2.5 | {"predictions": {"user_id": ["5", "1"], "similarity": [0.992, 0.6356]}}   |
| 8       | 6       |    5.0 | {"predictions": {"user_id": ["5", "1"], "similarity": [0.992, 0.6356]}}   |
| 8       | 9       |    3.5 | {"predictions": {"user_id": ["5", "1"], "similarity": [0.992, 0.6356]}}   |
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| 9       | 1       |    5.0 | {"predictions": {"user_id": ["4", "7"], "similarity": [0.9764, 0.9738]}}  |
| 9       | 3       |    8.0 | {"predictions": {"user_id": ["4", "7"], "similarity": [0.9764, 0.9738]}}  |
| 9       | 7       |    2.5 | {"predictions": {"user_id": ["4", "7"], "similarity": [0.9764, 0.9738]}}  |
| 9       | 8       |    5.5 | {"predictions": {"user_id": ["4", "7"], "similarity": [0.9764, 0.9738]}}  |
+---------+---------+--------+---------------------------------------------------------------------------+
40 rows in set (0.0414 sec)

Review the recommended similar users in the ml_results column next to user_id. For
example, for user 1, users 3 and 5 are the top users predicted to be most similar. Review the
similarity values in the ml_results column next to similarity to review the how similar each
user is. For example, user 3 has a similarity value of 0.7922 to user 1, and user 5 has a similarity
value of 0.7238.

What's Next

• Learn how to generate different types of recommendations:

• Generate Predictions for Ratings and Rankings

• Generate Item Recommendations for Users

• Generate User Recommendations for Items

• Generate Recommendations for Similar Items

• Learn how to Score a Recommendation Model.

4.7.5.10 Scoring a Recommendation Model

After generating predicted ratings/rankings and recommendations, you can score the model to
assess its reliability. For a list of scoring metrics you can use with recommendation models, see
Recommendation Model Metrics. For this use case, you use the test dataset for validation. In a real-
world use case, you should use a separate validation dataset that has the target column and ground
truth values for the scoring validation. You should also use a larger number of records for training and
validation to get a valid score.

Before You Begin

Review and complete the following tasks:

• Prepare Data for a Recommendation Model

• Train a Recommendation Model

• Generate Predictions for a Recommendation Model

• Generate Predictions for Ratings and Rankings

• Generate Item Recommendations for Users

• Generate User Recommendations for Items

• Generate Recommendations for Similar Items

• Generate Recommendations for Similar Users

Options for Scoring Recommendation Models

The options for ML_SCORE include the following:

• threshold: The optional threshold that defines positive feedback, and a relevant sample. Only use
with ranking metrics. It can be used for either explicit or implicit feedback.

• topk: The optional top number of recommendations to provide. The default is 3. Set a positive
integer between 1 and the number of rows in the table.
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A recommendation task and ranking metrics can use both threshold and topk.

• remove_seen: If the input table overlaps with the training table, and remove_seen is true, then
the model will not repeat existing interactions. The default is true. Set remove_seen to false to
repeat existing interactions from the training table.

• item_metadata: Defines the table that has item descriptions. It is a JSON object that has the
table_name option as a key, which specifies the table that has item descriptions. One column must
be the same as the item_id in the input table.

• user_metadata: Defines the table that has user descriptions. It is a JSON object that has the
table_name option as a key, which specifies the table that has user descriptions. One column must
be the same as the user_id in the input table.

• table_name: To be used with the item_metadata and user_metadata options. It specifies
the table name that has item or user descriptions. It must be a string in a fully qualified format
(schema_name.table_name) that specifies the table name.

Scoring the Model

1. If not already done, load the model. You can use the session variable for the model that is valid for
the duration of the connection. Alternatively, you can use the model handle previously set. For the
option to set the user name, you can set it to NULL.

The following example uses the session variable.

mysql> CALL sys.ML_MODEL_LOAD(@model, NULL);

The following example uses the model handle.

mysql> CALL sys.ML_MODEL_LOAD('recommendation_use_case', NULL);

2. Score the model with the ML_SCORE routine and use the precision_at_k metric.

mysql> CALL sys.ML_SCORE(table_name, target_column_name, model_handle, metric, score, [options]);

Replace table_name, target_column_name, model_handle, metric, score with your own
values.

The following example runs ML_SCORE on the testing dataset previously created.

mysql> CALL sys.ML_SCORE('recommendation_data.testing_dataset', 'rating', @model, 'precision_at_k', @recommendation_score, NULL);

Where:

• recommendation_data.testing_dataset is the fully qualified name of the validation
dataset.

• rating is the target column name with ground truth values.

• @model is the session variable for the model handle.

• precision_at_k is the selected scoring metric.

• @recommendation_score is the session variable name for the score value.

• NULL means that no other options are defined for the routine.

3. Retrieve the score by querying the @score session variable.

mysql> SELECT @recommendation_score;
+-----------------------+
| @recommendation_score |
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+-----------------------+
| 0.23333333432674408  |
+-----------------------+

4. If done working with the model, unload it with the ML_MODEL_UNLOAD routine.

mysql> CALL sys.ML_MODEL_UNLOAD('recommendation_use_case');

To avoid consuming too much memory, it is good practice to unload a model when you are finished
using it.

What's Next

• Review other Machine Learning Use Cases.

4.7.6 Topic Modeling

Topic modeling is an unsupervised machine learning technique that's capable of scanning a set of
documents, detecting word and phrase patterns within them, and automatically clustering word groups
and similar expressions that best characterize the documents.

The following tasks use a dataset generated by OCI GenAI using Meta Llama Models. The topic
modeling use-case is to summarize movie plots.

To generate your own datasets to create machine learning models in MySQL AI, learn how to Generate
Text-Based Content.

Note

Datasets were generated using Meta Llama models. Your use of this Llama
model is subject to your Oracle agreements and this Llama license agreement:
https://downloads.mysql.com/docs/LLAMA_31_8B_INSTRUCT-license.pdf.

4.7.6.1 Preparing Data for Topic Modeling

This topic describes how to prepare the data to use for topic modeling. The model uses a data sample
generated by OCI GenAI. To prepare the data for this use case, you set up a dataset to use for both
training and testing.

You have the option to automatically Prepare Training and Testing Datasets with your own data by
using the TRAIN_TEST_SPLIT routine.

Before You Begin

• Learn how to Prepare Data.

Preparing Data

To prepare the data for topic modeling:

1. Connect to the MySQL Server.

2. Create and use the database to store the data.

mysql> CREATE DATABASE topic_modeling_data;
mysql> USE topic_modeling_data;

3. Create the table to use for both training and testing.

mysql> CREATE TABLE movies ( description TEXT );

4. Insert the sample data into the table. Copy and paste the following commands.

INSERT INTO movies (description) VALUES ('In a post-apocalyptic wasteland, a lone survivor named Max seeks vengeance against a ruthless warlord named Immortan Joe. He joins forces with a rebel warrior named Furiosa and a small group of escapees from Joe''s citadel. Together, they embark on a dangerous journey across the desert in a battle-ready vehicle, hoping to find a better future.'); 
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INSERT INTO movies (description) VALUES('A young man named Neo discovers that the world as he knows it is a sophisticated illusion called "the Matrix," created by sentient machines to subdue the human population. He is targeted by the machines and their agents, but is rescued by a group of rebels who introduce him to the real world. With their guidance, Neo develops his powers and fights back against the machine overlords.'); 
INSERT INTO movies (description) VALUES('A wealthy family, the Corleones, is drawn into the underworld of New York City as their powerful leader, Vito Corleone, tries to balance his legitimate business and criminal empire. When Vito refuses to get involved in the drug trade, he is critically wounded by a rival mobster. His son, Michael, reluctantly steps in to take revenge and protect the family business.'); 
INSERT INTO movies (description) VALUES('A group of scientists attempt to harness the power of a black hole, but the experiment goes awry, causing a massive explosion that threatens to destroy the Earth. A team of astronauts and scientists must work together to prevent the impending disaster and ensure the survival of humanity.'); 
INSERT INTO movies (description) VALUES('A young woman, Alice, finds herself in a mysterious and fantastical world called Wonderland, where she encounters a host of bizarre characters, including the Mad Hatter, the Cheshire Cat, and the Queen of Hearts. She must navigate this strange land and uncover the truth about her own identity.'); 
INSERT INTO movies (description) VALUES('A young man named Luke Skywalker joins forces with a group of rebels to battle the evil Galactic Empire. With the help of a wise old Jedi Master, Obi-Wan Kenobi, and a pair of droids, R2-D2 and C-3PO, Luke becomes a hero in the fight against the dark forces of the Empire, led by the sinister Darth Vader.'); 
INSERT INTO movies (description) VALUES('A team of scientists and explorers travel through a wormhole in space in an attempt to ensure humanity''s survival. They find themselves on an unknown planet in a distant galaxy, where they must battle a vicious alien creature and unravel the mysteries of the universe.'); 
INSERT INTO movies (description) VALUES('A young Viking named Hiccup aspires to hunt dragons like his tribe''s tradition. When he finally captures a rare Night Fury dragon, he forms an unlikely friendship with the creature. As he learns more about dragons, he discovers a secret that could change the course of the future for both humans and dragons.');
INSERT INTO movies (description) VALUES('A young FBI agent, Clarice Starling, is assigned to help find a serial killer who skins his victims. She interviews a brilliant but psychotic cannibal, Dr. Hannibal Lecter, who is imprisoned for murder. As they form a strange connection, Clarice uses his insights to track down the killer, while also dealing with her own personal demons.'); 
INSERT INTO movies (description) VALUES('A young man named Harry Potter discovers that he is a wizard and is invited to attend Hogwarts School of Witchcraft and Wizardry. There, he learns the secrets of magic and befriends other young wizards, while a dark power threatens to return to power and destroy everything he holds dear.'); 
INSERT INTO movies (description) VALUES('A group of criminals are given a second chance at redemption by performing a dangerous mission to enter a planet''s toxic atmosphere and destroy a massive alien threat. Led by the convicted murderer, Bishop, the team must overcome their differences and work together to save the Earth.'); 
INSERT INTO movies (description) VALUES('A young woman, Elle Woods, is determined to win back her ex-boyfriend by getting into Harvard Law School. Despite facing challenges and stereotypes, she proves herself to be a capable and resourceful law student, while also helping to solve a murder case.'); 
INSERT INTO movies (description) VALUES('A group of friends travel to a remote cabin in the woods for a vacation, but they soon discover that the place is not as peaceful as it seems. One by one, they fall victim to a group of terrifying creatures, and they must fight for their survival.'); 
INSERT INTO movies (description) VALUES('A young man named Marty McFly accidentally travels back in time in a time machine built by his eccentric scientist friend, Doc Brown. He must ensure his parents fall in love in the past to secure his own existence, while also dealing with the consequences of altering the past.'); 
INSERT INTO movies (description) VALUES('A young woman, Katniss Everdeen, volunteers to take her younger sister''s place in a brutal televised competition called the Hunger Games. She must fight for her life against other tributes while also becoming a symbol of hope and rebellion for the oppressed districts of Panem.'), ('A group of misfit criminals are assembled for a seemingly impossible heist by a mysterious mastermind, who plans to rob a secure casino. As they execute the intricate plan, they must deal with their personal conflicts and the interference of a powerful casino owner.'); 
INSERT INTO movies (description) VALUES('A young man named Frodo Baggins inherits a powerful ring, which he must destroy by journeying to the fires of Mount Doom. He is joined by a fellowship of companions, including a wise wizard, a noble warrior, and a loyal hobbit, as they face the dark forces of the evil wizard Sauron.'); 
INSERT INTO movies (description) VALUES('A young woman, Jo March, and her sisters come of age in America during the Civil War. She struggles with her aspirations as a writer, her unconventional personality, and her romantic feelings, while also dealing with the challenges of her family and society''s expectations.'); 
INSERT INTO movies (description) VALUES('A group of astronauts on a mission to Mars face a critical emergency when their spacecraft is severely damaged by a storm of debris. Stranded millions of miles from home, they must find a way to survive and find a way back to Earth.'); 
INSERT INTO movies (description) VALUES('A young man, Scott, discovers a hidden virtual world called the OASIS, where people can live out their wildest dreams. When the creator of the OASIS dies, he offers his vast fortune as the prize in a contest designed to find a worthy heir. Scott joins the contest and becomes a top contender, but he must also face real-world challenges and a corporate rival.'); 
INSERT INTO movies (description) VALUES('A group of high school students from different social cliques are forced to spend a Saturday together in detention. As they share their stories and secrets, they form unexpected bonds and learn that they are not so different after all.'); 

What's Next

• Learn how to Train a Model with Topic Modeling.

4.7.6.2 Training a Model with Topic Modeling

After preparing the data for topic modeling, you can train the model.

Before You Begin

• Review and complete all the tasks to Prepare Data for Topic Modeling.

Requirements for Topic Modeling Training

Define the following required parameters for topic modeling.

• Set the task parameter to topic_modeling.

• document_column: Define the column that contains the text that the model uses to generate topics
and tags as output. The output is an array of word groups that best characterize the text.

Unsupported Topic Modeling Options

When the AutoML runs topic modeling, the operation is based on a single algorithm that does not
require the tuning of hyperparameters. Moreover, topic modeling is an unsupervised task, which means
there are no labels. Therefore, you cannot use the following options for topic modeling:

• model_list

• optimization_metric

• exclude_model_list

• exclude_column_list

• include_column_list

Unsupported Routines

You cannot run the following routines for topic modeling:

• ML_EXPLAIN

• ML_EXPLAIN_ROW

• ML_EXPLAIN_TABLE
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• ML_SCORE

Training the Model

Train the model with the ML_TRAIN routine and use the movies table previously created. Before
training the model, it is good practice to define the model handle instead of automatically creating one.
See Defining Model Handle.

1. Optionally, set the value of the session variable, which sets the model handle to this same value.

mysql> SET @variable = 'model_handle';

Replace @variable and model_handle with your own definitions. For example:

mysql> SET @model='topic_modeling_use_case';

The model handle is set to topic_modeling_use_case.

2. Run the ML_TRAIN routine.

mysql> CALL sys.ML_TRAIN('table_name', 'target_column_name', JSON_OBJECT('task', 'task_name'), model_handle);

Replace table_name, target_column_name, task_name, and model_handle with your own
values.

The following example runs ML_TRAIN on the dataset previously created.

mysql> CALL sys.ML_TRAIN('topic_modeling_data.movies', NULL, 
                          JSON_OBJECT('task', 'topic_modeling', 'document_column', 'description'), @model);

Where:

• topic_modeling_data.movies is the fully qualified name of the table that contains the
training dataset (database_name.table_name).

• NULL is set for the target column because topic modeling uses unlabeled data, so you cannot set
a target column.

• JSON_OBJECT('task', 'topic_modeling') specifies the machine learning task type.

• @model is the session variable previously set that defines the model handle to the name defined
by the user: topic_modeling_use_case. If you do not define the model handle before training
the model, the model handle is automatically generated, and the session variable only stores the
model handle for the duration of the connection. User variables are written as @var_name. Any
valid name for a user-defined variable is permitted. See Work with Model Handles to learn more.

3. When the training operation finishes, the model handle is assigned to the @model session variable,
and the model is stored in the model catalog. View the entry in the model catalog with the following
query. Replace user1 with your MySQL account name.

mysql> SELECT model_id, model_handle, train_table_name FROM ML_SCHEMA_user1.MODEL_CATALOG WHERE model_handle = 'topic_modeling_use_case';
+----------+-------------------------+----------------------------+
| model_id | model_handle            | train_table_name           |
+----------+-------------------------+----------------------------+
|        6 | topic_modeling_use_case | topic_modeling_data.movies |
+----------+-------------------------+----------------------------+

What's Next

• Learn how to Generate Predictions for Topic Modeling.

4.7.6.3 Running Topic Modeling on Trained Text

After training the model, you can run topic modeling on the trained text.
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To run topic modeling, use the sample data from the movies dataset. The dataset has no target
column. When the output table generates, you can review the generated word groups and expressions
for the trained text.

Before You Begin

Complete the following tasks:

• Prepare Data for Topic Modeling.

• Train a Model with Topic Modeling

Running Topic Modeling for a Table

1. If not already done, load the model. You can use the session variable for the model that is valid for
the duration of the connection. Alternatively, you can use the model handle previously set. For the
option to set the user name, you can set it to NULL.

The following example uses the session variable.

mysql> CALL sys.ML_MODEL_LOAD(@model, NULL);

The following example uses the model handle.

mysql> CALL sys.ML_MODEL_LOAD('topic_modeling_use_case', NULL);

2. Run topic modeling on the dataset by using the ML_PREDICT_TABLE routine.

mysql> CALL sys.ML_PREDICT_TABLE(table_name, model_handle, output_table_name), [options]);

Replace table_name, model_handle, and output_table_name with your own values. Add
options as needed.

You have the option to specify the input table and output table as the same table if specific
conditions are met. See Input Tables and Output Tables to learn more.

The following example runs ML_PREDICT_TABLE on the dataset previously created.

mysql> CALL sys.ML_PREDICT_TABLE('topic_modeling_data.movies', @model, 'topic_modeling_data.topic_modeling_predictions', NULL);

Where:

• topic_modeling_data.movies is the fully qualified name of the input table that contains the
data to run topic modeling for (database_name.table_name).

• @model is the session variable for the model handle.

• topic_modeling_data.topic_modeling_predictions is the fully qualified name of the
output table with generated word groups and expressions (database_name.table_name).

• NULL sets no options for the routine.

3. Query the ml_results column from the output table. Review the generated word groups and
expressions for the movie descriptions next to tags.

mysql> SELECT ml_results FROM topic_modeling_predictions;
+-----------------------------------------------------------------------------------------------------------------------------------------+
| ml_results                                                                                                                              |
+-----------------------------------------------------------------------------------------------------------------------------------------+
| {"predictions": {"tags": ["dangerous", "future", "join force", "journey", "warrior", "battle", "rebel", "force", "join", "group"]}}     |
| {"predictions": {"tags": ["machine", "world", "agent", "group rebel", "human", "real", "real world", "power", "rebel", "fight"]}}       |
| {"predictions": {"tags": ["family", "empire", "rival", "criminal", "powerful"]}}                                                        |
| {"predictions": {"tags": ["scientist", "astronaut", "attempt", "humanity", "massive", "work", "earth", "ensure", "power", "survival"]}} |
| {"predictions": {"tags": ["include", "mysterious", "strange", "world", "woman", "young woman", "young"]}}                               |
| {"predictions": {"tags": ["empire", "force", "dark force", "evil", "group rebel", "join force", "wise", "battle", "dark", "help"]}}     |
| {"predictions": {"tags": ["alien", "attempt", "humanity", "planet", "battle", "creature", "ensure", "scientist", "survival", "team"]}}  |
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| {"predictions": {"tags": ["future", "human", "creature", "form", "learn", "secret", "discover", "young"]}}                              |
| {"predictions": {"tags": ["agent", "deal personal", "murder", "personal", "strange", "victim", "form", "help", "deal", "young"]}}       |
| {"predictions": {"tags": ["wizard", "power", "dark", "learn", "school", "secret", "young", "destroy", "discover", "man"]}}              |
| {"predictions": {"tags": ["alien", "dangerous", "massive", "mission", "planet", "work", "criminal", "earth", "team", "destroy"]}}       |
| {"predictions": {"tags": ["murder", "student", "challenge", "help", "school", "face", "woman", "young woman", "young"]}}                |
| {"predictions": {"tags": ["group", "fall", "friend", "place", "victim", "creature", "survival", "travel", "discover", "fight"]}}        |
| {"predictions": {"tags": ["fall", "friend", "machine", "secure", "ensure", "scientist", "travel", "deal", "man", "young man"]}}         |
| {"predictions": {"tags": ["place", "sister", "young", "fight", "woman", "young woman"]}}                                                |
| {"predictions": {"tags": ["deal personal", "mysterious", "personal", "secure", "criminal", "powerful", "deal", "group"]}}               |
| {"predictions": {"tags": ["wizard", "dark force", "evil", "include", "journey", "warrior", "wise", "dark", "powerful", "destroy"]}}     |
| {"predictions": {"tags": ["family", "sister", "challenge", "deal", "woman", "young woman", "young"]}}                                   |
| {"predictions": {"tags": ["astronaut", "mission", "earth", "face", "group"]}}                                                           |
| {"predictions": {"tags": ["world", "real", "real world", "rival", "challenge", "discover", "face", "join", "man", "young man"]}}        |
| {"predictions": {"tags": ["student", "form", "learn", "school", "secret", "force", "group"]}}                                           |
+-----------------------------------------------------------------------------------------------------------------------------------------+
21 rows in set (0.0472 sec)

To modify the number of word groups in the ml_results column, you can set the topk option. This
option must be an integer greater or equal to one. The following example uses the same trained table
and adds the option to limit the number of generated word groups to five.

mysql> CALL sys.ML_PREDICT_TABLE('topic_modeling_data.movies', @model, 'topic_modeling_data.topic_modeling_predictions_five', JSON_OBJECT('topk', 5));

Query the ml_results column to review the top five generated word groups.

mysql> SELECT ml_results FROM topic_modeling_predictions_five;
+----------------------------------------------------------------------------------------------+
| ml_results                                                                                   |
+----------------------------------------------------------------------------------------------+
| {"predictions": {"tags": ["dangerous", "future", "join force", "journey", "warrior"]}}       |
| {"predictions": {"tags": ["machine", "world", "agent", "group rebel", "human"]}}             |
| {"predictions": {"tags": ["family", "empire", "rival", "criminal", "powerful"]}}             |
| {"predictions": {"tags": ["scientist", "astronaut", "attempt", "humanity", "massive"]}}      |
| {"predictions": {"tags": ["include", "mysterious", "strange", "world", "woman"]}}            |
| {"predictions": {"tags": ["empire", "force", "dark force", "evil", "group rebel"]}}          |
| {"predictions": {"tags": ["alien", "attempt", "humanity", "planet", "battle"]}}              |
| {"predictions": {"tags": ["future", "human", "creature", "form", "learn"]}}                  |
| {"predictions": {"tags": ["agent", "deal personal", "murder", "personal", "strange"]}}       |
| {"predictions": {"tags": ["wizard", "power", "dark", "learn", "school"]}}                    |
| {"predictions": {"tags": ["alien", "dangerous", "massive", "mission", "planet"]}}            |
| {"predictions": {"tags": ["murder", "student", "challenge", "help", "school"]}}              |
| {"predictions": {"tags": ["group", "fall", "friend", "place", "victim"]}}                    |
| {"predictions": {"tags": ["fall", "friend", "machine", "secure", "ensure"]}}                 |
| {"predictions": {"tags": ["place", "sister", "young", "fight", "woman"]}}                    |
| {"predictions": {"tags": ["deal personal", "mysterious", "personal", "secure", "criminal"]}} |
| {"predictions": {"tags": ["wizard", "dark force", "evil", "include", "journey"]}}            |
| {"predictions": {"tags": ["family", "sister", "challenge", "deal", "woman"]}}                |
| {"predictions": {"tags": ["astronaut", "mission", "earth", "face", "group"]}}                |
| {"predictions": {"tags": ["world", "real", "real world", "rival", "challenge"]}}             |
| {"predictions": {"tags": ["student", "form", "learn", "school", "secret"]}}                  |
+----------------------------------------------------------------------------------------------+
21 rows in set (0.0475 sec)

To learn more about generating predictions for one or more rows of data, see Generate Predictions for
a Row of Data.

What's Next

• Review other Machine Learning Use Cases.

4.8 Manage Machine Learning Models
The following sections describe how to manage your machine learning models.

4.8.1 The Model Catalog

AutoML stores machine learning models in a model catalog. A model catalog is a table named
MODEL_CATALOG. AutoML creates a model catalog for any user that creates a machine learning
model.
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The MODEL_CATALOG table is created in a schema named ML_SCHEMA_user_name, where the
user_name is the name of the owning user.

The fully qualified name of the model catalog table is ML_SCHEMA_user_name.MODEL_CATALOG.

When a user creates a model, the ML_TRAIN routine creates the model catalog schema and table if
they do not exist. ML_TRAIN inserts the model as a row in the MODEL_CATALOG table at the end of
training.

A model catalog is accessible only to the owning user unless the user grants privileges on the model
catalog to another user. This means that AutoML routines can only use models that are accessible to
the user running the routines. For information about giving access to the model catalog and trained
models to other users, see Share a Model.

A database administrator can manage a model catalog table the same way as a regular MySQL table.

4.8.1.1 The Model Catalog Table

The MODEL_CATALOG table (ML_SCHEMA_user_name.MODEL_CATALOG) has the following columns:

• model_id

A primary key, and a unique auto-incrementing numeric identifier for the model.

• model_handle

A name for the model. The model handle must be unique in the model catalog. The model handle is
generated or set by the user when the ML_TRAIN routine runs on a training dataset. The generated
model_handle format is schemaName_tableName_userName_No, as in the following example:
heatwaveml_bench.census_train_user1_1636729526. See Work with Model Handles to
learn more.

Note

The format of the generated model handle is subject to change.

• model_object

Set to null. Models are stored in the model_object_catalog table.

• model_owner

The user who initiated the ML_TRAIN query to create the model.

• build_timestamp

A timestamp indicating when the model was created (in UNIX epoch time). A model is created when
the ML_TRAIN routine finishes running.

• target_column_name

The name of the column in the training table that was specified as the target column.

• train_table_name

The name of the input table specified in the ML_TRAIN query.

• model_object_size

The model object size, in bytes.

• model_type
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The type of model (algorithm) selected by ML_TRAIN to build the model.

• task

The task type specified in the ML_TRAIN query.

• column_names

The feature columns used to train the model.

• model_explanation

The model explanation generated during training. See Generate Model Explanations.

• last_accessed

The last time the model was accessed. AutoML routines update this value to the current timestamp
when accessing the model.

• model_metadata

Metadata for the model. If an error occurs during training or you cancel the training operation,
AutoML records the error status in this column. See Model Metadata.

• notes

Use this column to record notes about the trained model. It also records any error messages that
occur during model training.

The Model Object Catalog Table

Models are chunked and stored uncompressed in the model_object_catalog table. Each chunk is
saved with the same model_handle.

A call to one of the following routines upgrades the model catalog, and store the model in the
model_object_catalog table:

• ML_TRAIN

• ML_MODEL_LOAD

• ML_EXPLAIN

• ML_MODEL_IMPORT

• ML_MODEL_EXPORT

If the call to one of these routines is not successful or is aborted, then the previous model catalog is still
available.

The model_object_catalog table has the following columns:

• chunk_id

A primary key, and an auto-incrementing numeric identifier for the chunk. It is unique for the chunks
sharing the same model_handle.

• model_handle

A primary key, and a foreign key that references model_handle in the MODEL_CATALOG table.

• model_object

A string in JSON format containing the serialized AutoML model.

122



The Model Catalog

See Also

• Review Model Metadata for the Model Catalog Table.

• Review Model Handles and how to retrieve them from the Model Catalog Table.

4.8.1.2 Model Metadata

The model_metadata column in the model catalog allows you to view detailed information on trained
models. For example, you can view the algorithm used to train the model, the columns in the training
table, and values for the model explanation.

When you run the ML_MODEL_IMPORT routine, the imported table has a model_metadata column
that stores the metadata for the table. If you import a model from a table, model_metadata
stores the name of the database and table. If you import a model object, model_metadata
stores a JSON_OBJECT that contains key-value pairs of the metadata See Section 8.1.4,
“ML_MODEL_IMPORT” to learn more.

The default value for model_metadata is NULL.

This topic has the following sections.

• Model Metadata Details

• Query Model Metadata

• See Also

Model Metadata Details

model_metadata contains the following metadata as key-value pairs in JSON format:

• task: string

The task type specified in the ML_TRAIN query. The default is classification when used with
ML_MODEL_IMPORT.

• build_timestamp: number

A timestamp indicating when the model was created (UNIX epoch time). A model is created when
the ML_TRAIN routine finishes executing.

• target_column_name: string

The name of the column in the training table that was specified as the target column.

• train_table_name: string

The name of the input table specified in the ML_TRAIN query.

• column_names: JSON array

The feature columns used to train the model.

• model_explanation: JSON object literal

The model explanation generated during training. See Generate Model Explanations.

• notes: string

The notes specified in the ML_TRAIN query. It also records any error messages that occur during
model training.

• format: string
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The model can be in one of the following formats:

• HWMLv1.0

• HWMLv2.0

• ONNXv1.0

• ONNXv2.0

• status: string

The status of the model. The default is Ready when used with ML_MODEL_IMPORT.

• Creating: The model is being created.

• Ready: The model is trained and active.

• Error: Either training was canceled or an error occurred during training. Any error message
appears in the notes column. The error message also appears in model_metadata notes.

• model_quality: string

The quality of the model object for classification and regression tasks. For other tasks, this value is
NULL. The value is either low or high.

• training_time: number

The time in seconds taken to train the model.

• algorithm_name: string

The name of the chosen algorithm.

• training_score: number

The cross-validation score achieved for the model by training.

• n_rows: number

The number of rows in the training table.

• n_columns: number

The number of columns in the training table.

• n_selected_rows: number

The number of rows selected by adaptive sampling.

• n_selected_columns: number

The number of columns selected by feature selection.

• optimization_metric: string

The optimization metric used for training. See Section 8.1.16, “Optimization and Scoring Metrics” to
review available metrics.

• selected_column_names: JSON array

The names of the columns selected by feature selection.

• contamination: number
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The contamination factor for the anomaly detection task. See Anomaly Detection Options to learn
more.

• options: JSON object literal

The options specified in the ML_TRAIN query.

• training_params: JSON object literal

Internal task dependent parameters used during ML_TRAIN.

• onnx_inputs_info: JSON object literal

Information about the format of the ONNX model inputs. This only applies to ONNX models. See
Manage External ONNX Models.

Do not provide onnx_inputs_info if the model is not ONNX format. This generates an error.

• data_types_map: JSON object literal

This maps the data type of each column to an ONNX model data type. The default value is:

JSON_OBJECT("tensor(int64)": "int64", "tensor(float)": "float32", "tensor(string)": "str_")

• onnx_outputs_info: JSON object literal

Information about the format of the ONNX model outputs. This only applies to ONNX models. See
Manage External ONNX Models.

Do not provide onnx_outputs_info if the model is not ONNX format, or if task is NULL. This
generates an error.

• predictions_name: string

This name determines which of the ONNX model outputs is associated with predictions.

• prediction_probabilities_name: string

This name determines which of the ONNX model outputs is associated with prediction
probabilities.

• labels_map: JSON object literal

This maps prediction probabilities to predictions, known as labels.

• training_drift_metric: JSON object literal

Contains data drift information about the training data. See Analyze Data Drift. This only applies to
classification and regression models.

• mean: number

The mean value of drift metrics of all the training data. ≥ 0.

• variance: number

The variance value of drift metrics of all the training data. ≥ 0.

Both mean and variance should be low.

• chunks: number

The total number of chunks that the model has been split into.
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Query Model Metadata

You can query the model metadata in the model catalog with the following command. Replace user1
with your own user name.

mysql> SELECT JSON_PRETTY(model_metadata) FROM ML_SCHEMA_user1.MODEL_CATALOG\G
*************************** 1. row ***************************
JSON_PRETTY(model_metadata): {
  "task": "regression",
  "notes": null,
  "chunks": 1,
  "format": "HWMLv2.0",
  "n_rows": 407284,
  "status": "Ready",
  "options": {
    "task": "regression",
    "model_explainer": "permutation_importance",
    "prediction_explainer": "permutation_importance"
  },
  "n_columns": 14,
  "column_names": [
    "VendorID",
    "store_and_fwd_flag",
    "RatecodeID",
    "PULocationID",
    "DOLocationID",
    "passenger_count",
    "extra",
    "mta_tax",
    "tolls_amount",
    "improvement_surcharge",
    "trip_type",
    "lpep_pickup_datetime_day",
    "lpep_pickup_datetime_hour",
    "lpep_pickup_datetime_minute"
  ],
  "contamination": null,
  "model_quality": "high",
  "training_time": 515.13427734375,
  "algorithm_name": "RandomForestRegressor",
  "training_score": -5.610334873199463,
  "build_timestamp": 1730395944,
  "n_selected_rows": 130931,
  "training_params": {
    "recommend": "ratings",
    "force_use_X": false,
    "recommend_k": 3,
    "remove_seen": true,
    "ranking_topk": 10,
    "lsa_components": 100,
    "ranking_threshold": 1,
    "feedback_threshold": 1
  },
  "train_table_name": "heatwaveml_bench.nyc_taxi_train",
  "model_explanation": {
    "permutation_importance": {
      "extra": 0.0,
      "mta_tax": 0.0019,
      "VendorID": 0.0048,
      "trip_type": 0.0003,
      "RatecodeID": 0.0152,
      "DOLocationID": 0.4178,
      "PULocationID": 0.2714,
      "tolls_amount": 0.0851,
      "passenger_count": 0.0,
      "store_and_fwd_flag": 0.0,
      "improvement_surcharge": 0.0015,
      "lpep_pickup_datetime_day": 0.0,
      "lpep_pickup_datetime_hour": 0.0161,
      "lpep_pickup_datetime_minute": 0.0
    }
  },
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  "n_selected_columns": 9,
  "target_column_name": "tip_amount",
  "optimization_metric": "neg_mean_squared_error",
  "selected_column_names": [
    "DOLocationID",
    "PULocationID",
    "RatecodeID",
    "VendorID",
    "improvement_surcharge",
    "lpep_pickup_datetime_hour",
    "mta_tax",
    "tolls_amount",
    "trip_type"
  ],
  "training_drift_metric": {
    "mean": 0.3326,
    "variance": 3.2482
  }
}
*************************** 2. row ***************************
JSON_PRETTY(model_metadata): {
  "task": "regression",
  "notes": null,
  "chunks": 0,
  "format": "HWMLv2.0",
  "n_rows": null,
  "status": "Error",
  "options": {},
  "n_columns": null,
  "column_names": null,
  "contamination": null,
  "model_quality": null,
  "training_time": null,
  "algorithm_name": null,
  "training_score": null,
  "build_timestamp": 1730403865,
  "n_selected_rows": null,
  "training_params": null,
  "train_table_name": "nyc_taxi.nyc_taxi_train",
  "model_explanation": {},
  "n_selected_columns": null,
  "target_column_name": "tip_amount",
  "optimization_metric": null,
  "selected_column_names": null,
  "training_drift_metric": {
    "mean": null,
    "variance": null
  }
}
*************************** 3. row ***************************
JSON_PRETTY(model_metadata): {
  "task": "regression",
  "notes": null,
  "chunks": 0,
  "format": "HWMLv2.0",
  "n_rows": null,
  "status": "Creating",
  "options": {},
  "n_columns": null,
  "column_names": null,
  "contamination": null,
  "model_quality": null,
  "training_time": null,
  "algorithm_name": null,
  "training_score": null,
  "build_timestamp": 1730404027,
  "n_selected_rows": null,
  "training_params": null,
  "train_table_name": "nyc_taxi.nyc_taxi_train",
  "model_explanation": {},
  "n_selected_columns": null,
  "target_column_name": "tip_amount",
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  "optimization_metric": null,
  "selected_column_names": null,
  "training_drift_metric": {
    "mean": null,
    "variance": null
  }
}
3 rows in set (0.0859 sec)

See Also

• Analyze Data Drift

• Manage External ONNX Models

• The Model Catalog Table

• Generate Model Explanations

4.8.2 Work with Model Handles

When ML_TRAIN trains a model, you have the option to specify a name for the model, which is the
model handle. If you do not specify a model handle name, a model handle is automatically generated
that is based on the database name, input table name, the user name training the table, and a unique
numerical identifier. You must use model handles to run AutoML routines. All model handles must be
unique in the model catalog.

This topic has the following sections.

• Before You Begin

• Model Handles Overview

• Query the Model Handle

• Defining Model Handle

• Assign Session Variable to Model Handle

• What's Next

Before You Begin

• Review the The Model Catalog.

Model Handles Overview

If you set the model handle name to a session variable before training a model, the model handle
takes that name. Otherwise, a unique model handle is automatically generated. To set your own model
name, see Defining Model Handle. The model handle is stored temporarily in a user-defined session
variable specified in the ML_TRAIN call. In the following example, @census_model is defined as the
model handle session variable with no set model handle name:

mysql> CALL sys.ML_TRAIN('heatwaveml_bench.census_train', 'revenue', JSON_OBJECT('task', 'classification'), @census_model);

While the connection used to run ML_TRAIN remains active, that connection can retrieve the
automatically generated model handle by querying the session variable. For example:

mysql> SELECT @census_model;
+--------------------------------------------------+
| @census_model                                    |
+--------------------------------------------------+
| census_classification_model                      |
+--------------------------------------------------+
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Query the Model Handle

Since the session variable for a model handle is only valid for the current session, you can query the
model handle name from the model catalog in new sessions.

The following example queries the model handle, the model owner, and the name of the training table
from the model catalog table. Replace user1 with your own user name.

mysql> SELECT model_handle, model_owner, train_table_name FROM ML_SCHEMA_user1.MODEL_CATALOG;
+-------------------------------------------------------------------+-------------+-----------------------------------------------+
| model_handle                                                      | model_owner | train_table_name                              |
+-------------------------------------------------------------------+-------------+-----------------------------------------------+
| census_classification_model                                       | user1       | census_data.census_train                      |
+-------------------------------------------------------------------+-------------+-----------------------------------------------+
18 rows in set (0.0014 sec)

Once you have the model handle, you can use it directly in AutoML routines instead of the session
variable.

The following example runs ML_PREDICT_ROW and uses the model handle.

mysql> SELECT sys.ML_PREDICT_ROW(@row_input, 'census_classification_model', NULL);

Defining Model Handle

Before training a model, it is good practice to define your own model handle instead of automatically
generating one. This allows you to easily remember the model handle for future routines on the trained
model instead of having to query it, or depending on the session variable that can no longer be used
when the current connection terminates.

To define your own model handle:

1. Set the value of the session variable, which sets the model handle to this same value.

mysql> SET @variable = 'model_handle';

Replace @variable and model_handle with your own definitions. For example:

mysql> SET @census_model = 'census_classification_model';

When ML_TRAIN runs with this session variable, the model handle is set to census_test.

If you set a model handle that already appears in the model catalog, the ML_TRAIN routine returns
an error.

2. Run the ML_TRAIN routine.

mysql> CALL sys.ML_TRAIN('table_name', 'target_column_name', JSON_OBJECT('task', 'task_name'), @variable);

Replace table_name, target_column_name, task_name, and variable with your own
values.

The following example trains a model with the model handle variable previously set

mysql> CALL sys.ML_TRAIN('heatwaveml_bench.census_train', 'revenue', JSON_OBJECT('task', 'classification'), @census_model);

3. After training the model, query the model catalog to confirm the model handle you defined is there.
Replace user1 with your own user name.

mysql> SELECT model_handle, model_owner, train_table_name FROM ML_SCHEMA_user1.MODEL_CATALOG;
+-------------------------------------------------------------------+-------------+-----------------------------------------------+
| model_handle                                                      | model_owner | train_table_name                              |
+-------------------------------------------------------------------+-------------+-----------------------------------------------+
| census_classification_model                                       | user1       | census_data.census_train                      |
+-------------------------------------------------------------------+-------------+-----------------------------------------------+
1 row in set (0.0014 sec)
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Assign Session Variable to Model Handle

If you lose the session variable to a model handle due to a lost connection, you have the option of
assigning a new session variable to a model handle in a new connection.

To assign a session variable to a model handle:

1. Set a variable to the model handle. If needed Query the Model Handle.

mysql> SET @my_model = 'model_handle';

The following example sets the @my_model session variable to a model handle.

mysql> SET @my_model = 'census_classification_model';

2. Confirm the session variable is assigned to the model handle by querying the session variable.

mysql> SELECT @my_model;
+-----------------------------------------------------+
| @my_model                                           |
+-----------------------------------------------------+
| census_classification_model                         |
+-----------------------------------------------------+

Alternatively, you can assign a session variable to the model handle for the most recently trained
model.

1. Set a variable with the query to retrieve the most recent model handle by sorting with the
build_timestamp parameter in the model catalog. Replace user1 with your own user name.

mysql> SET @variable = (SELECT model_handle FROM ML_SCHEMA_user1.MODEL_CATALOG ORDER BY build_timestamp DESC LIMIT 1);

The following example sets the latest_model variable.

mysql> SET @latest_model = (SELECT model_handle FROM ML_SCHEMA_user1.MODEL_CATALOG ORDER BY timestamp DESC LIMIT 1);

2. Confirm the session variable is assigned to the latest model handle by querying the session
variable.

mysql> SELECT @latest_model;
+--------------------------+
| @latest_model            |
+--------------------------+
| recommendation_use_case4 |
+--------------------------+
1 row in set (0.0454 sec)

What's Next

• Review how to Create a Machine Learning Model.

• Review Machine Learning Use Cases to create machine learning models with sample datasets.

4.8.3 Unload a Model

The ML_MODEL_UNLOAD routine unloads a model from AutoML. Review ML_MODEL_UNLOAD
parameter descriptions.

Before You Begin

• Review the following

• Train a Model

• Load a Model

130



Unload a Model

Unload a Model

You can verify what models are currently loaded with the ML_MODEL_ACTIVE routine before and after
unloading the model.

1. Verify what models are currently loaded with the ML_MODEL_ACTIVE routine.

mysql> CALL sys.ML_MODEL_ACTIVE('all', @model_info);

2. Select the session variable created to view all loaded models.

mysql> SELECT JSON_PRETTY(@model_info);
+-----------------------------------------------------------+
| JSON_PRETTY(@model_info)                                  |
+-----------------------------------------------------------+
| [
  {
    "total model size(bytes)": 50209
  },
  {
    "user1": [
      {
        "recommendation_use_case": {
          "format": "HWMLv2.0",
          "model_size(byte)": 15609
        }
      },
      {
        "recommendation_use_case2": {
          "format": "HWMLv2.0",
          "model_size(byte)": 8766
        }
      },
      {
        "recommendation_use_case3": {
          "format": "HWMLv2.0",
          "model_size(byte)": 8402
        }
      },
      {
        "recommendation_use_case4": {
          "format": "HWMLv2.0",
          "model_size(byte)": 17432
        }
      }
    ]
  }
] |
+-----------------------------------------------------------+
1 row in set (0.0411 sec)

3. Refer to the appropriate model handle to unload. Alternatively, use the session variable for the
model handle.

The following example unloads a model by using the model handle:

mysql> CALL sys.ML_MODEL_UNLOAD('recommendation_use_case');

Where:

• recommendation_use_case is the model handle.

The following example unloads a model by using the session variable for the model handle:

mysql> CALL sys.ML_MODEL_UNLOAD(@recommendation_model);

Where:

• @recommendation_model is the assigned session variable for the model handle.
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4. Run ML_MODEL_ACTIVE again to confirm the model is successfully unloaded

mysql> CALL sys.ML_MODEL_ACTIVE('all', @model_info);
mysql> SELECT JSON_PRETTY(@model_info);
+-----------------------------------------------------------+
| JSON_PRETTY(@model_info)                                  |
+-----------------------------------------------------------+
| [
  {
    "total model size(bytes)": 34600
  },
  {
    "user1": [
      {
        "recommendation_use_case2": {
          "format": "HWMLv2.0",
          "model_size(byte)": 8766
        }
      },
      {
        "recommendation_use_case3": {
          "format": "HWMLv2.0",
          "model_size(byte)": 8402
        }
      },
      {
        "recommendation_use_case4": {
          "format": "HWMLv2.0",
          "model_size(byte)": 17432
        }
      }
    ]
  }
] |
+-----------------------------------------------------------+
1 row in set (0.0411 sec)

The list of loaded models shows the model is unloaded.

What's Next

• Review how to Create a Machine Learning Model.

• Review Machine Learning Use Cases to create machine learning models with sample datasets.

4.8.4 View Model Details

To view the details for the models in your model catalog, query the MODEL_CATALOG table.

Before You Begin

• Review the following:

• Create a Machine Learning Model

• The Model Catalog

View Details for Your Models

The following example queries model_id, model_handle, and model_owner, train_table_name
from the model catalog. Replace user1 with your own user name.

mysql> SELECT model_id, model_handle, model_owner, train_table_name FROM ML_SCHEMA_user1.MODEL_CATALOG;
+----------+--------------------------------------------+-------------+-------------------------------------------+
| model_id | model_handle                               | model_owner | train_table_name                          |
+----------+--------------------------------------------+-------------+-------------------------------------------+
|        1 | regression_use_case                        | root        | regression_data.house_price_training      |
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|        2 | forecasting_use_case                       | root        | forecasting_data.electricity_demand_train |
|        3 | anomaly_detection_semi_supervised_use_case | root        | anomaly_data.credit_card_train            |
|        4 | anomaly_detection_log_use_case             | root        | anomaly_log_data.training_data            |
|        5 | recommendation_use_case                    | root        | recommendation_data.training_dataset      |
|        6 | topic_modeling_use_case                    | root        | topic_modeling_data.movies                |
+----------+--------------------------------------------+-------------+-------------------------------------------+

Where:

• model_id is a unique numeric identifier for the model.

• model_owner is the user that created the model.

• model_handle is the handle by which the model is called.

• ML_SCHEMA_user1.MODEL_CATALOG is the fully qualified name of the MODEL_CATALOG table. The
schema is named for the owning user.

The output displays details from only a few MODEL_CATALOG table columns. For other columns you
can query, see The Model Catalog.

View Model Explanations

The ML_EXPLAIN routine generates model explanations and stores them in the model catalog. See
Generate Model Explanations to learn more.

A model explanation helps you identify the features that are most important to the model overall.
Feature importance is presented as an attribution value. A positive value indicates that a feature
contributed toward the prediction. A negative value can have different interpretations depending on
the specific model explainer used for the model. For example, a negative value for the permutation
importance explainer means that the feature is not important.

To view a model explanation, you can query the model_explanation column from the model catalog
by referencing the model handle. Review how to Query the Model Handle.

mysql> SELECT column FROM ML_SCHEMA_user name.MODEL_CATALOG where model_handle='model_handle';

The following example queries one of the model handles and views the model explanation for that
model. Optionally, use JSON_PRETTY to view the output in an easily readable format.

mysql> SELECT JSON_PRETTY(model_explanation) FROM ML_SCHEMA_user1.MODEL_CATALOG where model_handle='census_model';
+-----------------------------------------------------------------------------------------------------------------------------------------------------------------+
| JSON_PRETTY(model_explanation)                                                                                                                                                                                                                                                                                                                                                                           |
+-----------------------------------------------------------------------------------------------------------------------------------------------------------------+
| {
  "permutation_importance": {
    "age": 0.0305,
    "sex": 0.0023,
    "race": 0.0017,
    "fnlwgt": 0.0025,
    "education": 0.0013,
    "workclass": 0.0043,
    "occupation": 0.0229,
    "capital-gain": 0.0495,
    "capital-loss": 0.0156,
    "relationship": 0.0267,
    "education-num": 0.0371,
    "hours-per-week": 0.0142,
    "marital-status": 0.0267,
    "native-country": 0.0
  }
} |
+-----------------------------------------------------------------------------------------------------------------------------------------------------------------+
1 row in set (0.0447 sec)

Where:
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• ML_SCHEMA_user1.MODEL_CATALOG is the fully qualified name of the MODEL_CATALOG table. The
schema is named for the user that created the model.

• census_data.census_train_user1_1744548610842 is the model handle. See Work with
Model Handles.

The output displays feature importance values for each column by using the
permutation_importance model explainer.

Alternatively, you can query the model explanation by using the valid session variable for the model
handle. Optionally, use JSON_PRETTY to view the output in an easily readable format.

mysql> SELECT JSON_PRETTY(model_explanation) FROM ML_SCHEMA_admin.MODEL_CATALOG where model_handle=@census_model;
+-----------------------------------------------------------------------------------------------------------------------------------------------------------------+
| JSON_PRETTY(model_explanation)                                                                                                                                  |
+-----------------------------------------------------------------------------------------------------------------------------------------------------------------+
| {
  "permutation_importance": {
    "age": 0.0305,
    "sex": 0.0023,
    "race": 0.0017,
    "fnlwgt": 0.0025,
    "education": 0.0013,
    "workclass": 0.0043,
    "occupation": 0.0229,
    "capital-gain": 0.0495,
    "capital-loss": 0.0156,
    "relationship": 0.0267,
    "education-num": 0.0371,
    "hours-per-week": 0.0142,
    "marital-status": 0.0267,
    "native-country": 0.0
  }
} |
+-----------------------------------------------------------------------------------------------------------------------------------------------------------------+
1 row in set (0.0447 sec)

See Work with Model Handles to learn more.

What's Next

• Review the The Model Catalog.

• Review how to Work with Model Handles.

4.8.5 Delete a Model

Users that create models or have the required privileges to a model on the MODEL_CATALOG table can
delete them.

Before You Begin

• Review how to Create a Machine Learning Model.

• Review how to Share a Model.

Delete a Model

To delete a model from the model catalog table:

1. Query the model catalog table for the model_id, model_owner, and train_table_name.
Identify the model_id for model you want to delete. Replace user1 with your own user name.

mysql> SELECT model_id, model_owner, train_table_name FROM ML_SCHEMA_user1.MODEL_CATALOG;
+----------+-------------+-----------------------------------------------+
| model_id | model_owner | train_table_name                              |
+----------+-------------+-----------------------------------------------+
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|        1 | user1       | ml_benchmark.sentiment_model_creation         |
|        2 | user1       | ml_data.iris_train                            |
|        3 | user1       | census_data.census_train                      |
+----------+-------------+-----------------------------------------------+
3 rows in set (0.0008 sec)

The requested columns from the model catalog table display.

In this case, the model with model_id 3 is deleted.

2. Delete the model from the model catalog table.

mysql> DELETE FROM ML_SCHEMA_user1.MODEL_CATALOG WHERE model_id = 3;

Where:

• ML_SCHEMA_user1.MODEL_CATALOG is the fully qualified name of the MODEL_CATALOG table.
The schema is named for the user that created the model.

• model_id = 3 is the ID of the model you want to delete.

3. Confirm the model is removed from the model catalog table. Replace user1 with your own user
name.

mysql> SELECT model_id, model_owner, train_table_name FROM ML_SCHEMA_user1.MODEL_CATALOG;
+----------+-------------+-----------------------------------------------+
| model_id | model_owner | train_table_name                              |
+----------+-------------+-----------------------------------------------+
|        1 | user1       | ml_benchmark.sentiment_model_creation         |
|        2 | user1       | ml_data.iris_train                            |
+----------+-------------+-----------------------------------------------+
2 rows in set (0.0008 sec)

What's Next

• Review Machine Learning Use Cases to create machine learning models with sample datasets.

4.8.6 Share a Model

This topic describes how to grant other users access to a model you create.

This topic has the following sections.

• Before You Begin

• Share Your Models

• Export the Model to Share

• Set Up Other User with Required Privileges

• Importing Shared Model

• Run AutoML Routines on Imported Model

• What's Next

Before You Begin

• Review AutoML Privileges.

Share Your Models

To share a model you created, you can use the ML_MODEL_EXPORT and ML_MODEL_IMPORT routines.
ML_MODEL_EXPORT exports the model to share to a user-defined table that both users need the
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required privileges to access. ML_MODEL_IMPORT imports the model to the user's model catalog. The
other user can then run AutoML commands on the imported model.

In the following tasks, the admin user gives access to their model to the user1 user. The trained table,
bank_train, is in the bank_marketing database.

Export the Model to Share

The admin user needs to export the model to share to a user-defined table that both users can access.
In this use case, the user exports the model to their own model catalog.

1. As the admin user, train and load the model to export. See Train a Model and Load a Model.

2. Export the model to a table in the model catalog. Use the assigned session variable for the model
handle. If you need to query the model handle, see Work with Model Handles.

mysql> CALL sys.ML_MODEL_EXPORT (model_handle, output_table_name);

Replace model_handle and output_table_name with your own values. For example:

mysql> CALL sys.ML_MODEL_EXPORT(@bank_model, 'ML_SCHEMA_admin.model_export');

Where:

• @bank_model is the assigned session variable for the model handle of the trained model.

• ML_SCHEMA_admin.model_export is the fully qualified name of the table that contains the
training dataset (schema_name.table_name).

3. Run the SHOW CREATE TABLE command to confirm the table was created with the recommended
parameters for importing. See ML_MODEL_IMPORT to learn more.

mysql> SHOW CREATE TABLE ML_SCHEMA_admin.model_export;
+--------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| Table        | Create Table                                                                                                                                                                                                                                            |
+--------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| model_export | CREATE TABLE `model_export` (
  `chunk_id` int NOT NULL AUTO_INCREMENT,
  `model_object` longtext,
  `model_metadata` json DEFAULT NULL,
  PRIMARY KEY (`chunk_id`)
) ENGINE=InnoDB AUTO_INCREMENT=2 DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci |
+--------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1 row in set (0.0527 sec)

Set Up Other User with Required Privileges

The admin user needs to grant the required privileges to user1, so that user can access exported
model and import it into their own model catalog.

1. If not done already, create the other user account (user1). See CREATE USER Statement to learn
more.

2. Run these commands to grant the required privileges to the other user, so they can access the
following:

• AutoML routines on the MySQL sys schema.

• The model catalog for both users.

• The database with the trained model.

See AutoML Privileges to learn more.

mysql> GRANT SELECT, EXECUTE ON sys.* TO 'user1'@'%';
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mysql> GRANT SELECT, ALTER, INSERT, CREATE, UPDATE, DROP, GRANT OPTION ON ML_SCHEMA_user1.* TO 'user1'@'%';
mysql> GRANT SELECT, ALTER, INSERT, CREATE, UPDATE, DROP, GRANT OPTION ON ML_SCHEMA_admin.* TO 'user1'@'%';  
mysql> GRANT SELECT, ALTER, INSERT, CREATE, UPDATE, DROP, GRANT OPTION ON bank_marketing.* TO 'user1'@'%';
mysql> GRANT SELECT ON performance_schema.rpd_tables TO 'user1'@'%';
mysql> GRANT SELECT ON performance_schema.rpd_table_id TO 'user1'@'%';
mysql> GRANT SELECT ON performance_schema.rpd_query_stats TO 'user1'@'%';
mysql> GRANT SELECT ON performance_schema.rpd_ml_stats TO 'user1'@'%';

Where:

• ML_SCHEMA_user1.* and ML_SCHEMA_user1.* gives access to the model catalog for both
users.

• bank_marketing is the database that contains the trained table.

Importing Shared Model

The user1 user can now import the exported model to their own model catalog.

1. Log in to the DB system as the other user (user1).

2. Import the model the admin user previously exported into the model catalog for user1.

mysql> CALL sys.ML_MODEL_IMPORT (model_object, model_metadata, model_handle);

Replace model_object, model_metadata, and model_handle with your own values. For
example:

mysql> CALL sys.ML_MODEL_IMPORT(NULL, JSON_OBJECT('schema', 'ML_SCHEMA_admin', 'table', 'model_export'), @bank_export);

• NULL means that a model from a table is imported, and not a model object.

• JSON_OBJECT sets key-value pairs for the database and table of the exported table to import.

• @bank_export is the assigned session variable for the imported model handle.

3. Load the imported model. Use the assigned session variable set for the imported model handle in
the previous command.

mysql> CALL sys.ML_MODEL_LOAD(@bank_export, NULL);

4. Optionally, query model_object and model_object_size from the model catalog for the
loaded model to confirm the model imported successfully.

mysql> SELECT model_object, model_object_size FROM ML_SCHEMA_user1.MODEL_CATALOG WHERE model_handle=@bank_export;
+--------------+-------------------+
| model_object | model_object_size |
+--------------+-------------------+
| NULL         |            331860 |
+--------------+-------------------+
1 row in set (0.0478 sec)

Confirm the model_object_size is not 0.

5. Optionally, query chunk_id and LENGTH(model_object) from the model object catalog for the
loaded model to confirm the model imported successfully.

mysql> SELECT chunk_id, LENGTH(model_object) FROM ML_SCHEMA_user1.model_object_catalog WHERE model_handle=@bank_export;
+----------+----------------------+
| chunk_id | LENGTH(model_object) |
+----------+----------------------+
|        1 |               331860 |
+----------+----------------------+
1 row in set (0.0465 sec)

Confirm the chunk_id value is 1 and LENGTH(model_object) is not 0.
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Run AutoML Routines on Imported Model

Confirm the user1 user can run AutoML commands. The following example generates a table of
predictions for the imported model.

mysql> CALL sys.ML_PREDICT_TABLE(table_name, model_handle, output_table_name), [options]);

Replace table_name, model_handle, output_table_name), and options with your own values.
For example:

mysql> CALL sys.ML_PREDICT_TABLE('bank_marketing.bank_train', @bank_export, 'bank_marketing.bank_predictions', NULL);

Where:

• bank_marketing.bank_train is the fully qualified name of the table that contains the training
dataset (schema_name.table_name).

• @bank_export is the assigned session variable for the imported model handle.

• bank_marketing.bank_predictions is the fully qualified name of the output table that contains
the predictions (schema_name.table_name).

Optionally, use the database with the output table and query a sample.

mysql> USE bank_marketing;
mysql> SELECT * FROM bank_predictions limit 5;
+-------------------+-----+--------------+---------+-----------+---------+---------+---------+------+-----------+-----+-------+----------+----------+-------+----------+----------+-----+------------+-------------------------------------------------------------------------------+
| _4aad19ca6e_pk_id | age | job          | marital | education | default | balance | housing | loan | contact   | day | month | duration | campaign | pdays | previous | poutcome | y   | Prediction | ml_results                                                                    |
+-------------------+-----+--------------+---------+-----------+---------+---------+---------+------+-----------+-----+-------+----------+----------+-------+----------+----------+-----+------------+-------------------------------------------------------------------------------+
|                 1 |  30 | management   | single  | tertiary  | no      |     149 | yes     | no   | unknown   |   3 | jun   |      220 |        2 |    -1 |        0 | unknown  | no  | no         | {"predictions": {"y": "no"}, "probabilities": {"no": 0.9965, "yes": 0.0035}}  |
|                 2 |  46 | blue-collar  | married | secondary | no      |   -1400 | yes     | no   | telephone |   6 | may   |      309 |        3 |   355 |        4 | failure  | no  | no         | {"predictions": {"y": "no"}, "probabilities": {"no": 0.9368, "yes": 0.0632}}  |
|                 3 |  33 | entrepreneur | married | secondary | no      |    -118 | yes     | yes  | unknown   |  27 | may   |      421 |        3 |    -1 |        0 | unknown  | no  | no         | {"predictions": {"y": "no"}, "probabilities": {"no": 0.9593, "yes": 0.0407}}  |
|                 4 |  43 | blue-collar  | married | secondary | no      |    2160 | no      | no   | cellular  |   8 | sep   |      261 |        1 |    98 |        1 | success  | yes | yes        | {"predictions": {"y": "yes"}, "probabilities": {"no": 0.1266, "yes": 0.8734}} |
|                 5 |  38 | management   | married | tertiary  | no      |    3452 | no      | no   | cellular  |  13 | aug   |      132 |        2 |    -1 |        0 | unknown  | no  | no         | {"predictions": {"y": "no"}, "probabilities": {"no": 0.969, "yes": 0.031}}    |
+-------------------+-----+--------------+---------+-----------+---------+---------+---------+------+-----------+-----+-------+----------+----------+-------+----------+----------+-----+------------+-------------------------------------------------------------------------------+
5 rows in set (0.0425 sec)

What's Next

• Review Machine Learning Use Cases to create machine learning models with sample datasets.

4.8.7 Manage External ONNX Models

AutoML supports the upload of pre-trained models in ONNX (Open Neural Network Exchange) format
to the model catalog. Load them with the ML_MODEL_IMPORT routine. After import, you can use
AutoML routines with ONNX models.

4.8.7.1 ONNX Models Overview

You cannot directly load models in ONNX format (.onnx) into a MySQL table. The models require
string serialization and conversion to Base64 encoding before you use the ML_MODEL_IMPORT routine.

AutoML supports the following ONNX model types:

• An ONNX model that has only one input, and it is the entire MySQL table.

• An ONNX model that has more than one input, and each input is one column in the MySQL table.

For example, AutoML does not support an ONNX model that takes more than one input, and each
input is associated with more than one column in the MySQL table.

The first dimension of the input to the ONNX model provided by the ONNX model get_inputs() API
should be the batch size. This should be None, a string, or an integer. None or string indicate a variable
batch size, and an integer indicates a fixed batch size.
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Examples of input shapes:

[None, 2] 

['batch_size', 2, 3]

[1, 14]

All other dimensions should be integers. For example, AutoML does not support an input shape similar
to the following:

input shape = ['batch_size', 'sequence_length']  

The output of an ONNX model is a list of results. The ONNX API documentation defines the results as
a numpy array, a list, a dictionary, or a sparse tensor. AutoML only supports a numpy array, a list, and
a dictionary.

• Numpy array examples:

array(['Iris-virginica', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor'], dtype=object)
 
array([0, 2, 0, 0], dtype=int64)
 
array([[0.8896357 , 0.11036429],
       [0.28360802, 0.716392  ],
       [0.9404001 , 0.05959991],
       [0.5655978 , 0.43440223]], dtype=float32)
 
array([[0.96875435],
       [1.081366  ],
       [0.5736201 ],
       [0.90711355]], dtype=float32)

• Simple list examples:

['Iris-virginica', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor']
 
[0, 2, 0, 0]

• List of lists examples:

[[0.8896357 , 0.110364],
[0.28360802, 0.716392],
[0.9404001 , 0.059599],
[0.5655978 , 0.434402]]
 
[[[0.8896357] , [0.110364]],
[[0.28360802], [0.716392]],
[[0.9404001] , [0.059599]],
[[0.5655978] , [0.434402]]]
 
[[0.968754],
[1.081366],
[0.573620],
[0.907113]]
 
[[[0.968754]],
[[1.081366]],
[[0.573620]],
[[0.907113]]]

• Dictionary examples:

{'Iris-setosa': 0.0, 'Iris-versicolor': 0.0, 'Iris-virginica': 0.999}
 
{0: 0.1, 1: 0.9}

• List of dictionaries examples:

[{'Iris-setosa': 0.0, 'Iris-versicolor': 0.0, 'Iris-virginica': 0.999},
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{'Iris-setosa': 0.0, 'Iris-versicolor': 0.999, 'Iris-virginica': 0.0},
{'Iris-setosa': 0.0, 'Iris-versicolor': 0.589, 'Iris-virginica': 0.409},
{'Iris-setosa': 0.0, 'Iris-versicolor': 0.809, 'Iris-virginica': 0.190}]
 
[{0: 1.0, 1: 0.0, 2: 0.0},
{0: 0.0, 1: 0.0, 2: 1.0},
{0: 1.0, 1: 0.0, 2: 0.0},
{0: 1.0, 1: 0.0, 2: 0.0}]
 
[{0: 0.176, 1: 0.823},
{0: 0.176, 1: 0.823},
{0: 0.264, 1: 0.735},
{0: 0.875, 1: 0.124}]
 
[{0: 0.176, 1: 0.823},
{0: 0.176, 1: 0.823},
{0: 0.264, 1: 0.735},
{0: 0.875, 1: 0.124}]
 
[{0: 0.176, 1: 0.823},
{0: 0.176, 1: 0.823},
{0: 0.264, 1: 0.735},
{0: 0.875, 1: 0.124}]

For classification and regression tasks, AutoML only supports model explainers and scoring for variable
batch sizes.

For forecasting, anomaly detection and recommendation tasks, AutoML does not support model
explainers and scoring. The prediction column must contain a JSON object literal of name value keys.
For example, for three outputs:

{output1: value1, output2: value2, output3: value3}

What's Next

• Learn about ONNX Model Metadata.

4.8.7.2 ONNX Model Metadata

To learn more about model metadata in the model catalog, see Model Metadata. The model metadata
includes onnx_inputs_info and onnx_outputs_info.

• onnx_inputs_info includes data_types_map. See Model Metadata for the default value.

• onnx_outputs_info includes predictions_name, prediction_probabilities_name, and
labels_map.

ONNX Inputs Info

Use the data_types_map to map the data type of each column to an ONNX model data type. For
example, to convert inputs of the type tensor(float) to float64:

data_types_map = {"tensor(float)": "float64"}

AutoML first checks the user data_types_map, and then the default data_types_map to check if
the data type exists. AutoML supports the following numpy data types:

Table 4.1 Supported numpy data types

str_ unicode_ int8 int16 int32 int64 int_ uint16

uint32 uint64 byte ubyte short ushort intc uintc

uint longlong ulonglong intp uintp float16 float32 float64

140



Manage External ONNX Models

half single longfloat double longdoublebool_ datetime64complex_

complex64 complex128complex256csingle cdouble clongdouble

The use of any other numpy data type causes an error.

ONNX Outputs Info

Use predictions_name to determine which of the ONNX model outputs is associated with
predictions. Use prediction_probabilities_name to determine which of the ONNX model
outputs is associated with prediction probabilities. Use use a labels_map to map prediction
probabilities to predictions, known as labels.

For regression tasks:

• If the ONNX model generates only one output, then predictions_name is optional.

• If the ONNX model generates more than one output, then predictions_name is required.

• Do not provide prediction_probabilities_name as this causes an error.

For classification tasks:

• Use predictions_name, prediction_probabilities_name, or both. Failure to provide at
least one causes an error.

• The model explainers SHAP, Fast SHAP, and Partial Dependence require
prediction_probabilities_name.

Only use a labels_map with classification tasks. A labels_map requires
predictions_probabilities_name. The use of a labels_map with any other task, or with
predictions_name or without predictions_probabilities_name causes an error.

If the task is NULL, do not provide predictions_name or prediction_probabilities_name as
this causes an error.

An example of a predictions_probabilities_name with a labels_map produces these labels:

predictions_probabilities_name = array([[0.35, 0.50, 0.15],
                                        [0.10, 0.20, 0.70],
                                        [0.90, 0.05, 0.05],
                                        [0.55, 0.05, 0.40]], dtype=float32)
  
labels_map = {0:'Iris-virginica', 1:'Iris-versicolor', 2:'Iris-setosa'}

labels=['Iris-versicolor', 'Iris-setosa', 'Iris-virginica', 'Iris-virginica']

AutoML adds a note for ONNX models that have inputs with four dimensions about the reshaping of
data to a suitable shape for an ONNX model. This would typically be for ONNX models that are trained
on image data.

An example of this note added to the ml_results column:

mysql> CALL sys.ML_PREDICT_TABLE('mlcorpus_v5.mnist_test_temp', @model, 
          'mlcorpus_v5.`mnist_predictions`', NULL);
Query OK, 0 rows affected (20.6296 sec)

mysql> SELECT ml_results FROM mnist_predictions;;
+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| ml_results                                                                                                                                                                                                                                                                                                                          |
+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| {'predictions': {'prediction': 7}, 'Notes': 'Input data is reshaped into (1, 28, 28).', 'probabilities': {0: -552.7100219726562, 1: 138.27000427246094, 2: 2178.510009765625, 3: 2319.860107421875, 4: -3466.5400390625, 5: -1778.3499755859375, 6: -6441.83984375, 7: 8062.9599609375, 8: -1860.2099609375, 9: 1034.239990234375}} |
+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
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See Also

• Review The Model Catalog.

4.8.7.3 Importing an External ONNX Model

This topic describes how to import an external ONNX model.

This topic has the following sections. Refer to the steps to import an ONNX model. There are also
examples for your reference.

• Before You Begin

• Ways to Import External ONNX Model

• Workflow to Import an ONNX Model

• Encoding ONNX File

• Preparing to Import ONNX Model as a Pre-Processed Object

• Preparing to Import ONNX Model as a Table

• Defining Model Metadata

• Importing ONNX Model as a Pre-processed Object

• Importing ONNX Model as a Table

• ONNX Import Examples

• What's Next

Before You Begin

• Review the following:

• ONNX Models Overview

• ONNX Model Metadata

• Review ONNX Model Metadata.

Ways to Import External ONNX Model

You have the following ways to import an external ONNX model.

• Import model as a string: For smaller models, you can copy the encoded string and paste it into a
session variable or temporary table column. You can then import the table with the copied string.
To do this, you run the ML_MODEL_IMPORT routine and import the model as a pre-processed model
object.

• Import model directly from a table: For larger models, you can load the entire file into a table with the
appropriate parameters. You can then import the table directly into your model catalog. If needed,
you can load the model in batches of smaller files. To do this, you run the ML_MODEL_IMPORT
routine and import the model as a table.

The table that you load the model into must have the following columns:

• chunk_id: The recommended parameters are INT AUTO_INCREMENT PRIMARY KEY. There
must be only one row in the table with chunk_id = 1.

• model_object: The recommended parameters are LONGTEXT NOT NULL.

• model_metadata: The recommended parameters are JSON DEFAULT NULL.
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Workflow to Import an ONNX Model

The workflow to import an ONNX model includes the following:

1. Convert the ONNX file to Base 64 encoding and carry out sting serialization. See Encoding ONNX
File.

2. Depending on the size of the model, select if you want to import the model as a string in a pre-
processed model object (smaller files) or as a table (larger files). Then, refer to the appropriate
section to prepare the model file. See either Preparing to Import ONNX Model as a Pre-Processed
Object or Preparing to Import ONNX Model as a Table.

3. Define the model metadata as needed depending on the type of machine learning task for the
model. See Defining Model Metadata.

4. Import the model by using the ML_MODEL_IMPORT routine. See either Importing ONNX Model as a
Pre-processed Object to import the model as a string or Importing ONNX Model as a Table.

Encoding ONNX File

Before importing an ONNX model, you must convert the ONNX file to Base 64 encoding and carry out
string serialization. Do this with the Python base64 module. Ensure you have the appropriate version of
Python installed.

To encode the ONNX file:

1. Open a terminal window (command prompt on Windows).

2. Install the ONNX library.

pip install onnx

3. Launch Python and run the following code.

# python3 encode_onnx_base64.py
import onnx
import base64

with open("output_file_name", "wb") as f:
    model = onnx.load("input_file_name")
    f.write(base64.b64encode(model.SerializeToString()))

Replace input_file_name with the full file path to the ONNX file and output_file_name with
the desired file name for the encoded file. If needed, set a file path for the output file.

The following example converts the /Users/user1/iris.onnx file and creates the output file
iris_base64.onnx.

# python3 encode_onnx_base64.py
import onnx
import base64

with open("iris_base64.onnx", "wb") as f:
    model = onnx.load("/Users/user1/iris.onnx")
    f.write(base64.b64encode(model.SerializeToString()))

After encoding the ONNX file, select the method to import the model and review the appropriate steps.

• Preparing to Import ONNX Model as a Pre-Processed Object

• Preparing to Import ONNX Model as a Table

Preparing to Import ONNX Model as a Pre-Processed Object

For smaller model files, you can import the ONNX model as a string into a pre-processed object.
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To prepare to import the ONNX Model as a string:

1. Open the encoded file and copy the string.

2. Connect to the MySQL server.

3. Copy and paste the converted string for the file into a session variable. For example:

mysql> SET @onnx_string_model_object='ONNX_file_string';

Alternatively, you can load the encoded file directly into a table column. Make sure you do the
following:

• Set the appropriate local-infile setting for the client. The server setting local_infile=ON is
enabled by default. Verify with your admin before using these settings. See Security Considerations
for LOAD DATA LOCAL to learn more.

• Upload the file to the appropriate folder in the MySQL server based on the secure_file_priv
setting. To review this setting, connect to the MySQL server and run the following command:

mysql> SHOW VARIABLES LIKE 'secure_file_priv';

To load the encoded file directly into a table column:

1. From a terminal window, upload the ONNX file to the folder of your username in the compute
instance.

$> scp -v -i ssh-key.key /Users/user1/iris_base64.onnx user1@ComputeInstancePublicIP:/home/user1/

Replace the following:

• ssh-key.key: The full file path to the SSH key file (.key) for the compute instance.

• /Users/user1/iris_base64.onnx: The full file path to the ONNX file on your device.

• user1@ComputeInstancePublicIP: The appropriate username and public IP for the compute
instance.

• /home/user1/: The appropriate file path to your username in the compute instance.

2. Once the upload successfully completes, SSH into the compute instance.

$> ssh -i ssh-key.key user1@computeInstancePublicIP

Replace the following:

• ssh-key.key: The full file path to the SSH key file (.key) for the compute instance.

• user1@ComputeInstancePublicIP: The appropriate username and public IP for the compute
instance.

3. Change the directory to the one for your username.

$> cd /home/user1

Replace user1 with your own username.

4. Create a copy of the ONNX file.

$> touch iris_base64.onnx

Replace iris_base64.onnx with the file name of the ONNX file.

5. Copy the ONNX file to the appropriate folder in the MySQL server based on the
secure_file_priv setting.
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$> sudo cp iris_base64.onnx /var/lib/mysql-files

Replace the following:

• iris_base64.onnx: The file name of the ONNX file.

• /var/lib/mysql-files: The file path based on the secure_file_priv setting.

6. Update the owner and group of the file path previously specified that has the uploaded ONNX file.

$> sudo chown -R mysql:mysql /var/lib/mysql-files

Replace /var/lib/mysql-files with the file path previously specified.

7. Connect to the MySQL server with the local-infile setting to 1.

> mysql -u user1 -p --local-infile=1

Replace user1 with your MySQL username.

8. Create and use the database to store the table. For example:

mysql> CREATE DATABASE onnx_model;
mysql> USE onnx_model;

9. Create a table with only one column to store the string.

The following example creates the onnx_temp table with the onnx_string column with the
LONGTEXT data type.

mysql> CREATE TABLE onnx_temp (onnx_string LONGTEXT);

10. Use a LOAD DATA INFILE statement to load the pre-processed .onnx file into the temporary
table.

The following example loads the iris_base64.onnx file with the string into the onnx_string
column in the onnx_temp table.

mysql> LOAD DATA INFILE 'iris_base64.onnx' 
       INTO TABLE onnx_temp 
       CHARACTER SET binary 
       FIELDS TERMINATED BY '\t' 
       LINES TERMINATED BY '\r' (onnx_string);

11. Insert the loaded string into a session variable.

The following example loads the loaded string in the onnx_string column into the
@onnx_table_model_object session variable.

mysql> SELECT onnx_string FROM onnx_temp INTO @onnx_table_model_object;

After preparing the model, you can Defining Model Metadata.

Preparing to Import ONNX Model as a Table

For larger model files, you must import the model as a table. Make sure you do the following:

• Set the appropriate local-infile setting for the client. The server setting local_infile=ON is
enabled by default. Verify with your admin before using these settings. See Security Considerations
for LOAD DATA LOCAL to learn more.

• Upload the file to the appropriate folder in the MySQL server based on the secure_file_priv
setting. To review this setting, connect to the MySQL server and run the following command:

mysql> SHOW VARIABLES LIKE 'secure_file_priv';
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To import the model as a table:

1. From a terminal window, upload the ONNX file to the folder of your username in the compute
instance.

$> scp -v -i ssh-key.key /Users/user1/iris_base64.onnx user1@ComputeInstancePublicIP:/home/user1/

Replace the following:

• ssh-key.key: The full file path to the SSH key file (.key) for the compute instance.

• /Users/user1/iris_base64.onnx: The full file path to the ONNX file on your device.

• user1@ComputeInstancePublicIP: The appropriate username and public IP for the compute
instance.

• /home/user1/: The appropriate file path to your username in the compute instance.

2. Once the upload successfully completes, SSH into the compute instance.

$> ssh -i ssh-key.key user1@computeInstancePublicIP

Replace the following:

• ssh-key.key: The full file path to the SSH key file (.key) for the compute instance.

• user1@ComputeInstancePublicIP: The appropriate username and public IP for the compute
instance.

3. Change the directory to the one for your username.

$> cd /home/user1

Replace user1 with your own username.

4. Create a copy of the ONNX file.

$> touch iris_base64.onnx

Replace iris_base64.onnx with the file name of the ONNX file.

5. Copy the ONNX file to the appropriate folder in the MySQL server based on the
secure_file_priv setting.

$> sudo cp iris_base64.onnx /var/lib/mysql-files

Replace the following:

• iris_base64.onnx: The file name of the ONNX file.

• /var/lib/mysql-files: The file path based on the secure_file_priv setting.

6. Update the owner and group of the file path previously specified that has the uploaded ONNX file.

$> sudo chown -R mysql:mysql /var/lib/mysql-files

Replace /var/lib/mysql-files with the file path previously specified.

7. Connect to the MySQL server with the local-infile setting to 1.

> mysql -u user1 -p --local-infile=1

Replace user1 with your MySQL username.

8. Create and use the database to store the table. For example:
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mysql> CREATE DATABASE onnx_model;
mysql> USE onnx_model;

9. Create a table to store the model. The table must have the three required columns to
store the details for the model (chunk_id, model_object, and model_metadata). See
ML_MODEL_IMPORT Overview. For example:

mysql> CREATE TABLE model_table (chunk_id INT AUTO_INCREMENT PRIMARY KEY, model_object LONGTEXT NOT NULL, model_metadata JSON DEFAULT NULL);

10. Use a LOAD DATA INFILE statement to load the model. If needed, load the model in batches
of files depending on the size of the model. See LOAD DATA Statement to learn more. The
following example loads the model in three separate files into the model_object column in the
model_table table previously created:

mysql> LOAD DATA INFILE '/onnx_examples/x00' 
       INTO TABLE model_table 
       CHARACTER SET binary 
       FIELDS TERMINATED BY '\t' 
       LINES TERMINATED BY '\r' 
       (model_object);
Query OK, 1 row affected (34.96 sec)
Records: 1  Deleted: 0  Skipped: 0  Warnings: 0

mysql> LOAD DATA INFILE '/onnx_examples/x01' 
       INTO TABLE model_table 
       CHARACTER SET binary 
       FIELDS TERMINATED BY '\t' 
       LINES TERMINATED BY '\r' 
       (model_object);
Query OK, 1 row affected (32.74 sec)
Records: 1  Deleted: 0  Skipped: 0  Warnings: 0

mysql> LOAD DATA INFILE '/onnx_examples/x02' 
       INTO TABLE model_table 
       CHARACTER SET binary 
       FIELDS TERMINATED BY '\t' 
       LINES TERMINATED BY '\r' 
       (model_object);
Query OK, 1 row affected (11.90 sec)
Records: 1  Deleted: 0  Skipped: 0  Warnings: 0

After preparing the model, you can Defining Model Metadata.

Defining Model Metadata

After preparing the ONNX model (either as a string or table), define the metadata for the model
as required. See Model Metadata and ONNX Model Metadata to learn more about requirements
depending on the task type of the model.

To define the metadata for the ONNX model:

1. If including the column names for the model in the metadata, you have the option to set them into a
JSON object as key-value pairs.

mysql> SET @variable = JSON_OBJECT("key","value"[,"key","value"] ...);

For example:

mysql> SET @column_names = JSON_OBJECT("0","f1", "1","f2", "2","f3");

2. Set the metadata for the model as required into a JSON object as key-value pairs. To learn more
about metadata requirements, see ONNX Model Metadata. You can also include additional
information that allows you to properly configure input tables and columns for generating
predictions.

mysql> SET @variable = JSON_OBJECT("key","value"[,"key","value"] ...);
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The following example shows how to define the metadata if you import the model as a string (pre-
processed object). The predictions_name and prediction_probabilities_name variables
are provided because it is a classification task. Including the column_names allows you to refer to
the metadata to ensure that input tables for predictions have the same details. Otherwise an error
generates.

mysql> SET @model_metadata = JSON_OBJECT('task','classification',
                                          'onnx_outputs_info', JSON_OBJECT('predictions_name','label','prediction_probabilities_name', 'probabilities'),
                                          'target_column_name','target',
                                          'train_table_name','mlcorpus.`classification_3_table`',
                                          'column_names',@column_names,
                                          'notes','user notes for the model',
                                          'training_score',0.734,
                                          'training_time',100.34,
                                          'n_rows',1000,
                                          'n_columns',3,
                                          'algorithm_name','xgboost');

The following example shows how to define the metadata if you import the model from a table. The
predictions_name and prediction_probabilities_name variables are provided because
it is a classification task. After defining the metadata, update the metadata for the temporary table
for the row that is chunk_id=1.

mysql> SET @model_metadata = JSON_OBJECT('task','classification',
                                          'onnx_outputs_info', JSON_OBJECT('predictions_name','label','prediction_probabilities_name', 'probabilities'),
                                          'target_column_name','target');

mysql> UPDATE mlcorpus.model_table SET model_metadata=@model_metadata WHERE chunk_id=1;

Depending on how you prepared the model, follow the appropriate steps to import the model:

• Importing ONNX Model as a Pre-processed Object

• Importing ONNX Model as a Table

Importing ONNX Model as a Pre-processed Object

If you followed the steps to Preparing to Import ONNX Model as a Pre-Processed Object, review the
following steps to import the model as a pre-processed object.

To import the model as a pre-processed object:

1. Optionally, define the model handle for the imported model instead of automatically generating one.
See Work with Model Handles.

mysql> SET @variable = 'model_handle';

For example:

mysql> SET @model = 'onnx_model_string';

2. Run ML_MODEL_IMPORT to import the model.

mysql> CALL sys.ML_MODEL_IMPORT (model_object, model_metadata, model_handle);

Since you are importing a pre-processed object, the model_object is defined by
the string you previously set in the in either the @onnx_string_model_object or
@onnx_table_model_object session variable. The model_metadata is defined by the
metadata previously set in the @model_metadata session variable. The model_handle is
defined by the session variable created for the model handle.

See the following example:

mysql> CALL sys.ML_MODEL_IMPORT(@onnx_string_model_object, @model_metadata, @model);
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3. Confirm the model successfully loaded by querying the model_id and model_handle from the
model catalog. Query the model by using the model handle previously created. Replace user1 with
your own MySQL user name.

mysql> SELECT model_id, model_handle FROM ML_SCHEMA_user1.MODEL_CATALOG WHERE model_handle='onnx_model_string';
+----------+--------------------+
| model_id | model_handle       |
+----------+--------------------+
|       1  | onnx_model_table   |
+----------+--------------------+
1 row in set (0.0485 sec)

4. To load the model into MySQL AI so you can start using it with MySQL AI routines, run
ML_MODEL_LOAD.

mysql> CALL sys.ML_MODEL_LOAD(model_handle, NULL);

For example:

mysql> CALL sys.ML_MODEL_LOAD(@model, NULL);

Importing ONNX Model as a Table

If you followed the steps to Preparing to Import ONNX Model as a Table, review the following steps to
import the model as a table.

To import the model as a table:

1. Optionally, define the model handle for the imported model instead of automatically generating one.
See Work with Model Handles.

mysql> SET @variable = 'model_handle';

For example:

mysql> SET @model = 'onnx_model_table';

2. Run ML_MODEL_IMPORT to import the model.

mysql> CALL sys.ML_MODEL_IMPORT (model_object, model_metadata, model_handle);

Since you are importing a table, the model_object is set to NULL. The model_metadata is
defined by the schema name and table name storing the string for the ONNX model. The metadata
for the model is stored in the table when following the steps to Defining Model Metadata. The
model_handle is defined by the session variable created for the model handle.

See the following example:

mysql> CALL sys.ML_MODEL_IMPORT(NULL, JSON_OBJECT('schema', 'onnx_models', 'table', 'model_table'), @model);

3. Confirm the model successfully loaded by querying the model_id and model_handle from the
model catalog. Query the model by using the model handle previously created. Replace user1 with
your own MySQL user name.

mysql> SELECT model_id, model_handle FROM ML_SCHEMA_user1.MODEL_CATALOG WHERE model_handle='onnx_model_table';
+----------+--------------------+
| model_id | model_handle       |
+----------+--------------------+
|       2  | onnx_model_table   |
+----------+--------------------+
1 row in set (0.0485 sec)

4. To load the model into MySQL AI so you can start using it with MySQL AI routines, run
ML_MODEL_LOAD.

mysql> CALL sys.ML_MODEL_LOAD(model_handle, NULL);
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For example:

mysql> CALL sys.ML_MODEL_LOAD(@model, NULL);

ONNX Import Examples

Review the following additional examples for importing ONNX models.

• In the following example, a ONNX model for classification is imported. Then, the model is used to
generate predictions, a score, and prediction explainers for a dataset in MySQL AI.

mysql> SET @model = 'sklearn_pipeline_classification_3_onnx';
Query OK, 0 rows affected (0.0003 sec)

mysql> SET @model_metadata = JSON_OBJECT('task','classification', 
                                          'onnx_outputs_info', JSON_OBJECT('predictions_name','label','prediction_probabilities_name', 'probabilities'));
Query OK, 0 rows affected (0.0003 sec)

mysql> CALL sys.ML_MODEL_IMPORT(@onnx_encode_sklearn_pipeline_classification_3, @model_metadata, @model);
Query OK, 0 rows affected (1.2438 sec)

mysql> CALL sys.ML_MODEL_LOAD(@model, NULL);
Query OK, 0 rows affected (0.5372 sec)

mysql> CALL sys.ML_PREDICT_TABLE('mlcorpus.classification_3_predict', @model, 'mlcorpus.predictions', NULL);
Query OK, 0 rows affected (0.8743 sec)

mysql> SELECT * FROM mlcorpus.predictions;
+-------------------+----+----+-----+------------+----------------------------------------------------------------------------------------------------------+
| _4aad19ca6e_pk_id | f1 | f2 | f3  | Prediction | ml_results                                                                                               |
+-------------------+----+----+-----+------------+----------------------------------------------------------------------------------------------------------+
|                 1 | a  | 20 | 1.2 |          0 | {"predictions": {"prediction": 0}, "probabilities": {"0": 0.5099999904632568, "1": 0.49000000953674316}} |
|                 2 | b  | 21 | 3.6 |          1 | {"predictions": {"prediction": 1}, "probabilities": {"0": 0.3199999928474426, "1": 0.6800000071525574}}  |
|                 3 | c  | 19 | 7.8 |          1 | {"predictions": {"prediction": 1}, "probabilities": {"0": 0.3199999928474426, "1": 0.6800000071525574}}  |
|                 4 | d  | 18 |   9 |          0 | {"predictions": {"prediction": 0}, "probabilities": {"0": 0.5199999809265137, "1": 0.47999998927116394}} |
|                 5 | e  | 17 | 3.6 |          1 | {"predictions": {"prediction": 1}, "probabilities": {"0": 0.3199999928474426, "1": 0.6800000071525574}}  |
+-------------------+----+----+-----+------------+----------------------------------------------------------------------------------------------------------+
5 rows in set (0.0005 sec)

mysql> CALL sys.ML_SCORE('mlcorpus.classification_3_table','target', @model, 'accuracy', @score, NULL);
Query OK, 0 rows affected (0.9573 sec)

mysql> SELECT @score;
+--------+
| @score |
+--------+
|      1 |
+--------+
1 row in set (0.0003 sec)

mysql> CALL sys.ML_EXPLAIN('mlcorpus.classification_3_table', 'target', @model, 
                            JSON_OBJECT('model_explainer', 'shap', 'prediction_explainer', 'shap'));
Query OK, 0 rows affected (10.1771 sec)

mysql> SELECT model_explanation FROM ML_SCHEMA_root.MODEL_CATALOG WHERE model_handle=@model;
+------------------------------------------------------+
| model_explanation                                    |
+------------------------------------------------------+
| {"shap": {"f1": 0.0928, "f2": 0.0007, "f3": 0.0039}} |
+------------------------------------------------------+
1 row in set (0.0005 sec)

mysql> CALL sys.ML_EXPLAIN_TABLE('mlcorpus.classification_3_predict', @model, 'mlcorpus.explanations_shap', 
                                  JSON_OBJECT('prediction_explainer', 'shap'));
Query OK, 0 rows affected (7.6577 sec)

mysql> SELECT * FROM mlcorpus.explanations_shap;
+-------------------+----+----+-----+------------+----------------+-----------------+----------------+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| _4aad19ca6e_pk_id | f1 | f2 | f3  | Prediction | f1_attribution | f2_attribution  | f3_attribution | ml_results                                                                                                                                                                     |
+-------------------+----+----+-----+------------+----------------+-----------------+----------------+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
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|                 1 | a  | 20 | 1.2 |          0 |       0.116909 |     0.000591494 |    -0.00524929 | {"predictions": {"prediction": 0}, "attributions": {"f1_attribution": 0.11690924863020577, "f2_attribution": 0.0005914936463038284, "f3_attribution": -0.005249293645222988}}  |
|                 2 | b  | 21 | 3.6 |          1 |      0.0772133 |     -0.00110559 |     0.00219658 | {"predictions": {"prediction": 1}, "attributions": {"f1_attribution": 0.07721325159072877, "f2_attribution": -0.0011055856943130368, "f3_attribution": 0.002196577191352772}}  |
|                 3 | c  | 19 | 7.8 |          1 |      0.0781372 | 0.0000000913938 |    -0.00324671 | {"predictions": {"prediction": 1}, "attributions": {"f1_attribution": 0.07813718219598137, "f2_attribution": 9.139378859268632e-08, "f3_attribution": -0.0032467077175776238}} |
|                 4 | d  | 18 |   9 |          0 |       0.115209 |    -0.000592354 |     0.00639341 | {"predictions": {"prediction": 0}, "attributions": {"f1_attribution": 0.11520911753177646, "f2_attribution": -0.0005923539400101152, "f3_attribution": 0.006393408775329595}}  |
|                 5 | e  | 17 | 3.6 |          1 |      0.0767679 |      0.00110463 |     0.00219425 | {"predictions": {"prediction": 1}, "attributions": {"f1_attribution": 0.0767679293950399, "f2_attribution": 0.0011046340068181504, "f3_attribution": 0.002194248636563534}}    |
+-------------------+----+----+-----+------------+----------------+-----------------+----------------+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
5 rows in set (0.0005 sec)

• In the following example, a ONNX model for regression is imported. Then, the model is used to
generate predictions, a score, and prediction explainers for a dataset in MySQL AI.

mysql> SET @model = 'sklearn_pipeline_regression_2_onnx';
Query OK, 0 rows affected (0.0003 sec)

mysql> SET @model_metadata = JSON_OBJECT('task','regression', 'onnx_outputs_info',JSON_OBJECT('predictions_name','variable'));
Query OK, 0 rows affected (0.0003 sec)

mysql> CALL sys.ML_MODEL_IMPORT(@onnx_encode_sklearn_pipeline_regression_2, @model_metadata, @model);
Query OK, 0 rows affected (1.0652 sec)

mysql> CALL sys.ML_MODEL_LOAD(@model, NULL);
Query OK, 0 rows affected (0.5141 sec)

mysql> CALL sys.ML_PREDICT_TABLE('mlcorpus.regression_2_table', @model, 'mlcorpus.predictions', NULL);
Query OK, 0 rows affected (0.8902 sec)

mysql> SELECT * FROM mlcorpus.predictions;
+-------------------+----+----+-----+--------+------------+-----------------------------------------------------+
| _4aad19ca6e_pk_id | f1 | f2 | f3  | target | Prediction | ml_results                                          |
+-------------------+----+----+-----+--------+------------+-----------------------------------------------------+
|                 1 | a  | 20 | 1.2 |   22.4 |     22.262 | {"predictions": {"prediction": 22.262039184570312}} |
|                 2 | b  | 21 | 3.6 |   32.9 |    32.4861 | {"predictions": {"prediction": 32.486114501953125}} |
|                 3 | c  | 19 | 7.8 |   56.8 |    56.2482 | {"predictions": {"prediction": 56.24815368652344}}  |
|                 4 | d  | 18 |   9 |   31.8 |       31.8 | {"predictions": {"prediction": 31.80000114440918}}  |
|                 5 | e  | 17 | 3.6 |   56.4 |    55.9861 | {"predictions": {"prediction": 55.986114501953125}} |
+-------------------+----+----+-----+--------+------------+-----------------------------------------------------+
5 rows in set (0.0005 sec)

mysql> CALL sys.ML_SCORE('mlcorpus.regression_2_table','target', @model, 'r2', @score, NULL);
Query OK, 0 rows affected (0.8688 sec)

mysql> SELECT @score;
+--------------------+
| @score             |
+--------------------+
| 0.9993192553520203 |
+--------------------+
1 row in set (0.0003 sec)

mysql> CALL sys.ML_EXPLAIN('mlcorpus.regression_2_table', 'target', @model, 
                            JSON_OBJECT('model_explainer', 'partial_dependence', 
                                        'columns_to_explain', JSON_ARRAY('f1'), 
                                        'prediction_explainer', 'shap'));
Query OK, 0 rows affected (9.9860 sec)

m
mysql> CALL sys.ML_EXPLAIN_TABLE('mlcorpus.regression_2_predict', @model, 'mlcorpus.explanations', 
                                  JSON_OBJECT('prediction_explainer', 'shap'));
Query OK, 0 rows affected (8.2625 sec)

mysql> SELECT * FROM mlcorpus.explanations;
+-------------------+----+----+-----+------------+----------------+----------------+----------------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| _4aad19ca6e_pk_id | f1 | f2 | f3  | Prediction | f1_attribution | f2_attribution | f3_attribution | ml_results                                                                                                                                                                               |
+-------------------+----+----+-----+------------+----------------+----------------+----------------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|                 1 | a  | 20 | 1.2 |     22.262 |       -10.7595 |       -4.25162 |       -2.48331 | {"predictions": {"prediction": 22.262039184570312}, "attributions": {"f1_attribution": -10.759506797790523, "f2_attribution": -4.251623916625977, "f3_attribution": -2.483314704895024}} |
|                 2 | b  | 21 | 3.6 |    32.4861 |        2.33657 |       -8.50325 |        -1.1037 | {"predictions": {"prediction": 32.486114501953125}, "attributions": {"f1_attribution": 2.336572837829592, "f2_attribution": -8.50324745178223, "f3_attribution": -1.1036954879760748}}   |
|                 3 | c  | 19 | 7.8 |    56.2482 |        14.8361 |              0 |        1.65554 | {"predictions": {"prediction": 56.24815368652344}, "attributions": {"f1_attribution": 14.83612575531006, "f2_attribution": 0.0, "f3_attribution": 1.6555433273315412}}                   |
|                 4 | d  | 18 |   9 |       31.8 |       -15.2433 |        4.25162 |        3.03516 | {"predictions": {"prediction": 31.80000114440918}, "attributions": {"f1_attribution": -15.243269538879392, "f2_attribution": 4.251623725891111, "f3_attribution": 3.0351623535156236}}   |
|                 5 | e  | 17 | 3.6 |    55.9861 |        8.83008 |        8.50325 |        -1.1037 | {"predictions": {"prediction": 55.986114501953125}, "attributions": {"f1_attribution": 8.830077743530275, "f2_attribution": 8.50324764251709, "f3_attribution": -1.1036954879760756}}    |
+-------------------+----+----+-----+------------+----------------+----------------+----------------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
5 rows in set (0.0006 sec)
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• An example with task set to NULL.

mysql> SET @model = 'tensorflow_recsys_onnx';

mysql> CALL sys.ML_MODEL_IMPORT(@onnx_encode_tensorflow_recsys, NULL, @model);
Query OK, 0 rows affected (1.0037 sec)

mysql> CALL sys.ML_MODEL_LOAD(@model, NULL);
Query OK, 0 rows affected (0.5116 sec)

mysql> CALL sys.ML_PREDICT_TABLE('mlcorpus.recsys_predict', @model, 'mlcorpus.predictions', NULL);
Query OK, 0 rows affected (0.8271 sec)

mysql> SELECT * FROM mlcorpus.predictions;
+-------------------+---------+-------------+--------------------------+-----------------------------------------------------------+
| _4aad19ca6e_pk_id | user_id | movie_title | Prediction               | ml_results                                                |
+-------------------+---------+-------------+--------------------------+-----------------------------------------------------------+
|                 1 | a       | A           | {"output_1": ["0.7558"]} | {"predictions": {"prediction": {"output_1": ["0.7558"]}}} |
|                 2 | b       | B           | {"output_1": ["1.0443"]} | {"predictions": {"prediction": {"output_1": ["1.0443"]}}} |
|                 3 | c       | A           | {"output_1": ["0.8483"]} | {"predictions": {"prediction": {"output_1": ["0.8483"]}}} |
|                 4 | d       | B           | {"output_1": ["1.2986"]} | {"predictions": {"prediction": {"output_1": ["1.2986"]}}} |
|                 5 | e       | C           | {"output_1": ["1.1568"]} | {"predictions": {"prediction": {"output_1": ["1.1568"]}}} |
+-------------------+---------+-------------+--------------------------+-----------------------------------------------------------+
5 rows in set (0.0005 sec)

What's Next

• Review how to Create a Machine Learning Model.

• Review Machine Learning Use Cases to create machine learning models with sample datasets.

4.8.8 Analyzing Data Drift

MySQL AI includes data drift detection for classification and regression models.

Before You Begin

• Review how to Create a Machine Learning Model.

• Review use cases for Classification Data and Regression Analysis.

Data Drift Detection Overview

Machine learning typically makes an assumption that the training data and test data are similar. Over
time, the similarity between the training data and the test data can decrease. This is known as data
drift.

You can monitor data drift in the model catalog and when running the ML_PREDICT_ROW and
ML_PREDICT_TABLE routines.

For the model catalog, the model_metadata column includes the training_drift_metric JSON
object literal, which contains mean and variance numeric values. See Model Metadata.

mean and variance indicate the quality of the trained drift detector, and both values should be low.
The more important value is mean, and if it is greater than 1.0, then drift evaluation for the test results
might not be reliable.

For the ML_PREDICT_ROW and ML_PREDICT_TABLE routines, the options parameter includes
the additional_details boolean value. If this option is enabled, the ml_results column
includes the drift JSON object literal, which contains the metric numeric value and the
attribution_percent JSON object literal.

• metric indicates the similarity between training and test data. A low value indicates similar values.
A value grater than 1.0 indicates data drift, and the prediction results are questionable.

• attribution_percent indicates the top three features that contribute to data drift for each result.
The higher the percentage value, the greater the contribution.
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Workflow to Analyze Data Drift

The workflow to analyze data drift includes the following:

1. Run ML_TRAIN to train the machine learning model with either the classification or
regression task.

2. When training is complete, query the model_metadata column and review the mean and
variance values.

3. Run the ML_PREDICT_ROW or ML_PREDICT_TABLE routines on the trained model with the
additional_details option set to true.

4. Review the drift parameter in ml_results.

Analyzing Data Drift in Model Metadata

To analyze data drift in model metadata:

1. Train the model with ML_TRAIN.

mysql> CALL sys.ML_TRAIN('table_name', 'target_column_name', JSON_OBJECT('task', 'task_name'), @variable);

Replace table_name, target_column_name, task_name, and variable with your own
values. For example:

mysql> CALL sys.ML_TRAIN('census_data.census_train', 'revenue', JSON_OBJECT('task', 'classification'), @census_model);

Where:

• census_data.census_train is the fully qualified name of the table that contains the training
dataset (schema_name.table_name).

• revenue is the name of the target column, which contains ground truth values.

• JSON_OBJECT('task', 'classification') specifies the machine learning task type.

• @census_model is the name of the user-defined session variable that stores the model handle
for the duration of the connection. User variables are written as @var_name. Any valid name
for a user-defined variable is permitted. For example, @my_model. Learn more about Model
Handles.

2. Query the model_metadata column from the model catalog. Optionally, use JSON_PRETTY to
view the output in an easily readable format.

mysql> SELECT JSON_PRETTY(model_metadata) FROM ML_SCHEMA_user1.MODEL_CATALOG WHERE model_handle=model_handle;

Replace user1 with your own user name and model_handle with your own model handle. For
example:

mysql> SELECT JSON_PRETTY(model_metadata) FROM ML_SCHEMA_user1.MODEL_CATALOG WHERE model_handle=@census_model;
+---------------------------------------------------------+
| JSON_PRETTY(model_metadata)                             |
+---------------------------------------------------------+
| {
  "task": "classification",
  "notes": null,
  "chunks": 1,
  "format": "HWMLv2.0",
  "n_rows": 100,
  "status": "Ready",
  "options": {
    "task": "classification",
    "model_explainer": "permutation_importance",
    "prediction_explainer": "permutation_importance"
  },
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  "n_columns": 14,
  "column_names": [
    "age",
    "workclass",
    "fnlwgt",
    "education",
    "education-num",
    "marital-status",
    "occupation",
    "relationship",
    "race",
    "sex",
    "capital-gain",
    "capital-loss",
    "hours-per-week",
    "native-country"
  ],
  "contamination": null,
  "model_quality": "high",
  "training_time": 73.90254211425781,
  "algorithm_name": "RandomForestClassifier",
  "training_score": -0.35963335633277893,
  "build_timestamp": 1744377124,
  "n_selected_rows": 80,
  "training_params": {
    "recommend": "ratings",
    "force_use_X": false,
    "recommend_k": 3,
    "remove_seen": true,
    "ranking_topk": 10,
    "lsa_components": 100,
    "ranking_threshold": 1,
    "feedback_threshold": 1
  },
  "train_table_name": "census_data.census_train",
  "model_explanation": {
    "permutation_importance": {
      "age": -0.0057,
      "sex": 0.0002,
      "race": 0.0001,
      "fnlwgt": 0.0103,
      "education": 0.0108,
      "workclass": 0.0189,
      "occupation": 0.0,
      "capital-gain": 0.0304,
      "capital-loss": 0.0,
      "relationship": 0.0195,
      "education-num": 0.0152,
      "hours-per-week": 0.0235,
      "marital-status": 0.0099,
      "native-country": 0.0
    }
  },
  "n_selected_columns": 11,
  "target_column_name": "revenue",
  "optimization_metric": "neg_log_loss",
  "selected_column_names": [
    "age",
    "capital-gain",
    "education",
    "education-num",
    "fnlwgt",
    "hours-per-week",
    "marital-status",
    "race",
    "relationship",
    "sex",
    "workclass"
  ],
  "training_drift_metric": {
    "mean": 0.3535,
    "variance": 0.0597
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  }
} |
+---------------------------------------------------------+
1 row in set (0.0009 sec)

Where:

• JSON_PRETTY displays the information in an easily readable format.

• ML_SCHEMA_user1.MODEL_CATALOG refers to the model catalog name. Replace user1 with
your own user name.

• model_handle refers to the session variable for the trained model, @census_model. Learn
more about Model Handles.

For training_drift_metric, the output generates a mean value of 0.3535 and a variance value
of 0.0597, which indicates acceptable data drift.

Analyzing Data Drift Detection with ML_PREDICT_TABLE

To analyze data drift detection with a table of predictions:

1. If not done already, train the model to use. See Analyzing Data Drift in Model Metadata.

2. Load the trained model. Update @census_model with your own session variable for the trained
model.

mysql> CALL sys.ML_MODEL_LOAD(@census_model, NULL);

3. Run ML_PREDICT_TABLE to generate a table of predictions.

mysql> CALL sys.ML_PREDICT_TABLE(table_name, model_handle, output_table_name), [options]);

Replace table_name, model_handle, output_table_name),and options with your own
values. For example:

mysql> CALL sys.ML_PREDICT_TABLE('census_data.`census_test`', @census_model, 'census_data.`census_test_predictions`', 
                                  JSON_OBJECT('additional_details', true));

Where:

• census_data.census_test is the fully qualified name of the test dataset table
(database_name.table_name).

• @census_model is the session variable that contains the model handle. See Work with Model
Handles.

• census_data.census_test_predictions is the output table where predictions are stored.

• JSON_OBJECT includes the additional_details option set to true, so ml_results
includes values for metric and attribution_percent.

4. Since a metric value over 1.0 indicates data drift, query rows in the output table that only have a
metric value over 1.0.

mysql> SELECT ml_results FROM table_name WHERE JSON_EXTRACT(ml_results, '$.drift.metric') > 1.0;

Replace table_name with your own value. For example:

mysql> SELECT ml_results FROM census_test_predictions WHERE JSON_EXTRACT(ml_results, '$.drift.metric') > 1.0;
+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| ml_results                                                                                                                                                                                                   |
+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| {"predictions": {"revenue": "<=50K"}, "probabilities": {"<=50K": 0.67, ">50K": 0.33}, "drift": {"metric": 2.46, "attribution_percent": {"relationship": 22.07, "education-num": 19.92, "education": 12.36}}} |
| {"predictions": {"revenue": "<=50K"}, "probabilities": {"<=50K": 0.9, ">50K": 0.1}, "drift": {"metric": 1.32, "attribution_percent": {"age": 31.25, "relationship": 17.36, "capital-gain": 17.03}}}          |
| {"predictions": {"revenue": "<=50K"}, "probabilities": {"<=50K": 0.99, ">50K": 0.01}, "drift": {"metric": 1.1, "attribution_percent": {"capital-gain": 30.94, "relationship": 17.8, "workclass": 17.49}}}    |
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| {"predictions": {"revenue": "<=50K"}, "probabilities": {"<=50K": 0.78, ">50K": 0.22}, "drift": {"metric": 2.42, "attribution_percent": {"hours-per-week": 29.37, "age": 28.52, "capital-gain": 23.85}}}      |
| {"predictions": {"revenue": "<=50K"}, "probabilities": {"<=50K": 0.97, ">50K": 0.03}, "drift": {"metric": 1.09, "attribution_percent": {"education": 22.18, "relationship": 16.57, "capital-gain": 13.57}}}  |
| {"predictions": {"revenue": ">50K"}, "probabilities": {"<=50K": 0.32, ">50K": 0.68}, "drift": {"metric": 3.18, "attribution_percent": {"relationship": 26.41, "education-num": 12.8, "capital-gain": 8.16}}} |
| {"predictions": {"revenue": "<=50K"}, "probabilities": {"<=50K": 0.96, ">50K": 0.04}, "drift": {"metric": 1.11, "attribution_percent": {"marital-status": 23.34, "race": 16.02, "education": 12.83}}}        |
| {"predictions": {"revenue": "<=50K"}, "probabilities": {"<=50K": 0.89, ">50K": 0.11}, "drift": {"metric": 1.4, "attribution_percent": {"age": 27.26, "race": 18.98, "relationship": 15.49}}}                 |
| {"predictions": {"revenue": "<=50K"}, "probabilities": {"<=50K": 0.91, ">50K": 0.09}, "drift": {"metric": 1.99, "attribution_percent": {"race": 23.89, "capital-gain": 21.38, "education": 16.22}}}          |
| {"predictions": {"revenue": "<=50K"}, "probabilities": {"<=50K": 0.78, ">50K": 0.22}, "drift": {"metric": 2.33, "attribution_percent": {"capital-gain": 31.64, "hours-per-week": 15.49, "education": 7.94}}} |
| {"predictions": {"revenue": "<=50K"}, "probabilities": {"<=50K": 0.89, ">50K": 0.11}, "drift": {"metric": 1.38, "attribution_percent": {"sex": 23.55, "workclass": 23.55, "education-num": 15.71}}}          |
| {"predictions": {"revenue": "<=50K"}, "probabilities": {"<=50K": 0.62, ">50K": 0.38}, "drift": {"metric": 4.33, "attribution_percent": {"fnlwgt": 21.08, "relationship": 14.24, "workclass": 5.27}}}         |
+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
12 rows in set (0.0014 sec)

The output displays the rows with high metric values (> 1.0), indicating data drift.

Analyzing Data Drift Detection with ML_PREDICT_ROW

To analyze data drift detection with one or more rows of predictions:

1. If not done already, train the model to use. See Analyzing Data Drift in Model Metadata.

2. Load the trained model. Update @census_model with your own session variable for the trained
model.

mysql> CALL sys.ML_MODEL_LOAD(@census_model, NULL);

3. Run ML_PREDICT_ROW to generate predictions for a defined number of rows.

mysql> SELECT sys.ML_PREDICT_ROW(JSON_OBJECT("output_col_name", schema.`input_col_name`, 
                                              "output_col_name", schema.`input_col_name`, ...), 
                                              model_handle, options) FROM input_table_name LIMIT N;

The following example generates predictions for three rows of the table. The output is similar to the
previous example.

mysql> SELECT sys.ML_PREDICT_ROW(JSON_OBJECT(
 "age", census_test.`age`,
 "workclass", census_test.`workclass`,
 "fnlwgt", census_test.`fnlwgt`,
 "education", census_test.`education`,
 "education-num", census_test.`education-num`,
 "marital-status", census_test.`marital-status`,
 "occupation", census_test.`occupation`,
 "relationship", census_test.`relationship`,
 "race", census_test.`race`,
 "sex", census_test.`sex`,
 "capital-gain", census_test.`capital-gain`,
 "capital-loss", census_test.`capital-loss`,
 "hours-per-week", census_test.`hours-per-week`,
 "native-country", census_test.`native-country`),
 @census_model, JSON_OBJECT('additional_details', TRUE))FROM census_data.census_test LIMIT 3;
+--------------------------------------------------+
| sys.ML_PREDICT_ROW(JSON_OBJECT(
"age", census_test.`age`,
"workclass", census_test.`workclass`,
"fnlwgt", census_test.`fnlwgt`,
"education", census_test.`education`,
"education-num", census_test.`education-num`,
"ma                                               |
+-------------------------------------------------+
|{                                                |
|    "age": 37,                                   |
|    "sex": "Male",                               |
|    "race": "White",                             |
|    "fnlwgt": 99146,                             |
|    "education": "Bachelors",                    |
|    "workclass": "Private",                      |
|    "Prediction": "<=50K",                       |
|    "ml_results": {                              |
|        "drift": {                               |
|            "metric": 0,                         |
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|            "attribution_percent": {             |
|                "age": 0,                        |
|                "fnlwgt": 46.67,                 |
|                "capital-gain": 0}},             |
|        "predictions": {                         |
|            "revenue": "<=50K"},                 |
|        "probabilities": {                       |
|            ">50K": 0.42,                        |
|            "<=50K": 0.58}},                     |
|    "occupation": "Exec-managerial",             |
|    "capital-gain": 0,                           |
|    "capital-loss": 1977,                        |
|    "relationship": "Husband",                   |
|    "education-num": 13,                         |
|    "hours-per-week": 50,                        |
|    "marital-status": "Married-civ-spouse",      |
|    "native-country": "United-States"}           |
|{                                                |
|    "age": 34,                                   |
|    "sex": "Male",                               |
|    "race": "White",                             |
|    "fnlwgt": 27409,                             |
|    "education": "9th",                          |
|    "workclass": "Private",                      |
|    "Prediction": "<=50K",                       |
|    "ml_results": {                              |
|        "drift": {                               |
|            "metric": 0.1,                       |
|            "attribution_percent": {             |
|                "fnlwgt": 25,                    |
|                "education": 33.31,              |
|                "workclass": 16.22}},            |
|        "predictions": {                         |
|            "revenue": "<=50K"},                 |
|        "probabilities": {                       |
|            ">50K": 0.24,                        |
|            "<=50K": 0.76}},                     |
|    "occupation": "Craft-repair",                |
|    "capital-gain": 0,                           |
|    "capital-loss": 0,                           |
|    "relationship": "Husband",                   |
|    "education-num": 5,                          |
|    "hours-per-week": 50,                        |
|    "marital-status": "Married-civ-spouse",      |
|    "native-country": "United-States"}           |
|{                                                |
|    "age": 30,                                   |
|    "sex": "Female",                             |
|    "race": "White",                             |
|    "fnlwgt": 299507,                            |
|    "education": "Assoc-acdm",                   |
|    "workclass": "Private",                      |
|    "Prediction": "<=50K",                       |
|    "ml_results": {                              |
|        "drift": {                               |
|            "metric": 0.26,                      |
|            "attribution_percent": {             |
|                "relationship": 21.36,           |
|                "education-num": 28.33,          |
|                "hours-per-week": 33.21}},       |
|        "predictions": {                         |
|            "revenue": "<=50K"},                 |
|        "probabilities": {                       |
|            ">50K": 0.01,                        |
|            "<=50K": 0.99}},                     |
|    "occupation": "Other-service",               |
|    "capital-gain": 0,                           |
|    "capital-loss": 0,                           |
|    "relationship": "Unmarried",                 |
|    "education-num": 12,                         |
|    "hours-per-week": 40,                        |
|    "marital-status": "Separated",               |
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|    "native-country": "United-States"}           |
+-------------------------------------------------+
10 rows in set (6.8109 sec)

Where:

• The first JSON_OBJECT has output column names and key-value pairs of the columns in the
trained table.

• @census_model is the session variable that contains the model handle. Learn more about
Model Handles.

• The second JSON_OBJECT includes the additional_details option set to true, so
ml_results includes values for metric and attribution_percent.

• census_data.census_test is the fully qualified name of the test dataset table
(database_name.table_name).

• The LIMIT of 3 means that the output includes a maximum of three rows from the trained table.

The output allows you to review data drift values for the selected rows.

What's Next

• Review Machine Learning Use Cases to create machine learning models with sample datasets.

4.9 Monitoring the Status of AutoML
You can monitor the status of AutoML by querying the rapid_ml_status variable or by querying the
ML_STATUS column of the performance_schema.rpd_nodes table.

Query the rapid_ml_status Variable

The rapid_ml_status variable provides the status of AutoML. Possible values are ON and OFF.

• ON: AutoML is up and running.

• OFF: AutoML is down.

The following example queries the rapid_ml_status status variable directly.

mysql> SHOW GLOBAL STATUS LIKE 'rapid_ml_status';
+-----------------+-------+
| Variable_name   | Value |
+-----------------+-------+
| rapid_ml_status | ON    |
+-----------------+-------+

The following example queries the rapid_ml_status status through the
performance_schema.global_status table.

mysql> SELECT VARIABLE_NAME, VARIABLE_VALUE
       FROM performance_schema.global_status
       WHERE VARIABLE_NAME LIKE 'rapid_ml_status';
+-----------------+----------------+
| VARIABLE_NAME   | VARIABLE_VALUE |
+-----------------+----------------+
| rapid_ml_status | ON             |
+-----------------+----------------+

Query the ML_STATUS Column

The MySQL AI plugin writes AutoML status information to the ML_STATUS column of the
performance_schema.rpd_nodes table after each AutoML query. Possible values include:
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• UNAVAIL_MLSTATE: AutoML is not available.

• AVAIL_MLSTATE: AutoML is available.

• DOWN_MLSTATE: AutoML is down.

ML_STATUS is reported for each node.

You can query the ML_STATUS column of the performance_schema.rpd_nodes table.

To following example retrieves ID, STATUS, and ML_STATUS for each node from the
performance_schema.rpd_nodes table:

mysql> SELECT ID, STATUS, ML_STATUS FROM performance_schema.rpd_nodes; 
+----+---------------+---------------+
| ID | STATUS        | ML_STATUS     |
+----+---------------+---------------+
|  0 | AVAIL_RNSTATE | AVAIL_MLSTATE |
+----+---------------+---------------+

Resolve a Down Status for AutoML

If rapid_ml_status is OFF or ML_STATUS reports DOWN_MLSTATE for any node, you can restart the
MySQL server and Cluster. Be aware that restarting interrupts any analytics queries that are running.

See the following to learn more:

• Managing MySQL Server with systemd

• A Quick Guide to Using the MySQL Yum Repository

What's Next

• Review Machine Learning Use Cases to create machine learning models with sample datasets.

4.10 AutoML Limitations
The following limitations apply to AutoML.

Text Handling Limitations

• AutoML only supports datasets in the English language.

• MySQL HeatWave AutoML does not support TEXT columns with NULL values.

• MySQL HeatWave AutoML does not support target columns (a column with ground truth values) with
a TEXT data type.

• MySQL HeatWave AutoML does not support recommendation tasks with columns that have a TEXT
data type.

• For the forecasting task, endogenous_variables cannot be in TEXT.

Account Name Limitations

• The ML_TRAIN routine does not support MySQL user names that contain a period. For example,
a user named 'joe.smith'@'%' cannot run the ML_TRAIN routine. The model catalog schema
created by the ML_TRAIN procedure incorporates the user name in the schema name (for example.,
ML_SCHEMA_joesmith), and a period is not a permitted schema name character.

Memory Limitations

• The table used to train a model cannot exceed 10 GB, 100 million rows, or 1017 columns.
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Routine and Query Limitations

Routine and Query Limitations

• ML_EXPLAIN_TABLE and ML_PREDICT_TABLE are compute intensive processes, with
ML_EXPLAIN_TABLE being the most compute intensive. Limiting operations to batches of 10 to 100
rows by splitting large tables into smaller tables is recommended. Use batch processing with the
batch_size option. See the following to learn more:

• ML_PREDICT_TABLE

• ML_EXPLAIN_TABLE

• ML_EXPLAIN, ML_EXPLAIN_ROW, and ML_EXPLAIN_TABLE routines limit explanations to the 100
most relevant features.

• The ML_PREDICT_TABLE ml_results column contains the prediction results and the data. This
combination must be less than 65,532 characters.

• Concurrent MySQL AI analytics and AutoML queries are not supported. An AutoML query must
wait for MySQL AI analytics queries to finish, and vice versa. MySQL AI analytics queries are given
priority over AutoML queries.

• The ML_PREDICT_ROW, ML_MODEL_IMPORT, and ML_MODEL_EXPORT routines are not supported
with the TwoTower recommendation model.

Other Limitations

• If you delete a recommendation model trained with the TwoTower model from the model catalog,
you need to run a Delete Model API to manage the generated embedding tables.
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This chapter describes the GenAI feature of MySQL AI.

5.1 About GenAI
The GenAI feature of MySQL AI lets you communicate with unstructured data using natural-language
queries. It uses a familiar SQL interface which makes it is easy to use for content generation,
summarization, and retrieval-augmented generation (RAG).

Using GenAI, you can perform natural-language searches in a single step using either in-database
or external large language models (LLMs). All the elements that are necessary to use GenAI with
proprietary data are integrated and optimized to work with each other.

Note

This chapter assumes that you are familiar with MySQL.

Key Features

• In-Database LLM

GenAI uses a large language model (LLM) to enable natural language communication in multiple
languages. You can use the capabilities of the LLM to search data as well as generate or summarize
content. However, as this LLM is trained on public data, the responses to your queries are generated
based on information available in the public data sources. To produce more relevant results, you can
use the LLM capabilities with the vector store functionality to perform a vector search with RAG.

• In-Database Vector Store

GenAI provides an inbuilt vector store that you can use to store enterprise-specific proprietary
content available in your local filesystem, and perform vector-based similarity search across
documents. Queries that you ask are automatically encoded with the same embedding model as the
vector store without requiring any additional inputs or running a separate service. The vector store
also provides valuable context for the LLM for RAG use cases.
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• Retrieval-Augmented Generation

GenAI retrieves content from the vector store and provides it as context to the LLM along with the
query. This process of generating an augmented prompt is called retrieval-augmented generation
(RAG), and it helps GenAI produce more contextually relevant, personalized, and accurate results.

• GenAI Chat

This is an inbuilt chatbot that extends the LLMs capabilities as well as vector store and RAG
functionalities of GenAI to let you ask multiple follow-up questions about a topic in a single session.
You can use GenAI Chat to build customized chat applications by specifying custom settings,
prompt, chat history length, and number of citations to be used for generating a response.

GenAI Chat also provides a graphical interface integrated with the Visual Studio Code plugin for
MySQL Shell.

• Accelerated Vector-Based Query Processing

GenAI lets you run queries on tables that contain vector embeddings at an accelerated pace by
offloading them to the MySQL AI Engine (AI engine). For more information, see About Accelerated
Processing of Queries on Vector-Based Tables.

Benefits

GenAI lets you integrate generative AI into the applications, providing an integrated end-to-end pipeline
including vector store generation, vector search with RAG, and an inbuilt chatbot.

Some key benefits of using the GenAI feature of MySQL AI are:

• The natural-language processing (NLP) capabilities of the LLMs let non-technical users have human-
like conversations with the system in natural language.

• The in-database integration of LLM and embedding generation eliminates the need for using external
solutions, and ensures the security of the proprietary content.

• The in-database integration of LLMs, vector store, and embedding generation simplifies complexity
of applications that use these features.

What's Next

• Review the Supported Languages, Embedding Models, and LLMs.

5.2 Additional GenAI Requirements
To use the GenAI feature of MySQL AI, you must place the files that you want to ingest into the vector
store in the local directory that you specified in the Vector Store tab in the MySQL AI installer. By
default, this directory is set to /var/lib/mysql-files.

Vector store can ingest files in the following formats: PPTX, PPT, TXT, HTML, DOCX, DOC, and PDF.
Each file can be up to 100 MB in size.

5.3 Required Privileges for using GenAI
To perform the following GenAI functions, ask the admin user to grant you the required privileges:

• To create a vector store, the following privileges are required:

• The FILE privilege:

mysql> GRANT FILE ON *.* TO 'user_name'@'%';

• The PROCESS privilege:
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mysql> GRANT PROCESS ON *.* TO 'user_name'@'%';                                

• The SELECT privilege on the performance_schema schema:

mysql> GRANT SELECT ON 'performance_schema'.* TO 'user_name'@'%';                                                     

• The EXECUTE privilege on the sys schema:

mysql> GRANT EXECUTE ON 'sys'.* TO 'user_name'@'%';              

• To run the batch queries using ML_GENERATE_TABLE, ML_RAG_TABLE, and ML_EMBED_TABLE, the
following privileges are required:

• SELECT and ALTER privileges on the input table:

mysql> GRANT SELECT, ALTER ON input_schema.input_table TO 'user_name'@'%';

• SELECT, INSERT, CREATE, DROP, ALTER, UPDATE privileges on the schema where the output
table is created.

mysql> GRANT SELECT, INSERT, CREATE, DROP, ALTER, UPDATE ON output_schema.* TO 'user_name'@'%';

For more information, see Privileges Provided by MySQL and Default MySQL Privileges.

5.4 Supported LLM, Embedding Model, and Languages
This topic provides the list of languages that GenAI feature of MySQL AI supports and the embedding
models as well as large language models (LLMs) that are available.

This topic contains the following sections:

• Viewing Available Models

• In-Database LLM

• In-Database Embedding Model

• Languages

• What's Next

Viewing Available Models

You can view the list of available models as shown below:

mysql> SELECT * FROM sys.ML_SUPPORTED_LLMS;

The output is similar to the following:

+----------+-------------------------+-------------------+---------------------+---------------+
| provider | model_id                | availability_date | capabilities        | default_model |
+----------+-------------------------+-------------------+---------------------+---------------+
| HeatWave | llama3.2-3b-instruct-v1 | 2025-05-20        | ["GENERATION"]      |             1 |
| HeatWave | all_minilm_l12_v2       | 2024-07-01        | ["TEXT_EMBEDDINGS"] |             0 |
| HeatWave | multilingual-e5-small   | 2024-07-24        | ["TEXT_EMBEDDINGS"] |             1 |
+----------+-------------------------+-------------------+---------------------+---------------+

In-Database LLM

The following in-database LLM is available: llama3.2-3b-instruct-v1

In-Database Embedding Model

The following in-database embedding model is available:
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• all_minilm_l12_v2

• multilingual-e5-small

Languages

GenAI feature of MySQL AI supports natural-language communication, ingesting documents, as well
as generating text-based content in multiple languages. The quality of the generated text outputs
depends on the training and ability of the LLM to work with the language.

Following is a list of languages supported by the GenAI:

• English (en)

• French (fr)

• German (de)

• Hindi (hi)

• Italian (it)

• Portuguese (pt)

• Spanish (es)

• Thai (th)

Note

To set the value of the language parameter in GenAI routines that support this
parameter, do not use the language name to specify the language. Use the two-
letter ISO 639-1 code for the language instead. For example, to use French,
use the ISO 639-1 code for French, which is fr.

What's Next

• Learn how to perform the following tasks:

• Generate Text-Based Content

• Set Up a Vector Store

• Generate Vector Embeddings

• Perform a Vector Search

• Start a Conversational Chat

5.5 Generating Text-Based Content
For generating text-based content and summarizing text, use the the ML_GENERATE routine uses the
LLM to generate the text output.

The sections in this topic describe how to generate and summarize text-based content using the GenAI
feature of MySQL AI.

5.5.1 Generating New Content

The following sections in this topic describe how to generate new text-based content using the GenAI
feature of MySQL AI:

• Before You Begin
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• Generating Content

• Running Batch Queries

• What's Next

Before You Begin

• Review the  GenAI requirements and privileges.

• For Running Batch Queries, add the natural-language queries to a column in a new or existing table.

Generating Content

To generate text-based content using GenAI, perform the following steps:

1. To define your natural-language query, set the @query variable:

mysql> SET @query="QueryInNaturalLanguage";

Replace QueryInNaturalLanguage with a natural-language query of your choice. For example:

mysql> SET @query="Write an article on Artificial intelligence in 200 words.";

2. To generate text-based content, pass the query to the LLM using the ML_GENERATE routine with
the task parameter set to generation:

mysql> SELECT sys.ML_GENERATE(@query,
JSON_OBJECT("task", "generation", "model_id", "LLM", "language", "Language"));

Replace the following:

• LLM: LLM to use, which must be the same as the one you loaded in the previous step.

• Language: the two-letter ISO 639-1 code for the language you want to use. Default language
is en, which is English. To view the list of supported languages, see Languages.

For example:

mysql> SELECT sys.ML_GENERATE(@query,
JSON_OBJECT("task", "generation", "model_id", "llama3.2-3b-instruct-v1", "language", "en"));

Text-based content that is generated by the LLM in response to your query is printed as output. It
looks similar to the text output shown below:

| {"text": "\n**The Rise of Artificial Intelligence: Revolutionizing the Future**\n\nArtificial
intelligence (AI) has been a topic of interest for decades, and its impact is becoming increasingly
evident in various aspects of our lives. AI refers to the development of computer systems that can
perform tasks that typically require human intelligence, such as learning, problem-solving, and
decision-making.\n\nThe latest advancements in machine learning algorithms and natural language
processing have enabled AI systems to become more sophisticated and efficient. Applications of AI
are expanding rapidly across industries, including healthcare, finance, transportation, and education.
For instance, AI-powered chatbots are being used to provide customer support, while self-driving
cars are being tested on roads worldwide.\n\nThe benefits of AI are numerous. It can automate
repetitive tasks, improve accuracy, and enhance productivity. Moreover, AI has the potential to solve
complex problems that were previously unsolvable by humans. However, there are also concerns about job
displacement and bias in AI decision-making.\n\nAs AI continues to evolve, it is essential to address
these challenges and ensure that its benefits are shared equitably among all stakeholders. With
continued investment in research and development, AI has the potential to transform industries and
improve lives worldwide. The future of work will be shaped by AI, and it's crucial to prepare for
this", "license": "Your use of this Llama model is subject to the Llama 3.2 Community License Agreement
available at https://docs.oracle.com/cd/E17952_01/heatwave-9.4-license-com-en/"} |

Running Batch Queries

To run multiple generation queries in parallel, use the ML_GENERATE_TABLE routine. This method is
faster than running the ML_GENERATE routine multiple times.
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To run the steps in this section, you can create a new database demo_db and table input_table:

mysql> CREATE DATABASE demo_db;
mysql> USE demo_db;
mysql> CREATE TABLE input_table (id INT AUTO_INCREMENT, Input TEXT, primary key (id));
mysql> INSERT INTO input_table (Input) VALUES('Describe what is MySQL in 50 words.');
mysql> INSERT INTO input_table (Input) VALUES('Describe Artificial Intelligence in 50 words.');
mysql> INSERT INTO input_table (Input) VALUES('Describe Machine Learning in 50 words.');

To run batch queries using ML_GENERATE_TABLE, perform the following steps:

1. In the ML_GENERATE_TABLE routine, specify the table columns containing the input queries and for
storing the generated text-based responses:

mysql> CALL sys.ML_GENERATE_TABLE("InputDBName.InputTableName.InputColumn", "OutputDBName.OutputTableName.OutputColumn",
JSON_OBJECT("task", "generation", "model_id", "LLM", "language", "Language"));

Replace the following:

• InputDBName: the name of the database that contains the table column where your input
queries are stored.

• InputTableName: the name of the table that contains the column where your input queries are
stored.

• InputColumn: the name of the column that contains input queries.

• OutputDBName: the name of the database that contains the table where you want to store the
generated outputs. This can be the same as the input database.

• OutputTableName: the name of the table where you want to create a new column to store the
generated outputs. This can be the same as the input table. If the specified table doesn't exist, a
new table is created.

• OutputColumn: the name for the new column where you want to store the output generated for
the input queries.

• LLM: LLM to use, which must be the same as the LLM you loaded in the previous step.

• Language: the two-letter ISO 639-1 code for the language you want to use. Default language
is en, which is English. To view the list of supported languages, see Languages.

For example:

mysql> CALL sys.ML_GENERATE_TABLE("demo_db.input_table.Input", "demo_db.output_table.Output",
JSON_OBJECT("task", "generation", "model_id", "llama3.2-3b-instruct-v1", "language", "en"));

2. View the contents of the output table:

mysql> SELECT * FROM output_table\G
*************************** 1. row ***************************
    id: 1
Output: {"text": "\nMySQL is an open-source relational database
management system (RDBMS) that allows users to store, manage,
and retrieve data in a structured format. It supports various
features like SQL queries, indexing, transactions, and security,
making it a popular choice for web applications, enterprise
software, and mobile apps development.", 
"error": null,
"license": "Your use of this Llama model is subject to the
Llama 3.2 Community License Agreement available at
https://docs.oracle.com/cd/E17952_01/heatwave-9.4-license-com-en/"}
*************************** 2. row ***************************
    id: 2
Output: {"text": "\nArtificial Intelligence (AI) refers to the
development of computer systems that can perform tasks that
typically require human intelligence, such as learning,
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problem-solving, and decision-making. AI uses algorithms and
data to mimic human thought processes, enabling machines to
analyze, reason, and interact with humans in increasingly
sophisticated ways.", 
"error": null}
*************************** 3. row ***************************
    id: 3
Output: {"text": "\nMachine Learning (ML) is a subset of
Artificial Intelligence that enables systems to automatically
improve performance on a task without being explicitly programmed. 
It involves training algorithms on data, allowing them to learn
patterns and make predictions or decisions based on new, unseen
data, without human intervention.", 
"error": null}

The output table generated using the ML_GENERATE_TABLE routine contains an additional details
for error reporting. In case the routine fails to generate output for specific rows, details of the errors
encountered and default values used are added for the row in the output column.

If you created a new database for testing the steps in this section, delete the database to free up
space:

mysql> DROP DATABASE demo_db;

To learn more about the available routine options, see ML_GENERATE_TABLE Syntax.

What's Next

Learn how to  Summarize Existing Content.

5.5.2 Summarizing Content

The following sections in this topic describe how to summarize exiting content using the GenAI:

• Before You Begin

• Summarizing Content

• Running Batch Queries

• What's Next

Before You Begin

• Review the GenAI requirements and privileges.

• For Running Batch Queries, add the natural-language queries to a column in a new or existing table.

Summarizing Content

To summarize text, perform the following steps:

1. To define the text that you want to summarize, set the @text variable:

mysql> SET @text="TextToSummarize";

Replace TextToSummarize with the text that you want to summarize.

For example:

mysql> SET @text="Artificial Intelligence (AI) is a rapidly growing field that has the potential
to revolutionize how we live and work. AI refers to the development of computer systems
that can perform tasks that typically require human intelligence, such as visual perception,
speech recognition, decision-making, and language translation. One of the most significant
developments in AI in recent years has been the rise of machine learning, a subset of AI that
allows computers to learn from data without being explicitly programmed. Machine learning
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algorithms can analyze vast amounts of data and identify patterns, making them increasingly
accurate at predicting outcomes and making decisions. AI is already being used in a variety
of industries, including healthcare, finance, and transportation. In healthcare, AI is being
used to develop personalized treatment plans for patients based on their medical history and
genetic makeup. In finance, AI is being used to detect fraud and make investment
recommendations In transportation, AI is being used to develop self-driving cars and improve
traffic flow. Despite the many benefits of AI, there are also concerns about its potential impact
on society. Some worry that AI could lead to job displacement, as machines become more capable
of performing tasks traditionally done by humans. Others worry that AI could be used for
malicious ";

2. To generate the text summary, pass the original text to the LLM using the ML_GENERATE routine,
with the task parameter set to summarization:

mysql> SELECT sys.ML_GENERATE(@query,
JSON_OBJECT("task", "summarization", "model_id", "LLM", "language", "Language"));

Replace the following:

• LLM: LLM to use, which must be the same as the one you loaded in the previous step. To view
the lists of available LLMs, see In-Database LLM.

• Language: the two-letter ISO 639-1 code for the language you want to use. Default language
is en, which is English. To view the list of supported languages, see Languages.

For example:

mysql> SELECT sys.ML_GENERATE(@text,
JSON_OBJECT("task", "summarization", "model_id", "llama3.2-3b-instruct-v1", "language", "en"));

A text summary generated by the LLM in response to your query is printed as output. It looks
similar to the text output shown below:

| {"text": "\nHere is a concise summary of the text:\n\nArtificial Intelligence (AI) has the potential
to revolutionize various aspects of life and work. AI systems can perform tasks that typically require
human intelligence, such as visual perception, speech recognition, and decision-making. Machine learning,
a subset of AI, enables computers to learn from data without explicit programming. AI is already being
applied in healthcare, finance, and transportation, with applications including personalized treatment
plans, fraud detection, and self-driving cars. However, there are concerns about the impact of AI on
society, including job displacement and potential misuse for malicious purposes.", "license": "Your
use of this Llama model is subject to the Llama 3.2 Community License Agreement available at
https://docs.oracle.com/cd/E17952_01/heatwave-9.4-license-com-en/"} |

Running Batch Queries

To run multiple summarization queries in parallel, use the ML_GENERATE_TABLE routine. This
method is faster than running the ML_GENERATE routine multiple times.

To run the steps in this section, create a new database demo_db and table input_table:

mysql> CREATE DATABASE demo_db;
mysql> USE demo_db;
mysql> CREATE TABLE input_table (id INT AUTO_INCREMENT, Input TEXT, primary key (id));
mysql> INSERT INTO input_table (Input) VALUES(
  CONCAT(
  'MySQL is a widely used open-source relational database management system or RDBMS that ',
  'is based on the SQL standard. It is designed to be highly scalable, reliable, and secure, ',
  'making it an ideal choice for businesses of all sizes. MySQL uses a client-server ',
  'architecture, where the server stores and manages the data, while clients connect to the ',
  'server to access and manipulate the data. The MySQL server can be installed on a variety ',
  'of operating systems, including Linux, Windows, and macOS. One of the key features of MySQL ',
  'is its support for stored procedures, which allow developers to create reusable blocks of ',
  'code that can be executed multiple times. This makes it easier to manage complex database ',
  'operations and reduces the amount of code that needs to be written. MySQL also supports ',
  'a wide range of data types, including integers, floating-point numbers, dates, and strings. ',
  'It also has built-in support for encryption, which helps to protect sensitive data from ',
  'unauthorized access. Another important feature of MySQL is its ability to handle large ',
  'amounts of data. It can scale horizontally by adding more servers to the cluster, or ',
  'vertically by upgrading the hardware.'
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  )
);
mysql> INSERT INTO input_table (Input) VALUES(
  CONCAT(  
  'Artificial Intelligence or AI refers to the simulation of human intelligence in machines ',
  'that are programmed to think and act like humans. The goal of AI is to create systems that ',
  'can function intelligently and independently, exhibiting traits associated with human ',
  'intelligence such as reasoning, problem-solving, perception, learning, and understanding ', 
  'language. There are two main types of AI: narrow or weak AI, and general or strong AI. ',
  'Narrow AI is designed for a specific task and is limited in its abilities, while general ',
  'AI has the capability to understand or learn any intellectual task that a human being can. ',
  'AI technologies include machine learning, which allows systems to improve their performance ',
  'based on data, and deep learning, which involves the use of neural networks to model complex ',
  'patterns. Other AI techniques include natural language processing, robotics, and expert systems. ',
  'AI has numerous applications across various industries, including healthcare, finance, ', 
  'transportation, and education. It has the potential to revolutionize the way we live and work ',
  'by automating tasks, improving efficiency, and enabling new innovations. However, there are ',
  'also concerns about the impact of AI on employment, privacy, and safety.'
  )
);
mysql> INSERT INTO input_table (Input) VALUES(
   CONCAT(
  'Machine learning is a subset of artificial intelligence that involves the development of ',
  'algorithms and statistical models that enable systems to improve their performance on a ',
  'specific task over time by learning from data. At its core, machine learning is about ',
  'using data to train machines to make predictions or decisions without being explicitly ',
  'programmed to do so. There are many different types of machine learning, including ',
  'supervised learning, unsupervised learning, and reinforcement learning. In supervised learning, ',
  'the algorithm is trained on labeled data, meaning that the input data has been categorized or ',
  'classified by a human. The goal of supervised learning is to enable the machine to make predictions ',
  'based on this training data. Unsupervised learning, on the other hand, involves training the ', 
  'algorithm on unlabeled data. In this case, the algorithm must identify patterns and relationships ',
  'in the data on its own. This type of learning is often used for tasks such as clustering or anomaly ',
  'detection. Reinforcement learning involves an agent interacting with an environment and learning by ',
  'trial and error. The agent receives feedback in the form of rewards or punishments, which it uses ',
  'to improve its behavior over time. This type of learning is often used in game playing or robotics.'
  )
);

To run batch queries using ML_GENERATE_TABLE, perform the following steps:

1. In the ML_GENERATE_TABLE routine, specify the table columns containing the input queries and for
storing the generated text summaries:

mysql> CALL sys.ML_GENERATE_TABLE("InputDBName.InputTableName.InputColumn", "OutputDBName.OutputTableName.OutputColumn",
JSON_OBJECT("task", "summarization", "model_id", "LLM", "language", "Language"));

Replace the following:

• InputDBName: the name of the database that contains the table column where your input
queries are stored.

• InputTableName: the name of the table that contains the column where your input queries are
stored.

• InputColumn: the name of the column that contains input queries.

• OutputDBName: the name of the database that contains the table where you want to store the
generated outputs. This can be the same as the input database.

• OutputTableName: the name of the table where you want to create a new column to store the
generated outputs. This can be the same as the input table. If the specified table doesn't exist, a
new table is created.

• OutputColumn: the name for the new column where you want to store the output generated for
the input queries.

• LLM: LLM to use, which must be the same as the LLM you loaded in the previous step.
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• Language: the two-letter ISO 639-1 code for the language you want to use. Default language
is en, which is English. To view the list of supported languages, see Languages.

For example:

mysql> CALL sys.ML_GENERATE_TABLE("demo_db.input_table.Input", "demo_db.output_table.Output",
JSON_OBJECT("task", "summarization", "model_id", "llama3.2-3b-instruct-v1", "language", "en"));

2. View the contents of the output table:

mysql> SELECT * FROM output_table\G
*************************** 1. row ***************************
    id: 1
Output: {"text": "\nHere is a concise summary:\n\nMySQL is an
open-source relational database management system (RDBMS) that
is widely used for its scalability, reliability, and security.
It uses a client-server architecture and supports various
operating systems. Key features include stored procedures for
efficient code reuse, support for multiple data types,
encryption for data protection, and the ability to handle large
amounts of data through horizontal or vertical scaling.", 
"error": null, 
"license": "Your use of this Llama model is subject to the
Llama 3.2 Community License Agreement available at
https://docs.oracle.com/cd/E17952_01/heatwave-9.4-license-com-en/"}
*************************** 2. row ***************************
    id: 2
Output: {"text": "\nHere is a concise summary:\n\nArtificial
Intelligence (AI) refers to the simulation of human
intelligence in machines. There are two types: narrow AI
(limited to specific tasks) and general AI (capable of
understanding any intellectual task). AI technologies include
machine learning, deep learning, natural language processing,
robotics, and expert systems. With numerous applications
across industries, AI has the potential to revolutionize
various aspects of life, but also raises concerns about
employment, privacy, and safety.", 
"error": null}
*************************** 3. row ***************************
    id: 3
Output: {"text": "\nHere is a concise summary:\n\nMachine
learning is a subset of AI that enables systems to improve
their performance over time by learning from data. It involves
developing algorithms and statistical models to make predictions
or decisions without explicit programming. There are three main
types: supervised, unsupervised, and reinforcement learning.
Supervised learning uses labeled data for prediction, while
unsupervised learning identifies patterns in unlabeled data.
Reinforcement learning involves an agent interacting with its
environment, receiving feedback to improve behavior through trial
and error.", 
"error": null}

The output table generated using the ML_GENERATE_TABLE routine contains an additional details
for error reporting. In case the routine fails to generate output for specific rows, details of the errors
encountered and default values used are added for the row in the output column.

If you created a new database for testing the steps in this section, delete the database to free up
space:

mysql> DROP DATABASE demo_db;

To learn more about the available routine options, see ML_GENERATE_TABLE Syntax.

What's Next

• Learn how to Set Up a Vector Store.

• Learn how to Generate Vector Embeddings.
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5.6 Setting Up a Vector Store
Using the inbuilt vector store and retrieval-augmented generation (RAG), you can load and query
unstructured documents stored in the local filesystem using natural language within the MySQL AI
ecosystem.

The sections in this topic describe how to set up an inbuilt vector store.

5.6.1 About Vector Store and Vector Processing

This section describes the Vector Store functionality available with GenAI.

About Vector Store

A vector store is a relational database that lets you load unstructured data. It automatically parses
unstructured data formats, which include PDF (including scanned PDF files), PPT, TXT, HTML,
and DOC file formats, from the local filesystem. Then, it segments the parsed data, creates vector
embeddings, and stores them for GenAI to perform semantic searches.

A vector store uses the native VECTOR data type to store unstructured data in a multidimensional
space. Each point in a vector store represents the vector embedding of the corresponding data.
Semantically similar data is placed closer in the vector space.

The large language models (LLMs) available in GenAI are trained on publicly available data. Therefore,
the responses generated by these LLMs are based on publicly available information. To generate
content relevant to your proprietary data, you must store your proprietary enterprise data, which
has been converted to vector embeddings, in a vector store. This enables the in-database retrieval-
augmented generation (RAG) system to perform a semantic search in the proprietary data stored in the
vector stores to find appropriate content, which is then fed to the LLM to help it generate more accurate
and relevant responses.

About Vector Processing

To create vector embeddings, GenAI uses in-database embedding models, which are encoders that
converts sequence of words and sentences from documents into numerical representations. These
numerical values are stored as vector embeddings in the vector store and capture the semantics of the
data and relationships to other data.

A vector distance function measures the similarity between vectors by calculating the mathematical
distance between two multidimensional vectors.

GenAI encodes your queries using the same embedding model that is used to encode the ingested
data to create the vector store. It then uses the right distance function to find relevant content with
similar semantic meaning from the vector store to perform RAG.

About Accelerated Processing of Queries on Vector-Based Tables

GenAI lets you run queries on tables that contain vector embeddings at an accelerated pace by
offloading them to the MySQL AI Engine (AI engine). However, for query offload to be successful,
the vector table must be offloaded to AI engine using the SECONDARY_LOAD clause with the ALTER
TABLE statement, and the query (SELECT statement) must use at least one vector function in the
SELECT LIST, FILTER, or ORDER BY expression. Additionally, only simple SELECT statements
with LIMIT_OFFSET, FILTER and ORDER BY operations are offloaded to AI engine for accelerated
processing.

To offload the vector table to AI engine, use the following statement:

mysql> ALTER TABLE tbl_name SECONDARY_LOAD;

Following are examples of queries that are offloaded to AI engine for accelerated processing:

• mysql> SELECT name, STRING_TO_VECTOR(embedding) FROM demo_table;
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• mysql> SELECT name, STRING_TO_VECTOR(embedding) FROM demo_table limit 10;

• mysql> SELECT name, STRING_TO_VECTOR(embedding) FROM demo_table;

• mysql> SELECT name, ROUND(DISTANCE(@query_embedding_16, STRING_TO_VECTOR(embedding)), 4) 
AS distance FROM demo_table ORDER BY distance DESC;

Other SQL operations such as JOIN, UNION, INTERSECT, GROUP BY, AGGREGATE, WINDOW, and
so on, are not supported for accelerated processing. Following are examples of queries that are not
offloaded to AI engine for accelerated processing:

• Query containing no vector distance function:

mysql> SELECT COMPRESS(embedding) FROM demo_table1;

• Query containing GROUP BY or aggregates:

mysql> SELECT name, COUNT(DISTINCT embedding) FROM demo_table1 GROUP BY name;

• Query containing JOIN operation:

mysql> SELECT ROUND(DISTANCE(demo_table1.embedding, UNHEX("8679613f")), 4) from demo_table1 JOIN demo_table2 on 
demo_table1.name = demo_table2.name;

About Optical Character Recognition

Optical Character Recognition (OCR) lets you extract and encode text from images stored in
unstructured documents. The text extracted from images is converted into vector embeddings and
stored in a vector store the same way regular text in unstructured documents is encoded and stored in
a vector store.

OCR is enabled by default when you ingest files into a vector store.

However, when OCR is enabled, the loading process slows down because GenAI scans all images
available in the files and pages of scanned documents that you are ingesting into the vector store. If
OCR is not required for the documents that you are ingesting, you can disable OCR to speed up the
loading process.

GenAI supports OCR in the following unstructured data formats: PDF (including scanned PDF files),
DOC, DOCX, PPT, and PPTX. However, GenAI doesn't support OCR in TXT and HTML files. Images
stored in TXT and HTML files are ignored while ingesting the files.

OCR in GenAI also has the following limitations:

• GenAI might not be able to extract and process the text from images with 100% accuracy. However,
if there are minor character recognition errors, the overall meaning of the text is still preserved.

• In some cases, text-like figures in images might incorrectly be treated as regular text.

• GenAI doesn't support OCR for Scalable Vector Graphic (SVG) images in PDF files.

What's Next

Learn how to Ingest Files into a Vector Store.

5.6.2 Ingesting Files into a Vector Store

This section describes how to generate vector embeddings for files or folders, and load the
embeddings into a vector store table.

The following sections in this topic describe how to ingest files into a vector store:

• Before You Begin

• Ingesting Files into a Vector Store
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• Cleaning Up

• What's Next

Before You Begin

• Review the  GenAI requirements and privileges.

• Place the files that you want to load in the vector store directory that you specified in the MySQL AI
installer.

Vector store can ingest files in the following formats: PDF, PPTX, PPT, TXT, HTML, DOCX, and
DOC.

To test the steps in this topic, create a folder demo-directory inside the vector store director
/var/lib/mysql-files for storing files that you want to ingest into the vector store. Then,
download and place the MySQL HeatWave user guide PDF in the demo-directory folder.

• To create and store vector store tables using the steps described in this topic, you can create a new
database demo_db:

CREATE DATABASE demo_db;

Ingesting Files into a Vector Store

The VECTOR_STORE_LOAD routine creates and loads vector embeddings asynchronously into the
vector store. You can ingest the source files into the vector store using the following methods:

Perform the following steps:

1. To create the vector store table, use a new or existing database:

mysql> USE DBName;

Replace DBName with the database name.

For example:

mysql> USE demo_db;

2. Optionally, to specify a name for the vector store table and language to use, set the @options
variable:

mysql> SET @options = JSON_OBJECT("table_name", "VectorStoreTableName", "language", "Language");

Replace the following:

• VectorStoreTableName: the name you want for the vector store table.

• Language: the two-letter ISO 639-1 code for the language you want to use. Default language
is en, which is English. To view the list of supported languages, see Languages.

For example:

mysql> SET @options = JSON_OBJECT("table_name", "demo_embeddings", "language", "en");

To learn more about the available routine options, see VECTOR_STORE_LOAD Syntax.

3. To import a file from the local filesystem and create a vector store table, use the
VECTOR_STORE_LOAD routine:

mysql> CALL sys.VECTOR_STORE_LOAD("file://FilePath", @options);

Replace FilePath with the unique reference index (URI) of the files or directories to be ingested
into the vector store. A URI is considered to be one of the following:
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• A glob pattern, if it contains at least one unescaped ? or * character.

• A prefix, if it is not a pattern and ends with a / character like a folder path.

• A file path, if it is neither a glob pattern nor a prefix.

Note

Ensure that the documents to be loaded are present in the directory that you
specified for loading documents into the vector store during installation or
using the secure_file_priv server system variable.

For example:

mysql> CALL sys.VECTOR_STORE_LOAD("file:///var/lib/mysql-files/demo-directory/heatwave-en.pdf", @options); 

This loads the specified file or files from the specified directory into the vector store table.

This creates an asynchronous task that runs in background and loads the specified file or files from
the specified directory into the vector store table. The output of the VECTOR_STORE_LOAD routine
contains the following:

• An ID of the task that is created.

• A task query that you can use to track the progress of asynchronous task.

• A task query that you can use to view the asynchronous task logs.

4. After the task is completed, verify that embeddings are loaded in the vector store table:

mysql> SELECT COUNT(*) FROM VectorStoreTableName;

For example:

mysql> SELECT COUNT(*) FROM demo_embeddings;

If you see a numerical value in the output, your embeddings are successfully loaded in the vector
store table.

5. To view the details of the vector store table, use the following statement:

mysql> DESCRIBE demo_embeddings;
+-------------------+---------------+------+-----+---------+-------+
| Field             | Type          | Null | Key | Default | Extra |
+-------------------+---------------+------+-----+---------+-------+
| document_name     | varchar(1024) | NO   |     | NULL    |       |
| metadata          | json          | NO   |     | NULL    |       |
| document_id       | int unsigned  | NO   | PRI | NULL    |       |
| segment_number    | int unsigned  | NO   | PRI | NULL    |       |
| segment           | varchar(1024) | NO   |     | NULL    |       |
| segment_embedding | vector(384)   | NO   |     | NULL    |       |
+-------------------+---------------+------+-----+---------+-------+

Cleaning Up

If you created a new database for testing the steps in this topic, delete the database to free up space:

mysql> DROP DATABASE demo_db;

What's Next

• Learn how to Update the Vector Store.

• Learn how to Perform Vector Search With Retrieval-Augmented Generation.
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• Learn how to Start a Conversational Chat.

5.6.3 Updating a Vector Store

To keep up with the changes and updates in the documents in your local directory, you must update
the vector embeddings loaded in the vector store table on a regular basis. This ensures that the
responses generated by GenAI are up-to-date.

The following sections in this topic describe how to update a vector store:

• Before You Begin

• Appending a New File to the Vector Store

• Removing a File from the Vector Store

• Deleting and Recreating the Vector Store

• Cleaning Up

• What's Next

Before You Begin

Complete the steps to set up a vector store.

The examples in this topic use the vector store table demo_embeddings created in Ingesting Files into
a Vector Store.

Appending a New File to the Vector Store

The VECTOR_STORE_LOAD routine ingests all files that are available in the specified location and
appends vector embeddings to the specified vector store table. If you run the VECTOR_STORE_LOAD
routine on a table that contains previously ingested files, any file ingested again into the table is
assigned a new document_id while retaining the same document_name. To remove a previously
ingested file from the vector store table, you need to manually delete the associated rows, as described
in Removing a File from the Vector Store.

To test the steps in this topic, download and place the MySQL AI user guide PDF in the folder demo-
directory that you created earlier for storing files to ingest into the vector store.

To append a new file to the vector store table, perform the following steps:

1. Check that the vector embeddings are loaded in the vector store table you want to update:

mysql> SELECT COUNT(*) FROM VectorStoreTableName;

Replace VectorStoreTableName with the name of the vector store table you want to update.

For example:

mysql> SELECT COUNT(*) FROM demo_embeddings;

If you see a numerical value in the output, the embeddings are loaded in the table.

2. To specify vector store table to update, set the @options variable:

mysql> SET @options = JSON_OBJECT("schema_name", "DBName", "table_name", "VectorStoreTableName", "language", "Language");

Replace the following:

• DBName: the name of database that contains the vector store table.

• VectorStoreTableName: the vector store table name.
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For example:

mysql> SET @options = JSON_OBJECT("schema_name", "demo_db", "table_name", "demo_embeddings");

3. To append a new file from the local filesystem, use the VECTOR_STORE_LOAD routine:

mysql> CALL sys.VECTOR_STORE_LOAD("file://FilePath", @options);

Replace FilePath with the file path. For example:

mysql> CALL sys.VECTOR_STORE_LOAD("file:///var/lib/mysql-files/demo-directory/mysql-ai-9.4-en.pdf", @options);

This call appends vector embeddings for the MySQL AI user guide to the demo_embeddings
vector store table.

4. Verify that the new vector embeddings are appended to the vector store table:

mysql> SELECT COUNT(*) FROM VectorStoreTableName;

For example:

mysql> SELECT COUNT(*) FROM demo_embeddings;

If you see a numerical value in the output which is different than the one you saw in step 1, then the
vector store table is successfully updated.

Removing a File from the Vector Store

To remove a previously ingested file from the vector store table, use the DELETE statement:

 mysql> DELETE FROM VectorStoreTableName WHERE document_name = "Filename" and document_id = DocumentID; 

For example:

 mysql> DELETE FROM demo_embeddings WHERE document_name = "/var/lib/mysql-files/demo-directory/heatwave-en.pdf" AND document_id = 0; 

This removes the vector embeddings and all rows and columns associated with MySQL HeatWave
user guide from the demo_embeddings vector store table.

Deleting and Recreating the Vector Store

To delete and recreate the vector store table and vector embeddings, perform the following steps:

1. Delete the vector store table:

mysql> DROP TABLE VectorStoreTableName;

2. To create new embeddings for the updated documents, repeat the steps to set up a vector store.

Cleaning Up

If you created a new database for testing the steps in this topic, delete the database to free up space:

mysql> DROP DATABASE demo_db;

What's Next

• Learn how to Generate Vector Embeddings.

• Learn how to Perform Vector Search With Retrieval-Augmented Generation.

5.7 Generating Vector Embeddings
This section describes how to generate vector embeddings using the ML_EMBED_ROW routine. Vector
embeddings are a numerical representation of the text that capture the semantics of the data and
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relationships to other data. You can pass the text string in the routine manually or use data from tables
in your database. To embed multiple rows of text stored in a table in a single run, you can even run a
batch query.

Using this method, you can create vector embedding tables that you can use to perform similarity
searches using the DISTANCE() function, without setting up a vector store.

Note

This method does not support embedding unstructured data. To learn how to
create vector embeddings for unstructured data, see Section 5.6, “Setting Up a
Vector Store”.

This topic contains the following sections:

• Before You Begin

• Generating a Vector Embedding for Specified Text

• Running Batch Queries

• What's Next

Before You Begin

• Review the  GenAI requirements and privileges.

• For Running Batch Queries, add the text that you want to embed to a column in a new or existing
table.

Generating a Vector Embedding for Specified Text

To generate a vector embedding, perform the following steps:

1. To define the text that you want to encode, set the @text variable:

mysql> SET @text="TextToEncode";

Replace TextToEncode with the text that you want to encode. For example:

mysql> SET @text="MySQL AI lets you communicate with unstructured data using natural-language queries."; 

2. To generate a vector embedding for the specified text, pass the text to the embedding model using
the ML_EMBED_ROW routine:

mysql> SELECT sys.ML_EMBED_ROW(@text, JSON_OBJECT("model_id", "EmbeddingModel")) into @text_embedding;

Replace EmbeddingModel with ID of the embedding model you want to use. To view the lists of
available embedding models, see In-Database Embedding Model.

For example:

mysql> SELECT sys.ML_EMBED_ROW(@text, JSON_OBJECT("model_id", "all_minilm_l12_v2")) into @text_embedding;

The routine returns a VECTOR, and this command stores it in the @text_embedding variable.

3. Print the vector embedding stored in the @text_embedding variable:

mysql> SELECT @text_embedding;

The output, which is a binary representation of the specified text, looks similar to the following:

  -----------------------------------------------------+
  | 0x6F57203BBF1592BD11FA93BD9FEC9E3C0A43CABDF1102EBD8B0B07BCF7D39ABCDCBEC7BC21ACACBC416B3FBD7A8E13
  3CA954B23D3F428DBD9A9E863DAE3085BC7E68313DA6E9BE3C3BA2F3BC3B2DC4BDFBCDD4BD0F2B593D00D95CBC2B40E53B
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  8ED4AEBDD9B5D8BC695F703C3534463C7D7ADABB0EA7613CA4B40C3D40DD4A3D88E05E3DBDD8C43CF6B0863CE450ACBC3D
  34B63C978D99BC1EC638BD929CC7BD734E98BC7B9BAB3C2F3A47BD147E203D88EABD3DCF18483D42D820BD25C59BBC9E4D
  ADBC7DEA643D071F02BDA843AFBC865E323C775BBC3D87B8163D69DDF13DEAE5083DDA23353D2BDBCFBD0858ADBD9520E5
  3C1070343DE8237D3D6FA7083D1591653D90C8CE3DE4BE34BC6681B73D5D3CA5BCC2EBC8BD9102A3BCBE0A8EBD1C0189BB
  29CF0F3E2AA2ACBD075834BCC85AE33C224F9CBD261FDF3C7B34033CB8FCB4BCE247663DA3C2963B598089BBAFA5EABCC5
  59FBBD38E72BBDD8705D3BBAB3693DEDD26C3DB9CDDC3C2E51333D1A58E13CC67C6B3CA068D63C3DD35B3DBF72BCBCCBCC
  16BD8276513DE1B4913DDF7B05BDE9C836BB1BFD02BDE3AFA5BDBFAA68BD7780EB3CA39EB13C9D8CCCBD6260BCBC4A339A
  BCFE3A90BDD00B333D0622AABC2C5D47BDF406FF3D5F142FBC598B083DB2BA12BC3650D3BB07223A3D3E33F53CB3F032BC
  5CC6303C9CC1B63DC56AF33B424554BD3DC116BDAD93303C2E4A0D3D5FF4903D414E7C3CA315943DF69C35BD96C8473DF4
  62D2BA24CF2BBCA4E340BCAD53C6BCC8FF333DDC55643D447FF1B9742F35BD14B2423BEC5E0EBCC76E02BC230A2C3D663A
  6EBD27E1F0BCE2FF523BC5AB9ABD6921B13CE5EBA93D03A30D3E752FEC3C04151ABB14B3CEBD578BA93D31853DBC0D9685
  BD961AC2BC006CE0BDA835723CDE2AA1BC39728C3D484790BD980186BD4017C1BCB61F44BBC0FB8E3BC29AC93C6E36003E
  9A0F7F3D0D23213ACE228C3CEE0ED5BDD77491BD0E5834BD6680CEBD512A173D41BCB5BB4ABDA63B7F5C1B3D2C2C013EA5
  A4913D5CACFEBC611BC8BDCA3520BC1CB2D83CFFD3DEBB11998ABC4181713D5EAC003D01CFBB3C9333113C960849BD0F05
  99BD7A5BC13D2472403D9AF94ABD0B1C983C9429D53B654A413D079AECBD1F991C3D0B4BCB3C47AFCCBD1709743B291C57
  3DF35C13BD17C317BD519292BD85FBB23DAB319D3C1AEDA73B82C7BD3C8B5183BD7DE38DBC6A2AD1BB83D1F03A01718DBD
  236543BB6D22803CFF69133CB485188906BFC1BC75FAF03B24FA01BEFBE83B3D04F3353C4D67933D7ADECBBCAC79AF3B58
  AB8F3DE3C3B6BB050580BD92720C3DB0199BBC8A4790BC0D09B4BCAEC2503C1B2FAEBC91C598BA5070223D0CB8C13D2B6E
  D7BD5301553D326ECBBD6A8825BD75DE6E3C38380EBCFCE7F6BC9329FB3B1F7B3ABDF51B403D59EE873C33078CBD8CB7A5
  3B8D26A63DE2633CBDDBBFCEBB7778A63C566E84BD4D66973CF29CDFBC6271523D800EDABC57CD03BD81DB563D2B0BC4BC
  EB1238BC724B16BEACC15D3D8B8247BC24AAF63B29E7823C6300F13B4703193D8BD9D6BDBDD5313D68A73DBC36DBC5B981
  0B36BDF940953A4B3EB2BCF9984E3C3EDD3DBD8709C83CCDE4ACBB4B8387BD48CA133D7187893C38FB9FBBF1F50CBDB650
  06BDA3397B3DADB05CBD22961A3D405E16BBDF5E45BAEFC8A53D71FCD0BCAEE96F3D74DA0B3D724DE03C72A1653D53AF18
  BCCD4A623D92033ABAF3E6AE3D68757C3D086475BDB6F9B03C1836CE3CA9D8FF3C8BFFC53B8A9A10BC96308EBD20FB7C3C
  68610FBD5881310B1B52163D5ED0353C432D26BC31320FBC4E1ECCBCAA24A7BD480988BCE0CCB43D667CEFBB865600BD56
  E9FA3960BA59BDE7C40F3DF01782BD0981E0394E1C5FBC8EA1443923ED633D9F00483D662A87BD2A568D3DC376503D996B
  4BBD1F59D7BC92216E3D448BE2BC728DEFBC8F75013BF481753D9B71213C26541ABD2B93B43B54ED8EBCF0F7423D54C42D
  3D5DAB58BC1D488CBC35CE69BDC6298CBD60F3E5BC5F7B003EB703003EF76FD1BCAF25A6BD8857F43C232B743CA96406BC
  CA3536BD12BEC83D90FB0BBDB6D09EBDAE549BBD3C4CE83B8AD9733D5B890DBD57D1643B6F84E2BC73CC8DBD782B3D3D67F
  CD7BCE1071CBDA1C0313DB99B993CFA29A3BD |

Running Batch Queries

To encode multiple rows of text strings stored in a table column, in parallel, use the ML_EMBED_TABLE
routine. This method is faster than running the ML_EMBED_ROW routine multiple times.

To run the steps in this section, create a new database demo_db and table input_table:

mysql> CREATE DATABASE demo_db;
mysql> USE demo_db;
mysql> CREATE TABLE input_table (id INT AUTO_INCREMENT, Input TEXT, primary key (id));
mysql> INSERT INTO input_table (Input) VALUES('Describe what is MySQL in 50 words.');
mysql> INSERT INTO input_table (Input) VALUES('Describe Artificial Intelligence in 50 words.');
mysql> INSERT INTO input_table (Input) VALUES('Describe Machine Learning in 50 words.');

To run batch queries using ML_EMBED_TABLE, perform the following steps:

1. Call the ML_EMBED_TABLE routine:

mysql> CALL sys.ML_EMBED_TABLE("InputDBName.InputTableName.InputColumn", "OutputDBName.OutputTableName.OutputColumn",
JSON_OBJECT("model_id", "EmbeddingModel"));

Replace the following:

• InputDBName: the name of the database that contains the table column where your input
queries are stored.

• InputTableName: the name of the table that contains the column where your input queries are
stored.

• InputColumn: the name of the column that contains input queries.

• OutputDBName: the name of the database that contains the table where you want to store the
generated outputs. This can be the same as the input database.

• OutputTableName: the name of the table where you want to create a new column to store the
generated outputs. This can be the same as the input table. If the specified table doesn't exist, a
new table is created.
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• OutputColumn: the name for the new column where you want to store the output generated for
the input queries.

• EmbeddingModel: ID of the embedding model to use. To view the lists of available embedding
models, see In-Database Embedding Model.

For example:

mysql> CALL sys.ML_EMBED_TABLE("demo_db.input_table.Input", "demo_db.output_table.Output",
JSON_OBJECT("model_id", "all_minilm_l12_v2"));

2. View the contents of the output table:

mysql> SELECT * FROM output_table;

| id | Output| details         |

|  1 |  | {"error": null} |
|  2 |  | {"error": null} |
|  3 | | {"error": null} |


The output table generated using the ML_EMBED_TABLE routine contains an additional column
called details for error reporting. In case the routine fails to generate output for specific rows,
details of the errors encountered and default values used are added for the rows in this additional
column.

mysql> DESCRIBE output_table;
+---------+--------------+------+-----+---------+-------+
| Field   | Type         | Null | Key | Default | Extra |
+---------+--------------+------+-----+---------+-------+
| id      | int          | NO   | PRI | 0       |       |
| Output  | vector(2048) | YES  |     | NULL    |       |
| details | json         | YES  |     | NULL    |       |
+---------+--------------+------+-----+---------+-------+

To specify the embedding model used to generate the vector embeddings, the routine adds the
following comment for the VECTOR column in the output table:

'GENAI_OPTIONS=EMBED_MODEL_ID=EmbeddingModelID'

For example:

mysql> SHOW CREATE TABLE output_table;
+--------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| Table        | Create Table                                                                                                                                                                                                                                                              |
+--------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| output_table | CREATE TABLE `output_table` (
  `id` int NOT NULL DEFAULT '0',
  `Output` vector(2048) DEFAULT NULL COMMENT 'GENAI_OPTIONS=EMBED_MODEL_ID=minilm',
  `details` json DEFAULT NULL,
  PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci |
+--------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+

This lets you use tables generated using this routine for context retrieval while running retrieval-
augmented generation (RAG) as well as GenAI Chat.

3. If you created a new database for testing the steps in this section, delete the database to free up
space:

mysql> DROP DATABASE demo_db;

What's Next

• Learn how to Use Your Own Embeddings With Retrieval-Augmented Generation.
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• Learn how to Start a Conversational Chat.

5.8 Performing Vector Search with Retrieval-Augmented
Generation

When you enter a query, GenAI performs a vector-based similarity search to retrieve similar content
from the vector store and embedding tables available in the DB system. It provides the retrieved
content as context to the LLM. This helps the LLM to produce more relevant and accurate results for
your query. This process is called as retrieval-augmented generation (RAG).

You can use both inbuilt vector store tables and tables containing your own vector embeddings for
running RAG with vector search.

The topics in this section describe how to perform RAG with vector search.

5.8.1 Running Retrieval-Augmented Generation

The ML_RAG routine runs retrieval-augmented generation which aims to generate more accurate
responses for your queries.

For context retrieval, the ML_RAG routine uses the name of the embedding model used to embed
the input query to find relevant vector store tables that contain vector embeddings from the same
embedding model.

This topic contains the following sections:

• Before You Begin

• Retrieving Context and Generating Relevant Content

• Retrieving Context Without Generating Content

• Running Batch Queries

• Cleaning Up

• What's Next

Before You Begin

• Complete the steps to set up a vector store.

The examples in this topic use the vector store table demo_embeddings created in the section
Ingesting Files into a Vector Store.

• For Running Batch Queries, add the natural-language queries to a column in a new or existing table.

Retrieving Context and Generating Relevant Content

To enter a natural-language query, retrieve the context, and generate results using RAG, perform the
following steps:

1. Optionally, to speed up vector processing, load the vector store table in MySQL AI Engine (AI
engine):

mysql> ALTER TABLE VectorStoreTableName SECONDARY_LOAD;

Replace VectorStoreTableName with the name of the vector store table.

For example:

mysql> ALTER TABLE demo_db.demo_embeddings SECONDARY_LOAD;
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This accelerates processing of vector distance function used to compare vector embeddings and
generate relevant output later in this section.

2. To specify the table for retrieving the vector embeddings to use as context, set the @options
variable:

mysql> SET @options = JSON_OBJECT(
  "vector_store", JSON_ARRAY("DBName.VectorStoreTableName"), 
  "model_options", JSON_OBJECT("language", "Language")
);

Replace the following:

• DBName: the name of the database that contains the vector store table.

• VectorStoreTableName: the name of the vector store table.

• Language: the two-letter ISO 639-1 code for the language you want to use. Default language
is en, which is English. To view the list of supported languages, see Languages.

For example:

mysql> SET @options = JSON_OBJECT(
  "vector_store", JSON_ARRAY("demo_db.demo_embeddings"), 
  "model_options", JSON_OBJECT("language", "en")
);

To learn more about the available routine options, see ML_RAG Syntax.

3. To define your natural-language query, set the @query variable:

mysql> SET @query="AddYourQuery";

Replace AddYourQuery with your natural-language query.

For example:

mysql> SET @query="What is AutoML?";

4. To retrieve the augmented prompt, use the ML_RAG routine:

mysql> CALL sys.ML_RAG(@query,@output,@options);

5. Print the output:

mysql> SELECT JSON_PRETTY(@output);

Text-based content that is generated by the LLM in response to your query is printed as output. The
output generated by RAG is comprised of two parts:

• The text section contains the text-based content generated by the LLM as a response for your
query.

• The citations section shows the segments and documents it referred to as context.

The output looks similar to the following:

| {
  "text": "\nAutoML (Automated Machine Learning) is a machine learning technique that automates the process of selecting, training, and evaluating machine learning models. It involves using algorithms and techniques to automatically identify the best model for a given dataset and optimize its hyperparameters without requiring manual intervention from data analysts or ML practitioners.",
  "license": "Your use of this Llama model is subject to the Llama 3.2 Community License Agreement available at https://docs.oracle.com/cd/E17952_01/heatwave-9.4-license-com-en/",
  "citations": [
    {
      "segment": "\"segment\": \"| {   \\\"text\\\": \\\" AutoML is a subfield of machine learning that focuses on automating the process of building and training machine learning models. It involves using algorithms and techniques to automatically select features, tune hyperparameters, and evaluate model performance, without requiring human intervention. AutoML can be used for a variety of tasks, including classification, regression, clustering, and anomaly detection.\\\",   \\\"citations\\\": [     {\",",
      "distance": 0.0732,
      "document_name": "/var/lib/mysql-files/demo-directory/heatwave-en.pdf"
    },
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    {
      "segment": "}, {   \"segment\": \"| {   \\\"text\\\": \\\" AutoML is a subfield of machine learning that focuses on automating the process of building and training machine learning models. It involves using algorithms and techniques to automatically select features, tune hyperparameters, and evaluate model performance, without requiring human intervention. AutoML can be used for a variety of tasks, including classification, regression, clustering, and anomaly detection.\\\",   \\\"citations\\\": [     {\",   \"distance\":",
      "distance": 0.0738,
      "document_name": "/var/lib/mysql-files/demo-directory/heatwave-en.pdf"
    },
    {
      "segment": "| {   \"text\": \" AutoML is a machine learning technique that automates the process of selecting, training, and evaluating machine learning models. It involves using algorithms and techniques to automatically identify the best model for a given dataset and optimize its hyperparameters without requiring manual intervention from data analysts or ML practitioners. AutoML can be used in various stages of the machine learning pipeline, including data preprocessing, feature engineering, model",
      "distance": 0.0743,
      "document_name": "/var/lib/mysql-files/demo-directory/heatwave-en.pdf"
    }
  ],
  "vector_store": [
    "`demo_db`.`demo_embeddings`"
  ],
  "retrieval_info": {
    "method": "n_citations",
    "threshold": 0.0743
  }
} |

To continue running more queries in the same session, repeat steps 3 to 5.

Retrieving Context Without Generating Content

To enter a natural-language query and retrieve the context without generating a response for the query,
perform the following steps:

1. Optionally, to speed up vector processing, load the vector store table in the AI engine:

mysql> ALTER TABLE VectorStoreTableName SECONDARY_LOAD;

Replace VectorStoreTableName with the name of the vector store table.

For example:

mysql> ALTER TABLE demo_db.demo_embeddings SECONDARY_LOAD;

This accelerates processing of vector distance function used to compare vector embeddings and
generate relevant output later in this section.

2. To specify the table for retrieving the vector embeddings and to skip generation of content, set the
@options variable:

mysql> SET @options = JSON_OBJECT("vector_store", JSON_ARRAY("DBName.VectorStoreTableName"), "skip_generate", true);

Replace the following:

• DBName: the name of the database that contains the vector store table.

• VectorStoreTableName: the name of the vector store table.

For example:

mysql> SET @options = JSON_OBJECT("vector_store", JSON_ARRAY("demo_db.demo_embeddings"), "skip_generate", true);

3. To define your natural-language query, set the @query variable:

mysql> SET @query="AddYourQuery";

Replace AddYourQuery with your natural-language query.

For example:

mysql> SET @query="What is AutoML?";

4. To retrieve the augmented prompt, use the ML_RAG routine:
182

https://dev.mysql.com/doc/refman/9.6/en/vector-functions.html#function_distance


Running Retrieval-Augmented Generation

mysql> CALL sys.ML_RAG(@query,@output,@options);

5. Print the output:

mysql> SELECT JSON_PRETTY(@output);

Semantically similar text segments used as content for the query and the name of the documents
they were found in are printed as output.

The output looks similar to the following:

| {
  "citations": [
    {
      "segment": "\"segment\": \"| {   \\\"text\\\": \\\" AutoML is a subfield of machine learning that focuses on automating the process of building and training machine learning models. It involves using algorithms and techniques to automatically select features, tune hyperparameters, and evaluate model performance, without requiring human intervention. AutoML can be used for a variety of tasks, including classification, regression, clustering, and anomaly detection.\\\",   \\\"citations\\\": [     {\",",
      "distance": 0.0732,
      "document_name": "/var/lib/mysql-files/demo-directory/heatwave-en.pdf"
    },
    {
      "segment": "}, {   \"segment\": \"| {   \\\"text\\\": \\\" AutoML is a subfield of machine learning that focuses on automating the process of building and training machine learning models. It involves using algorithms and techniques to automatically select features, tune hyperparameters, and evaluate model performance, without requiring human intervention. AutoML can be used for a variety of tasks, including classification, regression, clustering, and anomaly detection.\\\",   \\\"citations\\\": [     {\",   \"distance\":",
      "distance": 0.0738,
      "document_name": "/var/lib/mysql-files/demo-directory/heatwave-en.pdf"
    },
    {
      "segment": "| {   \"text\": \" AutoML is a machine learning technique that automates the process of selecting, training, and evaluating machine learning models. It involves using algorithms and techniques to automatically identify the best model for a given dataset and optimize its hyperparameters without requiring manual intervention from data analysts or ML practitioners. AutoML can be used in various stages of the machine learning pipeline, including data preprocessing, feature engineering, model",
      "distance": 0.0743,
      "document_name": "/var/lib/mysql-files/demo-directory/heatwave-en.pdf"
    }
  ],
  "vector_store": [
    "`demo_db`.`demo_embeddings`"
  ],
  "retrieval_info": {
    "method": "n_citations",
    "threshold": 0.0743
  }
} |

To continue running more queries in the same session, repeat steps 3 to 5.

Running Batch Queries

To run multiple RAG queries in parallel, use the ML_RAG_TABLE routine. This method is faster than
running the ML_RAG routine multiple times.

To run the steps in this section, create a new table input_table in demo_db:

mysql> USE demo_db;
mysql> CREATE TABLE input_table (id INT AUTO_INCREMENT, Input TEXT, primary key (id));
mysql> INSERT INTO input_table (Input) VALUES('What is HeatWave Lakehouse?');
mysql> INSERT INTO input_table (Input) VALUES('What is HeatWave AutoML?');
mysql> INSERT INTO input_table (Input) VALUES('What is HeatWave GenAI?');

To run batch queries using ML_RAG_TABLE, perform the following steps:

1. To specify the table for retrieving the vector embeddings to use as context, set the @options
variable:

mysql> SET @options = JSON_OBJECT(
  "vector_store", JSON_ARRAY("DBName.VectorStoreTableName"), 
  "model_options", JSON_OBJECT("language", "Language")
);

Replace the following:

• DBName: the name of the database that contains the vector store table.

• VectorStoreTableName: the name of the vector store table.
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• Language: the two-letter ISO 639-1 code for the language you want to use. Default language
is en, which is English. To view the list of supported languages, see Languages.

For example:

mysql> SET @options = JSON_OBJECT(
  "vector_store", JSON_ARRAY("demo_db.demo_embeddings"), 
  "model_options", JSON_OBJECT("language", "en")
);

To learn more about the available routine options, see ML_RAG_TABLE Syntax.

2. In the ML_RAG_TABLE routine, specify the table columns containing the input queries and for
storing the generated outputs:

mysql> CALL sys.ML_RAG_TABLE("InputDBName.InputTableName.InputColumn", "OutputDBName.OutputTableName.OutputColumn", @options);

Replace the following:

• InputDBName: the name of the database that contains the table column where your input
queries are stored.

• InputTableName: the name of the table that contains the column where your input queries are
stored.

• InputColumn: the name of the column that contains input queries.

• OutputDBName: the name of the database that contains the table where you want to store the
generated outputs. This can be the same as the input database.

• OutputTableName: the name of the table where you want to create a new column to store the
generated outputs. This can be the same as the input table. If the specified table doesn't exist, a
new table is created.

• OutputColumn: the name for the new column where you want to store the output generated for
the input queries.

For example:

mysql> CALL sys.ML_RAG_TABLE("demo_db.input_table.Input", "demo_db.output_table.Output", @options);

3. View the contents of the output table:

mysql> SELECT * FROM output_table\G
*************************** 1. row ***************************
    id: 1
Output: {"text": "\nHeatWave Lakehouse is a feature of the HeatWave platform that enables query processing on data resident in Object Storage.", 
"error": null, 
"license": "Your use of this Llama model is subject to the Llama 3.2 Community License Agreement available at https://docs.oracle.com/cd/E17952_01/heatwave-9.4-license-com-en/", 
"citations": [
    {
        "segment": "-----------------------+ |  1 | {\"text\": \" HeatWave Lakehouse is a feature of the HeatWave platform that enables query processing on data resident in Object Storage. The source data is read from Object Storage, transformed to the memory optimized HeatWave format, stored in the HeatWave persistence storage layer in Object Storage, and then loaded to HeatWave cluster memory for in-memory query processing. It allows you to create tables which point to external data sources and provides rapid and lakehouse as the primary",
        "distance": 0.0828,
        "document_name": "/var/lib/mysql-files/demo-directory/heatwave-en.pdf"
    },
    {
        "segment": "------------------------------------------+ |  1 | {\"text\": \" HeatWave Lakehouse is a feature of the HeatWave platform that enables query processing on data resident in Object Storage. The source data is read from Object Storage, transformed to the memory optimized HeatWave format, stored in the HeatWave persistence storage layer in Object Storage, and then loaded to HeatWave cluster memory for in-memory query processing. It allows you to create tables which point to external data sources and provides rapid and lakehouse as the primary",
        "distance": 0.0863,
        "document_name": "/var/lib/mysql-files/demo-directory/heatwave-en.pdf"
    },
    {
        "segment": "The Lakehouse feature of HeatWave enables query processing on data in Object Storage. HeatWave Lakehouse reads the source data from Object Storage, transforms it to the memory optimized HeatWave format, saves it in the HeatWave persistence storage layer in Object Storage, and then loads the data to HeatWave Cluster memory. While Lakehouse provides in-memory query processing on data in Object Storage, it does not load data into a DB System table.",
        "distance": 0.1028,
        "document_name": "/var/lib/mysql-files/demo-directory/heatwave-en.pdf"
    }
], 
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"vector_store": ["`demo_db`.`demo_embeddings`"], 
"retrieval_info": {"method": "n_citations", "threshold": 0.1028}}
*************************** 2. row ***************************
    id: 2
Output: {"text": "\nHeatWave AutoML is a feature of MySQL HeatWave that makes it easy to use machine learning, allowing users to create optimized machine learning models for predictions and explanations without having to leave the database.", 
"error": null, 
"citations": [
    {
        "segment": "|  HeatWave AutoML is a feature of MySQL HeatWave that makes it easy to use machine learning, whether you are a novice user or an experienced ML practitioner. It analyzes the characteristics of the data and creates an optimized machine learning model that can be used to generate predictions and explanations. The data and models never leave MySQL HeatWave, saving time and effort while keeping the data and models secure. HeatWave AutoML is optimized for HeatWave shapes and scaling, and all",
        "distance": 0.0561,
        "document_name": "/var/lib/mysql-files/demo-directory/heatwave-en.pdf"
    },
    {
        "segment": "HeatWave shapes and scaling, and all HeatWave AutoML makes it easy to use machine learning, whether you are a novice user or an experienced ML practitioner. You provide the data, and HeatWave AutoML analyzes the characteristics of the data and creates an optimized machine learning model that you can use to generate predictions and explanations. An ML model makes predictions by identifying patterns in your data and applying those patterns to unseen data. HeatWave AutoML explanations help you",
        "distance": 0.0573,
        "document_name": "/var/lib/mysql-files/demo-directory/heatwave-en.pdf"
    },
    {
        "segment": "HeatWave AutoML makes it easy to use machine learning, whether you are a novice user or an experienced ML practitioner. You provide the data, and HeatWave AutoML analyzes the characteristics of the data and creates an optimized machine learning model that you can use to generate predictions and explanations. An ML model makes predictions by identifying patterns in your data and applying those patterns to unseen data. HeatWave AutoML explanations help you understand how predictions are made,",
        "distance": 0.0598,
        "document_name": "/var/lib/mysql-files/demo-directory/heatwave-en.pdf"
    }
], 
"vector_store": ["`demo_db`.`demo_embeddings`"], 
"retrieval_info": {"method": "n_citations", "threshold": 0.0598}}
*************************** 3. row ***************************
    id: 3
Output: {"text": "\nHeatWave GenAI is a feature of HeatWave that enables natural language communication with unstructured data using large language models (LLMs) and provides an inbuilt vector store for enterprise-specific proprietary content, along with a chatbot called HeatWave Chat.", 
"error": null, 
"citations": [
    {
        "segment": "4.1 HeatWave GenAI Overview HeatWave GenAI is a feature of HeatWave that lets you communicate with unstructured data in HeatWave using natural-language queries. It uses a familiar SQL interface which makes it is easy to use for content generation, summarization, and retrieval-augmented generation (RAG).",
        "distance": 0.0521,
        "document_name": "/var/lib/mysql-files/demo-directory/heatwave-en.pdf"
    },
    {
        "segment": "Chapter 3, HeatWave AutoML. 1.4 HeatWave GenAI The HeatWave GenAI feature of HeatWave lets you communicate with unstructured data in HeatWave using natural language queries. It uses large language models (LLMs) to enable natural language communication and provides an inbuilt vector store that you can use to store enterprise-specific proprietary content to perform vector searches. HeatWave GenAI also includes HeatWave Chat which is a chatbot that extends the generative AI and vector search functionalities to let you ask multiple follow-up",
        "distance": 0.0735,
        "document_name": "/var/lib/mysql-files/demo-directory/heatwave-en.pdf"
    },
    {
        "segment": "HeatWave Chat also provides a graphical interface integrated with the Visual Studio Code plugin for MySQL Shell.\nBenefits\nHeatWave GenAI lets you integrate generative AI into the applications, providing an integrated end-to-end pipeline including vector store generation, vector search with RAG, and an inbuilt chatbot.\nSome key benefits of using HeatWave GenAI are described below:",
        "distance": 0.0781,
        "document_name": "/var/lib/mysql-files/demo-directory/heatwave-en.pdf"
    }
], 
"vector_store": ["`demo_db`.`demo_embeddings`"], 
"retrieval_info": {"method": "n_citations", "threshold": 0.0781}}

The output table generated using the ML_RAG_TABLE routine contains an additional details for
error reporting. In case the routine fails to generate output for specific rows, details of the errors
encountered and default values used are added for the rows in the output column.

Cleaning Up

If you created a new database for testing the steps in this topic, delete the database to free up space:

mysql> DROP DATABASE demo_db;

What's Next

• Learn how to Use Your Own Embeddings With Retrieval-Augmented Generation.

• Learn how to Start a Conversational Chat.
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5.8.2 Using Your Own Embeddings with Retrieval-Augmented Generation

GenAI lets you use tables containing your own vector embedding to run retrieval-augmented
generation (RAG) with vector search. The ML_RAG and ML_RAG_TABLE routines let you specify the
table column names to use as filters for finding relevant tables for context retrieval.

In addition to the specified column names, the ML_RAG and ML_RAG_TABLE routines use the name
of the embedding model used to embed the input query to find relevant embedding tables for context
retrieval.

Following sections in this topic describe how you can use your own embedding table for context
retrieval:

• Before You Begin

• Using Embeddings From an Embedding Model Available in GenAI

• Using Embeddings From an Embedding Model Not Available in GenAI

• Using Your Embedding Table With a Vector Store Table

• Running Batch Queries

• Cleaning Up

• What's Next

Before You Begin

• Review the  GenAI requirements and privileges.

• You can use a table that satisfies the following criteria:

• To qualify as a valid embedding table, the table must contain the following columns:

• A string column containing the text segments.

• A vector column containing the vector embeddings of the text segments.

• A comment on the vector column must specify the name of the embedding model used to generate
the vector embeddings.

Following is an example of a valid embedding table that can be used for context retrieval:

mysql> CREATE TABLE demo_table (id INT AUTO_INCREMENT,
demo_text TEXT,
string_embedding TEXT,
demo_embedding VECTOR (3) COMMENT 'GENAI_OPTIONS=EMBED_MODEL_ID=demo_embedding_model',
primary key (id));
mysql> INSERT INTO demo_table (demo_text, string_embedding)
VALUES('MySQL is an open-source RDBMS that is widely used for its scalability, reliability, and security.', '[0,1,0]');
mysql> INSERT INTO demo_table (demo_text, string_embedding)
VALUES('AI refers to the development of machines that can think and act like humans.', '[0,0,1]');
mysql> INSERT INTO demo_table (demo_text, string_embedding)
VALUES('ML is a subset of AI that uses algorithms and statistical models to improve performance on tasks by learning from data.', '[0,1,1]');
mysql> UPDATE demo_table SET demo_embedding=STRING_TO_VECTOR(string_embedding);
mysql> ALTER TABLE demo_table DROP COLUMN string_embedding;

To learn how to generate vector embeddings and embedding tables using GenAI, see Generating
Vector Embeddings.

• If you want to use an inbuilt vector store table along with your own embedding table, complete the
steps to set up the vector store.
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• For Running Batch Queries, add the natural-language queries to a column in a new or existing table.
To use the name of an embedding model that is not available in GenAI for running RAG, also add
the vector embeddings of the input queries to a column of the input table.

• To create and store the sample embedding tables required for running the steps in this topic, you can
create and use a new database demo_db:

mysql> CREATE DATABASE demo_db;
mysql> USE demo_db;

Using Embeddings From an Embedding Model Available in GenAI

To use an embedding table containing vector embeddings from an embedding model that is available
in GenAI, you can set the vector_store_columns parameter to specify the columns and column
names used by the ML_RAG routine to filter tables for context retrieval. However, since the inbuilt vector
store tables only use the predefined column names, if you change a column name used for filtering
tables, the inbuilt vector store tables are filtered out and not used for context retrieval.

The example in this section uses the following table:

mysql> CREATE TABLE demo_minilm_table (id INT AUTO_INCREMENT, demo_text_column TEXT, primary key (id));
mysql> INSERT INTO demo_minilm_table (demo_text_column)
VALUES('MySQL is an open-source RDBMS that is widely used for its scalability, reliability, and security.');
mysql> INSERT INTO demo_minilm_table (demo_text_column)
VALUES('AI refers to the development of machines that can think and act like humans.');
mysql> INSERT INTO demo_minilm_table (demo_text_column)
VALUES('ML is a subset of AI that uses algorithms and statistical models to improve performance on tasks by learning from data.');
mysql> CALL sys.ML_EMBED_TABLE('demo_db.demo_minilm_table.demo_text_column', 'demo_db.demo_minilm_table.demo_embedding_column',
JSON_OBJECT('model_id', 'all_minilm_l12_v2'));

To run RAG, perform the following steps:

1. Optionally, to speed up vector processing, load the embedding table in the MySQL AI Engine (AI
engine):

mysql> ALTER TABLE EmbeddingTableName SECONDARY_LOAD;

Replace EmbeddingTableName with the embedding table name.

For example:

mysql> ALTER TABLE demo_minilm_table SECONDARY_LOAD;

This accelerates processing of vector distance function used to compare vector embeddings and
generate relevant output later in this section.

2. To change the column names to use to filter tables for context retrieval, then set the routine options
as shown below:

mysql> SET @options = JSON_OBJECT(
  "vector_store_columns", JSON_OBJECT("segment", "TextSegmentColumnName", "segment_embedding", "VectorEmbeddingColumnName"),
  "embed_model_id", "EmbeddingModelName",
  "model_options", JSON_OBJECT("language", "Language")
);

Replace the following:

• TextSegmentColumnName: the name of the embedding table column that contains the text
segments in natural language. Default value is segment.

• VectorEmbeddingColumnName: the name of the embedding table column that contains vector
embeddings of the natural-language text segments. Default value is segment_embedding.

• EmbeddingModelName: the name of the embedding model to use to generate the vector
embeddings for the input query. The routine uses this embedding model name to find relevant

187

https://dev.mysql.com/doc/refman/9.6/en/vector-functions.html#function_distance


Using Your Own Embeddings with Retrieval-Augmented Generation

tables for context retrieval. Default value is minilm if the output language is set to English and
multilingual-e5-small if the output language is set to a language other than English.

For possible values, to view the list of available embedding models, see In-Database Embedding
Model.

• Language: the two-letter ISO 639-1 code for the language you want to use for generating
the output. The model_option option parameter language is required only if you want to
use a language other than English. Default language is en, which is English. To view the list of
supported languages, see Languages.

For example:

mysql> SET @options = JSON_OBJECT(
  "vector_store_columns", JSON_OBJECT("segment", "demo_text_column", "segment_embedding", "demo_embedding_column"),
  "embed_model_id", "all_minilm_l12_v2", "model_options", JSON_OBJECT("language", "en")
);

In this example, all embedding tables containing a string column demo_text_column
and a vector column demo_embedding_column, which contains vector embeddings from
all_minilm_l12_v2, are used for context retrieval.

Similarly, you can use the vector_store_columns parameter to specify the following column
names for the routine to filter relevant tables for context retrieval:

• document_name: name of a column containing the document names. This column can be of any
data type supported by MySQL. Default value is document_name.

• document_id: name of an integer column containing the document IDs. Default value is
document_id.

• metadata: name of a JSON column containing additional table metadata. Default value is
metadata.

• segment_number: name of an integer column containing the segment numbers. Default value is
segment_number.

Since these are optional columns, if these column values are not set, then the routine does not use
these columns to filter tables.

3. To define your natural-language query, set the @query variable:

SET @query="AddYourQuery";

Replace AddYourQuery with your natural-language query.

For example:

mysql> SET @query="What is AutoML?";

4. To retrieve the augmented prompt and generate the output, use the ML_RAG routine:

mysql> CALL sys.ML_RAG(@query,@output,@options);

5. Print the output:

mysql> SELECT JSON_PRETTY(@output);

The output is similar to the following:

| {
  "text": "\nBased on the context, AutoML stands for Automated Machine Learning. It is a subset of AI that uses algorithms and statistical models to improve performance on tasks by automatically learning from data without requiring manual intervention or expertise in machine learning.",
  "license": "Your use of this Llama model is subject to the Llama 3.2 Community License Agreement available at https://docs.oracle.com/cd/E17952_01/heatwave-9.4-license-com-en/",
  "citations": [
    {
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      "segment": "AI refers to the development of machines that can think and act like humans.",
      "distance": 0.733,
      "document_name": ""
    },
    {
      "segment": "ML is a subset of AI that uses algorithms and statistical models to improve performance on tasks by learning from data.",
      "distance": 0.7375,
      "document_name": ""
    },
    {
      "segment": "MySQL is an open-source RDBMS that is widely used for its scalability, reliability, and security.",
      "distance": 0.8234,
      "document_name": ""
    }
  ],
  "vector_store": [
    "`demo_db`.`demo_minilm_table`"
  ],
  "retrieval_info": {
    "method": "n_citations",
    "threshold": 0.8234
  }
} |

The vector_store section lists the name of the embedding table that is used to retrieve context
for generating the output.

Using Embeddings From an Embedding Model Not Available in GenAI

To use a table containing vector embeddings from an embedding model that is not available in GenAI,
the ML_RAG routine lets you provide the vector embedding of the input query and the name of the
embedding model that you used to embed the input query as well as the vector embeddings stored in
your embedding table. When you provide the vector embedding of the input query, the routine skips
embedding the query and proceeds with the similarity search, context retrieval, and RAG. However, in
this case, you cannot use the inbuilt vector store tables for context retrieval.

The example in this section uses the following table:

mysql> CREATE TABLE demo_table (id INT AUTO_INCREMENT,
demo_text TEXT,
string_embedding TEXT, 
demo_embedding VECTOR (3) COMMENT 'GENAI_OPTIONS=EMBED_MODEL_ID=demo_embedding_model',
primary key (id));
mysql> INSERT INTO demo_table (demo_text, string_embedding)
VALUES('MySQL is an open-source RDBMS that is widely used for its scalability, reliability, and security.', '[0,1,0]');
mysql> INSERT INTO demo_table (demo_text, string_embedding)
VALUES('AI refers to the development of machines that can think and act like humans.', '[0,0,1]');
mysql> INSERT INTO demo_table (demo_text, string_embedding)
VALUES('ML is a subset of AI that uses algorithms and statistical models to improve performance on tasks by learning from data.', '[0,1,1]');
mysql> UPDATE demo_table SET demo_embedding=STRING_TO_VECTOR(string_embedding);
mysql> ALTER TABLE demo_table DROP COLUMN string_embedding;

To run RAG using a table that contains vector embeddings from an embedding model that is not
available in GenAI, perform the following steps:

1. Optionally, to speed up vector processing, load the embedding table in the AI engine:

mysql> ALTER TABLE EmbeddingTableName SECONDARY_LOAD;

Replace EmbeddingTableName with the embedding table name.

For example:

mysql> ALTER TABLE demo_table SECONDARY_LOAD;

This accelerates processing of vector distance function used to compare vector embeddings and
generate relevant output later in this section.
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2. Provide the vector embedding of the input query:

SET @query_embedding = to_base64(string_to_vector('VectorEmbeddingOfTheQuery'));

Replace VectorEmbeddingOfTheQuery with the vector embedding of your input query.

For example:

mysql> SET @query_embedding = to_base64(string_to_vector('[0,1,0]'));

3. To specify column names for the ML_RAG routine to find relevant tables for context retrieval, set the
routine options:

mysql> SET @options = JSON_OBJECT(
  "vector_store_columns", JSON_OBJECT("segment", "TextSegmentColumnName", "segment_embedding", "VectorEmbeddingColumnName"),
  "embed_model_id", "EmbeddingModelName",
  "query_embedding", @query_embedding,
  "model_options", JSON_OBJECT("language", "Language")
);

Replace the following:

• TextSegmentColumnName: the name of the embedding table column that contains the text
segments in natural language.

• VectorEmbeddingColumnName: the name of the embedding table column that contains vector
embeddings of the natural-language text segments.

• EmbeddingModelName: the name of the embedding model that you used to generate the vector
embeddings for the input query and embedding tables.

• Language: the two-letter ISO 639-1 code for the language you want to use for generating
the output. The model_option option parameter language is required only if you want to
use a language other than English. Default language is en, which is English. To view the list of
supported languages, see Languages.

For example:

mysql> SET @options = JSON_OBJECT(
  "vector_store_columns", JSON_OBJECT("segment", "demo_text", "segment_embedding", "demo_embedding"),
  "embed_model_id", "demo_embedding_model", 
  "query_embedding", @query_embedding, 
  "model_options", JSON_OBJECT("language", "en")
);

In this example, embedding tables containing a string column demo_text and a vector column
demo_embeddings which contains vector embeddings from demo_embedding_model are used
for context retrieval.

Similarly, you can use the vector_store_columns parameter to specify the following column
names for the routine to filter relevant tables for context retrieval:

• document_name: name of a column containing the document names. This column can be of any
data type supported by MySQL.

• document_id: name of an integer column containing the document IDs.

• metadata: name of a JSON column containing additional table metadata.

• segment_number: name of an integer column containing the segment numbers.

Since these are optional columns, if these column values are not set, then the routine does not use
these columns to filter tables.
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4. To define your natural-language query, set the @query variable:

SET @query="AddYourQuery";

Replace AddYourQuery with your natural-language query.

For example:

mysql> SET @query="What is AutoML?";

5. To retrieve the augmented prompt, use the ML_RAG routine:

mysql> CALL sys.ML_RAG(@query,@output,@options);

6. Print the output:

mysql> SELECT JSON_PRETTY(@output);

The output is similar to the following:

| {
  "text": "\nBased on the context, AutoML stands for Automated Machine Learning. It is a subset of AI that uses algorithms and statistical models to automate the process of building and training machine learning models without requiring extensive manual intervention or expertise in machine learning. In other words, AutoML enables users to build and deploy machine learning models quickly and efficiently by automatically selecting the best model, tuning hyperparameters, and optimizing performance on a given dataset.",
  "license": "Your use of this Llama model is subject to the Llama 3.2 Community License Agreement available at https://docs.oracle.com/cd/E17952_01/heatwave-9.4-license-com-en/",
  "citations": [
    {
      "segment": "MySQL is an open-source RDBMS that is widely used for its scalability, reliability, and security.",
      "distance": 0.0,
      "document_name": ""
    },
    {
      "segment": "ML is a subset of AI that uses algorithms and statistical models to improve performance on tasks by learning from data.",
      "distance": 0.2929,
      "document_name": ""
    },
    {
      "segment": "AI refers to the development of machines that can think and act like humans.",
      "distance": 1.0,
      "document_name": ""
    }
  ],
  "vector_store": [
    "`demo_db`.`demo_table`"
  ],
  "retrieval_info": {
    "method": "n_citations",
    "threshold": 1.0
  }
} |

The vector_store section lists the name of the embedding table that is used to retrieve context
for generating the output.

Using Your Embedding Table With a Vector Store Table

By default, the ML_RAG routine uses all predefined columns and column names available in the inbuilt
vector store table to filter tables for context retrieval. This means that if your embedding table does
not contain all columns that are available in an inbuilt vector store table, then your embedding table is
filtered out and is not used for context retrieval by the routine.

Therefore, if you want to use an inbuilt vector store table along with your own embedding table for
context retrieval, your embedding table must satisfy the following additional requirements:

• Since the inbuilt vector store tables, use predefined column names, the column names in your
embedding tables must match the predefined inbuilt vector store table column names as given
below:

• segment: name of the mandatory string column containing the text segments.
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• segment_embedding: name of the mandatory vector column containing the vector embeddings
of the text segments.

• document_name: name of the optional column containing the document names. This column can
be of any data type supported by MySQL.

• document_id: name of the optional integer column containing the document IDs.

• metadata: name of the optional JSON column containing metadata for the table.

• segment_number: name of the optional integer column containing segment number.

• The vector embeddings in your embedding table must be from the same embedding model as the
vector store table.

The example in this section uses the vector store table demo_embeddings created in the section
Ingesting Files into a Vector Store, which has been loaded into the AI engine, with the following table:

mysql> CREATE TABLE demo_e5_table (id INT AUTO_INCREMENT, segment TEXT, primary key (id));
mysql> INSERT INTO demo_e5_table (segment)
VALUES('MySQL is an open-source RDBMS that is widely used for its scalability, reliability, and security.');
mysql> INSERT INTO demo_e5_table (segment)
VALUES('AI refers to the development of machines that can think and act like humans.');
mysql> INSERT INTO demo_e5_table (segment)
VALUES('Machine learning is a subset of AI that uses algorithms and statistical models to improve performance on tasks by learning from data.');
mysql> CALL sys.ML_EMBED_TABLE('demo_db.demo_e5_table.segment', 'demo_db.demo_e5_table.segment_embedding',
JSON_OBJECT('model_id', 'multilingual-e5-small'));

To run RAG using an inbuilt vector store table and your embedding table, perform the following steps:

1. Optionally, to speed up vector processing, load the embedding table in the AI engine:

mysql> ALTER TABLE EmbeddingTableName SECONDARY_LOAD;

Replace EmbeddingTableName with the embedding table name.

For example:

mysql> ALTER TABLE demo_e5_table SECONDARY_LOAD;

This accelerates processing of vector distance function used to compare vector embeddings and
generate relevant output later in this section.

2. Set the routine options:

• If your embedding table contains all the mandatory and optional columns as the inbuilt vector
store table, then set the routine options as shown below:

mysql> SET @options = JSON_OBJECT(
  "embed_model_id", "EmbeddingModelName",
  "model_options", JSON_OBJECT("language", "Language"
  )
);

• EmbeddingModelName: the name of the embedding model to use to generate the vector
embeddings for the input query. The routine uses this embedding model name to find relevant
tables for context retrieval. Default value is multilingual-e5-small.

For possible values, to view the list of available embedding models, see In-Database
Embedding Model.

• Language: the two-letter ISO 639-1 code for the language you want to use for generating
the output. The model_option option parameter language is required only if you want to
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use a language other than English. Default language is en, which is English. To view the list of
supported languages, see Languages.

For example:

mysql> SET @options = JSON_OBJECT("embed_model_id", "multilingual-e5-small", "model_options", JSON_OBJECT("language", "en"));

• If your embedding table contains the same mandatory columns as that of an inbuilt vector store
table, similar to demo_e5_table, which are:

• A text column with the name segment.

• A vector column segment_embedding.

Then, set the routine options as shown below:

mysql> SET @options = JSON_OBJECT(
  "vector_store_columns", JSON_OBJECT("segment", "segment", "segment_embedding", "segment_embedding"),
  "embed_model_id", "EmbeddingModelName", 
  "model_options", JSON_OBJECT("language", "Language"
  ));

For example:

mysql> SET @options = JSON_OBJECT(
  "vector_store_columns", JSON_OBJECT("segment", "segment", "segment_embedding", "segment_embedding"),
  "embed_model_id", "multilingual-e5-small",
  "model_options", JSON_OBJECT("language", "en")
);

In this example, both embedding tables and vector store tables that contain a string column
segment and a vector column segment_embedding which contains vector embeddings from
multilingual-e5-small are used for context retrieval.

3. To define your natural-language query, set the @query variable:

SET @query="AddYourQuery";

Replace AddYourQuery with your natural-language query.

For example:

mysql> SET @query="What is AutoML?";

4. To retrieve the augmented prompt and generate the output, use the ML_RAG routine:

mysql> CALL sys.ML_RAG(@query,@output,@options);

5. Print the output:

mysql> SELECT JSON_PRETTY(@output);

The output is similar to the following:

| {
  "text": "\nAutoML (Automated Machine Learning) is a machine learning technique that automates the process of selecting, training, and evaluating machine learning models. It involves using algorithms and techniques to automatically identify the best model for a given dataset and optimize its hyperparameters without requiring manual intervention from data analysts or ML practitioners.",
  "license": "Your use of this Llama model is subject to the Llama 3.2 Community License Agreement available at https://docs.oracle.com/cd/E17952_01/heatwave-9.4-license-com-en/",
  "citations": [
    {
      "segment": "\"segment\": \"| {   \\\"text\\\": \\\" AutoML is a subfield of machine learning that focuses on automating the process of building and training machine learning models. It involves using algorithms and techniques to automatically select features, tune hyperparameters, and evaluate model performance, without requiring human intervention. AutoML can be used for a variety of tasks, including classification, regression, clustering, and anomaly detection.\\\",   \\\"citations\\\": [     {\",",
      "distance": 0.0732,
      "document_name": ""
    },
    {
      "segment": "}, {   \"segment\": \"| {   \\\"text\\\": \\\" AutoML is a subfield of machine learning that focuses on automating the process of building and training machine learning models. It involves using algorithms and techniques to automatically select features, tune hyperparameters, and evaluate model performance, without requiring human intervention. AutoML can be used for a variety of tasks, including classification, regression, clustering, and anomaly detection.\\\",   \\\"citations\\\": [     {\",   \"distance\":",
      "distance": 0.0738,
      "document_name": ""
    },
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    {
      "segment": "| {   \"text\": \" AutoML is a machine learning technique that automates the process of selecting, training, and evaluating machine learning models. It involves using algorithms and techniques to automatically identify the best model for a given dataset and optimize its hyperparameters without requiring manual intervention from data analysts or ML practitioners. AutoML can be used in various stages of the machine learning pipeline, including data preprocessing, feature engineering, model",
      "distance": 0.0743,
      "document_name": ""
    }
  ],
  "vector_store": [
    "`demo_db`.`demo_embeddings`",
    "`demo_db`.`demo_e5_table`"
  ],
  "retrieval_info": {
    "method": "n_citations",
    "threshold": 0.0743
  }
} |

The vector_store section lists the names of the vector store table, demo_embeddings, and
embedding table, demo_e5_table that are used to retrieve context for generating the output.

Running Batch Queries

To run multiple RAG queries in parallel, use the ML_RAG_TABLE routine. This method is faster than
running the ML_RAG routine multiple times.

To run the steps in this section, you can use the same sample table demo_e5_table as section Using
Your Embedding Table With a Vector Store Table, and create the following table to store input queries
for batch processing:

mysql> CREATE TABLE input_table (id INT AUTO_INCREMENT, Input TEXT, primary key (id));
mysql> INSERT INTO input_table (Input) VALUES('What is HeatWave Lakehouse?');
mysql> INSERT INTO input_table (Input) VALUES('What is HeatWave AutoML?');
mysql> INSERT INTO input_table (Input) VALUES('What is HeatWave GenAI?');

To run batch queries using ML_RAG_TABLE, perform the following steps:

1. To specify column names for the ML_RAG_TABLE routine to find relevant tables for context retrieval,
set the routine options:

mysql> SET @options = JSON_OBJECT(
  "vector_store_columns", JSON_OBJECT("segment", "TextSegmentColumnName", "segment_embedding", "VectorEmbeddingColumnName"),
  "embed_model_id", "EmbeddingModelName", 
  "model_options", JSON_OBJECT("language", "Language")
);

Replace the following:

• TextSegmentColumnName: the name of the embedding table column that contains the text
segments in natural language. If multiple tables contain a string column with the same name,
they are all used for context retrieval. Default value is segment.

• VectorEmbeddingColumnName: the name of the embedding table column that contains vector
embeddings of the natural-language text segments. If multiple tables contain a vector column
with the same name which contain embeddings from the specified embedding model, they are all
used for context retrieval. Default value is segment_embedding.

• EmbeddingModelName: the name of the embedding model to use to generate the vector
embeddings for the input query. The routine uses this embedding model name to find tables
generated using the same model for context retrieval. Default value is minilm if the output
language is set to English and multilingual-e5-small if the output language is set to a
language other than English.

• Language: the two-letter ISO 639-1 code for the language you want to use for generating
the output. The model_option option parameter language is required only if you want to
use a language other than English. Default language is en, which is English. To view the list of
supported languages, see Languages.
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For example:

mysql> SET @options = JSON_OBJECT(
  "vector_store_columns", JSON_OBJECT("segment", "segment", "segment_embedding", "segment_embedding"),
  "embed_model_id", "multilingual-e5-small",
  "model_options", JSON_OBJECT("language", "en")
);

In this example, only embedding tables containing a string column demo_text and a vector
column demo_embeddings which contains vector embeddings from multilingual-e5-small
are used for context retrieval. Since the inbuilt vector store tables use predefined column names,
if you change the column names to any value other than the default value, then the vector store
tables are filtered out and are not used for context retrieval.

To learn more about the available routine options, see ML_RAG_TABLE Syntax.

Similarly, you can use the vector_store_columns parameter to specify the following column
names for the routine to filter relevant tables for context retrieval:

• document_name: name of a column containing the document names. This column can be of
data type supported by MySQL. Default value is document_name.

• document_id: name of an integer column containing the document IDs. Default value is
document_id.

• metadata: name of a JSON column containing additional table metadata. Default value is
metadata.

• segment_number: name of an integer column containing the segment numbers. Default value is
segment_number.

Since these are optional columns, if these column values are not set, then the routine does not use
these columns to filter tables.

If you are using an embedding model that is not available in GenAI, then you must also provide
the vector embeddings of the input queries. You can specify name of the input table column
that contains the vector embeddings of the input queries using the embed_column parameter.
However, in this case, you cannot use the inbuilt vector store tables for context retrieval.
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2. In the ML_RAG_TABLE routine, specify the table columns containing the input queries and for
storing the generated outputs:

mysql> CALL sys.ML_RAG_TABLE("InputDBName.InputTableName.InputColumn", "OutputDBName.OutputTableName.OutputColumn", @options);

Replace the following:

• InputDBName: the name of the database that contains the table column where your input
queries are stored.

• InputTableName: the name of the table that contains the column where your input queries are
stored.

• InputColumn: the name of the column that contains input queries.

• OutputDBName: the name of the database that contains the table where you want to store the
generated outputs. This can be the same as the input database.

• OutputTableName: the name of the table where you want to create a new column to store the
generated outputs. This can be the same as the input table. If the specified table doesn't exist, a
new table is created.

• OutputColumn: the name for the new column where you want to store the output generated for
the input queries.

For example:

mysql> CALL sys.ML_RAG_TABLE("demo_db.input_table.Input", "demo_db.output_table.Output", @options);

View the contents of the output table:

mysql> SELECT * FROM output_table\G
*************************** 1. row ***************************
    id: 1
Output: {"text": "\nHeatWave Lakehouse is a feature of the HeatWave platform that enables query processing on data resident in Object Storage.", 
"error": null, 
"license": "Your use of this Llama model is subject to the Llama 3.2 Community License Agreement available at https://docs.oracle.com/cd/E17952_01/heatwave-9.4-license-com-en/", 
"citations": [
    {
        "segment": "-----------------------+ |  1 | {\"text\": \" HeatWave Lakehouse is a feature of the HeatWave platform that enables query processing on data resident in Object Storage. The source data is read from Object Storage, transformed to the memory optimized HeatWave format, stored in the HeatWave persistence storage layer in Object Storage, and then loaded to HeatWave cluster memory for in-memory query processing. It allows you to create tables which point to external data sources and provides rapid and lakehouse as the primary",
        "distance": 0.0828,
        "document_name": ""
    },
    {
        "segment": "------------------------------------------+ |  1 | {\"text\": \" HeatWave Lakehouse is a feature of the HeatWave platform that enables query processing on data resident in Object Storage. The source data is read from Object Storage, transformed to the memory optimized HeatWave format, stored in the HeatWave persistence storage layer in Object Storage, and then loaded to HeatWave cluster memory for in-memory query processing. It allows you to create tables which point to external data sources and provides rapid and lakehouse as the primary",
        "distance": 0.0863,
        "document_name": ""
    },
    {
        "segment": "The Lakehouse feature of HeatWave enables query processing on data in Object Storage. HeatWave Lakehouse reads the source data from Object Storage, transforms it to the memory optimized HeatWave format, saves it in the HeatWave persistence storage layer in Object Storage, and then loads the data to HeatWave Cluster memory. While Lakehouse provides in-memory query processing on data in Object Storage, it does not load data into a DB System table.",
        "distance": 0.1028,
        "document_name": ""
    }
], 
"vector_store": ["`demo_db`.`demo_embeddings`", "`demo_db`.`demo_e5_table`"], 
"retrieval_info": {"method": "n_citations", "threshold": 0.1028}}
*************************** 2. row ***************************
    id: 2
Output: {"text": "\nHeatWave AutoML is a feature of MySQL HeatWave that makes it easy to use machine learning, allowing users to create optimized machine learning models for predictions and explanations without having to leave the database.", 
"error": null, 
"citations": [
    {
        "segment": "|  HeatWave AutoML is a feature of MySQL HeatWave that makes it easy to use machine learning, whether you are a novice user or an experienced ML practitioner. It analyzes the characteristics of the data and creates an optimized machine learning model that can be used to generate predictions and explanations. The data and models never leave MySQL HeatWave, saving time and effort while keeping the data and models secure. HeatWave AutoML is optimized for HeatWave shapes and scaling, and all",
        "distance": 0.0561,
        "document_name": ""
    },
    {
        "segment": "HeatWave shapes and scaling, and all HeatWave AutoML makes it easy to use machine learning, whether you are a novice user or an experienced ML practitioner. You provide the data, and HeatWave AutoML analyzes the characteristics of the data and creates an optimized machine learning model that you can use to generate predictions and explanations. An ML model makes predictions by identifying patterns in your data and applying those patterns to unseen data. HeatWave AutoML explanations help you",

196



Starting a Conversational Chat

        "distance": 0.0573,
        "document_name": ""
    },
    {
        "segment": "HeatWave AutoML makes it easy to use machine learning, whether you are a novice user or an experienced ML practitioner. You provide the data, and HeatWave AutoML analyzes the characteristics of the data and creates an optimized machine learning model that you can use to generate predictions and explanations. An ML model makes predictions by identifying patterns in your data and applying those patterns to unseen data. HeatWave AutoML explanations help you understand how predictions are made,",
        "distance": 0.0598,
        "document_name": ""
    }
], 
"vector_store": ["`demo_db`.`demo_embeddings`", "`demo_db`.`demo_e5_table`"], 
"retrieval_info": {"method": "n_citations", "threshold": 0.0598}}
*************************** 3. row ***************************
    id: 3
Output: {"text": "\nHeatWave GenAI is a feature of HeatWave that enables natural language communication with unstructured data using large language models (LLMs) and provides an inbuilt vector store for enterprise-specific proprietary content, along with a chatbot called HeatWave Chat.", 
"error": null, 
"citations": [
    {
        "segment": "4.1 HeatWave GenAI Overview HeatWave GenAI is a feature of HeatWave that lets you communicate with unstructured data in HeatWave using natural-language queries. It uses a familiar SQL interface which makes it is easy to use for content generation, summarization, and retrieval-augmented generation (RAG).",
        "distance": 0.0521,
        "document_name": ""
    },
    {
        "segment": "Chapter 3, HeatWave AutoML. 1.4 HeatWave GenAI The HeatWave GenAI feature of HeatWave lets you communicate with unstructured data in HeatWave using natural language queries. It uses large language models (LLMs) to enable natural language communication and provides an inbuilt vector store that you can use to store enterprise-specific proprietary content to perform vector searches. HeatWave GenAI also includes HeatWave Chat which is a chatbot that extends the generative AI and vector search functionalities to let you ask multiple follow-up",
        "distance": 0.0735,
        "document_name": ""
    },
    {
        "segment": "HeatWave Chat also provides a graphical interface integrated with the Visual Studio Code plugin for MySQL Shell.\nBenefits\nHeatWave GenAI lets you integrate generative AI into the applications, providing an integrated end-to-end pipeline including vector store generation, vector search with RAG, and an inbuilt chatbot.\nSome key benefits of using HeatWave GenAI are described below:",
        "distance": 0.0781,
        "document_name": ""
    }
], 
"vector_store": ["`demo_db`.`demo_embeddings`", "`demo_db`.`demo_e5_table`"], 
"retrieval_info": {"method": "n_citations", "threshold": 0.0781}}

The output table generated using the ML_RAG_TABLE routine contains an additional details for
error reporting. In case the routine fails to generate output for specific rows, details of the errors
encountered and default values used are added for the rows in the output column.

Cleaning Up

If you created a new database for testing the steps in this topic, delete the database to free up space:

mysql> DROP DATABASE demo_db;

What's Next

Learn how to Start a Conversational Chat.

5.9 Starting a Conversational Chat
You can use GenAI Chat to simulate human-like conversations where you can get responses for
multiple queries in the same session. GenAI Chat is a conversational agent that utilizes large language
models (LLMs) to understand inputs and responds in natural manner. It extends the text generation by
using a chat history that lets you ask follow-up questions, and uses the vector search functionality to
draw its knowledge from the inbuilt vector store. The responses generated by GenAI Chat are quick
and secure as all the communication and processing happens within MySQL AI service.

The sections in this topic describe how to run and manage GenAI Chat.

5.9.1 Running GenAI Chat

When you run GenAI Chat, it automatically loads the llama3.2-3b-instruct-v1 LLM.

By default, GenAI Chat searches for an answer to a query across all ingested documents by
automatically discovering available vector stores, and returns the answer along with relevant citations.
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You can limit the scope of search to specific document collections available in certain vector stores or
specify documents to include in the search.

GenAI Chat also lets you use your own embedding tables for context retrieval. And, it uses only the
name of the embedding model used to embed the input query to find relevant tables.

If you do not have a vector store or an embedding table set up, then GenAI Chat uses information
available in public data sources to generate a response for your query.

This topic contains the following sections:

• Before You Begin

• Running the Chat

• What's Next

Before You Begin

• Review the GenAI requirements.

• To extend the vector search functionality and ask specific questions about the information available
in your proprietary documents stored in the vector store, complete the steps to set up a vector store.

In this topic, the HEATWAVE_CHAT routine uses the vector store table demo_embeddings created in
the section Ingesting Files into a Vector Store for context retrieval.

• To use your own embedding table for context retrieval, create a table that satisfies the following
criteria:

• The table must contain the following columns:

• A string column containing the text segments.

• A vector column containing the vector embeddings of the text segments.

• A comment on the vector column must specify the name of the embedding model used to generate
the vector embeddings.

• The vector embeddings in your embedding table must be from an embedding model supported by
GenAI. To view the list of available embedding models, see In-Database Embedding Model.

Following is an example of a valid embedding table that can be used for context retrieval:

mysql> CREATE TABLE demo_table (id INT AUTO_INCREMENT, demo_text TEXT, primary key (id));
mysql> INSERT INTO demo_table (demo_text) VALUES('What is MySQL?');
mysql> INSERT INTO demo_table (demo_text) VALUES('What is HeatWave?');
mysql> INSERT INTO demo_table (demo_text) VALUES('What is HeatWave GenAI?');
mysql> CALL sys.ML_EMBED_TABLE('demo_schema.demo_table.demo_text', 'demo_schema.demo_table.demo_embedding',
JSON_OBJECT('model_id', 'all_minilm_l12_v2'));

To learn how to generate vector embeddings and embedding tables, see Generating Vector
Embeddings.

If you want to use both inbuilt vector store tables and your own embedding tables for context
retrieval, your embedding table must satisfy the following additional requirements:

• Since the inbuilt vector store tables, use predefined column names, the column names in your
embedding tables must match the predefined inbuilt vector store table column names as given
below:

• segment: name of the mandatory string column containing the text segments.
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• segment_embedding: name of the mandatory vector column containing the vector
embeddings of the text segments.

• document_name: name of the optional column containing the document names. This column
can be of any data type supported by MySQL.

• document_id: name of the optional integer column containing the document IDs.

• metadata: name of the optional JSON column containing metadata for the table.

• segment_number: name of the optional integer column containing segment number.

• The vector embeddings in your embedding table must be from the same embedding model as the
vector store table.

Running the Chat

To run GenAI Chat, perform the following steps:

1. Optionally, to speed up vector processing, load the vector store or embedding tables that you want
use with GenAI Chat in MySQL AI Engine:

mysql> ALTER TABLE TableName SECONDARY_LOAD;

Replace TableName with the name of the vector store table.

For example:

mysql> ALTER TABLE demo_db.demo_embeddings SECONDARY_LOAD;

This accelerates processing of vector distance function used to compare vector embeddings and
generate relevant output later in this section.

2. To delete previous chat output and state, if any, reset the @chat_options variable:

mysql> SET @chat_options=NULL;

Note

Ensure that you use the name @chat_options for the variable. The
HEATWAVE_CHAT routine reserves this variable for specifying and saving
various chat parameter settings.

3. Optionally, set the @chat_options variable in the following scenarios:

• To use a language other than English, set the language model option:

mysql> SET @chat_options = JSON_OBJECT("model_options", JSON_OBJECT("language", "Language"));

Replace Language with the two-letter ISO 639-1 code for the language you want to
use. Default language is en, which is English. To view the list of supported languages, see
Languages.

For example, to use French set language to fr:

mysql> SET @chat_options = JSON_OBJECT("model_options", JSON_OBJECT("language", "fr"));

This resets the @chat_options variable, and specifies the language for the chat.

• To use your own embedding tables for context retrieval, change the column names used by the
HEATWAVE_CHAT routine to filter tables by setting the vector_store_columns parameter:

mysql> SET @chat_options = JSON_OBJECT(
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  "vector_store_columns", JSON_OBJECT("segment", "TextSegmentColumnName", "segment_embedding", "VectorEmbeddingColumnName"), 
  "embed_model_id", "EmbeddingModelName"
);

Replace the following:

• TextSegmentColumnName: the name of the embedding table column that contains the text
segments in natural language. If multiple tables contain a string column with the same name,
they are all used for context retrieval. Default value is segment.

• VectorEmbeddingColumnName: the name of the embedding table column that contains
vector embeddings of the natural-language text segments. If multiple tables contain a vector
column with the same name which contain embeddings from the specified embedding model,
they are all used for context retrieval. Default value is segment_embedding.

• EmbeddingModelName: the name of the embedding model to use to generate the vector
embeddings for the input query. The routine uses this embedding model name to find tables
generated using the same model for context retrieval. By default, the routine uses minilm if
the output language is set to English and multilingual-e5-small if the output language is
set to a language other than English.

By default, the routine uses all the predefined vector store column names to filter tables for
context retrieval.

For example:

mysql> SET @chat_options = JSON_OBJECT(
  "vector_store_columns", JSON_OBJECT("segment", "demo_text", "segment_embedding", "demo_embeddings"), 
  "embed_model_id", "all_minilm_l12_v2"
);

This resets the @chat_options variable to specify the column names used for filtering
tables for context retrieval. In this example, all embedding tables containing a string column
demo_text and a vector column demo_embeddings which contains vector embeddings from
all_minilm_l12_v2 are used for context retrieval.

However, since the inbuilt vector store tables use predefined column names, if you change a
column name used for filtering tables to any value other than the default value, the inbuilt vector
store tables are filtered out and are not used for context retrieval.

4. Then, add your query to GenAI Chat by using the HEATWAVE_CHAT routine:

CALL sys.HEATWAVE_CHAT("YourQuery");

For example:

mysql> CALL sys.HEATWAVE_CHAT("What is HeatWave AutoML?");

The output looks similar to the following:

| 
HeatWave AutoML is an automated machine learning (AutoML) platform that uses a combination of human-in-the-loop and autoML techniques to help users build, train, and deploy machine learning models without extensive technical expertise.

Here's a brief overview:

**Key Features:**

1. **Automated Model Selection**: HeatWave AutoML allows users to select the best-performing model for their specific problem from a range of pre-trained models.
2. **Hyperparameter Tuning**: The platform automatically tunes hyperparameters for the selected model, ensuring optimal performance and minimizing overfitting.
3. **Data Preprocessing**: HeatWave handles data preprocessing tasks such as feature engineering, normalization, and feature selection.
4. **Model Training**: The platform trains the selected model on the user's dataset and provides real-time feedback and guidance throughout the process.
5. **Model Deployment**: Once a model is trained, HeatWave AutoML deploys it to a cloud-based environment for easy integration with various applications.

**Benefits:**
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1. **Reduced Time-to-Insight**: Automates the entire machine learning workflow, saving users time and effort.
2. **Improved Model Performance**: HeatWave's automated process ensures that models are optimized for performance and accuracy.
3. **Increased Collaboration |

Repeat this step to ask follow-up questions using the HEATWAVE_CHAT routine:

mysql> CALL sys.HEATWAVE_CHAT("What learning algorithms does it use?");

The output looks similar to the following:

| 
HeatWave is an AutoML (Automated Machine Learning) platform that uses a combination of various machine learning algorithms to automate the process of building, training, and deploying machine learning models. While I couldn't find specific information on the exact algorithms used by HeatWave, I can provide some general insights into the types of algorithms that are commonly used in AutoML platforms like HeatWave.

HeatWave is built on top of several popular open-source libraries and frameworks, including:

1. **Scikit-learn**: A widely-used Python library for machine learning that provides a variety of algorithms for classification, regression, clustering, and other tasks.
2. **TensorFlow**: An open-source machine learning framework developed by Google that provides tools for building and training neural networks.
3. **PyTorch**: Another popular open-source machine learning framework that provides a dynamic computation graph and automatic differentiation.

Some common machine learning algorithms used in AutoML platforms like HeatWave include:

1. **Random Forest**: An ensemble method that combines multiple decision trees to improve the accuracy and robustness of predictions.
2. **Gradient Boosting**: A type of ensemble method that uses gradient descent to optimize the weights of individual decision trees.
3. **Support Vector Machines (SVMs)**: A supervised learning algorithm |

What's Next

Learn how to View Chat Session Details.

5.9.2 Viewing Chat Session Details

This topic describes how to view a chat session details. It contains the following sections:

• Before You Begin

• Viewing Details

• What's Next

Before You Begin

• Complete the steps to run GenAI Chat.

Viewing Details

To view the chat session details, inspect the @chat_options variable:

mysql> SELECT JSON_PRETTY(@chat_options);

The output includes the following details about a chat session:

• Vector store tables: in the database which were referenced by GenAI Chat.

• Text segments: that were retrieved from the vector store and used as context to prepare responses
for your queries.

• Chat history: which includes both your queries and responses generated by GenAI Chat.

• LLM details: which was used by the routine to generate the responses.

The output looks similar to the following:

| {
  "tables": [
    {
      "table_name": "`demo_embeddings`",
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      "schema_name": "`demo_db`"
    }
  ],
  "response": "\nThe output of the follow-up question is:\n| HeatWave AutoML uses a variety of machine learning algorithms, including decision trees, random forests, neural networks, and support vector machines (SVMs). The specific algorithm used depends on the characteristics of the data being analyzed and the goals of the model being created. |",
  "documents": [
    {
      "id": "/export/home/tmp/mysql-files/demo-directory/heatwave-en.pdf",
      "title": "heatwave-en.pdf",
      "segment": "Repeat this step to ask follow-up questions using the HEATWAVE_CHAT routine:\nCALL sys.HEATWAVE_CHAT(\"What learning algorithms does it use?\");\nThe output looks similar to the following:\n| HeatWave AutoML uses a variety of machine learning algorithms, including decision trees, random forests, neural networks, and support vector machines (SVMs). The specific algorithm used depends on the characteristics of the data being analyzed and the goals of the model being created. |",
      "distance": 0.0622
    },
    {
      "id": "/export/home/tmp/mysql-files/demo-directory/heatwave-en.pdf",
      "title": "heatwave-en.pdf",
      "segment": "HeatWave AutoML makes it easy to use machine learning, whether you are a novice user or an experienced ML practitioner. You provide the data, and HeatWave AutoML analyzes the characteristics of the data and creates an optimized machine learning model that you can use to generate predictions and explanations. An ML model makes predictions by identifying patterns in your data and applying those patterns to unseen data. HeatWave AutoML explanations help you understand how predictions are made,",
      "distance": 0.0646
    },
    {
      "id": "/export/home/tmp/mysql-files/demo-directory/heatwave-en.pdf",
      "title": "heatwave-en.pdf",
      "segment": "HeatWave shapes and scaling, and all HeatWave AutoML makes it easy to use machine learning, whether you are a novice user or an experienced ML practitioner. You provide the data, and HeatWave AutoML analyzes the characteristics of the data and creates an optimized machine learning model that you can use to generate predictions and explanations. An ML model makes predictions by identifying patterns in your data and applying those patterns to unseen data. HeatWave AutoML explanations help you",
      "distance": 0.0679
    }
  ],
  "chat_history": [
    {
      "user_message": "What is HeatWave AutoML?",
      "chat_query_id": "7aa7824c-5d8a-11f0-a2c5-020017192be1",
      "chat_bot_message": "\nHeatWave AutoML is a feature of MySQL HeatWave that makes it easy to use machine learning, allowing users to create optimized machine learning models for predictions and explanations without having to leave the database."
    },
    {
      "user_message": "What learning algorithms does it use?",
      "chat_query_id": "93730281-5d8a-11f0-a2c5-020017192be1",
      "chat_bot_message": "\nThe output of the follow-up question is:\n| HeatWave AutoML uses a variety of machine learning algorithms, including decision trees, random forests, neural networks, and support vector machines (SVMs). The specific algorithm used depends on the characteristics of the data being analyzed and the goals of the model being created. |"
    }
  ],
  "model_options": {
    "model_id": "llama3.2-3b-instruct-v1"
  },
  "request_completed": true
} |

What's Next

• Learn about Generating SQL Queries From Natural-Language Statements.

• See Chapter 8, MySQL AI Routines.

5.10 Generating SQL Queries From Natural-Language Statements
GenAI lets you generate SQL queries from natural-language statements, making it easier for you to
interact with your databases. This feature collects information on the schemas, tables, and columns
that you have access to, and then uses a Large Language Model (LLM) to generate an SQL query for
the question pertaining to your data. It also lets you run the generated query and view the result set.

This topic describes how to use the NL_SQL routine to generate and run SQL queries from natural-
language statements.

Note

This routine can generate and run SELECT statements only.

This topic contains the following sections:

• Before You Begin

• Generating and Running an SQL Query
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• What's Next

Before You Begin

• Review the GenAI  requirements and privileges.

• Load structured data into the DB system.

The examples in this topic uses a sample database, airport that you can download from the
following locations:

• https://downloads.mysql.com/docs/airport-db.tar.gz

• https://downloads.mysql.com/docs/airport-db.zip

Generating and Running an SQL Query

Perform the following step:

mysql> CALL sys.NL_SQL("NaturalLanguageStatement",@output, JSON_OBJECT('schemas',JSON_ARRAY('DBName'),'model_id','ModelID'));

Replace the following:

• NaturalLanguageStatement: natural-language statement. It can be a question, statement, or
query pertaining to your data available in MySQL HeatWave.

• DBName: database to consider for generating and running the SQL query.

• ModelID: LLM to use.

For example:

mysql> CALL sys.NL_SQL("How many flights are there in total?",@output, JSON_OBJECT('schemas',JSON_ARRAY('airportdb'),'model_id','llama3.2-3b-instruct-v1'));

The output is similar to the following:

+-----------------------------------------------------+
| Executing generated SQL statement...                |
+-----------------------------------------------------+
| SELECT COUNT(`flight_id`) FROM `airportdb`.`flight` |
+-----------------------------------------------------+
1 row in set (8.3310 sec)

+--------------------+
| COUNT(`flight_id`) |
+--------------------+
|             462553 |
+--------------------+

View the value stored in the variable @output:

mysql> SELECT JSON_PRETTY(@output);

| JSON_PRETTY(@output|

| {
  "tables": [
    "airportdb.weatherdata",
    "airportdb.employee",
    "airportdb.passenger",
    "airportdb.airport",
    "airportdb.airplane_type",
    "airportdb.flight",
    "airportdb.airline",
    "airportdb.airport_geo",
    "airportdb.airport_reachable",
    "airportdb.flight_log",
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    "airportdb.flightschedule",
    "airportdb.booking",
    "airportdb.airplane",
    "airportdb.passengerdetails"
  ],
  "license": "Your use of this Llama model is subject to the Llama 3.2 Community License Agreement available at https://docs.oracle.com/cd/E17952_01/heatwave-9.4-license-com-en/",
  "schemas": [
    "airportdb"
  ],
  "model_id": "llama3.2-3b-instruct-v1",
  "sql_query": "SELECT COUNT(`flight_id`) FROM `airportdb`.`flight`",
  "is_sql_valid": 1
} |


The output includes the following details:

• List of tables the routine considered for generating and running the SQL query.

• List of databases the routine considered for generating and running the SQL query.

• Model ID of the LLM used to generate the SQL query.

• The generated SQL query.

• Whether the query is valid.

What's Next

Learn more about the NL_SQL routine.
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MySQL AI lets you offload vector-based tables to the MySQL AI Engine for accelerated processing
of queries that uses at least one of the vector functions. The MySQL Performance Schema collects
statistics on the usage of the AI engine and different functions that you perform with MySQL AI.

Use SQL queries to access this data and check the system status and performance.

6.1 MySQL AI Performance Schema Tables
MySQL AI Performance Schema tables provide information about AI nodes, and about tables and
columns that are currently loaded in the MySQL AI Engine (AI engine).

6.1.1 The rpd_column_id Table

The rpd_column_id table provides information about columns of tables that are loaded in the MySQL
AI Engine.

The rpd_column_id table has these columns:

• ID

A unique identifier for the column.

• TABLE_ID

The ID of the table to which the column belongs.

• COLUMN_NAME

The column name.

The rpd_column_id table is read-only.

6.1.2 The rpd_columns Table

The rpd_columns table provides column encoding information for columns of tables loaded in the
MySQL AI Engine.

The rpd_columns table has these columns:

• TABLE_ID

A unique identifier for the table.

• COLUMN_ID

A unique identifier for the table column.
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• NDV

The number of distinct values in the column.

• ENCODING

The type of encoding used.

• DATA_PLACEMENT_INDEX

The data placement key index ID associated with the column. Index value ranges from 1 to 16. NULL
indicates that the column is not defined as a data placement key.

• DICT_SIZE_BTYES

The dictionary size per column, in bytes.

The rpd_columns table is read-only.

6.1.3 The rpd_ml_stats Table

The rpd_ml_stats table tracks the usage of successful MySQL AI routines. These metrics reset
whenever the respective DB system restarts.

The following AutoML routines are tracked:

• ML_TRAIN

• ML_EXPLAIN

• ML_PREDICT_ROW

• ML_PREDICT_TABLE

• ML_EXPLAIN_ROW

• ML_EXPLAIN_TABLE

The following GenAI routines are tracked:

• ML_GENERATE

• ML_EMBED_ROW

The rpd_ml_stats table has these columns:

• STATUS_NAME

Identifies the type of meter tracking usage.

• STATUS_VALUE

Displays metrics for metering. Content is displayed in JSON format.

Metrics in the table are entries as JSON values. The following metrics are used:

• n_cells

The total number of table cells processed by the AutoML routine for all invocations.

• n_cells_user_excluded

The total number of table cells manually excluded for the AutoML routine.
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• n_blob_cells

The total number of table BLOB cells processed by the AutoML routine for all invocations.

• table_size_bytes

The total number of bytes of data processed by the AutoML routine for all invocations.

• blob_size_bytes

The total number of bytes of BLOB/TEXT data processed by the AutoML routine for all invocations.

• model_size_bytes

The total number of bytes of data for the AutoML model that is trained. This includes any explainer
models. This metric only applies to the ML_TRAIN and ML_EXPLAIN AutoML routines. All other
routines will display NULL values.

• input_size_bytes

The cumulative size in bytes of all input string/document invocations ingested by the GenAI routine.

• context_size_bytes

The size in bytes of the context string referenced when generating the response. This metric only
applies to the ML_GENERATE GenAI routine since the ML_EMBED_ROW routine does not have context.
The metric will still appear for ML_EMBED_ROW, but will display a value of 0.

• output_size_bytes

The cumulative size in bytes of responses generated by all invocations for the GenAI routine.

• n_invocations

The total number of times the routine has been successfully invoked on the MySQL AI Engine.

• last_updated_timestamp

The POSIX timestamp of the last call.

6.1.4 The rpd_nodes Table

MySQL AI supports only one AI node. The rpd_nodes table provides information about the AI node.

The rpd_nodes table has these columns:

• ID

A unique identifier for the MySQL AI Engine (AI engine).

• CORES

The number of cores used by the AI engine.

• MEMORY_USAGE

Node memory usage in bytes. The value is refreshed every four seconds. If a query starts and
finishes in the four seconds between refreshes, the memory used by the query is not accounted for
in the reported value.

• MEMORY_TOTAL

The total memory in bytes allocated to the AI engine.
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• BASEREL_MEMORY_USAGE

The base relation memory footprint per node.

• STATUS

The status of the AI engine. Possible statuses include:

• NOTAVAIL_RNSTATE

Not available.

• AVAIL_RNSTATE

Available.

• DOWN_RNSTATE

Down.

• DEAD_RNSTATE

The node is not operational.

• IP

IP address of the AI engine.

• PORT

The port on which the AI engine was started.

• CLUSTER_EVENT_NUM

The number of cluster events such as node down, node up, and so on.

• NUM_OBJSTORE_GETS

Number of GET requests from the AI engine to the disk.

• NUM_OBJSTORE_PUTS

The number of PUT requests from the AI engine to the disk.

• NUM_OBJSTORE_DELETES

The number of DELETE requests from the AI engine to the disk.

• ML_STATUS

AutoML status. Possible status values include:

• UNAVAIL_MLSTATE: AutoML is not available.

• AVAIL_MLSTATE: AutoML is available.

• DOWN_MLSTATE: AutoML declares the node is down.

The rpd_nodes table is read-only.

The rpd_nodes table may not show the current status for a new node or newly configured node
immediately. The rpd_nodes table is updated after the node has successfully joined the cluster.

6.1.5 The rpd_table_id Table
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The rpd_table_id table provides the ID, name, and schema of the tables loaded in the MySQL AI
Engine.

The rpd_table_id table has these columns:

• ID

A unique identifier for the table.

• NAME

The full table name including the schema.

• SCHEMA_NAME

The schema name.

• TABLE_NAME

The table name.

The rpd_table_id table is read-only.

6.1.6 The rpd_tables Table

The rpd_tables table provides the system change number (SCN) and load pool type for tables
loaded in the MySQL AI Engine (AI engine).

The rpd_tables table has these columns:

• ID

A unique identifier for the table.

• SNAPSHOT_SCN

The system change number (SCN) of the table snapshot. The SCN is an internal number that
represents a point in time according to the system logical clock that the table snapshot was
transactionally consistent with the source table.

• PERSISTED_SCN

The SCN up to which changes are persisted.

• POOL_TYPE

The load pool type of the table. Possible values are SNAPSHOT and TRANSACTIONAL.

• DATA_PLACEMENT_TYPE

The data placement type.

• NROWS

The number of rows that are loaded for the table. The value is set initially when the table is loaded,
and updated as changes are propagated.

• LOAD_STATUS

The load status of the table. Statuses include:

• NOLOAD_RPDGSTABSTATE
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The table is not yet loaded.

• LOADING_RPDGSTABSTATE

The table is being loaded.

• AVAIL_RPDGSTABSTATE

The table is loaded and available for queries.

• UNLOADING_RPDGSTABSTATE

The table is being unloaded.

• INRECOVERY_RPDGSTABSTATE

The table is being recovered. After completion of the recovery operation, the table is placed back
in the UNAVAIL_RPDGSTABSTATE state if there are pending recoveries.

• STALE_RPDGSTABSTATE

A failure during change propagation, and the table has become stale.

• UNAVAIL_RPDGSTABSTATE

The table is unavailable.

• LOAD_PROGRESS

The load progress of the table expressed as a percentage value.

• SIZE_BYTES

The amount of data loaded for the table, in bytes.

• NROWS:

The number of rows loaded to the external table.

• QUERY_COUNT

The number of queries that referenced the table.

• LAST_QUERIED

The timestamp of the last query that referenced the table.

• LOAD_START_TIMESTAMP

The load start timestamp for the table.

• LOAD_END_TIMESTAMP

The load completion timestamp for the table.

• RECOVERY_SOURCE

Indicates the source of the last successful recovery for a table.

• RECOVERY_START_TIMESTAMP

The timestamp when the latest successful recovery started.

• RECOVERY_END_TIMESTAMP
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The timestamp when the latest successful recovery ended.

The rpd_tables table is read-only.

6.2 Option Tracker

The Option Tracker component provides usage information about different features and components of
MySQL AI.

For more information, see Option Tracker Component.

The integer flag usedCounter is incremented in real-time and persisted to storage every hour.

• The option_tracker_usage_get() function returns a value similar to the following:

mysql> SELECT option_tracker_usage_get('Berry Picker');
+----------------------------------------------------+
| option_tracker_usage_get('Berry Picker')           |
+----------------------------------------------------+
| {"usedCounter": 30, "usedDate": "2025-14-16T09:14:41Z"} |
+----------------------------------------------------+

• The option_tracker_usage_set() function accepts JSON-formatted string similar to the
following for the usage_data argument:

{
  "usedCounter": "integer"
  "usedDate": "ISO8601 date"
}
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Chapter 7 MySQL AI System and Status Variables
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7.1 System Variables

MySQL AI maintains several variables that configure its operation.

• bulk_loader.data_memory_size

Command-Line Format --bulk_loader.data_memory_size=#

System Variable bulk_loader.data_memory_size

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value (0.125) * #memory GB

Minimum Value 67108864

Maximum Value 1099511627776

Specifies the amount of memory to use for LOAD DATA with ALGORITHM=BULK, in bytes. See:
Section 3.1, “Bulk Ingest Data”.

• bulk_loader.concurrency

System Variable bulk_loader.concurrency

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value (1/2) * #vcpus

Minimum Value 1

Maximum Value 1024

The maximum number of concurrent threads to use by one LOAD statement with ALGORITHM=BULK.
See: Section 3.1, “Bulk Ingest Data”.
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The sections in this chapter list and describe various routines available in MySQL AI.

8.1 AutoML Routines
MySQL AI AutoML routines reside in the MySQL sys schema.

8.1.1 ML_TRAIN

Run the ML_TRAIN routine on a training dataset to produce a trained machine learning model.

Before training models, make sure to review the following:

• Additional AutoML Requirements

• Supported Data Types for AutoML

• Train a Model

• Machine Learning Use Cases

This topic has the following sections. Refer to the appropriate sections depending on the type of
machine learning model you would like to train.

• ML_TRAIN Syntax

• Required ML_TRAIN Parameters
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• Common ML_TRAIN Options

• Parameters to Train a Classification Model

• Syntax Examples for Classification Training

• Parameters to Train a Regression Model

• Syntax Examples for Regression Training

• Parameters to Train a Forecasting Model

• Syntax Examples for Forecast Training

• Parameters to Train an Anomaly Detection Model

• Syntax Examples for Anomaly Detection Training

• Parameters to Train a Recommendation Model

• Syntax Examples for Recommendation Training

• Parameters to Train a Model with Topic Modeling

• Syntax Examples for Topic Modeling Training

• ML_TRAIN and ML_EXPLAIN

• Additional Syntax Examples

• See Also

ML_TRAIN Syntax

mysql> CALL sys.ML_TRAIN ('table_name', 'target_column_name', [options | NULL], model_handle);
 
options: {
     JSON_OBJECT("key","value"[,"key","value"] ...)
          "key","value": {
          ['task', {'classification'|'regression'|'forecasting'|'anomaly_detection'|'log_anomaly_detection'|'recommendation'|'topic_modeling'}|NULL]
          ['datetime_index', 'column']
          ['endogenous_variables', JSON_ARRAY('column'[,'column'] ...)]
          ['exogenous_variables', JSON_ARRAY('column'[,'column'] ...)]
          ['model_list', JSON_ARRAY('model'[,'model'] ...)]
          ['exclude_model_list', JSON_ARRAY('model'[,'model'] ...)]
          ['optimization_metric', 'metric']
          ['include_column_list', JSON_ARRAY('column'[,'column'] ...)]
          ['exclude_column_list', JSON_ARRAY('column'[,'column'] ...)]
          ['contamination',  'contamination factor']
          ['supervised_submodel_options', {'n_neighbors', 'N', 'min_labels', N}'] 
          ['ensemble_score', 'ensemble metric']
          ['users', 'users_column']
          ['items', 'items_column']
          ['notes', 'notes_text']
          ['feedback', {'explicit'  ['implicit'}]
          ['feedback_threshold', 'threshold']
          ['item_metadata', JSON_OBJECT('table_name'[,'database_name.table_name'] ...)]
          ['user_metadata', JSON_OBJECT('table_name'[,'database_name.table_name'] ...)]
          ['document_column', 'column_name']
          ['logad_options', JSON_OBJECT(("key","value"[,"key","value"] ...)
                 "key","value": {
                              ['additional_masking_regex', JSON_ARRAY('regular_expression'[,'regular_expression', ...])]]
                              ['window_size', 'N']
                              ['window_stride', 'N']
                              ['log_source_column', 'column']
                              ['embedding_model', 'model']
                              ['keyword_model', 'model']
                              }
          }
}
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Required ML_TRAIN Parameters

Set the following parameters to train all machine learning models.

• table_name: The name of the table that contains the labeled training dataset. The table name must
be valid and fully qualified, so it must include the database name, database_name.table_name.
The table cannot exceed 10 GB, 100 million rows, or 1017 columns.

• target_column_name: The name of the target column containing ground truth values.

AutoML does not support a text target column.

If training an unsupervised Anomaly detection model (unlabeled data), set target_column_name
to NULL.

Forecasting does not require target_column_name, and it can be set to NULL.

• model_handle: A user-defined session variable that stores the machine learning model handle for
the duration of the connection. User variables are written as @var_name. Any valid name for a user-
defined variable is permitted. For example, @my_model.

If you set a value to the model_handle variable before calling ML_TRAIN, that model handle is
used for the model. A model handle must be unique in the model catalog. We recommend this
method.

If you don't set a value to the model_handle variable, AutoML generates one. When ML_TRAIN
finishes executing, retrieve the generated model handle by querying the session variable. See Model
Handles to learn more.

Common ML_TRAIN Options

The following optional parameters apply to more than one type of machine learning task. They are
specified as key-value pairs in JSON format. If an option is not specified, the default setting is used. If
no options are specified, you can specify NULL in place of the JSON argument.

• task: Specifies the machine learning task.

• classification: The default value if a task is not set. Use this task type to assign items to
defined categories.

• regression: Use this task type if the target column is a continuous numerical value. This task
generates predictions based on the relationship between a dependent variable and one or more
independent variables.

• forecasting: Use this task type if you have a date-time column that requires a
timeseries forecast. To use this task, you must set a target column, the date-time column
(datetime_index), and endogenous variables (endogenous_variables).

• anomaly_detection: Use this task type to detect unusual patterns in data.

• log_anomaly_detection: Use this task to detect unusual patterns in log data.

• recommendation: Use this task type for generate recommendations for users and items.

• topic_modeling: Use this task to cluster word groups and similar expressions that best
characterize the documents.

• model_list: The type of model to be trained. If more than one model is specified, the best model
type is selected from the list. See Model Types.

This option cannot be used together with the exclude_model_list option.
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• exclude_model_list: Model types that should not be trained. Specified model types are excluded
from consideration during model selection. See Model Types.

This option cannot be specified together with the model_list option.

• optimization_metric: The scoring metric to optimize for when training a machine learning
model. The metric must be compatible with the task type and the target data. See Section 8.1.16,
“Optimization and Scoring Metrics”.

This is not supported for anomaly_detection tasks. Instead, metrics for anomaly detection can
only be used with the ML_SCORE routine.

• include_column_list: ML_TRAIN must include this list of columns.

For classification, regression, anomaly_detection and recommendation tasks,
include_column_list ensures that ML_TRAIN will not drop these columns.

For forecasting tasks, include_column_list can only include exogenous_variables. If
include_column_list is included in the ML_TRAIN options for a forecasting task with at least
one exogenous_variables, this forces ML_TRAIN to only consider those models that support
exogenous_variables.

All columns in include_column_list must be included in the training table.

• exclude_column_list: Feature columns of the training dataset to exclude from consideration
when training a model. Columns that are excluded using exclude_column_list do not also need
to be excluded from the dataset used for predictions.

The exclude_column_list cannot contain any columns provided in endogenous_variables,
exogenous_variables, and include_column_list.

• notes: Add notes to the model_metadata for your own reference.

Refer to the following model-specific parameters to train different types of machine learning models.

Parameters to Train a Classification Model

To train a classification model, set the task to classification.

If the task is set to NULL, or if all training options is set to NULL, a classification model is trained by
default.

Syntax Examples for Classification Training

• The following example sets the model handle before training, which is good practice. See Defining
Model Handle. The task is set to classification.

mysql> SET @census_model = 'census_manual';
mysql> CALL sys.ML_TRAIN('census_data.census_train', 'revenue', JSON_OBJECT('task', 'classification'), @census_model);

• The following example sets all options to NULL, so ML_TRAIN runs the classification task
option by default.

mysql> CALL sys.ML_TRAIN('census_data.census_train', 'revenue', NULL, @census_model);

Parameters to Train a Regression Model

To train a regression model, set the task to regression.

Syntax Examples for Regression Training

• The following example specifies the regression task type.

mysql> CALL sys.ML_TRAIN('nyc_taxi.nyc_taxi_train', 'tip_amount', JSON_OBJECT('task', 'regression'), @nyc_taxi);
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Parameters to Train a Forecasting Model

See the following to learn more about forecasting models:

• Forecasting Task Types

• Prediction Intervals

• Train a Forecasting Model

To train a forecasting model, set the task to forecasting and set the following required parameters.

• datetime_index: The column name for a datetime column that acts as an index for the forecast
variable. The column can be one of the supported datetime column types, DATETIME, TIMESTAMP,
DATE, TIME, and YEAR, or an auto-incrementing index.

The forecast models SARIMAXForecaster, VARMAXForecaster, and DynFactorForecaster
cannot back test, that is forecast into training data, when using exogenous_variables. Therefore,
the predict table must not overlap the datetime_index with the training table. The start date
in the predict table must be a date immediately following the last date in the training table when
exogenous_variables are used. For example, the predict table has to start with year 2024 if the
training table with YEAR data type datetime_index ends with year 2023.

The datetime_index for the predict table must not have missing dates after the last date in the
training table. For example, the predict table has to start with year 2024 if the training table with
YEAR data type datetime_index ends with year 2023. The predict table cannot start with year, for
example, 2025 or 2030, because that would miss out 1 and 6 years, respectively.

When options do not include exogenous_variables , the predict table can overlap the
datetime_index with the training table. This supports back testing.

The valid range of years for datetime_index dates must be between 1678 and 2261. It will cause
an error if any part of the training table or predict table has dates outside this range. The last date in
the training table plus the predict table length must still be inside the valid year range. For example,
if the datetime_index in the training table has YEAR data type, and the last date is year 2023, the
predict table length must be less than 238 rows: 2261 minus 2023 equals 238 rows.

• endogenous_variables: The column or columns to be forecast.

Univariate forecasting models support a single numeric column, specified as a JSON_ARRAY. This
column must also be specified as the target_column_name, because that field is required, but it is
not used in that location.

Multivariate forecasting models support multiple numeric columns, specified as a JSON_ARRAY. One
of these columns must also be specified as the target_column_name.

endogenous_variables cannot be text.

Set the following forecasting options as required to train forecasting models.

• exogenous_variables: For forecasting tasks, the column or columns of independent, non-
forecast, predictive variables, specified as a JSON_ARRAY. These optional variables are not forecast,
but help to predict the future values of the forecast variables. These variables affect a model
without being affected by it. For example, for sales forecasting these variables might be advertising
expenditure, occurrence of promotional events, weather, or holidays.

ML_TRAIN will consider all supported models during the algorithm selection stage if options
includes exogenous_variables, including models that do not support exogenous_variables.

For example, if options includes univariate endogenous_variables with
exogenous_variables, then ML_TRAIN will consider NaiveForecaster, ThetaForecaster,
ExpSmoothForecaster, ETSForecaster, STLwESForecaster, STLwARIMAForecaster,
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and SARIMAXForecaster. ML_TRAIN will ignore exogenous_variables if the model does not
support them.

Similarly, if options includes multivariate endogenous_variables with
exogenous_variables, then ML_TRAIN will consider VARMAXForecaster and
DynFactorForecaster.

If options also includes include_column_list, this will force ML_TRAIN to only consider those
models that support exogenous_variables.

• include_column_list: Can only include exogenous_variables. If include_column_list
contains at least one exogenous_variables, this will force ML_TRAIN to only consider those
models that support exogenous_variables.

Syntax Examples for Forecast Training

• The following example specifies the forecasting task type, and the additional required
parameters, datetime_index and endogenous_variables.

mysql> CALL sys.ML_TRAIN('ml_data.opsd_germany_daily_train', 'consumption', 
                          JSON_OBJECT('task', 'forecasting', 
                                      'datetime_index', 'ddate', 
                                      'endogenous_variables', JSON_ARRAY('consumption')), @forecast_model);

• The following example specifies the OrbitForecaster forecasting model with exogenous
variables.

mysql> CALL sys.ML_TRAIN('mlcorpus.opsd_germany_daily_train', NULL, 
                          JSON_OBJECT('task', 'forecasting', 
                                      'datetime_index', 'ddate', 
                                      'endogenous_variables', JSON_ARRAY('consumption'), 
                                      'exogenous_variables', JSON_ARRAY('wind', 'solar', 'wind_solar'), 
                                      'model_list', JSON_ARRAY('OrbitForecaster')), @model);

• The following example specifies the OrbitForecaster forecasting model without exogenous
variables.

mysql> CALL sys.ML_TRAIN('mlcorpus.`datetime_train`', 'C1', 
                          JSON_OBJECT('task', 'forecasting', 
                                      'datetime_index', 'C0', 
                                      'endogenous_variables', JSON_ARRAY('C1'), 
                                      'model_list', JSON_ARRAY('OrbitForecaster')), @datetime_model);

Parameters to Train an Anomaly Detection Model

See the following to learn more about anomaly detection models:

• Anomaly Detection Model Types

• Anomaly Detection Learning Types

• Anomaly Detection for Logs

To train an anomaly detection model, set the appropriate required parameters depending on the type of
anomaly detection model to train.

• Set the task parameter to anomaly_detection for running anomaly detection on table data, or
log_anomaly_detection for running anomaly detection on log data.

• If running an unsupervised model, the target_column_name parameter must be set to NULL.

• If running a semi-supervised model:

• The target_column_name parameter must specify a column whose only allowed values are 0
(normal), 1 (anomalous), and NULL (unlabeled). All rows will be used to train the unsupervised
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component, while the rows with a value different than NULL will be used to train the supervised
component.

• The experimental option must be set to semisupervised.

• If running anomaly detection on log data, the input table can only have the following columns:

• The column containing the logs.

• If including logs from different sources, a column containing the source of each log. Identify this
column with the log_source_column option.

• If including labeled data, a column identifying the labeled log lines. See Semi-supervised Anomaly
Detection to learn more.

• At least one column must act as the primary key to establish the temporal order of logs. If the
primary key column (or columns) is not one of the previous required columns (log data, source of
log, or label), then you must use the exclude_column_list option when running ML_TRAIN
to exclude all primary key columns that don't include required data. See Syntax Examples for
Anomaly Detection Training to review relevant examples.

• If the input table has additional columns to the ones permitted, you must use the
exclude_column_list option to exclude irrelevant columns.

Set the following options as needed for anomaly detection models:

• contamination: Represents an estimate of the percentage of outliers in the training table.

• The contamination factor is calculated as: estimated number of rows with anomalies/total number
of rows in the training table.

• The contamination value must be greater than 0 and less than 0.5. The default value is 0.01.

• model_list: You can select the Principal Component Analysis (PCA), Generalized Local Outlier
Factor (GLOF), or Generalized kth Nearest Neighbors (GkNN) model. If no option is specified, the
default model is GkNN. Selecting more than one model or an unsupported model produces an error.

To train a semi-supervised anomaly detection model, set the following options:

• supervised_submodel_options: Allows you to set optional override parameters for the
supervised model component. The only model supported is DistanceWeightedKNNClassifier.
The following parameters are supported:

• n_neighbors: Sets the desired k value that checks the k closest neighbors for each unclassified
point. The default value is 5 and the value must be an integer greater than 0.

• min_labels: Sets the minimum number of labeled data points required to train the supervised
component. If fewer labeled data points are provided during training of the model, ML_TRAIN fails.
The default value is 20 and the value must be an integer greater than 0.

• ensemble_score: This option specifies the metric to use to score the ensemble of unsupervised
and supervised components. It identifies the optimal weight between the two components based on
the metric. The supported metrics are accuracy, precision, recall, and f1. The default metric
is f1.

To train a model for anomaly detection on log data, set the following options:

• logad_options: A JSON_OBJECT that allows you to configure the following options.

• additional_masking_regex: Allows you to mask log data in a JSON_ARRAY. By default, the
following parameters are automatically masked during training.

• IP
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• DATETIME

• TIME

• HEX

• IPPORT

• OCID

• window_size: Specifies the maximum number of log lines to be grouped for anomaly detection.
The default value is 10.

• window_stride: Specifies the stride value to use for segmenting log lines. For example, there is
log A, B, C, D, and E. The window_size is 3, and the window_stride is 2. The first row has log
A, B, and C. The second row has log C, D, and E. If this value is equal to window_size, there is
no overlapping of log segments. The default value is 3.

• log_source_column: Specifies the column name that contains the source identifier of the
respective log lines. Log lines are grouped according to their respective source (for example, logs
from multiple MySQL databases that are in the same table). By default, all log lines are assumed
to be from the same source.

• embedding_model: The embedding model used to extract semantic features from log data.
To review supported embedding models in MySQL AI, run the following query: SELECT
sys.ML_LIST_LLMS(); and see models that have capabilities with TEXT_EMBEDDINGS.
The default value is multilingual-e5-small. Using an embedding model causes higher
memory usage. If you set this to NULL, then you cannot also set keyword_model to NULL.

• keyword_model: The keyword feature extractor used to extract keyword features from log data.
The available options are tf-idf and NULL. The default value is tf-idf. If you set this to NULL,
then you cannot also set embedding_model to NULL.

Anomaly detection models don't support the following options during training:

• exclude_model_list

• optimization_metric

Syntax Examples for Anomaly Detection Training

• The following example specifies the anomaly_detection task type.

mysql> CALL sys.ML_TRAIN('mlcorpus_anomaly_detection.volcanoes-b3_anomaly_train', NULL, 
                          JSON_OBJECT('task', 'anomaly_detection', 
                                      'exclude_column_list', JSON_ARRAY('target')), @anomaly);
Query OK, 0 rows affected (46.59 sec)

• The following example specifies the anomaly_detection task with a contamination option.
Query the model catalog metadata to check the value of the contamination option.

mysql> CALL sys.ML_TRAIN('mlcorpus_anomaly_detection.volcanoes-b3_anomaly_train', NULL, 
                          JSON_OBJECT('task', 'anomaly_detection', 
                                      'contamination', 0.013, 
                                      'exclude_column_list', JSON_ARRAY('target')), @anomaly_with_contamination);
Query OK, 0 rows affected (50.22 sec)

mysql> SELECT JSON_EXTRACT(model_metadata, '$.contamination') FROM ML_SCHEMA_root.MODEL_CATALOG WHERE model_handle = @anomaly_with_contamination;
+-------------------------------------------------+
| JSON_EXTRACT(model_metadata, '$.contamination') |
+-------------------------------------------------+
| 0.013000000268220901                            |
+-------------------------------------------------+
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1 row in set (0.00 sec)

• The following example enables semi-supervised learning using all defaults. The
target_column_name is set to target. The experimental option is set to semisupervised.

mysql> CALL sys.ML_TRAIN('mlcorpus.anomaly_train_with_partial_target', "target", 
                          CAST('{"task": "anomaly_detection", "experimental": {"semisupervised": {}}}' as JSON), @semisupervised_model);

• The following example enables semi-supervised learning with additional options.

mysql> CALL sys.ML_TRAIN('mlcorpus.`anomaly_train_with_partial_target`', "target", 
                          CAST('{"task": "anomaly_detection", "experimental": {"semisupervised": {"supervised_submodel_options": 
                          {""min_labels": 10, "n_neighbors": 3}, "ensemble_score": "recall"}}}' as JSON), 
                          @semisupervised_model_options);

Where:

• The supervised_submodel_options parameter min_labels is set to 10.

• The supervised_submodel_options parameter n_neighbors is set to 3.

• The ensemble_score option is set to the recall metric.

• The following example selects the PCA (Principal Component Analysis) anomaly detection model.

mysql> CALL sys.ML_TRAIN('mlcorpus_anomaly_detection_v1.`volcanoes-b3_anomaly_train`', NULL, 
                          JSON_OBJECT('task', 'anomaly_detection', 
                                      'exclude_column_list', JSON_ARRAY('target'), 'model_list', JSON_ARRAY('PCA')), @anomaly_pca);

• The following example selects the GLOF (Generalized Local Outlier Factor) anomaly detection
model.

mysql> CALL sys.ML_TRAIN('mlcorpus_anomaly_detection_v1.`volcanoes-b3_anomaly_train`', NULL, 
                          JSON_OBJECT('task', 'anomaly_detection', 
                                      'exclude_column_list', JSON_ARRAY('target'), 
                                      'model_list', JSON_ARRAY('GLOF')), @anomaly_glof);

• The following example does not specify an algorithm model for the model_list option. If no model
is specified, the default model GkNN is used.

mysql> CALL sys.ML_TRAIN('mlcorpus_anomaly_detection_v1.`volcanoes-b3_anomaly_train`', NULL, 
                          JSON_OBJECT('task', 'anomaly_detection', 
                                      'exclude_column_list', JSON_ARRAY('target'), 
                                      'model_list', JSON_ARRAY()), @anomaly_empty_list);

• The following example runs the log_anomaly_detection task with available default values.

mysql> CALL sys.ML_TRAIN('mlcorpus.`log_anomaly_just_patterns`', NULL, JSON_OBJECT('task', 'log_anomaly_detection'), @logad_model);

• The following example runs the log_anomaly_detection task with the PCA anomaly detection
model.

mysql> CALL sys.ML_TRAIN('mlcorpus.`log_anomaly_just_patterns`', NULL, 
                          JSON_OBJECT('task', 'log_anomaly_detection', 
                                      'model_list', JSON_ARRAY('PCA')), @logad_model);

• An ML_TRAIN example that excludes two primary key columns: primary_key_column1 and
primary_key_column2. These columns must be excluded because they do not have one of the
required items of data for training: the log data, the source of the log, or the label.

mysql>CALL sys.ML_TRAIN('mlcorpus.log_anomaly_two_primary', NULL, 
                         JSON_OBJECT('task', 'log_anomaly_detection', 
                                     'logad_options', JSON_OBJECT('window_size', 2, 'window_stride', 1), 
                                     'exclude_column_list', JSON_ARRAY('primary_key_column1', 'primary_key_column2')), @log_anomaly_us );

• The following example runs the log_anomaly_detection task and masks log data with
the additional_masking_regex option. In addition to the default parameters that are
automatically masked, email addresses from Yahoo, Hotmail, and Gmail are also masked. The
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log_source_column option is also included, which specifies the column that identifies the
respective source of the log line.

mysql> CALL sys.ML_TRAIN('mlcorpus.`log_anomaly_sourced`', NULL, 
                          JSON_OBJECT('task', 'log_anomaly_detection', 
                                      'logad_options', JSON_OBJECT('additional_masking_regex', 
                                      JSON_ARRAY('(\W|^)[\w.\-]{0,25}@(yahoo|hotmail|gmail)\.com(\W|$)'), 
                                      'log_source_column', 'source')), @log_anomaly_us);

• The following example sets semi-supervised learning for training log data for anomaly detection. The
window size is also set to a value of 4, and the window stride is set to 1.

mysql> CALL sys.ML_TRAIN('mlcorpus.`log_anomaly_semi`', "label", 
                          JSON_OBJECT('task', 'log_anomaly_detection', 
                                      'logad_options', JSON_OBJECT('window_size', 4, 'window_stride', 1), 
                                      "experimental", JSON_OBJECT("semisupervised", JSON_OBJECT("supervised_submodel_options", 
                                      JSON_OBJECT("min_labels", 10)))), @log_anomaly_us);

• The following example sets unsupervised learning for training log data for anomaly detection. A
query reviews supported embedding models. The all_minilm_l12_v2 embedding model and tf-
idf keyword model are selected for training.

mysql> SELECT sys.ML_LIST_LLMS();
+---------------------------------------------------------------------------------------------------------------------------------------------------------------+
| sys.ML_LIST_LLMS()                                                                                                                                            |
+---------------------------------------------------------------------------------------------------------------------------------------------------------------+
| [{"model_id": "llama3.2-3b-instruct-v1", "provider": "HeatWave", "capabilities": ["GENERATION"], "default_model": true, "availability_date": "2025-05-20"},   | 
| {"model_id": "all_minilm_l12_v2", "provider": "HeatWave", "capabilities": ["TEXT_EMBEDDINGS"], "default_model": false, "availability_date": "2024-07-01"},    |
| {"model_id": "multilingual-e5-small", "provider": "HeatWave", "capabilities": ["TEXT_EMBEDDINGS"], "default_model": true, "availability_date": "2024-07-24"}] |
+---------------------------------------------------------------------------------------------------------------------------------------------------------------+
mysql> SET @model='log_embedding_model';
Query OK, 0 rows affected (0.0490 sec)
mysql> CALL sys.ML_TRAIN('anomaly_log_embedding.training_data', NULL, 
       JSON_OBJECT('task', 'log_anomaly_detection', 
                   'exclude_column_list', JSON_ARRAY('log_id', 'timestamp', 'target'), 
                   'logad_options', JSON_OBJECT('embedding_model', 'all_minilm_l12_v2', 'keyword_model', 'tf-idf')), @model);
Query OK, 0 rows affected (27.0830 sec)

Parameters to Train a Recommendation Model

See Recommendation Task Types to learn more about recommendation models.

To train a recommendation model, set the task to recommendation and set the following required
parameters.

• users: Specifies the column name corresponding to the user ids. Values in this column must be in a
STRING data type, otherwise an error will be generated during training.

This must be a valid column name, and it must be different from the items column name.

• items: Specifies the column name corresponding to the item ids. Values in this column must be in a
STRING data type, otherwise an error will be generated during training.

This must be a valid column name, and it must be different from the users column name.

To train a recommendation model with explicit feedback, set feedback to explicit. If feedback is
not set, the default value is explicit.

To train a recommendation model with implicit feedback, set feedback to implicit and set the
following option as needed:

• feedback_threshold: The feedback threshold for a recommendation model that uses implicit
feedback. It represents the threshold required to be considered positive feedback. For example, if
numerical data records the number of times users interact with an item, you might set a threshold
with a value of 3. This means users would need to interact with an item more than three times to be
considered positive feedback.
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To train a content-based recommendation model, set feedback to implicit and set the following
required parameters:

• item_metadata: Defines the table that has item descriptions. It is a JSON object that has the
table_name option as a key, which specifies the table that has item descriptions. One column must
be the same as the item_id in the input table.

• user_metadata: Defines the table that has user descriptions. It is a JSON object that has the
table_name option as a key, which specifies the table that has user descriptions. One column must
be the same as the user_id in the input table.

• table_name: To be used with the item_metadata and user_metadata options. It specifies
the table name that has item or user descriptions. It must be a string in a fully qualified format
(database_name.table_name) that specifies the table name.

Syntax Examples for Recommendation Training

• The following example specifies the SVD recommendation model type. The default model is
TwoTower.

mysql> SET @rec_model = 'rec_model';
mysql> CALL sys.ML_TRAIN('movielens_data.movielens_train', 'rating', 
                          JSON_OBJECT('task', 'recommendation', 
                                      'users', 'user_id', 
                                      'items', 'item_id'), @rec_model);
Query OK, 0 rows affected (14.4091 sec)

mysql> SELECT model_handle, model_type FROM ML_SCHEMA_admin.MODEL_CATALOG WHERE model_handle='rec_model';
+--------------+------------+
| model_handle | model_type |
+--------------+------------+
| rec_model    | TwoTower   |
+--------------+------------+
1 row in set (0.0395 sec)

• The following example specifies the SVDpp recommendation model type.

mysql> CALL sys.ML_TRAIN('mlcorpus.foursquare_NYC_train', 'rating', 
                          JSON_OBJECT('task', 'recommendation', 
                                      'users', 'user_id', 
                                      'items', 'item_id', 
                                      'model_list',  JSON_ARRAY('SVDpp')), @model);
Query OK, 0 rows affected (13.97 sec)

mysql> SELECT model_type FROM ML_SCHEMA_root.MODEL_CATALOG WHERE model_handle=@model;
+------------+
| model_type |
+------------+
| SVDpp      |
+------------+
1 row in set (0.00 sec)

• The following example specifies the NMF recommendation model type.

mysql> CALL sys.ML_TRAIN('mlcorpus.foursquare_NYC_train', 'rating', 
                          JSON_OBJECT('task', 'recommendation', 
                                      'users', 'user_id', 
                                      'items', 'item_id', 
                                      'model_list', JSON_ARRAY('NMF')), @model);
Query OK, 0 rows affected (12.28 sec)

mysql> SELECT model_type FROM ML_SCHEMA_root.MODEL_CATALOG WHERE model_handle=@model;
+------------+
| model_type |
+------------+
| NMF        |
+------------+
1 row in set (0.00 sec)
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• The following example specifies three models for the model_list option. From those three
recommendation models, the SVD model is automatically selected for training.

mysql> SET @allowed_models = JSON_ARRAY('SVD', 'SVDpp', 'NMF');

mysql> CALL sys.ML_TRAIN('mlcorpus.foursquare_NYC_train', 'rating', 
                          JSON_OBJECT('task', 'recommendation', 
                                      'users', 'user_id', 
                                      'items', 'item_id', 
                                      'model_list', CAST(@allowed_models AS JSON)), @model);
Query OK, 0 rows affected (14.88 sec)

mysql> SELECT model_type FROM ML_SCHEMA_root.MODEL_CATALOG WHERE model_handle=@model;
+------------+
| model_type |
+------------+
| SVD        |
+------------+
1 row in set (0.00 sec)

• The following example specifies five models for the exclude_model_list option. The SVDpp
recommendation model is automatically selected from the remaining available models.

mysql> SET @exclude_models= JSON_ARRAY('NormalPredictor', 'Baseline', 'SlopeOne', 'CoClustering', 'SVD');

mysql> CALL sys.ML_TRAIN('mlcorpus.foursquare_NYC_train', 'rating', 
                          JSON_OBJECT('task', 'recommendation', 
                                      'users', 'user_id', 
                                      'items', 'item_id', 
                                      'exclude_model_list', CAST(@exclude_models AS JSON)), @model);
Query OK, 0 rows affected (14.71 sec)

mysql> SELECT model_type FROM ML_SCHEMA_root.MODEL_CATALOG WHERE model_handle=@model;
+------------+
| model_type |
+------------+
| SVDpp      |
+------------+
1 row in set (0.00 sec)

• The following example specifies the recommendation task with implicit feedback.

mysql> CALL sys.ML_TRAIN('mlcorpus.training_table', 'rating', 
                          JSON_OBJECT('task', 'recommendation', 
                                      'users', 'user_id', 
                                      'items', 'item_id', 
                                      'feedback', 'implicit'), @model);
Query OK, 0 rows affected (2 min 13.6415 sec)

• The following example trains a content-based recommendation model by specifying a table with
item descriptions (mlcorpus_recsys.`citeulike_items_sample). The optimization metric
hit_ratio_at_k is used. The model must use implicit feedback.

mysql> CALL sys.ML_TRAIN('mlcorpus_recsys.`citeulike_train_sample`', 'rating', 
                          JSON_OBJECT('task', 'recommendation', 
                                      'model_list', JSON_ARRAY('CTR'), 
                                      'users', 'user_id', 
                                      'items', 'item_id', 
                                      'feedback', 'implicit', 
                                      'optimization_metric', 'hit_ratio_at_k', 
                                      'item_metadata', JSON_OBJECT('table_name', 'mlcorpus_recsys.`citeulike_items_sample`')), @model);

              

Parameters to Train a Model with Topic Modeling

To train a machine learning model with topic modeling, set the task to topic_modeling  and set
the following required parameter:

• document_column: Specify the column name that contains the text to train.
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The following parameters are not supported for training machine learning models with topic modeling:

• model_list

• optimization_metric

• exclude_model_list

• exclude_column_list

• include_column_list

Syntax Examples for Topic Modeling Training

The following example runs the topic_modeling task with the required defined parameters.

mysql> CALL sys.ML_TRAIN('topic_modeling_data.text_types_train', NULL, 
                          JSON_OBJECT('task', 'topic_modeling', 'document_column', 'D0'), @topic_model);

ML_TRAIN and ML_EXPLAIN

The ML_TRAIN routine also runs the ML_EXPLAIN routine with the default Permutation Importance
model for prediction explainers and model explainers. See Generate Model Explanations. To train other
prediction explainers and model explainers use the ML_EXPLAIN routine with the preferred explainer
after ML_TRAIN.

ML_EXPLAIN does not support the anomaly_detection and recommendation tasks, and
ML_TRAIN does not run ML_EXPLAIN.

Additional Syntax Examples

• The model_list option permits specifying the type of model to be trained. If more than one type
of model specified, the best model type is selected from the list. For a list of supported model types,
see Model Types. This option cannot be used together with the exclude_model_list option.

The following example trains either an XGBClassifier or LGBMClassifier model.

mysql> CALL sys.ML_TRAIN('ml_data.iris_train', 'class', 
                          JSON_OBJECT('task','classification', 
                                      'model_list', JSON_ARRAY('XGBClassifier', 'LGBMClassifier')), @iris_model);

• The exclude_model_list option specifies types of models that should not be trained. Specified
model types are excluded from consideration. For a list of model types you can specify, see Model
Types. This option cannot be used together with the model_list option.

The following example excludes the LogisticRegression and GaussianNB models.

mysql> CALL sys.ML_TRAIN('ml_data.iris_train', 'class', 
                          JSON_OBJECT('task','classification', 
                                      'exclude_model_list', JSON_ARRAY('LogisticRegression', 'GaussianNB')), @iris_model);

• The optimization_metric option specifies a scoring metric to optimize for. See: Optimization
and Scoring Metrics.

The following example optimizes for the neg_log_loss metric.

mysql> CALL sys.ML_TRAIN('automl_bench.census_train', 'revenue', 
                          JSON_OBJECT('task','classification', 
                                      'optimization_metric', 'neg_log_loss'), @census_model);

• The exclude_column_list option specifies feature columns to exclude from consideration when
training a model.

The following example excludes the 'age' column from consideration when training a model for the
census dataset.
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mysql> CALL sys.ML_TRAIN('automl_bench.census_train', 'revenue', 
                          JSON_OBJECT('task','classification', 
                                      'exclude_column_list', JSON_ARRAY('age')), @census_model); 

• The include_column_list option specifies feature columns that must be considered for training
and should not be dropped.

The following example specifies to consider the 'job' column when training a model for the
census dataset.

mysql> CALL sys.ML_TRAIN('automl_bench.census_train', 'revenue', 
                          JSON_OBJECT('task','classification', 
                                      'include_column_list', JSON_ARRAY('job')), @census_model); 

• The following example adds notes to the model_metadata.

mysql> CALL sys.ML_TRAIN('ml_data.iris_train', 'class', 
                          JSON_OBJECT('task', 'classification', 
                                      'notes', 'classification model'), @model);
Query OK, 0 rows affected (1 min 42.53 sec)

mysql>  SELECT model_metadata FROM ML_SCHEMA_user1.MODEL_CATALOG WHERE model_handle=@model;
+-----------------------------------------------------------+
| JSON_PRETTY(model_metadata)                               |
+-----------------------------------------------------------+
| {
  "task": "classification",
  "notes": "classification model",
  "chunks": 1,
  "format": "HWMLv2.0",
  "n_rows": 120,
  "status": "Ready",
  "options": {
    "task": "classification",
    "notes": "classification model",
    "model_explainer": "permutation_importance",
    "prediction_explainer": "permutation_importance"
  },
  "n_columns": 4,
  "column_names": [
    "sepal length",
    "sepal width",
    "petal length",
    "petal width"
  ],
  "contamination": null,
  "model_quality": "high",
  "training_time": 15.591492652893066,
  "algorithm_name": "SVC",
  "training_score": -0.03133905306458473,
  "build_timestamp": 1751897493,
  "hyperparameters": {
    "C": 47.004275502593885,
    "gamma": 0.000030517578125,
    "cache_size": 800,
    "class_weight": "balanced"
  },
  "n_selected_rows": 96,
  "training_params": {
    "recommend": "ratings",
    "force_use_X": false,
    "recommend_k": 3,
    "remove_seen": true,
    "ranking_topk": 10,
    "lsa_components": 100,
    "ranking_threshold": 1,
    "feedback_threshold": 1
  },
  "train_table_name": "ml_data.iris_train",
  "model_explanation": {
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    "permutation_importance": {
      "petal width": 0.4194,
      "sepal width": 0.0,
      "petal length": 0.4192,
      "sepal length": 0.0415
    }
  },
  "n_selected_columns": 3,
  "target_column_name": "class",
  "optimization_metric": "neg_log_loss",
  "selected_column_names": [
    "petal length",
    "petal width",
    "sepal length"
  ],
  "training_drift_metric": {
    "mean": 0.0749,
    "variance": 0.0083
  }
} |
+-----------------------------------------------------------+
1 row in set (0.0416 sec)

See Also

• Train a Model

• The Model Catalog

8.1.2 ML_EXPLAIN

Running the ML_EXPLAIN routine on a model and dataset trains a prediction explainer and model
explainer, and adds a model explanation to the model catalog. See Generate Model Explanations and
Generate Prediction Explanations to learn more.

ML_EXPLAIN does not support recommendation, anomaly detection, and topic modeling models. A call
with one of these models produces an error.

ML_EXPLAIN Syntax

mysql> CALL sys.ML_EXPLAIN ('table_name', 'target_column_name',
      model_handle, [options]);

options: {
 JSON_OBJECT("key","value"[,"key","value"] ...)
      "key","value": {
      ['model_explainer', {'permutation_importance'|'partial_dependence'|'shap'|'fast_shap'}| NULL]
      ['prediction_explainer', {'permutation_importance'|'shap'}]
      ['columns_to_explain', JSON_ARRAY('column'[,'column'] ...)]
      ['target_value', 'target_class']
      }
}

When the ML_TRAIN routine runs, ML_EXPLAIN also runs with the Permutation Importance model
explainer and prediction explainer. To run ML_EXPLAIN_ROW and ML_EXPLAIN_TABLE with a different
explainer, you must first run ML_EXPLAIN with the same explainer. See Generate Model Explanations
and Generate Prediction Explanations to learn more.

Required ML_EXPLAIN Parameters

Set the following required parameters:

• table_name: You must define the table that you previously trained. The table name must be valid
and fully qualified, so it must include the database name (database_name.table_name).
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• target_column_name: Define the name of the target column in the training dataset that contains
ground truth values.

• model_handle: Enter the model handle for the trained model. The model explanation is stored in
this model metadata. The model must be loaded first. For example:

mysql> CALL sys.ML_MODEL_LOAD('ml_data.iris_train_user1_1636729526', NULL);

See Load a Model and Work with Model Handles to learn more.

If you run ML_EXPLAIN again with the same model handle and model explainer, the model
explanation field is overwritten with the new result.

ML_EXPLAIN Options

Optional parameters are specified as key-value pairs in JSON format. If an option is not specified, the
default setting is used. If you specify NULL in place of the JSON argument, the default Permutation
Importance model explainer is trained, and no prediction explainer is trained.

Set the following options as needed:

• model_explainer: Specifies one of the following model explainers:

• permutation_importance: The default model explainer.

• shap: The SHAP model explainer, which produces feature importance values based on Shapley
values.

• fast_shap: The Fast SHAP model explainer, which is a subsampling version of the SHAP model
explainer. It usually has a faster runtime.

• partial_dependence: Explains how changing the values in one or more columns will change
the value predicted by the model. The following additional arguments are required:

• columns_to_explain: A JSON array of one or more column names in the table specified by
table_name. The model explainer explains how changing the value in this column or columns
affects the model.

• target_value: A valid value that the target column containing ground truth values, as
specified by target_column_name, can take.

• prediction_explainer: Specifies one of the following prediction explainers:

• permutation_importance: The default prediction explainer.

• shap: The SHAP prediction explainer, which produces feature importance values based on
Shapley values.

Syntax Examples

Before running these examples, you must train and load the model first. See Train a Model and Load a
Model.

• The following example sets NULL for the options, which trains the default Permutation Importance
model explainer and no prediction explainer.

mysql> CALL sys.ML_EXPLAIN('bank_marketing_test.bank_train', 'y', @bank_test, NULL);

• The following example trains the Fast SHAP model explainer and SHAP prediction explainer.

mysql> CALL sys.ML_EXPLAIN('bank_marketing_test.bank_train', 'y', @bank_test, 
                            JSON_OBJECT('model_explainer', 'fast_shap', 
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                                        'prediction_explainer', 'shap'));

• The following example trains the Partial Dependence model explainer (which requires extra options)
and the SHAP prediction explainer. In this example, sepal width is the column to explain and the
target value to include in Iris_setosa.

mysql> CALL sys.ML_EXPLAIN('ml_data.iris_train', 'class', @iris_model, 
                            JSON_OBJECT('columns_to_explain', JSON_ARRAY('sepal width'), 
                                        'target_value', 'Iris-setosa', 
                                        'model_explainer', 'partial_dependence', 
                                        'prediction_explainer', 'shap'));

• You can query the model explanation from the model catalog. The JSON_PRETTY parameter
displays the output in an easily readable format. See View Model Explanations.

mysql> SELECT JSON_PRETTY(model_explanation) FROM ML_SCHEMA_user1.MODEL_CATALOG WHERE model_handle=@census_model;
+---------------------------------------------------------------------------------------------------------------------------------+
| JSON_PRETTY(model_explanation)                                                                                                  |
+---------------------------------------------------------------------------------------------------------------------------------+
| {
  "permutation_importance": {
    "age": 0.0292,
    "sex": 0.0023,
    "race": 0.0019,
    "fnlwgt": 0.0038,
    "education": 0.0008,
    "workclass": 0.0068,
    "occupation": 0.0223,
    "capital-gain": 0.0479,
    "capital-loss": 0.0117,
    "relationship": 0.0234,
    "education-num": 0.0352,
    "hours-per-week": 0.0148,
    "marital-status": 0.024,
    "native-country": 0.0
  }
} |
+---------------------------------------------------------------------------------------------------------------------------------+
1 row in set (0.0427 sec)

• An ML_EXPLAIN example that stores the model in the model_object_catalog.

mysql> SET @explain_option = JSON_OBJECT('model_explainer', 'shap', 'prediction_explainer', 'shap');  
Query OK, 0 rows affected (0.00 sec)

mysql> CALL sys.ML_EXPLAIN('mlcorpus.iris_train', 'class', @iris_model, @explain_option);
Query OK, 0 rows affected (11.51 sec)

mysql> SELECT model_object, model_object_size 
      FROM ML_SCHEMA_user1.MODEL_CATALOG 
      WHERE model_handle=@iris_model;
+--------------+-------------------+
| model_object | model_object_size |
+--------------+-------------------+
| NULL         |            348954 |
+--------------+-------------------+
1 row in set (0.00 sec)

mysql> SELECT model_metadata->>'$.format', model_metadata->>'$.chunks'
      FROM ML_SCHEMA_user1.MODEL_CATALOG 
      WHERE model_handle=@iris_model;
+-----------------------------+-----------------------------+
| model_metadata->>'$.format' | model_metadata->>'$.chunks' |
+-----------------------------+-----------------------------+
| HWMLv2.0                    | 1                           |
+-----------------------------+-----------------------------+
1 row in set (0.00 sec)

mysql> SELECT chunk_id, length(model_object) 
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      FROM ML_SCHEMA_user1.model_object_catalog 
      WHERE model_handle=@iris_model;
+----------+----------------------+
| chunk_id | length(model_object) |
+----------+----------------------+
|        1 |               348954 |
+----------+----------------------+
1 row in set (0.00 sec)

See Also

• Generate Model Explanations

• Generate Prediction Explanations

8.1.3 ML_MODEL_EXPORT

Use the ML_MODEL_EXPORT routine to export a model from the model catalog to a user defined table.

To learn how to use ML_MODEL_EXPORT to share models, see Grant Other Users Access to a Model.

ML_MODEL_EXPORT Overview

After you run ML_MODEL_EXPORT, the output table has these columns and formats:

• chunk_id:

INT AUTO_INCREMENT PRIMARY KEY

• model_object:

LONGTEXT DEFAULT NULL

• model_metadata:

JSON

See Model Metadata.

ML_MODEL_EXPORT should work regardless of model_metadata.status:

• If there is no corresponding row in the model_object_catalog for an existing model_handle in
the MODEL_CATALOG:

There should be only one row in the output table with chunk_id = 0, model_object = NULL and
model_metadata = MODEL_CATALOG.model_metadata.

• If there is at least one row in the model_object_catalog for an existing model_handle in the
MODEL_CATALOG:

• There should be N rows in the output table with chunk_id being 1 to N.

• ML_MODEL_EXPORT copies the model_object from model_object_catalog to the output
table.

• model_metadata in the row with chunk_id = 1 should be the same as in the MODEL_CATALOG.

ML_MODEL_EXPORT Syntax

mysql> CALL sys.ML_MODEL_EXPORT (model_handle, output_table_name);

ML_MODEL_EXPORT parameters:

• model_handle: The model handle for the model. See Work with Model Handles.
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• output_table_name: The name for the output table.

Syntax Examples

• An example that exports an AutoML model with metadata to the model catalog
(ML_SCHEMA_user1.model_export). The output table name is model_export. You can then use
SHOW_CREATE_TABLE to view information on the table for the exported model.

mysql> CALL sys.ML_MODEL_EXPORT(@iris_model, 'ML_SCHEMA_user1.model_export');
Query OK, 0 rows affected (0.06 sec)

mysql> SHOW CREATE TABLE ML_SCHEMA_user1.model_export;
+--------------+--------------------------------------------------------------------+
| Table        | Create Table                                                       |
+--------------+--------------------------------------------------------------------+
| model_export | CREATE TABLE `model_export` (
`chunk_id` int NOT NULL AUTO_INCREMENT,
`model_object` longtext,
`model_metadata` json DEFAULT NULL,
PRIMARY KEY (`chunk_id`)
) ENGINE=InnoDB AUTO_INCREMENT=2 DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci |
+--------------+--------------------------------------------------------------------+
1 row in set (0.00 sec)

See Also

• Grant Other Users Access to a Model

• Manage External ONNX Models

8.1.4 ML_MODEL_IMPORT

Use the ML_MODEL_IMPORT routine to import a pre-trained model into your model catalog.

To learn how to use ML_MODEL_IMPORT to share models, see Grant Other Users Access to a Model.

ML_MODEL_IMPORT Overview

MySQL AI supports the import of AutoML and Open Neural Network Exchange (ONNX) format models.
After import, all the AutoML routines can be used with an ONNX model.

Models in ONNX format (.onnx) cannot be loaded directly into a MySQL table. They require string
serialization and conversion to Base64 binary encoding. Before running ML_MODEL_IMPORT, follow
the instructions in Import an External ONNX Model to pre-process and then load the model into a
temporary table to use with AutoML.

The table to import should have the following columns, and their recommended parameters:

• chunk_id:

INT AUTO_INCREMENT PRIMARY KEY

• model_object:

LONGTEXT NOT NULL

• model_metadata:

JSON DEFAULT NULL

See Model Metadata.

The table must meet the following criteria:
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• There must be only one row in the table with chunk_id = 1.

• The model_metadata corresponding to chunk_id = 1 must have the correct JSON key-value pair
for the model format.

ML_MODEL_IMPORT stores the model_metadata corresponding to chunk_id = 1 in the model
catalog, and ignores the model_metadata from other rows.

If chunks in the model_metadata corresponding to chunk_id = 1 is not set, it is set to the number
of rows in the input table.

If ML_MODEL_IMPORT fails or is canceled, there is no change to the MODEL_CATALOG and to the
model_object_catalog.

ML_MODEL_IMPORT Syntax

mysql> CALL sys.ML_MODEL_IMPORT (model_object, model_metadata, model_handle);

model_metadata (model from a table): {
 JSON_OBJECT("key","value"[,"key","value"] ...)
      "key","value": {
      ['database', 'database']
      ['table', 'table']
      }
}

model_metadata (preprocessed model object): {
 JSON_OBJECT("key","value"[,"key","value"] ...)
      "key","value": {
      ['task', {'classification'|'regression'|'forecasting'|'anomaly_detection'|'recommendation'}|NULL]
      ['build_timestamp', 'timestamp']
      ['target_column_name', 'column']
      ['train_table_name', 'table']
      ['column_names', JSON_ARRAY('column'[,'column'] ...)]
      ['model_explanation', ml_explain_options]
      ['notes', 'notes']
      ['format', 'format']
      ['status', {'creating'|'ready'|'error'}|NULL]
      ['model_quality', 'quality']
      ['training_time', 'time']
      ['algorithm_name', 'algorithm']
      ['training_score', 'score']
      ['n_rows', 'rows']
      ['n_columns', 'columns']
      ['n_selected_rows', 'rows']
      ['n_selected_columns', 'columns']
      ['optimization_metric', 'metric']
      ['selected_column_names', JSON_ARRAY('column'[,'column'] ...)]
      ['contamination', 'contamination']
      ['options', ml_train_options]
      ['training_params', ml_train_params]
      ['onnx_inputs_info', data_types_map]
      ['onnx_outputs_info', labels_map]
      ['training_drift_metric', JSON_OBJECT('mean', 'value', 'variance', 'value')]
      ['chunks', 'chunks']
}

ML_MODEL_IMPORT Parameters

Set the following parameters:

• model_object:

• To import a model from a table: Set to NULL.

• To import a model object: Define the preprocessed model object.

• model_metadata:
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• To import a model from a table:

• database: The name of the database.

• table: The name of the table.

• To import a model object: An optional JSON object literal that contains key-value pairs with model
metadata. See Model Metadata.

• model_handle: The model handle for the model. The model is stored in the model catalog under
this name and accessed using it. Specify a model handle that does not already exist in the model
catalog. Set to NULL for to generate a unique model handle. See Work with Model Handles.

Syntax Examples

• An example that exports a model to a table, switches users, and then imports the model from that
table. To learn more, see Share a Model.

mysql> CALL sys.ML_MODEL_EXPORT(@iris_model, 'ML_SCHEMA_user1.model_export');
Query OK, 0 rows affected (0.06 sec)

mysql> SHOW CREATE TABLE ML_SCHEMA_user1.model_export;
+--------------+--------------------------------------------------------------------+
| Table        | Create Table                                                       |
+--------------+--------------------------------------------------------------------+
| model_export | CREATE TABLE `model_export` (
`chunk_id` int NOT NULL AUTO_INCREMENT,
`model_object` longtext,
`model_metadata` json DEFAULT NULL,
PRIMARY KEY (`chunk_id`)
) ENGINE=InnoDB AUTO_INCREMENT=2 DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci |
+--------------+--------------------------------------------------------------------+
1 row in set (0.00 sec)

# switch to user2

mysql> CALL sys.ML_MODEL_IMPORT(NULL, JSON_OBJECT('schema', 'ML_SCHEMA_user1', 'table', 'model_export'), @iris_export);
Query OK, 0 rows affected (0.19 sec)

mysql> CALL sys.ML_MODEL_LOAD(@iris_export, NULL);
Query OK, 0 rows affected (0.63 sec)

mysql> SELECT model_object, model_object_size FROM ML_SCHEMA_user2.MODEL_CATALOG WHERE model_handle=@iris_export;
+--------------+-------------------+
| model_object | model_object_size |
+--------------+-------------------+
| NULL         |            348954 |
+--------------+-------------------+
1 row in set (0.00 sec)

mysql> SELECT chunk_id, LENGTH(model_object) FROM ML_SCHEMA_user2.model_object_catalog WHERE model_handle=@iris_export;
+----------+----------------------+
| chunk_id | LENGTH(model_object) |
+----------+----------------------+
|        1 |               348954 |
+----------+----------------------+
1 row in set (0.00 sec)

• An example that imports a model in ONNX format from a table. To learn more, see Import an
External ONNX Model.

mysql> DROP TABLE IF EXISTS model_table;

mysql> CREATE TABLE model_table (
        chunk_id INT AUTO_INCREMENT PRIMARY KEY,
        model_object LONGTEXT NOT NULL,
        model_metadata JSON DEFAULT NULL);
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mysql> LOAD DATA INFILE '/onnx_examples/x00' 
        INTO TABLE model_table 
        CHARACTER SET binary 
        FIELDS TERMINATED BY '\t' 
        LINES TERMINATED BY '\r' 
        (model_object);
Query OK, 1 row affected (34.96 sec)
Records: 1  Deleted: 0  Skipped: 0  Warnings: 0

mysql> LOAD DATA INFILE '/onnx_examples/x01' 
        INTO TABLE model_table 
        CHARACTER SET binary 
        FIELDS TERMINATED BY '\t' 
        LINES TERMINATED BY '\r' 
        (model_object);
Query OK, 1 row affected (32.74 sec)
Records: 1  Deleted: 0  Skipped: 0  Warnings: 0

mysql> LOAD DATA INFILE '/onnx_examples/x02' 
        INTO TABLE model_table 
        CHARACTER SET binary 
        FIELDS TERMINATED BY '\t' 
        LINES TERMINATED BY '\r' 
        (model_object);
Query OK, 1 row affected (11.90 sec)
Records: 1  Deleted: 0  Skipped: 0  Warnings: 0

mysql> SET @model_metadata = JSON_OBJECT('task','classification',
                                          'onnx_outputs_info', JSON_OBJECT('predictions_name','label',
                                                                           'prediction_probabilities_name', 'probabilities'),
                                          'target_column_name','target');

mysql> UPDATE mlcorpus.model_table SET model_metadata=@model_metadata WHERE chunk_id=1;

mysql> CALL sys.ML_MODEL_IMPORT(NULL, JSON_OBJECT('schema', 'mlcorpus', 'table', 'model_table'), @onnx_model);
Query OK, 0 rows affected (18 min 7.29 sec)

mysql> CALL sys.ML_MODEL_LOAD(@onnx_model, NULL);
Query OK, 0 rows affected (6 min 51.37 sec) 

mysql> SELECT COUNT(*) FROM ML_SCHEMA_root.model_object_catalog WHERE model_handle=@onnx_model;
+----------+
| COUNT(*) |
+----------+
|        3 |
+----------+
1 row in set (0.01 sec)

mysql> SELECT SUM(LENGTH(model_object)) FROM ML_SCHEMA_root.model_object_catalog WHERE model_handle=@onnx_model;
+---------------------------+
| SUM(LENGTH(model_object)) |
+---------------------------+
|                2148494845 |
+---------------------------+
1 row in set (57.36 sec)

8.1.5 ML_PREDICT_ROW

ML_PREDICT_ROW generates predictions for one or more rows of unlabeled data specified in JSON
format. Invoke ML_PREDICT_ROW with a SELECT statement.

A call to ML_PREDICT_ROW can include columns that were not present during ML_TRAIN. A table can
include extra columns, and still use the AutoML model. This allows side by side comparisons of target
column labels, ground truth, and predictions in the same table. ML_PREDICT_ROW ignores any extra
columns, and appends them to the results.

ML_PREDICT_ROW does not support the following model types:

• Forecasting
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• Anomaly detection for logs

• Recommendation models trained with the TwoTower mdoel.

This topic has the following sections.

• ML_PREDICT_ROW Syntax

• Required ML_PREDICT_ROW Parameters

• ML_PREDICT ROW Option for Data Drift Detection

• ML_PREDICT_ROW Options for Recommendation Models

• Options for Anomaly Detection Models

• Syntax Examples

• See Also

ML_PREDICT_ROW Syntax

mysql> SELECT sys.ML_PREDICT_ROW(input_data, model_handle), [options]);

options: {
 JSON_OBJECT("key","value"[,"key","value"] ...)
      "key","value": {
      ['threshold', 'N']
      ['topk', 'N']
      ['recommend', {'ratings'|'items'|'users'|'users_to_items'|'items_to_users'|'items_to_items'|'users_to_users'}|NULL]
      ['remove_seen', {'true'|'false'}]
      ['additional_details', {'true'|'false'}]
      }
}

Required ML_PREDICT_ROW Parameters

Set the following required parameters:

• input_data: Define the data to generate predictions for. The column names must match the
feature column names in the table used to train the model. You can define the input data in the
following ways:

Specify a single row of data in JSON format.

mysql> SELECT sys.ML_PREDICT_ROW(JSON_OBJECT("column_name", value, "column_name", value, ...), model_handle, options);

Run ML_PREDICT_ROW on multiple rows of data by specifying the columns as key-value pairs in
JSON format and select from a table.

mysql> SELECT sys.ML_PREDICT_ROW(JSON_OBJECT("output_col_name", schema.`input_col_name`, "output_col_name", schema.`input_col_name`, ...), 
                                  model_handle, options) FROM input_table_name LIMIT N;

• model_handle: Define the model handle or a session variable that contains the model handle. See
Work with Model Handles.

Review the following options in JSON format.

ML_PREDICT ROW Option for Data Drift Detection

To view data drift detection values for classification and regression models, set the
additional_details option to true. The ml_results includes the drift JSON object literal.
See Analyze Data Drift.

237



ML_PREDICT_ROW

ML_PREDICT_ROW Options for Recommendation Models

Set the following options as needed for Recommendation models.

• topk: Specify the number of recommendations to provide as a positive integer. The default is 3.

• recommend: Specify what to recommend.

• ratings: Use this option to predict ratings. This is the default value.

The target column is prediction, and the values are float.

The input table must contain at least two columns with the same names as the user column and
item column from the training model.

• items: Use this option to recommend items for users.

The target column is item_recommendation, and the values are:

JSON_OBJECT("column_item_id_name", JSON_ARRAY("item_1", ... , "item_k"), "column_rating_name" , JSON_ARRAY(rating_1, ..., rating_k))

The input table must contain at least one column with the same name as the user column from the
training model.

• users: Use this option to recommend users for items.

The target column is user_recommendation, and the values are:

JSON_OBJECT("column_user_id_name", JSON_ARRAY("user_1", ... , "user_k"), "column_rating_name" , JSON_ARRAY(rating_1, ..., rating_k))

The input table must contain at least one column with the same name as the item column from the
training model.

• users_to_items: This is the same as items.

• items_to_users: This is the same as users.

• items_to_items: Use this option to recommend similar items for items.

The target column is item_recommendation, and the values are:

JSON_OBJECT("column_item_id_name", JSON_ARRAY("item_1", ... , "item_k"))

The input table must contain at least contain a column with the same name as the item column
from the training model.

• users_to_users: Use this option to recommend similar users for users.

The target column is user_recommendation, and the values are:

JSON_OBJECT("column_user_id_name", JSON_ARRAY("user_1", ... , "user_k"))

The input table must contain at least one column with the same name as the user column from the
training model.

• remove_seen: If the input table overlaps with the training table, and remove_seen is true, then
the model will not repeat existing interactions. The default is true. Set remove_seen to false to
repeat existing interactions from the training table.

Options for Anomaly Detection Models

Set the following options as needed for anomaly detection models.
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• threshold: The threshold you set on anomaly detection models determines which rows in the
output table are labeled as anomalies with an anomaly score of 1, or normal with an anomaly score
of 0. The value for the threshold is the degree to which a row of data or log segment is considered
for anomaly detection. Any sample with an anomaly score above the threshold is classified an
anomaly. The default value is (1 - contamination)-th percentile of all the anomaly scores.

Syntax Examples

• The following example generates a prediction on a single row of data. The results include the
ml_results field, which uses JSON format. Optionally use \G to display the information in an easily
readable format.

mysql> SET @row_input = JSON_OBJECT( 
          "age", 25, 
          "workclass", "Private", 
          "fnlwgt", 226802, 
          "education", "11th", 
          "education-num", 7, 
          "marital-status", "Never-married", 
          "occupation", "Machine-op-inspct", 
          "relationship", "Own-child", 
          "race", "Black", 
          "sex", "Male", 
          "capital-gain", 0, 
          "capital-loss", 0, 
          "hours-per-week", 40, 
          "native-country", "United-States"); 
mysql> SELECT sys.ML_PREDICT_ROW(@row_input, @census_model, NULL)\G
*************************** 1. row ***************************
sys.ML_PREDICT_ROW(@row_input, @census_model, NULL): 
{
    "age": 25,
    "sex": "Male",
    "race": "Black",
    "fnlwgt": 226802,
    "education": "11th",
    "workclass": "Private",
    "Prediction": "<=50K",
    "ml_results": {
        "predictions": {
            "revenue": "<=50K"
        },
        "probabilities": {
            ">50K": 0.0032,
            "<=50K": 0.9968
        }
    },
    "occupation": "Machine-op-inspct",
    "capital-gain": 0,
    "capital-loss": 0,
    "relationship": "Own-child",
    "education-num": 7,
    "hours-per-week": 40,
    "marital-status": "Never-married",
    "native-country": "United-States"
}
1 row in set (2.2218 sec)

• The following example generates predictions on two rows of data from the input table. Optionally use
\G to display the information in an easily readable format.

mysql> SELECT sys.ML_PREDICT_ROW(JSON_OBJECT(
 "age", census_train.`age`,
 "workclass", census_train.`workclass`,
 "fnlwgt", census_train.`fnlwgt`,
 "education", census_train.`education`,
 "education-num", census_train.`education-num`,
 "marital-status", census_train.`marital-status`,
 "occupation", census_train.`occupation`,
 "relationship", census_train.`relationship`,
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 "race", census_train.`race`,
 "sex", census_train.`sex`,
 "capital-gain", census_train.`capital-gain`,
 "capital-loss", census_train.`capital-loss`,
 "hours-per-week", census_train.`hours-per-week`,
 "native-country", census_train.`native-country`),
 @census_model, NULL)FROM census_data.census_train LIMIT 2\G
*************************** 1. row ***************************
sys.ML_PREDICT_ROW(JSON_OBJECT(
"age", census_train.`age`,
"workclass", census_train.`workclass`,
"fnlwgt", census_train.`fnlwgt`,
"education", census_train.`education`,
"education-num", census_train.`education-num`,
"marital-status", census_train.`marita: {
                                            "age": 62,
                                            "sex": "Female",
                                            "race": "White",
                                            "fnlwgt": 123582,
                                            "education": "10th",
                                            "workclass": "Private",
                                            "Prediction": "<=50K",
                                            "ml_results": {
                                                "predictions": {
                                                    "revenue": "<=50K"
                                                },
                                                "probabilities": {
                                                    ">50K": 0.0106,
                                                    "<=50K": 0.9894
                                                }
                                            },
                                            "occupation": "Other-service",
                                            "capital-gain": 0,
                                            "capital-loss": 0,
                                            "relationship": "Unmarried",
                                            "education-num": 6,
                                            "hours-per-week": 40,
                                            "marital-status": "Divorced",
                                            "native-country": "United-States"
                                        }
*************************** 2. row ***************************
sys.ML_PREDICT_ROW(JSON_OBJECT(
"age", census_train.`age`,
"workclass", census_train.`workclass`,
"fnlwgt", census_train.`fnlwgt`,
"education", census_train.`education`,
"education-num", census_train.`education-num`,
"marital-status", census_train.`marita: {
                                            "age": 32,
                                            "sex": "Female",
                                            "race": "White",
                                            "fnlwgt": 174215,
                                            "education": "Bachelors",
                                            "workclass": "Federal-gov",
                                            "Prediction": "<=50K",
                                            "ml_results": {
                                                "predictions": {
                                                    "revenue": "<=50K"
                                                },
                                                "probabilities": {
                                                    ">50K": 0.3249,
                                                    "<=50K": 0.6751
                                                }
                                            },
                                            "occupation": "Exec-managerial",
                                            "capital-gain": 0,
                                            "capital-loss": 0,
                                            "relationship": "Not-in-family",
                                            "education-num": 13,
                                            "hours-per-week": 60,
                                            "marital-status": "Never-married",
                                            "native-country": "United-States"
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                                        }
2 rows in set (9.6548 sec)

• The following example uses explicit feedback and runs the ML_PREDICT_ROW routine to predict the
top 3 items that a particular user will like with the users_to_items option.

mysql> SELECT sys.ML_PREDICT_ROW('{"user_id": "846"}', @model, JSON_OBJECT("recommend", "users_to_items", "topk", 3));
+----------------------------------------------------------------------------------------------------------------------+
| sys.ML_PREDICT_ROW('{"user_id": "846"}', @model,  JSON_OBJECT("recommend", "users_to_items", "topk", 3))             |
+----------------------------------------------------------------------------------------------------------------------+
| {"user_id": "846", "ml_results": "{"predictions": {"item_id": ["313", "483", "64"], "rating": [4.06, 4.05, 4.04]}}"} |
+----------------------------------------------------------------------------------------------------------------------+
1 row in set (0.2811 sec)

• The following example generates predictions on ten rows from an input table. The
additional_details parameter is set to TRUE, so you can review data drift
details.

mysql> SELECT sys.ML_PREDICT_ROW(JSON_OBJECT(
 "age", census_test.`age`,
 "workclass", census_test.`workclass`,
 "fnlwgt", census_test.`fnlwgt`,
 "education", census_test.`education`,
 "education-num", census_test.`education-num`,
 "marital-status", census_test.`marital-status`,
 "occupation", census_test.`occupation`,
 "relationship", census_test.`relationship`,
 "race", census_test.`race`,
 "sex", census_test.`sex`,
 "capital-gain", census_test.`capital-gain`,
 "capital-loss", census_test.`capital-loss`,
 "hours-per-week", census_test.`hours-per-week`,
 "native-country", census_test.`native-country`),
 @census_model, JSON_OBJECT('additional_details', TRUE))FROM census_data.census_test LIMIT 10;

| sys.ML_PREDICT_ROW(JSON_OBJECT(
"age", census_test.`age`,
"workclass", census_test.`workclass`,
"fnlwgt", census_test.`fnlwgt`,
"education", census_test.`education`,
"education-num", census_test.`education-num`,
"ma                                                                                                                                                                                                                                                                                                                           |
+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| {"age": 37, "sex": "Male", "race": "White", "fnlwgt": 99146, "education": "Bachelors", "workclass": "Private", "Prediction": "<=50K", "ml_results": {"drift": {"metric": 0.0, "attribution_percent": {"age": 0.0, "fnlwgt": 46.67, "capital-gain": 0.0}}, "predictions": {"revenue": "<=50K"}, "probabilities": {">50K": 0.42, "<=50K": 0.58}}, "occupation": "Exec-managerial", "capital-gain": 0, "capital-loss": 1977, "relationship": "Husband", "education-num": 13, "hours-per-week": 50, "marital-status": "Married-civ-spouse", "native-country": "United-States"}                |
| {"age": 34, "sex": "Male", "race": "White", "fnlwgt": 27409, "education": "9th", "workclass": "Private", "Prediction": "<=50K", "ml_results": {"drift": {"metric": 0.1, "attribution_percent": {"fnlwgt": 25.0, "education": 33.31, "workclass": 16.22}}, "predictions": {"revenue": "<=50K"}, "probabilities": {">50K": 0.24, "<=50K": 0.76}}, "occupation": "Craft-repair", "capital-gain": 0, "capital-loss": 0, "relationship": "Husband", "education-num": 5, "hours-per-week": 50, "marital-status": "Married-civ-spouse", "native-country": "United-States"}                       |
| {"age": 30, "sex": "Female", "race": "White", "fnlwgt": 299507, "education": "Assoc-acdm", "workclass": "Private", "Prediction": "<=50K", "ml_results": {"drift": {"metric": 0.26, "attribution_percent": {"relationship": 21.36, "education-num": 28.33, "hours-per-week": 33.21}}, "predictions": {"revenue": "<=50K"}, "probabilities": {">50K": 0.01, "<=50K": 0.99}}, "occupation": "Other-service", "capital-gain": 0, "capital-loss": 0, "relationship": "Unmarried", "education-num": 12, "hours-per-week": 40, "marital-status": "Separated", "native-country": "United-States"} |
| {"age": 62, "sex": "Female", "race": "White", "fnlwgt": 102631, "education": "Some-college", "workclass": "Self-emp-not-inc", "Prediction": "<=50K", "ml_results": {"drift": {"metric": 0.0, "attribution_percent": {"fnlwgt": 5.93, "relationship": 26.58, "hours-per-week": 35.69}}, "predictions": {"revenue": "<=50K"}, "probabilities": {">50K": 0.1, "<=50K": 0.9}}, "occupation": "Farming-fishing", "capital-gain": 0, "capital-loss": 0, "relationship": "Unmarried", "education-num": 10, "hours-per-week": 50, "marital-status": "Widowed", "native-country": "United-States"} |
| {"age": 51, "sex": "Male", "race": "White", "fnlwgt": 153486, "education": "Some-college", "workclass": "Private", "Prediction": "<=50K", "ml_results": {"drift": {"metric": 0.0, "attribution_percent": {"sex": 7.84, "workclass": 7.84, "education-num": 83.96}}, "predictions": {"revenue": "<=50K"}, "probabilities": {">50K": 0.3, "<=50K": 0.7}}, "occupation": "Handlers-cleaners", "capital-gain": 0, "capital-loss": 0, "relationship": "Husband", "education-num": 10, "hours-per-week": 40, "marital-status": "Married-civ-spouse", "native-country": "United-States"}         |
| {"age": 34, "sex": "Male", "race": "Black", "fnlwgt": 434292, "education": "HS-grad", "workclass": "Private", "Prediction": "<=50K", "ml_results": {"drift": {"metric": 2.46, "attribution_percent": {"education": 12.36, "relationship": 22.07, "education-num": 19.92}}, "predictions": {"revenue": "<=50K"}, "probabilities": {">50K": 0.33, "<=50K": 0.67}}, "occupation": "Other-service", "capital-gain": 0, "capital-loss": 0, "relationship": "Husband", "education-num": 9, "hours-per-week": 30, "marital-status": "Married-civ-spouse", "native-country": "United-States"}     |
| {"age": 28, "sex": "Male", "race": "White", "fnlwgt": 240172, "education": "Masters", "workclass": "Self-emp-not-inc", "Prediction": "<=50K", "ml_results": {"drift": {"metric": 0.23, "attribution_percent": {"sex": 17.41, "fnlwgt": 21.67, "workclass": 17.41}}, "predictions": {"revenue": "<=50K"}, "probabilities": {">50K": 0.24, "<=50K": 0.76}}, "occupation": "Prof-specialty", "capital-gain": 0, "capital-loss": 0, "relationship": "Own-child", "education-num": 14, "hours-per-week": 40, "marital-status": "Never-married", "native-country": "United-States"}             |
| {"age": 56, "sex": "Male", "race": "White", "fnlwgt": 219426, "education": "10th", "workclass": "Private", "Prediction": "<=50K", "ml_results": {"drift": {"metric": 0.06, "attribution_percent": {"age": 27.74, "race": 22.22, "education-num": 25.1}}, "predictions": {"revenue": "<=50K"}, "probabilities": {">50K": 0.13, "<=50K": 0.87}}, "occupation": "Handlers-cleaners", "capital-gain": 0, "capital-loss": 0, "relationship": "Not-in-family", "education-num": 6, "hours-per-week": 40, "marital-status": "Never-married", "native-country": "United-States"}                  |
| {"age": 46, "sex": "Female", "race": "White", "fnlwgt": 295791, "education": "HS-grad", "workclass": "Private", "Prediction": "<=50K", "ml_results": {"drift": {"metric": 0.0, "attribution_percent": {"race": 9.66, "capital-gain": 41.59, "marital-status": 38.47}}, "predictions": {"revenue": "<=50K"}, "probabilities": {">50K": 0.17, "<=50K": 0.83}}, "occupation": "Tech-support", "capital-gain": 0, "capital-loss": 0, "relationship": "Not-in-family", "education-num": 9, "hours-per-week": 30, "marital-status": "Divorced", "native-country": "United-States"}              |
| {"age": 46, "sex": "Male", "race": "White", "fnlwgt": 114032, "education": "Some-college", "workclass": "Private", "Prediction": "<=50K", "ml_results": {"drift": {"metric": 0.0, "attribution_percent": {"age": 0.0, "capital-gain": 0.0, "education-num": 100.0}}, "predictions": {"revenue": "<=50K"}, "probabilities": {">50K": 0.34, "<=50K": 0.66}}, "occupation": "Tech-support", "capital-gain": 0, "capital-loss": 1887, "relationship": "Husband", "education-num": 10, "hours-per-week": 45, "marital-status": "Married-civ-spouse", "native-country": "United-States"}        |

10 rows in set (6.8109 sec)

See Also

• Generate Predictions for a Row of Data

• Analyze Data Drift

8.1.6 ML_PREDICT_TABLE

ML_PREDICT_TABLE generates predictions for an entire table of unlabeled data. AutoML performs the
predictions in parallel.

This topic has the following sections.

• ML_PREDICT_TABLE Overview
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• ML_PREDICT_TABLE Syntax

• Required ML_PREDICT_TABLE Parameters

• ML_PREDICT_TABLE Options

• Options for Recommendation Models

• Requirements and Options for Anomaly Detection Models

• Options for Forecasting Models

• Syntax Examples

• See Also

ML_PREDICT_TABLE Overview

ML_PREDICT_TABLE is a compute intensive process. If ML_PREDICT_TABLE takes a long time to
complete, manually limit input tables to a maximum of 1,000 rows.

A call to ML_PREDICT_TABLE can include columns that were not present during ML_TRAIN. A table
can include extra columns, and still use the AutoML model. This allows side by side comparisons of
target column labels, ground truth, and predictions in the same table. ML_PREDICT_TABLE ignores
any extra columns, and appends them to the results.

The output table includes a primary key:

• If the input table has a primary key, the output table has the same primary key.

• If the input table does not have a primary key, the output table has a new primary key column that
auto increments. The name of the new primary key column is _4aad19ca6e_pk_id. The input table
must not have a column with the name _4aad19ca6e_pk_id that is not a primary key.

The output of predictions includes the ml_results column, which contains the prediction results and
the data. The combination of results and data must be less than 65,532 characters.

You have the option to specify the input table and output table as the same table if specific conditions
are met. See Input Tables and Output Tables to learn more.

ML_PREDICT_TABLE supports data drift detection for classification and regression models with the
following:

• The options parameter includes the additional_details boolean value.

• The ml_results column includes the drift JSON object literal.

See Analyze Data Drift.

ML_PREDICT_TABLE Syntax

mysql> CALL sys.ML_PREDICT_TABLE(table_name, model_handle, output_table_name), [options]);
 
options: {
     JSON_OBJECT("key","value"[,"key","value"] ...)
          "key","value": {
          ['threshold', 'N']
          ['topk', 'N']
          ['recommend', {'ratings'|'items'|'users'|'users_to_items'|'items_to_users'|'items_to_items'|'users_to_users'}|NULL]
          ['remove_seen', {'true'|'false'}]
                    ['additional_details', {'true'|'false'}]
          ['prediction_interval', 'N']
          ['item_metadata', JSON_OBJECT('table_name'[,'database_name.table_name'] ...)]
          ['user_metadata', JSON_OBJECT('table_name'[,'database_name.table_name'] ...)]
          ['logad_options', JSON_OBJECT(("key","value"[,"key","value"] ...)
                 "key","value": {
                              ['summarize_logs', {'true'|'false'}]
                              ['summary_threshold', 'N']
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                              }
          }
}

Required ML_PREDICT_TABLE Parameters

Set the following required parameters:

• table_name: Specifies the fully qualified name of the input table (database_name.table_name).
The input table should contain the same feature columns as the training dataset. If the target column
is included in the input table, it is not considered when generating predictions.

• model_handle: Specifies the model handle or a session variable containing the model handle. See
Work with Model Handles.

• output_table_name: Specifies the table where predictions are stored. A fully qualified table
name must be specified (database_name.table_name). You have the option to specify the input
table and output table as the same table if specific conditions are met. See Input Tables and Output
Tables to learn more.

ML_PREDICT_TABLE Options

Set the following options in JSON format as needed.

• To view data drift detection values for classification and regression models, set the
additional_details option to true. The ml_results includes the drift JSON object literal.

Additional options are available for recommendation, anomaly detection, and forecasting models.

Options for Recommendation Models

Set the following options as needed for recommendation models.

• threshold: The optional threshold that defines positive feedback, and a relevant sample. Only use
with ranking metrics. It can be used for either explicit or implicit feedback.

• topk: The optional top number of recommendations to provide. The default is 3. Set a positive
integer between 1 and the number of rows in the table.

A recommendation task with implicit feedback can use both threshold and topk.

• recommend: Specify what to recommend.

• ratings: Use this option to predict ratings. This is the default value.

The target column is prediction, and the values are float.

The input table must contain at least two columns with the same names as the user column and
item column from the training model.

• items: Use this option to recommend items for users.

The target column is item_recommendation, and the values are:

JSON_OBJECT("column_item_id_name", JSON_ARRAY("item_1", ... , "item_k"), "column_rating_name" , JSON_ARRAY(rating_1, ..., rating_k))

The input table must contain at least one column with the same name as the user column from the
training model.

• users: Use this option to recommend users for items.

The target column is user_recommendation, and the values are:

JSON_OBJECT("column_user_id_name", JSON_ARRAY("user_1", ... , "user_k"), "column_rating_name" , JSON_ARRAY(rating_1, ..., rating_k))
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The input table must contain at least one column with the same name as the item column from the
training model.

• users_to_items: This is the same as items.

• items_to_users: This is the same as users.

• items_to_items: Use this option to recommend similar items for items.

The target column is item_recommendation, and the values are:

JSON_OBJECT("column_item_id_name", JSON_ARRAY("item_1", ... , "item_k"))

The input table must contain at least one column with the same name as the item column from the
training model.

• users_to_users: Use this option to recommend similar users for users.

The target column is user_recommendation, and the values are:

JSON_OBJECT("column_user_id_name", JSON_ARRAY("user_1", ... , "user_k"))

The input table must at least contain a column with the same name as the user column from the
training model.

• remove_seen: If the input table overlaps with the training table, and remove_seen is true, then
the model will not repeat existing interactions. The default is true. Set remove_seen to false to
repeat existing interactions from the training table.

• item_metadata: Defines the table that has item descriptions. It is a JSON object that has the
table_name option as a key, which specifies the table that has item descriptions. One column must
be the same as the item_id in the input table.

• user_metadata: Defines the table that has user descriptions. It is a JSON object that has the
table_name option as a key, which specifies the table that has user descriptions. One column must
be the same as the user_id in the input table.

• table_name: To be used with the item_metadata and user_metadata options. It specifies
the table name that has item or user descriptions. It must be a string in a fully qualified format
(schema_name.table_name) that specifies the table name.

Requirements and Options for Anomaly Detection Models

If you run ML_PREDICT_TABLE with the log_anomaly_detection task, at least one column must
act as the primary key to establish the temporal order of logs.

Set the following options as needed for anomaly detection models.

• threshold: The threshold you set on anomaly detection models determines which rows in the
output table are labeled as anomalies with an anomaly score of 1, or normal with an anomaly score
of 0. The value for the threshold is the degree to which a row of data or log segment is considered
for anomaly detection. Any sample with an anomaly score above the threshold is classified an
anomaly. The default value is (1 - contamination)-th percentile of all the anomaly scores.

• topk: The optional top K rows to display with the highest anomaly scores. Set a positive integer
between 1 and the number of rows in the table. If topk is not set, ML_PREDICT_TABLE uses
threshold.

Do not set both threshold and topk. Use threshold or topk, or set options to NULL.

• logad_options: A JSON_OBJECT that allows you to configure the following options for running an
anomaly detection model on log data.
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• summarize_logs: Allows you to leverage GenAI to generate textual summaries of results.
Enable this option by setting it to TRUE. If enabled, summaries are generated for log segments
that are labeled as an anomaly or have anomaly scores higher than the value set for the
summary_threshold.

• summary_threshold: Determines the rows in the output table that are summarized. This does
not affect how the contamination and threshold options determine anomalies. You can set
a value greater than 0 and less than 1. The default value is NULL. If NULL is selected, only the log
segments tagged with is_anomaly are used to generate summaries.

Options for Forecasting Models

Set the following options as needed for forecasting models.

• prediction_interval: Use this to generate forecasted values with lower and upper bounds
based on a specific prediction interval (level of confidence). For the prediction_interval value:

• The default value is 0.95.

• The data type for this value must be FLOAT.

• The value must be greater than 0 and less than 1.

Syntax Examples

• A typical usage example that specifies the fully qualified name of the table to generate predictions
for, the session variable containing the model handle, and the fully qualified output table name.

mysql> CALL sys.ML_PREDICT_TABLE('census_data.census_train', @census_model, 'census_data.census_train_predictions', NULL);

To view ML_PREDICT_TABLE results, query the output table. The table shows the predictions
and the feature column values used to make each prediction. The table includes the primary key,
_4aad19ca6e_pk_id, and the ml_results column, which uses JSON format:

mysql> SELECT * FROM census_train_predictions LIMIT 5;
+-------------------+-----+------------------+--------+--------------+---------------+--------------------+-------------------+--------------+-------+--------+--------------+--------------+----------------+----------------+---------+------------+---------------------------------------------------------------------------------------+
| _4aad19ca6e_pk_id | age | workclass        | fnlwgt | education    | education-num | marital-status     | occupation        | relationship | race  | sex    | capital-gain | capital-loss | hours-per-week | native-country | revenue | Prediction | ml_results                                                                            |
+-------------------+-----+------------------+--------+--------------+---------------+--------------------+-------------------+--------------+-------+--------+--------------+--------------+----------------+----------------+---------+------------+---------------------------------------------------------------------------------------+
|                 1 |  37 | Private          |  99146 | Bachelors    |            13 | Married-civ-spouse | Exec-managerial   | Husband      | White | Male   |            0 |         1977 |             50 | United-States  | >50K    | <=50K      | {"predictions": {"revenue": "<=50K"}, "probabilities": {"<=50K": 0.58, ">50K": 0.42}} |
|                 2 |  34 | Private          |  27409 | 9th          |             5 | Married-civ-spouse | Craft-repair      | Husband      | White | Male   |            0 |            0 |             50 | United-States  | <=50K   | <=50K      | {"predictions": {"revenue": "<=50K"}, "probabilities": {"<=50K": 0.76, ">50K": 0.24}} |
|                 3 |  30 | Private          | 299507 | Assoc-acdm   |            12 | Separated          | Other-service     | Unmarried    | White | Female |            0 |            0 |             40 | United-States  | <=50K   | <=50K      | {"predictions": {"revenue": "<=50K"}, "probabilities": {"<=50K": 0.99, ">50K": 0.01}} |
|                 4 |  62 | Self-emp-not-inc | 102631 | Some-college |            10 | Widowed            | Farming-fishing   | Unmarried    | White | Female |            0 |            0 |             50 | United-States  | <=50K   | <=50K      | {"predictions": {"revenue": "<=50K"}, "probabilities": {"<=50K": 0.9, ">50K": 0.1}}   |
|                 5 |  51 | Private          | 153486 | Some-college |            10 | Married-civ-spouse | Handlers-cleaners | Husband      | White | Male   |            0 |            0 |             40 | United-States  | <=50K   | <=50K      | {"predictions": {"revenue": "<=50K"}, "probabilities": {"<=50K": 0.7, ">50K": 0.3}}   |
+-------------------+-----+------------------+--------+--------------+---------------+--------------------+-------------------+--------------+-------+--------+--------------+--------------+----------------+----------------+---------+------------+---------------------------------------------------------------------------------------+
5 rows in set (0.0014 sec)

• The following example generates a table of recommendations. The output recommends the top three
items that particular users will like.

mysql> CALL sys.ML_PREDICT_TABLE('mlcorpus.test_sample',  @model, 'mlcorpus.table_predictions_users',  
                                  JSON_OBJECT("recommend", "items", "topk", 3));
Query OK, 0 rows affected (5.0672 sec)

mysql> SELECT * FROM mlcorpus.table_predictions_users LIMIT 3;
+-------------------+---------+---------+--------+--------------------------------------------------------------------------------+
| _4aad19ca6e_pk_id | user_id | item_id | rating | ml_results                                                                     |
+-------------------+---------+---------+--------+--------------------------------------------------------------------------------+
|                 1 | 1026    | 13763   |      1 | {"predictions": {"item_id": ["10", "14", "11"], "rating": [3.43, 3.37, 3.18]}} |
|                 2 | 992     | 16114   |      1 | {"predictions": {"item_id": ["10", "14", "11"], "rating": [3.42, 3.38, 3.17]}} |
|                 3 | 1863    | 4527    |      1 | {"predictions": {"item_id": ["10", "14", "11"], "rating": [3.42, 3.37, 3.18]}} |
+-------------------+---------+---------+--------+--------------------------------------------------------------------------------+

• The following example generates a table of anomaly detection predictions. A threshold value of 1% is
specified.
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mysql> CALL sys.ML_PREDICT_TABLE('mlcorpus_anomaly_detection.volcanoes-b3_anomaly_train', @anomaly, 'mlcorpus_anomaly_detection.volcanoes-predictions_threshold', 
                                  JSON_OBJECT('threshold', 0.01));
Query OK, 0 rows affected (12.77 sec)

mysql> SELECT * FROM mlcorpus_anomaly_detection.volcanoes-predictions_threshold LIMIT 5;
+-------------------+------+------+----------+--------+----------------------------------------------------------------------------------------+
| _4aad19ca6e_pk_id | V1   | V2   | V3       | target | ml_results                                                                             |
+-------------------+------+------+----------+--------+----------------------------------------------------------------------------------------+
|                 1 |  128 |  802 |  0.47255 |      0 | {'predictions': {'is_anomaly': 1}, 'probabilities': {'normal': 0.95, 'anomaly': 0.05}} |
|                 2 |  631 |  642 | 0.387302 |      0 | {'predictions': {'is_anomaly': 1}, 'probabilities': {'normal': 0.96, 'anomaly': 0.04}} |
|                 3 |  438 |  959 | 0.556034 |      0 | {'predictions': {'is_anomaly': 1}, 'probabilities': {'normal': 0.74, 'anomaly': 0.26}} |
|                 4 |  473 |  779 | 0.407626 |      0 | {'predictions': {'is_anomaly': 1}, 'probabilities': {'normal': 0.87, 'anomaly': 0.13}} |
|                 5 |   67 |  933 | 0.383843 |      0 | {'predictions': {'is_anomaly': 1}, 'probabilities': {'normal': 0.95, 'anomaly': 0.05}} |
+-------------------+------+------+----------+--------+----------------------------------------------------------------------------------------+
5 rows in set (0.00 sec)

• The following example generates a table of anomaly detection predictions by using semi-supervised
learning. It overrides the ensemble_score value from the ML_TRAIN routine to a new value of 0.5.

mysql> CALL sys.ML_PREDICT_TABLE('mlcorpus.anomaly_train',@semsup_gknn, 'mlcorpus.preds_gknn_weighted', 
                                  CAST('{"experimental": {"semisupervised": {"supervised_submodel_weight": 0.5}}}' as JSON));

• The following example generates a table of anomaly detection predictions for log data. It disables log
summaries in the results.

mysql> CALL sys.ML_PREDICT_TABLE('mlcorpus.`log_anomaly_just_patterns`', @logad_model, 'mlcorpus.log_anomaly_test_out', 
                                  JSON_OBJECT('logad_options', JSON_OBJECT('summarize_logs', FALSE)));
mysql> SELECT * FROM mlcorpus.log_anomaly_test_out LIMIT 1; 
+----+--------------------------------------------------------------------------------------------------------------------------+---------------------------------------------------------------------------------------+
| id | parsed_log_segment                                                                                                       | ml_results                                                                            |
+----+--------------------------------------------------------------------------------------------------------------------------+---------------------------------------------------------------------------------------+
|  1 | 2024-04-11T14:39:45.443597Z 1 [Note] [MY-013546] [InnoDB] Atomic write enabled                                           | {"index_map": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],                                        |
|    | 2024-04-11T14:39:45.443618Z 1 [Note] [MY-012932] [InnoDB] PUNCH HOLE support available                                   | "predictions": {"is_anomaly": 0}, "probabilities": {"normal": 0.55, "anomaly": 0.45}} |
|    | 2024-04-11T14:39:45.443631Z 1 [Note] [MY-012944] [InnoDB] Uses event mutexes                                             |                                                                                       |
|    | 2024-04-11T14:39:45.443635Z 1 [Note] [MY-012945] [InnoDB] GCC builtin __atomic_thread_fence() is used for memory barrier |                                                                                       |
|    | 2024-04-11T14:39:45.443646Z 1 [Note] [MY-012948] [InnoDB] Compressed tables use zlib 1.2.13                              |                                                                                       |
|    | 2024-04-11T14:40:25.128143Z 0 [Note] [MY-010264] [Server] - '127.0.0.1' resolves to '127.0.0.1';                         |                                                                                       |
|    | 2024-04-11T14:40:25.128182Z 0 [Note] [MY-010251] [Server] Server socket created on IP: '127.0.0.1'.                      |                                                                                       |
|    | 2024-04-11T14:40:25.128245Z 0 [Note] [MY-010252] [Server] Server hostname (bind-address): '10.0.1.125'; port: 3306       |                                                                                       |
|    | 2024-04-11T14:40:25.128272Z 0 [Note] [MY-010264] [Server] - '10.0.1.125' resolves to '10.0.1.125';                       |                                                                                       |
|    | 2024-04-26T13:01:30.287325Z 0 [Warning] [MY-015116] [Server] Background histogram update on nexus.fetches:               |                                                                                       |
|    | Lock wait timeout exceeded; try restarting transaction                                                                   |                                                                                       |
+----+------+------+----------+--------+----------------------------------------------------------------------------------------+---------------------------------------------------------------------------------------+

See Also

• Generate Predictions for a Table

• Analyze Data Drift

8.1.7 ML_EXPLAIN_ROW

The ML_EXPLAIN_ROW routine generates explanations for one or more rows of unlabeled data. Invoke
ML_EXPLAIN_ROW with a SELECT statement. It limits explanations to the 100 most relevant features.

A loaded and trained model with the appropriate prediction explainer is required to run
ML_EXPLAIN_ROW. See Generate Prediction Explanations for a Row of Data.

ML_EXPLAIN_ROW does not support recommendation, anomaly detection and topic modeling models.
A call with one of these models produces an error.

A call to ML_EXPLAIN_ROW can include columns that were not present during ML_TRAIN. A table can
include extra columns, and still use the AutoML model. This allows side by side comparisons of target
column labels, ground truth, and explanations in the same table. ML_EXPLAIN_ROW ignores any extra
columns, and appends them to the results.
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ML_EXPLAIN_ROW Syntax

mysql> SELECT sys.ML_EXPLAIN_ROW(input_data, model_handle, [options]);

options: {
 JSON_OBJECT("key","value"[,"key","value"] ...)
      "key","value": {
      ['prediction_explainer', {'permutation_importance'|'shap'}|NULL]
      }
}

Required ML_EXPLAIN_ROW Parameters

Set the following required parameters:

• input_data: Define the data to generate explanations for. The column names must match the
feature column names in the table used to train the model. You can define the input data in the
following ways:

Specify a single row of data in JSON format:

mysql> SELECT sys.ML_EXPLAIN_ROW(JSON_OBJECT("column_name", value, "column_name", value, ...)', model_handle, options);

To run ML_EXPLAIN_ROW on multiple rows of data, specify the columns in JSON key-value format
and select from an input table:

mysql> SELECT sys.ML_EXPLAIN_ROW(JSON_OBJECT("output_col_name", schema.`input_col_name`, output_col_name", schema.`input_col_name`, ...), 
                                  model_handle, options) FROM input_table_name LIMIT N;

• model_handle: Specifies the model handle or a session variable containing the model handle. See
Work with Model Handles.

ML_EXPLAIN_ROW Options

You can set the following option in JSON format as needed:

• prediction_explainer: The name of the prediction explainer that you have trained for this model
using ML_EXPLAIN.

• permutation_importance: The default prediction explainer.

• shap: The SHAP prediction explainer, which produces feature importance values based on
Shapley values.

Syntax Examples

• The following example generates a prediction explainer on a single row of data with the default
Permutation Importance prediction explainer. The results include the ml_results field, which uses
JSON format. Optionally, use \G to display the output in an easily readable format.

mysql> SET @row_input = JSON_OBJECT( 
          "age", 31, 
          "workclass", "Private", 
          "fnlwgt", 45781, 
          "education", "Masters", 
          "education-num", 14, 
          "marital-status", "Married-civ-spouse", 
          "occupation", "Prof-specialty", 
          "relationship", "Not-in-family", 
          "race", "White", 
          "sex", "Female", 
          "capital-gain", 14084, 
          "capital-loss", 2042, 
          "hours-per-week", 40, 
          "native-country", "India");
mysql> SELECT sys.ML_EXPLAIN_ROW(@row_input, @census_model, JSON_OBJECT('prediction_explainer', 'permutation_importance'))\G
*************************** 1. row ***************************
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sys.ML_EXPLAIN_ROW(@row_input, @census_model, 
          JSON_OBJECT('prediction_explainer', 'permutation_importance')): 
          {
                "age": 31,
                "sex": "Female",
                "race": "White",
                "Notes": "capital-gain (14084) had the largest impact towards predicting >50K",
                "fnlwgt": 45781,
                "education": "Masters",
                "workclass": "Private",
                "Prediction": ">50K",
                "ml_results": {
                   "notes": "capital-gain (14084) had the largest impact towards predicting >50K",
                   "predictions": {
                       "revenue": ">50K"
                    },
                    "attributions": {
                        "age": 0.34,
                        "sex": 0,
                        "race": 0,
                        "fnlwgt": 0,
                        "education": 0,
                        "workclass": 0,
                        "occupation": 0,
                        "capital-gain": 0.97,
                        "capital-loss": 0,
                        "relationship": 0,
                        "education-num": 0.04,
                        "hours-per-week": 0,
                        "marital-status": 0
                    }
                },
                "occupation": "Prof-specialty",
                "capital-gain": 14084,
                "capital-loss": 2042,
                "relationship": "Not-in-family",
                "education-num": 14,
                "hours-per-week": 40,
                "marital-status": "Married-civ-spouse",
                "native-country": "India",
                "age_attribution": 0.34,
                "sex_attribution": 0,
                "race_attribution": 0,
                "fnlwgt_attribution": 0,
                "education_attribution": 0,
                "workclass_attribution": 0,
                "occupation_attribution": 0,
                "capital-gain_attribution": 0.97,
                "capital-loss_attribution": 0,
                "relationship_attribution": 0,
                "education-num_attribution": 0.04,
                "hours-per-week_attribution": 0,
                "marital-status_attribution": 0
          }
1 row in set (6.3072 sec)

• The following example generates prediction explainers on two rows of the input table with the SHAP
prediction explainer.

mysql> SELECT sys.ML_EXPLAIN_ROW(JSON_OBJECT(
 "age", census_train.`age`,
 "workclass", census_train.`workclass`,
 "fnlwgt", census_train.`fnlwgt`,
 "education", census_train.`education`,
 "education-num", census_train.`education-num`,
 "marital-status", census_train.`marital-status`,
 "occupation", census_train.`occupation`,
 "relationship", census_train.`relationship`,
 "race", census_train.`race`,
 "sex", census_train.`sex`,
 "capital-gain", census_train.`capital-gain`,
 "capital-loss", census_train.`capital-loss`,
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 "hours-per-week", census_train.`hours-per-week`,
 "native-country", census_train.`native-country`),
 @census_model, JSON_OBJECT('prediction_explainer', 'shap'))FROM census_data.census_train LIMIT 2\G
*************************** 1. row ***************************
sys.ML_EXPLAIN_ROW(JSON_OBJECT( "age", census_train.`age`, "workclass", census_train.`workclass`, "fnlwgt", census_train.`fnlwgt`, "education", census_train.`education`, "education-num", census_train.`education-num`, "marital-status", census_train.`marita: {
    "age": 22,
    "sex": "Female",
    "race": "Black",
    "fnlwgt": 310380,
    "education": "HS-grad",
    "workclass": "Private",
    "Prediction": "<=50K",
    "ml_results": {
        "predictions": {
            "revenue": "<=50K"
        },
        "attributions": {
            "age_attribution": 0.055990096751945995,
            "sex_attribution": 0.011676016319165776,
            "race_attribution": 0.005258734090653583,
            "fnlwgt_attribution": 0,
            "education_attribution": 0,
            "workclass_attribution": 0,
            "occupation_attribution": 0.0036531218497025536,
            "capital-gain_attribution": 0.017052572967215754,
            "capital-loss_attribution": 0,
            "relationship_attribution": 0.03019321048408115,
            "education-num_attribution": 0.01749651048882997,
            "hours-per-week_attribution": 0.003671861337781857,
            "marital-status_attribution": 0.03869036669327783
        }
    },
    "occupation": "Adm-clerical",
    "capital-gain": 0,
    "capital-loss": 0,
    "relationship": "Unmarried",
    "education-num": 9,
    "hours-per-week": 40,
    "marital-status": "Never-married",
    "native-country": "United-States",
    "age_attribution": 0.0559900968,
    "sex_attribution": 0.0116760163,
    "race_attribution": 0.0052587341,
    "fnlwgt_attribution": 0,
    "education_attribution": 0,
    "workclass_attribution": 0,
    "occupation_attribution": 0.0036531218,
    "capital-gain_attribution": 0.017052573,
    "capital-loss_attribution": 0,
    "relationship_attribution": 0.0301932105,
    "education-num_attribution": 0.0174965105,
    "hours-per-week_attribution": 0.0036718613,
    "marital-status_attribution": 0.0386903667
}
*************************** 2. row ***************************
sys.ML_EXPLAIN_ROW(JSON_OBJECT( "age", census_train.`age`, "workclass", census_train.`workclass`, "fnlwgt", census_train.`fnlwgt`, "education", census_train.`education`, "education-num", census_train.`education-num`, "marital-status", census_train.`marita: {
    "age": 45,
    "sex": "Male",
    "race": "White",
    "fnlwgt": 182100,
    "education": "Bachelors",
    "workclass": "Local-gov",
    "Prediction": ">50K",
    "ml_results": {
        "predictions": {
            "revenue": ">50K"
        },
        "attributions": {
            "age_attribution": 0.10591945090998228,
            "sex_attribution": 0.013172526260700925,
            "race_attribution": 0.007606345008707882,
            "fnlwgt_attribution": 0.018097167152459265,
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            "education_attribution": -0.007944704365873384,
            "workclass_attribution": 0.01615429281764716,
            "occupation_attribution": 0.08573874801531925,
            "capital-gain_attribution": -0.003364275424074914,
            "capital-loss_attribution": 0,
            "relationship_attribution": 0.099373669980131,
            "education-num_attribution": 0.1380689603088001,
            "hours-per-week_attribution": 0.0124334565747376,
            "marital-status_attribution": 0.0938256104928338
        }
    },
    "occupation": "Sales",
    "capital-gain": 0,
    "capital-loss": 0,
    "relationship": "Husband",
    "education-num": 13,
    "hours-per-week": 40,
    "marital-status": "Married-civ-spouse",
    "native-country": "United-States",
    "age_attribution": 0.1059194509,
    "sex_attribution": 0.0131725263,
    "race_attribution": 0.007606345,
    "fnlwgt_attribution": 0.0180971672,
    "education_attribution": -0.0079447044,
    "workclass_attribution": 0.0161542928,
    "occupation_attribution": 0.085738748,
    "capital-gain_attribution": -0.0033642754,
    "capital-loss_attribution": 0,
    "relationship_attribution": 0.09937367,
    "education-num_attribution": 0.1380689603,
    "hours-per-week_attribution": 0.0124334566,
    "marital-status_attribution": 0.0938256105
}
2 rows in set (5.5382 sec)

See Also

• Generate Prediction Explanations for a Row of Data

8.1.8 ML_EXPLAIN_TABLE

ML_EXPLAIN_TABLE explains predictions for an entire table of unlabeled data. It limits explanations to
the 100 most relevant features.

ML_EXPLAIN_TABLE Overview

Note

ML_EXPLAIN_TABLE is a very memory-intensive process. We recommend
limiting the input table to a maximum of 100 rows. If the input table has more
than ten columns, limit it to ten rows.

A call to ML_EXPLAIN_TABLE can include columns that were not present during ML_TRAIN. A table
can include extra columns, and still use the AutoML model. This allows side by side comparisons of
target column labels, ground truth, and explanations in the same table. ML_EXPLAIN_TABLE ignores
any extra columns, and appends them to the results.

A loaded model and trained with the appropriate prediction explainer is required to run
ML_EXPLAIN_TABLE. See Generate Prediction Explanations for a Table.

The output table includes a primary key:

• If the input table has a primary key, the output table will have the same primary key.

• If the input table does not have a primary key, the output table will have a new primary key column
that auto increments. The name of the new primary key column is _4aad19ca6e_pk_id. The input
table must not have a column with the name _4aad19ca6e_pk_id that is not a primary key.
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You have the option to specify the input table and output table as the same table if specific conditions
are met. See Input Tables and Output Tables to learn more.

ML_EXPLAIN_TABLE does not support recommendation, anomaly detection, and topic modeling
models. A call with one of these models produces an error.

ML_EXPLAIN_TABLE Syntax

mysql> CALL sys.ML_EXPLAIN_TABLE(table_name, model_handle, output_table_name, [options]);

options: {
 JSON_OBJECT("key","value"[,"key","value"] ...)
      "key","value": {
      ['prediction_explainer', {'permutation_importance'|'shap'}|NULL]
            }
}

Required ML_EXPLAIN_TABLE Parameters

Set the following required parameters.

• table_name: Specifies the fully qualified name of the input table (database_name.table_name).
The input table should contain the same feature columns as the table used to train the model. If
the target column is included in the input table, it is not considered when generating prediction
explanations.

• model_handle: Specifies the model handle or a session variable containing the model handle. See
Work with Model Handles.

• output_table_name: Specifies the table where explanation data is stored. A fully qualified table
name must be specified (database_name.table_name). You have the option to specify the input
table and output table as the same table if specific conditions are met. See Input Tables and Output
Tables to learn more.

ML_EXPLAIN_TABLE Options

Set the following options as needed.

• prediction_explainer: The name of the prediction explainer that you have trained for this model
using ML_EXPLAIN.

• permutation_importance: The default prediction explainer.

• shap: The SHAP prediction explainer, which produces feature importance values based on
Shapley values.

Syntax Examples

• The following example generates explanations for a table of data with the default Permutation
Importance prediction explainer. The ML_EXPLAIN_TABLE call specifies the fully qualified name of
the table to generate explanations for, the session variable containing the model handle, and the fully
qualified output table name.

mysql> CALL sys.ML_EXPLAIN_TABLE('census_data.census_train', @census_model, 'census_data.census_train_permutation', 
                                  JSON_OBJECT('prediction_explainer', 'permutation_importance'));

To view ML_EXPLAIN_TABLE results, query the output table. The SELECT statement retrieves
explanation data from the output table. The table includes the primary key, _4aad19ca6e_pk_id,
and the ml_results column, which uses JSON format:

mysql> SELECT * FROM census_train_permutation LIMIT 3;

| _4aad19ca6e_pk_id | age | workclass | fnlwgt | education  | education-num | marital-status     | occupation      | relationship | race  | sex    | capital-gain | capital-loss | hours-per-week | native-country | revenue | Prediction | age_attribution | education-num_attribution | marital-status_attribution | education_attribution | hours-per-week_attribution | relationship_attribution | race_attribution | sex_attribution | workclass_attribution | fnlwgt_attribution | capital-gain_attribution | Notes                                                                                                                                                      | ml_results                                                                                                                                                                                                                                                                                                                                                                                                                                     |

|                 1 |  37 | Private   |  99146 | Bachelors  |            13 | Married-civ-spouse | Exec-managerial | Husband      | White | Male   |            0 |         1977 |             50 | United-States  | >50K    | <=50K      |            -0.1 |                     -0.08 |                      -0.05 |                 -0.05 |                      -0.03 |                    -0.03 |             0.02 |           -0.02 |                  0.01 |                  0 |                        0 | race (White) had the largest impact towards predicting =50K, whereas age (37) contributed the most against predicting <=50K                               | {"attributions": {"age": -0.1, "education-num": -0.08, "marital-status": -0.05, "education": -0.05, "hours-per-week": -0.03, "relationship": -0.03, "race": 0.02, "sex": -0.02, "workclass": 0.01, "fnlwgt": 0.0, "capital-gain": 0.0}, "predictions": {"revenue": "<=50K"}, "notes": "race (White) had the largest impact towards predicting <=50K, whereas age (37) contributed the most against predicting <=50K"}                          |
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|                 2 |  34 | Private   |  27409 | 9th        |             5 | Married-civ-spouse | Craft-repair    | Husband      | White | Male   |            0 |            0 |             50 | United-States  | <=50K   | <=50K      |               0 |                         0 |                      -0.04 |                  0.06 |                      -0.03 |                     0.02 |             0.02 |           -0.02 |                  0.01 |                  0 |                        0 | education (9th) had the largest impact towards predicting <=50K, whereas marital-status (Married-civ-spouse) contributed the most against predicting <=50K | {"attributions": {"age": 0.0, "education-num": 0.0, "marital-status": -0.04, "education": 0.06, "hours-per-week": -0.03, "relationship": 0.02, "race": 0.02, "sex": -0.02, "workclass": 0.01, "fnlwgt": 0.0, "capital-gain": 0.0}, "predictions": {"revenue": "<=50K"}, "notes": "education (9th) had the largest impact towards predicting <=50K, whereas marital-status (Married-civ-spouse) contributed the most against predicting <=50K"} |
|                 3 |  30 | Private   | 299507 | Assoc-acdm |            12 | Separated          | Other-service   | Unmarried    | White | Female |            0 |            0 |             40 | United-States  | <=50K   | <=50K      |               0 |                         0 |                          0 |                     0 |                          0 |                     0.03 |             0.01 |            0.02 |                     0 |                  0 |                        0 | relationship (Unmarried) had the largest impact towards predicting <=50K                                                                                   | {"attributions": {"age": 0.0, "education-num": 0.0, "marital-status": 0.0, "education": 0.0, "hours-per-week": 0.0, "relationship": 0.03, "race": 0.01, "sex": 0.02, "workclass": 0.0, "fnlwgt": -0.0, "capital-gain": 0.0}, "predictions": {"revenue": "<=50K"}, "notes": "relationship (Unmarried) had the largest impact towards predicting <=50K"}                                                                                         |


See Also

• Generate Predictions Explanations for a Table

8.1.9 ML_SCORE

ML_SCORE scores a model by generating predictions using the feature columns in a labeled dataset as
input and comparing the predictions to ground truth values in the target column of the labeled dataset.
The dataset used with ML_SCORE should have the same feature columns as the dataset used to train
the model but the data should be different. For example, you might reserve 20 to 30 percent of the
labeled training data for scoring.

ML_SCORE returns a computed metric indicating the quality of the model.

ML_SCORE Syntax

mysql> CALL sys.ML_SCORE(table_name, target_column_name, model_handle, metric, score, [options]);

options: {
 JSON_OBJECT("key","value"[,"key","value"] ...)
      "key","value": {
      ['threshold', 'N']
      ['topk', 'N']
      ['remove_seen', {'true'|'false'}]
      ['item_metadata', JSON_OBJECT('table_name'[,'database_name.table_name'] ...)]
      ['user_metadata', JSON_OBJECT('table_name'[,'database_name.table_name'] ...)]
      }
}

Required ML_SCORE Parameters

Set the following required parameters.

• table_name: Specifies the fully qualified name of the table used to compute model quality
(database_name.table_name). The table must contain the same columns as the training dataset.

• target_column_name: If scoring a supervised or semi-supervised model, specify the name of the
target column containing ground truth values. If scoring an unsupervised model, set to NULL. See
AutoML Learning Types.

• model_handle: Specifies the model handle or a session variable containing the model handle. See
Work with Model Handles.

• metric: Specifies the name of the metric. The metric selected must be compatible with the task
type used for training the model. See Optimization and Scoring Metrics.

• score: Specifies the user-defined variable name for the computed score. The ML_SCORE routine
populates the variable. User variables are written as @var_name. Any valid name for a user-defined
variable is permitted.

The following options in JSON format are available for recommendation and anomaly detection models.

Options for Recommendation Models

Set the following options as needed for recommendation models.

• threshold: The optional threshold that defines positive feedback, and a relevant sample. Only use
with ranking metrics. It can be used for either explicit or implicit feedback.

• topk: The optional top number of recommendations to provide. The default is 3. Set a positive
integer between 1 and the number of rows in the table.
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A recommendation task and ranking metrics can use both threshold and topk.

• remove_seen: If the input table overlaps with the training table, and remove_seen is true, then
the model will not repeat existing interactions. The default is true. Set remove_seen to false to
repeat existing interactions from the training table.

• item_metadata: Defines the table that has item descriptions. It is a JSON object that has the
table_name option as a key, which specifies the table that has item descriptions. One column must
be the same as the item_id in the input table.

• user_metadata: Defines the table that has user descriptions. It is a JSON object that has the
table_name option as a key, which specifies the table that has user descriptions. One column must
be the same as the user_id in the input table.

• table_name: To be used with the item_metadata and user_metadata options. It specifies
the table name that has item or user descriptions. It must be a string in a fully qualified format
(schema_name.table_name) that specifies the table name.

Options for Anomaly Detection Models

Set the following options as needed for anomaly detection models.

• threshold: The threshold you set on anomaly detection models determines which rows in the
output table are labeled as anomalies with an anomaly score of 1, or normal with an anomaly score
of 0. The value for the threshold is the degree to which a row of data or log segment is considered
for anomaly detection. Any sample with an anomaly score above the threshold is classified an
anomaly. The default value is (1 - contamination)-th percentile of all the anomaly scores.

• topk: The optional top K rows to display with the highest anomaly scores. Set a positive integer
between 1 and the number of rows in the table. If topk is not set, ML_SCORE uses threshold.

Do not set both threshold and topk. Use threshold or topk, or set options to NULL.

Syntax Examples

• The following example runs generates a score by using the balanced_accuracy metric. Query the
score with the session variable for the ML_SCORE routine.

mysql> CALL sys.ML_SCORE('census_data.census_train', 'revenue', 'census_data.census_train_admin_1745439945171', 
                          'balanced_accuracy', @score, NULL);
Query OK, 0 rows affected (3.0536 sec)
mysql> SELECT @score;
+--------------------+
| @score             |
+--------------------+
| 0.8151071071624756 |
+--------------------+
1 row in set (0.0411 sec)

• The following example uses the accuracy metric with a threshold set to 90%.

mysql> CALL sys.ML_SCORE('mlcorpus_anomaly_detection.volcanoes-b3_anomaly_train', 'target', @anomaly, 
                          'accuracy', @score, JSON_OBJECT('threshold', 0.9));
Query OK, 0 rows affected (1.86 sec)
 
mysql> SELECT @score;
+--------------------+
| @score             |
+--------------------+
| 0.9791129231452942 |
+--------------------+
1 row in set (0.00 sec)  

• The following example uses the precision_at_k metric with a topk value of 10.
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mysql> CALL sys.ML_SCORE('mlcorpus_anomaly_detection.volcanoes-b3_anomaly_train', 'target', @anomaly, 
                          'precision_at_k', @score, JSON_OBJECT('topk', 10));
Query OK, 0 rows affected (5.84 sec)      
 
mysql> SELECT @score;
+---------------------+
| @score              |
+---------------------+
| 0                   |
+---------------------+
1 row in set (0.00 sec)

• The following example overrides the ensemble_score value from the ML_TRAIN routine to a new
value of 0.5.

mysql> CALL sys.ML_SCORE('mlcorpus.anomaly_train_with_target', "target", @semsup_gknn, 
                          'precision_at_k', @semsup_score_gknn_weighted, 
                          CAST('{"topk": 10, "experimental": {"semisupervised": {"supervised_submodel_weight": 0.5}}}' as JSON));

See Also

• Score a Model

8.1.10 ML_MODEL_LOAD

The ML_MODEL_LOAD routine loads a model from the model catalog. A model remains loaded until the
model is unloaded using the ML_MODEL_UNLOAD routine

Use ML_MODEL_ACTIVE to check which models are active for which users. All active users and
models share the amount of memory defined by the shape, and it might be necessary to schedule
users. ML_MODEL_LOAD generates an error if there are memory limitations.

ML_MODEL_LOAD Syntax

mysql> CALL sys.ML_MODEL_LOAD(model_handle, user);

ML_MODEL_LOAD Parameters

Set the following parameters.

• model_handle: Specifies the model handle or a session variable containing the model handle. To
look up a model handle, see Query the Model Handle.

• user: The MySQL user name of the model owner. You can set this to NULL. To learn how to share
models with other users, see Grant Other Users Access to a Model.

Syntax Examples

• An example that specifies the model handle and sets the user parameter to NULL.

mysql> CALL sys.ML_MODEL_LOAD('ml_data.iris_train_user1_1636729526', NULL);

• An example that specifies a session variable containing the model handle.

mysql> CALL sys.ML_MODEL_LOAD(@iris_model, NULL); 

• An example that specifies the model handle and the model owner.

mysql> CALL sys.ML_MODEL_LOAD('ml_data.iris_train_user1_1636729526', user1);

See Also

• Load a Model

• Work with Model Handles
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8.1.11 ML_MODEL_UNLOAD

ML_MODEL_UNLOAD unloads a model from AutoML.

Note

ML_MODEL_UNLOAD does not check whether the model specified is in the model
catalog. If it is not, ML_MODEL_UNLOAD will succeed, but will not unload any
model. Use ML_MODEL_ACTIVE to check which models are active and owned
by the user.

ML_MODEL_UNLOAD Syntax

mysql> CALL sys.ML_MODEL_UNLOAD(model_handle);

To run ML_MODEL_UNLOAD, define the model_handle. To look up a model handle, see Query the
Model Handle.

Syntax Examples

• An example that specifies the model handle.

mysql> CALL sys.ML_MODEL_UNLOAD('ml_data.iris_train_user1_1636729526');

• An example that specifies a session variable containing the model handle.

mysql> CALL sys.ML_MODEL_UNLOAD(@iris_model); 

8.1.12 ML_MODEL_ACTIVE

Use the ML_MODEL_ACTIVE routine to check which models are loaded and active for which users. All
active users and models share the amount of memory defined by the shape, and it might be necessary
to schedule users.

ML_MODEL_ACTIVE Syntax

mysql> CALL sys.ML_MODEL_ACTIVE (user, model_info);

ML_MODEL_ACTIVE parameters:

• user: The user to provide information for. Set to current or all or NULL. NULL is equivalent to
current.

• model_info: The name of the JSON array session variable that contains the active user and model
information. There are two JSON object literals.

If user is set to current or NULL, the following information displays.

• A JSON object literal that displays:

• Key: The total model size (bytes).

• Value: The sum of model sizes for the current user.

• A second JSON object literal that displays:

• Key: The model handle for a loaded and active model owned by the current user.

• Value: The model_metadata for the model.

If user is set to all, the following information displays.

• A JSON object literal that displays:
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• Key: The total model size (bytes).

• Value: The sum of model sizes for all users.

• A second JSON object literal that displays:

• Key: The name of a user who has loaded and active models.

• Value: A list of JSON object literals of the model handle and brief model metadata for each
loaded and active model.

Syntax Examples

• user1 checks their own models:

mysql> CALL sys.ML_MODEL_ACTIVE('current', @model_info);
Query OK, 0 rows affected (0.10 sec)

mysql> SELECT JSON_PRETTY(@model_info);
+-----------------------------------------------------------+
| JSON_PRETTY(@model_info)                                  |
+-----------------------------------------------------------+
| [                                                         |
{                                                         |
"total model size(bytes)": 348954                       |
},                                                        |
{                                                         |
"iris_export_user1": {                                  |
  "task": "classification",                             |
  "notes": "",                                          |
  "chunks": 1,                                          |
  "format": "HWMLv2.0",                                 |
  "n_rows": 120,                                        |
  "status": "Ready",                                    |
  "options": {                                          |
    "model_explainer": "permutation_importance, shap",  |
    "prediction_explainer": "shap"                      |
  },                                                    |
  "n_columns": 4,                                       |
  "pos_class": null,                                    |
  "column_names": [                                     |
    "sepal length",                                     |
    "sepal width",                                      |
    "petal length",                                     |
    "petal width"                                       |
  ],                                                    |
  "contamination": null,                                |
  "model_quality": "high",                              |
  "training_time": 18.363686,                           |
  "algorithm_name": "ExtraTreesClassifier",             |
  "training_score": -0.10970368035588404,               |
  "build_timestamp": 1697524180,                        |
  "n_selected_rows": 96,                                |
  "training_params": {                                  |
    "sp_arr": null,                                     |
    "timezone": null,                                   |
    "recommend": "ratings",                             |
    "force_use_X": false,                               |
    "recommend_k": 3,                                   |
    "remove_seen": true,                                |
    "contamination": null,                              |
    "feedback_threshold": 1                             |
  },                                                    |
  "train_table_name": "mlcorpus.iris_train",            |
  "model_explanation": {                                |
    "shap": {                                           |
      "petal width": 0.3139,                            |
      "sepal width": 0.0296,                            |
      "petal length": 0.2787,                           |
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      "sepal length": 0.0462                            |
    },                                                  |
    "permutation_importance": {                         |
      "petal width": 0.2301,                            |
      "sepal width": 0.0056,                            |
      "petal length": 0.2192,                           |
      "sepal length": 0.0056                            |
    }                                                   |
  },                                                    |
  "model_object_size": 348954,                          |
  "n_selected_columns": 4,                              |
  "target_column_name": "class",                        |
  "optimization_metric": "neg_log_loss",                |
  "selected_column_names": [                            |
    "petal length",                                     |
    "petal width",                                      |
    "sepal length",                                     |
    "sepal width"                                       |
  ]                                                     |
}                                                       |
}                                                         |
] |                                                         |
+-----------------------------------------------------------+
1 row in set (0.00 sec)

• user1 checks their own models, and extracts specific information:

mysql> CALL sys.ML_MODEL_ACTIVE('current', @model_info);
Query OK, 0 rows affected (0.12 sec)

mysql> SELECT JSON_KEYS(JSON_EXTRACT(@model_info, '$[1]'));
+------------------------------------------------------------+
| JSON_KEYS(JSON_EXTRACT(@model_info, '$[1]'))               |
+------------------------------------------------------------+
| ["iris_export", "mlcorpus.iris_train_user1_1697524152037"] |
+------------------------------------------------------------+
1 row in set (0.00 sec)

mysql> SELECT JSON_EXTRACT(@model_info, '$[0]');
+--------------------------------------+
| JSON_EXTRACT(@model_info, '$[0]')    |
+--------------------------------------+
| {"total model size(bytes)":  697908} |
+--------------------------------------+
1 row in set (0.01 sec)

• user1 checks the models for all users:

mysql> CALL sys.ML_MODEL_ACTIVE('all', @model_info);
Query OK, 0 rows affected (0.11 sec)

mysql> SELECT JSON_PRETTY(@model_info);
+-----------------------------------------------------+
| JSON_PRETTY(@model_info)                            |
+-----------------------------------------------------+
| [                                                   |
{                                                   |
"total model size(bytes)": 1046862                |
},                                                  |
{                                                   |
"user2": [                                        |
  {                                               |
    "iris_export_user2": {                        |
      "format": "HWMLv2.0",                       |
      "model_size(byte)": 348954                  |
    }                                             |
  }                                               |
],                                                |
"user1": [                                        |
  {                                               |
    "mlcorpus.iris_train_user1_1697524152037": {  |
      "format": "HWMLv2.0",                       |
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      "model_size(byte)": 348954                  |
    }                                             |
  },                                              |
  {                                               |
    "iris_export": {                              |
      "format": "HWMLv2.0",                       |
      "model_size(byte)": 348954                  |
    }                                             |
  }                                               |
]                                                 |
}                                                   |
] |                                                   |
+-----------------------------------------------------+
1 row in set (0.00 sec)

8.1.13 TRAIN_TEST_SPLIT

The TRAIN_TEST_SPLIT routine automatically splits your data into training and testing datasets.

Two new tables in the same database are created with the following names:

• [original_table_name]_train

• [original_table_name]_test

The split of the data between training and testing datasets depends on the machine learning task.

• Classification: A stratified split of data. For each class in the dataset, 80% of the samples goes into
the training dataset, and the remaining goes into the testing dataset. If the number of samples in the
80% subset is fewer than 5, then instead select 5 of the samples for the training dataset.

• Regression: A random split of data.

• Forecasting: A time-based split of data. Order the table by the datetime_index values and select
the first 80% of the samples for the training dataset. Insert the subsequent samples into the testing
dataset.

• Unsupervised anomaly detection: A random split of data. Select 80% of the samples for the training
dataset, and select the remaining samples for the testing dataset.

• Semi-supervised anomaly detection: A stratified split of data.

• Anomaly detection for log data: A split of data based on primary key values. The first 80% of the
samples go into the training dataset. The remaining samples go into the testing dataset. Review
requirements when running Anomaly Detection for Logs.

• Recommendations: A random split of data.

• Topic modeling: A random split of data.

TRAIN_TEST_SPLIT Syntax

mysql> CALL sys.TRAIN_TEST_SPLIT ('table_name', 'target_column_name', [options | NULL]);
 
options: {
     JSON_OBJECT("key","value"[,"key","value"] ...)
          "key","value": {
          ['task', {'classification'|'regression'|'forecasting'|'anomaly_detection'|'log_anomaly_detection'|'recommendation'|'topic_modeling'}]
          ['datetime_index', 'column']
          ['semisupervised', {'true'|'false'}]

TRAIN_TEST_SPLIT parameters:

• table_name: You must provide the fully qualified name of the table that contains the dataset to split
(schema_name.table_name).
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• target_column_name: Classification and semi-supervised anomaly detection tasks require a
target column. All other tasks do not require a target column. If a target column is not required, you
can set this parameter to NULL.

• options: Set the following options as needed as key-value pairs in JSON object format. If no
options are needed, set this to NULL.

• task: If the machine learning task is not set, the default task is classification.

• datetime_index: The column that has datetime values. This parameter is required for
forecasting tasks.

The following data types for this column are supported:

• DATETIME

• TIMESTAMP

• DATE

• TIME

• YEAR

• semisupervised: If running an anomaly detection task, set this to true for semi-supervised
learning, or false for unsupervised learning. If this is set to NULL, then the default value of false
is selected.

Syntax Examples

• A classification task:

mysql> CALL sys.TRAIN_TEST_SPLIT('data_files_db.data_files_1', 'class', JSON_OBJECT('task', 'classification'));
mysql> SHOW TABLES;
+-------------------------+
| Tables_in_data_files_db |
+-------------------------+
| data_files_1            |
| data_files_1_test       |
| data_files_1_train      |
+-------------------------+

• A regression task:

mysql> CALL sys.TRAIN_TEST_SPLIT('data_files_db.food_delivery_data', NULL, JSON_OBJECT('task', 'regression'));
mysql> SHOW TABLES;
+--------------------------+
| Tables_in_data_files_db  |
+--------------------------+
| food_delivery_data       |
| food_delivery_data_test  |
| food_delivery_data_train |
+--------------------------+

• A forecasting task:

mysql> CALL sys.TRAIN_TEST_SPLIT('data_files_db.forecasting_data', NULL, 
                                  JSON_OBJECT('task', 'forecasting', 
                                              'datetime_index', 'timestamp'));
mysql> SHOW TABLES;
+-------------------------+
| Tables_in_data_files_db |
+-------------------------+
| forecasting_data        |
| forecasting_data_test   |
| forecasting_data_train  |
+-------------------------+
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• An unsupervised anomaly detection task:

mysql> CALL sys.TRAIN_TEST_SPLIT('data_files_db.anomaly_detection_data', NULL, JSON_OBJECT('task', 'anomaly_detection'));
mysql> SHOW TABLES;
+------------------------------+
| Tables_in_data_files_db      |
+------------------------------+
| anomaly_detection_data       |
| anomaly_detection_data_test  |
| anomaly_detection_data_train |
+------------------------------+

• A semi-supervised anomaly detection task:

mysql> CALL sys.TRAIN_TEST_SPLIT('data_files_db.anomaly_detection_semi', 'anomaly', 
                                  JSON_OBJECT('task', 'anomaly_detection', 
                                              'semisupervised', 'true'));
mysql> SHOW TABLES;
+------------------------------+
| Tables_in_data_files_db      |
+------------------------------+
| anomaly_detection_semi       |
| anomaly_detection_semi_test  |
| anomaly_detection_semi_train |
+------------------------------+

• A task for anomaly detection on log data:

mysql> CALL sys.TRAIN_TEST_SPLIT('data_files_db.anomaly_detection_logs', NULL, JSON_OBJECT('task', 'log_anomaly_detection'));
mysql> SHOW TABLES;
+------------------------------+
| Tables_in_data_files_db      |
+------------------------------+
| anomaly_detection_logs       |
| anomaly_detection_logs_test  |
| anomaly_detection_logs_train |
+------------------------------+

• A recommendation task:

mysql> CALL sys.TRAIN_TEST_SPLIT('data_files_db.rec_data', NULL, JSON_OBJECT('task', 'recommendation'));
mysql> SHOW TABLES;
+-------------------------+
| Tables_in_data_files_db |
+-------------------------+
| rec_data                |
| rec_data_test           |
| rec_data_train          |
+-------------------------+

• A topic modeling task:

mysql> CALL sys.TRAIN_TEST_SPLIT('data_files_db.text_data', NULL, JSON_OBJECT('task', 'topic_modeling'));
mysql> SHOW TABLES;
+-------------------------+
| Tables_in_data_files_db |
+-------------------------+
| text_data               |
| text_data_test          |
| text_data_train         |
+-------------------------+

8.1.14 NL2ML

The NL2ML (natural language to machine learning) routine allows you to ask questions and receive
relevant citations from MySQL AI documentation.
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Note

To use this feature, you must load the appropriate version of MySQL AI
documentation to the folder defined by secure_file_priv. See Load MySQL
AI Documentation.

NL2ML Syntax

mysql> CALL sys.NL2ML (query, response);

NL2ML parameters:

• query: Enter a question in natural language related to MySQL HeatWave AutoML. For example,
"What are the different types of machine learning models I can create?".

• response: The name of the JSON object session variable that contains the response to the
question.

The nl2ml_options Session Variable

To use the NL2ML routine, you must set the skip_generate option to true. The default value is
false. Review the following syntax example and see Use NL2ML with In-Database LLMs.

Syntax Example

After generating citations with NL2ML, retrieve a relevant table schema related to the question
(ML_RETRIEVE_SCHEMA_METADATA), build a compact context string from the citations
(GROUP_CONCAT), and generate a response that includes the citations, context, and retrieved table
schema (ML_GENERATE).

mysql> SET @input = "How can I train a model to predict net worth of a singer?";

mysql> SET @nl2ml_options = JSON_OBJECT("skip_generate", true);

mysql> CALL sys.NL2ML(@input, @out);

mysql> SELECT JSON_PRETTY(@out);
JSON_PRETTY(@out)
{
  "citations": [
    {
      "segment": "<segment content>",
      "distance": 0.1023,
      "document_name": <mysql_ai_en.pdf>,
      "segment_number": <segment number>
    },
    ...
  ],
  "retrieval_info": {
    "method": "n_citations",
    "threshold": 0.114
  }
}
mysql> CALL sys.ML_RETRIEVE_SCHEMA_METADATA(@input, @retrieved, NULL);
  
mysql> SELECT @retrieved;
@retrieved
CREATE TABLE `mlcorpus`.`singer`(
  `Singer_ID` int,
  `Name` varchar,
  `Birth_Year` double,
  `Net_Worth_Millions` double,
  `Citizenship` varchar
);

mysql> SELECT GROUP_CONCAT(seg SEPARATOR '\n') INTO @ctx
FROM JSON_TABLE(JSON_EXTRACT(@out,'$.citations'),
'$[*]' COLUMNS (seg LONGTEXT PATH '$.segment')) AS jt;
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mysql> SET @final_ctx = CONCAT(@ctx, '\n\nRetrieved tables:\n', @retrieved);
  
mysql> SELECT sys.ML_GENERATE(
@input,
JSON_OBJECT(
"task", "generation",
"model_id", "llama3.2-3b-instruct-v1",
"context", @final_ctx
)
) INTO @result;

mysql> SELECT JSON_UNQUOTE(JSON_EXTRACT(@result,'$.text')) AS generated_sql;
generated_sql
To train a model to predict the net worth of a singer, you can use the ML_TRAIN routine. First, prepare your dataset, 
which in this case seems to be the 'singer' table in the 'mlcorpus' schema. Ensure that the table has the necessary columns, 
such as 'Singer_ID', 'Name', 'Birth_Year', 'Net_Worth_Millions', and 'Citizenship'. 

The 'Net_Worth_Millions' column will be your target column for prediction. You may need to preprocess your data, 
for example, converting categorical variables like 'Name' and 'Citizenship' into numerical variables if necessary.

Then, you can call the ML_TRAIN routine with the appropriate options. For a regression task like predicting net worth, 
you would specify the task as 'regression' in the JSON options. Here's a simplified example:

```sql
CALL sys.ML_TRAIN('mlcorpus.singer', 
                  @model_handle, 
                  'Net_Worth_Millions', 
                  JSON_OBJECT('task', 'regression', 
                              'algorithm', 'XGBRegressor'));
```

Replace '@model_handle' with your actual model handle variable. This will train a model to predict the 'Net_Worth_Millions' 
based on the other columns in your 'singer' table. After training, you can use the ML_PREDICT_ROW or ML_PREDICT_TABLE routine 
to generate predictions for new, unseen data.

See Also

• Learn About MySQL AI AutoML with NL2ML

8.1.15 Model Types

AutoML supports the following training models. When training AutoML a model, use the ML_TRAIN
model_list and exclude_model_list options to specify the training models to consider or
exclude. The Model Metadata includes the algorithm_name field, which defines the model type.

Classification Models

• LogisticRegression

• GaussianNB

• DecisionTreeClassifier

• RandomForestClassifier

• XGBClassifier

• LGBMClassifier

• SVC

• LinearSVC

• ExtraTreesClassifier

Regression Models

• DecisionTreeRegressor
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• RandomForestRegressor

• LinearRegression

• LGBMRegressor

• XGBRegressor

• SVR

• LinearSVR

• ExtraTreesRegressor

Forecasting Models

Univariate endogenous models:

• NaiveForecaster

• ThetaForecaster

• ExpSmoothForecaster

• ETSForecaster

• STLwESForecaster: STLForecast with ExponentialSmoothing substructure

• STLwARIMAForecaster: STLForecast with ARIMA substructure

Univariate endogenous with exogenous models:

• SARIMAXForecaster

• OrbitForecaster

Multivariate endogenous with exogenous models:

• VARMAXForecaster

Univariate or multivariate endogenous with exogenous models:

• DynFactorForecaster

Anomaly Detection Models

• GkNN: Generalized kth Nearest Neighbors

• PCA: Principal Component Analysis

• GLOF: Generalized Local Outlier Factor

Recommendation Models

The TwoTower model is the default model and can generate recommendations with implicit or explicit
feedback. See Recommendation Training Models to learn more.

Recommendation models that rate users or items to use with explicit feedback:

• Baseline

• CoClustering

• NormalPredictor

• SlopeOne
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• Matrix factorization models:

• SVD

• SVDpp

• NMF

Recommendation models that rank users or items to use with implicit feedback:

• BPR: Bayesian Personalized Ranking from Implicit Feedback

• CTR: Collaborative Topic Regression

8.1.16 Optimization and Scoring Metrics

The ML_TRAIN routine includes the optimization_metric option, and the ML_SCORE routine
includes the metric option. Both of these options define a metric that must be compatible with the
task type and the target data. Model Metadata includes the optimization_metric field.

For more information about scoring metrics, see: scikit-learn.org. For more information about
forecasting metrics, see: sktime.org and statsmodels.org.

Classification Metrics

Binary-only metrics:

• f1

• precision

• recall

• roc_auc

Binary and multi-class metrics:

• accuracy

• balanced_accuracy (ML_SCORE only)

• f1_macro

• f1_micro

• f1_samples (ML_SCORE only)

• f1_weighted

• neg_log_loss

• precision_macro

• precision_micro

• precision_samples (ML_SCORE only)

• precision_weighted

• recall_macro

• recall_micro

• recall_samples (ML_SCORE only)

• recall_weighted
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Optimization and Scoring Metrics

Regression Metrics

• neg_mean_absolute_error

• neg_mean_squared_error

• neg_mean_squared_log_error

• neg_median_absolute_error

• r2

Forecasting Metrics

• neg_max_absolute_error

• neg_mean_absolute_error

• neg_mean_abs_scaled_error

• neg_mean_squared_error

• neg_root_mean_squared_error

• neg_root_mean_squared_percent_error

• neg_sym_mean_abs_percent_error

Anomaly Detection Metrics

Metrics for anomaly detection can only be used with the ML_SCORE routine. They cannot be used with
the ML_TRAIN routine.

• roc_auc: You must not specify threshold or topk options.

• precision_k: An Oracle implementation of a common metric for fraud detection and lead scoring.
You must use the topk option. You cannot use the threshold option.

The following metrics can use the threshold option, but cannot use the topk option:

• accuracy

• balanced_accuracy

• f1

• neg_log_loss

• precision

• recall

Recommendation Model Metrics

The following rating metrics can be used for explicit feedback:

• neg_mean_absolute_error

• neg_mean_squared_error

• neg_root_mean_squared_error

• r2

For recommendation models that use implicit feedback:
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• If a user and item combination in the input table is not unique, the input table is grouped by user and
item columns, and the result is the average of the rankings.

• If the input table overlaps with the training table, and remove_seen is true, which is the default
setting, then the model will not repeat a recommendation and it ignores the overlap items.

The following ranking metrics can be used for implicit and explicit feedback:

• precision_at_k is the number of relevant topk recommended items divided by the total topk
recommended items for a particular user:

precision_at_k = (relevant topk recommended items) / (total topk recommended items)

For example, if 7 out of 10 items are relevant for a user, and topk is 10, then precision_at_k is
70%.

The precision_at_k value for the input table is the average for all users. If remove_seen is
true, the default setting, then the average only includes users for whom the model can make a
recommendation. If a user has implicitly ranked every item in the training table, the model cannot
recommend any more items for that user, and they are ignored from the average calculation if
remove_seen is true.

• recall_at_k is the number of relevant topk recommended items divided by the total relevant
items for a particular user:

recall_at_k = (relevant topk recommended items) / (total relevant items)

For example, there is a total of 20 relevant items for a user. If topk is 10, and 7 of those items are
relevant, then recall_at_k is 7 / 20 = 35%.

The recall_at_k value for the input table is the average for all users.

• hit_ratio_at_k is the number of relevant topk recommended items divided by the total relevant
items for all users:

hit_ratio_at_k = (relevant topk recommended items, all users) / (total relevant items, all users)

The average of hit_ratio_at_k for the input table is recall_at_k. If there is only one user,
hit_ratio_at_k is the same as recall_at_k.

• ndcg_at_k is normalized discounted cumulative gain, which is the discounted cumulative gain of
the relevant topk recommended items divided by the discounted cumulative gain of the relevant
topk items for a particular user.

The discounted gain of an item is the true rating divided by log2(r+1) where r is the ranking of this
item in the relevant topk items. If a user prefers a particular item, the rating is higher, and the
ranking is lower.

The ndcg_at_k value for the input table is the average for all users.

8.2 GenAI Routines
GenAI routines reside in the MySQL sys schema.

MySQL JavaScript Stored Programs include a GenAI API that you can use to call different GenAI
routines using JavaScript functions. For more information, see JavaScript GenAI API.

8.2.1 ML_GENERATE

The ML_GENERATE routine uses the specified large language model (LLM) to generate text-based
content as a response for the given natural-language query.
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This topic contains the following sections:

• ML_GENERATE Syntax

• Syntax Examples

• See Also

ML_GENERATE Syntax

mysql> SELECT sys.ML_GENERATE('QueryInNaturalLanguage', options);

options: {JSON_OBJECT(keyvalue[, keyvalue]...)|NULL}
keyvalue: 
{
  'task', {'generation'|'summarization'}
  |'model_id', 'LargeLanguageModelID'
  |'context', 'Context'
  |'language', 'Language'
  |'temperature', Temperature
  |'max_tokens', MaxTokens
  |'top_k', K
  |'top_p', P
  |'repeat_penalty', RepeatPenalty
  |'frequency_penalty', FrequencyPenalty
  |'stop_sequences', JSON_ARRAY('StopSequence'[, 'StopSequence'] ...)
  |'speculative_decoding', {true|false}
}

Following are ML_GENERATE parameters:

• QueryInNaturalLanguage: specifies the natural-language query that is passed to the large
language model (LLM) handle.

• options: specifies optional parameters as key-value pairs in JSON format. It can include the
following parameters:

• task: specifies the task expected from the LLM. Default value is generation. Possible values
are:

• generation: generates text-based content.

• summarization: generates a summary for existing text-based content.

• model_id: specifies the LLM to use for the task. Default and possible value is llama3.2-3b-
instruct-v1.

To view the lists of available LLMs, see In-Database LLM.

• context: specifies the context to be used for augmenting the query and guide the text generation
of the LLM. Default value is NULL.

• language: specifies the language to be used for writing queries, ingesting documents, and
generating the output. To set the value of the language parameter, use the two-letter ISO 639-1
code for the language.

Default value is en.

For possible values, to view the list of supported languages, see Section 5.4, “Supported LLM,
Embedding Model, and Languages”.

• temperature: specifies a non-negative float that tunes the degree of randomness in generation.
Lower temperatures mean less random generations.

Default value is 0 for all LLMs.
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Possible values are float values between 0 and 5 for the In-Database LLM.

It is suggested that:

• To generate the same output for a particular prompt every time you run it, set the temperature to
0.

• To generate a random new statement for a particular prompt every time you run it, increase the
temperature.

• max_tokens: specifies the maximum number of tokens to predict per generation using an
estimate of three tokens per word. Default value is 256. Possible values are integer values
between1 and 4096.

• top_k: specifies the number of top most likely tokens to consider for text generation at each step.
Default value is 40, which means that top 40 most likely tokens are considered for text generation
at each step. Possible values are integer values between 0 and 32000.

• top_p: specifies a number, p, and ensures that only the most likely tokens with the sum of
probabilities p are considered for generation at each step. A higher value of p introduces more
randomness into the output. Default value is 0.95. Possible values are float values between 0 and
1.

• To disable this method, set to 1.0 or 0.

• To eliminate tokens with low likelihood, assign p a lower value. For example, if set to 0.1,
tokens within top 10% probability are included.

• To include tokens with low likelihood, assign p a higher value. For example, if set to 0.9, tokens
within top 90% probability are included.

If you are also specifying the top_k parameter, the LLM considers only the top tokens whose
probabilities add up to p percent. It ignores the rest of the k tokens.

• repeat_penalty: assigns a penalty when a token appears repeatedly. High penalties encourage
less repeated tokens and produce more random outputs. Default value is 1.1. Possible values are
float values between 0 and 2.

• frequency_penalty: assigns a penalty when a token appears frequently. High penalties
encourage less repeated tokens and produce more random outputs. Default value is 0. Possible
values are float values between 0 and 1.

• stop_sequences: specifies a list of characters such as a word, a phrase, a newline, or a period
that tells the LLM when to end the generated output. If you have more than one stop sequence,
then the LLM stops when it reaches any of those sequences. Default value is NULL.

Syntax Examples

• Generating text-based content in English using the llama3.2-3b-instruct-v1 model:

mysql> SELECT sys.ML_GENERATE("What is AI?", JSON_OBJECT("task", "generation", "model_id", "llama3.2-3b-instruct-v1", "language", "en"));

• Summarizing English text using the llama3.2-3b-instruct-v1 model:

mysql> SELECT sys.ML_GENERATE(@text, JSON_OBJECT("task", "summarization", "model_id", "llama3.2-3b-instruct-v1", "language", "en"));

Where, @text is set as shown below:

SET @text="Artificial Intelligence (AI) is a rapidly growing field that has the potential to
revolutionize how we live and work. AI refers to the development of computer systems that can
perform tasks that typically require human intelligence, such as visual perception, speech
recognition, decision-making, and language translation.\n\nOne of the most significant developments in
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AI in recent years has been the rise of machine learning, a subset of AI that allows computers to learn
from data without being explicitly programmed. Machine learning algorithms can analyze vast amounts
of data and identify patterns, making them increasingly accurate at predicting outcomes and making
decisions.\n\nAI is already being used in a variety of industries, including healthcare, finance, and
transportation. In healthcare, AI is being used to develop personalized treatment plans for patients
based on their medical history and genetic makeup. In finance, AI is being used to detect fraud and make
investment recommendations. In transportation, AI is being used to develop self-driving cars and improve
traffic flow.\n\nDespite the many benefits of AI, there are also concerns about its potential impact on
society. Some worry that AI could lead to job displacement, as machines become more capable of performing
tasks traditionally done by humans. Others worry that AI could be used for malicious ";

See Also

• Section 5.5, “Generating Text-Based Content”

• Section 8.2.2, “ML_GENERATE_TABLE”

8.2.2 ML_GENERATE_TABLE

The ML_GENERATE_TABLE routine runs multiple text generation or summarization queries in a batch,
in parallel. The output generated for every input query is the same as the output generated by the
ML_GENERATE routine.

This topic contains the following sections:

• ML_GENERATE_TABLE Syntax

• Syntax Examples

• See Also

To learn about the privileges you need to run this routine, see Section 5.3, “Required Privileges for
using GenAI”.

ML_GENERATE_TABLE Syntax

mysql> CALL sys.ML_GENERATE_TABLE('InputTableColumn', 'OutputTableColumn', options);

options: {JSON_OBJECT(keyvalue[, keyvalue]...)|NULL}
keyvalue: 
{
  'task', {'generation'|'summarization'}
  |'model_id', 'LargeLanguageModelID'
  |'context_column', 'ContextColumn'
  |'language', 'Language'
  |'temperature', Temperature
  |'max_tokens', MaxTokens
  |'top_k', K
  |'top_p', P
  |'repeat_penalty', RepeatPenalty
  |'frequency_penalty', FrequencyPenalty
  |'stop_sequences', JSON_ARRAY('StopSequence'[, 'StopSequence'] ...)
  |'batch_size', BatchSize
  |'speculative_decoding', {true|false}
}

Following are ML_GENERATE_TABLE parameters:

• InputTableColumn: specifies the names of the input database, table, and column that contains
the natural-language queries. The InputTableColumn is specified in the following format:
DBName.TableName.ColumnName.

• The specified input table can be an internal or external table.

• The specified input table must already exist, must not be empty, and must have a primary key.

• The input column must already exist and must contain text or varchar values.
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• The input column must not be a part of the primary key and must not have NULL values or empty
strings.

• There must be no backticks used in the DBName, TableName, or ColumnName and there must be
no period used in the DBName or TableName.

• OutputTableColumn: specifies the names of the database, table, and column where the generated
text-based response is stored. The OutputTableColumn is specified in the following format:
DBName.TableName.ColumnName.

• The specified output table must be an internal table.

• If the specified output table already exists, then it must be the same as the input table. And, the
specified output column must not already exist in the input table. A new JSON column is added to
the table. External tables are read only. So if input table is an external table, then it cannot be used
to store the output.

• If the specified output table doesn't exist, then a new table is created. The new output table has
key columns which contains the same primary key values as the input table and a JSON column
that stores the generated text-based responses.

• There must be no backticks used in the DBName, TableName, or ColumnName and there must be
no period used in the DBName or TableName.
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• options: specifies optional parameters as key-value pairs in JSON format. It can include the
following parameters:

• task: specifies the task expected from the large language model (LLM). Default value is
generation. Possible values are:

• generation: generates text-based content.

• summarization: generates a summary for existing text-based content.

• model_id: specifies the LLM to use for the task. Default and possible value is llama3.2-3b-
instruct-v1.

To view the lists of available LLMs, see In-Database LLM.

• context_column: specifies the table column that contains the context to be used for augmenting
the queries and guiding the text generation of the LLM. The specified column must be an existing
column in the input table. Default value is NULL.

• language: specifies the language to be used for writing queries, ingesting documents, and
generating the output. To set the value of the language parameter, use the two-letter ISO 639-1
code for the language.

Default value is en.

For possible values, to view the list of supported languages, see Section 5.4, “Supported LLM,
Embedding Model, and Languages”.

• temperature: specifies a non-negative float that tunes the degree of randomness in generation.
Lower temperatures mean less random generations.

Default value is 0 for all LLMs.

Possible values are float values between 0 and 5 For the In-Database LLM.

It is suggested that:

• To generate the same output for a particular prompt every time you run it, set the temperature to
0.

• To generate a random new statement for a particular prompt every time you run it, increase the
temperature.

• max_tokens: specifies the maximum number of tokens to predict per generation using an
estimate of three tokens per word. Default value is 256. Possible values are integer values
between1 and 4096.

• top_k: specifies the number of top most likely tokens to consider for text generation at each step.
Default value is 40, which means that top 40 most likely tokens are considered for text generation
at each step. Possible values are integer values between 0 and 32000.

• top_p: specifies a number, p, and ensures that only the most likely tokens with the sum of
probabilities p are considered for generation at each step. A higher value of p introduces more
randomness into the output. Default value is 0.95. Possible values are float values between 0 and
1.

• To disable this method, set to 1.0 or 0.

• To eliminate tokens with low likelihood, assign p a lower value. For example, if set to 0.1,
tokens within top 10% probability are included.
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• To include tokens with low likelihood, assign p a higher value. For example, if set to 0.9, tokens
within top 90% probability are included.

If you are also specifying the top_k parameter, the LLM considers only the top tokens whose
probabilities add up to p percent. It ignores the rest of the k tokens.

• repeat_penalty: assigns a penalty when a token appears repeatedly. High penalties encourage
less repeated tokens and produce more random outputs. Default value is 1.1. Possible values are
float values between 0 and 2.

• frequency_penalty: assigns a penalty when a token appears frequently. High penalties
encourage less repeated tokens and produce more random outputs. Default value is 0. Possible
values are float values between 0 and 1.

• stop_sequences: specifies a list of characters such as a word, a phrase, a newline, or a period
that tells the LLM when to end the generated output. If you have more than one stop sequence,
then the LLM stops when it reaches any of those sequences. Default value is NULL.

• batch_size: specifies the batch size for the routine. This option is supported for internal tables
only. Default value is 1000. Possible values are integer values between 1 and 1000.

Syntax Examples

Generate English text-based content in a batch using the llama3.2-3b-instruct-v1 model for
queries stored in demo_db.input_table:

mysql> CALL sys.ML_GENERATE_TABLE("demo_db.input_table.Input", "demo_db.output_table.Output", JSON_OBJECT("task", "generation", "model_id", "llama3.2-3b-instruct-v1", "language", "en"));

See Also

• Generate New Text - Run Batch Queries

• Summarize Content - Run Batch Queries

• Section 8.2.1, “ML_GENERATE”

8.2.3 VECTOR_STORE_LOAD

The VECTOR_STORE_LOAD routine generates vector embedding for the specified files or folders that
are , and loads the embeddings into a new vector store table.

This routine creates an asynchronous task which loads vector store tables in the background. It also
returns a query that you can run to track the status of the vector store load task that is running in the
background.

This topic contains the following sections:

• VECTOR_STORE_LOAD Syntax

• Syntax Examples

• See Also

To learn about the privileges you need to run this routine, see Section 5.3, “Required Privileges for
using GenAI”.

VECTOR_STORE_LOAD Syntax

mysql> CALL sys.VECTOR_STORE_LOAD('URI', options);

options: {JSON_OBJECT(keyvalue[, keyvalue]...)|NULL}
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keyvalue: 
{
  'format', 'Format' 
  |'schema_name', 'SchemaName'
  |'table_name', 'TableName'
  |'language', 'Language'
  |'embed_model_id', 'ModelID'
  |'description', 'Description'
  |'ocr', {true|false}
}

Following are VECTOR_STORE_LOAD parameters:

• URI: specifies a single unique reference index (URI) pertaining to a file or folder to be ingested into
the vector store, or a JSON array of URIs pertaining to multiple files or folders to be ingested into the
vector store.

A URI is considered to be one of the following:

• A glob pattern, if it contains at least one unescaped ? or * character.

• A prefix, if it is not a pattern and ends with a / character like a folder path.

• A file path, if it is neither a glob pattern nor a prefix.

• options: specifies optional parameters as key-value pairs in JSON format. It can include the
following parameters:

• format: specifies the format of files to be loaded. Default value is auto_unstructured, which
means all supported types of files are loaded. Possible values are pdf, pptx, ppt, txt, html,
docx, doc, and auto_unstructured.

• schema_name: specifies the name of the schema where the vector embeddings are to be loaded.
By default, this procedure uses the current schema from the session.

• table_name: specifies the name of the vector store table to create. By default, the routine
generates a unique table name with format vector_store_data_x, where x is a counter.

• language: specifies the text content language used in the files to be ingested into the vector
store. To set the value of the language parameter, use the two-letter ISO 639-1 code for the
language.

Default value is en.

For possible values, to view the list of supported languages, see Section 5.4, “Supported LLM,
Embedding Model, and Languages”.

• embed_model_id: specifies the embedding model to use for encoding the text. Default value is
multilingual-e5-small.

For possible values, to view the list of available embedding models, see In-Database Embedding
Model.

• description: specifies a description of document collection being loaded. Default value is NULL.

• ocr: specifies whether to enable or disable Optical Character Recognition (OCR). If set to false,
disables OCR. Default value is true, which means OCR is enabled by default. Default value is
true.

Syntax Examples

• Specifying the file to ingest, using the current database, auto-generated name for the vector store
table, and default values for all options:
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mysql> CALL sys.VECTOR_STORE_LOAD('file:///var/lib/mysql-files/demo-directory/heatwave-en.pdf', NULL);

• Specifying the file to ingest, using the current database, and specifying the name of the vector store
table to be created:

mysql> CALL sys.VECTOR_STORE_LOAD('file:///var/lib/mysql-files/demo-directory/heatwave-en.pdf', '{"table_name": "demo_embeddings"}');

• Specifying additional options such the schema name, table name, language, format, and table
description in VECTOR_STORE_LOAD:

mysql> CALL sys.VECTOR_STORE_LOAD('file:///var/lib/mysql-files/german_files/de*', '{"schema_name": "demo_db", "table_name": "german_embeddings", "language": "de", "description": "Vector store table containing German PDF files."}');

• Tracking the progress of a load task by using the task query displayed as output for the
VECTOR_STORE_LOAD routine:

 SELECT mysql_tasks.task_status_brief("TaskID"); 
+------------------------------------------------------------------------------------------+
| mysql_tasks.task_status_brief("TaskID")                       |
+------------------------------------------------------------------------------------------+
| {"data": null, "status": "COMPLETED", "message": "Execution finished.", "progress": 100} |
+------------------------------------------------------------------------------------------+
 

See Also

Ingesting Files into a Vector Store

8.2.4 ML_RAG

The ML_RAG routine performs retrieval-augmented generation (RAG) by:

1. Taking a natural-language query.

2. Retrieving context from relevant documents using semantic search.

3. Generating a response that integrates information from the retrieved documents.

This routine aims to provide detailed, accurate, and contextually relevant answers by augmenting a
generative model with information retrieved from a comprehensive knowledge base.

This topic contains the following sections:

• ML_RAG Syntax

• Syntax Examples

• See Also

ML_RAG Syntax

mysql> CALL sys.ML_RAG('QueryInNaturalLanguage', 'Output', options);

options: {JSON_OBJECT(keyvalue[, keyvalue]...)|NULL}
keyvalue:
{
  'vector_store', JSON_ARRAY('VectorStoreTableName'[, 'VectorStoreTableName']...)
  |'schema', JSON_ARRAY('SchemaName'[, 'SchemaName']...)
  |'n_citations', NumberOfCitations
  |'distance_metric', {'COSINE'|'DOT'|'EUCLIDEAN'}
  |'document_name', JSON_ARRAY('DocumentName'[, 'DocumentName']...)
  |'skip_generate', {true|false}
  |'model_options', modeloptions
  |'exclude_vector_store', JSON_ARRAY('ExcludeVectorStoreTableName'[, 'ExcludeVectorStoreTableName']...)
  |'exclude_document_name', JSON_ARRAY('ExcludeDocumentName'[, 'ExcludeDocumentName']...)
  |'retrieval_options', retrievaloptions
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  |'vector_store_columns', vscoptions
  |'embed_model_id', 'EmbeddingModelID'
  |'query_embedding', 'QueryEmbedding'
}

Following are ML_RAG parameters:

• QueryInNaturalLangugae: specifies the natural-language query.

• Output: stores the generated output. The output contains the following segments:

• text: the generated text-based response.

• citations: contains the following details:

• segment: the textual content that is retrieved from the vector store through semantic search,
and used as context generating the response.

• distance: the distance between the query embedding the segment embedding.

• document_name: the name of the document from which the segment is retrieved.

• vector_store: the list of vector store tables used for context retrieval.

• options: specifies optional parameters as key-value pairs in JSON format. It can include the
following parameters:

• vector_store: specifies a list of loaded vector store tables to use for context retrieval. The
routine ignores invalid table names. By default, the routine performs a global search across all the
available vector store tables in the DB system.

• schema: specifies a list of schemas to check for loaded vector store tables. By default, the routine
performs a global search across all the available vector store tables in all the schemas that are
available in the DB system.

• n_citations: specifies the number of segments to consider for context retrieval. Default value is
3. Possible values are integer values between 0 and 100.

• distance_metric: specifies the distance metrics to use for context retrieval. Default value is
COSINE. Possible values are COSINE, DOT, and EUCLIDEAN.

• document_name: limits the documents to use for context retrieval. Only the specified documents
are used. By default, the routine performs a global search across all the available documents
stored in all the available vector stores in the DB system.

• skip_generate: specifies whether to skip generation of the text-based response, and only
perform context retrieval from the available or specified vector stores, schemas, or documents.
Default value is false.

• model_options: additional options that you can set for generating the text-based response.
These are the same options that are available in the ML_GENERATE routine, which alter the text-
based response per the specified settings. Default value is '{"model_id": "llama3.2-3b-
instruct-v1"}'. To view the list of supported models, see Section 5.4, “Supported LLM,
Embedding Model, and Languages”.

However, the context model option is not supported as an ML_RAG model option.

• exclude_vector_store: specifies a list of loaded vector store tables to exclude from context
retrieval. The routine ignores invalid table names. Default value is NULL.

• exclude_document_name: specifies a list of documents to exclude from context retrieval.
Default value is NULL.
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• retrieval_options: specifies optional context retrieval parameters as key-value pairs in JSON
format. If a parameter value in retrieval_options is set to auto, the default value for that
parameter is used.

It can include the following parameters:

retrievaloptions: JSON_OBJECT(retrievaloptkeyvalue[, retrievaloptkeyvalue]...)
retrievaloptkeyvalue:
{
  'max_distance', MaxDistance
  |'percentage_distance', PercentageDistance
  |'segment_overlap', SegmentOverlap
}

• max_distance: specifies a maximum distance threshold for filtering out segments from context
retrieval. Segments for which the distance from the input query exceeds the specified maximum
distance threshold are excluded from content retrieval. This ensures that only the segments that
are closer to the input query are included during context retrieval. However, if no segments are
found within the specified distance, the routine fails to run.

Note

If this parameter is set, the default value of the n_citations parameter
is automatically updated to 10.

Default value is 0.6 for all distance metrics.

Possible values are decimal values between 0 and 999999.9999.

• percentage_distance: specifies what percentage of distance to the nearest segment is to
be used to determine the maximum distance threshold for filtering out segments from context
retrieval.

Following is the formula used for calculating the maximum distance threshold:

MaximumDistanceThreshold = DistanceOfInputQueryToNearestSegment +
[(percentage_distance / 100) * DistanceOfInputQueryToNearestSegment]

Which means that the segments for which the distance to the input query exceeds the distance
of the input query to the nearest segment by the specified percentage are filtered out from
context retrieval.

Note

If this parameter is set, the default value of the n_citations parameter
is automatically updated to 10.

Default value is 20 for all distance metrics.

Possible values are decimal values between 0 and 999999.9999.

Note

If both max_distance and percentage_distance are set, the
smaller threshold value is considered for filtering out the segments.

• segment_overlap: specifies the number of additional segments adjacent to the nearest
segments to the input query to be included in context retrieval. These additional segments
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provide more continuous context for the input query. Default value is 1. Possible values are
integer values between 0 and 5.

• vector_store_columns: specifies column names for finding relevant vector and embedding
tables for context retrieval as key-value pairs in JSON format. If multiple tables contain columns
with the same name and data type, then all such tables are used for context retrieval.

It can include the following parameters:

vscoptions: JSON_OBJECT('segment', 'SegmentColName', 'segment_embedding', 'EmbeddingColName'[, vsckeyvalue]...)
vsckeyvalue:
{
  'document_name', 'DocumentName'
  |'document_id', DocumentID
  |'metadata', 'Metadata'
  |'segment_number', SegmentNumber
} 

• segment: specifies the name of the mandatory string column that contains the text segments.
Default value is segment.

• segment_embedding: specifies the name of the mandatory vector column that contains vector
embeddings of the text segments. Default value is segment_embedding.

• document_name: specifies the name of the optional column that contains the document names.
This column can be of any data type supported by MySQL. Default value is document_name.

• document_id: specifies the name of the optional integer column that contains the document
IDs. Default value is document_id.

• metadata: specifies the name of the optional JSON column that contains additional table
metadata. Default value is metadata.

• segment_number: specifies the name of the optional integer column that contains the segment
numbers. Default value is segment_number.

Default value is {"segment": "segment", "segment_embedding":
"segment_embedding", "document_id: "document_id", "segment_number":
"segment_number", "metadata": "metadata"}, which means that by default, the routine
uses the default values of all column names to find relevant tables for context retrieval.

• embed_model_id: specifies the embedding model to use for embedding the input query. If you
are providing the query embedding, then set this parameter to specify the embedding model to use
to embed the query. The routine uses vector store tables and embedding tables created using the
same embedding model for context retrieval. Default value is multilingual-e5-small.

To view the list of available embedding models, see In-Database Embedding Model.

• query_embedding: specifies the vector embedding of the input query. If this parameter is set,
then the routine skips generating the vector embeddings of the input query. Instead, it uses this
embedding for context retrieval from valid vector store and embedding tables that contain vector
embeddings created using the same embedding model.

Syntax Examples

Retrieving context and generating output:

mysql> CALL sys.ML_RAG("What is AutoML",@output,@options);

Where, @options is set to specify the vector store table to use using vector_store key, as shown
below:

mysql> SET @options = JSON_OBJECT("vector_store", JSON_ARRAY("demo_db.demo_embeddings"));
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See Also

• Section 5.8, “Performing Vector Search with Retrieval-Augmented Generation”

• Section 8.2.5, “ML_RAG_TABLE”

8.2.5 ML_RAG_TABLE

The ML_RAG_TABLE routine runs multiple retrieval-augmented generation (RAG) queries in a batch,
in parallel. The output generated for every input query is the same as the output generated by the
ML_RAG routine.

This topic contains the following sections:

• ML_RAG_TABLE Syntax

• Syntax Examples

• See Also

To learn about the privileges you need to run this routine, see Section 5.3, “Required Privileges for
using GenAI”.

ML_RAG_TABLE Syntax

mysql> CALL sys.ML_RAG_TABLE('InputTableColumn', 'OutputTableColumn', options);

options: {JSON_OBJECT(keyvalue[, keyvalue]...)|NULL}
keyvalue: 
{
  'vector_store', JSON_ARRAY('VectorStoreTableName'[, 'VectorStoreTableName']...)
  |'schema', JSON_ARRAY('SchemaName'[, 'SchemaName']...)
  |'n_citations', NumberOfCitations
  |'distance_metric', {'COSINE'|'DOT'|'EUCLIDEAN'}
  |'document_name', JSON_ARRAY('DocumentName'[, 'DocumentName']...)
  |'skip_generate', {true|false}
  |'model_options', modeloptions
  |'exclude_vector_store', JSON_ARRAY('ExcludeVectorStoreTableName'[, 'ExcludeVectorStoreTableName']...)
  |'exclude_document_name', JSON_ARRAY('ExcludeDocumentName'[, 'ExcludeDocumentName']...)
  |'batch_size', BatchSize
  |'retrieval_options', retrievaloptions
  |'vector_store_columns', vscoptions
  |'embed_model_id', 'EmbeddingModelID'
  |'embed_column', 'EmbeddedQueriesColumnName'
  |'fail_on_embedding_error', {true|false}
}

Following are ML_RAG_TABLE parameters:

• InputTableColumn: specifies the names of the input database, table, and column that contains
the natural-language queries. The InputTableColumn is specified in the following format:
DBName.TableName.ColumnName.

• The specified input table can be an internal or external table.

• The specified input table must already exist, must not be empty, and must have a primary key.

• The input column must already exist and must contain text or varchar values.

• The input column must not be a part of the primary key and must not have NULL values or empty
strings.

• There must be no backticks used in the DBName, TableName, or ColumnName and there must be
no period used in the DBName or TableName.
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• OutputTableColumn: specifies the names of the database, table, and column where the generated
text-based response is stored. The OutputTableColumn is specified in the following format:
DBName.TableName.ColumnName.

• The specified output table must be an internal table.

• If the specified output table already exists, then it must be the same as the input table. And, the
specified output column must not already exist in the input table. A new JSON column is added to
the table. External tables are read only. So if input table is an external table, then it cannot be used
to store the output.

• If the specified output table doesn't exist, then a new table is created. The new output table has
key columns which contains the same primary key values as the input table and a JSON column
that stores the generated text-based responses.

• There must be no backticks used in the DBName, TableName, or ColumnName and there must be
no period used in the DBName or TableName.

• options: specifies optional parameters as key-value pairs in JSON format. It can include the
following parameters:

• vector_store: specifies a list of loaded vector store tables to use for context retrieval. The
routine ignores invalid table names. By default, the routine performs a global search across all the
available vector store tables in the DB system.

• schema: specifies a list of schemas to check for loaded vector store tables. By default, the routine
performs a global search across all the available vector store tables in all the schemas that are
available in the DB system.

• n_citations: specifies the number of segments to consider for context retrieval. Default value is
3. Possible values are integer values between 0 and 100.

• distance_metric: specifies the distance metrics to use for context retrieval. Default value is
COSINE. Possible values are COSINE, DOT, and EUCLIDEAN.

• document_name: limits the documents to use for context retrieval. Only the specified documents
are used. By default, the routine performs a global search across all the available documents
stored in all the available vector stores in the DB system.

• skip_generate: specifies whether to skip generation of the text-based response, and only
perform context retrieval from the available or specified vector stores, schemas, or documents.
Default value is false.

• model_options: additional options that you can set for generating the text-based response.
These are the same options that are available in the ML_GENERATE routine, which alter the text-
based response per the specified settings. However, the context option is not supported as an
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ML_RAG_TABLE model option. Default value is '{"model_id": "llama3.2-3b-instruct-
v1"}'.

• exclude_vector_store: specifies a list of loaded vector store tables to exclude from context
retrieval. The routine ignores invalid table names. Default value is NULL.

• exclude_document_name: specifies a list of documents to exclude from context retrieval.
Default value is NULL.

• batch_size: specifies the batch size for the routine. This option is supported for internal tables
only. Default value is 1000. Possible values are integer values between 1 and 1000.

• retrieval_options: specifies optional context retrieval parameters as key-value pairs in JSON
format. If a parameter value in retrieval_options is set to auto, the default value for that
parameter is used.

It can include the following parameters:

retrievaloptions: JSON_OBJECT(retrievaloptkeyvalue[, retrievaloptkeyvalue]...)
retrievaloptkeyvalue:
{
  'max_distance', MaxDistance
  |'percentage_distance', PercentageDistance
  |'segment_overlap', SegmentOverlap
}

• max_distance: specifies a maximum distance threshold for filtering out segments from context
retrieval. Segments for which the distance from the input query exceeds the specified maximum
distance threshold are excluded from content retrieval. This ensures that only the segments that
are closer to the input query are included during context retrieval. However, if no segments are
found within the specified distance, the routine generates an output without using any context.

Note

If this parameter is set, the default value of the n_citations parameter
is automatically updated to 10.

Default value is 0.6 for all distance metrics.

Possible values are decimal values between 0 and 999999.9999.
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• percentage_distance: specifies what percentage of distance to the nearest segment is to
be used to determine the maximum distance threshold for filtering out segments from context
retrieval.

Following is the formula used for calculating the maximum distance threshold:

MaximumDistanceThreshold = DistanceOfInputQueryToNearestSegment +
[(percentage_distance / 100) * DistanceOfInputQueryToNearestSegment]

Which means that the segments for which the distance to the input query exceeds the distance
of the input query to the nearest segment by the specified percentage are filtered out from
context retrieval.

Note

If this parameter is set, the default value of the n_citations parameter
is automatically updated to 10.

Default value is 20 for all distance metrics.

Possible values are decimal values between 0 and 999999.9999.

Note

If both max_distance and percentage_distance are set, the
smaller threshold value is considered for filtering out the segments.

• segment_overlap: specifies the number of additional segments adjacent to the nearest
segments to the input query to be included in context retrieval. These additional segments
provide more continuous context for the input query. Default value is 1. Possible values are
integer values between 0 and 5.

• vector_store_columns: specifies column names for finding relevant vector and embedding
tables for context retrieval as key-value pairs in JSON format. If multiple tables contain columns
with the same name and data type, then all such tables are used for context retrieval.

It can include the following parameters:

vscoptions: JSON_OBJECT('segment', 'SegmentColName', 'segment_embedding', 'EmbeddingColName'[, vsckeyvalue]...)
vsckeyvalue:
{
  'document_name', 'DocumentName'
  |'document_id', DocumentID
  |'metadata', 'Metadata'
  |'segment_number', SegmentNumber
} 

• segment: specifies the name of the mandatory string column that contains the text segments.
Default value is segment.

• segment_embedding: specifies the name of the mandatory vector column that contains vector
embeddings of the text segments. Default value is segment_embedding.

• document_name: specifies the name of the optional column that contains the document names.
This column can be of any data type supported by MySQL. Default value is document_name.

• document_id: specifies the name of the optional integer column that contains the document
IDs. Default value is document_id.

• metadata: specifies the name of the optional JSON column that contains additional table
metadata. Default value is metadata.
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• segment_number: specifies the name of the optional integer column that contains the segment
numbers. Default value is segment_number.

Default value is {"segment": "segment", "segment_embedding":
"segment_embedding", "document_id: "document_id", "segment_number":
"segment_number", "metadata": "metadata"}, which means that by default, the routine
uses the default values of all column names to find relevant tables for context retrieval.

• embed_model_id: specifies the embedding model to use for embedding the input queries. If you
are providing the query embeddings, then set this option to specify the embedding model to use to
embed the queries. The routine uses vector store tables and embedding tables created using the
same embedding model for context retrieval. Default value is multilingual-e5-small.

To view the list of available embedding models, see In-Database Embedding Model.

• embed_column: specifies the name of the input table column which contains vector embeddings
of the input queries. If this option is set, then the routine skips generating the vector embeddings of
the input queries. Instead, it uses the embeddings stored in this column for context retrieval from
valid vector store and embedding tables that contain vector embeddings created using the same
embedding model.

• fail_on_embedding_error: if set to true, stops the batch processing of input queries and
throws an error in case an error is encountered for an input row. If set to false, allows the batch
processing to partially fail for rows where errors are encountered, and lets the routine continue with
processing the other rows. Default value is true.

Syntax Examples

Running retrieval-augmented generation in a batch of 10:

mysql> CALL sys.ML_RAG_TABLE("demo_db.input_table.Input", "demo_db.output_table.Output", JSON_OBJECT("vector_store", JSON_ARRAY("demo_db.demo_embeddings"), "model_options", JSON_OBJECT("language", "en"), "batch_size", 10));

In this example, the routine performs RAG for 10 input queries stored in the
demo_db.input_table.Input column, and creates a column of 10 rows
demo_db.output_table.Output where it stores the generated outputs.

See Also

• Run Retrieval-Augmented Generation - Run Batch Queries

• Use Your Own Embeddings with Retrieval-Augmented Generation - Run Batch Queries

• Section 8.2.4, “ML_RAG”

8.2.6 HEATWAVE_CHAT

The HEATWAVE_CHAT routine automatically calls the ML_RAG routine which loads an LLM and runs a
semantic search on the available vector stores by default. If the routine cannot find a vector store, then
it calls the ML_GENERATE routine and uses information available in LLM training data, which is primarily
information that is available in public data sources, to generate a response for the entered query.

This topic contains the following sections:

• HEATWAVE_CHAT Syntax

• @chat_options Parameters

• Syntax Examples

• See Also
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HEATWAVE_CHAT Syntax

mysql> CALL sys.HEATWAVE_CHAT('QueryInNaturalLanguage');

The HEATWAVE_CHAT routine accepts one input parameter:

• QueryInNaturalLanguage: specifies the query in natural language.

For specifying additional chat parameter settings, the HEATWAVE_CHAT routine reserves a variable,
@chat_options. When you run the routine, it also updates the @chat_options variable with any
additional information that is used or collected by the routine to generate the response.

@chat_options Parameters

Following is a list of all the parameters that you can set in the @chat_options variable:

• Input only: you can set these parameters to control the chat behavior. The routine cannot change
the values of these parameters.

• schema_name: specifies the name of a schema. If set, the routine searches for vector store tables
in this schema. This parameter cannot be used in combination with the tables parameter. Default
value is NULL

• report_progress: specifies whether information such as routine progress detail is to be
reported. Default value is false.

• skip_generate: specifies whether response generation is skipped. If set to true, the routine
does not generate a response. Default value is false.

• return_prompt: specifies whether to return the prompt that was passed to the ML_RAG or
ML_GENERATE routines. Default value is false.

• re_run: if set to true, it indicates that the request is a re-run of the previous request. For
example, a re-run of a query with some different parameters. The new query and response
replaces the last entry stored in the chat_history parameter. Default value is false.

• include_document_uris: limits the documents used for context retrieval by including only the
specified document URIs. Default value is NULL.

• retrieve_top_k: specifies the context size. The default value is the value of the n_citations
parameter of the ML_RAG routine. Possible values are integer values between 0 and 100.

• chat_query_id: specifies the chat query ID to be printed with the chat_history in the GUI.
This parameter is reserved for GUI use. By default, the routine generates random IDs.

• history_length: specifies the maximum history length, which is the number of question and
answers, to include in the chat history. The specified value must be greater than or equal to 0.
Default value is 3.

• vector_store_columns: optional parameter which specifies column names for finding relevant
vector and embedding tables for context retrieval as key-value pairs in JSON format. If multiple
tables contain columns with the same name and data type, then all such tables are used for
context retrieval.

It can include the following parameters:

JSON_OBJECT('segment', 'SegmentColName', 'segment_embedding', 'EmbeddingColName'[, vsckeyvalue]...)
vsckeyvalue:
{
  'document_name', 'DocumentName'
  |'document_id', DocumentID
  |'metadata', 'Metadata'
  |'segment_number', SegmentNumber
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} 

• segment: specifies the name of the mandatory string column that contains the text segments.
Default value is segment.

• segment_embedding: specifies the name of the mandatory vector column that contains vector
embeddings of the text segments. Default value is segment_embedding.

• document_name: specifies the name of the optional column that contains the document names.
This column can be of any data type supported by MySQL. Default value is document_name.

• document_id: specifies the name of the optional integer column that contains the document
IDs. Default value is document_id.

• metadata: specifies the name of the optional JSON column that contains additional table
metadata. Default value is metadata.

• segment_number: specifies the name of the optional integer column that contains the segment
numbers. Default value is segment_number.

Default value is {"segment": "segment", "segment_embedding":
"segment_embedding", "document_id: "document_id", "segment_number":
"segment_number", "metadata": "metadata"}, which means that by default, the routine
uses the default values of all column names to find relevant tables for context retrieval.

• embed_model_id: specifies the embedding model to use for embedding the input query. The
routine uses vector store tables and embedding tables created using the same embedding model
for context retrieval. Default value is multilingual-e5-small.

To view the list of available embedding models, see In-Database Embedding Model.

• retrieval_options: specifies optional context retrieval parameters as key-value pairs in JSON
format. If a parameter value in retrieval_options is set to auto, the default value for that
parameter is used.

It can include the following parameters:

JSON_OBJECT(retrievaloptkeyvalue[, retrievaloptkeyvalue]...)
retrievaloptkeyvalue:
{
  'max_distance', MaxDistance
  |'percentage_distance', PercentageDistance
  |'segment_overlap', SegmentOverlap
}

• max_distance: specifies a maximum distance threshold for filtering out segments from context
retrieval. Segments for which the distance from the input query exceeds the specified maximum
distance threshold are excluded from content retrieval. This ensures that only the segments that
are closer to the input query are included during context retrieval. However, if no segments are
found within the specified distance, the routine fails to run.

Note

If this parameter is set, the default value of the n_citations parameter
is automatically updated to 10.

Default value is 0.6 for all distance metrics.

Possible values are decimal values between 0 and 999999.9999.
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• percentage_distance: specifies what percentage of distance to the nearest segment is to
be used to determine the maximum distance threshold for filtering out segments from context
retrieval.

Following is the formula used for calculating the maximum distance threshold:

MaximumDistanceThreshold = DistanceOfInputQueryToNearestSegment +
[(percentage_distance / 100) * DistanceOfInputQueryToNearestSegment]

Which means that the segments for which the distance to the input query exceeds the distance
of the input query to the nearest segment by the specified percentage are filtered out from
context retrieval.

Note

If this parameter is set, the default value of the n_citations parameter
is automatically updated to 10.

Default value is 20 for all distance metrics.

Possible values are decimal values between 0 and 999999.9999.

Note

If both max_distance and percentage_distance are set, the
smaller threshold value is considered for filtering out the segments.

• segment_overlap: specifies the number of additional segments adjacent to the nearest
segments to the input query to be included in context retrieval. These additional segments
provide more continuous context for the input query. Default value is 1. Possible values are
integer values between 0 and 5.

• Input-output: both you and the routine can change the values of these parameters.

• chat_history: JSON array that represents the current chat history. Default value is NULL.

Syntax for each object in the chat_history array is as follows:

JSON_OBJECT('key','value'[,'key','value'] ...)
  'key','value': {
  ['user_message','Message']
  ['chat_bot_message','Message']
  ['chat_query_id','ID']
}

Each parameter value in the array holds the following keys and their values:

• user_message: message entered by the user.

• chat_bot_message: message generated by the chat bot.

• chat_query_id: a query ID.
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• tables: JSON array that represents the following:

• For providing input, represents the list of vector store schema or table names to consider for
context retrieval.

• As routine output, represents the list of discovered vector store tables, if any. Otherwise, it holds
the same values as input.

Default value is NULL.

Syntax for each object in the tables array is as follows:

JSON_OBJECT('key','value'[,'key','value'] ...)
  'key','value': {
  ['schema_name','SchemaName']
  ['table_name','TableName']
}

Each parameter values in the array holds the following keys and their values:

• schema_name: name of the schema.

• table_name: name of the vector store table.

• task: specifies the task performed by the LLM. Default value is generation. Possible value is
generation.

• model_options: optional model parameters specified as key-value pairs in JSON format.
These are the same options that are available in the ML_GENERATE routine, which alter the text-
based response per the specified settings. Default value is '{"model_id": "llama3.2-3b-
instruct-v1"}'.

• Output only: only the routine can set or change values of these parameters.

• info: contains information messages such as routine progress information. Default value is NULL.
This parameter is populated only if report_progress is set to true.

• error: contains the error message if an error occurred. Default value is NULL.

• error_code: contains the error code if an error occurred. Default value is NULL.

• prompt: contains the prompt passed to the ML_RAG or ML_GENERATE routine. Default value is
NULL. This parameter is populated only if report_prompt is set to true.

• documents: contains the names of the documents as well as segments used as context by the
LLM for response generation. Default value is NULL.

• request_completed: set to true when a response is the last response message to a request.
Default value is NULL.

• response: contains the final response from the routine. Default value is NULL.

Syntax Examples

• Entering a natural-language query using the HEATWAVE_CHAT routine:

mysql> CALL sys.HEATWAVE_CHAT("What is Lakehouse?");

• Modifying chat parameters using the @chat_options variable:

• Modifying a chat parameter, tables, to specify the vector store table to use for context retrieval in
the next chat session:
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mysql> SET @chat_options = '{"tables": [{"table_name": "demo_embeddings", "schema_name": "demo_db"}]}';

This example resets the chat session and uses the specified vector store table in the new chat
session.

• Modifying a chat parameter, tables, to specify the vector store table to use for context retrieval in
the same chat session:

mysql> SET @chat_options = JSON_SET(@chat_options,'$.tables', JSON_ARRAY(JSON_OBJECT("table_name", "demo_embeddings", "schema_name", "demo_db")));

This example uses the specified vector store table in the ongoing chat session. It does not reset
the chat session.

• Modifying a chat parameter, temperature, without resetting the chat session:

mysql> SET @chat_options = json_set(@chat_options, '$.model_options.temperature', 0.5);

• Viewing the chat parameters and session details:

mysql> SELECT JSON_PRETTY(@chat_options);

See Also

• Section 5.9, “Starting a Conversational Chat”

• For more information about the output generated by this command, see Section 5.9.2, “Viewing Chat
Session Details”.

8.2.7 ML_EMBED_ROW

The ML_EMBED_ROW routine uses the specified embedding model to encode the specified text or query
into a vector embedding. The routine returns a VECTOR that contains a numerical representation of the
specified text.

This topic contains the following sections:

• ML_EMBED_ROW Syntax

• Syntax Examples

• See Also

ML_EMBED_ROW Syntax

mysql> SELECT sys.ML_EMBED_ROW('Text'[, options]);

options: JSON_OBJECT(keyvalue[, keyvalue] ...)
keyvalue: 
{
  'model_id', {'ModelID'}
  |'truncate', {true|false}
}

Following are ML_EMBED_ROW parameters:

• Text: specifies the text to encode.

• options: specifies optional parameters as key-value pairs in JSON format. It can include the
following parameters:

• model_id: specifies the embedding model to use for encoding the text. Default value is
multilingual-e5-small. Possible values are:

• all_minilm_l12_v2
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• multilingual-e5-small

To view the lists of available embedding models, see In-Database Embedding Model.

• truncate: specifies whether to truncate inputs longer than the maximum token size. Default
value is true.

Syntax Examples

• Embed an English query using the all_minilm_l12_v2 embedding model, and store the
generated embedding in the @text_embedding variable:

mysql> SELECT sys.ML_EMBED_ROW("What is artificial intelligence?", JSON_OBJECT("model_id", "all_minilm_l12_v2")) into @text_embedding;

Print the embedding stored in the @text_embedding variable:

mysql> SELECT @text_embedding;

The output, which is a binary representation of the specified text, looks similar to the following:


| @text_embedding|

| 0x|


To convert the binary representation of this embedding into its string representation, use the
VECTOR_TO_STRING() function:

mysql> SELECT VECTOR_TO_STRING(@text_embedding);

The output is similar to the following:


| VECTOR_TO_STRING(@text_embedding|
+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| [-1.35008e-02,-4.81091e-02,-1.87244e-02,1.53858e-02,-2.73258e-02,-4.71801e-02,3.78558e-02,6.18583e-02,3.09748e-02,4.25325e-02,4.50060e-02,-1.52737e-02,-1.07439e-02,2.52579e-02,-5.49143e-02,-3.13196e-03,-7.35058e-03,-3.32537e-02,-1.27431e-02,-1.31405e-01,-2.45172e-03,3.91052e-02,1.92561e-03,-1.64093e-02,-1.40636e-02,3.25295e-02,3.61774e-02,2.63553e-02,3.03425e-02,-2.55699e-02,1.66407e-03,-3.01101e-02,1.52613e-01,7.36554e-02,-3.62119e-02,-6.65770e-03,6.28107e-03,-3.52723e-02,5.57986e-02,-3.75498e-02,-4.20355e-02,-1.56006e-01,-8.11791e-03,3.66921e-02,3.58499e-02,6.92460e-02,-8.37626e-02,-1.01582e-02,-4.97198e-02,-1.05091e-03,-8.86490e-02,-2.50312e-02,-3.34431e-03,6.29635e-02,3.97925e-02,-1.83922e-02,-7.98628e-03,-1.85632e-02,2.51469e-02,4.06300e-03,5.51186e-02,3.36358e-02,5.81309e-02,1.46035e-02,7.06999e-03,2.81978e-02,2.58011e-02,4.16772e-03,4.57076e-03,-4.32039e-02,7.76326e-02,4.86187e-03,2.42210e-02,2.94987e-02,4.76015e-02,3.86414e-02,4.27264e-02,-5.33310e-02,8.54124e-02,-1.30918e-02,-2.21809e-02,-3.21693e-02,-2.47841e-02,1.35920e-01,1.85386e-03,-3.99174e-02,-6.89597e-02,2.66399e-02,1.29973e-01,-1.01401e-02,7.38266e-02,-3.20015e-02,2.41765e-02,2.02730e-02,1.03713e-01,9.35861e-02,-5.98146e-02,-8.52715e-02,-6.37324e-03,7.67612e-02,-3.51518e-02,1.75981e-02,-2.95033e-02,-8.07103e-02,2.33189e-02,2.24778e-02,-5.98881e-02,-6.60016e-02,-3.19698e-02,-1.64257e-02,-4.57828e-02,-1.68085e-02,4.19107e-02,-9.57086e-03,6.02279e-02,-4.40689e-02,-2.37391e-02,4.28135e-02,-5.55950e-02,-3.65498e-02,-4.04455e-02,3.73585e-02,-5.78485e-03,1.21423e-01,5.28441e-02,-3.07404e-02,-3.66151e-02,3.23742e-02,-3.87174e-02,-6.30764e-02,-4.85360e-02,3.99589e-03,-4.52304e-02,-8.67216e-02,4.53512e-02,9.27808e-03,-1.06768e-01,-3.61010e-02,2.81751e-02,8.84523e-03,1.17779e-02,8.28423e-02,6.99755e-02,-4.99685e-02,-2.67612e-02,-2.51006e-02,2.70821e-02,-3.03689e-02,7.42482e-02,-9.47088e-03,8.13693e-03,-6.82612e-02,2.09184e-02,-1.94212e-04,3.16581e-02,-1.38410e-02,6.89695e-02,5.69985e-04,7.35425e-03,3.45127e-02,3.39014e-03,2.79018e-02,7.31804e-02,3.47646e-04,7.20607e-02,-1.88765e-02,4.29590e-02,-5.83699e-03,2.58827e-02,4.94162e-02,5.14767e-02,6.97469e-02,2.35781e-02,2.03156e-02,3.40477e-02,-2.54478e-02,-1.57547e-02,4.67831e-02,-1.26857e-02,4.28632e-03,-3.59751e-02,-1.09059e-02,-9.87097e-03,3.91180e-02,2.20322e-02,1.34094e-02,2.71441e-02,-8.90895e-03,7.54479e-03,4.80585e-02,1.83602e-02,1.40130e-01,3.94898e-02,-1.30462e-02,-1.61992e-02,-1.19307e-01,8.75255e-02,8.30053e-02,6.48740e-02,-8.33776e-03,-8.95298e-02,-1.39303e-02,-1.32587e-01,7.91684e-04,-3.01528e-02,-8.07028e-02,7.79672e-03,-4.64393e-02,-3.83887e-02,7.29641e-02,-1.81910e-02,-4.21702e-02,3.26890e-02,-6.26190e-02,3.29666e-03,-3.58380e-03,-3.40290e-03,8.03432e-03,-5.35343e-02,-4.18804e-02,1.43645e-02,4.04460e-02,-1.15761e-01,-2.81720e-33,-1.07522e-01,-4.03784e-02,-7.41511e-02,1.04349e-01,3.98856e-02,2.57041e-02,-4.08251e-02,2.69463e-02,7.88422e-02,-1.69656e-02,-5.53724e-02,3.35760e-02,-8.55938e-03,2.82219e-02,-5.97974e-02,1.30948e-02,-5.88732e-02,-3.70114e-02,2.88600e-02,4.81171e-02,1.06814e-01,8.49950e-02,-1.27095e-02,3.62842e-03,-8.09251e-02,3.92016e-02,7.30298e-03,2.60251e-02,2.52736e-02,1.34041e-02,1.71122e-02,-4.53320e-02,-3.76499e-02,9.15465e-02,-2.49085e-02,9.50625e-02,1.76431e-02,-8.95234e-02,1.31615e-02,-6.41429e-02,2.77218e-02,-2.44831e-02,-8.67236e-02,6.31387e-03,5.74835e-02,-9.16857e-03,-5.75004e-02,3.80241e-02,1.51779e-02,-2.89636e-02,-3.28189e-02,-1.40415e-02,3.16636e-02,-5.14577e-02,3.31549e-02,-2.99292e-02,-5.25413e-02,1.01411e-02,-2.28152e-02,1.13315e-01,3.74283e-02,1.50386e-02,-2.79262e-02,4.43225e-02,-9.57331e-02,1.17060e-01,-6.66834e-03,-5.17749e-02,-2.40789e-03,-5.76208e-02,1.10536e-01,4.30631e-02,5.48616e-02,-3.46306e-02,-1.00486e-01,3.70641e-02,-1.76521e-02,1.50829e-02,4.08211e-02,9.40725e-03,-5.80513e-02,-1.09298e-01,-1.57418e-02,-4.09152e-02,-1.66342e-02,1.34909e-02,-9.45935e-02,-5.84408e-03,-6.34994e-02,5.41421e-03,-1.48256e-02,-3.58023e-02,-7.66888e-02,2.90272e-02,5.39104e-03,6.24560e-34,4.52859e-02,-2.09178e-02,-1.17350e-02,1.33192e-02,-3.82112e-02,-8.94849e-03,-3.34597e-03,8.48110e-04,-4.01889e-02,-1.01674e-01,3.95898e-02,-5.25248e-02,4.45169e-02,1.54802e-01,1.71860e-02,3.89008e-02,-1.01040e-02,2.43889e-03,-8.69935e-03,-4.44206e-02,6.84956e-02,-2.22719e-02,-1.17024e-01,-9.49348e-02,1.97088e-02,-5.53377e-02,7.65156e-03,4.17577e-02,-3.87049e-03,-1.08024e-02,-2.98767e-02,-4.03391e-03,-3.92992e-02,5.61136e-02,-4.48686e-02,2.64758e-03,1.06933e-02,-4.16700e-03,-1.54501e-02,-8.95366e-02,-2.61692e-02,1.28280e-01,7.43871e-03,-5.27115e-02,7.95930e-02,3.16911e-02,8.45742e-03,-1.00309e-01,-4.86794e-03,-1.41030e-02,9.09856e-03,-2.80797e-02,-1.31567e-02,5.24730e-02,4.71509e-02,6.78105e-02,5.06973e-02,-9.17271e-02,-6.07385e-02,8.04784e-02,-1.57499e-02,4.50067e-02,7.10739e-02,-6.75149e-02] |


The string representation of the embedding consists of a list one or more comma-separated float
values, encased in square brackets ([ ]). The values are expressed using decimal or scientific
notation.

See Also

Section 5.7, “Generating Vector Embeddings”

8.2.8 ML_EMBED_TABLE

The ML_EMBED_TABLE routine runs multiple embedding generations in a batch, in parallel.

This topic contains the following sections:

• ML_EMBED_TABLE Syntax

• Syntax Examples

• See Also

To learn about the privileges you need to run this routine, see Section 5.3, “Required Privileges for
using GenAI”.

ML_EMBED_TABLE Syntax

mysql> CALL sys.ML_EMBED_TABLE('InputTableColumn', 'OutputTableColumn'[, options]);
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options: JSON_OBJECT(keyvalue[, keyvalue] ...)
keyvalue: 
{
  'model_id', {'ModelID'}
  |'truncate', {true|false}
  |'batch_size', BatchSize
  |'details_column', 'ErrorDetailsColumnName'
}

Following are ML_EMBED_TABLE parameters:

• InputTableColumn: specifies the names of the input database, table, and column that
contains the text to encode. The InputTableColumn is specified in the following format:
DBName.TableName.ColumnName.

• The specified input table can be an internal or external table.

• The specified input table must already exist, must not be empty, and must have a primary key.

• The input column must already exist and must contain text or varchar values.

• The input column must not be a part of the primary key and must not have NULL values or empty
strings.

• There must be no backticks used in the DBName, TableName, or ColumnName and there must be
no period used in the DBName or TableName.

• OutputTableColumn: specifies the names of the database, table, and column where the
generated embeddings are stored. The OutputTableColumn is specified in the following format:
DBName.TableName.ColumnName.

• The specified output table must be an internal table.

• If the specified output table already exists, then it must be the same as the input table. And, the
specified output column must not already exist in the input table. A new VECTOR column is added
to the table. External tables are read only. So if input table is an external table, then it cannot be
used to store the output.

• If the specified output table doesn't exist, then a new table is created. The new output table has
key columns which contains the same primary key values as the input table and a VECTOR column
that stores the generated embeddings.

• There must be no backticks used in the DBName, TableName, or ColumnName and there must be
no period used in the DBName or TableName.

• options: specifies optional parameters as key-value pairs in JSON format. It can include the
following parameters:

• model_id: specifies the embedding model to use for encoding the text. Default value is
multilingual-e5-small. Possible values are:

• all_minilm_l12_v2 or minilm

• multilingual-e5-small

To view the lists of available embedding models, see In-Database Embedding Model.

• truncate: specifies whether to truncate inputs longer than the maximum token size. Default
value is true.

• batch_size: specifies the batch size for the routine. This option is supported for internal tables
only. Default value is 1000. Possible values are integer values between 1 and 1000.
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• details_column: specifies a name for the output table column that is created for adding details
of errors encountered for rows that aren't processed successfully by the routine. Ensure that a
column by the specified name does not already exist in the table. Default value is details.

Syntax Examples

Generate embeddings for text stored in demo_db.input_table.Input using the
all_minilm_l12_v2 embedding model, and save the generated embeddings in the output table
demo_db.output_table.Output:

mysql> CALL sys.ML_EMBED_TABLE("demo_db.input_table.Input", "demo_db.output_table.Output", JSON_OBJECT("model_id", "all_minilm_l12_v2"));

See Also

Generate Vector Embeddings - Run Batch Queries

8.2.9 NL_SQL

Generates SQL queries using natural-language statements. The routine also runs the generated SQL
statement and displays the result set. You can use this routine for generating and running SQL queries
only for databases and tables that you have access to.

Note

This routine can generate and run SELECT statements only.

The LLM-generated SQL statements might contain syntax errors. The routine automatically detects
these errors, and retries the SQL generation until a syntactically valid SQL statement is generated, with
a maximum of 3 generation attempts.

This topic contains the following sections:

• NL_SQL Syntax

• Syntax Examples

• See Also

NL_SQL Syntax

mysql> CALL sys.NL_SQL("NaturalLanguageStatement", @output, options);

options: {JSON_OBJECT(keyvalue[, keyvalue]...)|NULL}
keyvalue: 
{
  'execute', {true|false}
  | 'schemas', JSON_ARRAY('DBName'[, 'DBName'] ...)
  | 'tables', JSON_ARRAY(TableJSON[, TableJSON] ...)
  | 'model_id', 'ModelID'
  | 'verbose', {0|1|2}
  | 'include_comments', {true|false}
  | 'use_retry', {true|false}
}

Following are NL_SQL parameters:

• NaturalLanguageQuery: natural-language query pertaining to your data available in MySQL
HeatWave that you want to convert to an SQL query.

• @output: output parameter that includes the list of tables and databases considered for generating
the SQL query, Model ID of the Large Language Model (LLM) used for generating the query, the
generated SQL query, and whether the generated SQL query is valid.
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• options: specifies optional parameters as key-value pairs in JSON format. It can include the
following parameters:

• execute: specifies whether the procedure automatically runs the generated SQL statement.
Default value is true.

• schemas: specifies the databases to consider for generating and running SQL queries. You can
specify up to five databases. By default, databases that the routine finds most relevant to the
entered natural-language statement are considered.

• tables: specifies the tables to consider for generating and running SQL queries in JSON format.
You can specify up to 50 tables. By default, tables that the routine finds most relevant to the
entered natural-language statement are considered.

TableJSON: JSON_OBJECT('schema_name', 'DBName', 'table_name', 'TableName')

Note

You can either use the schemas option to specify the databases to
consider or the tables option to specify the tables to consider. If you set
both these options, the routine fails.

• model_id: specifies the LLM to use for generating the SQL query. Default value is
llama3.2-3b-instruct-v1.

• verbose: specifies whether to print an output. Possible values are: 0: prints nothing, 1: prints the
generated SQL statement, and 2: prints debugging information. Default value is 1.

• include_comments: specifies whether comments are to be included during metadata collection
for columns or tables. Default value is true.

• use_retry: specifies whether generation retries for syntactically invalid SQL statements can be
attempted. Default value is true.

Syntax Examples

The examples in this topic uses a sample database, airport.

• Following example specifies the database to consider for the SQL query:

mysql> CALL sys.NL_SQL("How many flights are there in total?",@output, JSON_OBJECT('schemas',JSON_ARRAY('airportdb'),'model_id','llama3.2-3b-instruct-v1'));
+-----------------------------------------------------+
| Executing generated SQL statement...                |
+-----------------------------------------------------+
| SELECT COUNT(`flight_id`) FROM `airportdb`.`flight` |
+-----------------------------------------------------+
1 row in set (1.1509 sec)

+--------------------+
| COUNT(`flight_id`) |
+--------------------+
|             462553 |
+--------------------+

View the value stored in the variable @output:

mysql> SELECT JSON_PRETTY(@output);

| JSON_PRETTY(@output|

| {
  "tables": [
    "airportdb.weatherdata",
    "airportdb.employee",
    "airportdb.passenger",
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    "airportdb.airport",
    "airportdb.airplane_type",
    "airportdb.flight",
    "airportdb.airline",
    "airportdb.airport_geo",
    "airportdb.airport_reachable",
    "airportdb.flight_log",
    "airportdb.flightschedule",
    "airportdb.booking",
    "airportdb.airplane",
    "airportdb.passengerdetails"
  ],
  "license": "Your use of this Llama model is subject to the Llama 3.2 Community License Agreement available at https://docs.oracle.com/cd/E17952_01/heatwave-9.4-license-com-en/",
  "schemas": [
    "airportdb"
  ],
  "model_id": "llama3.2-3b-instruct-v1",
  "sql_query": "SELECT COUNT(`flight_id`) FROM `airportdb`.`flight`",
  "is_sql_valid": 1
} |


• Following example specifies the tables to consider for the SQL query:

mysql> CALL sys.NL_SQL("List five airlines that have the highest number of Airbus A330 aircrafts with the total number of the Airbus A330 aircrafts they have.",
  @output, JSON_OBJECT('tables', 
  JSON_ARRAY(JSON_OBJECT("schema_name","airportdb","table_name","airlines"), 
  JSON_OBJECT("schema_name","airportdb","table_name","airplane"), 
  JSON_OBJECT("schema_name","airportdb","table_name","airplane_type")),
  'model_id','llama3.2-3b-instruct-v1'));
+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| Executing generated SQL statement...                                                                                                                                                                                                                                               |
+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| SELECT `T1`.`airline_id`, COUNT(*) AS `num_airbus_a330` FROM `airportdb`.`airplane` AS `T1` JOIN `airportdb`.`airplane_type` AS `T2` ON `T1`.`type_id` = `T2`.`type_id` WHERE `T2`.`identifier` = 'Airbus A330' GROUP BY `T1`.`airline_id` ORDER BY `num_airbus_a330` DESC LIMIT 5 |
+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1 row in set (5.6537 sec)

+------------+-----------------+
| airline_id | num_airbus_a330 |
+------------+-----------------+
|         78 |              13 |
|         55 |              11 |
|         46 |              11 |
|         33 |              10 |
|         73 |              10 |
+------------+-----------------+

View the value stored in the variable @output:

mysql> SELECT JSON_PRETTY(@output);

| JSON_PRETTY(@output|

| {
  "tables": [
    "airportdb.airplane_type",
    "airportdb.airplane"
  ],
  "license": "Your use of this Llama model is subject to the Llama 3.2 Community License Agreement available at https://docs.oracle.com/cd/E17952_01/heatwave-9.4-license-com-en/",
  "schemas": [
    "airportdb"
  ],
  "model_id": "llama3.2-3b-instruct-v1",
  "sql_query": "SELECT `T1`.`airline_id`, COUNT(*) AS `num_airbus_a330` FROM `airportdb`.`airplane` AS `T1` JOIN `airportdb`.`airplane_type` AS `T2` ON `T1`.`type_id` = `T2`.`type_id` WHERE `T2`.`identifier` = 'Airbus A330' GROUP BY `T1`.`airline_id` ORDER BY `num_airbus_a330` DESC LIMIT 5",
  "is_sql_valid": 1
} |


See Also

Section 5.10, “Generating SQL Queries From Natural-Language Statements”
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8.2.10 ML_RETRIEVE_SCHEMA_METADATA

Retrieves the most relevant tables to a given natural-language statement and ranks them in the order
of their relevance.

The output generated by the routine can be used to enhance large language model (LLM) prompts,
NL_SQL workflows, and retrieval-augmented generation (RAG)-based analytics.

This routine is available as of MySQL 9.5.2.

ML_RETRIEVE_SCHEMA_METADATA Syntax

mysql> CALL sys.ML_RETRIEVE_SCHEMA_METADATA("NaturalLanguageStatement", @output, options);

options: {JSON_OBJECT(keyvalue[, keyvalue]...)|NULL}
keyvalue: 
{
    'schemas', JSON_ARRAY('DBName'[, 'DBName'] ...)
  | 'tables', JSON_ARRAY(TableJSON[, TableJSON] ...)
  | 'include_comments', {true|false}
}

Following are ML_RETRIEVE_SCHEMA_METADATA parameters:

• NaturalLanguageQuery: natural-language query that you want to use to find relevant tables.

• @output: output parameter that includes the most relevant tables and databases. This output
consists of a concise set of abridged CREATE TABLE statements for the tables that are most
relevant to a natural-language statement, ranked in order of relevance.

• options: specifies optional parameters as key-value pairs in JSON format. It can include the
following parameters:

• schemas: specifies the databases to consider for retrieving most relevant tables. You can specify
up to 128 databases. By default, all available databases are considered for retrieving the most
relevant tables.

• tables: specifies the tables to consider for retrieving most relevant tables. You can specify up to
128 tables. By default, all tables in all available databases are considered for retrieving the most
relevant tables.

TableJSON: JSON_OBJECT('schema_name', 'DBName', 'table_name', 'TableName')

Note

You can either use the schemas option to specify the databases to
consider or the tables option to specify the tables to consider. If you set
both these options, the routine fails.

• include_comments: specifies whether table and column comments are used for retrieving the
most relevant tables and also whether the comments are included with the generated output.
Default value is true.

Syntax Examples

• Following example specifies only a natural-language statement for retrieving the most relevant
tables:

mysql> CALL sys.ML_RETRIEVE_SCHEMA_METADATA("How many flights are there in total?", @output, NULL);

View the value stored in the variable @output:

mysql> SELECT @output;

| @output|
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| CREATE TABLE `airportdb`.`flightschedule`(
  `flightno` char,
  `from` smallint,
  `to` smallint,
  `departure` time,
  `arrival` time,
  `airline_id` smallint,
  `monday` tinyint,
  `tuesday` tinyint,
  `wednesday` tinyint,
  `thursday` tinyint,
  `friday` tinyint,
  `saturday` tinyint,
  `sunday` tinyint,
  FOREIGN KEY (`airline_id`) REFERENCES `airportdb`.`airline`(`airline_id`),
  FOREIGN KEY (`to`) REFERENCES `airportdb`.`airport`(`airport_id`),
  FOREIGN KEY (`from`) REFERENCES `airportdb`.`airport`(`airport_id`)
) COMMENT 'Flughafen DB by Stefan Pröll, Eva Zangerle, Wolfgang Gassler is licensed under CC BY 4.0. To view a copy of this license, visit https://creativecommons.org/licenses/by/4.0';

CREATE TABLE `airportdb`.`flight`(
  `flight_id` int,
  `flightno` char,
  `from` smallint,
  `to` smallint,
  `departure` datetime,
  `arrival` datetime,
  `airline_id` smallint,
  `airplane_id` int,
  FOREIGN KEY (`flightno`) REFERENCES `airportdb`.`flightschedule`(`flightno`),
  FOREIGN KEY (`airplane_id`) REFERENCES `airportdb`.`airplane`(`airplane_id`),
  FOREIGN KEY (`airline_id`) REFERENCES `airportdb`.`airline`(`airline_id`),
  FOREIGN KEY (`to`) REFERENCES `airportdb`.`airport`(`airport_id`),
  FOREIGN KEY (`from`) REFERENCES `airportdb`.`airport`(`airport_id`)
) COMMENT 'Flughafen DB by Stefan Pröll, Eva Zangerle, Wolfgang Gassler is licensed under CC BY 4.0. To view a copy of this license, visit https://creativecommons.org/licenses/by/4.0';

CREATE TABLE `airportdb`.`airplane`(
  `airplane_id` int,
  `capacity` mediumint,
  `type_id` int,
  `airline_id` int,
  FOREIGN KEY (`type_id`) REFERENCES `airportdb`.`airplane_type`(`type_id`)
) COMMENT 'Flughafen DB by Stefan Pröll, Eva Zangerle, Wolfgang Gassler is licensed under CC BY 4.0. To view a copy of this license, visit https://creativecommons.org/licenses/by/4.0';

... |

1 row in set (0.000 sec)

• Following example specifies the database to use for retrieving most relevant tables for the given
natural-language statement:

mysql> CALL sys.ML_RETRIEVE_SCHEMA_METADATA("How many threads are active?", @output, JSON_OBJECT('schemas',JSON_ARRAY('performance_schema'))); 

View the value stored in the variable @output:

mysql> SELECT @output;

| @output|

| CREATE TABLE `performance_schema`.`status_by_thread`(
  `THREAD_ID` bigint,
  `VARIABLE_NAME` varchar,
  `VARIABLE_VALUE` varchar
);

CREATE TABLE `performance_schema`.`variables_by_thread`(
  `THREAD_ID` bigint,
  `VARIABLE_NAME` varchar,
  `VARIABLE_VALUE` varchar
);

294



ML_RETRIEVE_SCHEMA_METADATA

CREATE TABLE `performance_schema`.`user_variables_by_thread`(
  `THREAD_ID` bigint,
  `VARIABLE_NAME` varchar,
  `VARIABLE_VALUE` longblob
);

... |

1 row in set (0.000 sec)

295



296



Chapter 9 Troubleshoot
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The sections in this chapter describe how to troubleshoot MySQL AI errors.

9.1 AutoML Error Messages
Each error message includes an error number, SQLSTATE value, and message string, as described in
Error Message Sources and Elements.

• Error number: ML001016; SQLSTATE: HY000

Message: Only classification, regression, and forecasting tasks are supported.

Example: ERROR HY000: ML001016: Only classification, regression, and
forecasting tasks are supported.

Check the task option in the ML_TRAIN call to ensure that it is specified correctly.

• Error number: ML001031; SQLSTATE: HY000

Message: Running as a classification task. % classes have less than % samples per class, and
cannot be trained on. For a real valued target column, the task parameter in the options JSON
should be set to regression.

Example: ERROR HY000: ML001031: Running as a classification task. 189
classes have less than 5 samples per class, and cannot be trained on. For
a real valued target column, the task parameter in the options JSON should
be set to regression.

If a classification model is intended, add more samples to the data to increase the minority class
count; that is, add more rows with the under-represented target column value. If a classification
model was not intended, run ML_TRAIN with the regression task option.

• Error number: ML001051; SQLSTATE: HY000

Message: One or more rows contain all NaN values. Imputation is not possible on such rows.

Example: ERROR HY000: ML001051: One or more rows contain all NaN values.
Imputation is not possible on such rows.

MySQL does not support NaN values. Replace with NULL.

• Error number: ML001052; SQLSTATE: HY000

Message: All columns are dropped. They are constant, mostly unique, or have a lot of missing
values!

Example: ERROR HY000: ML001052: All columns are dropped. They are constant,
mostly unique, or have a lot of missing values!

ML_TRAIN ignores columns with certain characteristics such as columns missing more than 20% of
values and columns containing the same single value. See Section 4.5.1, “Preparing Data”.

• Error number: ML001053; SQLSTATE: HY000
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Message: Unlabeled samples detected in the training data. (Values in target column can not be
NULL).

Example: ERROR HY000: ML001053: Unlabeled samples detected in the training
data. (Values in target column can not be NULL).

Training data must be labeled. See Section 4.5.1, “Preparing Data”.

• Error number: ML003000; SQLSTATE: HY000

Message: Number of offloaded datasets has reached the limit!

Example: ERROR HY000: ML003000: Number of offloaded datasets has reached the
limit!

• Error number: ML003011; SQLSTATE: HY000

Message: Columns of provided data need to match those used for training. Provided - ['%', '%', '%']
vs Trained - ['%', '%'].

Example: ERROR HY000: ML003011: Columns of provided data need to match
those used for training. Provided - ['petal length', 'petal width', 'sepal
length', 'sepal width'] vs Trained - ['petal length', 'sepal length',
'sepal width'].

The input data columns do not match the columns of training dataset used to train the model.
Compare the input data to the training data to identify the discrepancy.

• Error number: ML003012; SQLSTATE: HY000

Message: The table (%) is NULL or has not been loaded.

Example: ERROR HY000: ML003012: The table (mlcorpus.iris_train) is NULL or
has not been loaded.

There is no data in the specified table.

• Error number: ML003014; SQLSTATE: HY000

Message: The size of model generated is larger than the maximum allowed.

Example: ERROR HY000: ML003014: The size of model generated is larger than
the maximum allowed.

Models greater than 4 GB in size are not supported.

• Error number: ML003015; SQLSTATE: HY000

Message: The input column types do not match the column types of dataset which the model was
trained on. ['%', '%'] vs ['%', '%'].

Example: ERROR HY000: ML003015: The input column types do not match the
column types of dataset which the model was trained on. ['numerical',
'numerical', 'categorical', 'numerical'] vs ['numerical', 'numerical',
'numerical', 'numerical'].
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• Error number: ML003016; SQLSTATE: HY000

Message: Missing argument \"row_json\" in input JSON -> dict_keys(['%', '%']).

Example: ERROR HY000: ML003016: Missing argument \"row_json\" in input
JSON -> dict_keys(['operation', 'user_name', 'table_name', 'schema_name',
'model_handle']).

• Error number: ML003017; SQLSTATE: HY000

Message: The corresponding value of row_json should be a string!

Example: ERROR HY000: ML003017: The corresponding value of row_json should
be a string!

• Error number: ML003018; SQLSTATE: HY000

Message: The corresponding value of row_json is NOT a valid JSON!

Example: ERROR HY000: ML003018: The corresponding value of row_json is NOT a
valid JSON!

• Error number: ML003019; SQLSTATE: HY000

Message: Invalid data for the metric (%). Score could not be computed.

Example: ERROR HY000: ML003019: Invalid data for the metric (roc_auc). Score
could not be computed.

The scoring metric is legal and supported, but the data provided is not suitable to calculate such a
score. For example: ROC_AUC for multi-class classification. Try a different scoring metric.

• Error number: ML003020; SQLSTATE: HY000

Message: Unsupported scoring function (%) for current task (%).

Example: ERROR HY000: ML003020: Unsupported scoring function (accuracy) for
current task (regression).

The scoring metric is legal and supported, but the task provided is not suitable to calculate such a
score; for example: Using the accuracy metric for a regression model.

• Error number: ML003021; SQLSTATE: HY000

Message: Cannot train a regression task with a non-numeric target column.

Example: ERROR HY000: ML003021: Cannot train a regression task with a non-
numeric target column.

ML_TRAIN was run with the regression task type on a training dataset with a non-numeric target
column. Regression models require a numeric target column.

• Error number: ML003022; SQLSTATE: HY000

Message: At least 2 target classes are needed for classification task

Example: ERROR HY000: ML003022: At least 2 target classes are needed for
classification task.

ML_TRAIN was run with the classification task type on a training dataset where the target column did
not have at least two possible values.

• Error number: ML003023; SQLSTATE: 3877 (HY000)
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Message: Unknown option given. Allowed options for training are: ['task', 'model_list',
'exclude_model_list', 'optimization_metric', 'exclude_column_list', 'datetime_index',
'endogenous_variables', 'exogenous_variables', 'positive_class', 'users', 'items', 'user_columns',
'item_columns'].

Example: ERROR 3877 (HY000): ML003023: Unknown option given. Allowed
options for training are: ['task', 'model_list', 'exclude_model_list',
'optimization_metric', 'exclude_column_list', 'datetime_index',
'endogenous_variables', 'exogenous_variables', 'positive_class', 'users',
'items', 'user_columns', 'item_columns'].

The ML_TRAIN call specified an unknown option.

• Error number: ML003024; SQLSTATE: HY000

Message: Not enough available memory, unloading any RAPID tables will help to free up memory.

Example: ERROR HY000: ML003024: Not enough available memory, unloading any
RAPID tables will help to free up memory.

There is not enough memory on the MySQL AI Engine to perform the operation. Try unloading data
that was loaded to free up space.

There might not be enough memory on your system to train the model with large data sets. If this
error message appears AutoML, see the system requirements.

• Error number: ML003027; SQLSTATE: 3877 (HY000)

Message: JSON attribute (item_columns) must be in JSON_ARRAY type.

Example: ERROR 3877 (HY000): ML003027: JSON attribute (item_columns) must be
in JSON_ARRAY type.

Specify the item_columns JSON attribute as a JSON array.

• Error number: ML003027; SQLSTATE: 3877 (HY000)

Message: JSON attribute (user_columns) must be in JSON_ARRAY type.

Example: ERROR 3877 (HY000): ML003027: JSON attribute (user_columns) must be
in JSON_ARRAY type.

Specify the user_columns JSON attribute as a JSON array.

• Error number: ML003039; SQLSTATE: HY000

Message: Not all user specified columns are present in the input table - missing columns are {%}.

Example: ERROR HY000: ML003039: Not all user specified columns are present
in the input table - missing columns are {C4}.

The syntax includes a column that is not available.

• Error number: ML003047; SQLSTATE: HY000

Message: All columns cannot be excluded. User provided exclude_column_list is ['%', '%'].

Example: ERROR HY000: ML003047: All columns cannot be excluded. User
provided exclude_column_list is ['C0', 'C1', 'C2', 'C3'].

The syntax includes an exclude_column_list that attempts to exclude too many columns.
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• Error number: ML003048; SQLSTATE: HY000

Message: exclude_column_list JSON attribute must be of JSON_ARRAY type.

Example: ERROR HY000: ML003048: exclude_column_list JSON attribute must be
of JSON_ARRAY type.

The syntax includes a malformed JSON_ARRAY for the exclude_column_list.

• Error number: ML003048; SQLSTATE: HY000

Message: include_column_list JSON attribute must be of JSON_ARRAY type.

Example: ERROR HY000: ML003048: include_column_list JSON attribute must be
of JSON_ARRAY type.

The syntax includes a malformed JSON_ARRAY for the include_column_list.

• Error number: ML003049; SQLSTATE: HY000

Message: One or more columns in include_column_list ([%]) does not exist. Existing columns are
(['%', '%']).

Example: ERROR HY000: ML003049: One or more columns in include_column_list
([C15]) does not exist. Existing columns are (['C0', 'C1', 'C2', 'C3']).

The syntax includes an include_column_list that expects a column that does not exist.

• Error number: ML003050; SQLSTATE: HY000

Message: include_column_list must be a subset of exogenous_variables for forecasting task.

Example: ERROR HY000: ML003050: include_column_list must be a subset of
exogenous_variables for forecasting task.

The syntax for a forecasting task includes an include_column_list that expects one or more
columns that are not defined by exogenous_variables.

• Error number: ML003052; SQLSTATE: HY000

Message: Target column provided % is one of the independent variables used to train the model [%,
%, %].

Example: ERROR HY000: ML003052: Target column provided LSTAT is one of the
independent variables used to train the model [RM, RAD, LSTAT].

The syntax defines a target_column_name that is one of the independent variables used to train
the model.

• Error number: ML003053; SQLSTATE: HY000

Message: datetime_index must be specified by the user for forecasting task and must be a column in
the training table.

Example: ERROR HY000: ML003053: datetime_index must be specified by the user
for forecasting task and must be a column in the training table.

The syntax for a forecasting task must include datetime_index, and this must be a column in the
training table.
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• Error number: ML003054; SQLSTATE: HY000

Message: endogenous_variables must be specified by the user for forecasting task and must be
column(s) in the training table.

Example: ERROR HY000: ML003054: endogenous_variables must be specified by
the user for forecasting task and must be column(s) in the training table.

The syntax for a forecasting task must include the endogenous_variables option, and these must
be a column or columns in the training table.

• Error number: ML003055; SQLSTATE: HY000

Message: endogenous_variables / exogenous_variables option must be of JSON_ARRAY type.

Example: ERROR HY000: ML003055: endogenous_variables / exogenous_variables
option must be of JSON_ARRAY type.

The syntax for a forecasting task includes endogenous_variables or exogenous_variables
that do not have valid JSON format.

• Error number: ML003056; SQLSTATE: HY000

Message: exclude_column_list cannot contain any of endogenous or exogenous variables for
forecasting task.

Example: ERROR HY000: ML003056: exclude_column_list cannot contain any of
endogenous or exogenous variables for forecasting task.

The syntax for a forecasting task includes exclude_column_list that contains columns that are
also in endogenous_variables or exogenous_variables.

• Error number: ML003057; SQLSTATE: HY000

Message: endogenous and exogenous variables may not have any common columns for forecasting
task.

Example: ERROR HY000: ML003057: endogenous and exogenous variables may not
have any common columns for forecasting task.

The syntax for a forecasting task includes endogenous_variables and exogenous_variables,
and they have one or more columns in common.

• Error number: ML003058; SQLSTATE: HY000

Message: Can not train a forecasting task with non-numeric endogenous_variables column(s).

Example: ERROR HY000: ML003058: Can not train a forecasting task with non-
numeric endogenous_variables column(s).

The syntax for a forecasting task includes endogenous_variables and some of the columns are
not defined as numeric.

• Error number: ML003059; SQLSTATE: HY000

Message: User provided list of models ['ThetaForecaster', 'ETSForecaster', 'SARIMAXForecaster',
'ExpSmoothForecaster'] does not include any supported models for the task. Supported models for
the given task and table are ['DynFactorForecaster', 'VARMAXForecaster'].

Example: ERROR HY000: ML003059: User provided list of models
['ThetaForecaster', 'ETSForecaster', 'SARIMAXForecaster',
'ExpSmoothForecaster'] does not include any supported models for the task.
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Supported models for the given task and table are ['DynFactorForecaster',
'VARMAXForecaster'].

The syntax for a forecasting task includes multivariate endogenous_variables, but the provided
models only support univariate endogenous_variables.

• Error number: ML003060; SQLSTATE: HY000

Message:: endogenous_variables may not contain repeated column names ['%1', '%2', '%1'].

Example: ERROR HY000: ML003060: endogenous_variables may not contain
repeated column names ['wind', 'solar', 'wind'].

The syntax for a forecasting task includes endogenous_variables with a repeated column.

• Error number: ML003061; SQLSTATE: HY000

Message: exogenous_variables may not contain repeated column names ['consumption',
'wind_solar', 'consumption'].

Example: ERROR HY000: ML003061: exogenous_variables may not contain repeated
column names ['consumption', 'wind_solar', 'consumption'].

The syntax for a forecasting task includes exogenous_variables with a repeated column.

• Error number: ML003062; SQLSTATE: HY000

Message: endogenous_variables argument must not be NULL.

Example: ERROR HY000: ML003062: endogenous_variables argument must not be
NULL.

The syntax for a forecasting task includes endogenous_variables with a NULL argument.

• Error number: ML003063; SQLSTATE: HY000

Message: exogenous_variables argument must not be NULL when provided by user.

Example: ERROR HY000: ML003063: exogenous_variables argument must not be
NULL when provided by user.

The syntax for a forecasting task includes user provided exogenous_variables with a NULL
argument.

• Error number: ML003064; SQLSTATE: HY000

Message: Cannot exclude all models.

Example: ERROR HY000: ML003064: Cannot exclude all models.

The syntax for a forecasting task must include at least one model.
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• Error number: ML003065; SQLSTATE: HY000

Message: Prediction table cannot have overlapping datetime_index with train table when
exogenous_variables are used. It can only forecast into future.

Example: ERROR HY000: ML003065: Prediction table cannot have overlapping
datetime_index with train table when exogenous_variables are used. It can
only forecast into future.

The syntax for a forecasting task includes exogenous_variables and the prediction table
contains values in the datetime_index column that overlap with values in the datetime_index
column in the training table.

• Error number: ML003066; SQLSTATE: HY000

Message: datetime_index for test table must not have missing dates after the last date in training
table. Please ensure test table starts on or before 2034-01-01 00:00:00. Currently, start date in the
test table is 2036-01-01 00:00:00.

Example: ERROR HY000: ML003066: datetime_index for test table must not have
missing dates after the last date in training table. Please ensure test
table starts on or before 2034-01-01 00:00:00. Currently, start date in
the test table is 2036-01-01 00:00:00.

The syntax for a forecasting task includes a prediction table that contains values in the
datetime_index column that leave a gap to the values in the datetime_index column in the
training table.

• Error number: ML003067; SQLSTATE: HY000

Message: datetime_index for forecasting task must be between year 1678 and 2261.

Example: ERROR HY000: ML003067: datetime_index for forecasting task must be
between year 1678 and 2261.

The syntax for a forecasting task includes values in a datetime_index column that are outside the
date range from 1678 to 2261.

• Error number: ML003068; SQLSTATE: HY000

Message: Last date of datetime_index in the training table 2151-01-01 00:00:00 plus the length of
the table 135 must be between year 1678 and 2261.

Example: ERROR HY000: ML003068: Last date of datetime_index in the training
table 2151-01-01 00:00:00 plus the length of the table 135 must be between
year 1678 and 2261.

The syntax for a forecasting task includes a prediction table that has too many rows, and the values
in the datetime_index column would be outside the date range from 1678 to 2261.

• Error number: ML003070; SQLSTATE: 3877 (HY000)

Message: For recommendation tasks both user and item column names should be provided.

Example: ERROR 3877 (HY000): ML003070: For recommendation tasks both user
and item column names should be provided.
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• Error number: ML003071; SQLSTATE: HY000

Message: contamination must be numeric value greater than 0 and less than 0.5.

Example: ERROR HY000: ML003071: contamination must be numeric value greater
than 0 and less than 0.5.

• Error number: ML003071; SQLSTATE: 3877 (HY000)

Message: item_columns can not contain repeated column names ['C4', 'C4'].

Example: ERROR 3877 (HY000): ML003071: item_columns can not contain repeated
column names ['C4', 'C4'].

• Error number: ML003071; SQLSTATE: 3877 (HY000)

Message: user_columns can not contain repeated column names ['C4', 'C4'].

Example: ERROR 3877 (HY000): ML003071: user_columns can not contain repeated
column names ['C4', 'C4'].

• Error number: ML003072; SQLSTATE: HY000

Message: Can not use more than one threshold method.

Example: ERROR HY000: ML003072: Can not use more than one threshold method.

• Error number: ML003072; SQLSTATE: 3877 (HY000)

Message: Target column C3 can not be specified as a user or item column.

Example: ERROR 3877 (HY000): ML003072: Target column C3 can not be specified
as a user or item column.

• Error number: ML003073; SQLSTATE: HY000

Message: topk must be an integer value between 1 and length of the table, inclusively (1 <= topk <=
20).

Example: ERROR HY000: ML003073: topk must be an integer value between 1 and
length of the table, inclusively (1 <= topk <= 20).

• Error number: ML003073; SQLSTATE: 3877 (HY000)

Message: The users and items columns should be different.

Example: ERROR 3877 (HY000): ML003073: The users and items columns should be
different.

• Error number: ML003074; SQLSTATE: HY000

Message: threshold must be a numeric value between 0 and 1, inclusively (0 <= threshold <= 1).

Example: ERROR HY000: ML003074: threshold must be a numeric value between 0
and 1, inclusively (0 <= threshold <= 1).

• Error number: ML003074; SQLSTATE: 3877 (HY000)

Message: Unsupported ML Operation for recommendation task.

Example: ERROR 3877 (HY000): ML003074: Unsupported ML Operation for
recommendation task.

• Error number: ML003075; SQLSTATE: HY000
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Message: Unknown option given. This scoring metric only allows for these options: ['topk'].

Example: ERROR HY000: ML003075: Unknown option given. This scoring metric
only allows for these options: ['topk'].

• Error number: ML003075; SQLSTATE: 3877 (HY000)

Message: Unknown option given. Allowed options for recommendations are ['recommend', 'top'].

Example: ERROR 3877 (HY000): ML003075: Unknown option given. Allowed options
for recommendations are ['recommend', 'top'].

• Error number: ML003076; SQLSTATE: HY000

Message: ML_EXPLAIN, ML_EXPLAIN_ROW and ML_EXPLAIN_TABLE are not supported for
anomaly_detection task.

Example: ERROR HY000: ML003076: ML_EXPLAIN, ML_EXPLAIN_ROW and
ML_EXPLAIN_TABLE are not supported for anomaly_detection task.

• Error number: ML003076; SQLSTATE: 3877 (HY000)

Message: The recommend option should be provided when a value for topk is assigned.

Example: ERROR 3877 (HY000): ML003076: The recommend option should be
provided when a value for topk is assigned.

• Error number: ML003077; SQLSTATE: HY000

Message: topk must be provided as an option when metric is set as precision_at_k.

Example: ERROR HY000: ML003077: topk must be provided as an option when
metric is set as precision_at_k.

• Error number: ML003077; SQLSTATE: 3877 (HY000)

Message: Unknown recommend value given. Allowed values for recommend are ['ratings', 'items',
'users'].

Example: ERROR 3877 (HY000): ML003077: Unknown recommend value given.
Allowed values for recommend are ['ratings', 'items', 'users'].

• Error number: ML003078; SQLSTATE: HY000

Message: anomaly_detection only allows 0 (normal) and 1 (anomaly) for labels in target column with
any metric used, and they have to be integer values.

Example: ERROR HY000: ML003078: anomaly_detection only allows 0 (normal)
and 1 (anomaly) for labels in target column with any metric used, and they
have to be integer values.

• Error number: ML003078; SQLSTATE: 3877 (HY000)

Message: Should not provide a value for topk when the recommend option is set to ratings.

Example: ERROR 3877 (HY000): ML003078: Should not provide a value for topk
when the recommend option is set to ratings.
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• Error number: ML003079; SQLSTATE: 3877 (HY000)

Message: Provided value for option topk is not a strictly positive integer.

Example: ERROR 3877 (HY000): ML003079: Provided value for option topk is not
a strictly positive integer.

• Error number: ML003080; SQLSTATE: 3877 (HY000)

Message: One or more rows contains NULL or empty values. Please provide inputs without NULL or
empty values for recommendation.

Example: ERROR 3877 (HY000): ML003080: One or more rows contains NULL or
empty values. Please provide inputs without NULL or empty values for
recommendation.

• Error number: ML003081; SQLSTATE: 3877 (HY000)

Message: Options should be NULL. Options are currently not supported for this task classification.

Example: ERROR 3877 (HY000): ML003081: options should be NULL. Options are
currently not supported for this task classification.

• Error number: ML003082; SQLSTATE: 3877 (HY000)

Message: All supported models are excluded, but at least one model should be included.

Example: ERROR 3877 (HY000): ML003082: All supported models are excluded,
but at least one model should be included.

• Error number: ML003083; SQLSTATE: HY000

Message: Both user column name ['C3'] and item column name C0 must be provided as string.

Example: ERROR HY000: ML003083: Both user column name ['C3'] and item column
name C0 must be provided as string.

• Error number: ML003105; SQLSTATE: 3877 (HY000)

Message: Cannot recommend users to a user not present in the training table.

Example: ERROR: 3877 (HY000): ML003105: Cannot recommend users to a user not
present in the training table.

• Error number: ML003106; SQLSTATE: 3877 (HY000)

Message: Cannot recommend items to an item not present in the training table.

Example: ERROR 3877 (HY000): ML003106: Cannot recommend items to an item not
present in the training table.

• Error number: ML003107; SQLSTATE: 3877 (HY000)

Message: Users to users recommendation is not supported, please retrain your model.

Example: ERROR 3877 (HY000): ML003107: Users to users recommendation is not
supported, please retrain your model.
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• Error number: ML003108; SQLSTATE: 3877 (HY000)

Message: Items to items recommendation is not supported, please retrain your model.

Example: ERROR 3877 (HY000): ML003108: Items to items recommendation is not
supported, please retrain your model.

• Error number: ML003109; SQLSTATE: HY000

Message: Invalid Model format.

Example: HY000: ML003109: Invalid Model format.

• Error number: ML003111; SQLSTATE: HY000

Message: Unknown option given. Allowed options are ['batch_size'].

Example: ERROR HY000: ML003111: Unknown option given. Allowed options are
['batch_size'].

• Error number: ML003112; SQLSTATE: HY000

Message: NULL values are not supported for text columns.

Example: ERROR HY000: ML003112: NULL values are not supported for text
columns.

• Error number: ML003114; SQLSTATE: HY000

Message: Error while parsing text. One of the text columns only contains stop words like the, is, and,
a, an, in, has, etc.

Example: ERROR HY000: ML003114: Error while parsing text. One of the text
columns only contains stop words like the, is, and, a, an, in, has, etc.

• Error number: ML003115; SQLSTATE: HY000

Message: Empty input table after applying threshold.

Example: ERROR HY000: ML003115: Empty input table after applying threshold.

• Error number: ML003116; SQLSTATE: HY000

Message: The feedback_threshold option can only be set for implicit feedback.

Example: ERROR HY000: ML003116: The feedback_threshold option can only be
set for implicit feedback.

• Error number: ML003117; SQLSTATE: HY000

Message: The remove_seen option can only be used with the following recommendation ['items',
'users', 'users_to_items', 'items_to_users'].

Example: ERROR HY000: ML003117: The remove_seen option can only be used
with the following recommendation ['items', 'users', 'users_to_items',
'items_to_users'].

• Error number: ML003118; SQLSTATE: HY000

Message: The remove_seen option must be set to either True or False. Provided input.

Example: ERROR HY000: ML003118: The remove_seen option must be set to either
True or False. Provided input.
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• Error number: ML003119; SQLSTATE: HY000

Message: The feedback option must either be set to explicit or implicit. Provided input.

Example: ERROR HY000: ML003119: The feedback option must either be set to
explicit or implicit. Provided input.

• Error number: ML003120; SQLSTATE: HY000

Message: The input table needs to contain strictly more than one unique item.

Example: ERROR HY000: ML003120: The input table needs to contain strictly
more than one unique item.

• Error number: ML003121; SQLSTATE: HY000

Message: The input table needs to contain at least one unknown or negative rating.

Example: ERROR HY000: ML003121: The input table needs to contain at least
one unknown or negative rating.

• Error number: ML003122; SQLSTATE: HY000

Message: The feedback_threshold option must be numeric.

Example: ERROR HY000: ML003122: The feedback_threshold option must be
numeric.

• Error number: ML003123; SQLSTATE: HY000

Message: User and item columns should contain strings.

Example: ERROR HY000: ML003123: User and item columns should contain
strings.

• Error number: ML003124; SQLSTATE: HY000

Message: Calculation for precision_at_k metric could not complete because there are no
recommended items.

Example: ERROR HY000: ML003124: Calculation for precision_at_k metric could
not complete because there are no recommended items.

• Error number: ML004002; SQLSTATE: HY000

Message: Output format of onnx model is not supported
(output_name={%},output_shape={%},output_type={%}).

Example: HY000: ML004002: Output format of onnx model is not supported
(output_name={%},output_shape={%},output_type={%}).

• Error number: ML004003; SQLSTATE: HY000

Message: This ONNX model only supports fixed batch size=%.

Example: HY000: ML004003: This ONNX model only supports fixed batch size=%.

• Error number: ML004005; SQLSTATE: HY000

Message: The type % in data_types_map is not supported.

Example: HY000: ML004005: The type % in data_types_map is not supported.

• Error number: ML004006; SQLSTATE: HY000
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Message: ML_SCORE is not supported for an onnx model that does not support batch inference.

Example: HY000: ML004006: ML_SCORE is not supported for an onnx model that
does not support batch inference.

• Error number: ML004007; SQLSTATE: HY000

Message: ML_EXPLAIN is not supported for an onnx model that does not support batch inference.

Example: HY000: ML004007: ML_EXPLAIN is not supported for an onnx model that
does not support batch inference.

• Error number: ML004008; SQLSTATE: HY000

Message: onnx model input type=% is not supported! Providing the appropriate types map using
'data_types_map' in model_metadata may resolve the issue.

Example: HY000: ML004008: onnx model input type=% is not supported!
Providing the appropriate types map using 'data_types_map' in
model_metadata may resolve the issue.

• Error number: ML004009; SQLSTATE: HY000

Message: Input format of onnx model is not supported (onnx_input_name={%},
expected_input_shape={%}, expected_input_type={%}, data_shape={%}).

Example: HY000: ML004009: Input format of onnx model is not supported
(onnx_input_name={%}, expected_input_shape={%}, expected_input_type={%},
data_shape={%}).

• Error number: ML004010; SQLSTATE: HY000

Message: Output being sparse tensor with batch size > 1 is not supported.

Example: HY000: ML004010: Output being sparse tensor with batch size > 1 is
not supported.

• Error number: ML004010; SQLSTATE: 3877 (HY000)

Message: Received data exceeds maximum allowed length 943718400.

Example: ERROR 3877 (HY000): ML004010: Received data exceeds maximum allowed
length 943718400.

• Error number: ML004011; SQLSTATE: HY000

Message: predictions_name=% is not valid.

Example: HY000: ML004011: predictions_name=% is not valid.

• Error number: ML004012; SQLSTATE: HY000

Message: prediction_probabilities_name=% is not valid.

Example: HY000: ML004012: prediction_probabilities_name=% is not valid.
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• Error number: ML004013; SQLSTATE: HY000

Message: predictions_name should be provided when task=regression and onnx model generates
more than one output.

Example: HY000: ML004013: predictions_name should be provided when
task=regression and onnx model generates more than one output.

• Error number: ML004014; SQLSTATE: HY000

Message: Missing expected JSON key (%)

Example: ERROR HY000: ML004014: Missing expected JSON key (schema_name).

• Error number: ML004014; SQLSTATE: HY000

Message: Incorrect labels_map. labels_map should include the key %

Example: HY000: ML004014: Incorrect labels_map. labels_map should include
the key %

• Error number: ML004015; SQLSTATE: HY000

Message: Expected JSON string type value for key (%)

Example: ERROR HY000: ML004015: Expected JSON string type value for key
(schema_name).

• Error number: ML004015; SQLSTATE: HY000

Message: When task=classification, if the user does not provide prediction_probabilities_name for
the onnx model, ML_EXPLAIN method=% will not be supported.

Example: HY000: ML004015: When task=classification, if the user does not
provide prediction_probabilities_name for the onnx model, ML_EXPLAIN
method=% will not be supported. % can be "shap", "fast_shap" or "partial_dependence"

• Error number: ML004016; SQLSTATE: HY000

Message: Invalid base64-encoded ONNX string.

Example: HY000: ML004016: Invalid base64-encoded ONNX string.

• Error number: ML004017; SQLSTATE: HY000

Message: Invalid ONNX model.

Example: HY000: ML004017: Invalid ONNX model.

• Error number: ML004018; SQLSTATE: HY000

Message: Parsing JSON arg: Invalid value. failed!

Example: ERROR HY000: ML004018: Parsing JSON arg: Invalid value. failed!

• Error number: ML004018; SQLSTATE: HY000

Message: There are issues in running inference session for the onnx model. This might have
happened due to inference on inputs with incorrect names, shapes or types.

Example: HY000: ML004018: There are issues in running inference session for
the onnx model. This might have happened due to inference on inputs with
incorrect names, shapes or types.
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• Error number: ML004019; SQLSTATE: HY000

Message: Expected JSON object type value for key (%)

Example: ERROR HY000: ML004019: Expected JSON object type value for key
(JSON root).

• Error number: ML004019; SQLSTATE: HY000

Message: The computed predictions do not have the right format. This might have happened
because the provided predictions_name is not correct.

Example: HY000: ML004019: The computed predictions do not have the right
format. This might have happened because the provided predictions_name is
not correct.

• Error number: ML004020; SQLSTATE: HY000

Message: Operation was interrupted by the user.

Example: ERROR HY000: ML004020: Operation was interrupted by the user.

If a user-initiated interruption, Ctrl-C, is detected during the first phase of AutoML model and
table load where a MySQL parallel scan is used in the MySQL AI Engine to read data as of MySQL
database and send it to the AI engine, error messaging is handled by the MySQL parallel scan
function and directed to ERROR 1317 (70100): Query execution was interrupted.. The
ERROR 1317 (70100) message is reported to the client instead of the ML004020 error message.

• Error number: ML004020; SQLSTATE: HY000

Message: The computed prediction probabilities do not have the right format. This might have
happened because the provided prediction_probabilities_name is not correct.

Example: HY000: ML004020: The computed prediction probabilities do not
have the right format. This might have happened because the provided
prediction_probabilities_name is not correct.

• Error number: ML004021; SQLSTATE: HY000

Message: The onnx model and dataset do not match. The onnx model's input=% is not a column in
the dataset.

Example: HY000: ML004021: The onnx model and dataset do not match. The onnx
model's input=% is not a column in the dataset.

• Error number: ML004022; SQLSTATE: HY000

Message: The user does not have access privileges to %.

Example: ERROR HY000: ML004022: The user does not have access privileges to
ml.foo.

• Error number: ML004022; SQLSTATE: HY000

Message: Labels in y_true and y_pred should be of the same type. Got y_true=% and y_pred=YYY.
Make sure that the predictions provided by the classifier coincides with the true labels.

Example: HY000: ML004022: Labels in y_true and y_pred should be of the same
type. Got y_true=% and y_pred=YYY. Make sure that the predictions provided
by the classifier coincides with the true labels.

• Error number: ML004026; SQLSTATE: HY000
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Message: A column (%) with an unsupported column type (%) detected!

Example: ERROR HY000: ML004026: A column (D1) with an unsupported column
type (BINARY) detected!

• Error number: ML004051; SQLSTATE: HY000

Message: Invalid operation.

Example: ERROR HY000: ML004051: Invalid operation.

• Error number: ML004999; SQLSTATE: HY000

Message: Error during Machine Learning.

Example: ERROR HY000: ML004999: Error during Machine Learning.

• Error number: ML006006; SQLSTATE: 45000

Message: target_column_name should be NULL or empty.

Example: ERROR 45000: ML006006: target_column_name should be NULL or empty.

• Error number: ML006017; SQLSTATE: 45000

Message: model_handle already exists in the Model Catalog.

Example: 45000: ML006017: model_handle already exists in the Model Catalog.

• Error number: ML006020; SQLSTATE: 45000

Message: model_metadata should be a JSON object.

Example: 45000: ML006020: model_metadata should be a JSON object.

• Error number: ML006021; SQLSTATE: 45000

Message: contamination has to be passed with anomaly_detection task.

Example: ERROR 45000: ML006021: contamination has to be passed with
anomaly_detection task.

• Error number: ML006022; SQLSTATE: 45000

Message: Unsupported task.

Example: ERROR 45000: ML006022: Unsupported task.

• Error number: ML006023; SQLSTATE: 45000

Message: "No model object found" will be raised.

Example: 45000: ML006023: "No model object found" will be raised.

• Error number: ML006027; SQLSTATE: 1644 (45000)

Message: Received results exceed `max_allowed_packet`. Please increase it or lower input options
value to reduce result size.

Example: ERROR 1644 (45000): ML006027: Received results exceed
`max_allowed_packet`. Please increase it or lower input options value to
reduce result size.
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• Error number: ML006029; SQLSTATE: 45000

Message: model_handle is not Ready.

Example: 45000: ML006029: model_handle is not Ready.

• Error number: ML006030; SQLSTATE: 45000

Message: onnx_inputs_info must be a json object.

Example: ERROR 45000: ML006030: onnx_inputs_info must be a json object.

• Error number: ML006031; SQLSTATE: 45000

Message: Unsupported format.

Example: 45000: ML006031: Unsupported format.

• Error number: ML006031; SQLSTATE: 45000

Message: onnx_outputs_info must be a json object.

Example: ERROR 45000: ML006031: onnx_outputs_info must be a json object.

• Error number: ML006032; SQLSTATE: 45000

Message: data_types_map must be a json object.

Example: ERROR 45000: ML006032: data_types_map must be a json object.

• Error number: ML006033; SQLSTATE: 45000

Message: labels_map must be a json object.

Example: ERROR 45000: ML006033: labels_map must be a json object.

• Error number: ML006034; SQLSTATE: 45000

Message: onnx_outputs_info must be provided for task=classification.

Example: ERROR 45000: ML006034: onnx_outputs_info must be provided for
task=classification.

• Error number: ML006035; SQLSTATE: 45000

Message: onnx_outputs_info must only be provided for classification and regression tasks.

Example: ERROR 45000: ML006035: onnx_outputs_info must only be provided for
classification and regression tasks.

• Error number: ML006036; SQLSTATE: 45000

Message: % is not a valid key in onnx_inputs_info.

Example: ERROR 45000: ML006036: % is not a valid key in onnx_inputs_info.

• Error number: ML006037; SQLSTATE: 45000

Message: % is not a valid key in onnx_outputs_info.

Example: ERROR 45000: ML006037: % is not a valid key in onnx_outputs_info.
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• Error number: ML006038; SQLSTATE: 45000

Message: For task=classification, at least one of predictions_name and
prediction_probabilities_name must be provided.

Example: ERROR 45000: ML006038: For task=classification, at least one of
predictions_name and prediction_probabilities_name must be provided.

• Error number: ML006039; SQLSTATE: 45000

Message: prediction_probabilities_name must only be provided for task=classification.

Example: ERROR 45000: ML006039: prediction_probabilities_name must only be
provided for task=classification.

• Error number: ML006040; SQLSTATE: 45000

Message: predictions_name must not be an empty string.

Example: ERROR 45000: ML006040: predictions_name must not be an empty
string.

• Error number: ML006041; SQLSTATE: 45000

Message: prediction_probabilities_name must not be an empty string.

Example: ERROR 45000: ML006041: prediction_probabilities_name must not be an
empty string.

• Error number: ML006042; SQLSTATE: 45000

Message: labels_map must only be provided for task=classification.

Example: ERROR 45000: ML006042: labels_map must only be provided for
task=classification.

• Error number: ML006043; SQLSTATE: 45000

Message: When labels_map is provided, prediction_probabilities_name must also be provided.

Example: ERROR 45000: ML006043: When labels_map is provided,
prediction_probabilities_name must also be provided.

• Error number: ML006044; SQLSTATE: 45000

Message: When labels_map is provided, predictions_name must not be provided.

Example: ERROR 45000: ML006044: When labels_map is provided,
predictions_name must not be provided.

• Error number: ML006045; SQLSTATE: 45000

Message: ML_SCORE is not supported for a % task.

Example: ERROR 45000: ML006045: ML_SCORE is not supported for a % task.

• Error number: ML006046; SQLSTATE: 45000

Message: ML_EXPLAIN is not supported for a % task.

Example: ERROR 45000: ML006046: ML_EXPLAIN is not supported for a % task.

• Error number: ML006047; SQLSTATE: 45000
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Message: onnx_inputs_info must only be provided when format='ONNX'.

Example: ERROR 45000: ML006047: onnx_inputs_info must only be provided when
format='ONNX'.

• Error number: ML006048; SQLSTATE: 45000

Message: onnx_outputs_info must only be provided when format='ONNX'.

Example: ERROR 45000: ML006048: onnx_outputs_info must only be provided when
format='ONNX'.

• Error number: ML006049; SQLSTATE: 45000

Message: The length of a key provided in onnx_inputs_info should not be greater than 32 characters.

Example: ERROR 45000: ML006049: The length of a key provided in
onnx_inputs_info should not be greater than 32 characters.

• Error number: ML006050; SQLSTATE: 45000

Message: The length of a key provided in onnx_outputs_info should not be greater than 32
characters.

Example: ERROR 45000: ML006050: The length of a key provided in
onnx_outputs_info should not be greater than 32 characters.

• Error number: ML006051; SQLSTATE: 45000

Message: Invalid ONNX model.

Example: ERROR 45000: ML006051: Invalid ONNX model.

• Error number: ML006052; SQLSTATE: 45000

Message: Input table is empty. Please provide a table with at least one row.

Example: ERROR 45000: ML006052: Input table is empty. Please provide a table
with at least one row.

• Error number: ML006053; SQLSTATE: 45000

Message: Insufficient access rights. Grant user with correct privileges (SELECT, DROP, CREATE,
INSERT, ALTER) on input schema.

Example: ERROR 45000: ML006053: Insufficient access rights. Grant user with
correct privileges (SELECT, DROP, CREATE, INSERT, ALTER) on input schema.

• Error number: ML006054; SQLSTATE: 45000

Message: input table already contains a column named `_4aad19ca6e_pk_id`. Please provide an
input table without such column.

Example: ERROR 45000: ML006054: Input table already contains a column named
`_4aad19ca6e_pk_id`. Please provide an input table without such column.

• Error number: ML006055; SQLSTATE: 45000

Message: Options must be a JSON_OBJECT.

Example: ERROR 45000: ML006055: Options must be a JSON_OBJECT.

• Error number: ML006056; SQLSTATE: 45000
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Message: batch_size must be an integer between 1 and %.

Example: ERROR 45000: ML006056: batch_size must be an integer between 1 and
%.

• Error number: ML006070; SQLSTATE: 45000

Message: model_list is currently not supported for anomaly_detection.

Example: ERROR 45000: ML006070: model_list is currently not supported for
anomaly_detection.

• Error number: ML006071; SQLSTATE: 45000

Message: exclude_model_list is currently not supported for anomaly_detection.

Example: ERROR 45000: ML006071: exclude_model_list is currently not
supported for anomaly_detection.

• Error number: ML006072; SQLSTATE: 45000

Message: optimization_metric is currently not supported for anomaly_detection.

Example: ERROR 45000: ML006072: optimization_metric is currently not
supported for anomaly_detection.

9.2 GenAI Issues

This section describes some commonly encountered issues and errors for GenAI and their
workarounds.

• Issue: When you try to verify whether the vector embeddings were correctly loaded, if you see a
message which indicates that the vector embeddings or table did not load in MySQL AI, then it could
be due one of the following reasons:

• The task that loads the vector embeddings into the vector store table might still be running.

Workaround: Check the task status by using the query that was printed by the
VECTOR_STORE_LOAD routine:

SELECT * from mysql_task_management.task_status where id = TaskID;

Or, to see the log messages, check the task logs table:

SELECT * from mysql_task_management.task_log where task_id = TaskID;

Replace TaskID with the ID for the task which was printed by the VECTOR_STORE_LOAD routine.

• The folder you are trying to load might contain unsupported format files or the file that you are
trying to load might be of an unsupported format.

Workaround: The supported file formats are: PDF, TXT, PPT, HTML, and DOC.

If you find unsupported format files, then try one of the following:

• Delete the files with unsupported formats from the folder, and run the VECTOR_STORE_LOAD
command again to load the vector embeddings into the vector store table again.

• Move the files with supported formats to another folder, create a new PAR and run the
VECTOR_STORE_LOAD command with the new PAR to load the vector embeddings into the
vector store table again.
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• Issue: the VECTOR_STORE_LOAD command fails unexpectedly.

Workaround: Ensure that you use the --sqlc flag when you connect to your database system:

mysqlsh -uAdmin -pPassword -hPrivateIP --sqlc

Replace the following:

• Admin: the admin name.

• Password: the database system password.

• PrivateIP: the private IP address of the database system.
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