
MySQL Fabric 1.5

Abstract

MySQL Fabric is a system for managing a farm of MySQL servers. MySQL Fabric provides an extensible and easy to
use system for managing a MySQL deployment for sharding and high-availability.

This document describes MySQL Fabric, beginning with a short introduction, providing instructions on how to
download and install MySQL Fabric, and a quick-start guide to help you begin using and experimenting with MySQL
Fabric. Later sections provide details for MySQL Fabric-aware connectors.

For legal information, see the Legal Notices.

For help with using MySQL, please visit either the MySQL Forums or MySQL Mailing Lists, where you can discuss
your issues with other MySQL users.

For additional documentation on MySQL products, including translations of the documentation into other languages,
and downloadable versions in variety of formats, including HTML and PDF formats, see the MySQL Documentation
Library.

Licensing information. This product may include third-party software, used under license. If you are using a
Commercial release of MySQL Fabric, see this document for licensing information, including licensing information
relating to third-party software that may be included in this Commercial release. If you are using a Community release
of MySQL Fabric, see this document for licensing information, including licensing information relating to third-party
software that may be included in this Community release.

Document generated on: 2017-07-17 (revision: 52970)

http://forums.mysql.com
http://lists.mysql.com
http://dev.mysql.com/doc
http://dev.mysql.com/doc
http://downloads.mysql.com/docs/licenses/mysql-utilities-1.5-com-en.pdf
http://downloads.mysql.com/docs/licenses/mysql-utilities-1.5-gpl-en.pdf

iii

Table of Contents
Preface and Legal Notices .. v
1 Introduction to Fabric .. 1

1.1 Fabric Prerequisites .. 1
1.2 Fabric Concepts ... 2

2 Installing and Configuring MySQL Fabric .. 3
2.1 Downloading MySQL Fabric .. 3
2.2 Installing MySQL Fabric .. 3
2.3 Configuring MySQL Fabric .. 3

2.3.1 Create the Associated MySQL Users .. 4
2.3.2 Configuration File .. 7
2.3.3 Configuration File Sections ... 9
2.3.4 The Configuration Parameter (--param) ... 14

2.4 Starting and Stopping MySQL Fabric Nodes .. 14
2.5 Old Configuration System ... 15

3 Quick Start .. 19
3.1 Example: Fabric and Replication ... 19
3.2 Example: Fabric and Sharding .. 23

3.2.1 Introduction to Sharding ... 23
3.2.2 Sharding Scenario ... 24

4 The mysqlfabric Utility .. 29
4.1 Getting Help ... 29
4.2 Dump Commands ... 30
4.3 Event Commands ... 31
4.4 Group Commands .. 32
4.5 Manage Commands .. 36
4.6 Provider Commands ... 37
4.7 Role Commands ... 38
4.8 Server Commands .. 38
4.9 Sharding Commands .. 42
4.10 Snapshot Commands .. 46
4.11 Statistics Commands .. 47
4.12 Threat Commands .. 47
4.13 User Commands ... 48

5 Fabric Utility Command Matrix ... 51
6 Backing Store ... 57

6.1 Backing Store Tables .. 57
6.2 Protecting the Backing Store ... 60

7 Using MySQL Fabric with Pacemaker and Corosync ... 61
7.1 Introduction .. 61
7.2 Pre-requisites ... 62
7.3 Target Configuration ... 62
7.4 Setting up and testing your system ... 63

7.4.1 Configure Network ... 63
7.4.2 Install all packages .. 63
7.4.3 Configure DRBD .. 64
7.4.4 Configure MySQL Server ... 66
7.4.5 Configure MySQL Fabric .. 67
7.4.6 Configure Corosync and Pacemaker ... 68

7.5 Key administrative tasks ... 71
8 Using Connector/Python with MySQL Fabric ... 73

8.1 Installing Connector/Python with MySQL Fabric Support ... 74

MySQL Fabric 1.5

iv

8.2 Requesting a Fabric Connection ... 74
8.3 Providing Information to Choose a MySQL Server .. 76

9 Using Connector/J with MySQL Fabric ... 79
9.1 Installing Connector/J with MySQL Fabric Support ... 79
9.2 Loading the Driver and Requesting a Fabric Connection ... 80
9.3 Providing Information to Choose a MySQL Server .. 80
9.4 MySQL Fabric Configuration for Running Samples ... 82
9.5 Running Tests .. 83
9.6 Running Demonstration Programs ... 84
9.7 A Complete Example: Working with Employee Data ... 84
9.8 How Connector/J Chooses a MySQL Server .. 88
9.9 Using Hibernate with MySQL Fabric .. 89
9.10 Connector/J Fabric Support Reference .. 92

9.10.1 Connection Properties .. 92
9.10.2 FabricMySQLConnection API ... 93

10 Using Connector/Net with MySQL Fabric .. 95
10.1 System Requirements ... 95
10.2 Set up the MySQL Fabric Plugin ... 95
10.3 Using MySQL Fabric Groups ... 97
10.4 Using Ranged Sharding .. 99

11 MySQL Workbench and MySQL Fabric Integration .. 103
12 MySQL Fabric Frequently Asked Questions .. 105

v

Preface and Legal Notices
This document describes MySQL Fabric, a system for managing a farm of MySQL servers. MySQL Fabric
provides an extensible and easy to use system for managing a MySQL deployment for sharding and high-
availability.

Legal Notices
Copyright © 1997, 2017, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions
on use and disclosure and are protected by intellectual property laws. Except as expressly permitted
in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast,
modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free.
If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks
of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the
following terms:

Access to Oracle Support

vi

You may create a printed copy of this documentation solely for your own personal use. Conversion to other
formats is allowed as long as the actual content is not altered or edited in any way. You shall not publish
or distribute this documentation in any form or on any media, except if you distribute the documentation in
a manner similar to how Oracle disseminates it (that is, electronically for download on a Web site with the
software) or on a CD-ROM or similar medium, provided however that the documentation is disseminated
together with the software on the same medium. Any other use, such as any dissemination of printed
copies or use of this documentation, in whole or in part, in another publication, requires the prior written
consent from an authorized representative of Oracle. Oracle and/or its affiliates reserve any and all rights
to this documentation not expressly granted above.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle
Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=trs if you are hearing impaired.

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

1

Chapter 1 Introduction to Fabric

Table of Contents
1.1 Fabric Prerequisites .. 1
1.2 Fabric Concepts ... 2

To take advantage of Fabric, an application requires an augmented version of a MySQL connector which
accesses Fabric using the XML-RPC protocol. Currently, Connector/Python and Connector/J are fabric-
aware.

Fabric manages sets of MySQL Servers that have Global Transaction Identifiers (GTIDs) enabled to check
and maintain consistency among servers. Sets of servers are called high-availability groups. Information
about all of the servers and groups is managed by a separate MySQL instance, which cannot be a member
of the Fabric high-availability groups. This server instance is called the backing store.

Fabric organizes servers in groups (called high-availability groups) for managing different shards or simply
for providing high availability. For example, if standard asynchronous replication is in use, Fabric may be
configured to automatically monitor the status of servers in a group. If the current master in a group fails, it
elects a new one if a server in the group can become a master.

Besides the high-availability operations such as failover and switchover, Fabric also permits shard
operations such as shard creation and removal.

Fabric is written in Python and includes a special library that implements all of the functionality provided.
To interact with Fabric, a special utility named mysqlfabric provides a set of commands you can use to
create and manage groups, define and manipulate sharding, and much more.

1.1 Fabric Prerequisites

Fabric is designed to work with MySQL servers version 5.6.10 and later. The mysqlfabric utility requires
Python 2 (2.6 or later) and Connector/Python 1.2.1 or later.

You must have a MySQL instance available to install the backing store. This server must not be a member
of a Fabric group.

Note

The backing store must be a MySQL server 5.6 or later.

To utilize Fabric in your applications, you must have a Fabric-aware connector installed on the system
where the application is running. For more information about using a connector with Fabric, see the
appropriate connector-specific section (Chapter 8, Using Connector/Python with MySQL Fabric, Chapter 9,
Using Connector/J with MySQL Fabric).

In summary, the following items indicate the prerequisites for using MySQL Fabric:

• MySQL Server 5.6.10 or later for MySQL servers managed by Fabric. MySQL Server requirements:
gtid_mode (GTID), bin_log (binary logging), and log_slave_updates enabled, with server_id properly
configured.

• MySQL server 5.6.x or later for the backing store.

Fabric Concepts

2

• Python 2 (2.6 or later) for the mysqlfabric utility.

• A Fabric-aware connector to use Fabric in applications. Permitted connectors and versions are:

• Connector/Python 1.2.1 or later

• Connector/J 5.1.27 or later

1.2 Fabric Concepts

This section describes some of the concepts used in Fabric.

A high-availability group, or simply group, is a collection of servers. It is used to associate the servers in
a set. This association may be a set of replication-enabled servers, the servers participating in a sharding
solution, and so forth.

A group identifier is the name we give a group or members of the group. A group identifier is a name
that matches the regular expression [a-zA-Z0-9_-]+. Examples of legal identifiers are my_group,
employees, and shard1.

A global group stores all updates that must be propogated to all shards that are part of a sharding scheme.

A node or fabric node is an instance of the Fabric system running on a server. To use the features of
Fabric, at least one Fabric node must be running.

Sharding refers to the Fabric feature that permits the distribution of data across several servers. There
are many uses of sharding but the most effective use of sharding enables distributing the work of writing
across several servers for improved write speeds.

A shard is a horizontal partition or segment of data in a table.

Primary refers to a member of a group that is designated as master in the sense that it can accept read-
write transactions.

Secondary refers to a member of a group that can be a candidate to replace the master during switchover
or failover and that can accept read-only transactions.

3

Chapter 2 Installing and Configuring MySQL Fabric

Table of Contents
2.1 Downloading MySQL Fabric .. 3
2.2 Installing MySQL Fabric .. 3
2.3 Configuring MySQL Fabric .. 3

2.3.1 Create the Associated MySQL Users .. 4
2.3.2 Configuration File .. 7
2.3.3 Configuration File Sections ... 9
2.3.4 The Configuration Parameter (--param) ... 14

2.4 Starting and Stopping MySQL Fabric Nodes .. 14
2.5 Old Configuration System ... 15

To use MySQL Fabric, you must have a set of MySQL server instances running MySQL 5.6.10 or higher.
One server is required for the backing store and at least one server must be added to a group. To use the
replication features of MySQL Fabric, a replication topology of a master and at least one slave is required.
To use the sharding features of MySQL Fabric, you should have the number of servers corresponding to
the depth of the shards (the number of segments).

Note

The configuration system changed in Fabric 1.5.5. The current system is
documented here, and the old system is documented under Section 2.5, “Old
Configuration System”.

For instructions on how to download and install MySQL server, see the online MySQL reference manual
(Installing and Upgrading MySQL).

2.1 Downloading MySQL Fabric

Download a version of MySQL Fabric from the MySQL Developer Zone website (http://dev.mysql.com/
downloads/utilities/). Packaged downloads are available for a variety of servers. Download the package
that matches your platform and extract the files.

The above website also provides the MySQL Fabric-aware connectors. Download the connector you
want to use with a MySQL Fabric application. For more information about how to install and get started
using MySQL Fabric in your applications, see the appropriate connector-specific section (Chapter 8, Using
Connector/Python with MySQL Fabric, Chapter 9, Using Connector/J with MySQL Fabric).

2.2 Installing MySQL Fabric

To install MySQL Fabric, install MySQL Utilities 1.5.6. For more information, see How to Install MySQL
Utilities.

2.3 Configuring MySQL Fabric

Configuring MySQL Fabric requires creating separate MySQL users to access the backing store and
managed MySQL servers, and editing the configuration file with the MySQL user details for all of these
users.

http://dev.mysql.com/doc/refman/5.6/en/installing.html
http://dev.mysql.com/downloads/utilities/
http://dev.mysql.com/downloads/utilities/
http://dev.mysql.com/doc/mysql-utilities/1.5/en/mysql-utils-install.html
http://dev.mysql.com/doc/mysql-utilities/1.5/en/mysql-utils-install.html

Create the Associated MySQL Users

4

Each managed MySQL Server has the following requirements: gtid_mode (GTID), bin_log (binary logging),
and log_slave_updates enabled, with server_id properly configured.

Note

The configuration system changed in MySQL Fabric 1.5.5. For information about
the previous configuration system, see Section 2.5, “Old Configuration System”.

2.3.1 Create the Associated MySQL Users

Fabric uses four different types of users, each with a different set of required privileges.

Note

The backup and restore users were added in Fabric 1.5.5.

• Backing store user: stores Fabric specific information, and is only created on the Fabric backing store
MySQL server. For additional information, see Chapter 6, Backing Store

• Server user: accesses the managed MySQL servers, and is created on each managed MySQL server.

• Backup user: executes backup operations, such as mysqldump, and is created on each managed
MySQL server.

• Restore user: executes restore operations that typically use the mysql client, and is created on each
managed MySQL server.

Privileges

It is possible to use the same MySQL account for the server user, backup user, and restore user, but in this
case the user would have the sum of privileges of the three users. This would result in a very powerful user
and is therefore not recommended for production use.

However, for a quick and simple temporary trial, it may be easiest to set the users for all accounts using
the same user name and password, such as root.

The Backing Store (Fabric) User

The first thing you must have is a user account on the MySQL server that you plan to use for your backing
store. The user account information is stored in the Fabric configuration file.

The backing store database and its associated user are defined under the [storage] using user for the
user name and password as the password.

The Fabric user account on the backing store requires the following privileges on the backing store
database:

ALTER - alter some database objects
CREATE - create most database objects
CREATE VIEW - create views
DELETE - delete rows
DROP - drop most database objects
EVENT - manage events
REFERENCES - foreign keys
INDEX - create indexes
INSERT - insert rows

Create the Associated MySQL Users

5

SELECT - select rows
UPDATE - update rows

Example statements to create this user, to be executed on the backing store MySQL server:

Note

MySQL Fabric creates this database based on fabric.cfg, which in our
example is named mysql_fabric. In other words, do not execute CREATE database
mysql_fabric; here.

CREATE USER 'fabric_store'@'localhost'
 IDENTIFIED BY 'secret';

GRANT ALTER, CREATE, CREATE VIEW, DELETE, DROP, EVENT,
 INDEX, INSERT, REFERENCES, SELECT, UPDATE ON mysql_fabric.*
 TO 'fabric_store'@'localhost';

Note

The "REFERENCES" privilege is only required when working with MySQL 5.7 and
above. MySQL Fabric does not check for this privilege on earlier versions.

For additional information about using and setting up the backing store, see Chapter 6, Backing Store.

The Server User

MySQL Fabric uses the server user account to access all MySQL servers that it manages. In other words,
this user must be created on all managed MySQL servers.

The server account is defined under the [servers] section using user for the user name and password as
the password.

The Fabric server user account on the managed MySQL servers requires the following privileges in global
scope:

DELETE - prune_shard
PROCESS - list sessions to kill
RELOAD - RESET SLAVE
REPLICATION CLIENT - SHOW SLAVE STATUS
REPLICATION SLAVE - SHOW SLAVE HOSTS

The Fabric server user account on the managed MySQL servers requires the following privileges on
mysql_fabric.*:

ALTER - alter some database objects
CREATE - create most database objects
DELETE - delete rows
DROP - drop most database objects
INSERT - insert rows
SELECT - select rows
UPDATE - update rows

Example statements to create the server user, to be executed on each managed MySQL server:

CREATE USER 'fabric_server'@'localhost'
 IDENTIFIED BY 'secret';

Create the Associated MySQL Users

6

GRANT DELETE, PROCESS, RELOAD, REPLICATION CLIENT,
 REPLICATION SLAVE, SELECT, SUPER, TRIGGER ON *.*
 TO 'fabric_server'@'localhost';

GRANT ALTER, CREATE, DELETE, DROP, INSERT, SELECT, UPDATE
 ON mysql_fabric.* TO 'fabric_server'@'localhost';

The Backup User

If you want to use sharding, or clone a MySQL server with the intention to add it to a High-Availability (HA)
group, then you must define restore and backup users. Like the server user, these users must be created
on all managed servers.

The backup account is defined under the [servers] section using backup_user for the user name and
backup_password as the password.

The backup account on the managed MySQL servers requires the following privileges in global scope if
mysqldump is used:

EVENT - show event information
EXECUTE - show routine information inside views
REFERENCES - foreign keys
SELECT - read data
SHOW VIEW - SHOW CREATE VIEW
TRIGGER - show trigger information

Example statements to create the backup user, to be executed on each managed MySQL server:

CREATE USER 'fabric_backup'@'localhost'
 IDENTIFIED BY 'secret';

GRANT EVENT, EXECUTE, REFERENCES, SELECT, SHOW VIEW, TRIGGER ON *.*
 TO 'fabric_backup'@'localhost';

Note

The "REFERENCES" privilege is only required when working with MySQL 5.7 and
above. MySQL Fabric does not check for this privilege on earlier versions.

The Restore User

If you want to use sharding, or clone a server with the intention to add it to a High-Availability (HA) group,
then you must define restore and backup users. Like the server user, these users must be created on all
managed servers.

The restore account is defined under the [servers] section using restore_user for the user name and
restore_password as the password.

The restore account on the managed MySQL servers requires the following privileges in global scope if
mysqldump is used:

ALTER - ALTER DATABASE
ALTER ROUTINE - ALTER {PROCEDURE|FUNCTION}
CREATE - CREATE TABLE
CREATE ROUTINE - CREATE {PROCEDURE|FUNCTION}
CREATE TABLESPACE - CREATE TABLESPACE

Configuration File

7

CREATE VIEW - CREATE VIEW
DROP - DROP TABLE (used before CREATE TABLE)
EVENT - DROP/CREATE EVENT
INSERT - write data
LOCK TABLES - LOCK TABLES (--single-transaction)
REFERENCES - Create tables with foreign keys
SELECT - LOCK TABLES (--single-transaction)
SUPER - SET @@SESSION.SQL_LOG_BIN = 0
TRIGGER - CREATE TRIGGER

Note

Although the "CREATE TABLESPACE" and "REFERENCES" privileges are only
required when working with MySQL 5.7 and above, MySQL Fabric still checks for
them to help simplify the upgrade process to MySQL 5.7.

Example statements to create the restore user, to be executed on each managed MySQL server:

CREATE USER 'fabric_restore'@'localhost'
 IDENTIFIED BY 'secret';

GRANT ALTER, ALTER ROUTINE, CREATE, CREATE ROUTINE, CREATE TABLESPACE, CREATE VIEW,
 DROP, EVENT, INSERT, LOCK TABLES, REFERENCES, SELECT, SUPER,
 TRIGGER ON *.* TO 'fabric_restore'@'localhost';

2.3.2 Configuration File

The location of the MySQL Fabric configuration file varies depending on the operating system it is installed
on and how you installed it. The table below lists the default configuration file locations for pre-built
packages from http://dev.mysql.com/downloads/utilities/. Alternatively, the optional --config option
accepts to use a path to a Fabric configuration file, and if defined, the file is loaded and used instead of the
default configuration file location.

Table 2.1 Default MySQL Fabric configuration file location

Platform Package Location

Microsoft Windows mysql-utilities-1.5.6-win32.msi UTILITIES_INSTALLDIR/etc/
mysql/fabric.cfg

Ubuntu Linux 14.04 mysql-
utilities_1.5.6-1ubuntu14.04_all.deb

/etc/mysql/fabric.cfg

Debian Linux 6.0 mysql-
utilities_1.5.6-1debian6.0_all.deb

/etc/mysql/fabric.cfg

Red Hat Enterprise Linux 6 /
Oracle Linux 6

mysql-
utilities-1.5.6-1.el6.noarch.rpm

/etc/mysql/fabric.cfg

OS X mysql-utilities-1.5.6-osx10.9.dmg /etc/mysql/fabric.cfg

Modify the configuration file and include the users and passwords defined in the previous step
(Section 2.3.1, “Create the Associated MySQL Users”), here is an example Fabric configuration file:

[DEFAULT]
prefix = /usr/local
sysconfdir = /usr/local/etc
logdir = /var/log

[storage]

http://dev.mysql.com/downloads/utilities/

Configuration File

8

address = localhost:3306
user = fabric_store
password = secret
database = mysql_fabric
auth_plugin = mysql_native_password
connection_timeout = 6
connection_attempts = 6
connection_delay = 1

[servers]
user = fabric_server
password = secret
backup_user = fabric_backup
backup_password = secret
restore_user = fabric_restore
restore_password = secret
unreachable_timeout = 5

[protocol.xmlrpc]
address = localhost:32274
threads = 5
user = admin
password = secret
disable_authentication = no
realm = MySQL Fabric
ssl_ca =
ssl_cert =
ssl_key =

[protocol.mysql]
address = localhost:32275
user = admin
password = secret
disable_authentication = no
ssl_ca =
ssl_cert =
ssl_key =

[executor]
executors = 5

[logging]
level = INFO
url = file:///var/log/fabric.log

[sharding]
mysqldump_program = /usr/bin/mysqldump
mysqlclient_program = /usr/bin/mysql

[statistics]
prune_time = 3600

[failure_tracking]
notifications = 300
notification_clients = 50
notification_interval = 60
failover_interval = 0
detections = 3
detection_interval = 6
detection_timeout = 1
prune_time = 3600

[connector]
ttl = 1

Each section has one or more variables defined that provide key information to the MySQL Fabric system
libraries. You might not have to change any of these variables other than the users and passwords. For

Configuration File Sections

9

more information on the sections and variables in the configuration file, see Section 2.3.3, “Configuration
File Sections”.

2.3.3 Configuration File Sections

The MySQL Fabric configuration file contains all the information necessary to run the MySQL Fabric utility.
In addition, it serves as a configuration file for the utilities from within MySQL Fabric.

Each section has one or more variables defined that provide key information to the MySQL Fabric system
libraries.

Note

The [client] section was removed in MySQL Fabric 1.5.5. Instead, use the
restore_user, restore_password, backup_user, and backup_password under the
[servers] section to configure users for the backup and restore utilities, such as
mysqldump and the mysql client.

2.3.3.1 Section DEFAULT

The DEFAULT section contains information on the installation paths for MySQL Fabric. This section is
generated as part of the installation and should normally not be modified.

prefix The installation prefix used when installing the mysql.fabric package
and the binaries.

sysconfdir The location of the system configuration files. Normally located in
the etc directory under the directory given in prefix, but in some
situations this might be different.

logdir Configures the directory where log files are located by default. Normally,
the logging URL contains the absolute path, but in the event that the
path is relative, it is relative to this directory.

2.3.3.2 Section storage

This section contains information that the MySQL Fabric node uses for the connection to the backing store.
For more information on the backing store, see Chapter 6, Backing Store.

address This is the address of the backing store in the form host:port. The
port is optional and if not provided, defaults to 3306.

user User name to use when connecting to the backing store.

password The password to use when connecting to the backing store. If no
password option is in the configuration file, a password is required
on the terminal when the MySQL Fabric node is started. Although it
is possible to set an empty password by not providing a value to the
option, it is not recommended.

database The database where the tables containing information about the MySQL
Fabric farm is stored, typically fabric.

auth_plugin The authentication plugin to use when connecting to the backing store.
This option is passed to the connector when connecting to the backing
store. For more information on authentication plugins, see Connector/
Python Connection Arguments.

http://dev.mysql.com/doc/connector-python/en/connector-python-connectargs.html
http://dev.mysql.com/doc/connector-python/en/connector-python-connectargs.html

Configuration File Sections

10

connection_timeout Timeout for the connection to the backing store, in seconds. This option
is passed to the connector when connecting to the backing store. This
is the maximum amount of time that MySQL Fabric waits for access to
the backing store to complete before aborting. For more information on
authentication plugins, see Connector/Python Connection Arguments.

connection_attempts The number of attempts to reconnect to the backing store before giving
up. This is the maximum number of times MySQL Fabric attempts to
create a connection to the backing store before aborting. The default is
0 retries.

connection_delay The delay between attempts to connect to the backing store in seconds.
The default is 0 seconds.

2.3.3.3 Section servers

This section contains information that MySQL Fabric uses to connect to the servers being managed.

Note

The backup_user, backup_password, restore_user, and restore_password options
were added in MySQL Fabric 1.5.5.

user User name to use when connecting to the managed server.

password Password to use when connecting to the managed servers.

backup_user User name to use when backing up the MySQL server.

backup_password Password to use when backing up the MySQL servers with the
backup_user user.

restore_user User name to use when restoring the MySQL server.

restore_password Password to use when restoring the MySQL servers with the
restore_user user.

unreachable_timeout Used for the connection timeout when checking faulty servers, or
servers that are new to the farm. Hence, for servers that can potentially
be unreachable. Defaults to 5, can be a value between 1-60.

2.3.3.4 Section protocol.xmlrpc

This section contains information about how the client connects to a MySQL Fabric node and configuration
parameters for the XML-RPC protocol on the server.

address Host and port of XML-RPC server. The host is only used by the client
when connecting to the MySQL Fabric node, but the port is used by the
server when starting the protocol server and by the client when reading
how to connect to the XML-RPC server. The port number is typically
32274, and the host is typically localhost.

threads Number of threads that the XML-RPC server uses for processing
requests. This determines the number of concurrent requests that
MySQL Fabric accepts.

user User that the client uses to connect to the XML-RPC server.

http://dev.mysql.com/doc/connector-python/en/connector-python-connectargs.html

Configuration File Sections

11

password Password used when the client connects to the server. If no password is
provided, the client requests a password on the command-line.

disable_authentication Whether to disable authentication or not. Disabling authentication
can be useful when experimenting in a closed environment, it is not
recommended for normal usage. Alternatives are yes or no and are
case-insensitive.

realm The realm (as defined in RFC 2617) the XML-RPC server identifies as
when authenticating.

ssl_ca Path to a file containing a list of trusted SSL certification authorities
(CAs).

ssl_cert The name of the SSL certificate file to use for establishing a secure
connection.

ssl_key The name of the SSL key file to use for establishing a secure
connection.

2.3.3.5 Section protocol.mysql

This section contains information about how the client connects to a MySQL Fabric node using the MySQL
Client/Server protocol.

address Host and port of a MySQL Fabric node. The port number is typically
32275, and the host is typically localhost.

user User that the client uses to connect to the MySQL Fabric node.

password Password used when the client connects to the MySQL Fabric node.
If no password is provided, the client requests a password on the
command-line.

disable_authentication Whether to disable authentication or not. Disabling authentication
can be useful when experimenting in a closed environment, it is not
recommended for normal usage. Alternatives are yes or no and are
case-insensitive.

ssl_ca Path to a file containing a list of trusted SSL certification authorities
(CAs).

ssl_cert The name of the SSL certificate file to use for establishing a secure
connection.

ssl_key The name of the SSL key file to use for establishing a secure
connection.

2.3.3.6 Section executor

This section contains parameters to configure the executor. The executor executes procedures in a serial
order, which guarantees that requests do not conflict. The requests received are mapped to procedures
which can be executed directly or scheduled through the executor. Procedures scheduled through the
executor are processed within the context of threads spawned by the executor. Usually, read operations
are immediately executed by the XML-RPC session thread and write operations are scheduled and
executed through the executor.

Configuration File Sections

12

executors The number of executor threads that the executor uses when
processing requests.

working_directory The directory Fabric uses by default to store files. If the option is not
found, the working directory is the directory from where the process was
launched.

Note

This option was added in Fabric 1.5.7.

2.3.3.7 Section logging

MySQL Fabric logs information about its activities to the standard output when started as a regular
process. However, when started as a daemon, it writes information to a file configured by the the option
Fabric URL used for logging.

level The log level to use when generating the log. Acceptable values are
CRITICAL, ERROR, WARNING, INFO, and DEBUG. The default is INFO.

url The URL to use for logging. Supported protocols are currently file and
syslog. The file protocol creates a rotating file handler, while the
syslog protocol logs messages using the system logger syslogd .

The file handler accepts either a relative path or an absolute path. If a
relative path is provided, it is relative to Configure default log directory.

The syslog handler accepts either a path (for example syslog:///
dev/log) or a hostname and an optional port (for example,
syslog://localhost:555, and syslog://my.example.com). If
no port is provided, it defaults to 541, which is the default port for the
syslog daemon.

2.3.3.8 Section sharding

To perform operations such as moving and splitting shards, MySQL Fabric relies on the mysqldump and
mysql client programs. These programs can be installed in different locations and if they are not in the
path for the MySQL Fabric node, this section configures where they can be found.

mysqldump_program Path to the mysqldump program.

mysqlclient_program Path to the mysql program.

2.3.3.9 Section statistics

Connectors and other external entities log any errors while accessing servers so that MySQL Fabric can
monitor server health and act accordingly. For example, MySQL Fabric promotes a new master after
receiving notifications from the number of clients configured in notification_clients) within
the time interval configured in notification_interval. If a server is considered unstable but it is not
a master, it is simply marked as faulty. To avoid making the system unstable, a new master can only be
automatically promoted after the failover_interval has been elapsed since the last promotion. In
order to ease the adoption of MySQL Fabric, a built-in failure detector is provided. If the failure detector
is enabled to monitor a group, a new master is promoted after 3 failed successive attempts to access the
current master within the time interval configured in failover_interval. The failure detection routine
tries to connect to servers in a group and uses the value configured in detection_timeout as timeout.

Configuration File Sections

13

prune_time How often the internal event log is pruned, in seconds and also the age
of events in the event log that is used to present statistics.

notifications Number of issues before the server is considered unstable.

notification_clients Number of different sources that should report issues on a server before
it is considered unstable.

notification_interval Amount of time in seconds that is used when deciding if a server is
unstable. Issues older than this are not considered when deciding.

failover_interval Minimum time in seconds between subsequent automatic promotions.
This parameter is used to prevent the system entering a sequence of
promotions that could disable the system.

detections Number of successive failed attempts to contact the server after which
the built-in failure detector considers the server unstable.

detection_timeout Timeout in seconds used when contacting the server. If the server does
not respond within this time period, it is recorded as a failed attempt to
contact the server.

prune_time Maximum age in seconds for reported issues in the error log. Issues
older than this are removed from the error log.

2.3.3.10 Section failure_tracking

This section contains parameters for the failure management system.

notifications The notification threshold. If more than this number of notifications
arrive in the notification interval and the number of distinct notification
clients are over the notification client threshold, the server is considered
dead and failover is triggered.

notification_clients The number of distinct notification clients that need to report. If more
than this number of distinct notification clients are over the notification
client threshold and the number of notifications above the notification
threshold arrive in the notification interval, the server is considered dead
and failover is triggered.

notification_interval The notification interval in seconds. Only notifications arriving within this
time frame can trigger a failover.

failover_interval The minimum interval between failover operations in seconds. In
order to avoid making the system unstable, failover operations are
not triggered unless at least this much time has expired since the last
failover.

detections This parameter is for the built-in failure detector. If more than this
number of failures to contact the server occurs during the detection
interval, the server is considered unstable and a failover is triggered.

detection_interval This parameter configures the detection interval for the built-in failure
detector, in seconds.

detection_timeout This parameter configures the detection timeout used when attempting
to contact the servers in the group.

The Configuration Parameter (--param)

14

prune_time This is the maximum age of events in the failure detector's error log and
is also the interval for how often the error log is pruned.

2.3.3.11 Section connector

Connectors that are MySQL Fabric-aware contact MySQL Fabric to fetch information on groups, shards,
and servers, and then cache the results locally for a time period to improve performance. This section
contains configuration parameters passed to the connectors.

ttl The Time To Live (TTL), measured in seconds, is passed together with
other information to the connector. This is used by the connector to
invalidate the caches, and reload them from a MySQL Fabric node, after
the TTL has expired.

2.3.4 The Configuration Parameter (--param)

The --param option allows you to override configuration options at runtime. The syntax is --
param=section.option=value. For example:

shell> mysqlfabric manage setup --param=storage.user=fabric_store --param=storage.password=secret
shell> mysqlfabric --param=storage.user=fabric_store --param=storage.password=secret manage setup

shell> mysqlfabric manage setup --param=storage.address=localhost:13000 \
 --param=storage.user=root --param=protocol.xmlrpc.password=secret

For additional information about the available options, see Section 2.3.2, “Configuration File”.

2.4 Starting and Stopping MySQL Fabric Nodes

To start or stop MySQL Fabric nodes, use the mysqlfabric command (see Chapter 4, The
mysqlfabric Utility). This command requires that MySQL Fabric and Connector/Python be installed, and
assumes that you have set up the backing store.

The following command starts a MySQL Fabric node and should be run on one of the servers listed in the
[protocol.xmlrpc] section in the configuration file.

shell> mysqlfabric manage start

This command starts a MySQL Fabric node on the machine where it is executed and prints the log to
standard output. Thus, this is the machine where you installed the MySQL Fabric and Connector/Python
software and is also the machine listed in the configuration file [protocol.xmlrpc] section. To follow
the examples in the quick-start section, you must use localhost for the host name.

To put the MySQL Fabric node in the background, add the --daemonize option. However, this diverts the
log to the syslog file. While experimenting with MySQL Fabric, you may find it more convenient not to use
--daemonize so that the log is written to your terminal.

Use this command to stop a MySQL Fabric node:

shell> mysqlfabric manage stop

This command contacts the MySQL Fabric server running at the address mentioned in the
[protocol.xmlrpc] section and instructs it to stop.

Old Configuration System

15

2.5 Old Configuration System
Important

This documentation describes the MySQL Fabric configuration before version 1.5.5.
The previous configuration documentation is archived here for informational and
upgrade purposes.

Configuring MySQL Fabric requires creating a MySQL user to access the backing store, and editing the
configuration file with the MySQL user details. This section assumes you have already set up the backing
store. See Chapter 6, Backing Store for more information.

Create a MySQL User

The first thing you must have is a user account on the MySQL server that you plan to use for your backing
store. The user account information is stored in the configuration file.

The user account must have full privileges for the database named fabric. To create the user and grant
the privileges needed, use the following statements:

CREATE USER 'fabric'@'localhost' IDENTIFIED BY 'secret';
GRANT ALL ON fabric.* TO 'fabric'@'localhost';

In the preceding example, substitute a password of your choice (replace 'secret'). Also, if you are going
to run MySQL Fabric on a host other than where the backing store resides, substitute the 'localhost'
for the host name.

MySQL Fabric uses the same user account, who must have all privileges on all databases, to access all
MySQL servers that it manages. The user and password are defined in the configuration file as shown
below. To create this user and grant all the necessary privileges, execute the following command on all
MySQL servers:

CREATE USER 'fabric'@'localhost' IDENTIFIED BY 'secret';
GRANT ALL ON *.* TO 'fabric'@'localhost';

In the preceding example, substitute a password of your choice (replace 'secret'). Also, if you are
going to run MySQL Fabric on a host other than where the managed MySQL servers reside, substitute the
'localhost' for the Fabric's host name.

Configuration File

The next step is to modify the configuration file with the user and password we defined in the previous
step. Open the configuration file:

MySQL Fabric configuration file location
Table 2.2 MySQL Fabric configuration file location

Platform Package Location

Microsoft Windows mysql-utilities-1.5.6-win32.msi UTILITIES_INSTALLDIR/etc/
mysql/fabric.cfg

Ubuntu Linux 14.04 mysql-
utilities_1.5.6-1ubuntu14.04_all.deb

/etc/mysql/fabric.cfg

Debian Linux 6.0 mysql-
utilities_1.5.6-1debian6.0_all.deb

/etc/mysql/fabric.cfg

MySQL Fabric configuration file location

16

Platform Package Location

Red Hat Enterprise Linux 6 /
Oracle Linux 6

mysql-
utilities-1.5.6-1.el6.noarch.rpm

/etc/mysql/fabric.cfg

The following shows the content of the configuration file and the modifications necessary. In the
[storage] section, store the user and password of the user created in the previous step.

[DEFAULT]
prefix = /usr/local
sysconfdir = /usr/local/etc
logdir = /var/log

[storage]
address = localhost:3306
user = fabric
password = secret
database = fabric
auth_plugin = mysql_native_password
connection_timeout = 6
connection_attempts = 6
connection_delay = 1

[servers]
user = fabric
password =
backup_user = fabric
backup_password =
restore_user = fabric
restore_password =
unreachable_timeout = 5

[protocol.xmlrpc]
address = localhost:32274
threads = 5
user = admin
password =
disable_authentication = no
realm = MySQL Fabric
ssl_ca =
ssl_cert =
ssl_key =

[protocol.mysql]
address = localhost:32275
user = admin
password =
disable_authentication = no
ssl_ca =
ssl_cert =
ssl_key =

[executor]
executors = 5

[logging]
level = INFO
url = file:///var/log/fabric.log

[sharding]
mysqldump_program = /usr/bin/mysqldump
mysqlclient_program = /usr/bin/mysql

[statistics]
prune_time = 3600

MySQL Fabric configuration file location

17

[failure_tracking]
notifications = 300
notification_clients = 50
notification_interval = 60
failover_interval = 0
detections = 3
detection_interval = 6
detection_timeout = 1
prune_time = 3600

[connector]
ttl = 1

Each section has one or more variables defined that provide key information to the MySQL Fabric system
libraries. You should not have to change any of these variables other than the user and password for the
backing store (in the storage section).

18

19

Chapter 3 Quick Start

Table of Contents
3.1 Example: Fabric and Replication ... 19
3.2 Example: Fabric and Sharding .. 23

3.2.1 Introduction to Sharding ... 23
3.2.2 Sharding Scenario ... 24

This section demonstrates how to get started using MySQL Fabric. Two examples are included in this
section: one for using MySQL Fabric with replication to demonstrate how Fabric reduces the overhead of
directing reads and writes from applications, and another showing how Fabric makes using sharding much
easier.

If you have not installed and configured Fabric, please refer to the previous sections before proceeding
with the examples.

3.1 Example: Fabric and Replication

This section presents a quick start for using MySQL replication features in Fabric. To run this example, you
should have four server instances (running MySQL version 5.6.10 or later). The commands in this example
are executed on the same server host as the backing store (which happens to be the same host where
Fabric was installed). You must also have a Fabric node started on that host.

The replication features in Fabric focus on providing high availability. While these features continue to
evolve, the most unique feature of Fabric replication is the ability to use a Fabric-aware connector to
seamlessly direct reads and writes to the appropriate servers.

This redirection is achieved through the use of one of the central concepts in Fabric: a high-availability
group that uses a high-availability solution for providing resilience to failures. Currently, only asynchronous
primary backup replication is supported. As long as the primary is alive and running, it handles all write
operations. Secondaries replicate everything from the primary to stay up to date and might be used to
scale out read operations.

Creating a High-Availability Group

The first step consists of creating a group, here designated my_group. After doing so, you can add
servers to the group. In this case, we add three servers, localhost:3307, localhost:3308, and
localhost:3309.

Fabric accesses each added server using the user and password provided in the configuration file to
guarantee that they are alive and accessible. If these requirements are not fulfilled, the operation fails and
the server is not added to the group.

Note

Each managed MySQL Server has the following requirements: gtid_mode (GTID),
bin_log (binary logging), and log_slave_updates enabled, with server_id properly
configured.

The following demonstrates the commands to execute these steps.

Promoting and Demoting Servers

20

shell> mysqlfabric group create my_group
Procedure :
{ uuid = d4e60ed4-fd36-4df6-8004-d034202c3698,
 finished = True,
 success = True,
 return = True,
 activities =
}
shell> mysqlfabric group add my_group localhost:3307
Procedure :
{ uuid = 6a33ed29-ccf8-437f-b436-daf07db7a1fc,
 finished = True,
 success = True,
 return = True,
 activities =
}
shell> mysqlfabric group add my_group localhost:3308
Procedure :
{ uuid = 6892bc49-3ab7-4bc2-891d-57c4a1577081,
 finished = True,
 success = True,
 return = True,
 activities =
}
shell> mysqlfabric group add my_group localhost:3309
Procedure :
{ uuid = 7943b27f-2da5-4dcf-a1a4-24aed8066bb4,
 finished = True,
 success = True,
 return = True,
 activities =
}

To show information about the set of servers in a group, use this command:

shell> mysqlfabric group lookup_servers my_group

To get detailed information about the group health, use this command:

shell> mysqlfabric group health my_group

Promoting and Demoting Servers

After executing the steps in setting up a high-availability group, Fabric does not become aware of any
replication topology that was already in place. It is necessary to promote one of them to primary (that is,
master) and make the remaining servers secondaries (that is, slaves). To do so, execute this command:

shell> mysqlfabric group promote my_group

If there is a primary in a group, any server added subsequently is automatically set as secondary. Setting
a different server as primary can be done through the same command, which demotes the current primary
and elects a new one. If the current primary has failed, the same command (which can be triggered either
manually or automatically) can be used to elect a new one.

Note

A server marked as "faulty" cannot be promoted to a secondary or primary status in
one step. The faulty server status must first be changed to the "spare" status. For
example, use mysqlfabric server set_status server-address spare.

Activating or Deactivating a Failure Detector

21

Activating or Deactivating a Failure Detector

If the primary fails, you may want to automatically promote one of the secondaries as primary and redirect
the remaining secondaries to the new primary. To do this, execute the following command:

shell> mysqlfabric group activate my_group

If the failure detector discovers that a primary has crashed, it marks it as faulty and triggers a failover
routine. This is not done automatically because there may be users who prefer to use an external failure
detector or want to do things manually. To deactivate the failure detector, execute the following command:

shell> mysqlfabric group deactivate my_group

Executing Updates and Queries

Executing queries with a Fabric-aware connector is easy. The following example shows a section of code
designed to add employees and search for them. Notice that we simply import the fabric package from the
Connector/Python library and provide the Fabric connection parameters such as the location of the Fabric
node (as specified in the [protocol.xmlrpc] configuration file section) and user credentials.

import mysql.connector
from mysql.connector import fabric

def add_employee(conn, emp_no, first_name, last_name):
 conn.set_property(group="my_group", mode=fabric.MODE_READWRITE)
 cur = conn.cursor()
 cur.execute("USE employees")
 cur.execute(
 "INSERT INTO employees VALUES (%s, %s, %s)",
 (emp_no, first_name, last_name)
)
 # We need to keep track of what we have executed in order to,
 # at least, read our own updates from a slave.
 cur.execute("SELECT @@global.gtid_executed")
 for row in cur:
 print "Transactions executed on the master", row[0]
 return row[0]

def find_employee(conn, emp_no, gtid_executed):
 conn.set_property(group="my_group", mode=fabric.MODE_READONLY)
 cur = conn.cursor()
 # Guarantee that a slave has applied our own updates before
 # reading anything.
 cur.execute(
 "SELECT WAIT_UNTIL_SQL_THREAD_AFTER_GTIDS('%s', 0)" %
 (gtid_executed,)
)
 for row in cur:
 print "Had to synchronize", row, "transactions."
 cur.execute("USE employees")
 cur.execute(
 "SELECT first_name, last_name FROM employees "
 "WHERE emp_no = %s", (emp_no,)
)
 for row in cur:
 print "Retrieved", row

Address of the Fabric, not the host we are going to connect to.
conn = mysql.connector.connect(
 fabric={"host" : "localhost", "port" : 32274,

Group Maintenance

22

 "username": "admin", "password" : "adminpass"
 },
 user="webuser", password="webpass", autocommit=True
)

conn.set_property(group="my_group", mode=fabric.MODE_READWRITE)
cur = conn.cursor()
cur.execute("CREATE DATABASE IF NOT EXISTS employees")
cur.execute("USE employees")
cur.execute("DROP TABLE IF EXISTS employees")
cur.execute(
 "CREATE TABLE employees ("
 " emp_no INT, "
 " first_name CHAR(40), "
 " last_name CHAR(40)"
 ")"
)

gtid_executed = add_employee(conn, 12, "John", "Doe")
find_employee(conn, 12, gtid_executed)

You can copy this code into a Python module named test_fabric_query.py and execute it with the
following command:

shell> python ./test_fabric_query.py
(u'John', u'Doe')

Group Maintenance

To find out which servers are in a group, use this command:

shell> mysqlfabric group lookup_servers my_group
Command :
{ success = True
 return = [
 {'status': 'PRIMARY', 'server_uuid': 'bbe6f7c1-b6c3-11e3-aaa2-58946b051f64',
 'mode': 'READ_WRITE', 'weight': 1.0, 'address': 'localhost:3307'
 },
 {'status': 'SECONDARY', 'server_uuid': '0c9e67d0-8194-11e2-8a7c-f0def124dcc5',
 'mode': 'READ_ONLY', 'weight': 1.0, 'address': 'localhost:3308'
 },
 {'status': 'SECONDARY', 'server_uuid': '0c67e5b1-8194-11e2-8a7c-f0def124dcc5',
 'mode': 'READ_ONLY', 'weight': 1.0, 'address': 'localhost:3309'
 },
]
 activities =
}

In this example, there are three servers identified by their UUID values. The server running at
localhost:3307 is a primary, whereas the other servers are secondaries.

It is sometimes necessary to take secondaries offline for maintenance. However, before stopping a server,
it is important to remove it from the group to avoid having the Fabric failure detector trigger any action. This
can be done through the following commands. server_uuid should be replaced with a server UUID value
(a value of the form d2369bc9-2009-11e3-93c6-f0def14a00f4).

shell> mysqlfabric group remove my_group server_uuid

A primary cannot be removed from a group. To disable any primary in a group, execute this command:

Example: Fabric and Sharding

23

shell> mysqlfabric group demote my_group

If a group contains no servers, it is empty and can be destroyed (removed) with this command:

shell> mysqlfabric group destroy my_group

It is also possible to force removal of a nonempty group by specifying the parameter --force. This
command removes all servers from my_group and removes the group.

shell> mysqlfabric group destroy my_group --force

3.2 Example: Fabric and Sharding

This example explores sharding. The essence of a sharding solution that uses MySQL involves partitioning
the data into independent sets (independent MySQL Servers) and directing each client to the partition
(MySQL Server) that has the data the client wants to modify.

This architecture scales the write operations for a given dataset since resource demands are distributed
across the partitions (MySQL Servers) of the data set. Each partition is referred to as a shard.

3.2.1 Introduction to Sharding

The Fabric sharding implementation requires you to provide the sharding key explicitly while executing
a query. To define sharding over a set of tables using the sharding mechanism built into Fabric, it is
important to understand two concepts and how they relate.

Shard Mapping

A shard mapping serves to bring a database object (a database table) into the Fabric sharding system. The
mapping is a way of informing Fabric that we want a particular sharding scheme (range, hash, list, and so
forth.) to be used on a database table, using a value in a particular column. Create a shard mapping as
follows:

1. Define a shard mapping, to tell Fabric the kind of sharding mechanism to use.

2. Add a relation between the mapping and a database object, to register the database table and a
column in the table with the shard mapping.

Once these operations have been completed, we can describe how the shard mapping should split the
tables. This is done while creating the shards.

Shards

These are the partitions on the table. Since sharding is done on a database table, using an attribute
(column) in the table, the values in the column influence how the shards are created. To explain this
further, assume that we have two tables we wish to shard.

• employees

• Salary

Assume further that both tables are to be sharded by the employee ID that is part of their columns. Where
a row is placed is based on the value in the employee ID column. Hence, in a range-based sharding
scheme, a shard is nothing but a range of employee ID values.

Sharding Scenario

24

3.2.2 Sharding Scenario

In the sections that follow, we take the example of a employee table that must be sharded across three
MySQL groups. The following procedure lists the sequence of commands to run to perform each step.

Unsharded Data

Assume that we have an unsharded table named employees that contains Employee IDs, on which we
want to create the following shards. Each of these ranges is placed in one shard:

• 1-99999: shard-1

• 100000-199999: shard-2

• 200000-: shard-3

In addition to creating the ranges themselves (in a range based sharding scheme) we also must define
where this range of values should reside.

Starting Multiple MySQL Servers

MySQL Servers must be started on the directories that were copied. Assume that MySQL servers are
started on the following hosts and ports:

• localhost:3307

• localhost:3308

• localhost:3309

• localhost:3310

• localhost:3311

• localhost:3312

• localhost:3313

• localhost:3314

Creating the Groups in Fabric

A logical group in Fabric maps to a shard. So as a first step to sharding we must implement the Fabric
groups that store the shards. This can be done as follows:

shell> mysqlfabric group create group_id-1
shell> mysqlfabric group create group_id-2
shell> mysqlfabric group create group_id-3

The preceding commands create three high-availability groups: group_id-1, group_id-2, and
group_id-3. Each group stores a shard.

Then we must define a global group which is used to propagate schema updates to all tables in the
sharding setup and updates to global tables throughout the sharding scheme.

shell> mysqlfabric group create group_id-global

Sharding Scenario

25

Registering the Servers

The MySQL servers must be registered with the groups. Each group contains two servers.

3307, 3308 belong to group_id-1

shell> mysqlfabric group add group_id-1 localhost:3307
shell> mysqlfabric group add group_id-1 localhost:3308

3309, 3310 belong to group_id-2

shell> mysqlfabric group add group_id-2 localhost:3309
shell> mysqlfabric group add group_id-2 localhost:3310

3311, 3312 belong to group_id-3

shell> mysqlfabric group add group_id-3 localhost:3311
shell> mysqlfabric group add group_id-3 localhost:3312

3313, 3314 belong to group_id-global

shell> mysqlfabric group add group_id-global localhost:3313
shell> mysqlfabric group add group_id-global localhost:3314

Then promote one server to master in each group:

shell> mysqlfabric group promote group_id-global
shell> mysqlfabric group promote group_id-1
shell> mysqlfabric group promote group_id-2
shell> mysqlfabric group promote group_id-3

Define a Shard Mapping

When we define a shard mapping, we basically do three things:

1. Define the type of sharding scheme we want to use (RANGE or HASH).

2. Define a global group that stores all the updates that must be propagated to all the shards that are part
of this sharding scheme.

3. We generate a unique shard mapping id to which we can later associate database objects (tables).

shell> mysqlfabric sharding create_definition RANGE group_id-global
Procedure:
{ uuid = 195bca1e-c552-464b-b4e3-1fa15e9b49d5,
 finished = True,
 success = True,
 return = 1,
 activities =
}

Add Tables to Defined Shard Mappings

Add the database table to the shard mapping defined previously.

shell> mysqlfabric sharding add_table 1 employees.employees emp_no

Sharding Scenario

26

Add Shards for the Registered Tables

shell> mysqlfabric sharding add_shard 1 "group_id-1/1, group_id-2/100000, group_id-2/200000" --state=ENABLED

Executing Updates and Queries

Now you can write some example code for querying the sharded system.

import random
import mysql.connector
from mysql.connector import fabric

def prepare_synchronization(cur):
 # We need to keep track of what we have executed so far to guarantee
 # that the employees.employees table exists at all shards.
 gtid_executed = None
 cur.execute("SELECT @@global.gtid_executed")
 for row in cur:
 gtid_executed = row[0]
 return gtid_executed

def synchronize(cur, gtid_executed):
 # Guarantee that a slave has created the employees.employees table
 # before reading anything.
 cur.execute(
 "SELECT WAIT_UNTIL_SQL_THREAD_AFTER_GTIDS('%s', 0)" %
 (gtid_executed,)
)
 cur.fetchall()

def add_employee(conn, emp_no, first_name, last_name, gtid_executed):
 conn.set_property(tables=["employees.employees"], key=emp_no,
 mode=fabric.MODE_READWRITE)
 cur = conn.cursor()
 synchronize(cur, gtid_executed)
 cur.execute("USE employees")
 cur.execute(
 "INSERT INTO employees VALUES (%s, %s, %s)",
 (emp_no, first_name, last_name)
)

def find_employee(conn, emp_no, gtid_executed):
 conn.set_property(tables=["employees.employees"], key=emp_no,
 mode=fabric.MODE_READONLY)
 cur = conn.cursor()
 synchronize(cur, gtid_executed)
 cur.execute("USE employees")
 for row in cur:
 print "Had to synchronize", row, "transactions."
 cur.execute(
 "SELECT first_name, last_name FROM employees "
 "WHERE emp_no = %s", (emp_no,)
)
 for row in cur:
 print row

def pick_shard_key():
 shard = random.randint(0, 2)
 shard_range = shard * 100000
 shard_range = shard_range if shard != 0 else shard_range + 1
 shift_within_shard = random.randint(0, 99999)
 return shard_range + shift_within_shard

Address of the Fabric, not the host we are going to connect to.

Sharding Scenario

27

conn = mysql.connector.connect(
 fabric={"host" : "localhost", "port" : 32274,
 "username": "admin", "password" : "adminpass"
 },
 user="webuser", password="webpass", autocommit=True
)

conn.set_property(tables=["employees.employees"], scope=fabric.SCOPE_GLOBAL,
 mode=fabric.MODE_READWRITE)
cur = conn.cursor()
cur.execute("CREATE DATABASE IF NOT EXISTS employees")
cur.execute("USE employees")
cur.execute("DROP TABLE IF EXISTS employees")
cur.execute(
 "CREATE TABLE employees ("
 " emp_no INT, "
 " first_name CHAR(40), "
 " last_name CHAR(40)"
 ")"
)
gtid_executed = prepare_synchronization(cur)

conn.set_property(scope=fabric.SCOPE_LOCAL)

first_names = ["John", "Buffalo", "Michael", "Kate", "Deep", "Genesis"]
last_names = ["Doe", "Bill", "Jackson", "Bush", "Purple"]

list_emp_no = []
for count in range(10):
 emp_no = pick_shard_key()
 list_emp_no.append(emp_no)
 add_employee(conn, emp_no,
 first_names[emp_no % len(first_names)],
 last_names[emp_no % len(last_names)],
 gtid_executed
)

for emp_no in list_emp_no:
 find_employee(conn, emp_no, gtid_executed)

Shard Move

If the current set of servers for a shard is not powerful enough, we can move the shard to a more powerful
server set.

The shard-move functionality can be used to move a shard from one group to another. These are the steps
necessary to move a shard.

1. Set up the required group or groups.

shell> mysqlfabric group create group_id-MOVE
shell> mysqlfabric group add group_id-MOVE localhost:3315
shell> mysqlfabric group add group_id-MOVE localhost:3316
shell> mysqlfabric group promote group_id-MOVE

2. Execute the shard move.

shell> mysqlfabric sharding move_shard 1 group_id-MOVE

3. Verify that the move has happened.

shell> mysqlfabric sharding lookup_servers employees.employees 4

Sharding Scenario

28

Shard Split

If the shard becomes overloaded, we may need to split the shard into another group. The shard-split
feature can be used to split the data in a given shard into another shard. The following demonstrates how
to do this.

1. Set up the required group or groups.

shell> mysqlfabric group create group_id-SPLIT
shell> mysqlfabric group add group_id-SPLIT localhost:3317
shell> mysqlfabric group add group_id-SPLIT localhost:3318
shell> mysqlfabric group promote group_id-SPLIT

2. Execute the shard split.

shell> mysqlfabric sharding split_shard 2 group_id-SPLIT --split_value=150

3. Verify that the shard Split happened.

shell> mysqlfabric sharding lookup_servers employees.employees 152
shell> mysqlfabric sharding lookup_servers employees.employees 103

29

Chapter 4 The mysqlfabric Utility

Table of Contents
4.1 Getting Help ... 29
4.2 Dump Commands ... 30
4.3 Event Commands ... 31
4.4 Group Commands .. 32
4.5 Manage Commands ... 36
4.6 Provider Commands ... 37
4.7 Role Commands ... 38
4.8 Server Commands .. 38
4.9 Sharding Commands .. 42
4.10 Snapshot Commands .. 46
4.11 Statistics Commands .. 47
4.12 Threat Commands .. 47
4.13 User Commands ... 48

This section describes the mysqlfabric utility including examples of most commands. For a quick
reference guide for all of the commands, see Chapter 5, Fabric Utility Command Matrix.

Fabric commands are organized in categories that include dump, event, group, manage, provider, role,
server, sharding, snapshot, statistics threat, and user.

4.1 Getting Help

• mysqlfabric help: Show syntax information and the help commands.

• mysqlfabric help commands: List the available commands and their description.

• mysqlfabric help groups: List the available groups.

• mysqlfabric help [group] [command]: Provide detailed information on a command.

shell> mysqlfabric help group create
group create group_id [--description=NONE] [--synchronous]

Create a group.

shell> mysqlfabric help
Usage: mysqlfabric [--param, --config] <grp> <cmd> [arg, ...].

MySQL Fabric 1.5.6 - MySQL server farm management framework

Options:
 --version show program's version number and exit
 -h, --help show this help message and exit
 --param=CONFIG_PARAMS
 Override a configuration parameter.
 --config=FILE Read configuration from FILE.

Basic commands:
 help <grp> <cmd> Show help for command

Dump Commands

30

 help commands List all commands
 help groups List all groups

4.2 Dump Commands
The dump commands are designed to be used by the connectors to retrieve information on shards, high-
availability groups and their servers.

• Command: dump shard_maps: Return information about all shard mappings matching any of the
provided patterns. If no patterns are provided, dump information about all shard mappings.

Usage:
 mysqlfabric dump shard_maps [--connector_version=CONNECTOR_VERSION]
 [--patterns=]

Options:
 --connector_version=CONNECTOR_VERSION
 The connectors version of the data. By default None.
 --patterns=PATTERNS shard mapping pattern. By default "".

• Command: dump servers: Return information about the index for all mappings matching any of the
patterns provided. If no pattern is provided, dump the entire index. The lower_bound that is returned is a
string that is a md-5 hash of the group-id in which the data is stored.

Usage:
 mysqlfabric dump servers [--connector_version=CONNECTOR_VERSION]
 [--patterns=]

Options:
 --connector_version=CONNECTOR_VERSION
 The connectors version of the data. By default None.
 --patterns=PATTERNS group pattern. By default "".

• Command: dump shard_index: Return information about servers. The servers might belong to any
group that matches any of the provided patterns, or all servers if no patterns are provided.

Usage:
 mysqlfabric dump shard_index [--connector_version=CONNECTOR_VERSION]
 [--patterns=]

Options:
 --connector_version=CONNECTOR_VERSION
 The connectors version of the data. By default None.
 --patterns=PATTERNS group pattern. By default "".

• Command: dump sharding_information: Return information about all shard mappings matching
any of the provided patterns. If no patterns are provided, dump information about all shard mappings.

Usage:
 mysqlfabric dump shard_maps [--connector_version=CONNECTOR_VERSION]
 [--patterns=]

Options:
 --connector_version=CONNECTOR_VERSION
 The connectors version of the data. By default None.
 --patterns=PATTERNS shard mapping pattern. By default "".

• Command: dump shard_tables: Return information about all tables belonging to mappings matching
any of the provided patterns. If no patterns are provided, dump information about all tables.

Event Commands

31

Usage:
 mysqlfabric dump shard_tables [--connector_version=CONNECTOR_VERSION]
 [--patterns=]

Description:

Options:
 --connector_version=CONNECTOR_VERSION
 The connectors version of the data. By default None.
 --patterns=PATTERNS shard mapping pattern. By default "".

• Command: dump fabric_nodes: Return a list of Fabric Nodes (i.e. addresses). Specifically, the host
and port are returned. If the protocol is not specified, it assumes the 'protocol.xmlrpc'. Currently, the
'protocol.xmlrpc' and 'protocol.mysql' are valid options.

Usage:
 mysqlfabric dump fabric_nodes [--protocol=PROTOCOL]

Options:
 --protocol=PROTOCOL MySQL Fabric might support different protocols which
 have different addresses. By default None.

Return:
 List with existing Fabric Servers. ["host:port", ...]

4.3 Event Commands

The event commands are used to define events for tailoring the Fabric system to your needs for controlling
applications.

• Command: event trigger: Trigger an event.

Usage:
 mysqlfabric event trigger <event> [--locks=LOCKS] [--args=ARGS]
 [--kwargs=KWARGS]

Parameters:
 <event> Event's identification. Accepted values: String

Options:
 --locks=LOCKS By default None.
 --args=ARGS Event's non-keyworded arguments. By default None.
 --kwargs=KWARGS Event's keyworded arguments. By default None.

Return:
 :class:`CommandResult` instance with UUID of the procedures that were
 triggered.

• Command: event wait_for_procedures: Wait until procedures, which are identified through their
uuid in a list and separated by comma, finish their execution. If a procedure is not found an error is
returned.

Usage:
 mysqlfabric event wait_for_procedures [--proc_uuids=PROC_UUIDS]

Options:
 --proc_uuids=PROC_UUIDS
 Iterable with procedures' UUIDs. By default None.

Group Commands

32

4.4 Group Commands
The group commands are used to define, modify, and control groups.

• Command: activate: Activate failure detector for server(s) in a group. By default the failure detector is
disabled.

Usage:
 mysqlfabric group activate <group_id> [--synchronous]

Parameters:
 <group_id> Group's id.

Options:
 --synchronous=SYNCHRONOUS
 Whether one should wait until the execution finishes or not. By
 default True.

Return:
 Tuple with job's uuid and status.

• Command: add: Add a server into group. If users just want to update the state store and skip
provisioning steps such as configuring replication, the update_only parameter must be set to true. Note
that the current implementation has a simple provisioning step that makes the server point to the master
if there is any.

Usage:
 mysqlfabric group add <group_id> <address> [--timeout=TIMEOUT]
 [--update_only] [--synchronous]

Parameters:
 <group_id> Group's id.
 <address> Server's address.

Options:
 --timeout=TIMEOUT Time in seconds after which an error is reported if one
 cannot access the server. By default None.
 --update_only=UPDATE_ONLY
 By default False.
 --synchronous=SYNCHRONOUS
 Whether one should wait until the execution finishes or
 not. By default True.

Return:
 Tuple with job's uuid and status.

• Command: create: Create a group.

Usage:
 mysqlfabric group create <group_id> [--description=DESCRIPTION]
 [--synchronous]

Parameters:
 <group_id> Group's id.

Options:
 --description=DESCRIPTION
 Group's description. By default None.
 --synchronous=SYNCHRONOUS
 Whether one should wait until the execution finishes or not. By
 default True.

Group Commands

33

Return:
 Tuple with job's uuid and status.

• Command: deactivate: Deactivate failure detector for server(s) in a group. By default the failure
detector is disabled.

Usage:
 mysqlfabric group deactivate <group_id> [--synchronous]

Parameters:
 <group_id> Group's id.

Options:
 --synchronous=SYNCHRONOUS
 Whether one should wait until the execution finishes or not. By
 default True.

Return:
 Tuple with job's uuid and status.

• Command: demote: Demote the current master if there is one. If users just want to update the state
store and skip provisioning steps such as configuring replication, the update_only parameter must be set
to true. Otherwise any write access to the master is blocked, slaves are synchronized with the master,
stopped and their replication configuration reset. Note that no slave is promoted as master.

Usage:
 mysqlfabric group demote <group_id> [--update_only] [--synchronous]

Parameters:
 <group_id>

Options:
 --update_only=UPDATE_ONLY
 Only update the state store and skip provisioning. By default
 False.
 --synchronous=SYNCHRONOUS
 Whether one should wait until the execution finishes or not. By
 default True.

• Command: description: Update a group's description.

Usage:
 mysqlfabric group description <group_id> [--description=DESCRIPTION]
 [--synchronous]

Parameters:
 <group_id> Group's id.

Options:
 --description=DESCRIPTION
 Group's description. By default None.
 --synchronous=SYNCHRONOUS
 Whether one should wait until the execution finishes or not. By
 default True.

Return:
 Tuple with job's uuid and status.

• Command: destroy: Remove a group.

Usage:
 mysqlfabric group destroy <group_id> [--synchronous]

Group Commands

34

Parameters:
 <group_id> Group's id.

Options:
 --synchronous=SYNCHRONOUS
 Whether one should wait until the execution finishes or not. By
 default True.

Return:
 Tuple with job's uuid and status.

• Command: health: Check if any server within a group has failed and report health information.

Usage:
 mysqlfabric group health <group_id> [--timeout=TIMEOUT]

Parameters:
 <group_id> Timeout value after which a server is considered unreachable. If
 None is provided, it assumes the default value in the
 configuration file.

Options:
 --timeout=TIMEOUT By default None.

• Command: lookup_groups: Return information on existing group(s).

Usage:
 mysqlfabric group lookup_groups [--group_id=GROUP_ID]

Options:
 --group_id=GROUP_ID None if one wants to list the existing groups or
 group's id if one wants information on a group. By
 default None.

Return:
 List with {"group_id" : group_id, "failure_detector": ON/OFF, "description"
 : description}.

• Command: lookup_servers: Return information on existing server(s) in a group.

Usage:
 mysqlfabric group lookup_servers <group_id> [--server_id=SERVER_ID]
 [--status=STATUS] [--mode=MODE]

Parameters:
 <group_id> Group's id.

Options:
 --server_id=SERVER_ID
 None if one wants to list the existing servers in a group
 or server's id if one wants information on a server in a
 group. Accepted values: Servers's UUID or HOST:PORT. By
 default None.
 --status=STATUS Server's status one is searching for. By default None.
 --mode=MODE Server's mode one is searching for. By default None.

Return:
 Information on servers. List with [uuid, address, status, mode, weight]

• Command: promote: Promote a server into master.

Group Commands

35

If users just want to update the state store and skip provisioning steps such as configuring replication,
the update_only parameter must be set to true. Otherwise, the following happens.

If the master within a group fails, a new master is either automatically or manually selected among the
slaves in the group. The process of selecting and setting up a new master after detecting that the current
master failed is known as failover.

It is also possible to switch to a new master when the current one is still alive and kicking. The process is
known as switchover and may be used, for example, when one wants to take the current master off-line
for maintenance.

If a slave is not provided, the best candidate to become the new master is found. Any candidate must
have the binary log enabled, should have logged the updates executed through the SQL Thread and
both candidate and master must belong to the same group. The smaller the lag between slave and the
master the better. So the candidate which satisfies the requirements and has the smaller lag is chosen to
become the new master.

In the failover operation, after choosing a candidate, one makes the slaves point to the new master and
updates the state store setting the new master.

In the switchover operation, after choosing a candidate, any write access to the current master is
disabled and the slaves are synchronized with it. Failures during the synchronization that do not involve
the candidate slave are ignored. Then slaves are stopped and configured to point to the new master and
the state store is updated setting the new master.

Usage:
 mysqlfabric group promote <group_id> [--slave_id=SLAVE_ID] [--update_only]
 [--synchronous]

Parameters:
 <group_id>

Options:
 --slave_id=SLAVE_ID Candidate's UUID or HOST:PORT. By default None.
 --update_only=UPDATE_ONLY
 Only update the state store and skip provisioning. By
 default False.
 --synchronous=SYNCHRONOUS
 Whether one should wait until the execution finishes or
 not. By default True.

• Command: remove: Remove a server from a group.

Usage:
 mysqlfabric group remove <group_id> <server_id> [--synchronous]

Parameters:
 <group_id> Group's id.
 <server_id> Servers's UUID or HOST:PORT.

Options:
 --synchronous=SYNCHRONOUS
 Whether one should wait until the execution finishes or not. By
 default True.

Return:
 Tuple with job's uuid and status.

Manage Commands

36

4.5 Manage Commands
• Command: logging_level: Set logging level.

Usage:
 mysqlfabric manage logging_level <module> <level>

Parameters:
 <module> Module that will have its logging level changed.
 <level> The logging level that will be set.

• Command: ping: Check whether the Fabric server is running or not.

Usage:
 mysqlfabric manage ping

• Command: setup: Setup Fabric Storage System. Create a database and necessary objects.

Usage:
 mysqlfabric manage setup [--read_pw_from_stdin]

Options:
 --read_pw_from_stdin=READ_PW_FROM_STDIN
 Whether to read passwords from stdin instead of from the
 controlling tty. By default False.

• Command: start: Start the Fabric server.

Usage:
 mysqlfabric manage start [--foreground] [--disable_clustering] [--bootstrap]
 [--cluster_seed=CLUSTER_SEED] [--cluster_uuid=CLUSTER_UUID]
 [--cluster_timeout=5] [--read_pw_from_stdin]

Options:
 --foreground=FOREGROUND
 Whether it should be started as background process or not. Default
 is False. By default False.
 --disable_clustering=DISABLE_CLUSTERING
 Whether it should start with its clustering capabilities disabled
 and never join a cluster. By default False.
 --bootstrap=BOOTSTRAP
 Whether the node will be used to bootstrap the cluster or not.
 Default is False. By default False.
 --cluster_seed=CLUSTER_SEED
 Information that will be used to discover members of the cluster
 and eventually try to join it. By default None.
 --cluster_uuid=CLUSTER_UUID
 Cluster Identifier. Used to ensure that the node does not connect
 to the wrong cluster. By default None.
 --cluster_timeout=CLUSTER_TIMEOUT
 Timeout after which the node will stop trying to join the cluster.
 By default 5.
 --read_pw_from_stdin=READ_PW_FROM_STDIN
 Whether to read passwords from stdin instead of from the
 controlling tty. By default False.

• Command: stop: Stop the Fabric server.

Usage:
 mysqlfabric manage stop

Provider Commands

37

• Command: teardown: Tear down Fabric Storage System. Drop database and its objects.

Note

A teardown removes the backing store contents, therefore all configuration
information is lost. It's the contrary of manage setup.

Usage:
 mysqlfabric manage teardown [--read_pw_from_stdin]

Options:
 --read_pw_from_stdin=READ_PW_FROM_STDIN
 Whether to read passwords from stdin instead of from the
 controlling tty. By default False.

4.6 Provider Commands

The provider commands are used to manage cloud providers.

• Command: list: Return information on existing provider(s).

Usage:
 mysqlfabric provider list [--provider_id=PROVIDER_ID]

Options:
 --provider_id=PROVIDER_ID
 None if one wants to list the existing providers or provider's id
 if one wants information on a provider. By default None.

• Command: register: Register a provider.

Usage:
 mysqlfabric provider register <provider_id> <url> [--tenant=TENANT]
 [--provider_type=OPENSTACK] [--default_image=DEFAULT_IMAGE]
 [--default_flavor=DEFAULT_FLAVOR] [--extra=EXTRA]
 [--synchronous]

Parameters:
 <provider_id> Provider's Id.
 <url> URL that is used as an access point.

Options:
 --tenant=TENANT Tenant's name, i.e. who will access resources in the cloud.
 By default None.
 --provider_type=PROVIDER_TYPE
 Provider type. By default OPENSTACK.
 --default_image=DEFAULT_IMAGE
 By default None.
 --default_flavor=DEFAULT_FLAVOR
 By default None.
 --extra=EXTRA Define parameters that are specific to a provider. By
 default None.
 --synchronous=SYNCHRONOUS
 Whether one should wait until the execution finishes or
 not. By default True.

Return:
 Tuple with job's uuid and status.

• Command: unregister: Unregister a provider.

Role Commands

38

Usage:
 mysqlfabric provider unregister <provider_id> [--synchronous]

Parameters:
 <provider_id> Provider's Id.

Options:
 --synchronous=SYNCHRONOUS
 Whether one should wait until the execution finishes or not. By
 default True.

Return:
 Tuple with job's uuid and status.

4.7 Role Commands
The role commands are used to display information about an user's role as description and permissions.

• Command: list: List roles and associated permissions.

Usage:
 mysqlfabric role list [--name=NAME]

Options:
 --name=NAME Role's name. By default None.

4.8 Server Commands
The server commands are used to get information about servers and set their properties, namely status,
mode and weight.

• Command: clone: Clone the objects of a given server into a destination server.

Usage:
 mysqlfabric server clone <group_id> <destn_address> [--source_id=SOURCE_ID]
 [--timeout=TIMEOUT] [--synchronous]

Parameters:
 <group_id> The ID of the source group.
 <destn_address> The address of the destination MySQL Server.

Options:
 --source_id=SOURCE_ID
 The address or UUID of the source MySQL Server. By
 default None.
 --timeout=TIMEOUT Time in seconds after which an error is reported if the
 destination server is unreachable. By default None.
 --synchronous=SYNCHRONOUS
 Whether one should wait until the execution finishes or
 not. By default True.

• Command: create: Create a virtual machine instance.

Usage examples:

shell> mysqlfabric server create provider --image name=image-mysql \
 --flavor name=vm-template --meta db=mysql --meta=version=5.6

shell> mysqlfabric server create provider --image name=image-mysql \

Server Commands

39

 --flavor name=vm-template --security_groups grp_fabric, grp_ham

Options that accept a list are defined by providing the same option multiple times in the command-line.
The image, flavor, files, meta and scheduler_hints are those which might be defined multiple times. Note
the the security_groups option might be defined only once but it accept a string with a list of security
groups.

Usage:
 mysqlfabric server create <provider_id> [--image=IMAGE] [--flavor=FLAVOR]
 [--number_machines=1] [--availability_zone=AVAILABILITY_ZONE]
 [--key_name=KEY_NAME] [--security_groups=SECURITY_GROUPS]
 [--private_network=PRIVATE_NETWORK]
 [--public_network=PUBLIC_NETWORK] [--userdata=USERDATA]
 [--swap=SWAP] [--scheduler_hints=SCHEDULER_HINTS] [--meta=META]
 [--datastore=DATASTORE] [--datastore_version=DATASTORE_VERSION]
 [--size=SIZE] [--databases=DATABASES] [--users=USERS]
 [--configuration=CONFIGURATION] [--security=SECURITY]
 [--skip_store] [--wait_spawning] [--synchronous]

Parameters:
 <provider_id> Provider's Id.

Options:
 --image=IMAGE Image's properties. (e.g. name=image-mysql). Accepted
 values: list of key/value pairs. By default None.
 --flavor=FLAVOR Flavor's properties (e.g. name=vm-template). Accepted
 values: list of key/value pairs. By default None.
 --number_machines=NUMBER_MACHINES
 Number of machines to be created. Accepted values:
 integer. By default 1.
 --availability_zone=AVAILABILITY_ZONE
 Name of availability zone. Accepted values: string. By
 default None.
 --key_name=KEY_NAME Name of the key previously created. Accepted values:
 string. By default None.
 --security_groups=SECURITY_GROUPS
 Security groups to have access to the machine(s).
 Accepted values: string with a list of security groups.
 By default None.
 --private_network=PRIVATE_NETWORK
 Name of the private network where the machine(s) will
 be placed to. By default None.
 --public_network=PUBLIC_NETWORK
 Name of the public network which will provide a public
 address. By default None.
 --userdata=USERDATA Script that to be used to configure the machine(s).
 Accepted values: path to a file. By default None.
 --swap=SWAP Size of the swap space in megabyte. Accepted values:
 integer. By default None.
 --scheduler_hints=SCHEDULER_HINTS
 Information on which host(s) the machine(s) will be
 created in. Accepted values: list of key/value pairs.
 By default None.
 --meta=META Metadata on the machine(s). Accepted values: list of
 key/value pairs. By default None.
 --datastore=DATASTORE
 Database Technology (.e.g. MySLQ). Accepted values:
 string. By default None.
 --datastore_version=DATASTORE_VERSION
 Datastore version (.e.g. 5.6). Accepted values: string.
 By default None.
 --size=SIZE Storage area reserved to the data store. Accepted
 values: string in Gigabytes. By default None.
 --databases=DATABASES
 Database objects that will be created. Accepted values:

Server Commands

40

 List of strings separated by comma. By default None.
 --users=USERS By default None.
 --configuration=CONFIGURATION
 Configuration attached to the database. Accepted
 values: string. By default None.
 --security=SECURITY By default 0.0.0.0/0 is set. Users who want a differnt
 permission should specify a different value. Accepted
 values: string. By default None.
 --skip_store=SKIP_STORE
 Do not store information on machine(s) into the state
 store. Default is False. By default False.
 --wait_spawning=WAIT_SPAWNING
 Whether one should wait until the provider finishes its
 task or not. By default True.
 --synchronous=SYNCHRONOUS
 Whether one should wait until the execution finishes or
 not. By default True.

• Command: destroy: Destroy a virtual machine instance.

Usage:
 mysqlfabric server destroy <provider_id> <machine_uuid> [--force]
 [--skip_store] [--synchronous]

Parameters:
 <provider_id> Provider's Id.
 <machine_uuid> Machine's uuid.

Options:
 --force=FORCE Ignore errors while accessing the cloud provider. By default
 False.
 --skip_store=SKIP_STORE
 Proceed anyway if there is no information on the machine in
 the state store. Default is False. By default False.
 --synchronous=SYNCHRONOUS
 Whether one should wait until the execution finishes or not.
 By default True.

Return:
 Tuple with job's uuid and status.

• Command: list: Return information on existing machine(s) created by a provider.

Usage:
 mysqlfabric server list <provider_id> [--generic_filters=GENERIC_FILTERS]
 [--meta_filters=META_FILTERS] [--skip_store]

Parameters:
 <provider_id> Provider's Id.

Options:
 --generic_filters=GENERIC_FILTERS
 Set of key-value pairs that are used to filter the list of
 returned machines. By default None.
 --meta_filters=META_FILTERS
 Set of key-value pairs that are used to filter the list of
 returned machines. By default None.
 --skip_store=SKIP_STORE
 Don't check the list of machines from the state store. By default
 False.

• Command: lookup_uuid: Return server's uuid.

Usage:

Server Commands

41

 mysqlfabric server lookup_uuid <address> [--timeout=TIMEOUT]

Parameters:
 <address> Server's address.

Options:
 --timeout=TIMEOUT Time in seconds after which an error is reported if the
 UUID is not retrieved. By default None.

Return:
 UUID.

• server set_mode: Set a server's mode, which determines whether it can process read_only,
read_write, or both transaction types. It can also be set to offline meaning that the server does not
process any kind of user's request.

Usage:
 mysqlfabric server set_mode <server_id> <mode> [--synchronous]

Parameters:
 <server_id> Servers's UUID or HOST:PORT.
 <mode>

Options:
 --synchronous=SYNCHRONOUS
 Whether one should wait until the execution finishes or not. By
 default True.

• Command: server set_status: Set a server's status.

Any server added into a group has to be alive and kicking and its status is automatically set to
SECONDARY. If the failure detector is activate and the server is not reachable, it is automatically set to
FAULTY.

Users can also manually change the server's status. Usually, a user may change a slave's mode to
SPARE to avoid write and read access and guarantee that it is not chosen when a failover or switchover
routine is executed.

By default replication is automatically configured when a server has its status changed. In order to skip
this, users must set the update_only parameter to true. If done so, only the state store is updated with
information on the new status.

Usage:
 mysqlfabric server set_status <server_id> <status> [--update_only]
 [--synchronous]
Parameters:
 <server_id> Servers's UUID or HOST:PORT.
 <status> Server's status.

Options:
 --update_only=UPDATE_ONLY
 By default False.
 --synchronous=SYNCHRONOUS
 Whether one should wait until the execution finishes or not. By
 default True.

• Command: server set_weight: Set a server's weight.

Sharding Commands

42

server set_weight: Set a server's weight, which helps determine its likelihood of being chosen to
process requests or replace a failed master. The value must be greater than 0.0 and lower or equal to
1.0.

Note

This option was implemented in Fabric 1.5.7.

Usage:
 mysqlfabric server set_weight <server_id> <weight> [--synchronous]

Parameters:
 <server_id> Servers's UUID or HOST:PORT.
 <weight> Server's weight.

Options:
 --synchronous=SYNCHRONOUS
 Whether one should wait until the execution finishes or not. By
 default True.

4.9 Sharding Commands
The sharding commands are used to define, modify, and control sharding.

• Command: add_shard: Add a shard.

Usage:
 mysqlfabric sharding add_shard <shard_mapping_id> <groupid_lb_list>
 [--state=DISABLED] [--update_only] [--synchronous]
Parameters:
 <shard_mapping_id> The unique identification for a shard mapping.
 <groupid_lb_list> The list of group_id, lower_bounds pairs in the format,
 group_id/lower_bound, group_id/lower_bound...

Options:
 --state=STATE Indicates whether a given shard is ENABLED or DISABLED. By
 default DISABLED.
 --update_only=UPDATE_ONLY
 Only update the state store and skip adding range checks. By
 default False.
 --synchronous=SYNCHRONOUS
 Whether one should wait until the execution finishes or not.
 By default True.

Return:
 A dictionary representing the current Range specification.

• Command: add_table: Add a table to a shard mapping.

Usage:
 mysqlfabric sharding add_table <shard_mapping_id> <table_name>
 <column_name> [--range_check] [--update_only] [--synchronous]

Parameters:
 <shard_mapping_id> The shard mapping id to which the input table is
 attached.
 <table_name> The table being sharded.
 <column_name> The column whose value is used in the sharding scheme
 being applied

Sharding Commands

43

Options:
 --range_check=RANGE_CHECK
 Indicates if range check should be turned on for this table. By
 default False.
 --update_only=UPDATE_ONLY
 Only update the state store and skip adding range checks. By
 default False.
 --synchronous=SYNCHRONOUS
 Whether one should wait until the execution finishes or not. By
 default True.

• Command: create_definition: Define a shard mapping.

Usage:
 mysqlfabric sharding create_definition <type_name> <group_id>
 [--synchronous]

Parameters:
 <type_name> The type of sharding scheme - RANGE or HASH
 <group_id> Every shard mapping is associated with a global group that
 stores the global updates and the schema changes for this shard
 mapping and dissipates these to the shards.

Options:
 --synchronous=SYNCHRONOUS
 Whether one should wait until the execution finishes or not. By
 default True.

• Command: disable_shard: Disable a shard.

Usage:
 mysqlfabric sharding disable_shard <shard_id> [--synchronous]

Parameters:
 <shard_id> The shard ID of the shard that needs to be removed.

Options:
 --synchronous=SYNCHRONOUS
 Whether one should wait until the execution finishes or not. By
 default True.

• Command: enable_shard: Enable a shard.

Usage:
 mysqlfabric sharding enable_shard <shard_id> [--synchronous]

Parameters:
 <shard_id> The shard ID of the shard that needs to be removed.

Options:
 --synchronous=SYNCHRONOUS
 Whether one should wait until the execution finishes or not. By
 default True.

• Command: list_definitions: Lists all the shard mapping definitions.

Usage:
 mysqlfabric sharding list_definitions

Return:
 A list of shard mapping definitions An Empty List if no shard mapping
 definition is found.

Sharding Commands

44

• Command: list_tables: Returns all the shard mappings of a particular sharding_type

Usage:
 mysqlfabric sharding list_tables <sharding_type>

Parameters:
 <sharding_type> The sharding type for which the sharding specification
 needs to be returned.

Return:
 A list of dictionaries of shard mappings that are of the sharding type An
 empty list of the sharding type is valid but no shard mapping definition is
 found An error if the sharding type is invalid.

• Command: lookup_servers: Lookup a shard based on the give sharding key.

Usage:
 mysqlfabric sharding lookup_servers <table_name> <key> [--hint=LOCAL]

Parameters:
 <table_name> The table whose sharding specification needs to be looked up.
 <key> The key value that needs to be looked up

Options:
 --hint=HINT A hint indicates if the query is LOCAL or GLOBAL. By default
 LOCAL.

Return:
 The Group UUID that contains the range in which the key belongs.

• Command: lookup_table: Fetch the shard specification mapping for the given table.

Usage:
 mysqlfabric sharding lookup_table <table_name>

Parameters:
 <table_name> The name of the table for which the sharding specification is
 being queried.

Return:
 The a dictionary that contains the shard mapping information for the given
 table.

• Command: move_shard: Move the shard represented by the shard_id to the destination group.

By default this operation takes a backup, restores it on the destination group and guarantees that source
and destination groups are synchronized before pointing the shard to the new group. If users just want to
update the state store and skip these provisioning steps, the update_only parameter must be set to true.

Usage:
 mysqlfabric sharding move_shard <shard_id> <group_id> [--update_only]
 [--synchronous]

Parameters:
 <shard_id> The ID of the shard that needs to be moved.
 <group_id> The ID of the group to which the shard needs to be moved.

Options:
 --update_only=UPDATE_ONLY
 By default False.
 --synchronous=SYNCHRONOUS
 Whether one should wait until the execution finishes or not. By

Sharding Commands

45

 default True.

• Command: prune_shard: Given the table name prune the tables according to the defined sharding
specification for the table.

Usage:
 mysqlfabric sharding prune_shard <table_name> [--synchronous]

Parameters:
 <table_name> The table that needs to be sharded.

Options:
 --synchronous=SYNCHRONOUS
 Whether one should wait until the execution finishes or not. By
 default True.

• Command: remove_definition: Remove the shard mapping definition represented by the Shard
Mapping ID.

Usage:
 mysqlfabric sharding remove_definition <shard_mapping_id> [--synchronous]

Parameters:
 <shard_mapping_id> The shard mapping ID of the shard mapping definition
 that needs to be removed.

Options:
 --synchronous=SYNCHRONOUS
 Whether one should wait until the execution finishes or not. By
 default True.

• Command: remove_shard: Remove a shard.

Usage:
 mysqlfabric sharding remove_shard <shard_id> [--synchronous]

Parameters:
 <shard_id> The shard ID of the shard that needs to be removed.

Options:
 --synchronous=SYNCHRONOUS
 Whether one should wait until the execution finishes or not. By
 default True.

• Command: remove_table: Remove the shard mapping represented by the Shard Mapping object.

Usage:
 mysqlfabric sharding remove_table <table_name> [--synchronous]

Parameters:
 <table_name> The name of the table whose sharding specification is being
 removed.

Options:
 --synchronous=SYNCHRONOUS
 Whether one should wait until the execution finishes or not. By
 default True.

• Command: split_shard: Split the shard represented by the shard_id into the destination group.

Snapshot Commands

46

By default this operation takes a backup, restores it on the destination group and guarantees that source
and destination groups are synchronized before pointing the shard to the new group. If users just want to
update the state store and skip these provisioning steps, the update_only parameter must be set to true.

Usage:
 mysqlfabric sharding split_shard <shard_id> <group_id>
 [--split_value=SPLIT_VALUE] [--update_only] [--synchronous]

Parameters:
 <shard_id> The shard_id of the shard that needs to be split.
 <group_id> The ID of the group into which the split data needs to be moved.

Options:
 --split_value=SPLIT_VALUE
 The value at which the range needs to be split. By default None.
 --update_only=UPDATE_ONLY
 By default False.
 --synchronous=SYNCHRONOUS
 Whether one should wait until the execution finishes. By default
 True.

4.10 Snapshot Commands
The snapshot commands are related to the creation or destruction of machine snapshots.

• Command: create: Create a snapshot image from a machine.

Usage:
 mysqlfabric snapshot create <provider_id> <machine_uuid> [--skip_store]
 [--wait_spawning] [--synchronous]

Parameters:
 <provider_id> Provider's Id.
 <machine_uuid> Machine's uuid.

Options:
 --skip_store=SKIP_STORE
 Proceed anyway if there is no information on the machine in the
 state store. Default is False. By default False.
 --wait_spawning=WAIT_SPAWNING
 By default True.
 --synchronous=SYNCHRONOUS
 Whether one should wait until the execution finishes or not. By
 default True.

Return:
 Tuple with job's uuid and status.

• Command: destroy: Destroy snapshot images associated to a machine.

Usage:
 mysqlfabric snapshot destroy <provider_id> <machine_uuid> [--skip_store]
 [--synchronous]
Parameters:
 <provider_id> Provider's Id.
 <machine_uuid> Machine's uuid.

Options:
 --skip_store=SKIP_STORE
 Proceed anyway if there is no information on the machine in the
 state store. Default is False. By default False.

Statistics Commands

47

 --synchronous=SYNCHRONOUS
 Whether one should wait until the execution finishes or not. By
 default True.

Return:
 Tuple with job's uuid and status.

4.11 Statistics Commands

The statistics commands are used to Retrieve statistics at note, group or procedure level.

• Command: group: Retrieve statistics on Groups.

Usage:
 mysqlfabric statistics group [--group_id=GROUP_ID]

Options:
 --group_id=GROUP_ID Group one wants to retrieve information on. By default
 None.

• Command: node: Retrieve statistics on the Fabric node.

Usage:
 mysqlfabric statistics node

• Command: procedure: Retrieve statistics on Procedures.

Usage:
 mysqlfabric statistics procedure [--procedure_name=PROCEDURE_NAME]

Options:
 --procedure_name=PROCEDURE_NAME
 Procedure one wants to retrieve information on. By default None.

4.12 Threat Commands

The threat commands are used to report that a server is not working properly for any reason, these
commands can be used by external entities (e.g. connectors) and MySQL Fabric itself.

• Command: report_error: Report a server error. If there are many issues reported by different
servers within a period of time, the server is marked as faulty. Should the server be a primary, the
failover mechanism is triggered. Users who only want to set the server's status to faulty after getting
enough notifications from different clients must set the update_only parameter to true. By default its
value is false.

Usage:
 mysqlfabric threat report_error <server_id> [--reporter=UNKNOWN]
 [--error=UNKNOWN] [--update_only] [--synchronous]

Parameters:
 <server_id> Servers's UUID or HOST:PORT.

Options:
 --reporter=REPORTER Who has reported the issue, usually an IP address or a
 host name. By default unknown.
 --error=ERROR Error that has been reported. By default unknown.
 --update_only=UPDATE_ONLY

User Commands

48

 Only update the state store and skip provisioning. By
 default False.
 --synchronous=SYNCHRONOUS
 By default True.

• Command: report_failure: Report with certainty that a server has failed or is unreachable. Should
the server be a primary, the failover mechanism is triggered. Users who only want to set the server's
status to faulty must set the update_only parameter to True. By default its value is false.

Usage:
 mysqlfabric threat report_failure <server_id> [--reporter=UNKNOWN]
 [--error=UNKNOWN] [--update_only] [--synchronous]

Parameters:
 <server_id> Servers's UUID or HOST:PORT.

Options:
 --reporter=REPORTER Who has reported the issue, usually an IP address or a
 host name. By default unknown.
 --error=ERROR Error that has been reported. By default unknown.
 --update_only=UPDATE_ONLY
 Only update the state store and skip provisioning. By
 default False.
 --synchronous=SYNCHRONOUS
 By default True.

4.13 User Commands
The user commands are used to manage the Fabric user.

• Command: add: Add a new Fabric user.

Usage:
 mysqlfabric user add <username> [--protocol=PROTOCOL] [--roles=ROLES]

Parameters:
 <username> The username account to add.

Options:
 --protocol=PROTOCOL Protocol of the user (for example 'xmlrpc'). By default
 None.
 --roles=ROLES Comma separated list of roles, IDs or names (see `role
 list`). By default None.

• Command: delete: Delete a Fabric user.

Usage:
 mysqlfabric user delete <username> [--protocol=PROTOCOL] [--force]

Parameters:
 <username> The username account to delete.

Options:
 --protocol=PROTOCOL Protocol of the user (for example 'xmlrpc'). By default
 None.
 --force=FORCE Do not ask for confirmation. By default False.

• Command: list: List users and their roles.

Usage:
 mysqlfabric user list [--name=NAME]

User Commands

49

Options:
 --name=NAME User's name. By default None.

• Command: password: Change password for a Fabric user.

Usage:
 mysqlfabric user password <username> [--protocol=PROTOCOL]

Parameters:
 <username> The username to change the password of.

Options:
 --protocol=PROTOCOL Protocol of the user (for example 'xmlrpc'). By default
 None.

• Command: roles: Change roles for a Fabric user.

Usage:
 mysqlfabric user roles <username> [--protocol=PROTOCOL] [--roles=ROLES]

Parameters:
 <username> The username to change the roles of.

Options:
 --protocol=PROTOCOL Protocol of the user (for example 'xmlrpc'). By default
 None.
 --roles=ROLES Comma separated list of roles, IDs or names (see `role
 list`). By default None.

50

51

Chapter 5 Fabric Utility Command Matrix
The following table lists all of the commands available in the mysqlfabric utility. The table is sorted by
group and command to make it easier to find things. Each group and command is listed with all available
options and parameters. Below each is a short description of the task.

Table 5.1 Fabric Commands

Group Command Parameters Options

dump fabric_nodes --protocol=PROTOCOL

dump servers --
connector_version=CONNECTOR_VERSION,
--patterns=PATTERNS

dump shard_index --
connector_version=CONNECTOR_VERSION,
--patterns=PATTERNS

dump shard_maps --
connector_version=CONNECTOR_VERSION,
--patterns=PATTERNS

dump shard_tables --
connector_version=CONNECTOR_VERSION,
--patterns=PATTERNS

event trigger event --args=ARGS, --
kwargs=KWARGS, --
locks=LOCKS

group activate group_id --
synchronous=SYNCHRONOUS

group add address, group_id --
synchronous=SYNCHRONOUS,
--timeout=TIMEOUT, --
update_only=UPDATE_ONLY

group create group_id --
description=DESCRIPTION,
--
synchronous=SYNCHRONOUS

group deactivate group_id --
synchronous=SYNCHRONOUS

group demote group_id --
synchronous=SYNCHRONOUS,
--
update_only=UPDATE_ONLY

group description group_id --
description=DESCRIPTION,
--
synchronous=SYNCHRONOUS

group destroy group_id --
synchronous=SYNCHRONOUS

group health group_id --timeout=TIMEOUT

52

Group Command Parameters Options

group lookup_groups --group_id=GROUP_ID

group lookup_servers group_id --mode=MODE, --
server_id=SERVER_ID,
--status=STATUS

group promote group_id --slave_id=SLAVE_ID, --
synchronous=SYNCHRONOUS,
--
update_only=UPDATE_ONLY

group remove group_id, server_id --
synchronous=SYNCHRONOUS

manage logging_level level, module

manage ping

manage setup --
read_pw_from_stdin=READ_PW_FROM_STDIN

manage start --
bootstrap=BOOTSTRAP,
--
cluster_seed=CLUSTER_SEED,
--
cluster_timeout=CLUSTER_TIMEOUT,
--
cluster_uuid=CLUSTER_UUID,
--
disable_clustering=DISABLE_CLUSTERING,
--
foreground=FOREGROUND,
--
read_pw_from_stdin=READ_PW_FROM_STDIN

manage stop

manage teardown --
read_pw_from_stdin=READ_PW_FROM_STDIN

provider list --
provider_id=PROVIDER_ID

provider register provider_id, url --
default_flavor=DEFAULT_FLAVOR,
--
default_image=DEFAULT_IMAGE,
--extra=EXTRA, --
provider_type=PROVIDER_TYPE,
--
synchronous=SYNCHRONOUS,
--tenant=TENANT

provider unregister provider_id --
synchronous=SYNCHRONOUS

role list --name=NAME

server clone destn_address, group_id --
source_id=SOURCE_ID,

53

Group Command Parameters Options
--
synchronous=SYNCHRONOUS,
--timeout=TIMEOUT

server create provider_id --
availability_zone=AVAILABILITY_ZONE,
--
configuration=CONFIGURATION,
--
databases=DATABASES,
--
datastore=DATASTORE,
--
datastore_version=DATASTORE_VERSION,
--flavor=FLAVOR,
--image=IMAGE, --
key_name=KEY_NAME,
--meta=META, --
number_machines=NUMBER_MACHINES,
--
private_network=PRIVATE_NETWORK,
--
public_network=PUBLIC_NETWORK,
--
scheduler_hints=SCHEDULER_HINTS,
--security=SECURITY, --
security_groups=SECURITY_GROUPS,
--size=SIZE, --
skip_store=SKIP_STORE,
--swap=SWAP, --
synchronous=SYNCHRONOUS,
--userdata=USERDATA,
--users=USERS, --
wait_spawning=WAIT_SPAWNING

server destroy machine_uuid,
provider_id

--force=FORCE, --
skip_store=SKIP_STORE,
--
synchronous=SYNCHRONOUS

server list provider_id --
generic_filters=GENERIC_FILTERS,
--
meta_filters=META_FILTERS,
--
skip_store=SKIP_STORE

server lookup_uuid address --timeout=TIMEOUT

server set_mode mode, server_id --
synchronous=SYNCHRONOUS

server set_status server_id, status --
synchronous=SYNCHRONOUS,
--
update_only=UPDATE_ONLY

54

Group Command Parameters Options

server set_weight server_id, weight --
synchronous=SYNCHRONOUS

sharding add_shard groupid_lb_list,
shard_mapping_id

--state=STATE, --
synchronous=SYNCHRONOUS,
--
update_only=UPDATE_ONLY

sharding add_table column_name,
column_name,
shard_mapping_id,
table_name

--
range_check=RANGE_CHECK,
--
synchronous=SYNCHRONOUS,
--
update_only=UPDATE_ONLY

sharding create_definition group_id, type_name --
synchronous=SYNCHRONOUS

sharding disable_shard shard_id --
synchronous=SYNCHRONOUS

sharding enable_shard shard_id --
synchronous=SYNCHRONOUS

sharding list_definitions

sharding list_tables sharding_type

sharding lookup_servers key, table_name --hint=HINT

sharding lookup_table table_name

sharding move_shard group_id, shard_id --
synchronous=SYNCHRONOUS,
--
update_only=UPDATE_ONLY

sharding prune_shard table_name --
synchronous=SYNCHRONOUS

sharding remove_definition shard_mapping_id --
synchronous=SYNCHRONOUS

sharding remove_shard shard_id --
synchronous=SYNCHRONOUS

sharding remove_table table_name --
synchronous=SYNCHRONOUS

sharding split_shard group_id, shard_id --
split_value=SPLIT_VALUE,
--
synchronous=SYNCHRONOUS,
--
update_only=UPDATE_ONLY

snapshot create machine_uuid,
provider_id

--
skip_store=SKIP_STORE,
--
synchronous=SYNCHRONOUS,
--
wait_spawning=WAIT_SPAWNING

55

Group Command Parameters Options

snapshot destroy machine_uuid,
provider_id

--
skip_store=SKIP_STORE,
--
synchronous=SYNCHRONOUS

statistics group --group_id=GROUP_ID

statistics node

statistics procedure --
procedure_name=PROCEDURE_NAME

threat report_error server_id --error=ERROR, --
reporter=REPORTER, --
synchronous=SYNCHRONOUS,
--
update_only=UPDATE_ONLY

threat report_failure server_id --error=ERROR, --
reporter=REPORTER, --
synchronous=SYNCHRONOUS,
--
update_only=UPDATE_ONLY

user add username --protocol=PROTOCOL,
--roles=ROLES

user delete username --force=FORCE, --
protocol=PROTOCOL

user list --name=NAME

user password username --protocol=PROTOCOL

user roles username --protocol=PROTOCOL,
--roles=ROLES

56

57

Chapter 6 Backing Store

Table of Contents
6.1 Backing Store Tables ... 57
6.2 Protecting the Backing Store ... 60

The backing store feature requires a MySQL instance. This server should be the same version as your
other servers and MySQL version 5.6.10 or later. This section explains how to set up the backing store and
provides information about some of the tables created.

To set up the backing store, use the mysqlfabric command. The --param options specify the user and
password we created in Section 2.3.1, “Create the Associated MySQL Users” so that the utility can connect
to the backing store and create the database and tables. We show the resulting tables in the new fabric
database below.

shell> mysqlfabric manage setup --param=storage.user=fabric --param=storage.password=secret
[INFO] 1379444563.457977 - MainThread - Initializing persister:
user (fabric), server (localhost:3306), database (fabric).
shell> mysqlshow -ufabric -psecret fabric
+-------------------+
| Tables |
+-------------------+
| checkpoints |
| error_log |
| group_replication |
| groups |
| permissions |
| role_permissions |
| roles |
| servers |
| shard_maps |
| shard_ranges |
| shard_tables |
| shards |
| user_roles |
| users |
+-------------------+

Note

The tables described here are subject to change in future versions of Fabric.

6.1 Backing Store Tables

The checkpoints table stores information on procedures' executions and is used to safely resume
executing a procedure after a crash and recovery:

Table 6.1 checkpoints

Column Type Comment

proc_uuid varchar(40) The procedure's unique identification

lockable_objects blob Set of objects locked by the procedure

job_uuid varchar(60) The job's unique identification

sequence int(11) The job's sequence in the execution

Backing Store Tables

58

Column Type Comment

action_fqn text Reference to the fully qualified name of
the function to be executed on behalf of
the job

param_args blob Positional arguments to the job's function

param_kwargs blob Keyword arguments to the job's function

started double(16,6) When the job started

finished double(16,6) When the job finished

The error_log table contains information on servers' errors reported.

Table 6.2 error_log

Column Type Comment

server_uuid varchar(40) The server_uuid value from the server
that has raised an error

reported timestamp(6) When the error was reported

reporter varchar(64) Who reported the error: IP address, host
name

error text Error message or code reported

The group_replication table defines replication among global groups and groups used in shards.
They are used primarily for shard splitting, moving, and global updates.

Table 6.3 group_replication

Column Type

master_group_id varchar(64)

slave_group_id varchar(64)

The groups table contains information about the groups being managed.

Table 6.4 groups

Column Type Comment

group_id varchar(64) The identifier for the group

description varchar(256) A description of the group

master_uuid varchar(40) The server_uuid value from the
master server

master_defined timestamp(6) When the current master was defined.

status bit(1) 1 if the group is being monitored, 0
otherwise

The permissions table contains information on rights to access the different sub-systems in Fabric.
Currently, a core sub-system is formally defined:

Table 6.5 permissions

Column Type Comment

permission_id int(10) unsigned Permission's ID

http://dev.mysql.com/doc/refman/5.6/en/replication-options.html#sysvar_server_uuid
http://dev.mysql.com/doc/refman/5.6/en/replication-options.html#sysvar_server_uuid

Backing Store Tables

59

Column Type Comment

subsystem varchar(60) Sub-system identification

component varchar(60) Sub-system component

function varchar(60) Sub-system function. Currently, this is not
used

description varchar(1000) Description

The roles table contains information on possible roles a user may have and by consequence his/her
permissions:

Table 6.6 roles

Column Type Comment

role_id int(10) unsigned Roles' ID

name varchar(80) Role's name

description varchar(1000) Role's description

The role_permissions table associates roles and permissions:

Table 6.7 role_permissions

Column Type Comment

role_id int(10) unsigned Roles' ID

permission_id int(10) unsigned Permission's ID

The servers table contains a list of all servers managed by Fabric.

Table 6.8 servers

Column Type Comment

server_uuid varchar(40) UUID of the server

server_address varchar(128) Address of the server

mode int(11) Mode of the server (OFFLINE,
READ_ONLY, WRITE_ONLY,
READ_WRITE)

status int(11) Status of the server (FAULTY, SPARE,
SECONDARY, PRIMARY)

weight float Likelihood of receiving a request

group_id varchar(64) Group the server belongs to

The shard_maps table contains the names and properties of the shard maps.

Table 6.9 shard_maps

Column Type Comment

shard_mapping_id int(11) Shard map identifier

type_name enum('RANGE','HASH') Shard map type

global_group varchar(64) Name of the global group (likely to go
away in the next revision)

Protecting the Backing Store

60

The shard_ranges table is the sharding index and is used to map a sharding key to a shard.

Table 6.10 shard_ranges

Column Type Comment

shard_mapping_id int(11) Shard map identifier

lower_bound varbinary(16) Lower bound for the range encoded as a
binary string

shard_id int(11) Shard identifier (a number)

The shard_tables table lists all tables that are sharded and what sharding map each belongs to. It also
names the column by which it is sharded.

Table 6.11 shard_tables

Column Type Comment

shard_mapping_id int(11) Shard map identifier

table_name varchar(64) Fully qualified table name

column_name varchar(64) Column name that is the sharding key

The shards table names the groups where each shard identifier is stored.

Table 6.12 shards

Column Type Comment

shard_id int(11) Shard identifier

group_id varchar(64) Group identifier (a dotted-name)

state enum('DISABLED','ENABLED') Status of the shard; DISABLED means
that it is not available for use

The users table identifies the users that might have permission to access the functions in the different
sub-systems:

Table 6.13 users

Column Type Comment

user_id int(10) unsigned User's internal ID

username varchar(100) User's name

protocol varchar(200) Protocol that the user is allowed to use to
access Fabric and its sub-systems

password varchar(128) Hashed user's password

6.2 Protecting the Backing Store

The backing store is very important to Fabric. You should take steps to ensure the database is backed up
and the server where it resides is stable and well maintained. For the purposes of backup, it is sufficient to
make periodic backups using either the mysqldump client or mysqldbexport utility in MySQL Utilities.

61

Chapter 7 Using MySQL Fabric with Pacemaker and Corosync

Table of Contents
7.1 Introduction .. 61
7.2 Pre-requisites ... 62
7.3 Target Configuration ... 62
7.4 Setting up and testing your system ... 63

7.4.1 Configure Network ... 63
7.4.2 Install all packages .. 63
7.4.3 Configure DRBD .. 64
7.4.4 Configure MySQL Server ... 66
7.4.5 Configure MySQL Fabric .. 67
7.4.6 Configure Corosync and Pacemaker ... 68

7.5 Key administrative tasks ... 71

There are a number of ways to make the MySQL Fabric node and its status and configuration data highly
available; this section describes one such approach, but other alternatives are possible. This section can
be used as a set of guidelines to build your own framework to add fault tolerance.

Note

The described Pacemaker setup is not currently a solution that has been through
QA.

7.1 Introduction

A MySQL Fabric instance is composed of a MySQL Fabric process together with a MySQL server. The
MySQL Fabric node contains the protocols and the executor, but is in itself stateless in that if it for some
reason crashes, re-starting permits it to continue where it left off. The configuration and state information
about the farm is instead stored in a separate MySQL server.

To provide a highly available solution, both components must be redundant. From a failure viewpoint,
these two components are treated as a single unit, meaning that each pair is collocated on a machine, and
if one of them fails, the stack on that machine fails.

There are two MySQL Fabric instances working in active and stand-by mode. The data stored in the
MySQL server is replicated through the Distributed Replicated Block Device, or simply DRBD. The MySQL
Fabric process is stateless though and must simply be started in the stand-by node in the event of a failure.

Pacemaker and CoroSync are used to monitor whether the instances are running properly, and to
automate the failover and switchover operations. Pacemaker is responsible for monitoring components,
such as the MySQL Fabric Process, MySQL server, and DRBD, and also for executing the failover and
switchover operations. CoroSync is the communication infrastructure used by Pacemaker to exchange
massages between the two nodes.

Applications accessing this cluster do so through a Virtual IP address that is assigned to the active node,
specifically to the MySQL Fabric process, and is automatically migrated to the stand-by node during a
failover or switchover operation.

This section aims to describe how to set up this highly available cluster.

http://drbd.linbit.com/
http://clusterlabs.org/

Pre-requisites

62

7.2 Pre-requisites

Two servers or virtual machines with:

• A Linux distribution. This guide is based on Ubuntu 14.04, but any other distribution should work equally
well.

• Unpartitioned space on the local disk to create a DRBD partition.

• Network connectivity

• Both hosts must be accessible through ssh.

• User "mysql" and group "mysql" that have the same ids at the different nodes.

Linux is used because Pacemaker, Corosync, and DRBD are commonly available on this platform.

Note

Pacemaker, Corosync, and DRBD are not include with MySQL Fabric and need to
be installed separately for the target platform.

If Virtual Machines are used, make sure they run in different physical servers to avoid a single point of
failure. If possible, also make the network connectivity redundant.

7.3 Target Configuration

The two physical hosts are host1.localdomain (192.168.1.101) and host2.localdomain
(192.168.1.102). It is recommended that you do not rely on an external DNS service (as that is an
additional point of failure) and so these mappings should be configured on each host in the /etc/hosts
file.

A single Virtual IP (VIP) is shown in the figure (192.168.1.200) and this is the address that the
application connects to when accessing the MySQL Fabric. Pacemaker is responsible for migrating this
between the two hosts.

One of the final steps in configuring Pacemaker is to add network connectivity monitoring in order to
attempt to have an isolated host stop its MySQL services to avoid a split-brain scenario. This is achieved
by having each host ping an external (not one part of the cluster) IP addresses - in this case the network
router (192.168.1.1).

All the necessary software (i.e. binaries) must be installed in a regular partition, independent on each
node. MySQL socket (mysql.sock) and process-id (mysql.pid) files are stored in a regular partition as
well. The MySQL Server configuration file (my.cnf), the database files (data/*) and the MySQL Fabric
configuration file (fabric.cfg) are stored in a DRBD controlled file system that at any point in time is only
available on one of the two hosts.

Setting up and testing your system

63

Figure 7.1 MySQL Fabric Setup using DRBD and Pacemaker

7.4 Setting up and testing your system

7.4.1 Configure Network

It is recommended that you do not rely on DNS to resolve host names and so the following configuration
files should be updated:

Example 7.1 /etc/hosts (Host 1)

127.0.0.1 localhost localhost.localdomain
::1 localhost localhost.localdomain
192.168.1.102 host2 host2.localdomain

Example 7.2 /etc/hosts (Host 2)

127.0.0.1 localhost localhost.localdomain
::1 localhost localhost.localdomain
192.168.1.101 host1 host1.localdomain

7.4.2 Install all packages

Install the necessary packages through the apt-get repositories:

[root@host1]# apt-get install drbd8-utils corosync pacemaker sysv-rc-conf libaio1
[root@host2]# apt-get install drbd8-utils corosync pacemaker sysv-rc-conf libaio1

Configure DRBD

64

Download and install the common, server, and client components on both hosts. Our example downloads
and installs the bundled binaries from dev.mysql.com. Download the latest MySQL Server release bundle
and install it on both machines using the following commands:

[root@host1]# dpkg -i mysql-common_*ubuntu14.04_amd64.deb
[root@host1]# dpkg -i mysql-community-server_*ubuntu14.04_amd64.deb
[root@host1]# dpkg -i mysql-community-client_*ubuntu14.04_amd64.deb

[root@host2]# dpkg -i mysql-common_*ubuntu14.04_amd64.deb
[root@host2]# dpkg -i mysql-community-server_*ubuntu14.04_amd64.deb
[root@host2]# dpkg -i mysql-community-client_*ubuntu14.04_amd64.deb

Next, install MySQL Fabric. Download MySQL Fabric by downloading the MySQL Utilities and install it
using the following commands on each machine:

shell> unzip mysql-utilities-*.zip
shell> cd mysql-utilities-*
shell> python setup.py install

The script required to run MySQL Fabric with Pacemaker is not distributed with the packages and you
need to manually download and install the script on each machine:

[root@host1]# cp mysql-fabric /usr/lib/ocf/resource.d/heartbeat/.
[root@host1]# chmod 755 /usr/lib/ocf/resource.d/heartbeat/mysql-fabric

[root@host2]# cp mysql-fabric /usr/lib/ocf/resource.d/heartbeat/.
[root@host2]# chmod 755 /usr/lib/ocf/resource.d/heartbeat/mysql-fabric

7.4.3 Configure DRBD

If your nodes do not already have an empty partition that you plan to use for the DRBD, then create one. If
you are using a Virtual Machine, you can add a new storage to your machine. These details go beyond the
scope of this guide.

This partition is used as a resource, managed (and synchronized between nodes by DRBD); in order for
DRBD to be able to do this a new configuration file (in this case called clusterdb_res.res) must be
created in the /etc/drbd.d/ directory; the contents should look similar to:

resource clusterdb_res {
 protocol C;
 handlers {
 pri-on-incon-degr "/usr/lib/drbd/notify-pri-on-incon-degr.sh; /usr/lib/drbd/notify-emergency-reboot.sh; echo b > /proc/sysrq-trigger ; reboot -f";
 pri-lost-after-sb "/usr/lib/drbd/notify-pri-lost-after-sb.sh; /usr/lib/drbd/notify-emergency-reboot.sh; echo b > /proc/sysrq-trigger ; reboot -f";
 local-io-error "/usr/lib/drbd/notify-io-error.sh; /usr/lib/drbd/notify-emergency-shutdown.sh; echo o > /proc/sysrq-trigger ; halt -f";
 fence-peer "/usr/lib/drbd/crm-fence-peer.sh";
 }
 startup {
 degr-wfc-timeout 120; # 2 minutes
 outdated-wfc-timeout 2; # 2 seconds
 }
 disk {
 on-io-error detach;
 }
 net {
 cram-hmac-alg "sha1";
 shared-secret "clusterdb";
 after-sb-0pri disconnect;
 after-sb-1pri disconnect;

http://dev.mysql.com/downloads/mysql/
http://dev.mysql.com/downloads/utilities/

Configure DRBD

65

 after-sb-2pri disconnect;
 rr-conflict disconnect;
 }
 syncer {
 rate 10M;
 al-extents 257;
 on-no-data-accessible io-error;
 }
 on host1 {
 device /dev/drbd0;
 disk /dev/sdb;
 address 192.168.1.101:7788;
 flexible-meta-disk internal;
 }
 on host2 {
 device /dev/drbd0;
 disk /dev/sdb;
 address 192.168.1.102:7788;
 meta-disk internal;
 }
}

The IP addresses and disk locations should be specific to the hosts that the cluster are using. In this
example the device that DRBD creates is located at /dev/drbd0 - it is this device that is swapped back
and forth between the hosts by DRBD. This resource configuration file should be copied over to the same
location on the second host:

[root@host1]# scp clusterdb_res.res host2:/etc/drbd.d/

The configuration file previously presented uses DRBD 8.3 dialect. Although DRBD 8.4 is the newest
version, some distributions might still contain DRBD 8.3. If you have installed DRBD 8.4 do not worry
though because it understands the DRBD 8.3 configuration file.

Before starting the DRBD daemon, meta data must be created for the new resource (clusterdb_res) on
each host using the command:

[root@host1]# drbdadm create-md clusterdb_res

[root@host2]# drbdadm create-md clusterdb_res

It is now possible to start the DRBD daemon on each host:

[root@host1]# /etc/init.d/drbd start

[root@host2]# /etc/init.d/drbd start

At this point the DRBD service is running on both hosts but neither host is the "primary" and so the
resource (block device) cannot be accessed on either host; this can be confirmed by querying the status of
the service:

[root@host1]# /etc/init.d/drbd status

[root@host2]# /etc/init.d/drbd status

In order to create the file systems (and go on to storing useful data in it), one of the hosts must be made
the primary for the clusterdb_res resource, so execute the following on host1

Configure MySQL Server

66

[root@host1]# drbdadm -- --overwrite-data-of-peer primary all
[root@host1]# /etc/init.d/drbd status

The status output also shows the progress of the block-level syncing of the device from the new primary
(host1) to the secondary (host2). This initial sync can take some time but it should not be necessary to wait
for it to complete in order to complete the other steps.

Now that the device is available on host1, it is possible to create a file system on it:

[root@host1]# mkfs -t ext4 /dev/drbd0

Note

The above does not need to be repeated on the second host as DRBD handles the
syncing of the raw disk data

In order for the DRBD file system to be mounted, the /var/lib/mysql_drbd directory should be created
on both hosts:

[root@host1]# mkdir /var/lib/mysql_drbd
[root@host1]# chown mysql /var/lib/mysql_drbd
[root@host1]# chgrp mysql /var/lib/mysql_drbd

[root@host2]# mkdir /var/lib/mysql_drbd
[root@host2]# chown mysql /var/lib/mysql_drbd
[root@host2]# chgrp mysql /var/lib/mysql_drbd

On just the one (DRBD active) host, the DRBD file system must be temporarily mounted:

[root@host1]# mount /dev/drbd0 /var/lib/mysql_drbd

7.4.4 Configure MySQL Server

First, we have to stop the MySQL Server on both hosts and update configuration files and create new data
files. First, stop the MySQL server on both hosts using the command:

shell> /etc/init.d/mysql stop

Note

If you are using an Ubuntu distribution you need change the /etc/apparmor.d/
usr.sbin.mysqld on both hosts according to the following diff:

@@ -40,8 +40,8 @@
 /usr/share/mysql/** r,
 # Allow data dir access
- /var/lib/mysql/ r,
- /var/lib/mysql/** rwk,
+ /var/lib/mysql_drbd/ r,
+ /var/lib/mysql_drbd/** rwk,
 # Allow log file access
 /var/log/mysql/ r,

If you do not do that, the MySQL server may not be able to access files in the new
location and you may get strange errors since AppArmor prevents reading and
writing from the new locations.

https://wiki.ubuntu.com/AppArmor

Configure MySQL Fabric

67

To avoid any mismatches, the configuration file can be copied from host1 to host2 :

shell> scp /etc/apparmor.d/usr.sbin.mysqld host2:/etc/apparmor.d/usr.sbin.mysqld

Then restart AppArmor on both hosts using:

shell> /etc/init.d/apparmor restart

Edit the /etc/mysql/my.cnf file and set datadir /var/lib/mysql_drbd/data in the [mysqld]
section on both hosts.

To avoid any mismatches, the configuration file can be copied from host1 to host2 :

shell> scp /etc/mysql/my.cnf host2:/etc/mysql/my.cnf

Now the configuration file can be copied and the default database files populated on host1 using:

shell> cp /etc/mysql/my.cnf /var/lib/mysql_drbd/my.cnf
shell> mkdir /var/lib/mysql_drbd/data
shell> mysql_install_db --no-defaults --datadir=/var/lib/mysql_drbd/data --user=mysql

Configure some permissions on host1 :

shell> chmod -R uog+rw /var/lib/mysql_drbd
shell> chown -R mysql /var/lib/mysql_drbd
shell> chmod 644 /var/lib/mysql_drbd/my.cnf

Start MySQL Server and configure users and access:

shell> /etc/init.d/mysql start

shell> mysql -u root -e "GRANT ALL ON *.* to 'root'@'%';"
shell> mysql -u root -e "CREATE USER 'fabric'@'localhost' IDENTIFIED BY 'secret';"
shell> mysql -u root -e "GRANT ALL ON fabric.* TO 'fabric'@'localhost';"

7.4.5 Configure MySQL Fabric

On just the one (DRBD active) host, do the following:

shell> cp /etc/mysql/fabric.cfg /var/lib/mysql_drbd/fabric.cfg
shell> chmod 600 /var/lib/mysql_drbd/fabric.cfg
shell> chown root:root /var/lib/mysql_drbd/fabric.cfg

Edit the /var/lib/mysql_drbd/fabric.cfg:

1. Set address to 192.168.1.200:32274 in the [protocol.xmlrpc] section

2. Set password to password in the [protocol.xmlrpc] section

3. Set address to 192.168.1.200:32275 in the [protocol.mysql] section

4. Set the password to password in the [protocol.mysql] section

5. Set the password to secret in the [storage] section

Configure Corosync and Pacemaker

68

Warning

Do not change the address in the [storage] section.

Take the opportunity to set the other options if you need/want to do so, specially the user/password in the
[servers] and [client] sections. Finally, create MySQL Fabric's state store as follows:

[root@host1]# mysqlfabric --config /var/lib/mysql_drbd/fabric.cfg \
 --param protocol.xmlrpc.address=localhost:32274 \
 --param protocol.mysql.address=localhost:32275 manage setup

From this point onwards all resources are managed by the clustering software so they have to be stopped:

[root@host1]# /etc/init.d/mysql stop
[root@host1]# umount /var/lib/mysql_drbd
[root@host1]# drbdadm secondary clusterdb_res

Then DRBD should be stopped as well:

[root@host1]# /etc/init.d/drbd stop
[root@host2]# /etc/init.d/drbd stop

7.4.6 Configure Corosync and Pacemaker

At this point, the DRBD file system is configured and initialized and both MySQL Fabric and MySQL
Server has been installed and the required files set up on the replicated DRBD file system. Pacemaker
and Corosync are installed but they are not yet managing the MySQL Fabric Process, MySQL Server and
DRBD resources to provide a clustered solution - the next step is to set that up.

Firstly, set up some network-specific parameters from the Linux command line and also in the Corosync
configuration file. The multi-cast address should be unique in your network but the port can be left at 5405.
The IP address should be based on the IP addresses being used by the servers but should take the form
of XX.YY.ZZ.0.

Copy an example to make your life easier:

shell> cp /etc/corosync/corosync.conf.example /etc/corosync/corosync.conf

After editing it, it should have a content similar to what follows:

 totem {
 version: 2
 crypto_cipher: none
 crypto_hash: none
 interface {
 ringnumber: 0
 bindnetaddr: 192.168.1.0
 mcastaddr: 239.255.1.1
 mcastport: 5405
 ttl: 1
 }
 }
 logging {
 to_syslog: yes
 }
 quorum {
 provider: corosync_votequorum

Configure Corosync and Pacemaker

69

 two_node: 1
 wait_for_all: 1
 }
 nodelist {
 node {
 ring0_addr: 192.168.1.101
 nodeid: 1
 }
 node {
 ring0_addr: 192.168.1.102
 nodeid: 2
 }
 }

Be careful while setting up the network address that the Corosync binds to. For example, according
to the Corosync documentation, if the local interface is 192.168.5.92 with netmask 255.255.255.0, set
bindnetaddr to 192.168.5.0. If the local interface is 192.168.5.92 with netmask 255.255.255.192, set
bindnetaddr to 192.168.5.64, and so forth.

This makes Corosync automatically pick the network interface based on the network address provided. It
is also possible to set up a specific address, such as 192.168.5.92, but in this case the configuration file is
different per machine.

Create the /etc/corosync/service.d/pcmk file to tell the Corosync to load the Pacemaker plug-in:

service {
 # Load the Pacemaker Cluster Resource Manager
 name: pacemaker
 ver: 1
}

Change the /etc/default/corosync file as follows:

start corosync at boot [yes|no]
START=yes

To avoid any mismatches, the configuration file can be copied across by using these commands on host1:

shell> scp /etc/corosync/corosync.conf host2:/etc/corosync/corosync.conf
shell> scp /etc/corosync/service.d/pcmk host2:/etc/corosync/service.d/pcmk
shell> scp /etc/default/corosync host2:/etc/default/corosync

Start Corosync on both hosts using:

shell> /etc/init.d/corosync start

Run tpcdump to check whether Corosync is working or not:

shell> tcpdump -i eth0 -n port 5405

To start the Pacemaker on host1, execute the following command:

shell> /etc/init.d/pacemaker start

Run Pacemaker's cluster resource monitoring command on host1 to view the status of the cluster:

shell> crm_mon --one-shot -V

Configure Corosync and Pacemaker

70

As we are configuring a cluster made up of just 2 hosts, when one host fails (or loses contact with the
other) there is no node majority (quorum) left and so by default the surviving node (or both if they are
still running but isolated from each other) would be shut down by Pacemaker. This is not the desired
behavior as it does not offer High Availability and so that default should be overridden (we later add an
extra behavior whereby each node shuts itself down if it cannot ping a 3 node that is external to the cluster,
thus preventing a split brain situation):

[root@host1]# crm configure property no-quorum-policy=ignore

We turn STONITH (Shoot The Other Node In The Head) off as this solution relies on each node shutting
itself down in the event that it loses connectivity with the independent host:

[root@host1]# crm configure property stonith-enabled=false

Roughly speaking, STONITH refers to one node trying to kill another in the even that it believes the other
has partially failed and should be stopped in order to avoid any risk of a split-brain scenario. To prevent a
healthy resource from being moved around the cluster when a node is brought back on-line, Pacemaker
has the concept of resource stickiness which controls how much a service prefers to stay running where it
is.

[root@host1]# crm configure rsc_defaults resource-stickiness=100

In the next steps, we describe how to configure the different resources as a cluster:

[root@host1]# crm configure edit

This opens your default text editor, and you should use it to add the following lines into the cluster
configuration:

primitive p_drbd_mysql ocf:linbit:drbd \
 params drbd_resource="clusterdb_res" \
 op monitor interval="15s"
primitive p_fabric_mysql ocf:heartbeat:mysql-fabric \
 params binary="/usr/local/bin/mysqlfabric" \
 config="/var/lib/mysql_drbd/fabric.cfg" \
 op start timeout="120s" interval="0" \
 op stop timeout="120s" interval="0" \
 op monitor interval="20s" timeout="30s"
primitive p_fs_mysql ocf:heartbeat:Filesystem \
 params device="/dev/drbd0" directory="/var/lib/mysql_drbd" \
 fstype="ext4"
primitive p_ip_mysql ocf:heartbeat:IPaddr2 \
 params ip="192.168.1.200" cidr_netmask="24" nic="eth0"
primitive p_mysql ocf:heartbeat:mysql \
 params binary="/usr/sbin/mysqld" \
 config="/var/lib/mysql_drbd/my.cnf" \
 datadir="/var/lib/mysql_drbd/data" \
 pid="/var/run/mysqld/mysqld.pid" \
 socket="/var/run/mysqld/mysqld.sock \
 user="mysql" group="mysql" \
 additional_parameters="--bind-address=localhost" \
 op start timeout="120s" interval="0" \
 op stop timeout="120s" interval="0" \
 op monitor interval="20s" timeout="30s"
group g_mysql p_fs_mysql p_ip_mysql p_mysql p_fabric_mysql
ms ms_drbd_mysql p_drbd_mysql \
 meta master-max="1" master-node-max="1" clone-max="2" \
 clone-node-max="1" notify="true"
colocation c_mysql_on_drbd inf: g_mysql ms_drbd_mysql:Master

Key administrative tasks

71

order o_drbd_before_mysql inf: ms_drbd_mysql:promote g_mysql:start
primitive p_ping ocf:pacemaker:ping params name="ping" \
 multiplier="1000" host_list="192.168.1.1" \
 op monitor interval="15s" timeout="60s" start timeout="60s"
clone cl_ping p_ping meta interleave="true"
location l_drbd_master_on_ping ms_drbd_mysql rule $role="Master" \
 -inf: not_defined ping or ping number:lte 0

As the MySQL service (group) has a dependency on the host it is running on being the DRBD master, that
relationship is added by defining a co-location and an ordering constraint to ensure that the MySQL group
is co-located with the DRBD master and that the DRBD promotion of the host to the master must happen
before the MySQL group can be started:

colocation c_mysql_on_drbd inf: g_mysql ms_drbd_mysql:Master
order o_drbd_before_mysql inf: ms_drbd_mysql:promote g_mysql:start

In order to prevent a split-brain scenario in the event of network partitioning, Pacemaker can ping
independent network resources (such as a network router) and then prevent the host from being the DRBD
master in the event that it becomes isolated:

primitive p_ping ocf:pacemaker:ping params name="ping" multiplier="1000" \
 host_list="192.168.1.1" \
 op monitor interval="15s" timeout="60s" start timeout="60s"
clone cl_ping p_ping meta interleave="true"
location l_drbd_master_on_ping ms_drbd_mysql rule $role="Master" \
 -inf: not_defined ping or ping number:lte 0

Check if everything is running fine using the following command:

[root@host1]# crm_mon --one-shot -V

Ensure the correct daemons are started at system boot

At this point, a reliable MySQL service is in place but it is also important to check that the correct cluster
services are started automatically as part of the servers' system startup. It is necessary for the Linux
startup to start the Corosync and Pacemaker services but not DRBD or MySQL Process and MySQL
Server as those services are started on the correct server by Pacemaker. To this end, execute the
following commands on each host:

[root@host1] sysv-rc-conf drbd off
[root@host1] sysv-rc-conf corosync on
[root@host1] sysv-rc-conf mysql off
[root@host1] sysv-rc-conf pacemaker on

[root@host2] sysv-rc-conf drbd off
[root@host2] sysv-rc-conf corosync on
[root@host2] sysv-rc-conf mysql off
[root@host2] sysv-rc-conf pacemaker on

Note

MySQL Fabric is not installed as a service so there is nothing to do here for it.

7.5 Key administrative tasks

The cluster management tool can then be used to migrate the resources between machines:

Key administrative tasks

72

[root@host1 ~]# crm resource migrate g_mysql host2

Specifying the g_mysql group migrates all resources in the group and implicitly any colocated resources
as well. If for any reason a resource cannot be properly started up or shut down, it becomes unmanaged.
In this case, we have to manually put it back to a managed state. For example, this could mean that we
would have to fix an issue that blocked the shutdown, kill or stop some processes, and run the following
command:

[root@host1 ~]# crm resource cleanup 'resource'

The components of this stack are designed to cope with component failures but there may be cases where
a sequence of multiple failures could result in DRBD not being confident that the data on the two hosts is
consistent. In the event that this happens DRBD breaks the connection. Should this happen, we need to
identify which of the two hosts has the correct data and then have DRBD resynchronize the data; for the
steps below, it is assumed that host1 has the correct data:

[root@host2]# drbdadm secondary clusterdb_res
[root@host2]# drbdadm -- --discard-my-data connect clusterdb_res

[root@host1]# drbdadm primary clusterdb_res
[root@host1]# drbdadm connect clusterdb_res

Before executing these steps, it is advised to check the error log(s) and run the following command to
identify the DRBD's status:

shell> /etc/init.d/drbd status

73

Chapter 8 Using Connector/Python with MySQL Fabric

Table of Contents
8.1 Installing Connector/Python with MySQL Fabric Support ... 74
8.2 Requesting a Fabric Connection ... 74
8.3 Providing Information to Choose a MySQL Server .. 76

MySQL Fabric provides data distribution and high-availability features for a set of MySQL database
servers.

Developers using Connector/Python can take advantage of its features to work with a set of servers
managed by MySQL Fabric. Connector/Python supports the following MySQL Fabric capabilities:

• Automatic node selection based on application-provided shard information (tables and key)

• Read/write splitting within a MySQL Fabric high-availability group

More specifically, Connector/Python Fabric support provides these features:

• Requesting a connection to a MySQL server managed by Fabric is as transparent as possible to users
already familiar with Connector/Python.

• Connector/Python is able to get a MySQL server connection given a high-availability group and a mode
specifying whether the connection is read-only or also permits updates (read-write).

• Connector/Python supports sharding and is able to find the correct MySQL server for a given table or
tables and key based on scope (local or global) and mode (read-only or read-write). RANGE and HASH
mechanisms are supported transparently to the user.

• Among secondary MySQL servers in the same group, read-only connections are load balanced. Load
balancing is based on a weight set for each MySQL server, using a Weighted Round-Robin algorithm.

• Faulty MySQL servers are reported to Fabric, and failover is supported when failure occurs for a server
in a group.

• To speed up operations, Connector/Python caches information obtained from Fabric, such as group
and sharding information. Each time Connector/Python looks up data, it first checks its cache. When
information in the cache is too old, it is invalidated. By default, the time-to-live (TTL) for cached
information is 1 minute. However, Fabric itself can provide this TTL for its clients and this value is used
instead if greater than zero.

Cache information is also invalidated when failures occur, such as when a connection to a MySQL
server fails (invalidation applies to the group to which the server belongs).

• Fabric support applies to versions of Python supported by Connector/Python itself (see Connector/
Python Versions). In particular, you can use Connector/Python with Python 3.1 and later to establish
Fabric connections, even though Fabric does not support Python 3.

Connector/Python support for Fabric comprises the following module and classes:

• Module mysql.connector.fabric: All classes, functions, and constants related to MySQL Fabric.

• Class fabric.MySQLFabricConnection: Similar to MySQLConnection, it creates a connection to
the MySQL server based on application-provided information.

http://dev.mysql.com/doc/connector-python/en/connector-python-versions.html
http://dev.mysql.com/doc/connector-python/en/connector-python-versions.html

Installing Connector/Python with MySQL Fabric Support

74

• Class fabric.Fabric: Manages the connection with a MySQL Fabric node; used by
MySQLFabricConnection.

• Other helper classes for caching information.

8.1 Installing Connector/Python with MySQL Fabric Support
Fabric support in Connector/Python requires version 1.2.0 or greater. Downloads are available at http://
dev.mysql.com/downloads/connector/python/ in various packages such as Zip archives, compressed tar
archives, RPM packages, Debian packages, and Windows Installer packages.

Using the compressed tar package, you can install MySQL Connector/Python as follows:

shell> tar xzf mysql-connector-python-1.2.3.tar.gz
shell> cd mysql-connector-python-1.2.3
shell> python setup.py install

For more information, see Connector/Python Installation.

8.2 Requesting a Fabric Connection
The modules related to Fabric are located under mysql.connector.fabric. Importing fabric
provides access to everything needed to use Fabric:

import mysql.connector
from mysql.connector import fabric

Traditionally, a MySQL connection is set up using the mysql.connector.connect() method using
the connection arguments described at Connector/Python Connection Arguments, and the connection is
established immediately.

A request for a Fabric connection, by contrast, does not immediately connect. Instead, pass a fabric
argument to the connect() call. This argument must be a dictionary. When Fabric connects to the
MySQL server that it provides, it uses the connection arguments other than the fabric argument (except
that the unix_socket connection argument is not supported).

To prepare a connection with Fabric, do this:

fabric_config = {
 'host': 'fabric.example.com',
}
fcnx = mysql.connector.connect(fabric=fabric_config, user='webuser',
 password='webpass', database='employees')

If you prefer to pass a dictionary to connect(), do this:

config = {
 'fabric': {
 'host': 'fabric.example.com',
 },
 'user': 'webuser',
 'password': 'webpass',
 'database': 'employees',
}
fcnx = mysql.connector.connect(**config)

The fabric dictionary argument permits these values:

http://dev.mysql.com/downloads/connector/python/
http://dev.mysql.com/downloads/connector/python/
http://dev.mysql.com/doc/connector-python/en/connector-python-installation.html
http://dev.mysql.com/doc/connector-python/en/connector-python-connectargs.html

Requesting a Fabric Connection

75

• host: The host to connect to (required).

• port: The TCP/IP port number to connect to on the specified host (optional; default 32274).

• username: The user name of the account to use (optional).

• password: The password of the account to use (optional).

• connect_attempts: The number of connection attempts to make before giving up (optional; default 3).

• connect_delay: The delay in seconds between attempts (optional; default 1).

• report_errors: Whether to report errors to Fabric while accessing a MySQL instance. (optional;
default False).

• ssl_ca: The file containing the SSL certificate authority (optional).

• ssl_cert: The file containing the SSL certificate file (optional).

• ssl_key: The file containing the SSL key (optional).

• protocol: The connection protocol to use (optional; default xmlrpc). Permitted values are xmlrpc
(use XML-RPC protocol) and mysql (use MySQL client/server protocol). If a value of mysql is specified,
the default port becomes 32275, although that can be changed with an explicit port value.

The username, password, report_errors, ssl_ca, ssl_cert and ssl_key options were added in
Connector/Python 1.2.1. It is possible to establish an SSL connection using only the ssl_ca argument.
The ssl_key and ssl_cert arguments are optional. However, when either is given, both must be given
or an AttributeError is raised.

The protocol option was added in Connector/Python2 2.1.2.

It is also possible to pass a Fabric() object instance as the fabric argument:

fabric_config = {
 'host': 'fabric.example.com',
}
fabinst = Fabric(**fabric_config)
fcnx = mysql.connector.connect(fabric=fabinst, user='webuser',
 password='webpass', database='employees')

Or:

fabric_config = {
 'host': 'fabric.example.com',
}
fabinst = Fabric(**fabric_config)
config = {
 'fabric': fabinst,
 'user': 'webuser',
 'password': 'webpass',
 'database': 'employees',
}
fcnx = mysql.connector.connect(**config)

Once a Fabric() object is used, it is cached and reused.

Another (less preferred) way to establish a Fabric connection is pass configuration information to the
MySQLFabricConnection class to create a connection with a Fabric node. This is similar to using the

Error Reporting

76

mysql.connector.connect() method or MySQLConnection() class with the addition of the required
fabric argument:

config = {
 'fabric': {
 'host': 'fabric.example.com',
 },
 'user': 'webuser',
 'password': 'webpass',
}

fcnx = fabric.MySQLFabricConnection(**config)

Error Reporting

Connector/Python can report errors to Fabric that occur while accessing a MySQL instance. The
information can be used to update the backing store and trigger a failover operation, provided that the
instance is a primary server and Fabric has received a sufficient number of problem reports from different
connectors.

• The fabric dictionary argument to the connect() method accepts a report_errors value. Its
default value is False; pass a value of True to enable error reporting to Fabric.

• To define which errors to report, use the extra_failure_report() function:

from mysql.connector.fabric import extra_failure_report
extra_failure_report([error_code_0, error_code_1, ...])

8.3 Providing Information to Choose a MySQL Server

If you create a Fabric connection without providing any information about which data to access, the
connection cannot function. To access a database, you must provide the driver with either of these types of
information:

• The name of a high-availability group known by the MySQL Fabric instance to which you've connected.
In such a group, one server is the master (the primary) and the others are slaves (secondaries).

• A shard table, and optionally a shard key, to guide Connector/Python in selecting a high-availability
group.

The following discussion describes both ways of providing information. You do this by setting one or more
properties of the Fabric connection object using its set_property() method, so the discussion begins
by setting forth the sharding-related properties.. In the examples, fcnx represents the Fabric connection
object, created as shown in Section 8.2, “Requesting a Fabric Connection”.

Note

set_property() does not connect. The connection is opened when a cursor
is requested from the Fabric connection object or when its cmd_query() or
cmd_query_iter() method is invoked.

These set_property() arguments are shard-related:

• group: A high-availability group name

• tables: The sharding table or tables

Providing Information to Choose a MySQL Server

77

• mode: Whether operations are read/write or read only

• scope: Whether operations are local or global

• key: The key that identifies which row to affect

group and tables are mutually exclusive, so you specify only one of them. Applicability of the remaining
arguments depends on which of group or tables you use:

If you specify group:

• mode is optional. The default is fabric.MODE_READWRITE if this property is omitted.

• scope is inapplicable. Do not specify it.

• key is inapplicable. Do not specify it.

If you specify tables:

• mode is optional. The default is fabric.MODE_READWRITE if this property is omitted.

• scope is optional. The default is fabric.SCOPE_LOCAL if this property is omitted.

• key: If scope is fabric.SCOPE_LOCAL, key is required to indicate which row to affect. If scope is
fabric.SCOPE_GLOBAL, key is inapplicable; do not specify it.

When the mode argument is applicable, these values are permitted:

• fabric.MODE_READWRITE: Connect to a master server. This is the default.

• fabric.MODE_READONLY: Connect to a slave if one is available, to the master otherwise. If there are
multiple secondary MySQL servers, load balancing is used to obtain the server information.

When the scope argument is applicable, these values are permitted:

• fabric.SCOPE_LOCAL: Local operation that affects the row with a given key. This is the default.

• fabric.SCOPE_GLOBAL: Global operation that affects all rows.

Providing the name of a high-availability group specifies that we know exactly the set of database servers
that with which to interact. To do this, set the group property using the set_property() method:

fcnx.set_property(group='myGroup')

Providing shard information avoids the need to choose a high-availability group manually and permits
Connector/Python to do so based on information from the MySQL Fabric server.

Whether operations use RANGE or HASH is transparent to the user. The information is provided by Fabric
and Connector/Python uses the correct mechanism automatically.

To specify shard tables and shard keys, use the tables and key attributes of the set_property()
method.

The format of each shard table is usually given as 'db_name.tbl_name'. Because one or more tables
can be specified, the tables argument to set_property() is specified as a tuple or list:

fcnx.set_property(tables=['employees.employees'], key=40)

Providing Information to Choose a MySQL Server

78

cur = fcnx.cursor()
do operations for employee with emp_no 40
fcnx.close()

By default, operations occur in local scope, or the scope property can be given to specify local or global
scope explicitly. For local operations (as in the preceding example), the key argument must be specified to
indicate which row to use. For global operations, do not specify the key attribute because the operation is
performed on all rows in the table:

fcnx.set_property(tables=['employees.employees'], scope=fabric.SCOPE_GLOBAL)
cur = fcnx.cursor()
cur.execute("UPDATE employees SET last_name = UPPER(last_name)")
cnx.commit()
fcnx.close()

The default mode is read/write, so the driver connects to the master. The mode property can be given to
specify read/write or read-only mode explicitly:

fcnx.set_property(group='myGroup', mode=fabric.MODE_READWRITE)
cur = fcnx.cursor()
cur.execute("UPDATE employees SET last_name = UPPER(last_name)")
cnx.commit()
fcnx.close()

Applications for which read-only mode is sufficient can specify a mode attribute of
fabric.MODE_READONLY. In this case, a connection is established to a slave if one is available, or to the
master otherwise.

Connector/Python 2.0.1 or later supports RANGE_STRING and RANGE_DATETIME as sharding types.
These are similar to the regular RANGE sharding type, but instead of an integer key, require a value of a
different type:

• For RANGE_STRING, a UTF-8 encoded string key is required. For example:

cnx.set_property(tables=["employees.employees"],
 key=u'employee_name', mode=fabric.MODE_READONLY)

Only Unicode strings are supported. Any other type given when using a shard defined using
RANGE_STRING causes a ValueError to be raised.

• For RANGE_DATETIME, a datetime or date object key is required. For example, to get the shard which
holds employees hired after the year 2000, you could do the following, with lower bounds set as
"group1/1980-01-01, group2/2000-01-01":

cnx.set_property(tables=["employees.employees"],
 key=datetime.date(2000, 1, 1), mode=fabric.MODE_READONLY)

If the lower bounds included a time, it would have been like this:

cnx.set_property(tables=["employees.employees"],
 key=datetime.datetime(2000, 1, 1, 12, 0, 0),
 mode=fabric.MODE_READONLY)

Only datetime.datetime and datetime.date values are supported. Any other type given when
using a shard defined using RANGE_DATETIME causes a ValueError to be raised.

79

Chapter 9 Using Connector/J with MySQL Fabric

Table of Contents
9.1 Installing Connector/J with MySQL Fabric Support ... 79
9.2 Loading the Driver and Requesting a Fabric Connection .. 80
9.3 Providing Information to Choose a MySQL Server .. 80
9.4 MySQL Fabric Configuration for Running Samples ... 82
9.5 Running Tests .. 83
9.6 Running Demonstration Programs ... 84
9.7 A Complete Example: Working with Employee Data ... 84
9.8 How Connector/J Chooses a MySQL Server .. 88
9.9 Using Hibernate with MySQL Fabric .. 89
9.10 Connector/J Fabric Support Reference .. 92

9.10.1 Connection Properties .. 92
9.10.2 FabricMySQLConnection API ... 93

MySQL Fabric provides data distribution and high-availability features for a set of MySQL database
servers.

Developers using Connector/J can take advantage of its features to work with a set of servers managed by
MySQL Fabric. Connector/J supports the following MySQL Fabric capabilities:

• Automatic node selection based on application-provided shard information (table and key)

• Read/write splitting within a MySQL Fabric server group

• Reporting errors to the Fabric node as part of the distributed failure detector

The Fabric Client library for Java, which is included with Connector/J, is comprised of the following
packages:

• src/com/mysql/fabric/xmlrpc: Classes for core implementation of the XML-RPC protocol

• src/com/mysql/fabric: Classes for interacting with the MySQL Fabric management system using
the XML-RPC protocol

• src/com/mysql/fabric/jdbc: Classes for JDBC access to MySQL servers based on shard
information

• src/com/mysql/fabric/hibernate: FabricMultiTenantConnectionProvider.java class
enabling integration with Hibernate

• testsuite/fabric: JUnit tests

• src/demo/fabric: Usage samples

9.1 Installing Connector/J with MySQL Fabric Support

Fabric support is available in Connector/J 5.1.30 and later. Please refer to Connector/J documentation for
installation instructions.

Loading the Driver and Requesting a Fabric Connection

80

9.2 Loading the Driver and Requesting a Fabric Connection
When using Connector/J with MySQL Fabric, you must provide the host name and port of the MySQL
Fabric server instead of the database server. The connection string must follow the same form it normally
does, with the addition of the fabric keyword, as follows:

jdbc:mysql:fabric://fabrichost:32274/database

The user name and password provided to the connection are used for authentication with the individual
database servers. Fabric authentication parameters can be given in the URL using the fabricUsername
and fabricPassword properties. e.g.

jdbc:mysql:fabric://fabrichost:32274/database?fabricUsername=admin&fabricPassword=secret

Note

If the username and password to authenticate to the Fabric node are omitted, no
authentication is used. This should only be done when authentication has been
disabled on the Fabric node.

Note

If you are using Java 5, you must manually load the driver class before attempting
to connect.

Class.forName("com.mysql.fabric.jdbc.Driver");

Connection now proceeds normally.

Connection conn = DriverManager.getConnection(
 "jdbc:mysql:fabric://fabrichost:32274/database",
 user,
 password);

To use the Connector/J APIs that support MySQL Fabric, you must cast the Connection object to the
public interface that provides the necessary methods. The interfaces are:

• com.mysql.fabric.jdbc.FabricMySQLConnection: JDBC3 interface, compatible with Java 5 and
later

• com.mysql.fabric.jdbc.JDBC4FabricMySQLConnection: JDBC4 interface, compatible with
Java 6 and later. This interface must be used to access JDBC4 APIs on the connection.

9.3 Providing Information to Choose a MySQL Server
If you create a Fabric connection without providing any information about which data to access, the
connection cannot function. To access a database, you must provide the driver with one of the following:

• The name of a high-availability group known by the MySQL Fabric instance to which you've connected.
In such a group, one server is the master (the primary) and the others are slaves (secondaries).

• A shard table, and optionally a shard key, to guide Connector/J in selecting a high-availability group.

• One or more query tables to guide the connector in selecting a server group. Query tables can reference
only a single shard mapping or the query is rejected. A shard mapping can include several tables but
they must be sharded on the same index.

Providing Information to Choose a MySQL Server

81

The following discussion describes both ways of providing information. In the examples, conn represents
the Fabric connection object, created as shown in Section 9.2, “Loading the Driver and Requesting a
Fabric Connection”.

Providing the name of a high-availability group specifies that we know exactly the set of database servers
with which to interact. We can do this in two ways.

• The simplest method is to include the name of the server group in the connection string. This is useful
if a connection needs to access data only in that server group. It is also possible to set the name of the
server group in this way initially and to change it programatically later.

// provide the server group as a connection property
Connection conn = DriverManager.getConnection(
 "jdbc:mysql:fabric://fabrichost:32274/database?fabricServerGroup=myGroup");

• If we connect without specifying a server group, or want to change it later, we can use the
JDBC4FabricMySQLConnection interface to set the server group name.

JDBC4FabricMySQLConnection conn;
// connection initialization here
conn.setServerGroupName("myGroup");

Providing shard information avoids the need to choose a high-availability group manually and permits
Connector/J to do so based on information from the MySQL Fabric server.

• Shard tables and shard keys can also be given as connection properties if desirable. Here we say that
we want to access the employees table. The driver chooses a server group based on this shard table.

Note

The format of the shard table is usually given as db_name.tbl_name.

// provide the shard table as a connection property
Connection conn = DriverManager.getConnection(
 "jdbc:mysql:fabric://fabrichost:32274/database?fabricShardTable=employees.employees");

• Alternatively, query tables can be provided to the connection before creating a statement. The following
example sets up the connection to perform a join between the employees and departments tables.
Details on how to provide the shard key are given in the next step.

JDBC4FabricMySQLConnection conn;
// provide the set of query tables to the connection
conn.addQueryTable("departments");
conn.addQueryTable("employees");

• In many cases, you want to work with different sets of data at different times. You can specify the shard
key to change the set of data to be accessible.

JDBC4FabricMySQLConnection conn;
// connection initialization here
conn.setShardKey("40"); // work with data related to shard key = 40

In summary, it is necessary to provide the name of a server group or a shard table and possibly shard key
to access a database server.

MySQL Fabric Configuration for Running Samples

82

9.4 MySQL Fabric Configuration for Running Samples

To run JUnit tests from testsuite/fabric or demonstration examples from src/demo/fabric, you
must configure the MySQL Fabric test environment as follows.

1. Set up MySQL servers.

• mysql-fabric-config: The backing store for Fabric configuration. Used internally by Fabric to
store the server list, shard mappings, and so forth. You set up this server instance during the MySQL
Fabric setup procedure.

• mysql-global: The only server in the “global” group. Used to send DDL commands and update
any data not in the shard data set.

• Default location: 127.0.0.1:3401

• Config properties: com.mysql.fabric.testsuite.global.host,

com.mysql.fabric.testsuite.global.port

• mysql-shard1: First shard of sharded data set

• Default location: 127.0.0.1:3402

• Config properties: com.mysql.fabric.testsuite.shard1.host,

com.mysql.fabric.testsuite.shard1.port

• mysql-shard2: Second shard of sharded data set

• Default location: 127.0.0.1:3403

• Config properties: com.mysql.fabric.testsuite.shard2.host,

com.mysql.fabric.testsuite.shard2.port

All except mysql-fabric-config should have server-id set to a distinct value and the following
entries added to my.cnf:

log-bin = mysql-bin
log-slave-updates = true
enforce-gtid-consistency = true
gtid-mode = on

2. Set up sharding. The user name and password of the account used to manage Fabric (Section 2.3.1,
“Create the Associated MySQL Users”) must be specified in Fabric's configuration file (Section 2.3.2,
“Configuration File”).

• Create the global group:

shell> mysqlfabric group create fabric_test1_global
shell> mysqlfabric group add fabric_test1_global 127.0.0.1:3401
shell> mysqlfabric group promote fabric_test1_global

• Create shard groups:

http://dev.mysql.com/doc/refman/5.6/en/replication-options.html#option_mysqld_server-id

Running Tests

83

shell> mysqlfabric group create fabric_test1_shard1
shell> mysqlfabric group add fabric_test1_shard1 127.0.0.1:3402
shell> mysqlfabric group promote fabric_test1_shard1

shell> mysqlfabric group create fabric_test1_shard2
shell> mysqlfabric group add fabric_test1_shard2 127.0.0.1:3403
shell> mysqlfabric group promote fabric_test1_shard2

• Create the sharding definition:

shell> mysqlfabric sharding create_definition RANGE fabric_test1_global

Notice the return value in the command output; for example, return = 1. This is the $MAPPING_ID
used in the following commands

shell> mysqlfabric sharding add_table $MAPPING_ID employees.employees emp_no

• Create the shard index:

shell> mysqlfabric sharding add_shard $MAPPING_ID \
 fabric_test1_shard1/0,fabric_test1_shard2/10000 --state=ENABLED

9.5 Running Tests
The test-fabric target in the build.xml file runs JUnit tests on these servers. It requires only the
setup described in Section 9.4, “MySQL Fabric Configuration for Running Samples”. All necessary tables
and data are created during test run.

The parameters for the servers must be provided to Ant to verify that the correct information is received
from the Fabric node. This includes server host names and ports. This data can be provided on the
command line with -D arguments to Ant or in a build.properties file. This file should be placed in the
root of the source directory, where build.xml is located. Based on the information given so far, this file
would contain the following entries:

com.mysql.fabric.testsuite.hostname=localhost
com.mysql.fabric.testsuite.port=32274

com.mysql.fabric.testsuite.fabricUsername=admin
com.mysql.fabric.testsuite.fabricPassword=secret

com.mysql.fabric.testsuite.username=root
com.mysql.fabric.testsuite.password=
com.mysql.fabric.testsuite.database=employees
com.mysql.fabric.testsuite.global.host=127.0.0.1
com.mysql.fabric.testsuite.global.port=3401
com.mysql.fabric.testsuite.shard1.host=127.0.0.1
com.mysql.fabric.testsuite.shard1.port=3402
com.mysql.fabric.testsuite.shard2.host=127.0.0.1
com.mysql.fabric.testsuite.shard2.port=3403

Sample Ant calls are shown below. If the parameters are specified in your build.properties file, it is
not necessary to include them on the command line.

shell> JAVA_HOME=/opt/jdk1.5/ ant \
 -Dcom.mysql.fabric.testsuite.password=pwd \
 -Dcom.mysql.fabric.testsuite.global.port=3401 \
 -Dcom.mysql.fabric.testsuite.shard1.port=3402 \
 -Dcom.mysql.fabric.testsuite.shard2.port=3403 \

Running Demonstration Programs

84

 test-fabric

9.6 Running Demonstration Programs
To run the demo programs, you must set up the MySQL Fabric environment as described in Section 9.4,
“MySQL Fabric Configuration for Running Samples”. After that, you can use the demo-fabric-* Ant
targets.

shell> JAVA_HOME=/opt/jdk1.5/ ant \
 -Dcom.mysql.fabric.testsuite.password=pwd \
 demo-fabric

These targets invoke all demo programs except Hibernate demos. You should use the demo-fabric-
hibernate target instead:

shell> JAVA_HOME=/opt/jdk1.6/ ant \
 -Dcom.mysql.fabric.testsuite.password=pwd \
 demo-fabric-hibernate

Note

You need Java 6+ to use Hibernate Fabric integration. Multi-tenancy is a feature
specific to Hibernate 4 and higher which requires Java 6+. That is why we do
not provide the FabricMultiTenantConnectionProvider class or related demos
compatible with Java 5.

9.7 A Complete Example: Working with Employee Data
This document demonstrates two possible ways of working with sharded data relating to employees. To
run this program, you must set up a shard mapping for the employees table in MySQL Fabric as described
in Section 9.4, “MySQL Fabric Configuration for Running Samples”.

This code can be found in the distribution package in src/demo/fabric/EmployeesJdbc.java.

/*
 Copyright (c) 2013, 2014, Oracle and/or its affiliates. All rights reserved.

 The MySQL Connector/J is licensed under the terms of the GPLv2
 <http://www.gnu.org/licenses/old-licenses/gpl-2.0.html>, like most MySQL Connectors.
 There are special exceptions to the terms and conditions of the GPLv2 as it is applied to
 this software, see the FLOSS License Exception
 <http://www.mysql.com/about/legal/licensing/foss-exception.html>.

 This program is free software; you can redistribute it and/or modify it under the terms
 of the GNU General Public License as published by the Free Software Foundation; version 2
 of the License.

 This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
 without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
 See the GNU General Public License for more details.

 You should have received a copy of the GNU General Public License along with this
 program; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth
 Floor, Boston, MA 02110-1301 USA

 */

package demo.fabric;

import java.sql.Connection;

A Complete Example: Working with Employee Data

85

import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.Statement;
import java.sql.ResultSet;

import com.mysql.fabric.jdbc.FabricMySQLConnection;

/**
 * Demonstrate working with employee data in MySQL Fabric with Connector/J and the JDBC APIs.
 */
public class EmployeesJdbc {
 public static void main(String args[]) throws Exception {

 String hostname = System.getProperty("com.mysql.fabric.testsuite.hostname");
 String port = System.getProperty("com.mysql.fabric.testsuite.port");
 String database = System.getProperty("com.mysql.fabric.testsuite.database");
 String user = System.getProperty("com.mysql.fabric.testsuite.username");
 String password = System.getProperty("com.mysql.fabric.testsuite.password");

 String baseUrl = "jdbc:mysql:fabric://" + hostname + ":" + Integer.valueOf(port) + "/";

 // Load the driver if running under Java 5
 if (!com.mysql.jdbc.Util.isJdbc4()) {
 Class.forName("com.mysql.fabric.jdbc.FabricMySQLDriver");
 }

 // 1. Create database and table for our demo
 Connection rawConnection = DriverManager.getConnection(
 baseUrl + "mysql?fabricServerGroup=fabric_test1_global",
 user,
 password);
 Statement statement = rawConnection.createStatement();
 statement.executeUpdate("create database if not exists employees");
 statement.close();
 rawConnection.close();

 // We should connect to the global group to run DDL statements,
 // they will be replicated to the server groups for all shards.

 // The 1-st way is to set its name explicitly via the
 // "fabricServerGroup" connection property
 rawConnection = DriverManager.getConnection(
 baseUrl + database + "?fabricServerGroup=fabric_test1_global",
 user,
 password);
 statement = rawConnection.createStatement();
 statement.executeUpdate("create database if not exists employees");
 statement.close();
 rawConnection.close();

 // The 2-nd way is to get implicitly connected to global group
 // when the shard key isn't provided, ie. set "fabricShardTable"
 // connection property but don't set "fabricShardKey"
 rawConnection = DriverManager.getConnection(
 baseUrl + "employees" + "?fabricShardTable=employees.employees",
 user,
 password);
 // At this point, we have a connection to the global group for
 // the 'employees.employees' shard mapping.
 statement = rawConnection.createStatement();
 statement.executeUpdate("drop table if exists employees");
 statement.executeUpdate("create table employees (emp_no int not null," +
 "first_name varchar(50), last_name varchar(50)," +
 "primary key (emp_no))");

 // 2. Insert data

A Complete Example: Working with Employee Data

86

 // Cast to a Fabric connection to have access to specific methods
 FabricMySQLConnection connection = (FabricMySQLConnection)rawConnection;

 // example data used to create employee records
 Integer ids[] = new Integer[] {1, 2, 10001, 10002};
 String firstNames[] = new String[] {"John", "Jane", "Andy", "Alice"};
 String lastNames[] = new String[] {"Doe", "Doe", "Wiley", "Wein"};

 // insert employee data
 PreparedStatement ps = connection.prepareStatement(
 "INSERT INTO employees.employees VALUES (?,?,?)");
 for (int i = 0; i < 4; ++i) {
 // choose the shard that handles the data we interested in
 connection.setShardKey(ids[i].toString());

 // perform insert in standard fashion
 ps.setInt(1, ids[i]);
 ps.setString(2, firstNames[i]);
 ps.setString(3, lastNames[i]);
 ps.executeUpdate();
 }

 // 3. Query the data from employees
 System.out.println("Querying employees");
 System.out.format("%7s | %-30s | %-30s%n", "emp_no", "first_name", "last_name");
 System.out.println("--------+--------------------------------+-------------------------------");
 ps = connection.prepareStatement(
 "select emp_no, first_name, last_name from employees where emp_no = ?");
 for (int i = 0; i < 4; ++i) {

 // we need to specify the shard key before accessing the data
 connection.setShardKey(ids[i].toString());

 ps.setInt(1, ids[i]);
 ResultSet rs = ps.executeQuery();
 rs.next();
 System.out.format("%7d | %-30s | %-30s%n", rs.getInt(1), rs.getString(2), rs.getString(3));
 rs.close();
 }
 ps.close();

 // 4. Connect to the global group and clean up
 connection.setServerGroupName("fabric_test1_global");
 statement.executeUpdate("drop table if exists employees");
 statement.close();
 connection.close();
 }
}

Here is an alternative using the DataSource API:

/*
 Copyright (c) 2015, Oracle and/or its affiliates. All rights reserved.

 The MySQL Connector/J is licensed under the terms of the GPLv2
 <http://www.gnu.org/licenses/old-licenses/gpl-2.0.html>, like most MySQL Connectors.
 There are special exceptions to the terms and conditions of the GPLv2 as it is applied to
 this software, see the FOSS License Exception
 <http://www.mysql.com/about/legal/licensing/foss-exception.html>.

 This program is free software; you can redistribute it and/or modify it under the terms
 of the GNU General Public License as published by the Free Software Foundation; version 2
 of the License.

 This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;

A Complete Example: Working with Employee Data

87

 without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
 See the GNU General Public License for more details.

 You should have received a copy of the GNU General Public License along with this
 program; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth
 Floor, Boston, MA 02110-1301 USA

 */

package demo.fabric;

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.Statement;

import com.mysql.fabric.jdbc.FabricMySQLConnection;
import com.mysql.fabric.jdbc.FabricMySQLDataSource;

/**
 * Demonstrate working with employee data in MySQL Fabric with Connector/J and the JDBC APIs via a DataSource-created connection.
 */
public class EmployeesDataSource {
 public static void main(String args[]) throws Exception {

 String hostname = System.getProperty("com.mysql.fabric.testsuite.hostname");
 String port = System.getProperty("com.mysql.fabric.testsuite.port");
 String database = System.getProperty("com.mysql.fabric.testsuite.database");
 // credentials to authenticate with the SQL nodes
 String user = System.getProperty("com.mysql.fabric.testsuite.username");
 String password = System.getProperty("com.mysql.fabric.testsuite.password");
 // credentials to authenticate to the Fabric node
 String fabricUsername = System.getProperty("com.mysql.fabric.testsuite.fabricUsername");
 String fabricPassword = System.getProperty("com.mysql.fabric.testsuite.fabricPassword");

 // setup the Fabric datasource to create connections
 FabricMySQLDataSource ds = new FabricMySQLDataSource();
 ds.setServerName(hostname);
 ds.setPort(Integer.valueOf(port));
 ds.setDatabaseName(database);
 ds.setFabricUsername(fabricUsername);
 ds.setFabricPassword(fabricPassword);

 // Load the driver if running under Java 5
 if (!com.mysql.jdbc.Util.isJdbc4()) {
 Class.forName("com.mysql.fabric.jdbc.FabricMySQLDriver");
 }

 // 1. Create database and table for our demo
 ds.setDatabaseName("mysql"); // connect to the `mysql` database before creating our `employees` database
 ds.setFabricServerGroup("fabric_test1_global"); // connect to the global group
 Connection rawConnection = ds.getConnection(user, password);
 Statement statement = rawConnection.createStatement();
 statement.executeUpdate("create database if not exists employees");
 statement.close();
 rawConnection.close();

 // We should connect to the global group to run DDL statements, they will be replicated to the server groups for all shards.

 // The 1-st way is to set its name explicitly via the "fabricServerGroup" datasource property
 ds.setFabricServerGroup("fabric_test1_global");
 rawConnection = ds.getConnection(user, password);
 statement = rawConnection.createStatement();
 statement.executeUpdate("create database if not exists employees");
 statement.close();
 rawConnection.close();

How Connector/J Chooses a MySQL Server

88

 // The 2-nd way is to get implicitly connected to global group when the shard key isn't provided, ie. set "fabricShardTable" connection property but
 // don't set "fabricShardKey"
 ds.setFabricServerGroup(null); // clear the setting in the datasource for previous connections
 ds.setFabricShardTable("employee.employees");
 rawConnection = ds.getConnection(user, password);
 // At this point, we have a connection to the global group for the 'employees.employees' shard mapping.
 statement = rawConnection.createStatement();
 statement.executeUpdate("drop table if exists employees");
 statement.executeUpdate("create table employees (emp_no int not null, first_name varchar(50), last_name varchar(50), primary key (emp_no))");

 // 2. Insert data

 // Cast to a Fabric connection to have access to Fabric-specific methods
 FabricMySQLConnection connection = (FabricMySQLConnection) rawConnection;

 // example data used to create employee records
 Integer ids[] = new Integer[] { 1, 2, 10001, 10002 };
 String firstNames[] = new String[] { "John", "Jane", "Andy", "Alice" };
 String lastNames[] = new String[] { "Doe", "Doe", "Wiley", "Wein" };

 // insert employee data
 PreparedStatement ps = connection.prepareStatement("INSERT INTO employees.employees VALUES (?,?,?)");
 for (int i = 0; i < 4; ++i) {
 // choose the shard that handles the data we interested in
 connection.setShardKey(ids[i].toString());

 // perform insert in standard fashion
 ps.setInt(1, ids[i]);
 ps.setString(2, firstNames[i]);
 ps.setString(3, lastNames[i]);
 ps.executeUpdate();
 }

 // 3. Query the data from employees
 System.out.println("Querying employees");
 System.out.format("%7s | %-30s | %-30s%n", "emp_no", "first_name", "last_name");
 System.out.println("--------+--------------------------------+-------------------------------");
 ps = connection.prepareStatement("select emp_no, first_name, last_name from employees where emp_no = ?");
 for (int i = 0; i < 4; ++i) {

 // we need to specify the shard key before accessing the data
 connection.setShardKey(ids[i].toString());

 ps.setInt(1, ids[i]);
 ResultSet rs = ps.executeQuery();
 rs.next();
 System.out.format("%7d | %-30s | %-30s%n", rs.getInt(1), rs.getString(2), rs.getString(3));
 rs.close();
 }
 ps.close();

 // 4. Connect to the global group and clean up
 connection.setServerGroupName("fabric_test1_global");
 statement.executeUpdate("drop table if exists employees");
 statement.close();
 connection.close();
 }
}

9.8 How Connector/J Chooses a MySQL Server

Before a database server can be chosen, a server group must be chosen. The following values are taken
into account:

Using Hibernate with MySQL Fabric

89

• server group name: If a server group name is specified directly, it is used.

• shard table: If a shard table is given, the global group for the shard mapping governing the given shard
table is used.

• shard table + shard key: If a shard key is given the shard mapping is used to determine which server
group handles data for the shard key.

• query tables: If the query table set contains a sharded table, the shard mapping for that table is used.

The server group name can be accessed by con.getCurrentServerGroup().getName().

Once a server group is chosen, an individual database server is chosen based on the read-only state of
the connection. A read-only server is chosen if one is available. Otherwise a read-write server is chosen.
The server weight is not currently taken into account.

None of these values can be changed while a transaction is in progress.

9.9 Using Hibernate with MySQL Fabric
It is possible to use Hibernate 4's multi-tenancy support to work with a set of database servers managed
by MySQL Fabric.

APIs necessary to implement MultiTenantConnectionProvider

We can use internal APIs included with Connector/J with MySQL Fabric support to implement Hibernate's
MultiTenantConnectionProvider.

The following implementation is included in the package as the
com.mysql.fabric.hibernate.FabricMultiTenantConnectionProvider class. An example of
how to use it is included as the class demo.fabric.HibernateFabric.

To implement MultiTenantConnectionProvider, we use the
com.mysql.fabric.FabricConnection class. This class connects to the MySQL Fabric manager
to obtain information about servers and data sharding. This is an internal API and subject to change. The
following FabricConnection methods can be used:

• FabricConnection(String url, String username, String password) throws
FabricCommunicationException

Construct a new instance of a MySQL Fabric client and initiate the connection.

• ServerGroup getServerGroup(String serverGroupName) throws
FabricCommunicationException

Retrieve an object representing the named server group. This includes the list of servers in the group
including their mode (read-only or read-write).

• ShardMapping getShardMapping(String database, String table) throws
FabricCommunicationException

Retrieve an object represending a shard mapping for the given database and table. The ShardMapping
indicates the global group and the individual shards.

The following additional methods are used:

• Set<Server> ServerGroup.getServers()

http://docs.jboss.org/hibernate/orm/4.3/devguide/en-US/html/ch16.html
http://docs.jboss.org/hibernate/orm/4.1/javadocs/org/hibernate/service/jdbc/connections/spi/MultiTenantConnectionProvider.html
http://docs.jboss.org/hibernate/orm/4.1/javadocs/org/hibernate/service/jdbc/connections/spi/MultiTenantConnectionProvider.html

Implementing MultiTenantConnectionProvider

90

Return the servers in this group.

• String Server.getHostname()

Return the server host name.

• int Server.getPort()

Return the server port.

Implementing MultiTenantConnectionProvider

To begin, we declare the class with members to keep necessary information for the connection and the
constructor:

public class FabricMultiTenantConnectionProvider implements MultiTenantConnectionProvider {
 // a connection to the MySQL Fabric manager
 private FabricConnection fabricConnection;
 // the database and table of the sharded data
 private String database;
 private String table;
 // user and password for Fabric manager and MySQL servers
 private String user;
 private String password;
 // shard mapping for `database.table'
 private ShardMapping shardMapping;
 // global group for the shard mapping
 private ServerGroup globalGroup;

 public FabricMultiTenantConnectionProvider(
 String fabricUrl, String database, String table,
 String user, String password) {
 try {
 this.fabricConnection = new FabricConnection(fabricUrl, user, password);
 this.database = database;
 this.table = table;
 this.user = user;
 this.password = password;
 // eagerly retrieve the shard mapping and server group from the Fabric manager
 this.shardMapping = this.fabricConnection.getShardMapping(this.database, this.table);
 this.globalGroup = this.fabricConnection.
 getServerGroup(this.shardMapping.getGlobalGroupName());
 } catch(FabricCommunicationException ex) {
 throw new RuntimeException(ex);
 }
 }

Next, create a method to create connections:

/**
 * Find a server with mode READ_WRITE in the given server group and create a JDBC connection to it.
 *
 * @returns a {@link Connection} to an arbitrary MySQL server
 * @throws SQLException if connection fails or a READ_WRITE server is not contained in the group
 */
private Connection getReadWriteConnectionFromServerGroup(ServerGroup serverGroup)
 throws SQLException {
 // iterate the list of servers in the given group until we find a r/w server
 for (Server s : serverGroup.getServers()) {
 if (ServerMode.READ_WRITE.equals(s.getMode())) {
 // create a connection to the server using vanilla JDBC

Implementing MultiTenantConnectionProvider

91

 String jdbcUrl = String.format("jdbc:mysql://%s:%s/%s",
 s.getHostname(), s.getPort(), this.database);
 return DriverManager.getConnection(jdbcUrl, this.user, this.password);
 }
 }
 // throw an exception if we are unable to make the connection
 throw new SQLException(
 "Unable to find r/w server for chosen shard mapping in group " + serverGroup.getName());
}

To implement the interface, the following methods must be implemented:

• Connection getAnyConnection() throws SQLException

This method should obtain a connection to the global group. We can implement it like this:

/**
 * Get a connection that be used to access data or metadata not specific to any shard/tenant.
 * The returned connection is a READ_WRITE connection to the global group of the shard mapping
 * for the database and table association with this connection provider.
 */
public Connection getAnyConnection() throws SQLException {
 return getReadWriteConnectionFromServerGroup(this.globalGroup);
}

• Connection getConnection(String tenantIdentifier) throws SQLException

This method must use the tenantIdentifier to determine which server to access. We can look up
the ServerGroup from the ShardMapping like this:

/**
 * Get a connection to access data association with the provided `tenantIdentifier' (or shard
 * key in Fabric-speak). The returned connection is a READ_WRITE connection.
 */
public Connection getConnection(String tenantIdentifier) throws SQLException {
 String serverGroupName = this.shardMapping.getGroupNameForKey(tenantIdentifier);
 try {
 ServerGroup serverGroup = this.fabricConnection.getServerGroup(serverGroupName);
 return getReadWriteConnectionFromServerGroup(serverGroup);
 } catch(FabricCommunicationException ex) {
 throw new RuntimeException(ex);
 }
}

Finally, our trivial implementation to release connections:

/**
 * Release a non-shard-specific connection.
 */
public void releaseAnyConnection(Connection connection) throws SQLException {
 connection.close();
}

/**
 * Release a connection specific to `tenantIdentifier'.
 */
public void releaseConnection(String tenantIdentifier, Connection connection)
 throws SQLException {
 releaseAnyConnection(connection);
}

/**
 * We don't track connections.

Using a custom MultiTenantConnectionProvider

92

 * @returns false
 */
public boolean supportsAggressiveRelease() {
 return false;
}

And finally to implement the Wrapped role:

public boolean isUnwrappableAs(Class unwrapType) {
 return false;
}

public <T> T unwrap(Class<T> unwrapType) {
 return null;
}

Using a custom MultiTenantConnectionProvider

The SessionFactory can be created like this:

// create a new instance of our custom connection provider supporting MySQL Fabric
FabricMultiTenantConnectionProvider connProvider =
 new FabricMultiTenantConnectionProvider(
 fabricUrl, "employees", "employees", username, password);
// create a service registry with the connection provider to construct the session factory
ServiceRegistryBuilder srb = new ServiceRegistryBuilder();
srb.addService(
 org.hibernate.service.jdbc.connections.spi.MultiTenantConnectionProvider.class,
 connProvider);
srb.applySetting("hibernate.dialect", "org.hibernate.dialect.MySQLInnoDBDialect");

// create the configuration and build the session factory
Configuration config = new Configuration();
config.setProperty("hibernate.multiTenancy", "DATABASE");
config.addResource("com/mysql/fabric/demo/employee.hbm.xml");
return config.buildSessionFactory(srb.buildServiceRegistry());

Using Hibernate multi-tenancy

Once you have created a SessionFactory with your custom MultiTenantConnectionProvider, it is
simple to use. Provide the shard key to the SessionFactory when creating the session:

// access data related to shard key = 40
Session session = sessionFactory.withOptions().tenantIdentifier("40").openSession();

Each Session is given a shard key (tenant identifier in Hibernate-speak) and uses it to obtain a
connection to an appropriate server. This cannot be changed for the duration of the Session.

9.10 Connector/J Fabric Support Reference

9.10.1 Connection Properties

The following connection properties are recognized by Connector/J for dealing with MySQL Fabric:

• fabricShardKey

The initial shard key used to determine which server group to send queries to. The fabricShardTable
property must also be specified.

FabricMySQLConnection API

93

• fabricShardTable

The initial shard mapping used to determine a server group to send queries to.

• fabricServerGroup

The initial server group to direct queries to.

• fabricProtocol

Protocol used to communicate with the Fabric node. XML-RPC over HTTP is currently the only
supported protocol and is specified with a value of "http".

• fabricUsername

Username used to authenticate with the Fabric node.

• fabricPassword

Password used to authenticate with the Fabric node.

• fabricReportErrors (default=false)

Determines whether or not errors are reported to Fabric's distributed failure detector. Only connection
errors, those with an SQL state beginning with "08", are reported.

9.10.2 FabricMySQLConnection API

The following methods are available in the com.mysql.fabric.jdbc.FabricMySQLConnection
interface.

• void clearServerSelectionCriteria()

Clear all the state that is used to determine which server to send queries to.

• void setShardKey(String shardKey) throws SQLException

Set the shard key for the data being accessed.

• String getShardKey()

Get the shard key for the data being accessed.

• void setShardTable(String shardTable) throws SQLException

Set the table being accessed. Can be a table name or a database and table name pair in the form
db_name.tbl_name. The table must be known by Fabric as a sharded table.

• String getShardTable()

Get the name of the table being accessed.

• void setServerGroupName(String serverGroupName) throws SQLException

Set the server group name to connect to. Direct server group selection is mutually exclusive of sharded
data access.

• String getServerGroupName()

FabricMySQLConnection API

94

Get the server group name when using direct server group selection.

• ServerGroup getCurrentServerGroup()

Get the current server group if sufficient server group selection has been provided. Otherwise null.

• void clearQueryTables() throws SQLException

Clear the list of tables for the last query. This also clears the shard mapping/table and must be given
again for the next query via setShardTable() or addQueryTable().

• void addQueryTable(String tableName) throws SQLException

Specify that the given table is intended to be used in the next query.

• Set<String> getQueryTables()

Get the list of tables intended to be used in the next query.

95

Chapter 10 Using Connector/Net with MySQL Fabric

Table of Contents
10.1 System Requirements ... 95
10.2 Set up the MySQL Fabric Plugin ... 95
10.3 Using MySQL Fabric Groups ... 97
10.4 Using Ranged Sharding .. 99

Connector/Net supports MySQL Fabric as a Replication/Load balancing plugin.

Note

This feature was added in MySQL Connector/Net 6.9.4.

Support for this feature was removed in MySQL Connector/Net 6.10.2 with the
introduction of InnoDB cluster, which combines various MySQL technologies to
enable you to create highly available clusters of MySQL instances.

The following steps are required to use MySQL Fabric with Connector/Net:

10.1 System Requirements

Confirm that you have the required Connector/Net and Fabric versions installed:

• Connector/Net 6.9.4 or newer

• MySQL Fabric 1.5.0 or newer

10.2 Set up the MySQL Fabric Plugin

First, add MySql.Data and MySql.Fabric.Plugin to the project references:

Set up the MySQL Fabric Plugin

96

Figure 10.1 MySQL Fabric Project References

Second, add a configuration section with the Fabric connection to the App.config configuration file. For
example:

 <configuration>
 <configSections>
 <section name="MySQL" type="MySql.Data.MySqlClient.MySqlConfiguration, MySql.Data,
 Version=6.9.4.0, Culture=neutral, PublicKeyToken=c5687fc88969c44d"/>
 </configSections>
 <MySQL>
 <Replication>
 <ServerGroups>
 <Group name="Fabric" groupType="MySql.Fabric.FabricServerGroup, MySql.Fabric.Plugin">
 <Servers>
 <Server name="fabric" connectionstring="server=localhost;port=32275;uid=admin;password=adminpass;"/>
 </Servers>
 </Group>
 </ServerGroups>
 </Replication>
 </MySQL>
 </configuration>

Notice that the Fabric connection is set in the Server node:

<Server name="fabric" connectionstring="server=localhost;port=32275;uid=admin;password=adminpass;"/>

Using MySQL Fabric Groups

97

Connector/Net only supports the MySQL protocol for connecting to MySQL Fabric, so the correct port must
be used.

10.3 Using MySQL Fabric Groups
The MySQL Fabric group is used with a MySqlConnection that contains the server name specified in the
App.config file, and a username and password for connecting to the servers defined in the group.

A Fabric extension method is used to specify the group and mode:

MySqlConnection conn = new MySqlConnection(connectionString);

conn.SetFabricProperties(groupId: "my_group", mode: FabricServerModeEnum.Read_Write);

The following example shows how to store and retrieve information in a specific Fabric group:

Note

The initial MySQL Fabric configuration for this example is defined in the MySQL
Fabric documentation at Section 3.1, “Example: Fabric and Replication”.

using System;
using MySql.Data.MySqlClient;
using MySql.Fabric;

namespace FabricTest
{
 class Program
 {
 public const string connectionString = "server=fabric;uid=appuser;password=pass;";

 static void Main(string[] args)
 {
 RunFabricTest();
 }

 static string AddEmployee(MySqlConnection conn, int emp_no, string first_name, string last_name)
 {
 conn.SetFabricProperties(groupId: "my_group", mode: FabricServerModeEnum.Read_Write);

 MySqlCommand cmd = new MySqlCommand("USE employees", conn);
 cmd.ExecuteNonQuery();

 cmd.CommandText = "INSERT INTO employees VALUES (@emp_no, @first_name, @last_name)";
 cmd.Parameters.Add("emp_no", emp_no);
 cmd.Parameters.Add("first_name", first_name);
 cmd.Parameters.Add("last_name", last_name);
 cmd.ExecuteNonQuery();

 cmd.CommandText = "SELECT @@global.gtid_executed";
 cmd.Parameters.Clear();
 using (MySqlDataReader reader = cmd.ExecuteReader())
 {
 while (reader.Read())
 {
 Console.WriteLine("Transactions executed on the master " + reader.GetValue(0));
 }
 return reader.GetString(0);
 }
 }

 static void FindEmployee(MySqlConnection conn, int emp_no, string gtid_executed)
 {

Using MySQL Fabric Groups

98

 conn.SetFabricProperties(groupId: "my_group", mode: FabricServerModeEnum.Read_only);

 MySqlCommand cmd = new MySqlCommand("", conn);
 cmd.CommandText = "SELECT WAIT_UNTIL_SQL_THREAD_AFTER_GTIDS(@gtid_executed, 0)";
 cmd.Parameters.Add("gtid_executed", gtid_executed);
 using (MySqlDataReader reader = cmd.ExecuteReader())
 {
 while (reader.Read())
 {
 Console.WriteLine("Had to synchronize " + reader.GetValue(0) + " transactions.");
 }
 }

 cmd.CommandText = "USE employees";
 cmd.Parameters.Clear();
 cmd.ExecuteNonQuery();

 cmd.CommandText = "SELECT first_name, last_name FROM employees ";
 cmd.CommandText += " WHERE emp_no = @emp_no";
 cmd.Parameters.Clear();
 cmd.Parameters.Add("emp_no", emp_no);
 using (MySqlDataReader reader = cmd.ExecuteReader())
 {
 while (reader.Read())
 {
 object[] values = new object[reader.FieldCount];
 reader.GetValues(values);
 Console.WriteLine("Retrieved {0}", string.Join(",", values));
 }
 }
 }

 static void RunFabricTest()
 {
 using (MySqlConnection conn = new MySqlConnection(connectionString))
 {
 string gtid_executed;
 conn.SetFabricProperties(groupId: "my_group", mode: FabricServerModeEnum.Read_Write);
 conn.Open();

 MySqlCommand cmd = new MySqlCommand("", conn);
 cmd.CommandText = "CREATE DATABASE IF NOT EXISTS employees;";
 cmd.ExecuteNonQuery();

 cmd.CommandText = "USE employees;";
 cmd.ExecuteNonQuery();

 cmd.CommandText = "DROP TABLE IF EXISTS employees;";
 cmd.ExecuteNonQuery();

 cmd.CommandText = "CREATE TABLE employees(";
 cmd.CommandText += " emp_no INT, ";
 cmd.CommandText += " first_name CHAR(40), ";
 cmd.CommandText += " last_name CHAR(40)";
 cmd.CommandText += ");";
 cmd.ExecuteNonQuery();

 gtid_executed = AddEmployee(conn, 12, "John", "Doe");
 FindEmployee(conn, 12, gtid_executed);
 }
 }
 }
}

Using Ranged Sharding

99

10.4 Using Ranged Sharding
Sharding with Connector/Net requires you to specify the table, key, and scope for each executed query.

MySqlConnection con = new MySqlConnection(connectionString);

con.SetFabricProperties(table: "employees.employees", key: empId.ToString(),
 mode: FabricServerModeEnum.Read_Write, scope: FabricScopeEnum.Local);

MySqlCommand cmd = new MySqlCommand(
 string.Format("insert into employees(emp_no, first_name, last_name) values ({0}, '{1}', '{2}')",
 empId, firstName, lastName), con);
cmd.ExecuteScalar();

You can use the following MySQL Fabric configuration to execute the code example:

Note

For related MySQL Fabric documentation, see Section 3.2.2, “Sharding Scenario”.

using System;
using System.Collections.Generic;
using MySql.Data.MySqlClient;
using MySql.Fabric;

namespace FabricTest
{
 class ShardTest
 {
 public const string connectionString = "server=fabric;uid=appuser;password=pass;";

 public static void test_shard_range()
 {
 using (MySqlConnection con = new MySqlConnection(connectionString))
 {
 con.SetFabricProperties(groupId: "group_id-global", mode: FabricServerModeEnum.Read_Write,
 scope: FabricScopeEnum.Global);
 con.Open();

 MySqlCommand cmd = new MySqlCommand("create database if not exists employees", con);
 cmd.ExecuteScalar();

 cmd.CommandText = "use employees";
 cmd.ExecuteScalar();

 cmd.CommandText = "drop table if exists employees";
 cmd.ExecuteScalar();

 cmd.CommandText =
@"create table employees (
 emp_no int,
 first_name char(40),
 last_name char(40)
)";
 cmd.ExecuteScalar();

 string gtid = prepare_synchronization(con);

 string[] first_names = { "John", "Buffalo", "Michael", "Kate", "Deep", "Genesis" };
 string[] last_names = { "Doe", "Bill", "Jackson", "Bush", "Purple" };
 List<int> list_emp_no = new List<int>();

Using Ranged Sharding

100

 con.SetFabricProperties(scope: FabricScopeEnum.Local);

 for (int i = 0; i < 10; i++)
 {
 int empId = pick_shard_key();
 list_emp_no.Add(empId);
 add_employee(con, empId, first_names[empId % first_names.Length], last_names[empId % last_names.Length], gtid);
 }

 for (int i = 0; i < list_emp_no.Count; i++)
 {
 int empId = list_emp_no[i];
 find_employee(con, empId, gtid);
 }
 }
 }

 public static int pick_shard_key()
 {
 Random r = new Random();
 int shard = r.Next(0, 2);
 int shard_range = shard * 10000;
 shard_range = (shard != 0) ? shard_range : shard_range + 1;
 int shift_within_shard = r.Next(0, 99999);
 return shard_range + shift_within_shard;
 }

 public static void add_employee(MySqlConnection con, int empId, string firstName, string lastName, string gtid)
 {
 con.SetFabricProperties(table: "employees.employees", key: empId.ToString(), mode: FabricServerModeEnum.Read_Write);
 synchronize(con, gtid);
 MySqlCommand cmd = new MySqlCommand(
 string.Format("insert into employees(emp_no, first_name, last_name) values ({0}, '{1}', '{2}')",
 empId, firstName, lastName), con);
 cmd.ExecuteScalar();
 }

 public static void find_employee(MySqlConnection con, int empId, string gtid)
 {
 con.SetFabricProperties(table: "employees.employees", key: empId.ToString(),
 mode: FabricServerModeEnum.Read_only);
 synchronize(con, gtid);
 MySqlCommand cmd = new MySqlCommand(string.Format("
 select first_name, last_name from employees where emp_no = {0}", empId), con);
 using (MySqlDataReader r = cmd.ExecuteReader())
 {
 while (r.Read())
 {
 Console.WriteLine("({0}, {1})", r.GetString(0), r.GetString(1));
 }
 }
 }

 public static string prepare_synchronization(MySqlConnection con)
 {
 string gtid_executed = "";
 MySqlCommand cmd = new MySqlCommand("select @@global.gtid_executed", con);
 gtid_executed = (string)cmd.ExecuteScalar();
 return gtid_executed;
 }

 public static void synchronize(MySqlConnection con, string gtid_executed)
 {
 MySqlCommand cmd = new MySqlCommand(string.Format("SELECT WAIT_UNTIL_SQL_THREAD_AFTER_GTIDS('{0}', 0)",
 gtid_executed), con);
 cmd.ExecuteScalar();
 }

Using Ranged Sharding

101

 }
}

102

103

Chapter 11 MySQL Workbench and MySQL Fabric Integration

Browse, view status, and connect to any MySQL instance in a Fabric Cluster.

Note

MySQL Workbench 6.3.9 no longer supports this feature.

Feature Support:

• MySQL Workbench 6.3.0 - 6.3.8: Support for this feature requires Connector/Python and MySQL Fabric
1.5, including the Python module. Fabric 1.5 support was added in MySQL Workbench 6.3, and due to
incompatible protocol changes, Fabric 1.4 support was dropped.

• MySQL Workbench 6.2.0 - 6.2.5: Support for this feature requires MySQL Fabric 1.4.

To set up a managed Fabric connection, create a new MySQL connection with the new MySQL Fabric
Management Node connection method. The connection tiles have a different look:

Figure 11.1 Fabric Connection Group Tile

Clicking the new fabric group tile shows the managed connections:

104

Figure 11.2 Fabric Connection Group Tiles

105

Chapter 12 MySQL Fabric Frequently Asked Questions
FAQ Categories

• General Questions

• High-Availability Questions

• Sharding Questions

• Consistency Questions

General

12.1 What is MySQL Fabric? .. 105
12.2 Is it necessary to use a MySQL Fabric-specific Storage Engine? ... 105
12.3 What versions of MySQL are supported by MySQL Fabric? .. 105
12.4 What connectors support MySQL Fabric? .. 105
12.5 Are transactions ACID? ... 105
12.6 How many machines are needed in order to use MySQL Fabric? .. 105
12.7 Do I need to run an agent for each MySQL Server? ... 106
12.8 What interface is available to manage MySQL Fabric and its server farm? 106
12.9 How does MySQL Fabric Compare with MySQL Cluster? ... 106
12.10 How is MySQL Fabric licensed? .. 106
12.11 What if MySQL Fabric doesn't do what I need it to? ... 106

12.1. What is MySQL Fabric?

MySQL Fabric is a framework for managing groups of MySQL Servers and using those servers
to provide services. It is designed to be extensible so that over time many different services can
be added. In the current version the services provided are High Availability (built on top of MySQL
Replication) and scale-out (by sharding the data).

MySQL Fabric is implemented as a MySQL Fabric node/process (which performs management
functions) and Fabric-aware connectors that are able to route queries and transactions directly to
the most appropriate MySQL Server. The MySQL Fabric node stores state and routing information
in its State Store (which is a MySQL database).

12.2. Is it necessary to use a MySQL Fabric-specific Storage Engine?

No. The MySQL Servers that are being managed by MySQL Fabric continue to use InnoDB (and in
the future NDB/MySQL Cluster may also be supported).

12.3. What versions of MySQL are supported by MySQL Fabric?

Currently MySQL 5.6. New MySQL releases will be fully supported as they reach General
Availability status.

12.4. What connectors support MySQL Fabric?

Java, PHP, Python, and .NET. In addition the Hibernate and Doctrine Object-Relational Mappings
frameworks are also supported. Connector/C 6.2 also adds fabric support as a labs release.

12.5. Are transactions ACID?

Yes. Because each transaction is local to a single MySQL Server, all of the ACID behavior of the
InnoDB storage engine is experienced.

12.6. How many machines are needed in order to use MySQL Fabric?

106

For development, the MySQL Fabric node and all of the managed MySQL Servers can be hosted on
a single machine.

For deployment, the minimal HA configuration would need 3 or more machines:

• 2 to host MySQL Servers

• 1 to host the MySQL Fabric process (that machine could also be running application code).

12.7. Do I need to run an agent for each MySQL Server?

No. The MySQL Fabric node is the only additional process and does not need to be co-located with
any of the MySQL Servers that are being managed.

12.8. What interface is available to manage MySQL Fabric and its server farm?

A Command Line Interface (CLI) is provided as well as an XML/RPC API that can be used by
connectors and/or applications to make management changes or retrieve the routing information - in
this way, an application could use MySQL Fabric without a Fabric-aware connector.

12.9. How does MySQL Fabric Compare with MySQL Cluster?

MySQL Cluster is a mature, well proven solution for providing very high levels of availability and
scaling out of both reads and writes. Some of the main extra capabilities that MySQL Cluster has
over MySQL Fabric are:

• Synchronous replication

• Faster (automated) fail-over (resulting in higher availability)

• Transparent sharding

• Cross-shard joins and Foreign Keys

• In-memory, real-time performance

MySQL Fabric on the other hand, allows the application to stick with the InnoDB storage engine
which is better suited to many applications.

12.10. How is MySQL Fabric licensed?

MySQL Fabric is available for use under the GPL v2 Open Source license or it can be commercially
licensed as part of MySQL Enterprise Edition or MySQL Cluster Carrier Grade Edition.

12.11. What if MySQL Fabric doesn't do what I need it to?

There are a number of options:

• Raise feature requests or bug reports

• Modify the code to customize the current services. MySQL Fabric is written in Python and is
designed to be easy to extend.

• Implement new modules that bind into the MySQL Fabric framework to implement new services.

High-Availability

12.1 How is High Availability achieved with MySQL Fabric? ... 107
12.2 How are MySQL Server failures detected? ... 107

http://www.mysql.com/products/cluster/
http://www.mysql.com/products/cluster/

107

12.3 What happens when the primary (master) MySQL Server fails? .. 107
12.4 Does my application need to do anything as part of the failover? ... 107
12.5 Is a recovered MySQL Server automatically put back into service? .. 107
12.6 Does MySQL Fabric work with semisynchronous replication? .. 107
12.7 Do I have to use MySQL Replication for implementing HA? .. 108
12.8 Is the MySQL Fabric node itself fault tolerant? What happens when the MySQL Fabric node is

not available? ... 108

12.1. How is High Availability achieved with MySQL Fabric?

MySQL Fabric manages one or more HA-Groups where each HA-Group contains one or more
MySQL Servers. For High Availability, a HA Group contains a Primary and one or more Secondary
MySQL Servers. The Primary is currently a MySQL Replication master which replicates to each of
the secondaries (MySQL Replication slaves) within the group.

By default, the Fabric-aware connectors route writes to the Primary and load balance reads across
the available secondaries.

Should the Primary fail, MySQL Fabric will promote one of the Secondaries to be the new Primary
(automatically promoting the MySQL Server to be the replication Master and updating the routing
performed by the Fabric-aware connectors).

12.2. How are MySQL Server failures detected?

The MySQL Fabric node has a built-in monitoring function that checks on the status of the master.
In addition, the Fabric-aware connectors report to MySQL Fabric when the Primary becomes
unavailable to them. The administrator can configure how many problems need to be reported (and
over what time period) before the failover is initiated.

12.3. What happens when the primary (master) MySQL Server fails?

The MySQL Fabric node will orchestrate the promotion of one of the Secondaries to be the new
Primary. This involves two main actions:

• Promoting the Secondary to be the replication master (and any other surviving Secondaries will
become slaves to the new master)

• Updating the routing information such that Fabric-aware connectors will no longer send any
queries or transactions to the failed Primary and instead send all writes to the new Primary.

12.4. Does my application need to do anything as part of the failover?

No. The failover is transparent to the application as the Fabric-aware connectors will automatically
start routing transactions and queries based on the new server topology. The application does need
to handle the failure of a number of transactions when the Primary has failed but before the new
Primary is in place but this should be considered part of normal MySQL error handling.

12.5. Is a recovered MySQL Server automatically put back into service?

No, the user must explicitly invoke MySQL Fabric to return a recovered MySQL Server to a HA
Group. This is intentional so that the user can ensure that the server really is ready to take on an
active role again.

12.6. Does MySQL Fabric work with semisynchronous replication?

In this version, MySQL Fabric sets up the HA Group to use asynchronous replication. If the user
prefers to use semisynchronous replication then they can activate it manually after MySQL Fabric
has created the replication relationships.

108

12.7. Do I have to use MySQL Replication for implementing HA?

At present, HA Groups are formed using MySQL Replication; future releases may offer further
options such as MySQL Cluster or DRBD.

12.8. Is the MySQL Fabric node itself fault tolerant? What happens when the MySQL Fabric node is not
available?

There is currently only a single instance of the MySQL Fabric node. If that process should fail then
it can be restarted on that or another machine and the state and routing information read from the
existing state store (a MySQL database) or a replicated copy of the state store.

While the MySQL Fabric node is unavailable, Fabric-aware connectors continue to route queries
and transactions to the correct MySQL Servers based on their cached copies of the routing data.
However, should a Primary fail, automated failover will not happen until the MySQL Fabric node is
returned to service and so it's important to recover the process as quickly as possible.

Sharding

12.1 How is scaling achieved with MySQL Fabric? .. 108
12.2 Does scaling apply to both reads and writes? .. 108
12.3 What if I have table data that needs to be in every shard? .. 108
12.4 How many MySQL Servers can I scale to? .. 109
12.5 Can MySQL Fabric introduce contention or deadlock? .. 109
12.6 What happens when my data set or usage grows and a shard grows too big? 109
12.7 Is there extra latency when using MySQL Fabric? .. 109
12.8 Why does MySQL Fabric route using connector logic rather than via a proxy? 109
12.9 What is the difference between a shard key and a shard identifier? ... 109
12.10 Does my application need to change when a shard is moved to a different MySQL Server or

split into multiple shards? ... 109
12.11 Is it possible to perform cross-shard unions or joins? .. 110
12.12 Is the routing of queries and transactions transparent to my application? 110

12.1. How is scaling achieved with MySQL Fabric?

Horizontal scaling is achieved by partitioning (sharding) the data from a table across multiple
MySQL Servers or HA Groups. In that way, each server or group will contain a subset of the rows
from a specific table.

The user specifies what column from the table(s) should be used as the shard key as well as
indicating whether to use a HASH or RANGE partitioning scheme for that key; if using RANGE
based sharding then the user should also specify which ranges map to which shards. Currently the
sharding key must be numeric.

When accessing the database, the application specifies the sharding key which the Fabric-aware
connector will then map to a shard ID (using the mapping data it has retrieved and cached from
MySQL Fabric) and route the query or transaction to the correct MySQL Server instance.

Within a HA group, the Fabric-aware connector is able to direct writes to the Primary and then
spread the read queries across all available Secondaries (and optionally the Primary).

12.2. Does scaling apply to both reads and writes?

Yes. Both reads and writes scale linearly as more HA groups are added. Reads can also be scaled
independently by adding more Secondary servers to a HA Group.

12.3. What if I have table data that needs to be in every shard?

109

A special group can be created called the Global Group which holds the Global Tables. Any table
whose data should appear in its entirety in all HA Groups should be handled as a Global Table.
For a Global Table, all writes are sent to the Global Group and then replicated to all of the HA
Groups. An example might be the department table from an employee database - the contents of
the department table being small enough to be stored in every server and where that data could be
referenced by any record from one of the sharded employee tables.

Similarly, any schema changes would be sent to the Global Group where they can be replicated to
all of the HA Groups.

12.4. How many MySQL Servers can I scale to?

There is no limit—either to the number of HA Groups or the number of servers within a HA group.

12.5. Can MySQL Fabric introduce contention or deadlock?

No. A single transaction can only access data from a single shard (+ Global Table data) and all
writes are sent to the Primary server within that shard's HA Group. In other words, all writes to a
specific row will be handled by the same MySQL Server and so InnoDB's row-based locking will
work as normal.

12.6. What happens when my data set or usage grows and a shard grows too big?

MySQL Fabric provides the ability to either:

• Move a shard to a new HA group containing larger or more powerful servers

• Split an existing shard into two shards where the new shard will be stored in a new HA Group. In
the future, different levels of granularity may be supported for shard splitting.

12.7. Is there extra latency when using MySQL Fabric?

No. Because the routing is handled within the connector there is no need for any extra "hops" to
route the request via a proxy process.

12.8. Why does MySQL Fabric route using connector logic rather than via a proxy?

One reason is to reduce complexity; rather than having a pool of proxy processes (a single proxy
would represent a single point of failure) the logic is just part of each connector instance. The
second reason is to avoid the latency involved in all operations being diverted via a proxy process
(which is likely to be an a different machine).

12.9. What is the difference between a shard key and a shard identifier?

The shard key is simply the value of a column from one or more tables. The shard key does not
change if a row is migrated from one shard or server to another. The shard key is mapped to a
shard id (using either a HASH or RANGE based mapping scheme); the shard id represents the
shard itself.

As an example, if an existing shard were split in two then some of the rows would map to one
shard's shard id and the rest to the other's; any given row's shard key would *not* change as part of
that split.

Very importantly, shard keys are known to the application while shard ids are not and so any
changes to the topology of the collection of servers is completely transparent to the application.

12.10. Does my application need to change when a shard is moved to a different MySQL Server or split
into multiple shards?

110

No. Because the application deals in shard keys and shard keys do not change during shard moves
or splits.

12.11. Is it possible to perform cross-shard unions or joins?

Not at present; all queries are limited to the data within a single shard + the Global Table data. If
data from multiple shards is required then it is currently the application's responsibility to collect and
aggregate the data.

12.12. Is the routing of queries and transactions transparent to my application?

Partially.

For HA, the application simply needs to specify whether the operations are read-only or involve
writes (or consistent reads).

For sharding, the application must specify the sharding key (a column from one or more tables)
but this is independent of the topology of the MySQL Servers and where the data is held and it is
unaffected when data is moved from one server to another.

Consistency

12.1 What do I do if I need immediately-consistent reads? ... 110

12.1. What do I do if I need immediately-consistent reads?

Because replication from the Primary (master) to the Secondaries (slaves) is not synchronous,
you cannot guarantee that you will retrieve the most current data when reading from a secondary.
To force a read to be sent to the Primary, the application may set the *mode* property for the
connection to read/write rather than read.

	MySQL Fabric 1.5
	Table of Contents
	Preface and Legal Notices
	Chapter 1 Introduction to Fabric
	1.1 Fabric Prerequisites
	1.2 Fabric Concepts

	Chapter 2 Installing and Configuring MySQL Fabric
	2.1 Downloading MySQL Fabric
	2.2 Installing MySQL Fabric
	2.3 Configuring MySQL Fabric
	2.3.1 Create the Associated MySQL Users
	2.3.2 Configuration File
	2.3.3 Configuration File Sections
	2.3.3.1 Section DEFAULT
	2.3.3.2 Section storage
	2.3.3.3 Section servers
	2.3.3.4 Section protocol.xmlrpc
	2.3.3.5 Section protocol.mysql
	2.3.3.6 Section executor
	2.3.3.7 Section logging
	2.3.3.8 Section sharding
	2.3.3.9 Section statistics
	2.3.3.10 Section failure_tracking
	2.3.3.11 Section connector

	2.3.4 The Configuration Parameter (--param)

	2.4 Starting and Stopping MySQL Fabric Nodes
	2.5 Old Configuration System

	Chapter 3 Quick Start
	3.1 Example: Fabric and Replication
	3.2 Example: Fabric and Sharding
	3.2.1 Introduction to Sharding
	3.2.2 Sharding Scenario

	Chapter 4 The mysqlfabric Utility
	4.1 Getting Help
	4.2 Dump Commands
	4.3 Event Commands
	4.4 Group Commands
	4.5 Manage Commands
	4.6 Provider Commands
	4.7 Role Commands
	4.8 Server Commands
	4.9 Sharding Commands
	4.10 Snapshot Commands
	4.11 Statistics Commands
	4.12 Threat Commands
	4.13 User Commands

	Chapter 5 Fabric Utility Command Matrix
	Chapter 6 Backing Store
	6.1 Backing Store Tables
	6.2 Protecting the Backing Store

	Chapter 7 Using MySQL Fabric with Pacemaker and Corosync
	7.1 Introduction
	7.2 Pre-requisites
	7.3 Target Configuration
	7.4 Setting up and testing your system
	7.4.1 Configure Network
	7.4.2 Install all packages
	7.4.3 Configure DRBD
	7.4.4 Configure MySQL Server
	7.4.5 Configure MySQL Fabric
	7.4.6 Configure Corosync and Pacemaker

	7.5 Key administrative tasks

	Chapter 8 Using Connector/Python with MySQL Fabric
	8.1 Installing Connector/Python with MySQL Fabric Support
	8.2 Requesting a Fabric Connection
	8.3 Providing Information to Choose a MySQL Server

	Chapter 9 Using Connector/J with MySQL Fabric
	9.1 Installing Connector/J with MySQL Fabric Support
	9.2 Loading the Driver and Requesting a Fabric Connection
	9.3 Providing Information to Choose a MySQL Server
	9.4 MySQL Fabric Configuration for Running Samples
	9.5 Running Tests
	9.6 Running Demonstration Programs
	9.7 A Complete Example: Working with Employee Data
	9.8 How Connector/J Chooses a MySQL Server
	9.9 Using Hibernate with MySQL Fabric
	9.10 Connector/J Fabric Support Reference
	9.10.1 Connection Properties
	9.10.2 FabricMySQLConnection API

	Chapter 10 Using Connector/Net with MySQL Fabric
	10.1 System Requirements
	10.2 Set up the MySQL Fabric Plugin
	10.3 Using MySQL Fabric Groups
	10.4 Using Ranged Sharding

	Chapter 11 MySQL Workbench and MySQL Fabric Integration
	Chapter 12 MySQL Fabric Frequently Asked Questions

