Extending MySQL 9.6

Abstract

This document describes what you need to know when working on the MySQL 9.6 code. To track or contribute

to MySQL development, follow the instructions in Installing MySQL Using a Development Source Tree. If you are
interested in MySQL internals, you should also join the MySQL Community Slack. Feel free to ask questions about
the code and to send patches that you would like to contribute to the MySQL project!

For help with using MySQL, please visit the MySQL Forums, where you can discuss your issues with other MySQL
users.

Document generated on: 2026-01-13 (revision: 84232)

https://dev.mysql.com/doc/refman/9.6/en/installing-development-tree.html
https://mysqlcommunity.slack.com/
http://forums.mysql.com

Table of Contents

Preface and Legal NOTICESccouuiiiiiiiiieiiii ettt ettt e et e e et et e e e e et e e e ee bt e e e eebaaeeees v
I [a1 fo o [N ox 1 o] o ISP TR PP 1
2 MYSQL TRICAUSuiiieti ettt ettt ettt e et e e e et e b e e et et e et e ab e et et e et e n e e eraas 3
3 The MYSQL TESE SUILE ...eeeuieiiiti ettt ettt ettt e et e et et e et et r e e e et e e e e eba s 5
4 The MySQL PIUGIN AP ... e et ettt ettt e et e e e et eeereas 7
4.1 TYPES OF PIUGINS ..oeiiiiitiieeiiit ettt e ettt e ettt e e et et e e e e et e eeentaneeees 8

4.2 Plugin API CharaCteriStCSccuuuuieiiiiii ettt et e et e e e et e e e enaaeeees 13

4.3 Plugin API COMPONENTSeeitiieeeiiii ettt ettt e e et e et et e e et et e e e e et e e e e aaa s 14

4.4 WIItING PIUGINS ..ottt e et e et et e et e e et e e et e e ean e eanaaes 15
4.4.1 Overview Of PIUgin WIINGoooeieiiiii e 15

4.4.2 PIUgiN DAt STUCTUIES .. .oeitiieiiiti ettt e et e et e e e aaa s 16

4.4.3 Compiling and Installing Plugin LIDrariescoouiiiiiiii e 29

4.4.4 Writing Full-Text Parser PIUGINSo..uiiiiiiiciei et 30

4.4.5 Writing Daemon PIUGINSoiiiiiiiiiiii ettt 38

4.4.6 Writing INFORMATION_SCHEMA PIUGINSciiiiiieiiiiee et 39

4.4.7 Writing Semisynchronous Replication PIUGINSccouuiiiiiiiiiniiiiiece e 42

4.4.8 Writing AUCIL PIUGINS ...oeiiiiiiiii ettt e e et e e e et e e e eea e eees 43

4.4.9 Writing Authentication PIUGINS ... 54

4.4.10 Writing Password-Validation PIUGINSiiiiiiiiiiii e 64

4.4.11 Writing Protocol Trace PIUGINSiiiiiiiiiiiiii e 66

4.4.12 Writing Keyring PIUGINSoouiiii e e e e 71

5 MYSQL ServiCes fOr PIUGINSccuuuiiiiiiiie ittt e ettt e e e e e e e eai e e eenans 75
6 Adding FUNCLIONS 10 MYSQL ...ttt ettt e e et e et e e et e eeeaans 79
6.1 AddiNg @ NALIVE FUNCLIONuiiiii ettt e et e e e e e 80

6.2 Adding @ Loadable FUNCLION ...t 81

T POMING MYSQL ..ttt et et e et ettt et et e ettt e et et e e e b e aee 93
a0 = ST PPPTPRSPPPTT 95

Preface and Legal Notices

This document describes what you need to know when working on the MySQL 9.6 code. To track or
contribute to MySQL development, follow the instructions in Installing MySQL Using a Development
Source Tree. If you are interested in MySQL internals, you should also join the MySQL Community Slack.
Feel free to ask questions about the code and to send patches that you would like to contribute to the
MySQL project!

Legal Notices

Copyright © 1997, 2026, Oracle and/or its affiliates.
License Restrictions

This software and related documentation are provided under a license agreement containing restrictions
on use and disclosure and are protected by intellectual property laws. Except as expressly permitted

in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast,
modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

Warranty Disclaimer

The information contained herein is subject to change without notice and is not warranted to be error-free.
If you find any errors, please report them to us in writing.

Restricted Rights Notice

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or
related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications

of such programs) and Oracle computer documentation or other Oracle data delivered to or accessed

by U.S. Government end users are "commercial computer software," "commercial computer software
documentation," or "limited rights data" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, the use, reproduction, duplication, release, display,
disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle programs (including
any operating system, integrated software, any programs embedded, installed, or activated on delivered
hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract.
The terms governing the U.S. Government's use of Oracle cloud services are defined by the applicable
contract for such services. No other rights are granted to the U.S. Government.

Hazardous Applications Notice

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Trademark Notice

https://dev.mysql.com/doc/refman/9.6/en/installing-development-tree.html
https://dev.mysql.com/doc/refman/9.6/en/installing-development-tree.html
https://mysqlcommunity.slack.com/

Documentation Accessibility

Oracle, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names
may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Epyc, and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a
registered trademark of The Open Group.

Third-Party Content, Products, and Services Disclaimer

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

Use of This Documentation

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the
following terms:

You may create a printed copy of this documentation solely for your own personal use. Conversion to other
formats is allowed as long as the actual content is not altered or edited in any way. You shall not publish

or distribute this documentation in any form or on any media, except if you distribute the documentation in
a manner similar to how Oracle disseminates it (that is, electronically for download on a Web site with the
software) or on a CD-ROM or similar medium, provided however that the documentation is disseminated
together with the software on the same medium. Any other use, such as any dissemination of printed
copies or use of this documentation, in whole or in part, in another publication, requires the prior written
consent from an authorized representative of Oracle. Oracle and/or its affiliates reserve any and all rights
to this documentation not expressly granted above.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website
at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support for Accessibility

Oracle customers that have purchased support have access to electronic support through My Oracle
Support. For information, visit

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit ht t p: / / www. or acl e. cont pl s/ t opi c/
| ookup?ct x=accé& d=tr s if you are hearing impaired.

Vi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Chapter 1 Introduction

This document describes what you need to know when working on the MySQL 9.6 code. To track or
contribute to MySQL development, follow the instructions in Installing MySQL Using a Development
Source Tree. If you are interested in MySQL internals, you should also join the MySQL Community Slack.
Feel free to ask questions about the code and to send patches that you would like to contribute to the
MySQL project!

Note

The MySQL source code contains internal documentation written using Doxygen.
This documentation is useful for understanding how MySQL works from a developer
perspective. The generated Doxygen content is available at https://dev.mysqgl.com/
doc/index-other.html. It is also possible to generate this content locally from a
MySQL source distribution using the instructions at Generating MySQL Doxygen
Documentation Content.

https://dev.mysql.com/doc/refman/9.6/en/installing-development-tree.html
https://dev.mysql.com/doc/refman/9.6/en/installing-development-tree.html
https://mysqlcommunity.slack.com/
https://dev.mysql.com/doc/index-other.html
https://dev.mysql.com/doc/index-other.html
https://dev.mysql.com/doc/refman/9.6/en/source-installation-doxygen.html
https://dev.mysql.com/doc/refman/9.6/en/source-installation-doxygen.html

Chapter 2 MySQL Threads

The MySQL server creates the following threads:

Connection manager threads handle client connection requests on the network interfaces that the
server listens to. On all platforms, one manager thread handles TCP/IP connection requests. On Unix,
this manager thread also handles Unix socket file connection requests. On Windows, a manager

thread handles shared-memory connection requests, and another handles named-pipe connection
requests. The server does not create threads to handle interfaces that it does not listen to. For example,
a Windows server that does not have support for named-pipe connections enabled does not create a
thread to handle them.

Connection manager threads associate each client connection with a thread dedicated to it that handles
authentication and request processing for that connection. Manager threads create a new thread when
necessary but try to avoid doing so by consulting the thread cache first to see whether it contains a
thread that can be used for the connection. When a connection ends, its thread is returned to the thread
cache if the cache is not full.

For information about tuning the parameters that control thread resources, see Connection Interfaces.

On a source replication server, connections from replica servers are handled like client connections:
There is one thread per connected replica.

On a replica server, an I/O thread is started to connect to the source server and read updates from it. An
SQL thread is started to apply updates read from the source. These two threads run independently and
can be started and stopped independently.

A signal thread handles all signals. This thread also normally handles alarms and calls
process_al arm() to force timeouts on connections that have been idle too long.

If | nnoDB is used, there will be additional read and write threads by default. The number of these are
controlled by the i nnodb_read_i o_threads andi nnodb_write_io_threads parameters. See
InnoDB Startup Options and System Variables.

If the server is started with the - - f | ush_t i me=val option, a dedicated thread is created to flush all
tables every val seconds.

If the event scheduler is active, there is one thread for the scheduler, and a thread for each event
currently running. See Event Scheduler Overview.

nmysgl adm n processli st only shows the connection, replication, and event threads.

https://dev.mysql.com/doc/refman/9.6/en/connection-interfaces.html
https://dev.mysql.com/doc/refman/9.6/en/innodb-parameters.html#sysvar_innodb_read_io_threads
https://dev.mysql.com/doc/refman/9.6/en/innodb-parameters.html#sysvar_innodb_write_io_threads
https://dev.mysql.com/doc/refman/9.6/en/innodb-parameters.html
https://dev.mysql.com/doc/refman/9.6/en/server-system-variables.html#sysvar_flush_time
https://dev.mysql.com/doc/refman/9.6/en/events-overview.html

Chapter 3 The MySQL Test Suite

The test system that is included in Unix source and binary distributions makes it possible for users and
developers to perform regression tests on the MySQL code. These tests can be run on Unix.

You can also write your own test cases. For information, including system requirements, see The MySQL
Test Framework in the MySQL Server Doxygen documentation, available at https://dev.mysql.com/doc/
index-other.html.

The current set of test cases does not test everything in MySQL, but it should catch most obvious bugs in
the SQL processing code, operating system or library issues, and is quite thorough in testing replication.
Our goal is to have the tests cover 100% of the code. We welcome contributions to our test suite. You
may especially want to contribute tests that examine the functionality critical to your system because this
ensures that all future MySQL releases work well with your applications.

The test system consists of a test language interpreter (mysql t est), a Perl script to run all tests (mysql -
t est - run. pl), the actual test cases written in a special test language, and their expected results. To

run the test suite on your system after a build, type neke t est from the source root directory, or change
location to the mysql -t est directory and type . / nysql -t est - run. pl . If you have installed a binary
distribution, change location to the nysql - t est directory under the installation root directory (for example,
/usr/local /nysqgl/mysql -test),andrun./mysql -test-run. pl.Alltests should succeed. If any
do not, feel free to try to find out why and report the problem if it indicates a bug in MySQL. See How to
Report Bugs or Problems.

If one test fails, you should run nysqgl -t est - r un. pl with the - - f or ce option to check whether any
other tests fail.

If you have a copy of nysql d running on the machine where you want to run the test suite, you do not
have to stop it, as long as it is not using ports 9306 or 9307. If either of those ports is taken, you should
set the MTR_BUI LD THREAD environment variable to an appropriate value, and the test suite will use a
different set of ports for source, replica, and NDB). For example:

$> export MIR BU LD THREAD=31
$> ./nysql-test-run.pl [options] [test nane]

In the mysql - t est directory, you can run an individual test case with . / nysql -t est - run. pl
t est _nane.

If you have a question about the test suite, or have a test case to contribute, join the MySQL Community
Slack.

https://dev.mysql.com/doc/index-other.html
https://dev.mysql.com/doc/index-other.html
https://dev.mysql.com/doc/refman/9.6/en/bug-reports.html
https://dev.mysql.com/doc/refman/9.6/en/bug-reports.html
https://mysqlcommunity.slack.com/
https://mysqlcommunity.slack.com/

Chapter 4 The MySQL Plugin API

Table of Contents

4.1 TYPES OF PIUGINS ..ttt e et e ettt e e ettt e et e bt e e e ettt aeeeattaeeeesanaeaees 8
4.2 Plugin API CREaraCteriSHCScceutuieiiiii ettt ettt ettt e et e e e et e e e eeba e aeees 13
4.3 PlUgin API COMPONENTS ... ittt ettt e et e et et e e et et e e et et e e e e et e e e e etanaes 14
A4 WIHING PIUGINS ...ttt e ettt e et a e et e e e e e e bt eeeeab e e eenanns 15
4.4.1 Overview Of PIUGIN WIHINGcooouiiiii et 15
4.4.2 PIUGIN DAt@ STUCIUIES .. .oouiiiieiii ettt ettt e et eeena s 16
4.4.3 Compiling and Installing Plugin LIDraries ... 29
4.4.4 Writing Full-Text Parser PIUGINSoouuu e 30
4.4.5 Writing DaemON PIUGINS oottt e ettt e e et e eeena e eees 38
4.4.6 Writing INFORMATION_SCHEMA PIUJINSiiiiiiieiiii ettt 39
4.4.7 Writing Semisynchronous Replication PIUGINSccc.uuiiiiiiiiiiiiii e 42
4.4.8 Writing AUGIL PIUGINS ..ot ettt e et e ettt e e e eba e eeeens 43
4.4.9 Writing AUthentiCation PIUGINSiiiiiiiiiii ettt eeeas 54
4.4.10 Writing Password-Validation PIUGINSiiiiiiiiiii e 64
4.4.11 Writing Protocol Trace PIUGINScooeiiiiiiiii e e 66
4.4.12 Writing Keyring PIUGINSoiiiiiiii ettt et e e 71

MySQL supports a plugin API that enables creation of server components. Plugins can be loaded at server
startup, or loaded and unloaded at runtime without restarting the server. The API is generic and does not
specify what plugins can do. The components supported by this interface include, but are not limited to,
storage engines, full-text parser plugins, and server extensions.

For example, full-text parser plugins can be used to replace or augment the built-in full-text parser. A plugin
can parse text into words using rules that differ from those used by the built-in parser. This can be useful if
you need to parse text with characteristics different from those expected by the built-in parser.

The plugin interface is more general than the older loadable function interface.

The plugin interface uses the pl ugi n table in the nysql database to record information about plugins
that have been installed permanently with the | NSTALL PLUG N statement. This table is created as part
of the MySQL installation process. Plugins can also be installed for a single server invocation with the - -
pl ugi n- | oad option. Plugins installed this way are not recorded in the pl ugi n table. See Installing and
Uninstalling Plugins.

MySQL supports an API for client plugins in addition to that for server plugins. This is used, for example,
by authentication plugins where a server-side plugin and a client-side plugin cooperate to enable clients to
connect to the server through a variety of authentication methods.

Note

The MySQL source code contains internal documentation written using Doxygen.
This documentation is useful for understanding how MySQL works from a developer
perspective. The generated Doxygen content is available at https://dev.mysqgl.com/
doc/index-other.html. It is also possible to generate this content locally from a
MySQL source distribution using the instructions at Generating MySQL Doxygen
Documentation Content.

https://dev.mysql.com/doc/refman/9.6/en/install-plugin.html
https://dev.mysql.com/doc/refman/9.6/en/plugin-loading.html
https://dev.mysql.com/doc/refman/9.6/en/plugin-loading.html
https://dev.mysql.com/doc/index-other.html
https://dev.mysql.com/doc/index-other.html
https://dev.mysql.com/doc/refman/9.6/en/source-installation-doxygen.html
https://dev.mysql.com/doc/refman/9.6/en/source-installation-doxygen.html

Additional Resources

Additional Resources

The book MySQL 5.1 Plugin Development by Sergei Golubchik and Andrew Hutchings provides a wealth
of detail about the plugin API. Despite the fact that the book's title refers to MySQL Server 5.1, most of the
information in it applies to later versions as well.

4.1 Types of Plugins

The plugin API enables creation of plugins that implement several capabilities:
e Loadable functions (UDFs)

» Storage engines

» Full-text parsers

» Daemons

* | NFORVATI ON_SCHENA tables

» Semisynchronous replication

* Auditing

* Authentication

» Password validation and strength checking
» Protocol tracing

* Query rewriting

» Secure keyring storage and retrieval

The following sections provide an overview of these plugin types.
» Loadable Function (UDF) Plugins

» Storage Engine Plugins

» Full-Text Parser Plugins

» Daemon Plugins

* INFORMATION_SCHEMA Plugins

* Semisynchronous Replication Plugins
 Audit Plugins

» Authentication Plugins

» Password-Validation Plugins

» Protocol Trace Plugins

e Query Rewrite Plugins

* Keyring Plugins

Loadable Function (UDF) Plugins

Storage Engine Plugins

Loadable functions can be included in component or plugin library files and installed on the server.

For information about using the MySQL interface for loadable functions, see Section 6.2, “Adding a
Loadable Function”. The steps to compile and install loadable function plugins are described in Loadable
Function Compiling and Installing.

Note

Loadable functions previously were known as user-defined functions (UDFs). That
terminology was something of a misnomer because “user-defined” also can apply
to stored functions written using SQL and native functions added by modifying the
server source code.

Storage Engine Plugins

The pluggable storage engine architecture used by MySQL Server enables storage engines to be written
as plugins and loaded into and unloaded from a running server. For a description of this architecture, see
Overview of MySQL Storage Engine Architecture.

For information on how to use the plugin API to write storage engines, see MySQL Internals: Writing a
Custom Storage Engine.

Full-Text Parser Plugins

MySQL has a built-in parser that it uses by default for full-text operations (parsing text to be indexed,
or parsing a query string to determine the terms to be used for a search). The built-in full-text parser is
supported with | nnoDB and Myl SAMtables.

MySQL also has a character-based ngram full-text parser that supports Chinese, Japanese, and Korean
(CJK), and a word-based MeCab parser plugin that supports Japanese, for use with | nnoDB and My| SAM
tables.

For full-text processing, “parsing” means extracting words (or “tokens”, in the case of an n-gram character-
based parser) from text or a query string based on rules that define which character sequences make up a
word and where word boundaries lie.

When parsing for indexing purposes, the parser passes each word to the server, which adds it to a full-
text index. When parsing a query string, the parser passes each word to the server, which accumulates the
words for use in a search.

The parsing properties of the built-in full-text parser are described in Full-Text Search Functions. These
properties include rules for determining how to extract words from text. The parser is influenced by certain
system variables that cause words shorter or longer to be excluded, and by the stopword list that identifies
common words to be ignored. For more information, see Full-Text Stopwords, and Fine-Tuning MySQL
Full-Text Search.

The plugin API enables you to use a full-text parser other than the default built-in full-text parser. For
example, if you are working with Japanese, you may choose to use the MeCab full-text parser. The plugin
API also enables you to provide a full-text parser of your own so that you have control over the basic duties
of a parser. A parser plugin can operate in either of two roles:

» The plugin can replace the built-in parser. In this role, the plugin reads the input to be parsed, splits it
up into words, and passes the words to the server (either for indexing or for token accumulation). The
ngram and MeCab parsers operate as replacements for the built-in full-text parser.

You may choose to provide your own full-text parser if you need to use different rules from those of the
built-in parser for determining how to split up input into words. For example, the built-in parser considers

https://dev.mysql.com/doc/refman/9.6/en/pluggable-storage-overview.html
https://dev.mysql.com/doc/internals/en/custom-engine.html
https://dev.mysql.com/doc/internals/en/custom-engine.html
https://dev.mysql.com/doc/refman/9.6/en/fulltext-search.html
https://dev.mysql.com/doc/refman/9.6/en/fulltext-stopwords.html
https://dev.mysql.com/doc/refman/9.6/en/fulltext-fine-tuning.html
https://dev.mysql.com/doc/refman/9.6/en/fulltext-fine-tuning.html

Daemon Plugins

the text “case-sensitive” to consist of two words “case” and “sensitive,” whereas an application might
need to treat the text as a single word.

» The plugin can act in conjunction with the built-in parser by serving as a front end for it. In this role, the
plugin extracts text from the input and passes the text to the parser, which splits up the text into words
using its normal parsing rules. This parsing is affected by the i nnodb_ft xxx orft xxx system
variables and the stopword list.

One reason to use a parser this way is that you need to index content such as PDF documents, XML
documents, or . doc files. The built-in parser is not intended for those types of input but a plugin can pull
out the text from these input sources and pass it to the built-in parser.

It is also possible for a parser plugin to operate in both roles. That is, it could extract text from noncleartext
input (the front end role), and also parse the text into words (thus replacing the built-in parser).

A full-text plugin is associated with full-text indexes on a per-index basis. That is, when you install a parser
plugin initially, that does not cause it to be used for any full-text operations. It simply becomes available.
For example, a full-text parser plugin becomes available to be named in a W TH PARSER clause when
creating individual FULLTEXT indexes. To create such an index at table-creation time, do this:

CREATE TABLE t

doc CHAR(255),
FULLTEXT | NDEX (doc) W TH PARSER par ser _nane
) ENG NE=I nnoDB;

Or you can add the index after the table has been created:

ALTER TABLE t ADD FULLTEXT | NDEX (doc) W TH PARSER par ser _nare;

The only SQL change for associating the parser with the index is the W TH PARSER clause. Searches are
specified as before, with no changes needed for queries.

When you associate a parser plugin with a FULLTEXT index, the plugin is required for using the index. If
the parser plugin is dropped, any index associated with it becomes unusable. Any attempt to use a table
for which a plugin is not available results in an error, although DROP TABLE is still possible.

For more information about full-text plugins, see Section 4.4.4, “Writing Full-Text Parser Plugins”. MySQL
9.6 supports full-text plugins with Myl SAMand | nnoDB.

Daemon Plugins

A daemon plugin is a simple type of plugin used for code that should be run by the server but that does not
communicate with it. MySQL distributions include an example daemon plugin that writes periodic heartbeat
messages to a file.

For more information about daemon plugins, see Section 4.4.5, “Writing Daemon Plugins”.

INFORMATION_SCHEMA Plugins

| NFORVATI ON_SCHENA plugins enable the creation of tables containing server metadata that

are exposed to users through the | NFORVATI ON_SCHENA database. For example, | nnoDB uses

I NFORVATI ON_SCHENA plugins to provide tables that contain information about current transactions and
locks.

For more information about | NFORMVATI ON_SCHEMA plugins, see Section 4.4.6, “Writing
INFORMATION_SCHEMA Plugins”.

Semisynchronous Replication Plugins

10

https://dev.mysql.com/doc/refman/9.6/en/drop-table.html
https://dev.mysql.com/doc/refman/9.6/en/myisam-storage-engine.html
https://dev.mysql.com/doc/refman/9.6/en/innodb-storage-engine.html

Audit Plugins

MySQL replication is asynchronous by default. With semisynchronous replication, a commit performed
on the source side blocks before returning to the session that performed the transaction until at least one
replica acknowledges that it has received and logged the events for the transaction. Semisynchronous
replication is implemented through complementary source and client plugins. See Semisynchronous
Replication.

For more information about semisynchronous replication plugins, see Section 4.4.7, “Writing
Semisynchronous Replication Plugins”.

Audit Plugins

The MySQL server provides a pluggable audit interface that enables information about server operations
to be reported to interested parties. Audit notification occurs for these operations (although the interface is
general and the server could be modified to report others):

» Write a message to the general query log (if the log is enabled)
» Write a message to the error log
» Send a query result to a client

Audit plugins may register with the audit interface to receive notification about server operations. When an
auditable event occurs within the server, the server determines whether notification is needed. For each
registered audit plugin, the server checks the event against those event classes in which the plugin is
interested and passes the event to the plugin if there is a match.

This interface enables audit plugins to receive notifications only about operations in event classes they
consider significant and to ignore others. The interface provides for categorization of operations into event
classes and further division into event subclasses within each class.

When an audit plugin is notified of an auditable event, it receives a pointer to the current THD structure
and a pointer to a structure that contains information about the event. The plugin can examine the event
and perform whatever auditing actions are appropriate. For example, the plugin can see what statement
produced a result set or was logged, the number of rows in a result, who the current user was for an
operation, or the error code for failed operations.

For more information about audit plugins, see Section 4.4.8, “Writing Audit Plugins”.

Authentication Plugins

MySQL supports pluggable authentication. Authentication plugins exist on both the server and client
sides. Plugins on the server side implement authentication methods for use by clients when they

connect to the server. A plugin on the client side communicates with a server-side plugin to provide the
authentication information that it requires. A client-side plugin may interact with the user, performing tasks
such as soliciting a password or other authentication credentials to be sent to the server. See Pluggable
Authentication.

Pluggable authentication also enables proxy user capability, in which one user takes the identity of another
user. A server-side authentication plugin can return to the server the name of the user whose identity the
connecting user should have. See Proxy Users.

For more information about authentication plugins, see Section 4.4.9, “Writing Authentication Plugins”.
Password-Validation Plugins

The MySQL server provides an interface for writing plugins that test passwords. Such a plugin implements
two capabilities:

11

https://dev.mysql.com/doc/refman/9.6/en/replication-semisync.html
https://dev.mysql.com/doc/refman/9.6/en/replication-semisync.html
https://dev.mysql.com/doc/refman/9.6/en/pluggable-authentication.html
https://dev.mysql.com/doc/refman/9.6/en/pluggable-authentication.html
https://dev.mysql.com/doc/refman/9.6/en/proxy-users.html

Protocol Trace Plugins

» Rejection of too-weak passwords in statements that assign passwords (such as CREATE USER and
ALTER USER statements).

» Assessing the strength of potential passwords for the VALI DATE _PASSWORD STRENGTH() SQL
function.

For information about writing this type of plugin, see Section 4.4.10, “Writing Password-Validation Plugins”.

Protocol Trace Plugins

MySQL supports the use of protocol trace plugins: client-side plugins that implement tracing of
communication between a client and the server that takes place using the client/server protocol.

For more information about protocol trace plugins, see Section 4.4.11, “Writing Protocol Trace Plugins”.

Query Rewrite Plugins

MySQL Server supports query rewrite plugins that can examine and possibly modify statements received
by the server before the server executes them. A query rewrite plugin takes statements either before or
after the server has parsed them.

A preparse query rewrite plugin has these characteristics:

» The plugin enables rewriting of SQL statements arriving at the server before the server processes them.
e The plugin receives a statement string and may return a different string.

A postparse query rewrite plugin has these characteristics:

* The plugin enables statement rewriting based on parse trees.

» The server parses each statement and passes its parse tree to the plugin, which may traverse the tree.
The plugin can return the original tree to the server for further processing, or construct a different tree
and return that instead.

e The plugin can use the nysql _par ser plugin service for these purposes:

* To activate statement digest calculation and obtain the normalized version of statements independent
of whether the Performance Schema produces digests.

e To traverse parse trees.

« To parse statements. This is useful if the plugin constructs a new statement string from the parse tree.
The plugin can have the server parse the string to produce a new tree, then return that tree as the
representation of the rewritten statement.

For more information about plugin services, see MySQL Plugin Services.
Preparse and postparse query rewrite plugins share these characteristics:
« If a query rewrite plugin is installed, the - - | og- r aw option affects statement logging as follows:

« Without - - | 0og- r aw, the server logs the statement returned by the query rewrite plugin. This may
differ from the statement as received.

« With - - | og- r aw, the server logs the original statement as received.

12

https://dev.mysql.com/doc/refman/9.6/en/create-user.html
https://dev.mysql.com/doc/refman/9.6/en/alter-user.html
https://dev.mysql.com/doc/refman/9.6/en/encryption-functions.html#function_validate-password-strength
https://dev.mysql.com/doc/refman/9.6/en/plugin-services.html
https://dev.mysql.com/doc/refman/9.6/en/server-options.html#option_mysqld_log-raw
https://dev.mysql.com/doc/refman/9.6/en/server-options.html#option_mysqld_log-raw
https://dev.mysql.com/doc/refman/9.6/en/server-options.html#option_mysqld_log-raw

Keyring Plugins

« If a plugin rewrites a statement, the server decides whether to write it to the binary log (and thus to any
replicas) based on the rewritten statement, not the original statement. If a plugin rewrites only SELECT
statements to SELECT statements, there is no impact on binary logging because the server does not
write SELECT statements to the binary log.

« If a plugin rewrites a statement, the server produces a Not e message that the client can view using
SHOW WARNI NGS. Messages have this format, where st nt _i n is the original statement and st nt _out
is the rewritten statement:

Query 'stnt_in' rewitten to 'stnt_out' by a query rewite plugin

MySQL distributions include a postparse query rewrite plugin named Rewr i t er . This plugin is rule based.
You can add rows to its rules table to cause SELECT statement rewriting. For more information, see The
Rewriter Query Rewrite Plugin.

Query rewrite plugins use the same API as audit plugins. For more information about audit plugins, see
Section 4.4.8, “Writing Audit Plugins”.

Keyring Plugins

MySQL Server supports keyring plugins that enable internal server components and plugins to securely
store sensitive information for later retrieval.

All MySQL distributions include a keyring plugin named keyri ng_fi | e. MySQL Enterprise Edition
distributions include additional keyring plugins. See The MySQL Keyring.

For more information about keyring plugins, see Section 4.4.12, “Writing Keyring Plugins”.

4.2 Plugin API Characteristics

The server plugin API has these characteristics:
 All plugins have several things in common.

Each plugin has a name that it can be referred to in SQL statements, as well as other metadata such
as an author and a description that provide other information. This information can be examined in the
| NFORVATI ON_SCHENMA. PLUG NS table or using the SHOW PLUG NS statement.

* The plugin framework is extendable to accommodate different kinds of plugins.

Although some aspects of the plugin APl are common to all types of plugins, the API also permits type-
specific interface elements so that different types of plugins can be created. A plugin with one purpose
can have an interface most appropriate to its own requirements and not the requirements of some other

plugin type.

Interfaces for several types of plugins exist, such as storage engines, full-text parser, and
| NFORVATI ON_SCHENMA tables. Others can be added.

* Plugins can expose information to users.

A plugin can implement system and status variables that are available through the SHOWV VARI ABLES
and SHOW STATUS statements.

* The plugin APl includes versioning information.

The version information included in the plugin API enables a plugin library and each plugin that it
contains to be self-identifying with respect to the API version that was used to build the library. If the API

13

https://dev.mysql.com/doc/refman/9.6/en/select.html
https://dev.mysql.com/doc/refman/9.6/en/select.html
https://dev.mysql.com/doc/refman/9.6/en/select.html
https://dev.mysql.com/doc/refman/9.6/en/show-warnings.html
https://dev.mysql.com/doc/refman/9.6/en/select.html
https://dev.mysql.com/doc/refman/9.6/en/rewriter-query-rewrite-plugin.html
https://dev.mysql.com/doc/refman/9.6/en/rewriter-query-rewrite-plugin.html
https://dev.mysql.com/doc/refman/9.6/en/keyring.html
https://dev.mysql.com/doc/refman/9.6/en/information-schema-plugins-table.html
https://dev.mysql.com/doc/refman/9.6/en/show-plugins.html
https://dev.mysql.com/doc/refman/9.6/en/show-variables.html
https://dev.mysql.com/doc/refman/9.6/en/show-status.html

Plugin API Components

changes over time, the version numbers will change, but a server can examine a given plugin library's
version information to determine whether it supports the plugins in the library.

There are two types of version numbers. The first is the version for the general plugin framework itself.
Each plugin library includes this kind of version number. The second type of version applies to individual
plugins. Each specific type of plugin has a version for its interface, so each plugin in a library has a type-
specific version number. For example, a library containing a full-text parser plugin has a general plugin
API version number, and the plugin has a version number specific to the full-text plugin interface.

» The plugin APl implements security restrictions.

A plugin library must be installed in a specific dedicated directory for which the location is controlled by
the server and cannot be changed at runtime. Also, the library must contain specific symbols that identify
it as a plugin library. The server will not load something as a plugin if it was not built as a plugin.

» Plugins have access to server services.

The services interface exposes server functionality that plugins can access using ordinary function calls.
For details, see MySQL Plugin Services.

In some respects, the server plugin API is similar to the older loadable function API that it supersedes, but
the plugin API has several advantages over the older interface. For example, loadable functions had no
versioning information. Also, the newer plugin interface eliminates the security issues of the older loadable
function interface. The older interface for writing nonplugin loadable functions permitted libraries to be
loaded from any directory searched by the system's dynamic linker, and the symbols that identified the
loadable function library were relatively nonspecific.

The client plugin API has similar architectural characteristics, but client plugins have no direct access to the
server the way server plugins do.

4.3 Plugin APl Components

The server plugin implementation comprises several components.

SQL statements:

* | NSTALL PLUG Nregisters a plugin in the mysql . pl ugi n table and loads the plugin code.

e UNI NSTALL PLUG N unregisters a plugin from the nysql . pl ugi n table and unloads the plugin code.

» The W TH PARSER clause for full-text index creation associates a full-text parser plugin with a given
FULLTEXT index.

* SHOW PLUG NS displays information about server plugins.
Command-line options and system variables:
e The - - pl ugi n-1 oad option enables plugins to be loaded at server startup time.

e The pl ugi n_di r system variable indicates the location of the directory where all plugins must be
installed. The value of this variable can be specified at server startup with a - - pl ugi n_di r =di r _nane
option. nysql confi g --plugi ndir displays the default plugin directory path name.

For additional information about plugin loading, see Installing and Uninstalling Plugins.
Plugin-related tables:

e The | NFORVATI ON_SCHEMA. PLUGQ NS table contains plugin information.

14

https://dev.mysql.com/doc/refman/9.6/en/plugin-services.html
https://dev.mysql.com/doc/refman/9.6/en/install-plugin.html
https://dev.mysql.com/doc/refman/9.6/en/uninstall-plugin.html
https://dev.mysql.com/doc/refman/9.6/en/show-plugins.html
https://dev.mysql.com/doc/refman/9.6/en/server-options.html#option_mysqld_plugin-load
https://dev.mysql.com/doc/refman/9.6/en/server-system-variables.html#sysvar_plugin_dir
https://dev.mysql.com/doc/refman/9.6/en/server-system-variables.html#sysvar_plugin_dir
https://dev.mysql.com/doc/refman/9.6/en/plugin-loading.html
https://dev.mysql.com/doc/refman/9.6/en/information-schema-plugins-table.html

Writing Plugins

e The nysql . pl ugi n table lists each plugin that was installed with | NSTALL PLUG N and is required for
plugin use. For new MySQL installations, this table is created during the installation process.

The client plugin implementation is simpler:

» Forthe nysql options() C API function, the MYSQL_DEFAULT_AUTHand MYSQL_PLUG N DI R
options enable client programs to load authentication plugins.

» There are C API functions that enable management of client plugins.

To examine how MySQL implements plugins, consult the following source files in a MySQL source
distribution:

* Inthei ncl ude/ nysql directory, pl ugi n. h exposes the public plugin API. This file should be
examined by anyone who wants to write a plugin library. pl ugi n_xxx. h files provide additional
information that pertains to specific types of plugins. cl i ent _pl ugi n. h contains information specific to
client plugins.

* Inthe sql directory, sql _pl ugi n. h and sql _pl ugi n. cc comprise the internal plugin implementation.
sql _acl . cc is where the server uses authentication plugins. These files need not be consulted by
plugin developers. They may be of interest for those who want to know more about how the server
handles plugins.

e Inthe sql - common directory, cl i ent _pl ugi n. h implements the C API client plugin functions, and
cl i ent. c implements client authentication support. These files need not be consulted by plugin
developers. They may be of interest for those who want to know more about how the server handles
plugins.

4.4 Writing Plugins

To create a plugin library, you must provide the required descriptor information that indicates what plugins
the library file contains, and write the interface functions for each plugin.

Every server plugin must have a general descriptor that provides information to the plugin API, and a
type-specific descriptor that provides information about the plugin interface for a given type of plugin.
The structure of the general descriptor is the same for all plugin types. The structure of the type-specific
descriptor varies among plugin types and is determined by the requirements of what the plugin needs
to do. The server plugin interface also enables plugins to expose status and system variables. These
variables become visible through the SHOW STATUS and SHOW VARI ABLES statements and the
corresponding | NFORVATI ON_SCHENA tables.

For client-side plugins, the architecture is a bit different. Each plugin must have a descriptor, but there is no
division into separate general and type-specific descriptors. Instead, the descriptor begins with a fixed set
of members common to all client plugin types, and the common members are followed by any additional
members required to implement the specific plugin type.

A server plugin contains code that becomes part of the running server, so when you write the plugin,
you are bound by any and all constraints that otherwise apply to writing server code. For example, you
may have problems if you attempt to use functions from the | i bst dc++ library. These constraints may
change in future versions of the server, so it is possible that server upgrades will require revisions to
plugins originally written for older servers. For information about these constraints, see MySQL Source-
Configuration Options, and Dealing with Problems Compiling MySQL.

Client plugin writers should avoid dependencies on what symbols the calling application has because you
cannot be sure what applications will use the plugin.

4.4.1 Overview of Plugin Writing

15

https://dev.mysql.com/doc/refman/9.6/en/install-plugin.html
https://dev.mysql.com/doc/c-api/9.6/en/mysql-options.html
https://dev.mysql.com/doc/refman/9.6/en/show-status.html
https://dev.mysql.com/doc/refman/9.6/en/show-variables.html
https://dev.mysql.com/doc/refman/9.6/en/source-configuration-options.html
https://dev.mysql.com/doc/refman/9.6/en/source-configuration-options.html
https://dev.mysql.com/doc/refman/9.6/en/compilation-problems.html

Plugin Data Structures

These conditions apply to plugin writing:
» MySQL header files used by plugins contain C++ code, so plugins must be compiled as C++ code.

* You must compile plugins with the entire server source code present, not just the libraries and header
files.

» Compiled plugins are not compatible across server versions. For a plugin compiled against MySQL
9.6.X, there is no guarantee it will work with a MySQL 9.6.Y server without recompiling for MySQL 9.6.Y.

* Plugins are loaded and unloaded dynamically, so your operating system must support dynamic loading
and you must have compiled the calling application dynamically (not statically). For server plugins, this
means that nysql d must be linked dynamically.

The following procedure provides an overview of the steps needed to create a plugin library. The next
sections provide additional details on setting plugin data structures and writing specific types of plugins.

1. Inthe plugin source file, include the header files that the plugin library needs. The pl ugi n. h file is
required, and the library might require other files as well. For example:

#i ncl ude <stdlib. h>
#i ncl ude <ctype. h>
#i ncl ude <mysql / pl ugi n. h>

2. Set up the descriptor information for the plugin library file. For server plugins, write the library
descriptor, which must contain the general plugin descriptor for each server plugin in the file. For more
information, see Section 4.4.2.1, “Server Plugin Library and Plugin Descriptors”. In addition, set up the
type-specific descriptor for each server plugin in the library. Each plugin's general descriptor points to
its type-specific descriptor.

For client plugins, write the client descriptor. For more information, see Section 4.4.2.3, “Client Plugin
Descriptors”.

3. Write the plugin interface functions for each plugin. For example, each plugin's general plugin
descriptor points to the initialization and deinitialization functions that the server should invoke when
it loads and unloads the plugin. The plugin's type-specific description may also point to interface
functions.

4. For server plugins, set up the status and system variables, if there are any.

5. Compile the plugin library as a shared library and install it in the plugin directory. For more information,
see Section 4.4.3, “Compiling and Installing Plugin Libraries”.

6. For server plugins, register the plugin with the server. For more information, see Installing and
Uninstalling Plugins.

7. Test the plugin to verify that it works properly.

4.4.2 Plugin Data Structures

A plugin library file includes descriptor information to indicate what plugins it contains.
If the plugin library contains any server plugins, it must include the following descriptor information:

A library descriptor indicates the general server plugin API version number used by the library and
contains a general plugin descriptor for each server plugin in the library. To provide the framework for
this descriptor, invoke two macros from the pl ugi n. h header file:

nmysql _decl ar e_pl ugi n(nane)

16

https://dev.mysql.com/doc/refman/9.6/en/plugin-loading.html
https://dev.mysql.com/doc/refman/9.6/en/plugin-loading.html

Plugin Data Structures

... one or nore server plugin descriptors here ...
nmysql _decl are_pl ugi n_end

The macros expand to provide a declaration for the API version automatically. You must provide the
plugin descriptors.

» Within the library descriptor, each general server plugin is described by a st _nysql _pl ugi n structure.
This plugin descriptor structure contains information that is common to every type of server plugin: A
value that indicates the plugin type; the plugin name, author, description, and license type; pointers
to the initialization and deinitialization functions that the server invokes when it loads and unloads the
plugin, and pointers to any status or system variables the plugin implements.

» Each general server plugin descriptor within the library descriptor also contains a pointer to a type-
specific plugin descriptor. The structure of the type-specific descriptors varies from one plugin type to
another because each type of plugin can have its own API. A type-specific plugin descriptor contains a
type-specific API version number and pointers to the functions that are needed to implement that plugin
type. For example, a full-text parser plugin has initialization and deinitialization functions, and a main
parsing function. The server invokes these functions when it uses the plugin to parse text.

The plugin library also contains the interface functions that are referenced by the general and type-specific
descriptors for each plugin in the library.

If the plugin library contains a client plugin, it must include a descriptor for the plugin. The descriptor begins
with a fixed set of members common to all client plugins, followed by any members specific to the plugin
type. To provide the descriptor framework, invoke two macros from the cl i ent _pl ugi n. h header file:

nysql _decl are_cl i ent_pl ugi n(pl ugi n_type)
menbers common to all client plugins ...
. type-specific extra nmenbers ...
nysql _end_cl i ent_pl ugi n;

The plugin library also contains any interface functions referenced by the client descriptor.

The nmysql _decl are_pl ugi n() and nysql _decl are_cl i ent _pl ugi n() macros differ somewhat
in how they can be invoked, which has implications for the contents of plugin libraries. The following
guidelines summarize the rules:

 mysql _decl are_plugin() andnysql _decl are_client _plugin() can both be used in the same
source file, which means that a plugin library can contain both server and client plugins. However, each
of nysgl _decl are_pl ugi n() and mysql _decl are_client_plugi n() can be used at most once.

e nysql decl are_pl ugi n() permits multiple server plugin declarations, so a plugin library can contain
multiple server plugins.

* nysql _decl are_client_plugin() permits only a single client plugin declaration. To create multiple
client plugins, separate plugin libraries must be used.

When a client program looks for a client plugin that is in a plugin library and not built into

i brmysgl cli ent, it looks for a file with a base name that is the same as the plugin name. For example,
if a program needs to use a client authentication plugin named aut h_xxx on a system that uses . so

as the library suffix, it looks in the file named aut h_xxx. so. (On macOS, the program looks first for

aut h_xxx. dyl i b, then for aut h_xxx. s0.) For this reason, if a plugin library contains a client plugin, the
library must have the same base name as that plugin.

The same is not true for a library that contains server plugins. The - - pl ugi n- | oad option and the
| NSTALL PLUG N statement provide the library file name explicitly, so there need be no explicit
relationship between the library name and the name of any server plugins it contains.

17

https://dev.mysql.com/doc/refman/9.6/en/server-options.html#option_mysqld_plugin-load
https://dev.mysql.com/doc/refman/9.6/en/install-plugin.html

Plugin Data Structures

4.4.2.1 Server Plugin Library and Plugin Descriptors

Every plugin library that contains server plugins must include a library descriptor that contains the general
plugin descriptor for each server plugin in the file. This section discusses how to write the library and

general descriptors for server plugins.

The library descriptor must define two symbols:

« nysql _plugin_interface version_ specifies the version number of the general plugin
framework. This is given by the MYSQL_PLUG N_| NTERFACE VERSI ON symbol, which is defined in the

pl ugi n. h file.

« nysql _plugin_decl arati ons_ defines an array of plugin declarations, terminated by a declaration
with all members set to 0. Each declaration is an instance of the st _mysql _pl ugi n structure (also
defined in pl ugi n. h). There must be one of these for each server plugin in the library.

If the server does not find those two symbols in a library, it does not accept it as a legal plugin library and
rejects it with an error. This prevents use of a library for plugin purposes unless it was built specifically as a

plugin library.

The conventional way to define the two required symbols is by using the nysql _decl are_pl ugi n() and

nysql _decl are_pl ugi n_end macros from the pl ugi n. h file:

nmysql _decl ar e_pl ugi n(nane)
one or nore server plugin descriptors here ...
nmysql _decl are_pl ugi n_end

Each server plugin must have a general descriptor that provides information to the server plugin API. The
general descriptor has the same structure for all plugin types. The st _nysql _pl ugi n structure in the

pl ugi n. h file defines this descriptor:

struct st_nysql _plugin

{
int type; /* the plugin type (a MYSQL_XXX_PLUG N val ue) */
voi d *info; /* pointer to type-specific plugin descriptor */
const char *nane; /* plugin nane */
const char *aut hor; /* plugin author (for |_S. PLUG NS) */
const char *descr; /* general descriptive text (for |I_S. PLUG NS) */
int |icense; /* the plugin |icense (PLUG N_LI CENSE_XXX) */
int (*init)(void *); [/* the function to invoke when plugin is |oaded */
int (*deinit)(void *);/* the function to invoke when plugin is unl oaded */
unsi gned int version; /* plugin version (for |_S. PLUG NS) */
struct st_nysql _show var *status_vars
struct st_nysql _sys_var **systemvars
void * _ reservedl; /* reserved for dependency checking */
unsigned long flags; [/* flags for plugin */

g

The st _nysql _pl ugi n descriptor structure members are used as follows. char * members should be

specified as null-terminated strings.

» type: The plugin type. This must be one of the plugin-type values from pl ugi n. h:

/*

The al | owabl e types of plugins

*/

#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne

MYSQL_UDF_PLUG N 0
MYSQL_STORAGE_ENGI NE_PLUG N 1
MYSQL_FTPARSER PLUG N 2
MYSQL_DAEMON PLUGI N 3

/*
/*
/*
/*

MYSQL_| NFORVATI ON_SCHEVMA PLUG N 4 [*

MYSQL_AUDI T_PLUG N 5

/*

User -defined function */
St or age Engi ne */
Ful | -text parser plugin */

The daenon/raw plugin type */
The | _S plugin type */
The Audit plugin type */

18

Plugin Data Structures

#define MYSQL_REPLI CATI ON_PLUG N 6 /* The replication plugin type */
#defi ne MYSQL_AUTHENTI CATI ON_PLUG N 7 /* The aut hentication plugin type */
#defi ne MYSQL_VALI DATE_PASSWORD PLUG N 8 /* validate password plugin type */
#defi ne MYSQL_GROUP_REPLI CATION PLUGN 9 /* The G oup Replication plugin */
#defi ne MYSQL_KEYRI NG PLUG N 10 /* The Keyring plugin type */
#define MYSQL_CLONE_PLUG N 11 /* The done plugin type */

For example, for a full-text parser plugin, the t ype value is M\YSQL_FTPARSER PLUG N.

i nf o: A pointer to the type-specific descriptor for the plugin. This descriptor's structure depends on

the particular type of plugin, unlike that of the general plugin descriptor structure. For version-control
purposes, the first member of the type-specific descriptor for every plugin type is expected to be the
interface version for the type. This enables the server to check the type-specific version for every plugin
no matter its type. Following the version number, the descriptor includes any other members needed,
such as callback functions and other information needed by the server to invoke the plugin properly.
Later sections on writing particular types of server plugins describe the structure of their type-specific
descriptors.

name: A string that gives the plugin name. This is the name that will be listed in the mysql . pl ugi n
table and by which you refer to the plugin in SQL statements such as | NSTALL PLUG Nand

UNI NSTALL PLUG N, or with the - - pl ugi n- | oad option. The name is also visible in the

| NFORVATI ON_SCHENA. PLUG NS table or the output from SHOW PLUG NS.

The plugin name should not begin with the name of any server option. If it does, the server will fail to
initialize it. For example, the server has a - - socket option, so you should not use a plugin name such
as socket, socket _pl ugi n, and so forth.

aut hor : A string naming the plugin author. This can be whatever you like.
desc: A string that provides a general description of the plugin. This can be whatever you like.

[i cense: The plugin license type. The value can be one of PLUG N LI CENSE PROPRI ETARY,
PLUG N LI CENSE_GPL, or PLUG N_LI CENSE_BSD.

i ni t: A once-only initialization function, or NULL if there is no such function. The server executes this
function when it loads the plugin, which happens for | NSTALL PLUGQ N or, for plugins listed in the
nysql . pl ugi n table, at server startup. The function takes one argument that points to the internal
structure used to identify the plugin. It returns zero for success and nonzero for failure.

dei ni t : A once-only deinitialization function, or NULL if there is no such function. The server executes
this function when it unloads the plugin, which happens for UNI NSTALL PLUGQ N or, for plugins listed
in the mysql . pl ugi n table, at server shutdown. The function takes one argument that points to the
internal structure used to identify the plugin It returns zero for success and nonzero for failure.

ver si on: The plugin version number. When the plugin is installed, this value can be retrieved from the
| NFORVATI ON_SCHENMA. PLUG NS table. The value includes major and minor numbers. If you write
the value as a hex constant, the format is Ox MVNN, where MMand NN are the major and minor numbers,
respectively. For example, 0x0302 represents version 3.2.

st at us_var s: A pointer to a structure for status variables associated with the plugin, or NULL if there
are no such variables. When the plugin is installed, these variables are displayed in the output of the
SHOW STATUS statement.

The st at us_var s member, if not NULL, points to an array of st _nysql _show var structures that
describe status variables. See Section 4.4.2.2, “Server Plugin Status and System Variables”.

syst em var s: A pointer to a structure for system variables associated with the plugin, or NULL if there
are no such variables. These options and system variables can be used to help initialize variables

19

https://dev.mysql.com/doc/refman/9.6/en/install-plugin.html
https://dev.mysql.com/doc/refman/9.6/en/uninstall-plugin.html
https://dev.mysql.com/doc/refman/9.6/en/server-options.html#option_mysqld_plugin-load
https://dev.mysql.com/doc/refman/9.6/en/information-schema-plugins-table.html
https://dev.mysql.com/doc/refman/9.6/en/show-plugins.html
https://dev.mysql.com/doc/refman/9.6/en/server-options.html#option_mysqld_socket
https://dev.mysql.com/doc/refman/9.6/en/install-plugin.html
https://dev.mysql.com/doc/refman/9.6/en/uninstall-plugin.html
https://dev.mysql.com/doc/refman/9.6/en/information-schema-plugins-table.html
https://dev.mysql.com/doc/refman/9.6/en/show-status.html

Plugin Data Structures

within the plugin. When the plugin is installed, these variables are displayed in the output of the SHOW
VARI ABLES statement.

The syst em var s member, if not NULL, points to an array of st _nysql _sys_var structures that
describe system variables. See Section 4.4.2.2, “Server Plugin Status and System Variables”.

o Tl

reservedl: A placeholder for the future. It should be set to NULL.

ags: Plugin flags. Individual bits correspond to different flags. The value should be set to the OR of

the applicable flags. These flags are available:

#define PLUG N_OPT_NO | NSTALL 1UL /* Not dynamically | oadable */
#define PLUG N_OPT_NO_UNI NSTALL 2UL /* Not dynami cal |y unl oadabl e */
#define PLUG N OPT_ALLOWNEARLY 4UL /* allow --early-plugin-|oad */

The flags have the following meanings when enabled:

The
and

PLUG N_OPT_NO | NSTALL: The plugin cannot be loaded at runtime with the | NSTALL PLUG N
statement. This is appropriate for plugins that must be loaded at server startup with the - - pl ugi n-
| oad, - - pl ugi n- | oad- add, or - - ear | y- pl ugi n- | oad option.

PLUG N_OPT_NO_UNI NSTALL: The plugin cannot be unloaded at runtime with the UNI NSTALL
PLUG N statement.

PLUG N_OPT_ALLOW EARLY: The plugin can be loaded early in the server startup sequence with the
--early-plugin-1 oad option. This flag has no effect on whether a plugin can be loaded at server
startup with the - - pl ugi n- | oad or - - pl ugi n-1 oad- add option, or at runtime with the | NSTALL
PLUG N statement.

server invokes the i ni t and dei ni t functions in the general plugin descriptor only when loading
unloading the plugin. They have nothing to do with use of the plugin such as happens when an SQL

statement causes the plugin to be invoked.

For example, the descriptor information for a library that contains a single full-text parser plugin named
si npl e_par ser looks like this:

nysql _decl are_pl ugi n(ftexanpl e)

MYSQL_FTPARSER PLUG N, I* type */
&sinpl e_parser_descriptor, /* descriptor */
"sinmpl e_parser", /* nane */
"Oracl e Corporation”, /* aut hor */
"Sinmple Full-Text Parser", [/* description */
PLUG N_LI CENSE_GPL, /* plugin |icense */
sinpl e_parser_plugin_init, /* init function (when | oaded) */
sinpl e_parser_plugin_deinit,/* deinit function (when unl oaded) */
0x0001, /* version */
si npl e_st at us, /* status vari abl es */
si npl e_system vari abl es, /* system vari abl es */
NULL,

0

}
nysql _decl are_pl ugi n_end

For a full-text parser plugin, the type must be MYSQL_FTPARSER_PLUG N. This is the value that identifies
the plugin as being legal for use in a W TH PARSER clause when creating a FULLTEXT index. (No other
plugin type is legal for this clause.)

pl ugi n. h defines the nysqgl decl are_pl ugi n() and nysqgl _decl are_pl ugi n_end macros like

this:

20

https://dev.mysql.com/doc/refman/9.6/en/show-variables.html
https://dev.mysql.com/doc/refman/9.6/en/show-variables.html
https://dev.mysql.com/doc/refman/9.6/en/install-plugin.html
https://dev.mysql.com/doc/refman/9.6/en/server-options.html#option_mysqld_plugin-load
https://dev.mysql.com/doc/refman/9.6/en/server-options.html#option_mysqld_plugin-load
https://dev.mysql.com/doc/refman/9.6/en/server-options.html#option_mysqld_plugin-load-add
https://dev.mysql.com/doc/refman/9.6/en/server-options.html#option_mysqld_early-plugin-load
https://dev.mysql.com/doc/refman/9.6/en/uninstall-plugin.html
https://dev.mysql.com/doc/refman/9.6/en/uninstall-plugin.html
https://dev.mysql.com/doc/refman/9.6/en/server-options.html#option_mysqld_early-plugin-load
https://dev.mysql.com/doc/refman/9.6/en/server-options.html#option_mysqld_plugin-load
https://dev.mysql.com/doc/refman/9.6/en/server-options.html#option_mysqld_plugin-load-add
https://dev.mysql.com/doc/refman/9.6/en/install-plugin.html
https://dev.mysql.com/doc/refman/9.6/en/install-plugin.html

Plugin Data Structures

#i f ndef MYSQL_DYNAM C_PLUG N

#defi ne __MYSQL_DECLARE PLUG N(NAME, VERSION, PS|IZE, DECLS) \

MYSQL_PLUG N_EXPORT int VERSI ON= MYSQL_PLUG N_| NTERFACE_VERSI ON; \

MYSQL_PLUG N_EXPORT int PSIZE= sizeof (struct st_nysql _plugin); \

MYSQL_PLUG N_EXPORT struct st_mysql _plugin DECLS[] = {

#el se

#defi ne __MYSQL_DECLARE PLUG N(NAME, VERSION, PS|IZE, DECLS) \

MYSQL_PLUG N_EXPORT int _nysql _plugin_interface_version_= MYSQL_PLUG N_I NTERFACE_VERSI ON; \
MYSQL_PLUG N_EXPORT int _nysql _sizeof _struct_st_plugin_= sizeof (struct st_nysql _plugin); \
MYSQL_PLUG N_EXPORT struct st_mysql _plugin _nysqgl _plugi n_declarations_[]= {

#endi f

#defi ne nysql _decl are_pl ugi n(NAME) \

__MYSQL_DECLARE_PLUG N(NAME, \
builtin_ ## NAME ## _plugi n_interface_version, \
bui l tin_ ## NAME ## _sizeof _struct_st_plugin, \
bui l tin_ ## NAME ## _pl ugi n)

#defi ne nysql _decl are_pl ugin_end ,{0,0,0,0,0,0,0,0,0,0,0,0,0}}
Note

Those declarations define the _nmysql _pl ugi n_interface_versi on_ symbol
only if the MYSQL_DYNAM C_PLUG Nsymbol is defined. This means that -
DMYSQL_DYNAM C_PLUG N must be provided as part of the compilation command
to build the plugin as a shared library.

When the macros are used as just shown, they expand to the following code, which defines both of the
required symbols (_nysql _plugin_interface_version_and_nysql _plugi n_decl arations_):

int _nysqgl _plugin_interface_version_= MYSQL_PLUG N_|I NTERFACE_VERSI O\;
int _nysql _sizeof _struct_st_plugi n_= sizeof (struct st_mysql _pl ugin);
struct st_nysql _plugin _nysql _plugin_declarations_[]= {

{
MYSQL_FTPARSER_PLUG N, /* type */
&si npl e_par ser _descriptor, /* descriptor */
"si npl e_parser", /* nane */
"Oracl e Corporation", /* aut hor */
"Sinple Full-Text Parser", [* description */
PLUG N_LI CENSE_GPL, /* plugin |icense */
sinpl e_parser_plugin_init, /* init function (when | oaded) */
si npl e_parser_plugin_deinit,/* deinit function (when unl oaded) */
0x0001, /* version */
si npl e_st at us, /* status vari abl es */
si npl e_system vari abl es, /* system vari abl es */
NULL,
0

}
,{0,0,0,0,0,0,0,0,0,0,0,0}}

g

The preceding example declares a single plugin in the general descriptor, but it is possible to declare
multiple plugins. List the declarations one after the other between nysql _decl are_pl ugi n() and
nmysql _decl are_pl ugi n_end, separated by commas.

MySQL server plugins must be compiled as C++ code. One C++ feature that you should not

use is nhonconstant variables to initialize global structures. Members of structures such as the

st _mysql _pl ugi n structure should be initialized only with constant variables. The si npl e_par ser
descriptor shown earlier is permissible in a C++ plugin because it satisfies that requirement:

nysql _decl are_pl ugi n(ftexanpl e)

MYSQL_FTPARSER PLUGI N, /* type *f

21

Plugin Data Structures

&si npl e_par ser _descriptor, [/* descriptor */
"si npl e_parser", [* name */
"Oracl e Corporation”, /* aut hor */
"Sinple Full-Text Parser", [* description */
PLUG N_LI CENSE_GPL, /* plugin |icense */
sinpl e_parser_plugin_init, /* init function (when | oaded) */
si npl e_parser_plugin_deinit,/* deinit function (when unl oaded) */
0x0001, /* version */
si npl e_st at us, /* status vari abl es */
si npl e_system vari abl es, /* system vari abl es */
NULL,

0

nmysql _decl are_pl ugi n_end;

Here is another valid way to write the general descriptor. It uses constant variables to indicate the plugin
name, author, and description:

const char *sinple_parser_nane = "sinple_parser"”;
const char *sinple_parser_author = "Oracle Corporation”;
const char *sinple_parser_description = "Sinple Full-Text Parser";

nmysql _decl are_pl ugi n(ftexanpl e)

{

MYSQL_FTPARSER_PLUG N, /* type */
&si npl e_par ser _descriptor, [/* descriptor */
si npl e_par ser _nane, /[* nane */
si npl e_par ser _aut hor, /* aut hor */
si npl e_parser_description, /* description */
PLUG N_LI CENSE_GPL, /* plugin |icense */
sinpl e_parser_plugin_init, /* init function (when | oaded) */
si npl e_parser_plugin_deinit,/* deinit function (when unl oaded) */
0x0001, /* version */
si npl e_st at us, /* status vari abl es */
si npl e_system vari abl es, /* system vari abl es */
NULL,

0

nmysql _decl are_pl ugi n_end;

However, the following general descriptor is invalid. It uses structure members to indicate the plugin name,
author, and description, but structures are not considered constant initializers in C++:

typedef struct
{
const char *nane;
const char *aut hor;
const char *description;
} plugin_info;

plugin_info parser_info = {
"si npl e_parser",
"Oracl e Corporation”,
"Sinple Full-Text Parser"

b

nysql _decl are_pl ugi n(ftexanpl e)

{
MYSQL_FTPARSER_PLUG N, /* type */
&si npl e_par ser _descriptor, [/* descriptor */
par ser _i nf 0. nane, /* name */
par ser _i nf 0. aut hor, [* aut hor */
parser _i nfo. descri pti on, /* description */
PLUG N_LI CENSE_GPL, /* plugin |icense */
sinpl e_parser_plugin_init, /* init function (when | oaded) */

si npl e_parser_plugin_deinit,/* deinit function (when unl oaded) */

Plugin Data Structures

0x0001, /* version */
si npl e_st at us, /* status vari abl es */
si npl e_system vari abl es, /* system vari abl es */
NULL,

0

nmysql _decl are_pl ugi n_end;
4.4.2.2 Server Plugin Status and System Variables

The server plugin interface enables plugins to expose status and system variables using the
status_vars and syst em var s members of the general plugin descriptor.

The st at us_var s member of the general plugin descriptor, if not 0, points to an array of
st _mysql show var structures, each of which describes one status variable, followed by a structure with
all members setto 0. The st _nysql show var structure has this definition:

struct st_nysqgl _show var {

const char *nane;

char *val ue;

enum enum nysql _show_type type;

H

The following table shows the permissible status variable t ype values and what the corresponding
variable should be.

Table 4.1 Server Plugin Status Variable Types

Variable Type Meaning

SHOW BOOL Pointer to a boolean variable

SHOW. | NT Pointer to an integer variable

SHOW LONG Pointer to a long integer variable

SHOW LONGLONG Pointer to a longlong integer variable

SHOW CHAR A string

SHOW CHAR _PTR Pointer to a string

SHOW ARRAY Pointer to another st _nysql _show var array
SHOW FUNC Pointer to a function

SHOW DOUBLE Pointer to a double

For the SHOW FUNC type, the function is called and fills in its out parameter, which then provides
information about the variable to be displayed. The function has this signature:

#def i ne SHOW VAR FUNC BUFF_S| ZE 1024

typedef int (*nysqgl _show var_func) (void *thd,
struct st_nysqgl _show var *out,
char *buf);

The syst em var s member, if not 0, points to an array of st _nysqgl _sys_var structures, each of
which describes one system variable (which can also be set from the command-line or configuration file),
followed by a structure with all members set to 0. The st _nysql _sys_var structure is defined as follows:

struct st_mysqgl _sys_var {
int flags;
const char *nanme, *comment;

23

Plugin Data Structures

int (*check)(THD*, struct st_nysqgl_sys_var *, void*, st_nysql_val ue*);
voi d (*update)(THD*, struct st_nysgl_sys_var *, void*, const void*);

Ik
Additional fields are append as required depending upon the flags.

For convenience, a number of macros are defined that make creating new system variables within a plugin
much simpler.

Throughout the macros, the following fields are available:

* nane: An unquoted identifier for the system variable.

« var nane: The identifier for the static variable. Where not available, it is the same as the nane field.
» opt : Additional use flags for the system variable. The following table shows the permissible flags.

Table 4.2 Server Plugin System Variable Flags

Flag Value Description

PLUG N_VAR_READONLY The system variable is read only

PLUG N_VAR_ NOSYSVAR The system variable is not user visible at runtime

PLUG N_VAR_NOCMDOPT The system variable is not configurable from the
command line

PLUG N_VAR_NOCMDARG No argument is required at the command line
(typically used for boolean variables)

PLUG N_VAR_ RQCMDARG An argument is required at the command line (this
is the default)

PLUG N_VAR OPCNMDARG An argument is optional at the command line

PLUG N_VAR_MEMALLOC Used for string variables; indicates that memory is
to be allocated for storage of the string

» comment : A descriptive comment to be displayed in the server help message. NULL if this variable is to
be hidden.

» check: The check function, NULL for default.

» updat e: The update function, NULL for default.
» def aul t : The variable default value.

e mi ni mum The variable minimum value.

» maxi mum The variable maximum value.

» bl ocksi ze: The variable block size. When the value is set, it is rounded to the nearest multiple of
bl ocksi ze.

A system variable may be accessed either by using the static variable directly or by using the
SYSVAR() accessor macro. The SYSVAR() macro is provided for completeness. Usually it should be used
only when the code cannot directly access the underlying variable.

For example:

static int my_foo;

Plugin Data Structures

stati c MYSQ._SYSVAR | NT(foo_var, my_foo,
PLUG N_VAR_RQCMDARG, "foo commrent ",
NULL, NULL, O, O, INT_MAX, 0);

SYSVAR(f oo_var) = val ue;
val ue= SYSVAR(foo_var);
nmy_f oo= val ue;
val ue= ny_f oo;

Session variables may be accessed only through the THDVAR() accessor macro. For example:

stati c MYSQ._THDVAR BOOL(sone_fI ag,
PLUG N_VAR_NOCMDARG “flag comment ",
NULL, NULL, FALSE);

if (THDVAR(thd, sone_flag))
{
do_sonet hi ng() ;
THDVAR(t hd, sonme_fl ag) = FALSE;

}

All global and session system variables must be published to nysql d before use. This is done by
constructing a NULL-terminated array of the variables and linking to it in the plugin public interface. For
example:

static struct st_nysql _sys_var *my_plugin_vars[]= {
MYSQL_SYSVAR(f oo_var),
MYSQL_SYSVAR(sone_f | ag),
NULL
iE
nmysql _decl are_pl ugi n(f oopl ug)
{
MYSQL_..._PLUG N,
&pl ugi n_dat a,
"foopl ug",
"foo author",
"This does foo!",
PLUG N_LI CENSE_GPL,
foo_init,
foo fini,
0x0001,
NULL,
my_pl ugi n_vars,
NULL,
0

nmysql _decl are_pl ugi n_end;
The following convenience macros enable you to declare different types of system variables:

» Boolean system variables of type bool , which is a 1-byte boolean. (0 =f al se, 1 =true)

MYSQL_THDVAR BOOL(nane, opt, conment, check, update, default)
MYSQL_SYSVAR BOOL(nhane, varnanme, opt, comment, check, update, default)

 String system variables of type char *, which is a pointer to a null-terminated string.

MYSQL_THDVAR _STR(nane, opt, comment, check, update, default)
MYSQL_SYSVAR STR(nane, varnanme, opt, comment, check, update, default)

* Integer system variables, of which there are several varieties.

« Ani nt system variable, which is typically a 4-byte signed word.

MYSQL_THDVAR | NT(nane, opt, comment, check, update, default, mn, max, blk)

25

Plugin Data Structures

MYSQL_SYSVAR | NT(nane, varname, opt, comment, check, update, default,
m ni mum nmaxi mum bl ocksi ze)

e Anunsi gned i nt system variable, which is typically a 4-byte unsigned word.

MYSQL_THDVAR Ul NT(nane, opt, comment, check, update, default, min, max, blk)
MYSQL_SYSVAR Ul NT(nane, varnane, opt, comment, check, update, default,
m ni num maxi mum bl ocksi ze)

e Al ong system variable, which is typically either a 4- or 8-byte signed word.

MYSQL_THDVAR _LONG(nane, opt, comment, check, update, default, min, max, blk)
MYSQL_SYSVAR LONG(nane, varnane, opt, comment, check, update, default,
m ni mrum maxi nrum bl ocksi ze)

¢ Anunsi gned | ong system variable, which is typically either a 4- or 8-byte unsigned word.

MYSQL_THDVAR _ULONG(nanme, opt, comment, check, update, default, mn, max, blk)
MYSQL_SYSVAR ULONG(nane, varnane, opt, comment, check, update, default,
m ni mrum maxi mrum bl ocksi ze)

* Al ong | ong system variable, which is typically an 8-byte signed word.

MYSQL_THDVAR_LONGLONG(nane, opt, comment, check, update,
default, mnimm maxi mum bl ocksize)
MYSQL_SYSVAR _LONGLONG(nane, varnane, opt, comment, check, update,
default, mninmm maxi mum bl ocksize)

e Anunsi gned | ong | ong system variable, which is typically an 8-byte unsigned word.

MYSQL_THDVAR _ULONGLONG(nane, opt, comment, check, update,
default, mni mum maxi mum bl ocksi ze)
MYSQL_SYSVAR ULONGLONG(nane, varnanme, opt, comment, check, update,
default, mnimum maxi mum bl ocksi ze)

« A doubl e system variable, which is typically an 8-byte signed word.

MYSQL_THDVAR _DOUBLE(nanme, opt, comment, check, update,
defaul t, mnimum maxi mum bl ocksi ze)
MYSQL_SYSVAR DOUBLE(nanme, varnane, opt, comment, check, update,
defaul t, mnimum maxi mum bl ocksi ze)

e Anunsi gned | ong system variable, which is typically either a 4- or 8-byte unsigned word. The range
of possible values is an ordinal of the number of elements in the t ypel i b, starting from 0.

MYSQL_THDVAR_ENUM nanme, opt, comment, check, update, default, typelib)
MYSQL_SYSVAR_ENUM nane, varname, opt, comment, check, update,
defaul t, typelib)

« Anunsi gned | ong | ong system variable, which is typically an 8-byte unsigned word. Each bit
represents an element in the t ypel i b.

MYSQL_THDVAR_SET(nane, opt, comment, check, update, default, typelib)

MYSQL_SYSVAR SET(nane, varnane, opt, comment, check, update,
default, typelib)

Internally, all mutable and plugin system variables are stored in a HASH structure.

Display of the server command-line help text is handled by compiling a DYNAM C_ARRAY of all variables
relevant to command-line options, sorting them, and then iterating through them to display each option.

When a command-line option has been handled, it is then removed from the ar gv by the
handl e_opti on() function (my_get opt . ¢); in effect, it is consumed.

26

Plugin Data Structures

The server processes command-line options during the plugin installation process, immediately after the
plugin has been successfully loaded but before the plugin initialization function has been called

Plugins loaded at runtime do not benefit from any configuration options and must have usable defaults.
Once they are installed, they are loaded at mysql d initialization time and configuration options can be set
at the command line or within my. cnf .

Plugins should consider the t hd parameter to be read only.

4.4.2.3 Client Plugin Descriptors

Each client plugin must have a descriptor that provides information to the client plugin API. The descriptor
structure begins with a fixed set of members common to all client plugins, followed by any members
specific to the plugin type.

The st _nysql _client _pl ugi n structure inthe cl i ent _pl ugi n. h file defines a “generic” descriptor
that contains the common members:

struct st_nysqgl _client_plugin
{ .

int type;

unsi gned int interface_version;

const char *nane;

const char *aut hor;

const char *desc;

unsi gned int version[3];

const char *license;

voi d *nysql _api ;

int (*init)(char *, size_t, int, va_list);
int (*deinit)();

int (*options)(const char *option, const void *);

b

The common st _nysql _client pl ugi n descriptor structure members are used as follows. char *
members should be specified as null-terminated strings.

» type: The plugin type. This must be one of the plugin-type values from cl i ent _pl ugi n. h, such as
MYSQL_CLI ENT_AUTHENTI CATI ON_PLUG N.

* interface_version: The plugin interface version. For example, this is
MYSQL_CLI ENT_AUTHENTI CATI ON_PLUG N_I NTERFACE_VERSI ON for an authentication plugin.

e nane: A string that gives the plugin name. This is the name by which you refer to the plugin when you
call mysql options() with the MySQL_DEFAULT_AUTH option or specify the - - def aul t - aut h
option to a MySQL client program.

» aut hor : A string naming the plugin author. This can be whatever you like.
» desc: A string that provides a general description of the plugin. This can be whatever you like.

e ver si on: The plugin version as an array of three integers indicating the major, minor, and teeny
versions. For example, { 1, 2, 3} indicates version 1.2.3.

» | i cense: A string that specifies the license type.
* nysql _api : For internal use. Specify it as NULL in the plugin descriptor.

e i nit:Aonce-only initialization function, or NULL if there is no such function. The client library executes
this function when it loads the plugin. The function returns zero for success and nonzero for failure.

27

https://dev.mysql.com/doc/c-api/9.6/en/mysql-options.html

Plugin Data Structures

The i ni t function uses its first two arguments to return an error message if an error occurs. The first
argument is a pointer to a char buffer, and the second argument indicates the buffer length. Any
message returned by the i ni t function must be null-terminated, so the maximum message length is the
buffer length minus one. The next arguments are passed to mysql | oad_pl ugi n() . The first indicates
how many more arguments there are (0 if none), followed by any remaining arguments.

» dei ni t : A once-only deinitialization function, or NULL if there is no such function. The client library
executes this function when it unloads the plugin. The function takes no arguments. It returns zero for
success and nonzero for failure.

» opti ons: A function for handling options passed to the plugin, or NULL if there is no such function.
The function takes two arguments representing the option name and a pointer to its value. The function
returns zero for success and nonzero for failure.

For a given client plugin type, the common descriptor members may be followed by

additional members necessary to implement plugins of that type. For example, the

st _nysql _client_plugi n_AUTHENTI CATI ON structure for authentication plugins has a function at the
end that the client library calls to perform authentication.

To declare a plugin, use the nysql _decl are_client _plugin() andnysqgl _end_client_plugin
macros:

nysql _decl are_cl i ent_pl ugi n(pl ugi n_type)
menbers common to all client plugins ...
. type-specific extra nmenbers ...
nysql _end_cl i ent_pl ugi n;

Do not specify the t ype ori nt er f ace_ver si on member explicitly. The
nysqgl decl are_client_plugi n() macro uses the pl ugi n_t ype argument to generate their values
automatically. For example, declare an authentication client plugin like this:

nysql _decl are_cl i ent _pl ugi n(AUTHENTI CATI ON)
"my_aut h_pl ugi n",

" Aut hor Nane",

"My Cdient Authentication Plugin",
{1,0,0},

"GPL",

NULL,

ny_auth_init,

ny_auth_deinit,
ny_aut h_opti ons,
ny_aut h_mai n

nysql _end_cl i ent_pl ugin;

This declaration uses the AUTHENTI CATI ON argument to set the t ype and
i nterface_versi on membersto MYSQL CLI ENT_AUTHENTI CATI ON_PLUG Nand
MYSQL_CLI ENT_AUTHENTI CATI ON_PLUG N_| NTERFACE_VERSI ON.

Depending on the plugin type, the descriptor may have other members following the common members.
For example, for an authentication plugin, there is a function (my_aut h_mai n() in the descriptor just
shown) that handles communication with the server. See Section 4.4.9, “Writing Authentication Plugins”.

Normally, a client program that supports the use of authentication plugins causes a plugin to be loaded by
calling nysql options() to setthe M\ySQL_DEFAULT_ AUTHand MYSQL_PLUG N _DI R options:

char *plugin_dir = "path_to_plugin_dir";
char *default_auth = "plugi n_nanme";

28

https://dev.mysql.com/doc/c-api/9.6/en/mysql-load-plugin.html
https://dev.mysql.com/doc/c-api/9.6/en/mysql-options.html

Compiling and Installing Plugin Libraries

/* ... process command-line options ... */

nmysql _options(&mysqgl, MYSQ._PLUG N DI R, plugin_dir)
nmysql _opti ons(&mysqgl, MYSQL_DEFAULT_AUTH, defaul t_auth)

Typically, the program will also accept - - pl ugi n-di r and - - def aul t - aut h options that enable users
to override the default values.

Should a client program require lower-level plugin management, the client library contains functions that
take an st _nmysql _cl i ent _pl ugi n argument. See C API Client Plugin Interface.

4.4.3 Compiling and Installing Plugin Libraries

After your plugin is written, you must compile it and install it. The procedure for compiling shared objects
varies from system to system. If you build your library using CVake, it should be able to generate the
correct compilation commands for your system. If the library is named sonepl ugl i b, you should end
up with a shared library file that has a name something like sonepl ugl i b. so. (The . so file name suffix
might differ on your system.)

To use CMvake, you'll need to set up the configuration files to enable the plugin to be compiled and
installed. Use the plugin examples under the pl ugi n directory of a MySQL source distribution as a guide.

Create CVakelLi st s. t xt , which should look something like this:

MYSQL_ADD_PLUGQ N(sonepl ugli b sonepl uglib.c
MODULE_ONLY MODULE_OUTPUT_NAME “sonepl ugl i b")

When CVake generates the Makef i | e, it should take care of passing to the compilation command the -
DMYSQL_DYNAM C_PLUG Nflag, and passing to the linker the - | nysql ser vi ces flag, which is needed
to link in any functions from services provided through the plugin services interface. See MySQL Plugin
Services.

Run Cvake, then run nake:

$> cnake
$> nmake

If you need to specify configuration options to Cvake, see MySQL Source-Configuration Options, for
a list. For example, you might want to specify CMAKE_| NSTALL_PREFI X to indicate the MySQL base
directory under which the plugin should be installed. You can see what value to use for this option with
SHOW VARI ABLES:

nysqgl > SHOW VARI ABLES LI KE ' basedi r';

LT e +
| Variable_nane | Val ue
LT e +
| base | /usr/local/nysql
LT e +

The location of the plugin directory where you should install the library is given by the pl ugi n_di r system
variable. For example:

nysqgl > SHOW VARI ABLES LI KE ' plugin_dir";

LR e LT +
| Variable_nane | Val ue |
LR e LT +
| plugin_dir | /usr/local/nysql/lib/nysql/plugin

LR e LT +

29

https://dev.mysql.com/doc/c-api/9.6/en/c-api-plugin-interface.html
https://dev.mysql.com/doc/refman/9.6/en/plugin-services.html
https://dev.mysql.com/doc/refman/9.6/en/plugin-services.html
https://dev.mysql.com/doc/refman/9.6/en/source-configuration-options.html
https://dev.mysql.com/doc/refman/9.6/en/source-configuration-options.html#option_cmake_cmake_install_prefix
https://dev.mysql.com/doc/refman/9.6/en/show-variables.html
https://dev.mysql.com/doc/refman/9.6/en/server-system-variables.html#sysvar_plugin_dir

Writing Full-Text Parser Plugins

To install the plugin library, use make:

$> make instal

Verify that make i nstal | installed the plugin library in the proper directory. After installing it, make sure
that the library permissions permit it to be executed by the server.

4.4.4 Writing Full-Text Parser Plugins

MySQL supports server-side full-text parser plugins with Myl SAMand | nnoDB. For introductory information
about full-text parser plugins, see Full-Text Parser Plugins.

A full-text parser plugin can be used to replace or modify the built-in full-text parser. This section describes
how to write a full-text parser plugin named si npl e_par ser . This plugin performs parsing based

on simpler rules than those used by the MySQL built-in full-text parser: Words are nonempty runs of
whitespace characters.

The instructions use the source code in the pl ugi n/ ful | t ext directory of MySQL source distributions,
so change location into that directory. The following procedure describes how the plugin library is created:

1. To write a full-text parser plugin, include the following header file in the plugin source file. Other MySQL
or general header files might also be needed, depending on the plugin capabilities and requirements.

#i ncl ude <mysql / pl ugi n. h>

pl ugi n. h defines the M\YSQL_FTPARSER PLUG N server plugin type and the data structures needed
to declare the plugin.

2. Set up the library descriptor for the plugin library file.

This descriptor contains the general plugin descriptor for the server plugin. For a full-text parser plugin,
the type must be MYySQL_FTPARSER_PLUG N. This is the value that identifies the plugin as being legal
foruse in a W TH PARSER clause when creating a FULLTEXT index. (No other plugin type is legal for
this clause.)

For example, the library descriptor for a library that contains a single full-text parser plugin named
si mpl e_par ser looks like this:

nmysql _decl are_pl ugi n(ftexanpl e)
{

MYSQL_FTPARSER PLUG N, /* type 2
&si npl e_par ser_descriptor, /* descriptor */
"si npl e_parser", /* name */
"Oracl e Corporation", /* aut hor */
"Sinmple Full-Text Parser", /* description */
PLUG N_LI CENSE_GPL, /* plugin |icense */
sinmple_parser_plugin_init, /* init function (when |oaded) */
sinmpl e_parser_plugin_deinit,/* deinit function (when unl oaded) */
0x0001, [* version */
si npl e_st at us, /* status variabl es */
si npl e_system vari abl es, /* system vari abl es */
NULL,

0

}
nmysql _decl are_pl ugi n_end

The name member (si npl e_par ser) indicates the name to use for references to the plugin in
statements such as | NSTALL PLUG Nor UNI NSTALL PLUG N. This is also the name displayed by
SHOW PLUG NS or | NFORVATI ON_SCHEMA. PLUGQ NS.

30

https://dev.mysql.com/doc/refman/9.6/en/myisam-storage-engine.html
https://dev.mysql.com/doc/refman/9.6/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/9.6/en/install-plugin.html
https://dev.mysql.com/doc/refman/9.6/en/uninstall-plugin.html
https://dev.mysql.com/doc/refman/9.6/en/show-plugins.html
https://dev.mysql.com/doc/refman/9.6/en/information-schema-plugins-table.html

Writing Full-Text Parser Plugins

For more information, see Section 4.4.2.1, “Server Plugin Library and Plugin Descriptors”.
Set up the type-specific plugin descriptor.

Each general plugin descriptor in the library descriptor points to a type-specific descriptor. For a full-text
parser plugin, the type-specific descriptor is an instance of the st _nysql ft par ser structure in the
pl ugi n. h file:

struct st_mnysql _ftparser

{
int interface_version

int (*parse)(MYSQL_FTPARSER PARAM * par ar)
int (*init)(M/SQ_FTPARSER PARAM * par arm
int (*deinit)(M/SQ._FTPARSER PARAM * par am)
iE

As shown by the structure definition, the descriptor has an interface version number and contains
pointers to three functions.

The interface version number is specified using a symbol, which is in the form:

MYSQL_xxx_| NTERFACE_VERSI ON. For full-text parser plugins, the symbol is

MYSQL_FTPARSER | NTERFACE_VERSI ON. In the source code, you will find the actual interface
version number for the full-text parser plugin defined ini ncl ude/ nysql / pl ugi n_ft parser. h. The
current interface version number is 0x0101.

Theinit and dei ni t members should point to a function or be set to 0 if the function is not needed.
The par se member must point to the function that performs the parsing.

In the si npl e_par ser declaration, that descriptor is indicated by &si npl e_par ser _descri ptor.
The descriptor specifies the version number for the full-text plugin interface (as given by
MYSQL_FTPARSER | NTERFACE VERSI ON), and the plugin's parsing, initialization, and deinitialization
functions:

static struct st_nysql _ftparser sinple_parser_descriptor=

{

MYSQL_FTPARSER | NTERFACE_VERSION, /* interface version */
si npl e_par ser_par se, /* parsing function */
si npl e_parser_init, /* parser init function */
si npl e_par ser_dei ni t /* parser deinit function */

b

A full-text parser plugin is used in two different contexts, indexing and searching. In both contexts, the
server calls the initialization and deinitialization functions at the beginning and end of processing each
SQL statement that causes the plugin to be invoked. However, during statement processing, the server
calls the main parsing function in context-specific fashion:

¢ For indexing, the server calls the parser for each column value to be indexed.

< For searching, the server calls the parser to parse the search string. The parser might also be called
for rows processed by the statement. In natural language mode, there is no need for the server to call
the parser. For boolean mode phrase searches or natural language searches with query expansion,
the parser is used to parse column values for information that is not in the index. Also, if a boolean
mode search is done for a column that has no FULLTEXT index, the built-in parser will be called.
(Plugins are associated with specific indexes. If there is no index, no plugin is used.)

The plugin declaration in the general plugin descriptor has i ni t and dei ni t members that point
initialization and deinitialization functions, and so does the type-specific plugin descriptor to which it
points. However, these pairs of functions have different purposes and are invoked for different reasons:

31

Writing Full-Text Parser Plugins

« For the plugin declaration in the general plugin descriptor, the initialization and deinitialization
functions are invoked when the plugin is loaded and unloaded.

< For the type-specific plugin descriptor, the initialization and deinitialization functions are invoked per
SQL statement for which the plugin is used.

Each interface function named in the plugin descriptor should return zero for success or nonzero for
failure, and each of them receives an argument that points to a M\YSQL_FTPARSER PARAMSstructure
containing the parsing context. The structure has this definition:

typedef struct st_nysql _ftparser_param

int (*nysql _parse)(struct st_nysql _ftparser_param *,
char *doc, int doc_len);

int (*nysqgl _add_word) (struct st_nysql _ftparser_param *,

char *word, int word_|en,

MYSQL_FTPARSER BOOLEAN | NFO *bool ean_i nf 0) ;
void *ftparser_state;
voi d *nysql _ftparam
struct charset_info_st *cs;

char *doc;
int |ength;
int flags;

enum enum f t par ser _node node;
} MYSQL_FTPARSER PARAM

The structure members are used as follows:

« mysql _par se: A pointer to a callback function that invokes the server's built-in parser. Use
this callback when the plugin acts as a front end to the built-in parser. That is, when the plugin
parsing function is called, it should process the input to extract the text and pass the text to the
mysqgl _par se callback.

The first parameter for this callback function should be the par amvalue itself:

param >nysql _parse(param ...);

A front end plugin can extract text and pass it all at once to the built-in parser, or it can extract and
pass text to the built-in parser a piece at a time. However, in this case, the built-in parser treats the
pieces of text as though there are implicit word breaks between them.

e mysqgl _add_wor d: A pointer to a callback function that adds a word to a full-text index or to the
list of search terms. Use this callback when the parser plugin replaces the built-in parser. That
is, when the plugin parsing function is called, it should parse the input into words and invoke the
mysqgl _add_ wor d callback for each word.

The first parameter for this callback function should be the par amvalue itself:
param >nysql _add_word(param ...);

e ftparser_state: Thisis a generic pointer. The plugin can set it to point to information to be used
internally for its own purposes.

e nmysqgl _ftparam This is set by the server. It is passed as the first argument to the nysql _par se or
mysql _add_wor d callback.

e cs: A pointer to information about the character set of the text, or 0 if no information is available.

» doc: A pointer to the text to be parsed.

32

Writing Full-Text Parser Plugins

« | engt h: The length of the text to be parsed, in bytes.

« fl ags: Parser flags. This is zero if there are no special flags. The only nonzero flag is

MYSQL_FTFLAGS NEED COPY, which means that nysql add_wor d() must save a copy of
the word (that is, it cannot use a pointer to the word because the word is in a buffer that will be
overwritten.)

This flag might be set or reset by MySQL before calling the parser plugin, by the parser plugin itself,
or by the nysql _parse() function.

* node: The parsing mode. This value will be one of the following constants:

e MYSQL_FTPARSER SI MPLE MODE: Parse in fast and simple mode, which is used for indexing and
for natural language queries. The parser should pass to the server only those words that should
be indexed. If the parser uses length limits or a stopword list to determine which words to ignore, it
should not pass such words to the server.

o MYSQL_FTPARSER W TH_STOPWORDS: Parse in stopword mode. This is used in boolean
searches for phrase matching. The parser should pass all words to the server, even stopwords or
words that are outside any normal length limits.

e MYSQL_FTPARSER FULL BOCLEAN I NFQ: Parse in boolean mode. This is used for parsing
boolean query strings. The parser should recognize not only words but also boolean-
mode operators and pass them to the server as tokens using the nysqgl _add_word
callback. To tell the server what kind of token is being passed, the plugin needs to fill in a
MYSQL_FTPARSER BOOLEAN | NFOstructure and pass a pointer to it.

Note

For Myl SAM the stopword listand ft _m n_word_I en and

ft _max_word_| en are checked inside the tokenizer. For | nnoDB,

the stopword list and equivalent word length variable settings

(innodb_ft _mn_token_sizeandinnodb_ft_max_t oken_size)

are checked outside of the tokenizer. As a result, | nnoDB plugin parsers

do not need to check the stopword list, i nnodb_ft _m n_t oken_si ze, or
innodb_ft max_token_si ze. Instead, it is recommended that all words be
returned to | nnoDB. However, if you want to check stopwords within your plugin
parser, use MYSQL_FTPARSER_SI MPLE_MODE, which is for full-text search
index and natural language search. For MYSQL_FTPARSER W TH_STOPWORDS
and MYSQL_FTPARSER _FULL_BOOLEAN | NFOmodes, it is recommended
that all words be returned to | nnoDB including stopwords, in case of phrase
searches.

If the parser is called in boolean mode, the par am >node value will be
MYSQL_FTPARSER_FULL_BOCLEAN | NFO. The MYSQL_FTPARSER_BOOLEAN_| NFOstructure that the
parser uses for passing token information to the server looks like this:

typedef struct st_mysql _ftparser_bool ean_info

{

enum enum ft_token_type type;

int yesno;

i nt wei ght_adj ust;

char wasi gn;

char trunc;

int position;

/* These are parser state and nust be renopved. */

33

https://dev.mysql.com/doc/refman/9.6/en/server-system-variables.html#sysvar_ft_min_word_len
https://dev.mysql.com/doc/refman/9.6/en/server-system-variables.html#sysvar_ft_max_word_len
https://dev.mysql.com/doc/refman/9.6/en/innodb-parameters.html#sysvar_innodb_ft_min_token_size
https://dev.mysql.com/doc/refman/9.6/en/innodb-parameters.html#sysvar_innodb_ft_max_token_size
https://dev.mysql.com/doc/refman/9.6/en/innodb-parameters.html#sysvar_innodb_ft_min_token_size
https://dev.mysql.com/doc/refman/9.6/en/innodb-parameters.html#sysvar_innodb_ft_max_token_size

Writing Full-Text Parser Plugins

char prev;
char *quot;
} MYSQL_FTPARSER BOOLEAN | NFO,

The parser should fill in the structure members as follows:

e type: The token type. The following table shows the permissible types.

Table 4.3 Full-Text Parser Token Types

Token Value Meaning

FT_TOKEN EOF End of data

FT_TOKEN_ WORD A regular word

FT_TOKEN _LEFT_PAREN The beginning of a group or subexpression
FT_TOKEN _RI GHT _PAREN The end of a group or subexpression
FT_TOKEN_STOPWORD A stopword

¢ yesno: Whether the word must be present for a match to occur. 0 means that the word is optional
but increases the match relevance if it is present. Values larger than 0 mean that the word must be
present. Values smaller than 0 mean that the word must not be present.

« wei ght _adj ust : A weighting factor that determines how much a match for the word counts. It can
be used to increase or decrease the word's importance in relevance calculations. A value of zero
indicates no weight adjustment. Values greater than or less than zero mean higher or lower weight,
respectively. The examples at Boolean Full-Text Searches, that use the < and > operators illustrate
how weighting works.

« wasi gn: The sign of the weighting factor. A negative value acts like the ~ boolean-search operator,
which causes the word's contribution to the relevance to be negative.

* trunc: Whether matching should be done as if the boolean-mode * truncation operator had been
given.

e posi ti on: Start position of the word in the document, in bytes. Used by | nnoDB full-text search. For
existing plugins that are called in boolean mode, support must be added for the position member.

Plugins should not use the pr ev and quot members of the MYSQL_FTPARSER _BOOLEAN | NFO
structure.

Note

The plugin parser framework does not support:
e The @li st ance boolean operator.

» Aleading plus sign (+) or minus sign (-) boolean operator followed by a
space and then aword (' + appl e' or' - appl e'). The leading plus or
minus signh must be directly adjacent to the word, for example: ' +appl e' or
'-apple'.

For information about boolean full-text search operators, see Boolean Full-Text
Searches.

https://dev.mysql.com/doc/refman/9.6/en/fulltext-boolean.html
https://dev.mysql.com/doc/refman/9.6/en/fulltext-boolean.html
https://dev.mysql.com/doc/refman/9.6/en/fulltext-boolean.html

Writing Full-Text Parser Plugins

4. Set up the plugin interface functions.

The general plugin descriptor in the library descriptor names the initialization and deinitialization
functions that the server should invoke when it loads and unloads the plugin. For si npl e_par ser,
these functions do nothing but return zero to indicate that they succeeded:

static int sinple_parser_plugin_init(void *arg __attribute__((unused)))

return(0);

}

static int sinple_parser_plugin_deinit(void *arg __attribute__((unused)))

{

return(0);

}

Because those functions do not actually do anything, you could omit them and specify O for each of
them in the plugin declaration.

The type-specific plugin descriptor for si npl e_par ser names the initialization, deinitialization,
and parsing functions that the server invokes when the plugin is used. For si npl e_par ser, the
initialization and deinitialization functions do nothing:

static int sinple_parser_init(MSQ._FTPARSER PARAM *par am
__attribute_ ((unused)))
{

return(0);

}

static int sinple_parser_deinit(MSQ_FTPARSER PARAM *par am
__attribute_ ((unused)))
{

return(0);

}

Here too, because those functions do nothing, you could omit them and specify O for each of them in
the plugin descriptor.

The main parsing function, si npl e_par ser _parse(), acts as a replacement for the built-in full-text
parser, so it needs to split text into words and pass each word to the server. The parsing function's first
argument is a pointer to a structure that contains the parsing context. This structure has a doc member

that points to the text to be parsed, and a | engt h member that indicates how long the text is. The

simple parsing done by the plugin considers nhonempty runs of whitespace characters to be words, so it

identifies words like this:

static int sinple_parser_parse(MYSQL_FTPARSER PARAM * par am)
{

char *end, *start, *docend= param >doc + param >l engt h;
for (end= start= param >doc;; end++)

if (end == docend)
{
if (end > start)
add_word(param start, end - start);
br eak;

else if (isspace(*end))

{
if (end > start)
add_word(param start, end - start);
start= end + 1;
}

35

Writing Full-Text Parser Plugins

return(0);

}

As the parser finds each word, it invokes a function add_wor d() to pass the word to the server.
add_wor d() is a helper function only; it is not part of the plugin interface. The parser passes the
parsing context pointer to add_wor d() , as well as a pointer to the word and a length value:

static void add_word(MYSQL_FTPARSER PARAM *param char *word, size_t |en)

{
MYSQL_FTPARSER BOOLEAN | NFO bool _i nf o=

{ FT_TOKEN.WORD, 0, O, O, O, O, " ', O };

param >nysql _add_word(param word, |en, &bool _info);

}

For boolean-mode parsing, add_wor d() fills in the members of the bool _i nf o structure as described
earlier in the discussion of the st _nysql _ft parser_bool ean_i nf o structure.

Set up the status variables. For the si npl e_par ser plugin, the following status variable array sets
up one status variable with a value that is static text, and another with a value that is stored in a long
integer variable:

| ong nunber _of call s= 0;

struct st_nysqgl _show var sinple_status[]=

{
{"sinple_parser_static", (char *)"just a static text", SHOW CHAR},
{"sinple_parser_cal |l ed", (char *)&nunber_of calls, SHOW LONG} ,
{0, 0, 0}

i

By using status variable names that begin with the plugin name, you can easily display the variables for
a plugin with SHOW STATUS:

nysql > SHOW STATUS LI KE ' si npl e_par ser % ;

Fome e eeee e eeeeaaaas Femm e emee e eeaaaa +
| Variabl e_nane | Val ue |
Fome e eeee e eeeeaaaas Femm e emee e eeaaaa +
| sinple_parser_static | just a static text |
| sinple_parser_called | O |
Fome e eeee e eeeeaaaas Femm e emee e eeaaaa +

To compile and install a plugin library file, use the instructions in Section 4.4.3, “Compiling and
Installing Plugin Libraries”. To make the library file available for use, install it in the plugin directory (the
directory named by the pl ugi n_di r system variable). For the si npl e_par ser plugin, it is compiled
and installed when you build MySQL from source. It is also included in binary distributions. The build
process produces a shared object library with a name of mypl ugl i b. so (the . so suffix might differ
depending on your platform).

To use the plugin, register it with the server. For example, to register the plugin at runtime, use this
statement, adjusting the . so suffix for your platform as necessary:

I NSTALL PLUG N si npl e_parser SONAME ' nypl uglib. so';

For additional information about plugin loading, see Installing and Uninstalling Plugins.

To verify plugin installation, examine the | NFORVATI ON_SCHENMA. PLUG NS table or use the SHOW
PLUGQ NS statement. See Obtaining Server Plugin Information.

36

https://dev.mysql.com/doc/refman/9.6/en/show-status.html
https://dev.mysql.com/doc/refman/9.6/en/server-system-variables.html#sysvar_plugin_dir
https://dev.mysql.com/doc/refman/9.6/en/plugin-loading.html
https://dev.mysql.com/doc/refman/9.6/en/information-schema-plugins-table.html
https://dev.mysql.com/doc/refman/9.6/en/show-plugins.html
https://dev.mysql.com/doc/refman/9.6/en/show-plugins.html
https://dev.mysql.com/doc/refman/9.6/en/obtaining-plugin-information.html

Writing Full-Text Parser Plugins

9. Test the plugin to verify that it works properly.

Create a table that contains a string column and associate the parser plugin with a FULLTEXT index on

the column:

mysql > CREATE TABLE t (c VARCHAR(255),
-> FULLTEXT (c) W TH PARSER si npl e_par ser
->) ENG NE=MyI SAM

Query OK, O rows affected (0.01 sec)

Insert some text into the table and try some searches. These should verify that the parser plugin treats

all nonwhitespace characters as word characters:

mysqgl > | NSERT | NTO t VALUES
-> ("utf8nmb4_0900 as cs is a case-sensitive collation'),
-> ("I\'d like a case of oranges'),
- ("this is sensitive information'),
-> ('another row),
-> ("yet another row);
Query OK, 5 rows affected (0.02 sec)
Records: 5 Duplicates: 0 Warnings: 0

nysql > SELECT ¢ FROM t;

| utf8nb4_0900_as_cs is a case-sensitive collation |
| 1'd like a case of oranges |
| this is sensitive infornation |
| another row |
| yet another row |
5 rows in set (0.00 sec)

nmysql > SELECT MATCH(c) AGAI NST('case') FROM t;

5 rows in set (0.00 sec)

nmysql > SELECT MATCH(c) AGAI NST('sensitive') FROM t;

5 rows in set (0.01 sec)

nmysql > SELECT MATCH(c) AGAI NST(' case-sensitive') FROMt;

37

Writing Daemon Plugins

5 rows in set (0.01 sec)

nysql > SELECT MATCH(c) AGAINST('I\'d') FROMt;

5 rows in set (0.01 sec)

Neither “case” nor “insensitive” match “case-insensitive” the way that they would for the built-in parser.

4.4.5 Writing Daemon Plugins

A daemon plugin is a simple type of plugin used for code that should be run by the server but that does
not communicate with it. This section describes how to write a daemon server plugin, using the example
plugin found in the pl ugi n/ daenon_exanpl e directory of MySQL source distributions. That directory
contains the daenon_exanpl e. cc source file for a daemon plugin named daenon_exanpl e that writes
a heartbeat string at regular intervals to a file named nysql - hear t beat . | og in the data directory.

To write a daemon plugin, include the following header file in the plugin source file. Other MySQL or
general header files might also be needed, depending on the plugin capabilities and requirements.

#i ncl ude <nysql/pl ugi n. h>

pl ugi n. h defines the M\YySQL_DAEMON PLUG N server plugin type and the data structures needed to
declare the plugin.

The daenon_exanpl e. cc file sets up the library descriptor as follows. The library descriptor includes a
single general server plugin descriptor.

nysql _decl ar e_pl ugi n(daenon_exanpl e)

{
MYSQL_DAEMON PLUG N,
&daenon_exanpl e_pl ugi n,
" daenon_exanpl e",
"Brian Aker",
"Daenon exanpl e, creates a heartbeat beat file in nmysql-heartbeat.| og",
PLUG N_LI CENSE_GPL,
daenon_exanpl e_plugin_init, /* Plugin Init */
daenon_exanpl e_plugin_deinit, /* Plugin Deinit */
0x0100 /* 1.0 */,

NULL, /* status vari abl es */
NULL, /* system vari abl es */
NULL, /* config options */
0, /* flags */

nysql _decl are_pl ugi n_end;

The nanme member (daenon_exanpl e) indicates the name to use for references to the plugin in
statements such as | NSTALL PLUG Nor UNI NSTALL PLUG N. This is also the name displayed by SHOW
PLUG NS or | NFORVATI ON_SCHENA. PLUG NS.

The second member of the plugin descriptor, daenon_exanpl e_pl ugi n, points to the type-specific
daemon plugin descriptor. This structure consists only of the type-specific API version number:

struct st_nysqgl _daenon daenon_exanpl e_pl ugi n=

38

https://dev.mysql.com/doc/refman/9.6/en/install-plugin.html
https://dev.mysql.com/doc/refman/9.6/en/uninstall-plugin.html
https://dev.mysql.com/doc/refman/9.6/en/show-plugins.html
https://dev.mysql.com/doc/refman/9.6/en/show-plugins.html
https://dev.mysql.com/doc/refman/9.6/en/information-schema-plugins-table.html

Writing INFORMATION_SCHEMA Plugins

{ MYSQL_DAEMON | NTERFACE_VERSI ON };

The type-specific structure has no interface functions. There is no communication between the server and
the plugin, except that the server calls the initialization and deinitialization functions from the general plugin
descriptor to start and stop the plugin:

» daenon_exanpl e_pl ugi n_i ni t () opens the heartbeat file and spawns a thread that wakes up
periodically and writes the next message to the file.

» daenon_exanpl e_pl ugi n_dei nit () closes the file and performs other cleanup.

To compile and install a plugin library file, use the instructions in Section 4.4.3, “Compiling and Installing
Plugin Libraries”. To make the library file available for use, install it in the plugin directory (the directory
named by the pl ugi n_di r system variable). For the daenon_exanpl e plugin, it is compiled and
installed when you build MySQL from source. It is also included in binary distributions. The build process
produces a shared object library with a name of | i bdaenon_exanpl e. so (the . so suffix might differ
depending on your platform).

To use the plugin, register it with the server. For example, to register the plugin at runtime, use this
statement, adjusting the . so suffix for your platform as necessary:

I NSTALL PLUG N daenpon_exanpl e SONAMVE ' | i bdaenon_exanpl e. so'
For additional information about plugin loading, see Installing and Uninstalling Plugins.

To verify plugin installation, examine the | NFORVATI ON_SCHEMA. PLUG NS table or use the SHOWV
PLUG NS statement. See Obtaining Server Plugin Information.

While the plugin is loaded, it writes a heartbeat string at regular intervals to a file named nysql -
heart beat . | og in the data directory. This file grows without limit, so after you have satistifed yourself
that the plugin operates correctly, unload it:

UNI NSTALL PLUG N daenon_exanpl e

4.4.6 Writing INFORMATION_SCHEMA Plugins

This section describes how to write a server-side | NFORVATI ON_SCHEMNA table plugin. For example code
that implements such plugins, see the sql / sgl _show. cc file of a MySQL source distribution. You can
also look at the example plugins found in the | nnoDB source. See the handl er/i _s. cc and handl er/
ha_i nnodb. cc files within the | nnoDB source tree (in the st or age/ i nnobase directory).

To write an | NFORVATI ON_SCHEMA table plugin, include the following header files in the plugin source
file. Other MySQL or general header files might also be needed, depending on the plugin capabilities and
requirements.

#i ncl ude <sql _cl ass. h>
#i ncl ude <tabl e. h>

These header files are located in the sql directory of MySQL source distributions. They contain C++
structures, so the source file for an | NFORVATI ON_SCHEMA plugin must be compiled as C++ code.

The source file for the example plugin developed here is named si npl e_i _s_t abl e. cc. It creates a
simple | NFORVATI ON_SCHEMA table named SI MPLE_| S TABLE that has two columns named NANME and

VALUE. The general descriptor for a plugin library that implements the table looks like this:
nmysql _decl are_pl ugi n(sinple_i_s_library)

MYSQL_| NFORMATI ON_SCHEMA_PLUGI N,

39

https://dev.mysql.com/doc/refman/9.6/en/server-system-variables.html#sysvar_plugin_dir
https://dev.mysql.com/doc/refman/9.6/en/plugin-loading.html
https://dev.mysql.com/doc/refman/9.6/en/information-schema-plugins-table.html
https://dev.mysql.com/doc/refman/9.6/en/show-plugins.html
https://dev.mysql.com/doc/refman/9.6/en/show-plugins.html
https://dev.mysql.com/doc/refman/9.6/en/obtaining-plugin-information.html

Writing INFORMATION_SCHEMA Plugins

&si npl e_t abl e_i nf o, /* type-specific descriptor */
"SI MPLE_| _S TABLE", /* table nane */

" Aut hor Name", /* aut hor */

" Si npl e | NFORVMATI ON_SCHEMA t abl e", /* description */

PLUG N_LI CENSE_GPL, /* license type */

sinpl e_table_init, /* init function */

NULL,

0x0100, /* version = 1.0 */

NULL, /* no status variables */
NULL, /* no system variables */
NULL, /* no reserved information */
0 /* no flags */

nmysql _decl are_pl ugi n_end;

The name member (SI MPLE_| _S TABLE) indicates the name to use for references to the plugin in
statements such as | NSTALL PLUG Nor UNI NSTALL PLUG N. This is also the name displayed by SHOW
PLUG NS or | NFORMATI ON_SCHEMA. PLUGQ NS.

The si npl e_t abl e_i nf o member of the general descriptor points to the type-specific descriptor, which
consists only of the type-specific API version number:

static struct st_nysql _i nformati on_schema sinple_table_info =
{ MYSQL_I| NFORVATI ON_SCHEMA | NTERFACE_VERSI ON } ;

The general descriptor points to the initialization and deinitialization functions:

» The initialization function provides information about the table structure and a function that populates the
table.

e The deinitialization function performs any required cleanup. If no cleanup is needed, this descriptor
member can be NULL (as in the example shown).

The initialization function should return O for success, 1 if an error occurs. The function receives a generic
pointer, which it should interpret as a pointer to the table structure:

static int table_init(void *ptr)

{
ST_SCHEMA TABLE *schema_t abl e= (ST_SCHEMA TABLE*) ptr

schema_t abl e->fi el ds_i nfo= sinpl e_tabl e_fiel ds;
schema_tabl e->fill _table= sinple_fill_table;
return O;

}

The function should set these two members of the table structure:

e fields_info:Anarray of ST FlI ELD | NFOstructures that contain information about each column.
« fill _tabl e:Afunction that populates the table.

The array pointed to by f i el ds_i nf o should contain one element per column of the

| NFORVATI ON_SCHENMA plus a terminating element. The following si npl e_t abl e_fi el ds array for the
example plugin indicates that SI MPLE | 'S TABLE has two columns. NAME is string-valued with a length
of 10 and VALUE is integer-valued with a display width of 20. The last structure marks the end of the array.

static ST_FIELD INFO sinple_table_fields[]=

{

{"NAME", 10, MYSQL_TYPE STRING 0, 0 0, 0},

{"VALUE", 6, MYSQL_TYPE LONG 0, MY_|_S UNSIGNED, 0, O},
{0, 0, MYSQ._TYPE NULL, 0, O, 0, 0}

IE

40

https://dev.mysql.com/doc/refman/9.6/en/install-plugin.html
https://dev.mysql.com/doc/refman/9.6/en/uninstall-plugin.html
https://dev.mysql.com/doc/refman/9.6/en/show-plugins.html
https://dev.mysql.com/doc/refman/9.6/en/show-plugins.html
https://dev.mysql.com/doc/refman/9.6/en/information-schema-plugins-table.html

Writing INFORMATION_SCHEMA Plugins

For more information about the column information structure, see the definition of ST _FI ELD | NFOin the
t abl e. h header file. The permissible M\YSQL_TYPE_ xxXx type values are those used in the C API; see C
API Basic Data Structures.

The fill _tabl e member should be set to a function that populates the table and returns 0 for success, 1
if an error occurs. For the example plugin, the si npl e _fill tabl e() function looks like this:

static int sinple_fill_table(THD *thd, TABLE LI ST *tables, |tem *cond)

{
TABLE *t abl e= t abl es- >t abl e;

tabl e->field[0]->store("Nane 1", 6, system charset_info);
tabl e->field[1]->store(1);
if (schema_table_store_record(thd, table))
return 1;
tabl e->field[0]->store("Nane 2", 6, system charset_info);
tabl e->field[1]->store(2);
if (schema_table_store_record(thd, table))
return 1;
return O;

}

For each row of the | NFORVATI ON_SCHENA table, this function initializes each column, then calls
schena_tabl e _store_record() toinstall the row. The st or e() method arguments depend on the
type of value to be stored. For column 0 (NAME, a string), st or e() takes a pointer to a string, its length,
and information about the character set of the string:

store(const char *to, uint |ength, CHARSET_|INFO *cs);

For column 1 (VALUE, an integer), st or e() takes the value and a flag indicating whether it is unsigned:

store(l ongl ong nr, bool unsigned_val ue);

For other examples of how to populate | NFORVATI ON_SCHENA tables, search for instances of
schena_tabl e_store_record() insqgl _show. cc.

To compile and install a plugin library file, use the instructions in Section 4.4.3, “Compiling and Installing
Plugin Libraries”. To make the library file available for use, install it in the plugin directory (the directory
named by the pl ugi n_di r system variable).

To test the plugin, install it:
nmysqgl > | NSTALL PLUG N SI MPLE | _S TABLE SONAME 'sinple_i_s_table.so';

Verify that the table is present:

nysql > SELECT TABLE NAME FROM | NFORMAT| ON_SCHENMA. TABLES
-> WHERE TABLE _NAME = ' SIMPLE | _S TABLE ;

fooccooooooooooooso +
| TABLE NAME [
fooccooooooooooooso +
| SIMPLE | _S TABLE |
fooccooooooooooooso +

Try to select from it:

nysql > SELECT * FROM | NFORVATI ON_SCHEMA. SI MPLE | _S_TABLE;

S| N ——— fooocsoos +
| NAME | VALUE |
S| N ——— fooocsoos +
| Nane 1 | 1]
| Nane 2 | 2 |
S| N ——— fooocsoos +

41

https://dev.mysql.com/doc/c-api/9.6/en/c-api-data-structures.html
https://dev.mysql.com/doc/c-api/9.6/en/c-api-data-structures.html
https://dev.mysql.com/doc/refman/9.6/en/server-system-variables.html#sysvar_plugin_dir

Writing Semisynchronous Replication Plugins

Uninstall it:

nysql > UNINSTALL PLUG N SI MPLE | S TABLE;

4.4.7 Writing Semisynchronous Replication Plugins

This section describes how to write server-side semisynchronous replication plugins, using the
example plugins found in the pl ugi n/ sem sync directory of MySQL source distributions. That
directory contains the source files for source and replica plugins named r pl _sem _sync_nast er and
rpl _sem _sync_sl ave. The information here covers only how to set up the plugin framework. For
details about how the plugins implement replication functions, see the source.

To write a semisynchronous replication plugin, include the following header file in the plugin source file.
Other MySQL or general header files might also be needed, depending on the plugin capabilities and
requirements.

#i ncl ude <nysql/pl ugi n. h>

pl ugi n. h defines the M\YSQL_REPLI CATI ON_PLUG N server plugin type and the data structures needed
to declare the plugin.

For the source side, sem sync_mnast er _pl ugi n. cc contains this general descriptor for a plugin named
rpl _sem _sync_mmaster:

nmysql _decl are_pl ugi n(sem _sync_nast er)

{
MYSQL_REPLI CATI ON_PLUG N,
&sem _sync_mast er _pl ugi n,
"rpl _sem _sync_nmster"”,
"He Zhenxing",
" Sem - synchronous replication master",
PLUG N_LI CENSE_GPL,
sem _sync_master_plugin_init, /* Plugin Init */
sem _sync_master_plugin_deinit, /* Plugin Deinit */
0x0100 /* 1.0 */,
sem _sync_master_status_vars, /* status variables */
sem _sync_master_systemvars, /* systemvariables */
NULL, /* config options */
0, /* flags */

nmysql _decl are_pl ugi n_end;

For the replica side, sem sync_sl ave_pl ugi n. cc contains this general descriptor for a plugin named
rpl _sem _sync_sl ave:

nysql _decl are_pl ugi n(seni _sync_sl ave)

{
MYSQL_REPL| CATI ON_PLUG N,
&sem _sync_sl ave_pl ugi n,
"rpl _sem _sync_sl ave",
"He Zhenxi ng",
"Sem - synchronous replication slave",
PLUG N_LI CENSE_GPL,
sem _sync_slave _plugin_init, /* Plugin Init */
sem _sync_sl ave_plugin_deinit, /* Plugin Deinit */
0x0100 /* 1.0 */,
sem _sync_sl ave_status_vars, /* status variables */
sem _sync_sl ave_systemvars, /* systemvariables */
NULL, /* config options */
0, /* flags */

}
nysql _decl are_pl ugi n_end;

42

Writing Audit Plugins

For both the source and replica plugins, the general descriptor has pointers to the type-specific descriptor,
the initialization and deinitialization functions, and to the status and system variables implemented

by the plugin. For information about variable setup, see Section 4.4.2.2, “Server Plugin Status and
System Variables”. The following remarks discuss the type-specific descriptor and the initialization and
deinitialization functions for the source plugin but apply similarly to the replica plugin.

The sem _sync_nast er _pl ugi n member of the source general descriptor points to the type-specific
descriptor, which consists only of the type-specific API version number:

struct Mysql _replication sem _sync_naster_plugin= {
MYSQL_REPL| CATI ON_| NTERFACE_VERSI ON
}s

The initialization and deinitialization function declarations look like this:

static int sem _sync_nmster_plugin_init(void *p);
static int sem _sync_naster_plugin_deinit(void *p);

The initialization function uses the pointer to register transaction and binary logging “observers” with the
server. After successful initialization, the server takes care of invoking the observers at the appropriate
times. (For details on the observers, see the source files.) The deinitialization function cleans up by
deregistering the observers. Each function returns 0 for success or 1 if an error occurs.

To compile and install a plugin library file, use the instructions in Section 4.4.3, “Compiling and

Installing Plugin Libraries”. To make the library file available for use, install it in the plugin directory

(the directory named by the pl ugi n_di r system variable). For the r pl _sem _sync_nast er and

rpl _sem _sync_sl ave plugins, they are compiled and installed when you build MySQL from source.
They are also included in binary distributions. The build process produces shared object libraries with
names of sem sync_nast er. so and seni sync_sl ave. so (the . so suffix might differ depending on
your platform).

4.4.8 Writing Audit Plugins

This section describes how to write a server-side audit plugin, using the example plugin found
in the pl ugi n/ audi t _nul | directory of MySQL source distributions. The audi t _nul | . ¢ and
audi t _nul | _vari abl es. h source files in that directory implement an audit plugin named NULL_AUDI T.

Note

Another example of a plugin that uses the audit plugin API is the query rewrite
plugin; see The Rewriter Query Rewrite Plugin.

Within the server, the pluggable audit interface is implemented in the sql _audi t. hand sql _audi t. cc
files in the sqgl directory of MySQL source distributions. Additionally, several places in the server call

the audit interface when an auditable event occurs, so that registered audit plugins can be notified about
the event if necessary. To see where such calls occur, search the server source files for invocations of
functions with names of the form mysql _audi t _xxx () . Audit notification occurs for server operations
such as these:

» Client connect and disconnect events

» Writing a message to the general query log (if the log is enabled)
» Writing a message to the error log

» Sending a query result to a client

To write an audit plugin, include the following header file in the plugin source file. Other MySQL or general
header files might also be needed, depending on the plugin capabilities and requirements.

43

https://dev.mysql.com/doc/refman/9.6/en/server-system-variables.html#sysvar_plugin_dir
https://dev.mysql.com/doc/refman/9.6/en/rewriter-query-rewrite-plugin.html

Writing Audit Plugins

#i ncl ude <nysql /pl ugi n_audi t. h>

pl ugi n_audi t. hincludes pl ugi n. h, so you need not include the latter file explicitly. pl ugi n. h defines
the MYSQL_AUDI T_PLUG N server plugin type and the data structures needed to declare the plugin.
pl ugi n_audi t . h defines data structures specific to audit plugins.

 Audit Plugin General Descriptor

» Audit Plugin Type-Specific Descriptor

Audit Plugin Notification Function

Audit Plugin Error Handling

 Audit Plugin Usage

Audit Plugin General Descriptor

An audit plugin, like any MySQL server plugin, has a general plugin descriptor (see Section 4.4.2.1,
“Server Plugin Library and Plugin Descriptors”) and a type-specific plugin descriptor. In audit _nul | . c,
the general descriptor for audi t _nul | looks like this:

nmysql _decl are_pl ugi n(audit_nul |')

{
MYSQL_AUDI T_PLUG N, /* type =l
&audi t _nul | _descri ptor, /* descri ptor */
"NULL_AUDI T", /* nane */
"Oracl e Corporation", /* aut hor */
"Sinmple NULL Audit", /* description */
PLUG N_LI CENSE_GPL,
audit _nul | _plugin_init, /* init function (when | oaded) */
audit _nul | _pl ugi n_dei nit, /* deinit function (when unl oaded) */
0x0003, [* version */
si npl e_st at us, /* status vari abl es */
system vari abl es, /* system vari abl es */
NULL,
0,

nmysql _decl are_pl ugi n_end;
The first member, MYSQL_AUDI T_PLUGQ N, identifies this plugin as an audit plugin.
audi t _nul | descri ptor points to the type-specific plugin descriptor, described later.

The name member (NULL_AUDI T) indicates the name to use for references to the plugin in
statements such as | NSTALL PLUG Nor UNI NSTALL PLUG N. This is also the name displayed by
I NFORVATI ON_SCHEMA. PLUG NS or SHOW PLUG NS.

The audi t _nul | _pl ugi n_i ni t initialization function performs plugin initialization when the plugin is
loaded. The audi t _nul | _pl ugi n_dei ni t function performs cleanup when the plugin is unloaded.

The general plugin descriptor also refers to si npl e_st at us and syst em vari abl es, structures that
expose several status and system variables. When the plugin is enabled, these variables can be inspected
using SHOWstatements (SHOW STATUS, SHOW VARI ABLES) or the appropriate Performance Schema
tables.

The si npl e_st at us structure declares several status variables with names of the form

Audi t _nul I _xxx.NULL_AUDI T increments the Audi t _nul | _cal | ed status variable for every
notification that it receives. The other status variables are more specific and NULL_AUDI T increments them
only for notifications of specific events.

44

https://dev.mysql.com/doc/refman/9.6/en/install-plugin.html
https://dev.mysql.com/doc/refman/9.6/en/uninstall-plugin.html
https://dev.mysql.com/doc/refman/9.6/en/information-schema-plugins-table.html
https://dev.mysql.com/doc/refman/9.6/en/show-plugins.html
https://dev.mysql.com/doc/refman/9.6/en/show-status.html
https://dev.mysql.com/doc/refman/9.6/en/show-variables.html

Writing Audit Plugins

system vari abl es is an array of system variable elements, each of which is defined using a
MYSQL_THDVAR xxx macro. These system variables have names of the form nul | _audi t _xxx. These
variables can be used to communicate with the plugin at runtime.

Audit Plugin Type-Specific Descriptor

The audi t _nul | _descri pt or value in the general plugin descriptor points to the type-specific plugin
descriptor. For audit plugins, this descriptor has the following structure (defined in pl ugi n_audi t . h):

struct st_nysqgl _audit
{

int interface_version

void (*rel ease_t hd) (MYSQL_THD) ;

int (*event_notify)(MYSQ_THD, nysql_event_class_t, const void *);
unsi gned | ong cl ass_mask[MYSQL_AUDI T_CLASS MASK_SI ZE] ;

b

The type-specific descriptor for audit plugins has these members:

* interface_version: By convention, type-specific plugin descriptors begin with the interface version
for the given plugin type. The server checks i nt er f ace_ver si on when it loads the plugin to see
whether the plugin is compatible with it. For audit plugins, the value of the i nt er f ace_ver si on
member is MYSQL_AUDI T_| NTERFACE_VERSI ON (defined in pl ugi n_audi t . h).

» rel ease_t hd: A function that the server calls to inform the plugin that it is being dissociated from its
thread context. This should be NULL if there is no such function.

» event _noti fy: A function that the server calls to notify the plugin that an auditable event has occurred.
This function should not be NULL; that would not make sense because no auditing would occur.

e cl ass_mask: An array of MYSQL_AUDI T_CLASS NMASK_SI ZE elements. Each element specifies a
bitmask for a given event class to indicate the subclasses for which the plugin wants notification. (This
is how the plugin “subscribes” to events of interest.) An element should be 0 to ignore all events for the
corresponding event class.

The server uses the event _noti fy andr el ease_t hd functions together. They are called within

the context of a specific thread, and a thread might perform an activity that produces several event
notifications. The first time the server calls event _not i f y for a thread, it creates a binding of the plugin to
the thread. The plugin cannot be uninstalled while this binding exists. When no more events for the thread
will occur, the server informs the plugin of this by calling the r el ease_t hd function, and then destroys the
binding. For example, when a client issues a statement, the thread processing the statement might notify
audit plugins about the result set produced by the statement and about the statement being logged. The
thread releases the plugin when the thread disconnects.

This design enables the plugin to allocate resources needed for a given thread in the first call to the
event noti fy function and release them in the r el ease_t hd function:

event _notify function
if menory is needed to service the thread
al | ocate nenory
rest of notification processing ..

rel ease_thd function
if menory was all ocat ed

rel ease menory
rest of rel ease processing ..

That is more efficient than allocating and releasing memory repeatedly in the notification function.

For the NULL_AUDI T audit plugin, the type-specific plugin descriptor looks like this:

45

Writing Audit Plugins

static struct st_mnysqgl _audit audit_null _descriptor=
{
MYSQL_AUDI T_I NTERFACE_VERSI ON, /* interface version */
NULL, /* release_thd function */
audit_null _notify, /* notify function */
{ (unsigned | ong) MySQ._AUDI T_GENERAL_ALL,
(unsi gned | ong) MySQ._AUDI T_CONNECTI ON_ALL,
(unsi gned | ong) MYSQ._AUDI T_PARSE ALL,
(unsi gned | ong) MYSQ._AUDI T_AUTHORI ZATI ON_ALL,
(unsi gned | ong) MYSQ._AUDI T_TABLE ACCESS ALL,
(unsi gned | ong) MYSQ._AUDI T_GLOBAL_VARI ABLE_ALL,
(unsi gned | ong) MYSQ._AUDI T_SERVER STARTUP_ALL,
(unsi gned | ong) MYSQ._AUDI T_SERVER SHUTDOMN ALL,
(unsi gned | ong) MYSQ._AUDI T_COVMAND_ALL,
(unsi gned | ong) MYSQ._AUDI T_QUERY_ALL,
(unsi gned | ong) MYSQ._AUDI T_STORED PROGRAM ALL }

}s

The server callsaudit _nul | _notify() to pass audit event information to the plugin. The plugin has no
rel ease_t hd function.

The cl ass_nmask member is an array that indicates which event classes the plugin subscribes to. As
shown, the array contents subscribe to all subclasses of all event classes that are available. To ignore all
notifications for a given event class, specify the corresponding cl ass_mask element as 0.

The number of cl ass_nask elements corresponds to the number of event classes, each of which is listed
inthe nysqgl _event cl ass_t enumeration defined in pl ugi n_audi t. h:

typedef enum

{
MYSQL_AUDI T_GENERAL CLASS
MYSQL_AUDI T_CONNECTI ON_CLASS
MYSQL_AUDI T_PARSE_CLASS
MYSQL_AUDI T_AUTHORI ZATI ON_CLASS
MYSQL_AUDI T_TABLE ACCESS CLASS
MYSQL_AUDI T_GLOBAL_VARI ABLE_CLASS
MYSQL_AUDI T_SERVER STARTUP_CLASS
MYSQL_AUDI T_SERVER SHUTDOWN CLASS
MYSQL_AUDI T_COMVAND_CLASS
MYSQL_AUDI T_QUERY_CLASS
MYSQL_AUDI T_STORED PROGRAM CLASS
/* This itemnust be last in the I|i
MYSQL_AUDI T_CLASS MASK_ S| ZE

} nysql _event _class_t;

1 T T T T T T TR TR T
POONDUIAWNEO

(%]
p=s
o
oS
-

For any given event class, pl ugi n_audi t . h defines bitmask symbols for individual event subclasses,
as well as an xxx_ALL symbol that is the union of the all subclass bitmasks. For example, for
MYSQL_AUDI T_CONNECTI ON_CLASS (the class that covers connect and disconnect events),

pl ugi n_audi t . h defines these symbols:

typedef enum

{
/** occurs after authentication phase is conpleted. */
MYSQL_AUDI T_CONNECTI ON_CONNECT = 1 << 0,
/** occurs after connection is term nated. */
MYSQL_AUDI T_CONNECTI ON_DI SCONNECT =1 << 1,
/** occurs after COM CHANGE USER RPC is conpl eted. */
MYSQL_AUDI T_CONNECTI ON_CHANGE_USER =1 << 2,

/** occurs before authentication. */
MYSQL_AUDI T_CONNECTI ON_PRE_AUTHENTI CATE = 1 << 3
} nysql _event _connecti on_subcl ass_t;

#def i ne MYSQL_AUDI T_CONNECTI ON_ALL (MYSQL_AUDI T_CONNECTI ON_CONNECT | \
MYSQL_AUDI T_CONNECTI ON_DI SCONNECT | \

46

Writing Audit Plugins

MYSQL_AUDI T_CONNECTI ON_CHANGE _USER | \
MYSQL_AUDI T_CONNECT| ON_PRE_AUTHENTI CATE)

To subscribe to all subclasses of the connection event class (as the NULL_AUDI T plugin does), a

plugin specifies MYSQL_AUDI T_CONNECTI ON_ALL in the corresponding cl ass_nask element

(cl ass_nmsk][1] in this case). To subscribe to only some subclasses, the plugin sets the cl ass_nmask
element to the union of the subclasses of interest. For example, to subscribe only to the connect and
change-user subclasses, the plugin sets cl ass_nask|[1] to this value:

MYSQL_AUDI T_CONNECTI ON_CONNECT | MYSQL_AUDI T_CONNECTI ON_CHANGE_USER
Audit Plugin Notification Function

Most of the work for an audit plugin occurs in the naotification function (the event noti f y member of
the type-specific plugin descriptor). The server calls this function for each auditable event. Audit plugin
notification functions have this prototype:

int (*event_notify)(MYSQL_THD, nysql _event_class_t, const void *);

The second and third parameters of the event _not i f y function prototype represent the event class

and a generic pointer to an event structure. (Events in different classes have different structures. The
notification function can use the event class value to determine which event structure applies.) The function
processes the event and returns a status indicating whether the server should continue processing the
event or terminate it.

For NULL_AUDI T, the notification function is audi t _nul | _noti f y() . This function increments a global
event counter (which the plugin exposes as the value of the Audi t _nul | _cal | ed status value), and then
examines the event class to determine how to process the event structure:

static int audit_null_notify(MYSQL_THD thd __attribute__ ((unused)),
nmysql _event _class_t event _cl ass
const void *event)

nunber _of _cal | s++

if (event_class == MYSQL_AUDI T_GENERAL_CLASS)
{

const struct mysql _event _general *event_general =
(const struct mysql _event _general *)event;

}
else if (event_class == MYSQL_AUDI T_CONNECTI ON_CLASS)
{

const struct mysqgl _event_connecti on *event _connecti on=
(const struct mysql _event _connection *) event;

}
else if (event_class == MYSQL_AUDI T_PARSE_CLASS)
{

const struct mysql _event _parse *event_parse =
(const struct nysql _event _parse *)event;

}

The notification function interprets the event argument according to the value of event _cl ass. The
event argument is a generic pointer to the event record, the structure of which differs per event class.
(The pl ugi n_audi t . h file contains the structures that define the contents of each event class.) For each

47

Writing Audit Plugins

class,audit _null _notify() casts the event to the appropriate class-specific structure and then checks
its subclass to determine which subclass counter to increment. For example, the code to handle events in
the connection-event class looks like this:

else if (event_class == MYSQL_AUDI T_CONNECTI ON_CLASS)
{

const struct mysqgl _event_connecti on *event _connecti on=
(const struct mysql _event _connection *) event;

swi tch (event_connection->event_subcl ass)

case MYSQ._AUDI T_CONNECTI ON_CONNECT:
nunber _of _cal | s_connecti on_connect ++;
br eak;

case MYSQ._AUDI T_CONNECTI ON_DI SCONNECT:
nunber _of _cal | s_connecti on_di sconnect ++;
br eak;

case MYSQL_AUDI T_CONNECTI ON_CHANGE USER:
nunmber _of _cal | s_connecti on_change_user ++;
br eak;

case MYSQ._AUDI T_CONNECTI ON_PRE_AUTHENTI CATE:
nunber _of _cal | s_connecti on_pre_aut henti cat e++;

br eak;

defaul t:

br eak;

}
}

Note

The general event class (MYSQL_AUDI T_GENERAL _CLASS) is deprecated and will
be removed in a future MySQL release. To reduce plugin overhead, it is preferable
to subscribe only to the more specific event classes of interest.

For some event classes, the NULL_AUDI T plugin performs other processing in addition to incrementing a
counter. In any case, when the notification function finishes processing the event, it should return a status
indicating whether the server should continue processing the event or terminate it.

Audit Plugin Error Handling
Audit plugin notification functions can report a status value for the current event two ways:

» Use the notification function return value. In this case, the function returns zero if the server should
continue processing the event, or nonzero if the server should terminate the event.

» Call the ny_nessage() function to set the error state before returning from the notification function. In
this case, the notification function return value is ignored and the server aborts the event and terminates
event processing with an error. The my_nessage() arguments indicate which error to report, and its
message. For example:

nmy_nmessage(ER_AUDI T_API _ABORT, “This is my error nessage.", MYF(0));

Some events cannot be aborted. A nonzero return value is not taken into consideration and the
ny_message() error call must follow ani s_error () check. For example:

if (!thd->get_stmt _da()->is_error())

{
my_nmessage(ER_AUDI T_API _ABORT, "This is nmy error nessage.", MYF(0));

}

These events cannot be aborted:

48

Writing Audit Plugins

e MYSQL_AUDI T_CONNECTI ON_DI SCONNECT: The server cannot prevent a client from disconnecting.

* IMYSQL_AUDI T_COMVAND END: This event provides the status of a command that has finished
executing, so there is no purpose to terminating it.

If an audit plugin returns nonzero status for a nonterminable event, the server ignores the status and
continues processing the event. This is also true if an audit plugin uses the ny_nessage() function to
terminate a nonterminable event.

Audit Plugin Usage

To compile and install a plugin library file, use the instructions in Section 4.4.3, “Compiling and Installing
Plugin Libraries”. To make the library file available for use, install it in the plugin directory (the directory
named by the pl ugi n_di r system variable). For the NULL_AUDI T plugin, it is compiled and installed
when you build MySQL from source. It is also included in binary distributions. The build process produces
a shared object library with a name of adt _nul | . so (the . so suffix might differ depending on your
platform).

To register the plugin at runtime, use this statement, adjusting the . so suffix for your platform as
necessary:

I NSTALL PLUG N NULL_AUDI T SONAME ' adt _nul | . so' ;
For additional information about plugin loading, see Installing and Uninstalling Plugins.

To verify plugin installation, examine the | NFORVATI ON_SCHEMA. PLUG NS table or use the SHOW
PLUG NS statement. See Obtaining Server Plugin Information.

While the NULL_AUDI T audit plugin is installed, it exposes status variables that indicate the events for
which the plugin has been called:

nmysqgl > SHOW STATUS LI KE ' Audit_nul | % ;

e e e e e e e mmeeeeeecccccemmmeeaaa tommmmmmm +
| Vari abl e_nane | Value |
e e e e e e e mmeeeeeecccccemmmeeaaa tommmmmmm +
Audit_null _authorization_col um	O	
Audit_null _authorization_db	O	
Audit_null _authorization_procedure	O	
Audit_null _authorization_proxy	O	
Audit_null _authorization_table	O	
Audit_null _authorization_user	O	
Audit_null _called	185547	
Audit_null _comrand_end	20999	
Audit_null _conmand_start	21001	
Audit_null _connection_change_user	O	
Audit_null _connection_connect	5823	
Audit_null _connection_di sconnect	5818	
Audit_null _connection_pre_authenticate	5823	
Audit_null _general _error	1	
Audit_null _general _	og	26559
Audit_null _general result	19922	
Audit_null _general _status	21000	
Audit_null _gl obal _vari abl e_get	O	
Audit_null _gl obal _vari abl e_set	O	
Audit_null _nessage_internal	O	
Audit_null _nessage_user	O	
Audit_null _parse_post parse	14648	
Audit_null _parse_preparse	14648	
Audit_null _query_nested_start	6	
Audit_null _query_nested_status_end	6	
Audit_null _query_start	14648	
Audit_null _query_status_end	14647	

49

https://dev.mysql.com/doc/refman/9.6/en/server-system-variables.html#sysvar_plugin_dir
https://dev.mysql.com/doc/refman/9.6/en/plugin-loading.html
https://dev.mysql.com/doc/refman/9.6/en/information-schema-plugins-table.html
https://dev.mysql.com/doc/refman/9.6/en/show-plugins.html
https://dev.mysql.com/doc/refman/9.6/en/show-plugins.html
https://dev.mysql.com/doc/refman/9.6/en/obtaining-plugin-information.html

Writing Audit Plugins

Audi t _nul | _server _shut down 0
Audi t _nul | _server_startup 1
Audit _nul | _tabl e_access_del ete 104

Audi t _nul | _tabl e_access_read

| |

| |

| |
Audit _nul | _tabl e_access_i nsert | 2839

| |
Audit _nul | _tabl e_access_updat e | |

Audi t _nul | _cal I ed counts all events, and the other variables count instances of specific event
subclasses. For example, the preceding SHOW STATUS statement causes the server to send a result

to the client and to write a message to the general query log if that log is enabled. Thus, a client that
issues the statement repeatedly causes Audi t _nul | _cal | ed, Audit _nul | _general _resul t, and
Audit _nul | _general | og to be incremented each time. Notifications occur whether or not that log is
enabled.

The status variables values are global and aggregated across all sessions. There are no counters for
individual sessions.

NULL_AUDI T exposes several system variables that enable communication with the plugin at runtime:

nmysqgl > SHOW VARI ABLES LI KE ' nul | _audit % ;

nul | _audit_abort nessage | |

nul | _audit_abort_val ue |

nul | _audi t _event _order _check | |

nul | _audi t _event _order_check_consune_i gnore_count |

nul | _audi t _event _order_check_exact | 1 |
I I
I I
I I

nul | _audit_event _order_started 0

nul | _audit_event _record

nul | _audi t _event _record_def
dimccocccooccoocScoSoSoccoocSooSSoccoocSooSSocooocoooo dhmocooos +

The NULL_AUDI T system variables have these meanings:
« null _audit_abort nessage: The custom error message to use when an event is aborted.
« null _audit _abort val ue: The custom error code to use when an event is aborted.

« null _audit_event order_check: Prior to event matching, the expected event order. After event
matching, the matching outcome.

e null _audit_event order_check_consune_i gnore_count : Number of times event matching
should not consume matched events.

e null _audit_event order_check_exact: Whether event matching must be exact. Disabling this
variable enables skipping events not listed in nul | _audit _event or der check during event-order
matching. Of the events specified, they must still match in the order given.

e null _audit_event order_start ed: Forinternal use.
 null _audit_event record: The recorded events after event recording takes place.

e null _audit_event record_def: The names of the start and end events to match when recording
events, separated by a semicolon. The value must be set before each statement for which events are
recorded.

To demonstrate use of those system variables, suppose that a table dbl1. t 1 exists, created as follows:

CREATE DATABASE db1;
CREATE TABLE dbl.t1 (a VARCHAR(255));

50

https://dev.mysql.com/doc/refman/9.6/en/show-status.html

Writing Audit Plugins

For test-creation purposes, it is possible to record events that pass through the plugin. To start recording,
specify the start and end events inthe nul | _audit _event record_def variable. For example:

SET @onul | _audit _event _record_def =
' MYSQL_AUDI T_COMVAND_START; MYSQL_AUDI T_COMVAND_END ;

After a statement occurs that matches those start and end events, the nul | _audit _event record
system variable contains the resulting event sequence. For example, after recording the events for a
SELECT 1 statement, nul | _audit _event record is a string that has a value consisting of a set of
event strings:

MYSQL_AUDI T_COMWAND_START; command_i d="3";
MYSQL_AUDI T_PARSE_PREPARSE; ;

MYSQL_AUDI T_PARSE_POSTPARSE; ;

MYSQL_AUDI T_GENERAL_LGCG ;

MYSQL_AUDI T_QUERY_START; sql _command_i d="0"
MYSQL_AUDI T_QUERY_STATUS_END; sql _conmmand_i d="0";
MYSQL_AUDI T_GENERAL_RESULT; ;

MYSQL_AUDI T_GENERAL_STATUS; ;

MYSQL_AUDI T_COMVAND_END; conmand_i d="3";

After recording the events for an | NSERT | NTO db1l.t1 VALUES ('sone data') statement,
nul | _audit_event record has this value:

MYSQL_AUDI T_COVVAND_START; command_i d="3";

MYSQL_AUDI T_PARSE_PREPARSE; ;

MYSQL_AUDI T_PARSE_POSTPARSE: ;

MYSQL_AUDI T_GENERAL_LGOG; ;

MYSQL_AUDI T_QUERY_START: sql _command_j d="5";
MYSQL_AUDI T_TABLE_ACCESS_| NSERT; db="db1" tabl e="t1";
MYSQL_AUDI T_QUERY_STATUS_END; sql _cormand_j d="5";
MYSQL_AUDI T_GENERAL_RESULT; ;

MYSQL_AUDI T_GENERAL_STATUS; ;

MYSQL_AUDI T_COVMAND_END; command_j d="3";

Each event string has this format, with semicolons separating the string parts:

event _nane; event _dat a; conmmand

Event strings have these parts:

* event nane: The event name (a symbol that begins with MYSQL_AUDI T).

» event _dat a: Empty, or, as described later, data associated with the event.

e command: Empty, or, as described later, a command to execute when the event is matched.
Note

A limitation of the NULL_AUDI T plugin is that event recording works for a single
session only. Once you record events in a given session, event recording in
subsequent sessions yields anul | _audit _event record value of NULL. To
record events again, it is necessary to restart the plugin.

To check the order of audit API calls, setthe nul | _audit _event order check variable to the
expected event order for a particular operation, listing one or more event strings, each containing two
semicolons internally, with additional semicolons separating adjacent event strings:

event _nane; event _dat a; command [; event _nane; event _dat a; conmand]

For example:

51

Writing Audit Plugins

SET @@ul | _audit _event _order_check =
" MYSQL_AUDI T_CONNECTI ON_PRE_AUTHENTI CATE; ; ;'
" MYSQL_AUDI T_GENERAL_LQOG; ; ;'
' MYSQL_AUDI T_CONNECTI ON_CONNECT; ; ' ;

For better readability, the statement takes advantage of the SQL syntax that concatenates adjacent strings
into a single string.

After you setthe nul | _audit _event order_check variable to a list of event strings, the next matching
operation replaces the variable value with a value that indicates the operation outcome:

« If the expected event order was matched successfully, the resulting
nul | _audit_event _or der _check value is EVENT- ORDER- OK.

e Ifthenul | _audit _event order_check value specified aborting a matched event (as described
later), the resulting nul | _audi t _event order_check value is EVENT- ORDER- ABORT.

« If the expected event order failed with unexpected data, the resulting
nul | _audit_event order check value is EVENT- ORDER- | NVALI D- DATA. This occurs, for
example, if an event was specified as expected to affect table t 1 but actually affected t 2.

When you assign to nul | _audi t _event _or der _check the list of events to be matched, some events
should be specified with a nonempty event _dat a part of the event string. The following table shows the
event _dat a format for these events. If an event takes multiple data values, they must be specified in the
order shown. Alternatively, it is possible to specify an event _dat a value as <I GNORE> to ignore event
data content; in this case, it does not matter whether or not an event haas data.

Applicable Events Event Data Format
MYSQL_AUDI T_COMVAND_START comand_i d="id_val ue"

MYSQL_AUDI T_COMVAND_END
MYSQL_AUDI T_GLOBAL_VARI ABLE_GET name="var _val ue" val ue="var _val ue"

MYSQL_AUDI T_GLOBAL_VARI ABLE_SET

MYSQL_AUDI T_QUERY_NESTED_START sgl _conmand_i d="i d_val ue"
MYSQL_AUDI T_QUERY_NESTED_STATUS_END
MYSQL_AUDI T_QUERY_START

MYSQL_AUDI T_QUERY_STATUS_END

MYSQL_AUDI T_TABLE_ACCESS_DELETE db="db_nane" tabl e="tabl e_nane"
MYSQL_AUDI T_TABLE_ACCESS | NSERT

MYSQL_AUDI T_TABLE_ACCESS_READ

MYSQL_AUDI T_TABLE_ACCESS_UPDATE

Inthe nul | _audi t _event order_check value, specifying ABORT _RET in the command part of an event
string makes it possible to abort the audit API call on the specified event. (Assuming that the event is one
that can be aborted. Those that cannot were described previously.) For example, as shown previously, this
is the expected order of events for an insert into t 1:

MYSQL_AUDI T_COMVAND_START; command_i d="3";
MYSQL_AUDI T_PARSE_PREPARSE; ;
MYSQL_AUDI T_PARSE_POSTPARSE; ;

52

Writing Audit Plugins

MYSQL_AUDI T_GENERAL_LGCG ;

MYSQL_AUDI T_QUERY_START; sql _command_i d="5";
MYSQL_AUDI T_TABLE_ACCESS | NSERT; db="db1" tabl e="t1";
MYSQL_AUDI T_QUERY_STATUS_END; sql _command_i d="5";
MYSQL_AUDI T_GENERAL_RESULT; ;

MYSQL_AUDI T_GENERAL_STATUS; ;

MYSQL_AUDI T_COMVAND_END; conmand_i d="3";

To abort | NSERT statement execution when the MYSQL_AUDI T_QUERY_STATUS END event occurs, set
nul | _audit_event order_check like this (remember to add semicolon separators between adjacent
event strings):

SET @@ul | _audi t _event _order_check =
' MYSQL_AUDI T_COMVAND_START; command_i d="3"; ;"'
' MYSQL_AUDI T_PARSE_PREPARSE; ; ;'
' MYSQL_AUDI T_PARSE_POSTPARSE; ; ;'
" MYSQL_AUDI T_GENERAL_LCG ; ;'
' MYSQL_AUDI T_QUERY_START; sql _conmand_i d="5"; ;"'
' MYSQL_AUDI T_TABLE_ACCESS_| NSERT; db="db1" table="t1";;"
' MYSQL_AUDI T_QUERY_STATUS_END; sql _command_i d="5"; ABORT_RET" ;

It is not necesary to list events that are expected to occur after the event string that contains a conrand
value of ABORT _RET.

After the audit plugin matches the preceding sequence, it aborts event processing and sends an error
message to the client. It also sets nul | _audi t _event order_check to EVENT- ORDER- ABORT:

nmysql > | NSERT | NTO dbl.t1 VALUES ('sone data');
ERROR 3164 (HY000): Aborted by Audit APl (' MYSQL_AUDI T_QUERY_STATUS END ;1) .
nysql > SELECT @ul | _audit_event order _check;

e e e e e e eeeeeeaeaaaaaa +
| @@ul | _audit_event _order_check |
e e e e e e eeeeeeaeaaaaaa +
| EVENT- ORDER- ABORT |
e e e e e e eeeeeeaeaaaaaa +

Returning a nonzero value from the audit API notification routine is the standard way to abort event
execution. It is also possible to specify a custom error code by setting the nul | _audi t _abort _val ue
variable to the value that the notification routine should return:

SET @onul | _audit _abort_val ue = 123;

Aborting a sequence results in a standard message with the custom error code. Suppose that you set audit
log system variables like this, to abort on a match for the events that occur for a SELECT 1 statement:

SET @onul | _audit _abort_val ue = 123;
SET @onul | _audit _event _order_check =
' MYSQL_AUDI T_COWAND_START; conmand_i d="3"; ;"'
' MYSQL_AUDI T_PARSE_PREPARSE; ; ;'
' MYSQL_AUDI T_PARSE_POSTPARSE; ; ;'
' MYSQL_AUDI T_GENERAL_LOG; ; ;'
' MYSQL_AUDI T_QUERY_START; sql _conmand_i d="0"; ABORT_RET' ;

Then execution of SELECT 1 results in this error message that includes the custom error code:

nysql > SELECT 1;
ERROR 3164 (HY000): Aborted by Audit APl (' MYSQL_AUDI T_QUERY_START' ; 123).

nysqgl > SELECT @@nul | _audit _event _order_check;

ffoocmcccscococoooococcooooocosooos +
| @@ul | _audit_event _order_check |
ffoocmcccscococoooococcooooocosooos +
| EVENT- ORDER- ABORT |
ffoocmcccscococoooococcooooocosooos +

53

https://dev.mysql.com/doc/refman/9.6/en/insert.html

Writing Authentication Plugins

An event can be also aborted with a custom message, specified by setting the
nul | _audit_abort nessage variable. Suppose that you set audit log system variables like this:

SET @onul | _audit _abort _nessage = 'Custom error text.';
SET @onul | _audit _event _order_check =

' MYSQL_AUDI T_COMVAND_START; command_i d="3"; ;"'

' MYSQL_AUDI T_PARSE PREPARSE; ; ;'

' MYSQL_AUDI T_PARSE _POSTPARSE; ; ;'

" MYSQL_AUDI T_GENERAL_LOG ; ;'

' MYSQL_AUDI T_QUERY_START; sqgl _conmmand_i d="0"; ABORT_RET" ;

Then aborting a sequence results in the following error message:

nysql > SELECT 1;
ERROR 3164 (HY000): Custom error text.
nmysqgl > SELECT @o@nul | _audit_event _order_check;

ffoocmcccscococoooococcooooocosooos +
| @@ul | _audit_event _order_check |
ffoocmcccscococoooococcooooocosooos +
| EVENT- ORDER- ABORT |
ffoocmcccscococoooococcooooocosooos +

To disable the NULL_AUDI T plugin after testing it, use this statement to unload it:

UNI NSTALL PLUG N NULL_AUDI T;

4.4.9 Writing Authentication Plugins

MySQL supports pluggable authentication, in which plugins are invoked to authenticate client connections.
Authentication plugins enable the use of authentication methods other than the built-in method of
passwords stored in the mysql . user system table. For example, plugins can be written to access
external authentication methods. Also, authentication plugins can support the proxy user capability, such
that the connecting user is a proxy for another user and is treated, for purposes of access control, as
having the privileges of a different user. For more information, see Pluggable Authentication, and Proxy
Users.

An authentication plugin can be written for the server side or the client side. Server-side plugins use the
same plugin API that is used for the other server plugin types such as full-text parser or audit plugins
(although with a different type-specific descriptor). Client-side plugins use the client plugin API.

Several header files contain information relevant to authentication plugins:
e pl ugi n. h: Defines the MYSQL_ AUTHENTI CATI ON_PLUG N server plugin type.

e client_plugin. h: Defines the API for client plugins. This includes the client plugin descriptor and
function prototypes for client plugin C API calls (see C API Client Plugin Interface).

» plugi n_aut h. h: Defines the part of the server plugin API specific to authentication plugins.
This includes the type-specific descriptor for server-side authentication plugins and the
MYSQL_SERVER_AUTH_| NFOstructure.

» plugi n_aut h_comon. h: Contains common elements of client and server authentication plugins. This
includes return value definitions and the MYSQL_PLUG N_VI Ostructure.

To write an authentication plugin, include the following header files in the plugin source file. Other MySQL
or general header files might also be needed, depending on the plugin capabilities and requirements.

» For a source file that implements a server authentication plugin, include this file:

#i ncl ude <mnysql/ pl ugi n_aut h. h>

54

https://dev.mysql.com/doc/refman/9.6/en/pluggable-authentication.html
https://dev.mysql.com/doc/refman/9.6/en/proxy-users.html
https://dev.mysql.com/doc/refman/9.6/en/proxy-users.html
https://dev.mysql.com/doc/c-api/9.6/en/c-api-plugin-interface.html

Writing Authentication Plugins

» For a source file that implements a client authentication plugin, or both client and server plugins, include
these files:

#i ncl ude <mysql / pl ugi n_aut h. h>
#i ncl ude <nmysql/client_pl ugi n. h>
#i ncl ude <mysql . h>

pl ugi n_aut h. hincludes pl ugi n. h and pl ugi n_aut h_conmmon. h, so you need not include the latter
files explicitly.

This section describes how to write a pair of simple server and client authentication plugins that work
together.

Warning

These plugins accept any non-empty password and the password is sent as
cleartext. This is insecure, so the plugins should not be used in production
environments.

The server-side and client-side plugins developed here both are named aut h_si npl e. As described in
Section 4.4.2, “Plugin Data Structures”, the plugin library file must have the same base name as the client
plugin, so the source file name is aut h_si npl e. ¢ and produces a library named aut h_si npl e. so
(assuming that your system uses . so as the sulffix for library files).

In MySQL source distributions, authentication plugin source is located in the pl ugi n/ aut h directory
and can be examined as a guide to writing other authentication plugins. Also, to see how the built-

in authentication plugins are implemented, see sql / sql _acl . cc for plugins that are built in to the
MySQL server and sql - conmron/ cl i ent . ¢ for plugins that are built in to the | i bnysql cl i ent client
library. (For the built-in client plugins, note that the aut h_pl ugi n_t structures used there differ from the
structures used with the usual client plugin declaration macros. In particular, the first two members are
provided explicitly, not by declaration macros.)

4.4.9.1 Writing the Server-Side Authentication Plugin

Declare the server-side plugin with the usual general descriptor format that is used for all server plugin
types (see Section 4.4.2.1, “Server Plugin Library and Plugin Descriptors”). For the aut h_si npl e plugin,
the descriptor looks like this:

nmysql _decl ar e_pl ugi n(aut h_si npl e)

{
MYSQL_AUTHENTI CATI ON_PLUG N
&aut h_si npl e_handl er, /* type-specific descriptor */
"aut h_si npl e", /* plugin name */
" Aut hor Nane", /* author */
" Any- password aut henticati on plugin", /* description */
PLUG N_LI CENSE_GPL, /* license type */
NULL, /* no init function */
NULL, /* no deinit function */
0x0100, /* version = 1.0 */
NULL, /* no status variables */
NULL, /* no system variables */
NULL, /* no reserved informati on */
0 /* no flags */

nmysql _decl are_pl ugi n_end

The nanme member (aut h_si npl e) indicates the name to use for references to the plugin in statements
such as | NSTALL PLUG Nor UNI NSTALL PLUG N. This is also the name displayed by SHOW PLUG NS
or | NFORVATI ON_SCHENA. PLUG NS.

55

https://dev.mysql.com/doc/refman/9.6/en/install-plugin.html
https://dev.mysql.com/doc/refman/9.6/en/uninstall-plugin.html
https://dev.mysql.com/doc/refman/9.6/en/show-plugins.html
https://dev.mysql.com/doc/refman/9.6/en/information-schema-plugins-table.html

Writing Authentication Plugins

The aut h_si npl e_handl er member of the general descriptor points to the type-specific descriptor.
For an authentication plugin, the type-specific descriptor is an instance of the st _nysql _aut h structure
(defined in pl ugi n_aut h. h):

struct st_mysqgl _auth

{
int interface_version
const char *client_auth_plugin
int (*authenticate_user)(MSQ_PLUG N VIO *vio, MYSQ._SERVER AUTH_| NFO *i nf 0)
int (*generate_authentication_string)(char *outbuf,
unsi gned i nt *outbuflen, const char *inbuf, unsigned int inbuflen);
int (*validate_authentication_string)(char* const inbuf, unsigned int buflen);
int (*set_salt)(const char *password, unsigned int password_|en
unsi gned char* salt, unsigned char *salt_|en);
const unsigned | ong aut hentication_fl ags
Ik

The st _nysqgl _aut h structure has these members:

e interface_versi on: The type-specific API version number, always
MYSQL_AUTHENTI CATI ON_I NTERFACE_VERSI ON

e client _auth_plugin: The client plugin name
e aut henti cat e_user: A pointer to the main plugin function that communicates with the client

e generate_authentication_string: A pointer to a plugin function that generates a password digest
from an authentication string

e validate_authentication_string: A pointer to a plugin function that validates a password digest
e set _sal t: A pointer to a plugin function that converts a scrambled password to binary form
e authentication flags:A flags word

The cl i ent _aut h_pl ugi n member should indicate the name of the client plugin if a specific plugin is
required. A value of NULL means “any plugin.” In the latter case, whatever plugin the client uses will do.
This is useful if the server plugin does not care about the client plugin or what user name or password it
sends. For example, this might be true if the server plugin authenticates only local clients and uses some
property of the operating system rather than the information sent by the client plugin.

For aut h_si npl e, the type-specific descriptor looks like this:

static struct st_mysqgl _auth auth_sinpl e_handl er =

{
MYSQL_AUTHENTI CATI ON_| NTERFACE_VERSI ON,
"aut h_si npl e", /* required client-side plugin name */
aut h_si npl e_server /* server-side plugin main function */

generate_aut h_string_hash, /* generate digest from password string */
val i date_aut h_string_hash, /* validate password di gest */

set_sal t, /* generate password salt value */
AUTH_FLAG PRI VI LEGED USER FOR PASSWORD CHANGE

b

The main function, aut h_si npl e_ser ver (), takes two arguments representing an I/O structure and a
MYSQL_SERVER AUTH | NFOstructure. The structure definition, found in pl ugi n_aut h. h, looks like this:

typedef struct st_nysql _server_auth_info
{

char *user_nane

unsi gned int user_nane_| ength

const char *auth_string

56

Writing Authentication Plugins

unsi gned | ong auth_string_| engt h;
char aut henti cat ed_as[MYSQL_USERNAME_LENGTH+1] ;
char external _user[512];
int password_used;
const char *host_or_ip;
unsi gned int host_or_ip_I ength;
} MYSQL_SERVER AUTH | NFG,

The character set for string members is UTF-8. If there is a _| engt h member associated with a string, it
indicates the string length in bytes. Strings are also null-terminated.

When an authentication plugin is invoked by the server, it should interpret the
MYSQL_SERVER AUTH I NFOstructure members as follows. Some of these are used to set the value of
SQL functions or system variables within the client session, as indicated.

» user _nane: The user name sent by the client. The value becomes the USER() function value.
e user _nane_| engt h: The length of user _nane in bytes.

e aut h_string: The value of the aut henti cati on_stri ng column of the row in the mysql . user

system table for the matching account name (that is, the row that matches the client user name and host

name and that the server uses to determine how to authenticate the client).

Suppose that you create an account using the following statement:

CREATE USER ' nmy_user' @1 ocal host'
| DENTI FI ED WTH ny_plugin AS 'ny_auth_string';

When nmy_user connects from the local host, the server invokes ny_pl ugi n and passes
"nmy_auth_string' toitastheaut h_string value.

e auth_string_| engt h: The length of aut h_st ri ng in bytes.

» aut henti cat ed_as: The server sets this to the user name (the value of user _nane). The plugin
can alter it to indicate that the client should have the privileges of a different user. For example, if
the plugin supports proxy users, the initial value is the name of the connecting (proxy) user, and the
plugin can change this member to the proxied user name. The server then treats the proxy user as
having the privileges of the proxied user (assuming that the other conditions for proxy user support are
satisfied; see Section 4.4.9.4, “Implementing Proxy User Support in Authentication Plugins”). The value
is represented as a string at most MYSQL_USER NAME_LENGTH bytes long, plus a terminating null. The
value becomes the CURRENT USER() function value.

» external _user: The server sets this to the empty string (null terminated). Its value becomes the
ext ernal _user system variable value. If the plugin wants that system variable to have a different
value, it should set this member accordingly (for example, to the connecting user name). The value is
represented as a string at most 511 bytes long, plus a terminating null.

» passwor d_used: This member applies when authentication fails. The plugin can set it or ignore it. The
value is used to construct the failure error message of Aut henti cation fails. Password used:
%s. The value of passwor d_used determines how %s is handled, as shown in the following table.

passwor d_used % Handling

0 NO

1 YES

2 There will be no %

e host or i p: The name of the client host if it can be resolved, or the IP address otherwise.

57

https://dev.mysql.com/doc/refman/9.6/en/information-functions.html#function_user
https://dev.mysql.com/doc/refman/9.6/en/information-functions.html#function_current-user
https://dev.mysql.com/doc/refman/9.6/en/server-system-variables.html#sysvar_external_user

Writing Authentication Plugins

host _or i p_I engt h: The length of host _or i p in bytes.

The aut h_si npl e main function, aut h_si npl e_ser ver (), reads the password (a null-terminated
string) from the client and succeeds if the password is nonempty (first byte not null):

static int auth_sinple_server (MYSQL_PLUG N VIO *vi o,

{

MYSQL_SERVER AUTH_| NFO *i nf 0)

unsi gned char *pkt;
int pkt_|en;

/* read the password as null-termnated string, fail on error */
if ((pkt_len= vio->read_packet(vio, &pkt)) < 0)
return CR_ERROR

/* fail on enpty password */

if (!pkt_len || *pkt == '\0")

{
i nf 0- >passwor d_used= PASSWORD USED NG,
return CR_ERROR

}

/* accept any nonenpty password */
i nf 0- >passwor d_used= PASSWORD USED YES;

return CR CK;

}

The main function should return one of the error codes shown in the following table.

Error Code Meaning

CR &K Success

CR_OK_HANDSHAKE COVPLETE Do not send a status packet back to client
CR_ERRCR Error

CR_AUTH_USER_ CREDENTI ALS Authentication failure
CR_AUTH_HANDSHAKE Authentication handshake failure
CR_AUTH_PLUG N_ERROR Internal plugin error

For an example of how the handshake works, see the pl ugi n/ aut h/ di al og. ¢ source file.
The server counts plugin errors in the Performance Schema host _cache table.

aut h_si npl e_server () is so basic that it does not use the authentication information structure except
to set the member that indicates whether a password was received.

A plugin that supports proxy users must return to the server the name of the proxied user (the
MySQL user whose privileges the client user should get). To do this, the plugin must set the i nf o-
>aut hent i cat ed_as member to the proxied user name. For information about proxying, see Proxy
Users, and Section 4.4.9.4, “Implementing Proxy User Support in Authentication Plugins”.

The gener at e_aut henti cati on_stri ng member of the plugin descriptor takes the password and
generates a password hash (digest) from it:

» The first two arguments are pointers to the output buffer and its maximum length in bytes. The function
should write the password hash to the output buffer and reset the length to the actual hash length.

e The second two arguments indicate the password input buffer and its length in bytes.

58

https://dev.mysql.com/doc/refman/9.6/en/performance-schema-host-cache-table.html
https://dev.mysql.com/doc/refman/9.6/en/proxy-users.html
https://dev.mysql.com/doc/refman/9.6/en/proxy-users.html

Writing Authentication Plugins

» The function returns 0 for success, 1 if an error occurred.

For the aut h_si npl e plugin, the generat e_aut h_stri ng_hash() function implements the
generate_aut henticati on_stri ng member. It just makes a copy of the password, unless it is too
long to fit in the output buffer.

int generate_auth_string_hash(char *outbuf, unsigned int *buflen,
const char *inbuf, unsigned int inbuflen)
{

/*
fail if buffer specified by server cannot be copied to output buffer
*/
if (*buflen < inbuflen)
return 1, [* error */
strncpy(out buf, inbuf, inbuflen);
*bufl en= strlen(inbuf);
return O; /* success */

}

The val i dat e_aut henti cati on_stri ng member of the plugin descriptor validates a password hash:
e The arguments are a pointer to the password hash and its length in bytes.

» The function returns 0 for success, 1 if the password hash cannot be validated.

For the aut h_si npl e plugin, the val i dat e_aut h_stri ng_hash() function implements the
val i dat e_aut henti cati on_st ri ng member. It returns success unconditionally:

int validate_auth_string_hash(char* const inbuf _ attribute_ ((unused)),
unsigned int buflen _ attribute_ ((unused)))
{

return 0; /* success */

}

The set _sal t member of the plugin descriptor was used only by the nysql _nati ve passwor d plugin,
which is no longer supported in MySQL 9.6. For other authentication plugins, you can use this trivial
implementation:

int set_salt(const char* password __attribute__ ((unused)),
unsi gned int password_len __attribute_ ((unused)),
unsi gned char* salt __attribute__ ((unused)),
unsi gned char* salt_|en)

{
*salt_len= 0;
return O; /* success */

}

The aut henti cati on_f | ags member of the plugin descriptor contains flags that affect plugin operation.
The permitted flags are:

 AUTH FLAG PRI VI LEGED USER FOR PASSWORD CHANGE: Credential changes are a privileged
operation. If this flag is set, the server requires that the user has the global CREATE USER privilege or
the UPDATE privilege for the mysql database.

e AUTH FLAG USES | NTERNAL STORAGE: Whether the plugin uses internal storage (in the
aut henti cation_string column of nysql . user rows). If this flag is not set, attempts to set the
password fail and the server produces a warning.

e« AUTH FLAG REQUI RES REG STRATI ON: This flag is set for authentication plugins that require a
registration process. It is checked for CREATE USER and ALTER USER statements, and when the
aut henti cati on_pol i cy system variable is assigned a value.

59

https://dev.mysql.com/doc/refman/9.6/en/privileges-provided.html#priv_create-user
https://dev.mysql.com/doc/refman/9.6/en/privileges-provided.html#priv_update
https://dev.mysql.com/doc/refman/9.6/en/create-user.html
https://dev.mysql.com/doc/refman/9.6/en/alter-user.html
https://dev.mysql.com/doc/refman/9.6/en/server-system-variables.html#sysvar_authentication_policy

Writing Authentication Plugins

4.4.9.2 Writing the Client-Side Authentication Plugin

Declare the client-side plugin descriptor with the nysql _decl are_cl i ent pl ugi n() and
nysqgl _end_client _plugi n macros (see Section 4.4.2.3, “Client Plugin Descriptors”). For the
aut h_si npl e plugin, the descriptor looks like this:

nysql _decl are_cl i ent _pl ugi n(AUTHENTI CATI ON)

"aut h_si npl e", /* plugin name */

" Aut hor Nange", /* aut hor */

"Any- password aut hentication plugin", /* description */

{1, 0, 0}, /* version = 1.0.0 */

" GPL", /* license type */

NULL, /* for internal use */

NULL, /* no init function */

NULL, /* no deinit function */

NULL, /* no option-handling function */
aut h_sinpl e_client /* main function */

nysql _end_cl i ent_pl ugi n;

The descriptor members from the plugin name through the option-handling function are common to all
client plugin types. (For descriptions, see Section 4.4.2.3, “Client Plugin Descriptors”.) Following the
common members, the descriptor has an additional member specific to authentication plugins. This is
the “main” function, which handles communication with the server. The function takes two arguments
representing an I/O structure and a connection handler. For our simple any-password plugin, the main
function does nothing but write to the server the password provided by the user:

static int auth_sinple_client (MYSQL_PLUG N VIO *vio, MYSQL *nysql)
{

int res;

/* send password as null-term nated string as cleartext */

res= vio->wite_packet (vio, (const unsigned char *) nysql->passwd,
strlen(mysql - >passwd) + 1);

return res ? CR ERROR : CR CX;
}

The main function should return one of the error codes shown in the following table.

Error Code Meaning

CR &K Success
CR_OK_HANDSHAKE COVPLETE Success, client done
CR_ERRCR Error

CR_OK_HANDSHAKE COVPLETE indicates that the client has done its part successfully and has read the
last packet. A client plugin may return CR_OK_HANDSHAKE COVPLETE if the number of round trips in the
authentication protocol is not known in advance and the plugin must read another packet to determine
whether authentication is finished.

4.4.9.3 Using the Authentication Plugins
To compile and install a plugin library file, use the instructions in Section 4.4.3, “Compiling and Installing
Plugin Libraries”. To make the library file available for use, install it in the plugin directory (the directory

named by the pl ugi n_di r system variable).

Register the server-side plugin with the server. For example, to load the plugin at server startup, use a - -
pl ugi n-1 oad=aut h_si npl e. so option, adjusting the . so suffix for your platform as necessary.

60

https://dev.mysql.com/doc/refman/9.6/en/server-system-variables.html#sysvar_plugin_dir
https://dev.mysql.com/doc/refman/9.6/en/server-options.html#option_mysqld_plugin-load
https://dev.mysql.com/doc/refman/9.6/en/server-options.html#option_mysqld_plugin-load

Writing Authentication Plugins

Create a user for whom the server will use the aut h_si npl e plugin for authentication:

nmysql > CREATE USER ' x' @I ocal host'
-> | DENTI FI ED W TH aut h_si npl e;

Use a client program to connect to the server as user x. The server-side aut h_si npl e plugin
communicates with the client program that it should use the client-side aut h_si npl e plugin, and the
latter sends the password to the server. The server plugin should reject connections that send an empty
password and accept connections that send a honempty password. Invoke the client program each way to
verify this:

$> nysql --user=x --skip-password
ERROR 1045 (28000): Access denied for user 'x' @Il ocal host' (using password: NO

$> nysql --user=x --password
Ent er password: abc
nysql >

Because the server plugin accepts any nonempty password, it should be considered insecure. After
testing the plugin to verify that it works, restart the server without the - - pl ugi n- | oad option so as not to
indavertently leave the server running with an insecure authentication plugin loaded. Also, drop the user
with DROP USER ' x' @1 ocal host ' .

For additional information about loading and using authentication plugins, see Installing and Uninstalling
Plugins, and Pluggable Authentication.

If you are writing a client program that supports the use of authentication plugins, normally such a program
causes a plugin to be loaded by calling nysql _opti ons() to setthe MYSQL_DEFAULT AUTHand
MYSQL_PLUG N_DI R options:

char *plugin_dir = "path_to_plugin_dir";
char *default_auth = "plugi n_nane";

/* ... process command-|ine options ... */

nysql _options(&ysqgl, MYSQ_PLUG N DI R, plugin_dir);
nysql _options(&ysql, MYSQ._DEFAULT_AUTH, default_auth);

Typically, the program will also accept - - pl ugi n-di r and - - def aul t - aut h options that enable users
to override the default values.

Should a client program require lower-level plugin management, the client library contains functions that
take an st _nysql _client _pl ugi n argument. See C API Client Plugin Interface.

4.4.9.4 Implementing Proxy User Support in Authentication Plugins

One of the capabilities that pluggable authentication makes possible is proxy users (see Proxy Users). For
a server-side authentication plugin to participate in proxy user support, these conditions must be satisfied:

» When a connecting client should be treated as a proxy user, the plugin must return a different name
in the aut hent i cat ed_as member of the MYSQL SERVER AUTH | NFOstructure, to indicate the
proxied user name. It may also optionally set the ext er nal _user member, to set the value of the
ext ernal _user system variable.

» Proxy user accounts must be set up to be authenticated by the plugin. Use the CREATE USER or GRANT
statement to associate accounts with plugins.

» Proxy user accounts must have the PROXY privilege for the proxied accounts. Use the GRANT statement
to grant this privilege.

61

https://dev.mysql.com/doc/refman/9.6/en/server-options.html#option_mysqld_plugin-load
https://dev.mysql.com/doc/refman/9.6/en/drop-user.html
https://dev.mysql.com/doc/refman/9.6/en/plugin-loading.html
https://dev.mysql.com/doc/refman/9.6/en/plugin-loading.html
https://dev.mysql.com/doc/refman/9.6/en/pluggable-authentication.html
https://dev.mysql.com/doc/c-api/9.6/en/mysql-options.html
https://dev.mysql.com/doc/c-api/9.6/en/c-api-plugin-interface.html
https://dev.mysql.com/doc/refman/9.6/en/proxy-users.html
https://dev.mysql.com/doc/refman/9.6/en/server-system-variables.html#sysvar_external_user
https://dev.mysql.com/doc/refman/9.6/en/create-user.html
https://dev.mysql.com/doc/refman/9.6/en/grant.html
https://dev.mysql.com/doc/refman/9.6/en/privileges-provided.html#priv_proxy
https://dev.mysql.com/doc/refman/9.6/en/grant.html

Writing Authentication Plugins

In other words, the only aspect of proxy user support required of the plugin is that it set
aut hent i cat ed_as to the proxied user name. The rest is optional (setting ext er nal _user) or done by
the DBA using SQL statements.

How does an authentication plugin determine which proxied user to return when the proxy user connects?
That depends on the plugin. Typically, the plugin maps clients to proxied users based on the authentication
string passed to it by the server. This string comes from the AS part of the | DENTI FI ED W TH clause of
the CREATE USER statement that specifies use of the plugin for authentication.

The plugin developer determines the syntax rules for the authentication string and implements the plugin
according to those rules. Suppose that a plugin takes a comma-separated list of pairs that map external
users to MySQL users. For example:

CREATE USER '' @ % exanpl e. comnl

| DENTI FI ED W TH ny_pl ugi n AS ' ext user 1=nysql usera, extuser2=nysql userb’
CREATE USER '' @ % exanpl e. org'

| DENTI FI ED W TH ny_pl ugi n AS ' ext user 1=nysql userc, extuser2=nysql userd'

When the server invokes a plugin to authenticate a client, it passes the appropriate authentication string to
the plugin. The plugin is responsible to:

1. Parse the string into its components to determine the mapping to use
2. Compare the client user name to the mapping
3. Return the proper MySQL user name

For example, if ext user 2 connects from an exanpl e. comhost, the server passes

"extuser1=nysqgl usera, extuser2=nysql userb' to the plugin, and the plugin should copy

nysql user b into aut hent i cat ed_as, with a terminating null byte. If ext user 2 connects from an
exanpl e. or g host, the server passes ' ext user 1=nysql userc, extuser2=nysql userd', and the
plugin should copy nmysql user d instead.

If there is no match in the mapping, the action depends on the plugin. If a match is required, the plugin
likely will return an error. Or the plugin might simply return the client name; in this case, it should not
change aut henti cat ed_as, and the server will not treat the client as a proxy.

The following example demonstrates how to handle proxy users using a plugin named

aut h_si npl e_pr oxy. Like the aut h_si npl e plugin described earlier, aut h_si npl e_pr oxy accepts
any nonempty password as valid (and thus should not be used in production environments). In addition,
it examines the aut h_st r i ng authentication string member and uses these very simple rules for
interpreting it:

« If the string is empty, the plugin returns the user name as given and no proxying occurs. That is, the
plugin leaves the value of aut hent i cat ed_as unchanged.

* If the string is nonempty, the plugin treats it as the name of the proxied user and copies it to
aut henti cat ed_as so that proxying occurs.

For testing, set up one account that is not proxied according to the preceding rules, and one that is. This
means that one account has no AS clause, and one includes an AS clause that names the proxied user:

CREATE USER ' pl ugi n_user1' @I ocal host'
| DENTI FI ED W TH aut h_si npl e_pr oxy;
CREATE USER ' pl ugi n_user2' @I ocal host'
| DENTI FI ED W TH aut h_si npl e_proxy AS ' proxied_user';

In addition, create an account for the proxied user and grant pl ugi n_user 2 the PROXY privilege for it:

62

https://dev.mysql.com/doc/refman/9.6/en/create-user.html
https://dev.mysql.com/doc/refman/9.6/en/privileges-provided.html#priv_proxy

Writing Authentication Plugins

CREATE USER ' proxi ed_user' @I ocal host'
| DENTI FI ED BY ' proxi ed_user _pass' ;
GRANT PROXY
ON ' proxi ed_user' @Il ocal host'
TO ' pl ugi n_user2' @1 ocal host "' ;

Before the server invokes an authentication plugin, it sets aut hent i cat ed_as to the client user name.
To indicate that the user is a proxy, the plugin should set aut hent i cat ed_as to the proxied user name.
For aut h_si npl e_pr oxy, this means that it must examine the aut h_st ri ng value, and, if the value

is nonempty, copy it to the aut hent i cat ed_as member to return it as the name of the proxied user. In
addition, when proxying occurs, the plugin sets the ext er nal _user member to the client user name; this
becomes the value of the ext er nal _user system variable.

static int auth_sinple_proxy_server (MYSQL_PLUG N VIO *vi o,
MYSQL_SERVER_AUTH_I NFO *i nf 0)

{

unsi gned char *pkt;

int pkt_|en;

/* read the password as null-term nated string, fail on error */

if ((pkt_len= vio->read_packet(vio, &pkt)) < 0)
return CR_ERROR

/* fail on enpty password */

if (!pkt_len || *pkt == "'\0")

{
i nf o- >passwor d_used= PASSWORD USED NG,
return CR_ERROR

}

/* accept any nonenpty password */

i nf o- >passwor d_used= PASSWORD USED YES;

/* if authentication string is nonenpty, use as proxi ed user nane */

/* and use client nane as external _user value */

if (info->auth_string_length > 0)

{
strcpy (info->authenticated_as, info->auth_string);
strcpy (info->external _user, info->user_nane);

return CR CK;

}

After a successful connection, the USER() function should indicate the connecting client user and host
name, and CURRENT _USER() should indicate the account whose privileges apply during the session. The
latter value should be the connecting user account if no proxying occurs or the proxied account if proxying
does occur.

Compile and install the plugin, then test it. First, connect as pl ugi n_user 1:

$> nysql --user=plugin_userl --password
Ent er password: x

In this case, there should be no proxying:

nysql > SELECT USER(), CURRENT_USER(), @oroxy_user, @@xternal _user\G
khkkhkkhkhkkhkhkkhkkhkhkkhkhkkhhkhhkhkhkhkhhxkhkkx*x l. I'OW khkkhkkhkhkkhkhkkhkkhkhkkhkhkkhhkkhhkhkhkhhhxkhkkxx*x
USER(): plugi n_user1@ ocal host
CURRENT_USER(): pl ugi n_user 1@ ocal host
@@pr oxy_user: NULL
@oext ernal _user: NULL

Then connect as pl ugi n_user 2:

63

https://dev.mysql.com/doc/refman/9.6/en/server-system-variables.html#sysvar_external_user
https://dev.mysql.com/doc/refman/9.6/en/information-functions.html#function_user
https://dev.mysql.com/doc/refman/9.6/en/information-functions.html#function_current-user

Writing Password-Validation Plugins

$> nysql --user=plugin_user2 --password
Ent er password: x

In this case, pl ugi n_user 2 should be proxied to pr oxi ed_user:

nmysql > SELECT USER(), CURRENT_USER(), @@roxy_user, @@@xternal _user\G

khkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkk*x 1 r ow khkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkk*x

USER(): pl ugi n_user 2@ ocal host

CURRENT_USER(): proxi ed_user @ ocal host
@proxy_user: 'plugin_user2' @I ocal host
@z@xt ernal _user: 'plugin_user2' @I ocal host

4.4.10 Writing Password-Validation Plugins

This section describes how to write a server-side password-validation plugin. The instructions are
based on the source code in the pl ugi n/ passwor d_val i dat i on directory of MySQL source
distributions. The val i dat e_passwor d. cc source file in that directory implements the plugin named
val i dat e_password.

Note

The plugin form of val i dat e_passwor d from older MySQL releases is
deprecated and is subject to removal in a future version of MySQL. Use the
component instead; see Transitioning to the Password Validation Component.

To write a password-validation plugin, include the following header file in the plugin source file. Other
MySQL or general header files might also be needed, depending on the plugin capabilities and
requirements.

#i ncl ude <nysql/ pl ugi n_val i dat e_password. h>

pl ugi n_val i dat e_passwor d. h includes pl ugi n. h, so you need not include the latter file explicitly.
pl ugi n. h defines the MYSQL_VALI DATE_PASSWORD PLUG N server plugin type and the data structures
needed to declare the plugin. pl ugi n_val i dat e_passwor d. h defines data structures specific to
password-validation plugins.

A password-validation plugin, like any MySQL server plugin, has a general plugin descriptor (see
Section 4.4.2.1, “Server Plugin Library and Plugin Descriptors”). In val i dat e_passwor d. cc, the general
descriptor for val i dat e_passwor d looks like this:

nysql _decl are_pl ugi n(val i dat e_passwor d)

{
MYSQL_VALI DATE_PASSWORD_PLUGQ N, /* type */
&val i dat e_passwor d_descri pt or, /* descri ptor */
"val i dat e_password", /* name */
"Oracl e Corporation", /* aut hor */
"check password strength", /* description */
PLUG N_LI CENSE_GPL,
val i dat e_password_init, [* init function (when | oaded) */
val i dat e_password_deini t, [* deinit function (when unl oaded) */
0x0100, [* ver si on */
NULL,
val i dat e_password_system vari abl es, /* system vari abl es */
NULL,
0

nmysql _decl are_pl ugi n_end

The name member (val i dat e_passwor d) indicates the name to use for references to the plugin in
statements such as | NSTALL PLUG Nor UNI NSTALL PLUG N. This is also the name displayed by
| NFORMATI ON_SCHENA. PLUG NS or SHOW PLUG NS.

64

https://dev.mysql.com/doc/refman/9.6/en/validate-password-transitioning.html
https://dev.mysql.com/doc/refman/9.6/en/install-plugin.html
https://dev.mysql.com/doc/refman/9.6/en/uninstall-plugin.html
https://dev.mysql.com/doc/refman/9.6/en/information-schema-plugins-table.html
https://dev.mysql.com/doc/refman/9.6/en/show-plugins.html

Writing Password-Validation Plugins

The general descriptor also refers to val i dat e_passwor d_syst em vari abl es, a structure that
exposes several system variables to the SHOWV VARI ABLES statement:

static struct st_mysqgl _sys_var* validate_password_systemvariabl es[]= {
MYSQL_SYSVAR(| engt h) ,
MYSQL_SYSVAR(nunber _count)
MYSQL_SYSVAR(m xed_case_count)
MYSQL_SYSVAR(speci al _char _count)
MYSQL_SYSVAR(pol i cy),
MYSQL_SYSVAR(di ctionary_file)
NULL

b

The val i dat e_passwor d_i ni t initialization function reads the dictionary file if one was specified, and
the val i dat e_passwor d_dei ni t function frees data structures associated with the file.

The val i dat e_passwor d_descri pt or value in the general descriptor points to the type-specific
descriptor. For password-validation plugins, this descriptor has the following structure:

struct st_nysql _validate_password

{
int interface_version
/*
This function returns TRUE for passwords which satisfy the password
policy (as chosen by plugin variable) and FALSE for all other
passwor d
*/
int (*validate_password)(nysqgl _string_handl e password);
/*
This function returns the password strength (0-100) dependi ng
upon the policies
*/
int (*get_password_strength) (nysqgl _string_handl e password);
b

The type-specific descriptor has these members:

e interface_versi on: By convention, type-specific plugin descriptors begin with the interface
version for the given plugin type. The server checks i nt er f ace_ver si on when it loads the plugin
to see whether the plugin is compatible with it. For password-validation plugins, the value of the
i nterface_versi on memberis MYSQL_VALI DATE_PASSWORD | NTERFACE_VERSI ON (defined in
pl ugi n_val i dat e_passwor d. h).

» val i dat e_passwor d: A function that the server calls to test whether a password satisfies the current
password policy. It returns 1 if the password is okay and 0 otherwise. The argument is the password,
passed as a nysql _st ri ng_handl e value. This data type is implemented by the nysql _stri ng
server service. For details, see the st ri ng_servi ce. handstring_servi ce. cc source files in the
sql directory.

* get password_strengt h: A function that the server calls to assess the strength of a password.
It returns a value from 0 (weak) to 100 (strong). The argument is the password, passed as a
nmysql _string_handl e value.

For the val i dat e_passwor d plugin, the type-specific descriptor looks like this:

static struct st_mysqgl _validate_password val i date_password_descri ptor=

{
MYSQL_VALI DATE_PASSWORD | NTERFACE_VERSI ON,
val i dat e_password, /* validate function */
get _password_strength /* validate strength function */
it

65

https://dev.mysql.com/doc/refman/9.6/en/show-variables.html

Writing Protocol Trace Plugins

To compile and install a plugin library file, use the instructions in Section 4.4.3, “Compiling and Installing
Plugin Libraries”. To make the library file available for use, install it in the plugin directory (the directory
named by the pl ugi n_di r system variable). For the val i dat e_passwor d plugin, it is compiled and
installed when you build MySQL from source. It is also included in binary distributions. The build process
produces a shared object library with a name of val i dat e_passwor d. so (the . so suffix might differ
depending on your platform).

To register the plugin at runtime, use this statement, adjusting the . so suffix for your platform as
necessary:

I NSTALL PLUG N val i dat e_password SONAME ' val i dat e_password. so'
For additional information about plugin loading, see Installing and Uninstalling Plugins.

To verify plugin installation, examine the | NFORVATI ON_SCHEMA. PLUG NS table or use the SHOW
PLUG NS statement. See Obtaining Server Plugin Information.

While the val i dat e_passwor d plugin is installed, it exposes system variables that indicate the
password-checking parameters:

nysqgl > SHOW VARI ABLES LI KE ' val i dat e_passwor d% ;
e e e eeeeeieceaaeaaas Feceeae +

| Variabl e_nane | Val ue

val i dat e_password_dictionary_file |
val i dat e_password_| engt h | 8
val i dat e_passwor d_m xed_case_count | 1
val i dat e_passwor d_nunber _count | 1
val i dat e_password_pol i cy | MEDI UM
val i dat e_password_speci al _char_count | 1
+

For descriptions of these variables, see Password Validation Options and Variables.

To disable the plugin after testing it, use this statement to unload it:

UNI NSTALL PLUG N val i dat e_password

4.4.11 Writing Protocol Trace Plugins

MySQL supports the use of protocol trace plugins: client-side plugins that implement tracing of
communication between a client and the server that takes place using the client/server protocol.

4.4.11.1 Using the Test Protocol Trace Plugin

MySQL includes a test protocol trace plugin that serves to illustrate the information available from such
plugins, and as a guide to writing other protocol trace plugins. To see how the test plugin works, use a
MySQL source distribution; binary distributions are built with the test plugin disabled.

Enable the test protocol trace plugin by configuring MySQL with the W TH TEST TRACE PLUG N CMvake
option enabled. This causes the test trace plugin to be built and MySQL client programs to load it, but the
plugin has no effect by default. Control the plugin using these environment variables:

* MYSQL_TEST_TRACE_DEBUG: Set this variable to a value other than 0 to cause the test plugin to
produce diagnostic output on st derr .

e MYSQL_TEST_ TRACE CRASH: Set this variable to a value other than 0 to cause the test plugin to abort
the client program if it detects an invalid trace event.

66

https://dev.mysql.com/doc/refman/9.6/en/server-system-variables.html#sysvar_plugin_dir
https://dev.mysql.com/doc/refman/9.6/en/plugin-loading.html
https://dev.mysql.com/doc/refman/9.6/en/information-schema-plugins-table.html
https://dev.mysql.com/doc/refman/9.6/en/show-plugins.html
https://dev.mysql.com/doc/refman/9.6/en/show-plugins.html
https://dev.mysql.com/doc/refman/9.6/en/obtaining-plugin-information.html
https://dev.mysql.com/doc/refman/9.6/en/validate-password-options-variables.html
https://dev.mysql.com/doc/refman/9.6/en/source-configuration-options.html#option_cmake_with_test_trace_plugin

Writing Protocol Trace Plugins

4.4.11.2

Caution

Diagnostic output from the test protocol trace plugin can disclose passwords and
other sensitive information.

Given a MySQL installation built from source with the test plugin enabled, you can see a trace of the
communication between the nysql client and the MySQL server as follows:

$> export MYSQL_TEST_TRACE_DEBUG-1
shqgl | > nysql
test_trace:
test_trace:
test_trace:
test_trace:
test_trace:

Test trace plugin initialized
Starting tracing in stage CONNECTI NG
stage: CONNECTI NG event: CONNECTI NG
stage: CONNECTI NG event: CONNECTED
stage: WAIT_FOR I NI T_PACKET, event:
test _trace: stage: WAIT_FOR I NI T_PACKET, event:
test_trace: packet received: 87 bytes

0A 35 2E 37 2E 33 2D 6D 31 33 2D 64 65 62 75 67

2D 6C 6F 67 00 04 00 00 00 2B 7C 4F 55 3F 79 67 -log..... +| QU?yg
test _trace: 004: stage: WAIT_FOR | NI T_PACKET, event: | N T_PACKET_RECElI VED
test _trace: 004: stage: AUTHENTI CATE, event: AUTH PLUG N
test_trace: 004: Using authentication plugin: nysqgl _native_password
test_trace: 004: stage: AUTHENTI CATE, event: SEND AUTH RESPONSE
test_trace: 004: sending packet: 188 bytes

85 A6 7F 00 00 00 00 01 21 00 OO OO OO OO OO 0O L2 Lo

00 00 00 00O OO OO OO OO 0O OO OO OO OO OO OO 0O

READ_PACKET
PACKET_RECEI VED

.5.7.3-nl3- debug

nmysql > quit
test _trace:
test _trace:
test _trace:
test _trace:
test _trace:
test _trace:
test _trace:
Bye

test _trace:

008:
008:
008:
008:
008:
008:
008:

st age: event :

QT

st age:

READY_FOR_COMVAND, SEND_COMVAND

READY_FOR_COWVAND, event:
packet sent: 0 bytes

st age: READY_FOR_COMVAND,
Connection closed

Traci ng connection has ended

PACKET_SENT

event: DI SCONNECTED

Test trace plugin de-initialized

To disable trace output, do this:

$> MYSQL_TEST TRACE DEBUG=
Using Your Own Protocol Trace Plugins

Note

To use your own protocol trace plugins, you must configure MySQL with the

W TH TEST_TRACE PLUG N CMake option disabled because only one protocol
trace plugin can be loaded at a time and an error occurs for attempts to load a
second one. If you have already built MySQL with the test protocol trace plugin
enabled to see how it works, you must rebuild MySQL without it before you can use
your own plugins.

This section discusses how to write a basic protocol trace plugin named si npl e_t r ace. This plugin
provides a framework showing how to set up the client plugin descriptor and create the trace-related
callback functions. In si npl e_t r ace, these functions are rudimentary and do little other than illustrate the
arguments required. To see in detail how a trace plugin can make use of trace event information, check
the source file for the test protocol trace plugin (t est _trace_pl ugi n. cc inthe | i bmysqgl directory of a
MySQL source distribution). However, note that the st _nmysql _cl i ent _pl ugi n_TRACE structure used
there differs from the structures used with the usual client plugin declaration macros. In particular, the first
two members are defined explicitly, not implicitly by declaration macros.

67

https://dev.mysql.com/doc/refman/9.6/en/source-configuration-options.html#option_cmake_with_test_trace_plugin

Writing Protocol Trace Plugins

Several header files contain information relevant to protocol trace plugins:

e client_plugin. h: Defines the API for client plugins. This includes the client plugin descriptor and
function prototypes for client plugin C API calls (see C API Client Plugin Interface).

* plugi n_trace. h: Contains declarations for client-side plugins of type
MYSQL_CLI ENT_TRACE_PLUG N. It also contains descriptions of the permitted protocol stages,
transitions between stages, and the types of events permitted at each stage.

To write a protocol trace plugin, include the following header files in the plugin source file. Other MySQL or
general header files might also be needed, depending on the plugin capabilities and requirements.

#i ncl ude <mnysql / pl ugi n_trace. h>
#i ncl ude <nysql . h>

pl ugi n_trace. hincludes cl i ent _pl ugi n. h, so you need not include the latter file explicitly.

Declare the client-side plugin descriptor with the nysql _decl are_cl i ent pl ugi n() and
nysqgl _end_client _plugi n macros (see Section 4.4.2.3, “Client Plugin Descriptors”). For the
si npl e_t r ace plugin, the descriptor looks like this:

nysql _decl are_cl i ent _pl ugi n(TRACE)

"sinmple_trace", /*
"Aut hor Nange", [*
"Sinple protocol trace plugin", /*
{1, 0, 0}, /*
"GPL", /*
NULL, /*
plugin_init, /*
pl ugi n_deinit, /*
pl ugi n_opti ons, /*
trace_start, [%
trace_stop, /*
trace_event [%

nysql _end_cl i ent_pl ugin;

pl ugi n nanme */

aut hor */

description */

version = 1.0.0 */

l'icense type */

for internal use */
initialization function */
deinitialization function */
option-handling function */
start-trace function */
stop-trace function */
event - handl i ng function */

The descriptor members from the plugin name through the option-handling function are common to all
client plugin types. The members following the common members implement trace event handling.

Function members for which the plugin needs no processing can be declared as NULL in the descriptor,
in which case you need not write any corresponding function. For illustration purposes and to show the
argument syntax, the following discussion implements all functions listed in the descriptor, even though

some of them do nothing,

The initialization, deinitialization, and options functions common to all client plugins are declared as follows.
For a description of the arguments and return values, see Section 4.4.2.3, “Client Plugin Descriptors”.

static int

plugin_init(char *errbuf, size_t errbuf_len, int argc, va_list args)

{

return 0

}

static int
pl ugi n_dei ni t ()
{

return 0

}

static int

pl ugi n_opti ons(const char *option, const void *val ue)

{

return 0

68

https://dev.mysql.com/doc/c-api/9.6/en/c-api-plugin-interface.html

Writing Protocol Trace Plugins

}

The trace-specific members of the client plugin descriptor are callback functions. The following descriptions
provide more detail on how they are used. Each has a first argument that is a pointer to the plugin instance
in case your implementation needs to access it.

trace_start (): This function is called at the start of each traced connection (each connection that starts
after the plugin is loaded). It is passed the connection handler and the protocol stage at which tracing
starts. trace_start () allocates memory needed by the t race_event () function, if any, and returns a
pointer to it. If no memory is needed, this function returns NULL.

static void*

trace_start(struct st_nysql _client_plugi n_TRACE *sel f,
MYSQ. *conn,
enum pr ot ocol _st age st age)

struct st_trace_data *plugi n_data= mal | oc(sizeof (struct st_trace_data));

fprintf(stderr, "Initializing trace: stage %\ n", stage);
if (plugin_data)

nmenset (pl ugi n_data, 0, sizeof(struct st_trace_data));
fprintf(stderr, "Trace initialized\n");
return plugin_dat a;
}
fprintf(stderr, "Could not initialize trace\n");
exit(1);
}

trace_stop() : This function is called when tracing of the connection ends. That usually happens when
the connection is closed, but can happen earlier. For example, t race_event () can return a nonzero
value at any time and that causes tracing of the connection to terminate. t race_st op() is then called
even though the connection has not ended.

trace_st op() is passed the connection handler and a pointer to the memory allocated by
trace_start () (NULL if none). If the pointer is non-NULL, t r ace_st op() should deallocate the
memory. This function returns no value.

static void
trace_stop(struct st_nysqgl _client_plugi n_TRACE *sel f,
MYSQ. *conn,
voi d *pl ugi n_dat a)
{
fprintf(stderr, "Term nating trace\n");
if (plugin_data)
free(plugin_data);
}

trace_event () : This function is called for each event occurrence. It is passed a pointer to the memory
allocated by t race_start () (NULL if none), the connection handler, the current protocol stage and event
codes, and event data. This function returns 0 to continue tracing, nonzero if tracing should stop.

static int
trace_event (struct st_mnysql _client_plugi n_TRACE *sel f,
voi d *pl ugi n_dat a,
MYSQL *conn,
enum pr ot ocol _st age st age,
enum trace_event event,
struct st_trace_event_args args)
{
fprintf(stderr, "Trace event received: stage %, event %\ n", stage, event);
if (event == TRACE_EVENT_DI SCONNECTED)
fprintf(stderr, "Connection closed\n");

69

Writing Protocol Trace Plugins

return 0

}

The tracing framework shuts down tracing of the connection when the connection ends, so
trace_event () should return nonzero only if you want to terminate tracing of the connection early.
Suppose that you want to trace only connections for a certain MySQL account. After authentication,
you can check the user name for the connection and stop tracing if it is not the user in whom you are
interested.

Foreach calltotrace_event (), the st _trace_event _args structure contains the event data. It has
this definition:

struct st_trace_event_args

{
const char *pl ugi n_nane
i nt cnd;
const unsigned char *hdr
si ze_t hdr _| en
const unsi gned char *pkt;
si ze_t pkt Il en

it

For different event types, the st _trace_event _ar gs structure contains the information described
following. All lengths are in bytes. Unused members are set to O/NULL.

AUTH _PLUG N event:

pl ugi n_nane The nane of the plugin

SEND_COWVIVAND event:

cnd The command code

hdr Pointer to the command packet header
hdr _| en Length of the header

pkt Pointer to the conmand argunents

pkt _Il en Length of the argunents

Other SEND xxx and xxx_RECEI VED events:

pkt Pointer to the data sent or received
pkt _Il en Length of the data

PACKET _SENT event:

pkt _l en Number of bytes sent

To compile and install a plugin library file, use the instructions in Section 4.4.3, “Compiling and Installing
Plugin Libraries”. To make the library file available for use, install it in the plugin directory (the directory
named by the pl ugi n_di r system variable).

After the plugin library file is compiled and installed in the plugin directory, you can test it easily by setting
the LI BMYSQL_PLUG NS environment variable to the plugin name, which affects any client program that
uses that variable. mysqgl is one such program:

$> export LIBMYSQ._PLUG NS=si npl e_trace
shql | > nysq

Initializing trace: stage O

Trace initialized

Trace event received: stage 0, event 1
Trace event received: stage 0, event 2

Wl come to the MySQL nonitor. Conmands end with ; or \g
Trace event received

70

https://dev.mysql.com/doc/refman/9.6/en/server-system-variables.html#sysvar_plugin_dir

Writing Keyring Plugins

Trace event received

nmysql > SELECT 1;
Trace event received: stage 4, event 12
Trace event received: stage 4, event 16

Trace event received: stage 8, event 14
Trace event received: stage 8, event 15
+---+

| 1]

+---+

| 1]

+---+

1 rowin set (0.00 sec)

nmysql > quit

Trace event received: stage 4, event 12
Trace event received: stage 4, event 16
Trace event received: stage 4, event 3

Connecti on cl osed

Term nating trace

Bye

To stop the trace plugin from being loaded, do this:

$> LI BWSQL_PLUG NS=

It is also possible to write client programs that directly load the plugin. You can tell the client where the
plugin directory is located by calling mysql _opti ons() to setthe M\YySQL_PLUG N_DI R option:

char *plugin_dir = "path_to_plugin_dir"
/* ... process command-|ine options ... */
nysql _options(&rysqgl, MYSQ._PLUG N DI R, plugin_dir)

Typically, the program will also accept a - - pl ugi n- di r option that enables users to override the default
value.

Should a client program require lower-level plugin management, the client library contains functions that
take an st _nysql client pl ugi n argument. See C API Client Plugin Interface.

4.4.12 Writing Keyring Plugins

MySQL Server supports a keyring service that enables internal server components and plugins to securely
store sensitive information for later retrieval. This section describes how to write a server-side keyring
plugin that can be used by service functions to perform key-management operations. For general keyring
information, see The MySQL Keyring.

Important

MySQL 8.4 removed the deprecated keyring plugins in favor of using the

keyring components. For example, use conponent _keyring_ fil e instead of
keyring fil e.Forrelated information, see Keyring Components Versus Keyring
Plugins.

The instructions here are based on the source code in the pl ugi n/ keyr i ng directory of MySQL source
distributions. The source files in that directory implement a plugin named keyri ng_fi | e that uses a file
local to the server host for data storage.

To write a keyring plugin, include the following header file in the plugin source file. Other MySQL or general
header files might also be needed, depending on the plugin capabilities and requirements.

71

https://dev.mysql.com/doc/c-api/9.6/en/mysql-options.html
https://dev.mysql.com/doc/c-api/9.6/en/c-api-plugin-interface.html
https://dev.mysql.com/doc/refman/9.6/en/keyring.html
https://dev.mysql.com/doc/refman/9.6/en/keyring-component-plugin-comparison.html
https://dev.mysql.com/doc/refman/9.6/en/keyring-component-plugin-comparison.html

Writing Keyring Plugins

#i ncl ude <nysql /pl ugi n_keyri ng. h>

pl ugi n_keyri ng. hincludes pl ugi n. h, so you need not include the latter file explicitly. pl ugi n. h
defines the M\YSQL_KEYRI NG_PLUG N server plugin type and the data structures needed to declare the
plugin. pl ugi n_keyri ng. h defines data structures specific to keyring plugins.

A keyring plugin, like any MySQL server plugin, has a general plugin descriptor (see Section 4.4.2.1,
“Server Plugin Library and Plugin Descriptors”). In keyr i ng. cc, the general descriptor for
keyring_fil e looks like this:

nysql _decl are_pl ugi n(keyring_file)

{
MYSQL_KEYRI NG _PLUG N, /* type f
&eyring_descriptor, /* descri ptor */
"keyring_file", /* nane */
"Oracl e Corporation", /* aut hor */

"store/fetch authentication data to/froma flat file", /* description */
PLUG N_LI CENSE_GPL,

keyring_init, /* init function (when | oaded) */
keyring_deinit, /* deinit function (when unl oaded) */
0x0100, [* version */
NULL, /* status vari abl es */
keyring_systemvariabl es, /* system vari abl es */
NULL,

0,

nmysql _decl are_pl ugi n_end;

The nane member (keyri ng_fi |) indicates the plugin name. This is the name displayed by
I NFORIVATI ON_SCHEMA. PLUG NS or SHOW PLUG NS.

The general descriptor also refers to keyri ng_syst em vari abl es, a structure that exposes a system
variable to the SHOW VARI ABLES statement:

static struct st_nysql _sys_var *keyring_systemvariables[]= {
MYSQL_SYSVAR(dat a) ,
NULL

}s

The keyring_i ni t initialization function creates the data file if it does not exist, then reads it and
initializes the keystore. The keyri ng_dei ni t function frees data structures associated with the file.

The keyri ng_descri pt or value in the general descriptor points to the type-specific descriptor. For
keyring plugins, this descriptor has the following structure:

struct st_mysqgl _keyring
{
int interface_version;
bool (*nysql _key_store)(const char *key_id, const char *key_type,
const char* user_id, const void *key, size_t key_len);
bool (*nysql _key_fetch)(const char *key_id, char **key_type,
const char *user_id, void **key, size_t *key_len);
bool (*nysql _key_renove) (const char *key_id, const char *user_id);
bool (*nysql _key_generate) (const char *key_id, const char *key_type,
const char *user_id, size_t key_len);
b

The type-specific descriptor has these members:

e interface_versi on: By convention, type-specific plugin descriptors begin with the interface version
for the given plugin type. The server checks i nt er f ace_ver si on when it loads the plugin to see
whether the plugin is compatible with it. For keyring plugins, the value of the i nt er f ace_ver si on
member is MYSQL_KEYRI NG_| NTERFACE_VERSI ON (defined in pl ugi n_keyri ng. h).

72

https://dev.mysql.com/doc/refman/9.6/en/information-schema-plugins-table.html
https://dev.mysql.com/doc/refman/9.6/en/show-plugins.html
https://dev.mysql.com/doc/refman/9.6/en/show-variables.html

Writing Keyring Plugins

e nysqgl key_ st ore: A function that obfuscates and stores a key in the keyring.

* nysql _key_f et ch: A function that deobfuscates and retrieves a key from the keyring.

* nysqgl _key_renove: A function that removes a key from the keyring.

e nysql key_ gener at e: A function that generates a new random key and stores it in the keyring.

For the keyri ng_fi |l e plugin, the type-specific descriptor looks like this:

static struct st_nysql _keyring keyring_descriptor=

{
MYSQL_KEYRI NG_I NTERFACE_VERSI ON,

nysql _key_store,

nmysql _key_fetch,

nysql _key_renove,

nysql _key_generat e
i

The nysql _key xxx functions implemented by a keyring plugin are analogous to the ny_key xxx
functions exposed by the keyring service API. For example, the nysql _key st or e plugin function is
analogous to the ny_key st or e keyring service function. For information about the arguments to keyring
service functions and how they are used, see The Keyring Service.

To compile and install a plugin library file, use the instructions in Section 4.4.3, “Compiling and Installing
Plugin Libraries”. To make the library file available for use, install it in the plugin directory (the directory
named by the pl ugi n_di r system variable). For the keyri ng _fi | e plugin, it is compiled and installed
when you build MySQL from source. It is also included in binary distributions. The build process produces
a shared object library with a name of keyri ng_fi |l e. so (the . so suffix might differ depending on your
platform).

Keyring plugins typically are loaded early during the server startup process so that they are available to
built-in plugins and storage engines that might depend on them. For keyri ng_fi | e, use these lines in the
server imy. cnf file, adjusting the . so suffix for your platform as necessary:

[mysql d]
earl y-pl ugi n-1 oad=keyring_file.so

For additional information about plugin loading, see Installing and Uninstalling Plugins.

To verify plugin installation, examine the | NFORVATI ON_SCHEMA. PLUG NS table or use the SHOW
PLUG NS statement (see Obtaining Server Plugin Information). For example:

nysql > SELECT PLUG N_NAME, PLUG N_STATUS
FROM | NFORVATI ON_SCHEMA. PLUG NS
WHERE PLUG N_NANE LI KE ' keyring% ;

dimccoccooocooos dieccocccoscoocoso +
| PLUG N_NAME | PLUGQ N_STATUS |
dimccoccooocooos dieccocccoscoocoso +
| keyring_file | ACTIVE |
dimccoccooocooos dieccocccoscoocoso +

While the keyri ng_fi | e plugin is installed, it exposes a system variable that indicates the location of the
data file it uses for secure information storage:

nysqgl > SHOW VARI ABLES LI KE ' keyring_file%;

e R L e +
| Variabl e_nane | Val ue |
e R L e +
| keyring_ file_data | /usr/local/nysql/keyring/keyring |
e R L e +

73

https://dev.mysql.com/doc/refman/9.6/en/keyring-service.html
https://dev.mysql.com/doc/refman/9.6/en/server-system-variables.html#sysvar_plugin_dir
https://dev.mysql.com/doc/refman/9.6/en/plugin-loading.html
https://dev.mysql.com/doc/refman/9.6/en/information-schema-plugins-table.html
https://dev.mysql.com/doc/refman/9.6/en/show-plugins.html
https://dev.mysql.com/doc/refman/9.6/en/show-plugins.html
https://dev.mysql.com/doc/refman/9.6/en/obtaining-plugin-information.html

Writing Keyring Plugins

To disable the plugin after testing it, restart the server without an - - ear | y- pl ugi n- | oad option that
names the plugin.

74

https://dev.mysql.com/doc/refman/9.6/en/server-options.html#option_mysqld_early-plugin-load

Chapter 5 MySQL Services for Plugins

MySQL server plugins have access to server “plugin services.” The plugin services interface exposes
server functionality that plugins can call. It complements the plugin API and has these characteristics:

 Services enable plugins to access code inside the server using ordinary function calls. Services are also
available to loadable functions.

» Services are portable and work on multiple platforms.

» The interface includes a versioning mechanism so that service versions supported by the server can be
checked at load time against plugin versions. Versioning protects against incompatibilities between the
version of a service that the server provides and the version of the service expected or required by a

plugin.

 For information about plugins for testing plugin services, see the Plugins for Testing Plugin Services
section of the MySQL Server Doxygen documentation, available at https://dev.mysql.com/doc/index-
other.html.

The plugin services interface differs from the plugin API as follows:

» The plugin API enables plugins to be used by the server. The calling initiative lies with the server to
invoke plugins. This enables plugins to extend server functionality or register to receive natifications
about server processing.

» The plugin services interface enables plugins to call code inside the server. The calling initiative lies with
plugins to invoke service functions. This enables functionality already implemented in the server to be
used by many plugins; they need not individually implement it themselves.

To determine what services exist and what functions they provide, look in the i ncl ude/ nmysql directory of
a MySQL source distribution. The relevant files are:

* plugin. hincludes servi ces. h, which is the “umbrella” header that includes all available service-
specific header files.

» Service-specific headers have names of the form ser vi ce_xxx. h.

Each service-specific header should contain comments that provide full usage documentation for a given
service, including what service functions are available, their calling sequences, and return values.

For developers who wish to modify the server to add a new service, see MySQL Internals: MySQL
Services for Plugins.

Available services include the following:
e get _sysvar _sour ce: A service that enables plugins to retrieve the source of system variable settings.

* | ocki ng_ser vi ce: A service that implements locks with three attributes: Lock namespace, lock name,
and lock mode. This locking interface is accessible at two levels: 1) At the SQL level, as a set of loadable
functions that each map onto calls to the service routines; 2) As a C language interface, callable as a
plugin service from server plugins or loadable functions. For more information, see The Locking Service.

* ny_plugi n_| og_servi ce: A service that enables plugins to report errors and specify error messages.
The server writes the messages to its error log.

e status_variabl e registration. A service for registering status variables.

75

https://dev.mysql.com/doc/index-other.html
https://dev.mysql.com/doc/index-other.html
https://dev.mysql.com/doc/internals/en/mysql-services-for-plugins.html
https://dev.mysql.com/doc/internals/en/mysql-services-for-plugins.html
https://dev.mysql.com/doc/refman/9.6/en/locking-service.html

e ny_t hd_schedul er: A service for plugins to select a thread scheduler.

* nysql _keyring: A service for keyring storage, accessible at two levels: 1) At the SQL level, as a set
of loadable functions that each map onto calls to the service routines; 2) As a C language interface,
callable as a plugin service from server plugins or loadable functions. For more information, see The
Keyring Service.

» nysql _password_pol i cy: A service for password validation and strength checking.

e plugin_registry service: MySQL Server includes a component-based infrastructure for improving
server extensibility; see MySQL Components. However, MySQL plugins use an interface that predates
the component interface. The pl ugi n_regi stry_servi ce enables plugins to access the component
registry and its services.

e security context: A service that enables plugins to examine or manipulate thread security contexts.
This service provides setter and getter routines to access attributes of the server Security cont ext
class, which includes attributes such as operating system user and host, authenticated user and host,
and client IP address.

» thd_al | oc: A memory-allocation service.

t hd_wai t : A service for plugins to report when they are going to sleep or stall.

The remainder of this section describes how a plugin uses server functionality that is available as a
service. See also the source for the “daemon” example plugin, which uses the my_snpri nt f service.
Within a MySQL source distribution, that plugin is located in the pl ugi n/ daenon_exanpl e directory.

To use a service or services from within a plugin, the plugin source file must include the pl ugi n. h header
file to access service-related information:

#i ncl ude <nysql/pl ugi n. h>

This does not represent any additional setup cost. A plugin must include that file anyway because it
contains definitions and structures that every plugin needs.

To access a service, a plugin calls service functions like any other function.

To report an error that the server will write to it error log, first choose an error level. nysqgl /
service_my_plugin_I og. h defines these levels:

enum pl ugi n_Il og_I evel

{
MY_ERROR_LEVEL,
MY_WARNI NG _LEVEL,
MY_I NFORVATI ON_LEVEL

b

Then invoke ny_pl ugi n_| og_nessage():

int ny_plugin_|l og_nessage(MYSQ._PLUG N *pl ugi n, enum plugin_|l og_| evel |evel,
const char *format, ...);

For example:
nmy_pl ugi n_| og_nessage(pl ugi n_ptr, MY_ERROR LEVEL, "Cannot initialize plugin");

Some services for plugins may be provided by plugins and thus are available only if the service-providing
plugin is loaded. Any MySQL component that uses such a service should check whether the service is
available.

76

https://dev.mysql.com/doc/refman/9.6/en/keyring-service.html
https://dev.mysql.com/doc/refman/9.6/en/keyring-service.html
https://dev.mysql.com/doc/refman/9.6/en/components.html

When you build your plugin, use the - | mnysql ser vi ces flag at link time to link in the
I'i brysqgl servi ces library. For example, for CVake, put this in the top-level CVakelLi st s. t xt file:

FI ND_LI BRARY(MYSQLSERVI CES LI B nysql servi ces
PATHS " ${ MYSQL_SRCDI R}/ | i bser vi ces" NO_DEFAULT_PATH)

Put this in the CvakelLi st s. t xt file in the directory containing the plugin source:

the plugin needs the nysql services library for error |ogging
TARGET_LI NK_LI BRARI ES (your_plugin_library name ${MYSQLSERVI CES LI B})

77

78

Chapter 6 Adding Functions to MySQL

Table of Contents

6.1 AddINg @ NALIVE FUNCLONuiiiiii e e e et e ettt e e e et e e e et e e e eabnaeeees 80
6.2 Adding @ Loadable FUNCHONoouuii et e e 81

There are three ways to add a new function to MySQL.:

Create a stored function (a type of stored object). A stored function is written using SQL statements
rather than by compiling object code. The syntax for writing stored functions is not covered here. See
Using Stored Routines.

Create a native (built-in) MySQL function. A native function is added by modifying the MySQL source
code to be compiled into the nysql d server and become available on a permanent basis. See
Section 6.1, “Adding a Native Function”.

Use the loadable function interface. A loadable function is compiled as a library file and then loaded and
unloaded from the server dynamically using the CREATE FUNCTI ON and DROP FUNCTI ON statements.
See Section 6.2, “Adding a Loadable Function”.

In some cases, loadable functions are included in component or plugin library files and are loaded and
unloaded automatically when the component or plugin is installed or uninstalled.

Note

Loadable functions previously were known as user-defined functions (UDFs). That
terminology was something of a misnomer because “user-defined” also can apply
to stored functions written using SQL and native functions added by modifying the
server source code.

Each method of creating compiled functions has advantages and disadvantages:

Adding a native function requires modifying a source distribution. Adding a loadable function does not; it
can be added to a binary MySQL distribution with no access to MySQL source necessary.

A loadable function is contained in an object file that you must install in addition to the server itself. For a
function compiled into the server, that is unnecessary. (This point does not apply for loadable functions
that are loaded automatically by a component or plugin.)

If you upgrade your MySQL distribution, you can continue to use previously installed loadable functions,
unless you upgrade to a newer MySQL version for which the loadable function interface changes. For
native functions, you must repeat your source code modifications each time you upgrade.

Regardless of the method used to add a function, it can be invoked in SQL statements just like native
functions such as ABS() or SOUNDEX() .

For the rules describing how the server interprets references to different kinds of functions, see Function
Name Parsing and Resolution.

The following sections describe features of the loadable function interface, provide instructions for writing
loadable functions, discuss security precautions that MySQL takes to prevent loadable function misuse,
and describe how to add native MySQL functions.

79

https://dev.mysql.com/doc/refman/9.6/en/stored-routines.html
https://dev.mysql.com/doc/refman/9.6/en/create-function-loadable.html
https://dev.mysql.com/doc/refman/9.6/en/drop-function-loadable.html
https://dev.mysql.com/doc/refman/9.6/en/mathematical-functions.html#function_abs
https://dev.mysql.com/doc/refman/9.6/en/string-functions.html#function_soundex
https://dev.mysql.com/doc/refman/9.6/en/function-resolution.html
https://dev.mysql.com/doc/refman/9.6/en/function-resolution.html

Adding a Native Function

For example source code that illustrates how to write loadable functions, take a look at the sql /
udf _exanpl e. cc file that is provided in MySQL source distributions.

Note

The MySQL source code contains internal documentation written using Doxygen.
This documentation is useful for understanding how MySQL works from a developer
perspective. The generated Doxygen content is available at https://dev.mysql.com/
doc/index-other.html. It is also possible to generate this content locally from a
MySQL source distribution using the instructions at Generating MySQL Doxygen
Documentation Content.

6.1 Adding a Native Function

To add a native MySQL function, use the procedure described here, which requires that you use a source
distribution. You cannot add native functions to a binary distribution because it is necessary to modify
MySQL source code and compile MySQL from the modified source. If you migrate to another version

of MySQL (for example, when a new version is released), you must repeat the procedure with the new
version.

If the native function will be referred to in statements that will be replicated to replicas, you must ensure
that every replica also has the function available. Otherwise, replication will fail on the replicas when they
attempt to invoke the function.

To add a native function, follow these steps to modify source files in the sql directory:
1. Create a subclass for the functioninit em creat e. cc:

« If the function takes a fixed number of arguments, create a subclass of Creat e_f unc_ar g0,
Create func_argl,Create func_arg2,or Create_ func_arg3, respectively, depending
on whether the function takes zero, one, two, or three arguments. For examples, see the
Create_func_uuid,Create func_abs, Create_func_pow, and Creat e _func_| pad classes.

« If the function takes a variable number of arguments, create a subclass of Cr eat e_nati ve_f unc.
For an example, see Creat e_func_concat.

2. To provide a name by which the function can be referred to in SQL statements, register the name in
i tem create. cc by adding a line to this array:

static Native func_registry func_array[]

You can register several names for the same function. For example, see the lines for " LCASE" and
"LOVER", which are aliases for Creat e_func_| case.

3. Initem func. h, declare a class inheriting from | t em num func orltem str_func, depending on
whether your function returns a number or a string.

4. Initem func. cc, add one of the following declarations, depending on whether you are defining a
numeric or string function:

doubl e I tem f unc_newnane: : val ()
| ongl ong I'tem func_newnane: :val _int()
String *ltemfunc_newnane::Str(String *str)

If you inherit your object from any of the standard items (like | t em_num f unc), you probably only have
to define one of these functions and let the parent object take care of the other functions. For example,
thel tem str_func class defines aval () function that executes at of () on the value returned by
cistr().

80

https://dev.mysql.com/doc/index-other.html
https://dev.mysql.com/doc/index-other.html
https://dev.mysql.com/doc/refman/9.6/en/source-installation-doxygen.html
https://dev.mysql.com/doc/refman/9.6/en/source-installation-doxygen.html

Adding a Loadable Function

5. If the function is nondeterministic, include the following statement in the item constructor to indicate that
function results should not be cached:

current _t hd->l ex->safe_t o_cache_query=0

A function is nondeterministic if, given fixed values for its arguments, it can return different results for
different invocations.

6. You should probably also define the following object function:

void Item func_newnarne:: fix_| ength_and_dec()

This function should at least calculate max_| engt h based on the given arguments. nax_| engt h is
the maximum number of characters the function may return. This function should also set naybe nul |
= 0 if the main function cannot return a NULL value. The function can check whether any of the
function arguments can return NULL by checking the arguments' maybe nul | variable. Look at
Item func_nod::fix | ength and_ dec for a typical example of how to do this.

All functions must be thread-safe. In other words, do not use any global or static variables in the functions
without protecting them with mutexes.

If you want to return NULL from: :val (),::val _int(),or::str(),youshouldsetnull valuetol
and return O.

For::str () object functions, these additional considerations apply:

« The String *str argument provides a string buffer that may be used to hold the result. (For more
information about the St r i ng type, take a look at the sql _stri ng. h file.)

e The::str () function should return the string that holds the result, or (char *) 0 if the result is NULL.

 All current string functions try to avoid allocating any memory unless absolutely necessary!

6.2 Adding a Loadable Function

The MySQL interface for loadable functions provides the following features and capabilities:
» Functions can return string, integer, or real values and can accept arguments of those same types.

* You can define simple functions that operate on a single row at a time, or aggregate functions that
operate on groups of rows.

« Information is provided to functions that enables them to check the number, types, and names of the
arguments passed to them.

* You can tell MySQL to coerce arguments to a given type before passing them to a function.
* You can indicate that a function returns NULL or that an error occurred.

For the loadable function mechanism to work, functions must be written in C++ and your operating system
must support dynamic loading. MySQL source distributions include a file sql / udf _exanpl e. cc that
defines five loadable function interface functions. Consult this file to see how loadable function calling
conventions work. The i ncl ude/ mysql _com h header file defines loadable function-related symbols and
data structures, although you need not include this header file directly; it is included by nysql . h.

A loadable function contains code that becomes part of the running server, so when you write a loadable
function, you are bound by any and all constraints that apply to writing server code. For example, you may

81

Loadable Function Interface Functions

have problems if you attempt to use functions from the | i bst dc++ library. These constraints may change
in future versions of the server, so it is possible that server upgrades will require revisions to loadable
functions that were originally written for older servers. For information about these constraints, see MySQL
Source-Configuration Options, and Dealing with Problems Compiling MySQL.

To be able to use loadable functions, you must link mysql d dynamically. If you want to use a loadable
function that needs to access symbols from nysql d (for example, the net aphone function in sql /
udf _exanpl e. cc uses def aul t _char set _i nf 0), you must link the program with - r dynami c (see
man dl open).

For each function that you want to use in SQL statements, you should define corresponding C++ functions.
In the following discussion, the name “xxx” is used for an example function name. To distinguish between
SQL and C++ usage, XXX() (uppercase) indicates an SQL function call, and xxx() (lowercase) indicates
a C++ function call.

Note
When using C++, encapsulate your C functions within this construct:
extern "C' { ... }

This ensures that your C++ function names remain readable in the completed
function.

» Loadable Function Interface Functions

» Loadable Function Calling Sequences for Simple Functions

» Loadable Function Calling Sequences for Aggregate Functions
» Loadable Function Argument Processing

» Loadable Function Return Values and Error Handling

» Loadable Function Character Set Handling

» Loadable Function Compiling and Installing

» Loadable Function Security Precautions

Loadable Function Interface Functions

The following list describes the C++ functions that you write to implement the interface for a function
named XXX() . The main function, xxx() , is required. In addition, a loadable function requires at least one
of the other functions described here, for reasons discussed in Loadable Function Security Precautions.

o xxx()

The main function. This is where the function result is computed. The correspondence between the SQL
function data type and the return type of your C++ function is shown here.

SQL Type C++ Type
STRI NG char *

| NTEGER | ong | ong
REAL doubl e

82

https://dev.mysql.com/doc/refman/9.6/en/source-configuration-options.html
https://dev.mysql.com/doc/refman/9.6/en/source-configuration-options.html
https://dev.mysql.com/doc/refman/9.6/en/compilation-problems.html
https://dev.mysql.com/doc/refman/9.6/en/integer-types.html
https://dev.mysql.com/doc/refman/9.6/en/floating-point-types.html

Loadable Function Interface Functions

It is also possible to declare a DECI MAL function, but the value is returned as a string, so you should
write the function as though it were a STRI NG function. RONfunctions are not implemented.

o XXX_init()
The initialization function for xxx() . If present, it can be used for the following purposes:
¢ To check the number of arguments to XXX() .

¢ To verify that the arguments are of a required type or, alternatively, to tell MySQL to coerce arguments
to the required types when the main function is called.

¢ To allocate any memory required by the main function.
¢ To specify the maximum length of the result.
e To specify (for REAL functions) the maximum number of decimal places in the result.
¢ To specify whether the result can be NULL.
e« xxx_deinit()

The deinitialization function for xxx () . If present, it should deallocate any memory allocated by the
initialization function.

When an SQL statement invokes XXX() , MySQL calls the initialization function xxx_i nit () to let

it perform any required setup, such as argument checking or memory allocation. If xxx_i ni t ()

returns an error, MySQL aborts the SQL statement with an error message and does not call the main or
deinitialization functions. Otherwise, MySQL calls the main function xxx() once for each row. After all
rows have been processed, MySQL calls the deinitialization function xxx_dei ni t () so that it can perform
any required cleanup.

For aggregate functions that work like SUM) , you must also provide the following functions:
* xxx_clear()

Reset the current aggregate value but do not insert the argument as the initial aggregate value for a new
group.

e Xxx_add()
Add the argument to the current aggregate value.
MySQL handles aggregate loadable functions as follows:
1. Callxxx_init() to letthe aggregate function allocate any memory it needs for storing results.
2. Sort the table according to the GROUP BY expression.
3. Call xxx_cl ear () for the first row in each new group.
4. Call xxx_add() for each row that belongs in the same group.
5

Call xxx() to get the result for the aggregate when the group changes or after the last row has been
processed.

o

Repeat steps 3 to 5 until all rows has been processed

7. Call xxx_dei nit () to let the function free any memory it has allocated.

83

https://dev.mysql.com/doc/refman/9.6/en/fixed-point-types.html
https://dev.mysql.com/doc/refman/9.6/en/floating-point-types.html
https://dev.mysql.com/doc/refman/9.6/en/aggregate-functions.html#function_sum

Loadable Function Calling Sequences for Simple Functions

All functions must be thread-safe. This includes not just the main function, but the initialization and
deinitialization functions as well, and also the additional functions required by aggregate functions. A
consequence of this requirement is that you are not permitted to allocate any global or static variables that
change! If you need memory, you must allocate it in xxx_i ni t () and free itin xxx_deinit ().

Loadable Function Calling Sequences for Simple Functions

This section describes the different interface functions that you must define to create a simple loadable
function. For information about the order in which MySQL calls these functions, see Loadable Function
Interface Functions.

The main xxx () function should be declared as shown in this section. Note that the return type and
parameters differ, depending on whether you declare the SQL function XXX() to return STRI NG, | NTEGER,
or REAL in the CREATE FUNCTI ON statement:

For STRI NGfunctions:
char *xxx(UDF_INIT *initid, UDF_ARGS *args,

char *result, unsigned |ong *length,
char *is_null, char *error);

For | NTEGER functions:

long long xxx(UDF_INIT *initid, UDF_ARGS *args,
char *is_null, char *error);

For REAL functions:

doubl e xxx(UDF_INI'T *initid, UDF_ARGS *args,
char *is_null, char *error);

DECI MAL functions return string values and are declared the same way as STRI NG functions. ROV
functions are not implemented.

Declare the initialization and deinitialization functions like this:
bool xxx_init(UDF_INIT *initid, UDF_ARGS *args, char *nmessage);
voi d xxx_deinit(UDF_INIT *initid);

The i ni ti d parameter is passed to all three functions. It points to a UDF_I| NI T structure that is used to
communicate information between functions. The UDF_| NI T structure members follow. The initialization
function should fill in any members that it wishes to change. (To use the default for a member, leave it
unchanged.)

* bool nmaybe null

xxx_init() should set maybe_nul | to 1 if xxx() can return NULL. The default value is 1 if any of the
arguments are declared maybe nul | .

e unsigned int decimals

The number of decimal digits to the right of the decimal point. The default value is the maximum number
of decimal digits in the arguments passed to the main function. For example, if the function is passed
1.34,1. 345, and 1. 3, the default would be 3, because 1. 345 has 3 decimal digits.

For arguments that have no fixed number of decimals, the deci mal s value is set to 31, which is 1 more
than the maximum number of decimals permitted for the DECI MAL, FLOAT, and DOUBLE data types. This
value is available as the constant NOT_F|I XED DECin the nysql _com h header file.

84

https://dev.mysql.com/doc/refman/9.6/en/integer-types.html
https://dev.mysql.com/doc/refman/9.6/en/floating-point-types.html
https://dev.mysql.com/doc/refman/9.6/en/create-function-loadable.html
https://dev.mysql.com/doc/refman/9.6/en/integer-types.html
https://dev.mysql.com/doc/refman/9.6/en/floating-point-types.html
https://dev.mysql.com/doc/refman/9.6/en/fixed-point-types.html
https://dev.mysql.com/doc/refman/9.6/en/fixed-point-types.html
https://dev.mysql.com/doc/refman/9.6/en/floating-point-types.html
https://dev.mysql.com/doc/refman/9.6/en/floating-point-types.html

Loadable Function Calling Sequences for Aggregate Functions

A deci nmal s value of 31 is used for arguments in cases such as a FLOAT or DOUBLE column declared
without an explicit number of decimals (for example, FLOAT rather than FLOAT(10, 3)) and for floating-
point constants such as 1345E- 3. Itis also used for string and other nonnumber arguments that might
be converted within the function to numeric form.

The value to which the deci mal s member is initialized is only a default. It can be changed within the
function to reflect the actual calculation performed. The default is determined such that the largest
number of decimals of the arguments is used. If the number of decimals is NOT_FI XED DEC for even
one of the arguments, that is the value used for deci nmal s.

e unsigned int max_l ength

The maximum length of the result. The default mex_| engt h value differs depending on the result type of
the function. For string functions, the default is the length of the longest argument. For integer functions,
the default is 21 digits. For real functions, the default is 13 plus the number of decimal digits indicated by
i ni tid->decimals. (For numeric functions, the length includes any sign or decimal point characters.)

If you want to return a blob value, you can set max_| engt h to 65KB or 16MB. This memory is not
allocated, but the value is used to decide which data type to use if there is a need to temporarily store
the data.

e char *ptr

A pointer that the function can use for its own purposes. For example, functions can use i ni ti d->ptr
to communicate allocated memory among themselves. xxx_i ni t () should allocate the memory and
assign it to this pointer:

initid->ptr = all ocated_nenory;
In xxx() and xxx_deinit(),refertoinitid->ptr touse ordeallocate the memory.
* bool const_item

xxx_init() should setconst itemto 1 if xxx() always returns the same value and to O otherwise.

Loadable Function Calling Sequences for Aggregate Functions

This section describes the different interface functions that you need to define when you create an
aggregate loadable function. For information about the order in which MySQL calls these functions, see
Loadable Function Interface Functions.

e XXx_reset()

This function is called when MySQL finds the first row in a new group. It should reset any internal
summary variables and then use the given UDF_ARGS argument as the first value in your internal
summary value for the group. Declare xxx_r eset () as follows:

voi d xxx_reset (UDF_INIT *initid, UDF_ARGS *args,
char *is_null, char *error);

xxx_reset () is not needed or used in MySQL 9.6, in which the loadable function interface uses
xxx_cl ear () instead. However, you can define both xxx_reset () and xxx_cl ear () if you want
to have your function work with older versions of the server. (If you do include both functions, the
xxx_reset () function in many cases can be implemented internally by calling xxx_cl ear () to reset
all variables, and then calling xxx_add() to add the UDF_ARGS argument as the first value in the

group.)

85

https://dev.mysql.com/doc/refman/9.6/en/floating-point-types.html
https://dev.mysql.com/doc/refman/9.6/en/floating-point-types.html
https://dev.mysql.com/doc/refman/9.6/en/floating-point-types.html

Loadable Function Argument Processing

* xxx_clear ()

This function is called when MySQL needs to reset the summary results. It is called at the beginning for
each new group but can also be called to reset the values for a query where there were no matching
rows. Declare xxx_cl ear () as follows:

voi d xxx_clear(UDF_INIT *initid, char *is_null, char *error);
i s_null is setto point to CHAR(0) before calling xxx_cl ear ().

If something went wrong, you can store a value in the variable to which the er r or argument points.
err or points to a single-byte variable, not to a string buffer.

xxx_cl ear () is required by MySQL 9.6.
e xxx_add()

This function is called for all rows that belong to the same group. You should use it to add the value in
the UDF_ARGS argument to your internal summary variable.

void xxx_add(UDF_INIT *initid, UDF_ARGS *args
char *is_null, char *error);

The xxx() function for an aggregate loadable function should be declared the same way as for a
nonaggregate loadable function. See Loadable Function Calling Sequences for Simple Functions.

For an aggregate loadable function, MySQL calls the xxx() function after all rows in the group have been
processed. You should normally never access its UDF_ARGS argument here but instead return a value
based on your internal summary variables.

Return value handling in xxx() should be done the same way as for a nonaggregate loadable function.
See Loadable Function Return Values and Error Handling.

The xxx_reset () and xxx_add() functions handle their UDF_ARGS argument the same way as
functions for nonaggregate UDFs. See Loadable Function Argument Processing.

The pointer argumentstoi s_nul | and error are the same for all calls to xxx_reset (),

xxx_clear (), xxx_add() and xxx() . You can use this to remember that you got an error or whether
the xxx() function should return NULL. You should not store a string into *er r or ! err or pointsto a
single-byte variable, not to a string buffer.

*i s_nul | isreset for each group (before calling xxx_cl ear ()). *error is never reset.

If*is null or*error are set when xxx() returns, MySQL returns NULL as the result for the group
function.

Loadable Function Argument Processing

The ar gs parameter points to a UDF_ARGS structure that has the members listed here:
e unsigned int arg_count

The number of arguments. Check this value in the initialization function if you require your function to be
called with a particular number of arguments. For example:

if (args->arg_count != 2)

{

86

Loadable Function Argument Processing

strcpy(message, "XXX() requires two arguments");
return 1;

}

For other UDF_ARGS member values that are arrays, array references are zero-based. That is, refer to
array members using index values from 0 to ar gs- >ar g_count - 1.

enum ltemresult *arg_type

A pointer to an array containing the types for each argument. The possible type values are
STRI NG _RESULT, | NT_RESULT, REAL_RESULT, and DECI MAL_RESULT.

To make sure that arguments are of a given type and return an error if they are not, check the
ar g_type array in the initialization function. For example:

if (args->arg_type[0] != STRING RESULT | |
args->arg_type[1] != | NT_RESULT)
{

strcpy(nmessage, "XXX() requires a string and an integer");
return 1;

}

Arguments of type DEClI MAL_RESULT are passed as strings, so you handle them the same way as
STRI NG_RESULT values.

As an alternative to requiring your function's arguments to be of particular types, you can use the
initialization function to set the ar g_t ype elements to the types you want. This causes MySQL to coerce
arguments to those types for each call to xxx() . For example, to specify that the first two arguments
should be coerced to string and integer, respectively, do this in xxx_init():

ar gs- >ar g_t ype[0]
ar gs- >arg_type[1]

STRI NG RESULT;
| NT_RESULT;

Exact-value decimal arguments such as 1. 3 or DECI MAL column values are passed with a type
of DECI MAL_RESULT. However, the values are passed as strings. To receive a number, use the
initialization function to specify that the argument should be coerced to a REAL_RESULT value:

args->arg_type[2] = REAL_RESULT;
char **args

ar gs- >ar gs communicates information to the initialization function about the general nature of the
arguments passed to your function. For a constant argument i , ar gs- >ar gs[i | points to the argument
value. (See later for instructions on how to access the value properly.) For a nonconstant argument,
args->args[i] is 0. A constant argument is an expression that uses only constants, such as 3 or
4*7-2 or SI N(3. 14) . A nonconstant argument is an expression that refers to values that may change
from row to row, such as column names or functions that are called with nonconstant arguments.

For each invocation of the main function, ar gs- >ar gs contains the actual arguments that are passed
for the row currently being processed.

If argument i represents NULL, ar gs- >ar gs[i] is a null pointer (0). If the argument is not NULL,
functions can refer to it as follows:

« An argument of type STRI NG_RESULT is given as a string pointer plus a length, to enable handling of
binary data or data of arbitrary length. The string contents are available as ar gs- >ar gs[i] and the
string length is ar gs- >l engt hs[i] . Do not assume that the string is null-terminated.

For additional information about string arguments, see Loadable Function Character Set Handling.

87

https://dev.mysql.com/doc/refman/9.6/en/fixed-point-types.html
https://dev.mysql.com/doc/refman/9.6/en/mathematical-functions.html#function_sin

Loadable Function Return Values and Error Handling

e For an argument of type | NT_RESULT, you must cast ar gs->args[i] toal ong | ong value:

long long int_val
int_val = *((long long*) args->args[i]);

e For an argument of type REAL_RESULT, you must cast ar gs- >ar gs[i] to adoubl e value:

doubl e real _val
real _val = *((double*) args->args[i]);

e For an argument of type DECI MAL_RESULT, the value is passed as a string and should be handled
like a STRI NG_RESULT value.

« ROW RESULT arguments are not implemented.
» unsigned long *Il engths

For the initialization function, the | engt hs array indicates the maximum string length for each argument.
You should not change these. For each invocation of the main function, | engt hs contains the actual
lengths of any string arguments that are passed for the row currently being processed. For arguments of
types | NT_RESULT or REAL_RESULT, | engt hs still contains the maximum length of the argument (as
for the initialization function).

e char *maybe_nul |

For the initialization function, the maybe nul | array indicates for each argument whether the argument
value might be null (0 if no, 1 if yes).

e char **attributes

args->attri but es communicates information about the names of the function arguments. For
argument i , the attribute name is available as a string in ar gs->at tri but es[i] and the attribute
lengthis args->attri bute | engths[i]. Do notassume that the string is null-terminated.

By default, the name of a function argument is the text of the expression used to specify the argument.
For loadable functions, an argument may also have an optional [AS] al i as_nane clause, in which
case the argument name is al i as_nane. The at t ri but es value for each argument thus depends on
whether an alias was given.

Suppose that a loadable function my _udf () is invoked as follows:
SELECT ny_udf (exprl, expr2 AS aliasl, expr3 alias2);
In this case, theattri butes and attri bute | engt hs arrays will have these values:

args->attributes[0] = "exprl"
args->attribute_|lengths[0] =5

args->attributes[1] = "aliasl"
args->attribute_lengths[1] = 6

args->attributes[2] = "alias2"
args->attribute_lengths[2] = 6

e unsigned long *attribute_ | engths

The attri bute_| engt hs array indicates the length of each argument name.

Loadable Function Return Values and Error Handling

88

Loadable Function Character Set Handling

The initialization function should return O if no error occurred and 1 otherwise. If an error occurs,
XxX_init () should store a null-terminated error message in the nessage parameter. The message
is returned to the client. The message buffer is M\YSQL_ERRNMSG_SI ZE characters long. Try to keep the
message to less than 80 characters so that it fits the width of a standard terminal screen.

The return value of the main function xxx () is the function value, for | ong | ong and doubl e functions.
A string function should return a pointer to the result and set *| engt h to the length (in bytes) of the return
value. For example:

nmencpy(result, "result string", 13);
*length = 13;

MySQL passes a buffer to the xxx() function using the r esul t parameter. This buffer is sufficiently long
to hold 255 characters, which can be multibyte characters. The xxx() function can store the result in this
buffer if it fits, in which case the return value should be a pointer to the buffer. If the function stores the
result in a different buffer, it should return a pointer to that buffer.

If your string function does not use the supplied buffer (for example, if it needs to return a string longer
than 255 characters), you must allocate the space for your own buffer with mal | oc() inthe xxx_init ()
function or the xxx () function and free it in your xxx_dei ni t () function. You can store the allocated
memory in the pt r slot in the UDF_| NI T structure for reuse by future xxx () calls. See Loadable Function
Calling Sequences for Simple Functions.

For additional information about string arguments, see Loadable Function Character Set Handling.

To indicate a return value of NULL in the main function, set*i s_nul | to 1:

*is null = 1;

To indicate an error return in the main function, set *err or to 1:

*error = 1;

If xxx() sets*error to 1 for any row, the function value is NULL for the current row and for any
subsequent rows processed by the statement in which XXX() was invoked. (xxx() is not even called for
subsequent rows.)

Loadable Function Character Set Handling

By default, loadable functions take no account of the character set or collation of string arguments or return
values. In effect, string arguments and return values are treated as binary strings, with the implication that
only string arguments containing single-byte characters can be handled reliably.

In MySQL 9.6 the interface for writing loadable functions enables loadable functions to determine the
character set and collation of string arguments, and to return strings that have a particular character set
and collation. These capabilities are optional for loadable function writers, who may take advantage of
them as desired.

Of the loadable functions distributed with MySQL, those associated with the following features and
extensions take advantage of these character-set capabilities: MySQL Enterprise Audit, MySQL Enterprise
Firewall, MySQL Enterprise Data Masking and De-ldentification, MySQL Keyring (the general-purpose
keyring loadable functions only, not those specific to particular keyring plugins), and Group Replication.
This applies only where it make sense. For example, a loadable function that returns encrypted data is
intended to return a binary string, not a character string.

Character-set capabilities for loadable functions are implemented using the nysql _udf net adat a server
component service. For information about this service, see the MySQL Server Doxygen documentation,

89

Loadable Function Compiling and Installing

available at https://dev.mysql.com/doc/index-other.html (search for s_nysql nysqgl udf netadat a and
udf et adat a_i np). Source code for the MySQL Keyring loadable functions is available in Community
source distributions and may be examined as examples for third-party loadable function writers who wish
to modify their own loadable functions to be character set-aware.

If a loadable function takes string arguments or returns a string value and is modified to be character set-
aware, the following compatibility considerations apply:

» With respect to the arguments they pass to the loadable function, applications will continue to work
because the function is now capable of handling string arguments in any character set, including binary
strings.

« If aloadable function is to return a string result in a character set different from the character set of its
arguments, the function must perform the character set conversion internally. For example, this is the
case if a function accepts | at i n1 arguments but returns a ut f 8nmb4 result.

Loadable Function Compiling and Installing

Files implementing loadable functions must be compiled and installed on the host where the server runs.
The process is described here for the example loadable function file sql / udf _exanpl e. cc thatis
included in MySQL source distributions. For additional information about loadable function installation, see
Installing and Uninstalling Loadable Functions.

If a loadable function will be referred to in statements that will be replicated to replicas, you must ensure
that every replica also has the function available. Otherwise, replication fails on the replicas when they
attempt to invoke the function.

The udf _exanpl e. cc file contains the following functions:

» met aphon() returns a metaphon string of the string argument. This is something like a soundex string,
but it is more tuned for English.

e nyfunc_doubl e() returns the sum of the ASCII values of the characters in its arguments, divided by
the sum of the length of its arguments.

* nyfunc_int () returns the sum of the length of its arguments.

» sequence([const int]) returns asequence starting from the given number or 1 if no number has
been given.

e | ookup() returns the IP address for a host name.

* reverse_| ookup() returns the host name for an IP address. The function may be called either with a
single string argument of the form ' xxx. xxx. xxx. xxx" or with four numbers.

e avgcost () returns an average cost. This is an aggregate function.
On Unix and Unix-like systems, compile loadable functions using the following procedure:

A dynamically loadable file should be compiled as a sharable library file, using a command something like
this:

gcc -shared -o udf_exanpl e. so udf _exanpl e. cc

If you are using gcc with Cvake (which is how MySQL itself is configured), you should be able to create
udf _exanpl e. so with a simpler command:

make udf _exanpl e

90

https://dev.mysql.com/doc/index-other.html
https://dev.mysql.com/doc/refman/9.6/en/function-loading.html

Loadable Function Compiling and Installing

After compiling a shared object containing loadable functions, you must install it and tell MySQL

about it. Compiling a shared object from udf _exanpl e. cc using gcc directly produces a file named

udf _exanpl e. so. Copy the shared object to the server's plugin directory and name it udf _exanpl e. so.
This directory is given by the value of the pl ugi n_di r system variable.

On some systems, the | dconf i g program that configures the dynamic linker does not recognize a shared
object unless its name begins with | i b. In this case you should rename a file such as udf _exanpl e. so
tol i budf _exanpl e. so.

On Windows, compile loadable functions using the following procedure:
1. Obtain a MySQL source distribution. See How to Get MySQL.

2. Obtain the CVake build utility, if necessary, from http://www.cmake.org. (Version 2.6 or later is
required).

3. Inthe source tree, look in the sqgl directory for files named udf _exanpl e. def and
udf _exanpl e. cc. Copy both files from this directory to your working directory.

4. Create a C\Vake makefi | e (CMakelLi st s. t xt) with these contents:
PRQIECT(udf _exanpl e)

Path for MySQL include directory
I NCLUDE_DI RECTORI ES(" c: / mysql /i ncl ude")

ADD_DEFI NI TI ONS(" - DHAVE_DLOPEN")
ADD_LI| BRARY(udf _exanpl e MODULE udf _exanpl e. cc udf _exanpl e. def)
TARGET_LI NK_LI BRARI ES(udf _exanpl e wsock32)

5. Create the VC project and solution files, substituting an appropriate gener at or value:

cmake -G "generator"
Invoking cnake - - hel p shows you a list of valid generators.

6. Create udf _exanple.dl|:

devenv udf_exanple.sln /build Rel ease

On all platforms, after the shared library file has been copied to the pl ugi n_di r directory, notify mysql d
about the new functions with the following statements. The file name suffix differs per platform (for
example, . so for Unix and Unix-like systems, . dl | for Windows), so adjust the . so suffix for your
platform as necessary.

CREATE FUNCTI ON net aphon RETURNS STRI NG
SONAME ' udf _exanpl e. so' ;

CREATE FUNCTI ON nyfunc_doubl e RETURNS REAL
SONAME ' udf _exanpl e. so' ;

CREATE FUNCTI ON nyfunc_i nt RETURNS | NTEGER
SONAME ' udf _exanpl e. so' ;

CREATE FUNCTI ON sequence RETURNS | NTEGER
SONAME ' udf _exanpl e. so' ;

CREATE FUNCTI ON | ookup RETURNS STRI NG
SONAME ' udf _exanpl e. so' ;

CREATE FUNCTI ON reverse_| ookup RETURNS STRI NG
SONAME ' udf _exanpl e. so' ;

CREATE AGGREGATE FUNCTI ON avgcost RETURNS REAL
SONAME ' udf _exanpl e. so' ;

Once installed, a function remains installed until it is uninstalled.

91

https://dev.mysql.com/doc/refman/9.6/en/server-system-variables.html#sysvar_plugin_dir
https://dev.mysql.com/doc/refman/9.6/en/getting-mysql.html
http://www.cmake.org
https://dev.mysql.com/doc/refman/9.6/en/server-system-variables.html#sysvar_plugin_dir

Loadable Function Security Precautions

To remove functions, use DROP FUNCTI ON:

DROP FUNCTI ON net aphon;

DROP FUNCTI ON nyf unc_doubl e;
DROP FUNCTI ON nyfunc_i nt;
DROP FUNCTI ON sequence;

DROP FUNCTI ON | ookup;

DROP FUNCTI ON rever se_| ookup;
DROP FUNCTI ON avgcost ;

The CREATE FUNCTI ON and DROP FUNCTI ON statements update the mysql . f unc system table that
serves as a loadable function registry. These statements require the | NSERT and DELETE privilege,
respectively, for the mysql database.

During the normal startup sequence, the server loads functions registered in the mysql . f unc table. If the
server is started with the - - ski p- gr ant - t abl es option, functions registered in the table are not loaded
and are unavailable.

Loadable Function Security Precautions

MySQL takes several measures to prevent misuse of loadable functions.

Loadable function library files cannot be placed in arbitrary directories. They must be located in the server's
plugin directory. This directory is given by the value of the pl ugi n_di r system variable.

To use CREATE FUNCTI ON or DROP FUNCTI QN, you must have the | NSERT or DELETE privilege,
respectively, for the mysql database. This is necessary because those statements add and delete rows
from the nmysql . f unc table.

Loadable functions should have at least one symbol defined in addition to the xxx symbol that corresponds
to the main xxx () function. These auxiliary symbols correspond to the xxx_init (), xxx_deinit(),
xxx_reset (), xxx_clear(),andxxx_add() functions. mysql d also supports an - - al | ow-

suspi ci ous- udf s option that controls whether Loadable functions that have only an xxx symbol can be
loaded. By default, the option is disabled, to prevent attempts at loading functions from shared library files
other than those containing legitimate Loadable functions. If you have older Loadable functions that contain
only the xxx symbol and that cannot be recompiled to include an auxiliary symbol, it may be necessary to
specify the - - al | ow- suspi ci ous- udf s option. Otherwise, you should avoid enabling it.

92

https://dev.mysql.com/doc/refman/9.6/en/drop-function-loadable.html
https://dev.mysql.com/doc/refman/9.6/en/create-function-loadable.html
https://dev.mysql.com/doc/refman/9.6/en/drop-function-loadable.html
https://dev.mysql.com/doc/refman/9.6/en/privileges-provided.html#priv_insert
https://dev.mysql.com/doc/refman/9.6/en/privileges-provided.html#priv_delete
https://dev.mysql.com/doc/refman/9.6/en/server-options.html#option_mysqld_skip-grant-tables
https://dev.mysql.com/doc/refman/9.6/en/server-system-variables.html#sysvar_plugin_dir
https://dev.mysql.com/doc/refman/9.6/en/create-function-loadable.html
https://dev.mysql.com/doc/refman/9.6/en/drop-function-loadable.html
https://dev.mysql.com/doc/refman/9.6/en/privileges-provided.html#priv_insert
https://dev.mysql.com/doc/refman/9.6/en/privileges-provided.html#priv_delete
https://dev.mysql.com/doc/refman/9.6/en/server-options.html#option_mysqld_allow-suspicious-udfs
https://dev.mysql.com/doc/refman/9.6/en/server-options.html#option_mysqld_allow-suspicious-udfs
https://dev.mysql.com/doc/refman/9.6/en/server-options.html#option_mysqld_allow-suspicious-udfs

Chapter 7 Porting MySQL

Before attempting to port MySQL to other operating systems, check the list of currently supported
operating systems first. See https://www.mysql.com/support/supportedplatforms/database.html.

Note

If you create a new port of MySQL, you are free to copy and distribute it under the
GPL license, but it does not make you a copyright holder of MySQL.

A working POSIX thread library is needed for the server.

To build MySQL from source, your system must satisfy the tool requirements listed at Installing MySQL

from Source.

If you run into problems with a new port, you may have to do some debugging of MySQL! See Debugging

a MySQL Server.

Note

Before you start debugging nysql d, first get the test program nmysys/t hr _| ock to
work. This ensures that your thread installation has even a remote chance to work!

Note

The MySQL source code contains internal documentation written using Doxygen.
This documentation is useful for understanding how MySQL works from a developer
perspective. The generated Doxygen content is available at https://dev.mysqgl.com/
doc/index-other.html. It is also possible to generate this content locally from a
MySQL source distribution using the instructions at Generating MySQL Doxygen
Documentation Content.

93

https://www.mysql.com/support/supportedplatforms/database.html
https://dev.mysql.com/doc/refman/9.6/en/source-installation.html
https://dev.mysql.com/doc/refman/9.6/en/source-installation.html
https://dev.mysql.com/doc/refman/9.6/en/debugging-server.html
https://dev.mysql.com/doc/refman/9.6/en/debugging-server.html
https://dev.mysql.com/doc/index-other.html
https://dev.mysql.com/doc/index-other.html
https://dev.mysql.com/doc/refman/9.6/en/source-installation-doxygen.html
https://dev.mysql.com/doc/refman/9.6/en/source-installation-doxygen.html

94

Index

A

adding
loadable functions, 81
native functions, 80
argument processing, 86
audit plugins, 11
authentication plugins, 11

C

calling sequences for aggregate functions
loadable functions, 85

calling sequences for simple functions
loadable functions, 84

compiling
loadable functions, 90

component service
status_variable_registration, 75

D

daemon plugins, 10

E

environment variable
MYSQL_TEST_TRACE_CRASH, 66
MYSQL_TEST_TRACE_DEBUG, 66

errors
handling for loadable functions, 88

F
full-text parser plugins, 9
functions
adding, 79
loadable, 79
adding, 81
native
adding, 80

G

get_sysvar_source plugin service, 75

H

handling
errors, 88

INFORMATION_SCHEMA plugins, 10
installing
loadable functions, 90

K
keyring plugins, 13, 71

L

Loadable function (UDF) plugins, 8
loadable functions, 79

adding, 81

compiling, 90

return values, 88
locking_service plugin service, 75

M

MySQL internals, 1
mysqltest

MySQL Test Suite, 5
mysql_keyring plugin service, 76
mysql_password_policy plugin service, 76
MYSQL_SERVER_AUTH_INFO plugin structure, 56
MYSQL_TEST TRACE_CRASH environment variable,
66
MYSQL_TEST TRACE_DEBUG environment variable,
66
my_plugin_log_service plugin service, 75
my_thd_scheduler plugin service, 76

N
native functions
adding, 80

P

plugin API, 7

plugin service
get_sysvar_source, 75
locking_service, 75
mysql_keyring, 76
mysql_password_policy, 76
my_plugin_log_service, 75
my_thd_scheduler, 76
plugin_registry_service, 76
security_context, 76
thd_alloc, 76
thd_wait, 76

plugin services, 75

plugins
adding, 7
audit, 11
authentication, 11
conditions for writing, 15
daemon, 10
full-text parser, 9
INFORMATION_SCHEMA, 10
keyring, 13, 71

95

Loadable function (UDF), 8
protocol trace, 12
protocol trace plugin, 66
query rewrite, 12
semisynchronous replication, 10
storage engine, 9
test protocol trace plugin, 66
plugin_registry_service service, 76
porting
to other systems, 93
processing
arguments, 86
protocol trace plugins, 12

Q

query rewrite plugins, 12

R

return values
loadable functions, 88

S

security_context plugin service, 76
semisynchronous replication plugins, 10
services

for plugins, 75
status_variable_registration component service, 75
storage engine plugins, 9

T

test protocol trace plugin, 66
testing mysqld

mysqltest, 5
thd_alloc plugin service, 76
thd_wait plugin service, 76
threads, 3

U

UDFs (see loadable functions)
user-defined functions (see loadable functions)

96

	Extending MySQL 9.6
	Table of Contents
	Preface and Legal Notices
	Chapter 1 Introduction
	Chapter 2 MySQL Threads
	Chapter 3 The MySQL Test Suite
	Chapter 4 The MySQL Plugin API
	4.1 Types of Plugins
	4.2 Plugin API Characteristics
	4.3 Plugin API Components
	4.4 Writing Plugins
	4.4.1 Overview of Plugin Writing
	4.4.2 Plugin Data Structures
	4.4.2.1 Server Plugin Library and Plugin Descriptors
	4.4.2.2 Server Plugin Status and System Variables
	4.4.2.3 Client Plugin Descriptors

	4.4.3 Compiling and Installing Plugin Libraries
	4.4.4 Writing Full-Text Parser Plugins
	4.4.5 Writing Daemon Plugins
	4.4.6 Writing INFORMATION_SCHEMA Plugins
	4.4.7 Writing Semisynchronous Replication Plugins
	4.4.8 Writing Audit Plugins
	4.4.9 Writing Authentication Plugins
	4.4.9.1 Writing the Server-Side Authentication Plugin
	4.4.9.2 Writing the Client-Side Authentication Plugin
	4.4.9.3 Using the Authentication Plugins
	4.4.9.4 Implementing Proxy User Support in Authentication Plugins

	4.4.10 Writing Password-Validation Plugins
	4.4.11 Writing Protocol Trace Plugins
	4.4.11.1 Using the Test Protocol Trace Plugin
	4.4.11.2 Using Your Own Protocol Trace Plugins

	4.4.12 Writing Keyring Plugins

	Chapter 5 MySQL Services for Plugins
	Chapter 6 Adding Functions to MySQL
	6.1 Adding a Native Function
	6.2 Adding a Loadable Function

	Chapter 7 Porting MySQL
	Index

