Connectors and APIs

Abstract
This manual describes the Connectors and APIs that can be used with MySQL.

For legal information, see the Legal Notices.

For help with using MySQL, please visit the MySQL Forums, where you can discuss your issues with other
MySQL users.

Document generated on: 2024-03-08 (revision: 78025)

http://forums.mysql.com

Table of Contents

Preface and Legal NOUICESccouuuiiiiiiie ettt e e et ettt e e e e e e e eebanaaeees vii
N [a1 fe o [N ox 1 o] o PP PR 1
2 MySQL Connector/C++ DeVveloper GUILEcoouuuiiiiiiiiiieei et 3
2.1 Introduction t0 CONNECIONCH .oouuuiiiiii ettt et e eeaaan s 3
2.2 ObtaiNiNg CONNECTIONCH ...iiiiiieeiiit ettt e e et e e e at e e eraa e eeees 6
2.3 Installing Connector/C++ from a Binary DiStribDULioNc..oiiiiiiiiiiiiiecee e, 6
2.4 Installing Connector/C++ frOM SOUICEcccuuuuiiiiiiiiei ettt 9
2.4.1 Source Installation SyStem PrereqUISItesvvieeiiieiiiiiiieieei e 9
2.4.2 Obtaining and Unpacking a Connector/C++ Source Distributionc.c...cceeeen. 10
2.4.3 Installing ConNector/C++ frOM SOUICEccuuiiiiiiiiieiii e 11
2.4.4 Connector/C++ Source-Configuration OPLioNSccoeviiiieiiiiiieeiiiieeee e 14

2.5 Building Connector/C++ APPICALIONSuuiiiiiiii e 20
2.5.1 Building Connector/C++ Applications: General Considerationsc.cc.occeevunne.. 20
2.5.2 Building Connector/C++ Applications: Platform-Specific Considerations 28
2.5.3 AULhentication SUPPOITcouuuiiiiii e e e e et e e e e e e 33
2.5.4 OpenTelemetry Tracing SUPPOIT ... cccuutueiiiiiieeieiie ettt e e e et e e eeri e 38

2.6 ConNECtOr/CH+ KNOWN ISSUES .. .covuiiiiiiiii ettt ettt ettt e e ettt e e e et e e e ena e eees 38
2.7 CONNECIOICAHF SUPPOIT ...ttt ettt et e et e ettt e et et e e e et reeeenaaeeeees 39
3 MySQL Connector/J DeVEIOPEr GUIEcouuuuiiiiiiii ettt eenens 41
3.1 Overview of MySQL CONNECIOI T ...couuuiiiiiiii ettt 42
3.2 Compatibility with MySQL and Java VEISIONScccuuuiiiiiiiiiiieiiiieeeeii e e eeeenns 42
3.3 ConNECtOr/J INSTAIALIONcouuiiiiiiii et e e e e 43
3.3.1 Installing Connector/J from a Binary DiStributionccooveiiiiiiiiiiiiinieiiiieeenn 43
3.3.2 Installing Connector/J USING MaVENccoouuiiiiiiiiiieiiii e 45
3.3.3 INStalling frOM SOUICEuiiiiiiiei et 45
3.3.4 Upgrading from an Older VEISIONoiiiiiiiiiiiiiiiecie e a7
3.3.5 TeStNG CONNECLONJciiiiieeiii ettt ettt e et e eenaas 52

3.4 CoNNECLOI/J EXAMPIES ..o e e ettt et 53
3.5 CoNNECLOr/J REFEIENCEc.viiiiiii et 54
3.5.1 Driver/Datasource Class NAMEcc.uuiiiiiiiiiiiiiiie e e e 54
3.5.2 CoNNECHION URL SYNEAX ...uuiiiiiiiiiiiii ettt et eeenens 54
3.5.3 Configuration PrOPErtieSiiieuuiieiiiii ettt 58
3.5.4 JDBC API Implementation NOTESoiiiiiiiiiiiiiiiie e 102
3.5.5 Java, JDBC, and MYSQL TYPESuieiiiiiiieiiitiiaeet e e et e et 105
3.5.6 Handling of Date-Time ValUESocciiiiiiiiiiiiieeeii et et 107
3.5.7 Using Character Sets and UNICOEoooiiiiiiiiiiiiiieiiiieee e 113
3.5.8 UsIiNg QUETY AHIDULESuiiiiiiii e et e e e eees 115
3.5.9 Connecting Securely USING SSLc..uuiiiiiiiiiiiiii e e e 117
3.5.10 Connecting Using Unix Domain SOCKELScoviiiiiiiiiiiiiiicii e 122
3.5.11 Connecting Using Named PiPeSocoiiiiiiiiiiiiec e 123
3.5.12 Connecting Using Various Authentication Methodsccccoovviiiiiiiiiiinienennnn, 124
3.5.13 Using Source/Replica Replication with ReplicationConnectionc.....ccc..... 126
3.5.14 Support for DNS SRV RECOISccouvuiiiiiiiiieiiiii e 126
3.5.15 Client Session State TraCker ..o 127
3.5.16 Mapping MySQL Error Numbers to JDBC SQLState Codescovevevvenerennnn. 128

I I 1B] = O o] o [o1=T o £ PP 134
3.6.1 Connecting to MySQL Using the JDBC Dr i ver Manager Interface 134
3.6.2 Using JDBC St at ement Objects to Execute SQLoovviviiiiiiiiiiiiiecein 136
3.6.3 Using JDBC Cal | abl eSt at enent s to Execute Stored Procedures 137
3.6.4 Retrieving AUTO_| NCREMENT Column Values through JDBCcccvvivevennnnn. 139

3.7 Connection Pooling With CONNECIONJoiiiiiiiiii e 142
3.8 MUIti-HOSE CONNECLIONS ...ttt e b 145
3.8.1 Configuring Server Failover for Connections Using JDBCcc.occvvviiieiiininnnnn. 145
3.8.2 Configuring Server Failover for Connections Using X DeVAPIccccoveviiiiiieeen, 148
3.8.3 Configuring Load Balancing with ConNector/Jccccoevveiiiiiniiiiiiiieece e 148

Connectors and APIs

3.8.4 Configuring Source/Replica Replication with Connector/Jcccoceiiviiiieeennen. 151
3.8.5 Advanced Load-balancing and Failover Configurationccccccoeviviiniiiineeennnnns 154

3.9 Using the X DevAPI with Connector/J: Special TOPICScccvviviiiiiiiiiieiie e 156
3.9.1 Connection Compression Using X DeVAPI ... 156
3.9.2 Schema Validationiiiiiiiiii e 157

3.10 Using the Connector/J INterceptor CIASSESviiuiiiiiieiiieee e e 159
3.11 Using Logging Frameworks With SLFAJcooiiiiiiii e 159
3.12 Using Connector/J With TOMCALcovuiiiiieii e e e e e 161
3.13 Using Connector/J With SPriNQGceuuiiiiieie e e e e e e 162
3.13.1 UsiNg JADCTENPI G € .uiviiiiiii e e e e e 164
3.13.2 Transactional JIDBC ACCESSc.uuuiiiiiiiieieiiia et e et e et e et a et eeeaa s 165
3.13.3 Connection Pooling With SPringcc.oviiiieiiii e 166

3.14 Troubleshooting Connector/J APPlICAtIONSooiiiiiiiiieeii e 167
3.15 Known Issues and LIMitationNSvoveuuiioiiiiiieiii e e et e et e 173
G I @do T a1 [=Tox (o 7 RS U] o] o o] o (P 173
3.16.1 Connector/J COMMUNILY SUPPOI ...covuuiiiiieiiee e iee e e e e e e e e et e e eeanees 173
3.16.2 How to Report Connector/J Bugs or Problemsc.ccooiiiiiiiiiiiceeee 173

4 MySQL Connector/NET DeVEIOPEr GUITEccuuiiiiieiiee e e e e e e 177
4.1 Introduction to MySQL ConNECIOr/NETiiiiiiiiiiciie e e e e 178
4.2 CONNECLOI/NET VEISIONS ...evtueiiiiii i eeeiit e ettt e ettt e e et s e e ettt e e e et aeeeeat s e eeeatnaeeeentnaaaees 179
4.3 ConNeCtOr/NET INSLAllAtioNccoouuiiiiiiiee e 181
4.3.1 Installing Connector/NET 0N WINAOWSoiiiiiiiiiiiiiieee e e e 181
4.3.2 Installing Connector/NET on Unix wWith MONOccoiviiiiiiiiiiiiiicc e, 183
4.3.3 Installing ConNnector/NET from SOUICEuviiiiiiiiiiciie e e e e 184

4.4 CoNNECLOI/NET CONNECLONSuiiiiiiieiiiie ettt e et e et e e et e e et e e e e et 185
4.4.1 Creating a Connector/NET Connection Stringccoceueveiiiiiiiiiieiiiecee e eeae e 186
4.4.2 Managing a Connection Pool in Connector/NETccooeviiiiiiiiieiieecieeceeeiee 188
4.4.3 Handling CONNECLION EITOIS ...ccuuiiiiicii e e e e e e e e e e 189
4.4.4 Connector/NET AUtNENTICALIONiivieiieiiie e 190
4.4.5 Connector/NET Connection Options Referenceccoooevieeiiiiiiiiieein i 195

4.5 ConNECtOr/NET ProgrammMingeeuueeuueeeieeeieesiiessieeaiaessieesaaestsesaneeanaeeetaesnnaaees 211
4.5.1 Using GetSchema 0n @ CONNECHONcuuiiiiiiiiiieii e e e 212
4.5.2 Using MySqICOMMANGo.uiiiiiiiiii e 213
4.5.3 Using Connector/NET with Table Cachingcccooeviiiiiii i, 216
4.5.4 Preparing Statements in ConNECOI/NEToviiiiiiiiieiiie e 217
4.5.5 Creating and Calling Stored ProCedUreScceeeuieiiieeiieeiieeeie e ee e e e 218
4.5.6 Handling BLOB Data With Connector/NETc.cooiiiiiiiiieiiii e 221
4.5.7 Working with Partial Trust / Medium TruStccoooiiiiiiiiiii e 224
4.5.8 Writing a Custom Authentication PIUGQINcoiiiiiiiiieii e 227
4.5.9 Using the Connector/NET Interceptor ClasSesccocvuiveiiiiiiiiiieiiieeec e, 230
4.5.10 Handling Date and Time Information in Connector/NETcccoeevvvviviiieeinnennnnn. 232
4.5.11 Using the MySqIBulkLoader CIasscccuiiiiiiiiiiiiiiie e e 233
4.5.12 ConNECLOI/NET TraCinNguucevuieiiiieeiii e aaaees 235
4.5.13 Using Connector/NET with Crystal REPOISccocvvviiiiiiiiiiiieiieee e, 240
4.5.14 Asynchronous Methodscouuiiiiiiiiiii e 244
4.5.15 Binary and NONDINAry ISSUEScccuiiiiieiiie e e e e 250
4.5.16 Character Set Considerations for Connector/NETccooveviiiiiieiiiiinieniiiineeeeens 251

4.6 CONNECLOI/NET TULOMAISiiieiiieeeeii et e e et eeeannes 251
4.6.1 Tutorial: An Introduction to Connector/NET Programmingcccoeevvvvevivneeennnnnnn. 251
4.6.2 ASP.NET Provider Model and TULOMAIScoovvuuiiiiiiiiiieii e 260
4.6.3 Tutorial: Using an Entity Framework Entity as a Windows Forms Data Source 275
4.6.4 Tutorial: Data Binding in ASP.NET Using LINQ on Entitiesccccocieviviiieninnenns 282
4.6.5 Tutorial: Generating MySQL DDL from an Entity Framework Model 285
4.6.6 Tutorial: Basic CRUD Operations with Connector/NETcccovvviieviiiiiiiiieiieens 286
4.6.7 Tutorial: Configuring SSL with ConnNector/NETooeviiiiiiiieiiii e eeiiees 289
4.6.8 Tutorial: USINg MYSQISCHIPL ...n.iiiiii e e 292

4.7 Connector/NET for Entity FrameWOrKoovuuiiiiiiiiii e e 295

4.7.1 Entity Framework 6 SUPPOITuu i e e e e e e e e e e e eaaees 296

Connectors and APIs

4.7.2 Entity Framework Core SUPPOIu.iiie e et e e e e e e e e e e 301
4.8 ConNNECtOr/NET APl REFEIEINCE ...covviiiiiiiii et 310
4.8.1 MySql.Data.Common.DNSCHENTcciiiiiiiiee e e e 310
4.8.2 MySql.Data.MySqIClient NamMESPACEc.ueiiuniiiiieiiiiieeiieee e ee e e e e e 310
4.8.3 MySql.Data.MySq|lClient.Authentication Namespacecccoevevviveeiieviineeennennnn. 313
4.8.4 MySql.Data.MySqlClient.Interceptors Namespacecccccueeeevieviiieeiiieeiiiieenneens 313
4.8.5 MySql.Data.MySqlClient.Replication NameSpaceccceeevvieiiiieeiiieeeiiieeieeennnn 313
4.8.6 MySql.Data. Types NAMESPACEucvuunieiiieiiiieiieeei e e e e eae et e e e e e eaaeaanaees 313
4.8.7 MySql.Data.EntityFramework NameSpaCeccccuuiieiiiieiiieiiiieeie e e e eiaeeae 314
4.8.8 Microsoft.EntityFrameworkCore NameSPaCEoevvviiiiinieiiiieiiiieeiieeeae e eee e 315
4.8.9 MySql.EntityFrameworkCore NamMEeSPACEcccuviiunieiiiieeiieeiiieeeiieeeiee e eaenas 315
4.8.10 MySql.WeD NaMESPACEcvvvnieiiiieii i et e et e e e e e e e e e e eaaees 317
/e I @] a1 g T=Tex (o] 74 N | = ST o] Lo o A S 319
4.9.1 Connector/NET COmMMUNILY SUPPOIT ..cevuniiiiieii e e e e e e e e e eaaes 319
4.9.2 How to Report Connector/NET Problems or BUQScccvvviiiiiiiieiiieeceeci e, 319
5 MySQL Connector/ODBC DeVElOPEr GUITEc.uiiiiiieiiiee e e e e e aens 321
5.1 Introduction to MySQL Connector/ODBCc.uiiiiiieiii e 322
5.2 CoONNECLOr/ODBC VEISIONSuuiiiiiiiieteiiiieeteete e e e ettt s e e et s e e et e e e et e e e et e e e et e eeerenns 323
5.3 General Information About ODBC and Connector/ODBCccc.vveviiiiiieiiiiinieeeiiineeeeens 324
5.3.1 Connector/ODBC ArChItECIUIEcoeuuiiiiiii e e 324
5.3.2 ODBC DIiVEI MANAJEIS ..vuueieieiiiieiiiee e et eeanns 326
5.4 Connector/ODBC INSLAlIAtIONccouuiiiiiiii e et eaenns 327
5.4.1 Installing Connector/ODBC 0N WINAOWSc.uiiinieiiiieeii e ieee e e e e e e e eeines 328
5.4.2 Installing Connector/ODBC on Unix-like Systemscccccoivviiiiiiiiciiiiicie e 330
5.4.3 Installing Connector/ODBC 0N MACOSccovuiiiiiieiiiiee e e e e e 332
5.4.4 Building Connector/ODBC from a Source Distribution on Windows 333
5.4.5 Building Connector/ODBC from a Source Distribution on UniXccccceevieeennnnns 335
5.4.6 Building Connector/ODBC from a Source Distribution on macOS 337
5.4.7 Installing Connector/ODBC from the Development Source Treec.coeeevueeennnnns 337
5.5 Configuring ConNECIOr/ODBCiiiiiiiii e e e e e e e e e eaaees 338
5.5.1 Overview of Connector/ODBC Data Source Namesccceuieereiiinieeeiiineeneiinnnnns 338
5.5.2 Connector/ODBC Connection Parametersc.coouuuiieiiiiiiieeiiiiieeeeeineeeeeiineeeeens 338
5.5.3 Configuring a Connector/ODBC DSN 0N WINAOWScocvvniiiiiieiiiieeiiieeiieeeieeens 347
5.5.4 Configuring a Connector/ODBC DSN 0N MacOSccoevviiiiiiieiiie e 351
5.5.5 Configuring a Connector/ODBC DSN 0N UNIXivviiiiiieiiiereee e eeiiees 353
5.5.6 Connecting Without a Predefined DSNcccoiiiiiiiiiii e 354
5.5.7 ODBC Connection POOINGoiiiiiiiii e e e e e 355
5.5.8 OpenTelemetry TraCing SUPPOITco.uiieeeiiiie e e e e e e e e e e e e e eeaes 355
5.5.9 Authentication OPtiONScivuiiiieii e e e e s 356
5.5.10 Getting an ODBC Trace Filecoouiiiiiiiiii e 356
5.6 Connector/ODBC EXAMPIES ... ccuuiiiiiieiiiei e e e e e e e e e e e e eaa s 359
5.6.1 Basic Connector/ODBC Application StEPSccevuiiiiiiiiiiieeiiiiecie e e 359
5.6.2 Step-by-step Guide to Connecting to a MySQL Database through Connector/
L@ 2 PP 360
5.6.3 Connector/ODBC and Third-Party ODBC TOOIScccuveiiieiiiieeiiieeceeeeieeeaeeee 361
5.6.4 Using Connector/ODBC with MiICroSoft ACCESSc..vvviiieiiiieiii i 362
5.6.5 Using Connector/ODBC with Microsoft Word or EXcelccooveviiiiiiiiinneennnnn, 371
5.6.6 Using Connector/ODBC with Crystal REPOISccocvviiiiiiiiiiiiciie e, 373
5.6.7 Connector/ODBC Programmingoceeueeeunieeiieeeiiieeaieesineseinseeaneesansessnneesnneesnns 378
5.7 Connector/ODBC REEIENCEcciiuiieieiiie e 385
5.7.1 Connector/ODBC API REfEIENCEcvviviiiiiii e 385
5.7.2 Connector/ODBC Data TYPES ..cvuvuiiiiiieiiieiii et e e e e e e e e e e e et e eaaaeeaen 388
5.7.3 Connector/ODBC Error COUESiiiiiiiieiiiiiie ettt e e e 390
5.8 Connector/ODBC NOtES AN TIPS ..cvvuiiriieiiiieeiie e ee e e e e e e e e e e e et e e e e aaeeeens 391
5.8.1 Connector/ODBC General FUNCtionalitycccoeiiiiiiiiiii e 391
5.8.2 Connector/ODBC Application-Specific TIPSccuuiviiiiiiiiieiie e 393
5.8.3 Connector/ODBC and the Application Both Use OpenSSLcccoocvvvviviiveinnnn, 397
5.8.4 Connector/ODBC Errors and Resolutions (FAQ)oveviieiiiiiiiiieei e, 397

Connectors and APIs

5.9 CoNNECOI/ODBC SUPPOIT «..uuiiiiiii e et et e e e e e e e e e e e e et e e et e e et e e et e e ateeaanaaes 402
5.9.1 Connector/ODBC COomMmMUNItY SUPPOIT ...cvuiiiiieiiiie i eeei e e e e e e e e e e e eaaeees 402
5.9.2 How to Report Connector/ODBC Problems or BUQSocvvvviviiiiiiieeiiiieciieeiiees 402

6 MySQL Connector/Python Developer GUIAEc..oeiuiiiiiiiiei e e e 405

6.1 Introduction to MySQL Connector/PYthonco.iiiiiiiiii e 406

6.2 Guidelines for Python DEVEIOPEISuuiiiiiieii e e 406

6.3 CONNECLOI/PYNON VEISIONSiviiiii et e et e e e e e e e et e e e e eaaeees 408

6.4 Connector/Python INStallationccouiiiiiiii e 410
6.4.1 Obtaining ConNECION/PYtNONiiii e 410
6.4.2 Installing Connector/Python from a Binary Distributioncccooiiiiiins 410
6.4.3 Installing Connector/Python from a Source Distributioncccooeeiiiiiineinneee. 412
6.4.4 Verifying Your Connector/Python Installationccooeviiiiiiiiin e, 413

6.5 Connector/Python Coding EXAMPIEScooviiiiiei e e 414
6.5.1 Connecting to MySQL Using Connector/Pythoncccoeviiiviiiiiiinc e, 414
6.5.2 Creating Tables Using Connector/Pythoncoooviiiiiiicii e, 416
6.5.3 Inserting Data Using Connector/Pythonccoiiiiiiiiiii e 419
6.5.4 Querying Data Using ConNector/PYthoncoovuiiiiiiiiiie e, 420

6.6 ConNNECtOr/PYthOn TULOMIAIScivveieii e e e e e e e e eaes 420
6.6.1 Tutorial: Raise Employee's Salary Using a Buffered Cursorccc.ccooveviveennnn.. 421

6.7 Connector/Python Connection Establishmentcccocoiiiiii 421
6.7.1 Connector/Python Connection ArgUMENESccvuiiiiiieiiiieeiie e e e 421
6.7.2 Connector/Python Option-File SUPPOItccovviiiiiiei e, 429

6.8 Connector/Python Other TOPICSiivunieiiiei e e e e e e e e e e e e aaaeees 430
6.8.1 ConNector/PYthon LOGQING . ..uuiiiiiiiiee et e e e e e e e eaa e eaes 430
6.8.2 OpeNTEIEMELIY SUPPOIT .. .civecii e e e e e e e e e e e ean s 431
6.8.3 ASYynchronous CONNECHIVILYuiiiiiiiii e 434
6.8.4 Connector/Python Connection PooliNgc.ooiiiiiiiiiiiii e 442
6.8.5 Connector/Python Django Back ENdcc.ooeiiiiiiiiiiiiii e 444

6.9 Connector/Python APl REEIENCEcovuiiii e 445
6.9.1 mMysqgl.conNNECIOr MOAUIEciviiiiiie e e 445
6.9.2 connection.MySQLCONNECHION ClasSccuoviiiiiiiiieiie e e 446
6.9.3 pooling.MySQLCoNNectioNPOOl Classcocvuuieiiiiieiiiece e 458
6.9.4 pooling.PooledMySQLCONNECHION ClaSSuuevvviiiiiieii e e e 459
6.9.5 CUrsor.MySQLCUISOr CIASScivuuiiiiiieiiiieiiii et e e e e aaaas 460
6.9.6 Subclasses cursor.MySQLCUISONciuuiiiiiieiii e e e e e e e eaens 469
6.9.7 constants.ClientFlag Classooviiiiiiiiiiei e 472
6.9.8 conStantS. FieldTYPe CIasSiiiiiiiiiii e e e e 473
6.9.9 constants.SQLMOAE CIASScouuiiiiiiiiiei e e 473
6.9.10 constants.CharacterSet Classoviviiiiiiiiiiiii e e 473
6.9.11 constants.RefreshOpPtioN Classcovvuiiiiiiiiii e 473
6.9.12 Errors and EXCEPLIONS ... ccuuiiiiiiii it e e e e e e e e e e e e et e e e e e e aanas 474

T MYSQL @nd PHP ..ot e e e e e e e e e e e et e e e aeaeaaran 479

7.1 Introduction to the MySQL PHP APl ..o e 479

Preface and Legal Notices

This manual describes the Connectors and APIs that can be used with MySQL.

Legal Notices

Copyright © 1997, 2024, Oracle and/or its affiliates.
License Restrictions

This software and related documentation are provided under a license agreement containing
restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly
permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,
broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any
form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless
required by law for interoperability, is prohibited.

Warranty Disclaimer

The information contained herein is subject to change without notice and is not warranted to be error-
free. If you find any errors, please report them to us in writing.

Restricted Rights Notice

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or
related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the
U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications
of such programs) and Oracle computer documentation or other Oracle data delivered to or accessed
by U.S. Government end users are "commercial computer software," "commercial computer software
documentation," or "limited rights data" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, the use, reproduction, duplication, release, display,
disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle programs
(including any operating system, integrated software, any programs embedded, installed, or activated
on delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/
or iii) other Oracle data, is subject to the rights and limitations specified in the license contained in

the applicable contract. The terms governing the U.S. Government's use of Oracle cloud services

are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

Hazardous Applications Notice

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Trademark Notice

Oracle, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other
names may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC
trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. AMD, Epyc, and the AMD logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

Vii

Documentation Accessibility

Third-Party Content, Products, and Services Disclaimer

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible

for and expressly disclaim all warranties of any kind with respect to third-party content, products,

and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to
your access to or use of third-party content, products, or services, except as set forth in an applicable
agreement between you and Oracle.

Use of This Documentation

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the
following terms:

You may create a printed copy of this documentation solely for your own personal use. Conversion

to other formats is allowed as long as the actual content is not altered or edited in any way. You shall
not publish or distribute this documentation in any form or on any media, except if you distribute the
documentation in a manner similar to how Oracle disseminates it (that is, electronically for download
on a Web site with the software) or on a CD-ROM or similar medium, provided however that the
documentation is disseminated together with the software on the same medium. Any other use, such
as any dissemination of printed copies or use of this documentation, in whole or in part, in another
publication, requires the prior written consent from an authorized representative of Oracle. Oracle and/
or its affiliates reserve any and all rights to this documentation not expressly granted above.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program
website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support for Accessibility

Oracle customers that have purchased support have access to electronic support through My Oracle
Support. For information, visit

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit ht t p: / / www. or acl e. cont pl s/

t opi ¢/ | ookup?ct x=acc& d=tr s if you are hearing impaired.

viii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Chapter 1 Introduction

MySQL Connectors provide connectivity to the MySQL server for client programs. APIs provide
low-level access to MySQL resources using either the classic MySQL protocol or X Protocol. Both
Connectors and the APIs enable you to connect and execute MySQL statements from another
language or environment, including ODBC, Java (JDBC), C++, Python, Node.js, PHP, Perl, Ruby, and
C.

MySQL Connectors

Oracle develops a number of connectors:
» Connector/C++ enables C++ applications to connect to MySQL.

» Connector/J provides driver support for connecting to MySQL from Java applications using the
standard Java Database Connectivity (JDBC) API.

» Connector/NET enables developers to create .NET applications that connect to MySQL. Connector/
NET implements a fully functional ADO.NET interface and provides support for use with ADO.NET
aware tools. Applications that use Connector/NET can be written in any supported .NET language.

» Connector/ODBC provides driver support for connecting to MySQL using the Open Database
Connectivity (ODBC) API. Support is available for ODBC connectivity from Windows, Unix, and
macOS platforms.

» Connector/Python provides driver support for connecting to MySQL from Python applications using
an API that is compliant with the Python DB API version 2.0. No additional Python modules or
MySQL client libraries are required.

» Connect or/ Node. j s provides an asynchronous API for connecting to MySQL from Node.js
applications using X Protocol. Connector/Node.js supports managing database sessions and
schemas, working with MySQL Document Store collections and using raw SQL statements.

The MySQL C API

For direct access to using MySQL natively within a C application, the C API provides low-level access
to the MySQL client/server protocol through the | i bnysql cl i ent client library. This is the primary
method used to connect to an instance of the MySQL server, and is used both by MySQL command-
line clients and many of the MySQL Connectors and third-party APIs detailed here.

i brmysgl cli ent isincluded in MySQL distributions distributions.
See also MySQL C API Implementations.

To access MySQL from a C application, or to build an interface to MySQL for a language not supported
by the Connectors or APIs in this chapter, the C API is where to start. A number of programmer's
utilities are available to help with the process; see Program Development Utilities.

Third-Party MySQL APIs

The remaining APIs described in this chapter provide an interface to MySQL from specific application
languages. These third-party solutions are not developed or supported by Oracle. Basic information on
their usage and abilities is provided here for reference purposes only.

All the third-party language APIs are developed using one of two methods, using | i brmysql cl i ent or
by implementing a native driver. The two solutions offer different benefits:

e Using | i bmysqgl cli ent offers complete compatibility with MySQL because it uses the same
libraries as the MySQL client applications. However, the feature set is limited to the implementation

https://dev.mysql.com/doc/connector-cpp/8.3/en/
https://dev.mysql.com/doc/connector-j/8.0/en/
http://www.python.org/dev/peps/pep-0249/
https://dev.mysql.com/doc/c-api/8.2/en/
https://dev.mysql.com/doc/c-api/8.2/en/c-api-implementations.html
https://dev.mysql.com/doc/c-api/8.2/en/
https://dev.mysql.com/doc/refman/8.0/en/programs-development.html

Third-Party MySQL APIs

and interfaces exposed through | i bnysql ¢l i ent and the performance may be lower as data is
copied between the native language, and the MySQL API components.

» Native drivers are an implementation of the MySQL network protocol entirely within the host
language or environment. Native drivers are fast, as there is less copying of data between
components, and they can offer advanced functionality not available through the standard MySQL
API. Native drivers are also easier for end users to build and deploy because no copy of the MySQL
client libraries is needed to build the native driver components.

MySQL APIs and Interfaces lists many of the libraries and interfaces available for MySQL.

https://dev.mysql.com/doc/refman/8.0/en/connectors-apis.html#connectors-apis-summary

Chapter 2 MySQL Connector/C++ Developer Guide

Table of Contents

2.1 Introduction t0 CONNECIOICH ... i iiiiiiiiis et e et e e e e e e e n e e e e e eennes 3
A2 ® o) -] 1 g o I @Xo T 1 T=T 1 (o 7 [@5 6
2.3 Installing Connector/C++ from a Binary Distributionccouiiiiiiiiiniir e, 6
2.4 Installing Connector/C++ frOM SOUICEcciiuiiiiiii et e eeanns 9
2.4.1 Source Installation SyStem PrereqUISItESuuiiiiiiiiiiiii e 9
2.4.2 Obtaining and Unpacking a Connector/C++ Source Distributionccccooeeviiiiieiinnnnnn. 10
2.4.3 Installing ConNectOr/C++ frOM SOUICEccouuuiiiiiiiii e e eees 11
2.4.4 Connector/C++ Source-Configuration OPLIONScoouviiieiiiiiieiii e 14
2.5 Building Connector/C++ APPICALIONSuuiiiiiiiie e 20
2.5.1 Building Connector/C++ Applications: General Considerationsccccoevvvvvviiierinnennnn. 20
2.5.2 Building Connector/C++ Applications: Platform-Specific Considerations 28
2.5.3 AULhentiCation SUPPOIT .. .ceeuieeeii et e e 33
2.5.4 OpenTelemetry Tracing SUPPOIT .. .cceuuniiiiii ettt e e et e e et e e eeaa e eeens 38
2.6 CoNNECLOr/CH+ KNOWN ISSUES .. .covniiiiiiii ettt ettt e e et e e e et e e eabe e e e eata e eeees 38
2.7 CONNECLOICHF SUPPOIT ..ttt e e e e et e e ettt e e e e et e e e eate e e e eete e eeeatnnaeeene 39

MySQL Connector/C++ is the C++ interface for communicating with MySQL servers.

For notes detailing the changes in each release of Connector/C++, see MySQL Connector/C++
Release Notes.

For legal information, see the Legal Notices.

For help with using MySQL, please visit the MySQL Forums, where you can discuss your issues with
other MySQL users.

Licensing information. This product may include third-party software, used under license. If you
are using a Commercial release of MySQL Connector/C++, see this document for licensing information,
including licensing information relating to third-party software that may be included in this Commercial
release. If you are using a Community release of MySQL Connector/C++, see this document for
licensing information, including licensing information relating to third-party software that may be
included in this Community release.

2.1 Introduction to Connector/C++

MySQL Connector/C++ 8.3 is a MySQL database connector for C++ applications that connect to
MySQL servers. Connector/C++ can be used to access MySQL servers that implement a document
store, or in a traditional way using SQL statements. The preferred development environment

for Connector/C++ 8.3 is to enable development of C++ applications using X DevAPI, or plain

C applications using X DevAPI for C, but Connector/C++ 8.3 also enables development of C++
applications that use the legacy JDBC-based API from Connector/C++ 1.1.

Connector/C++ applications that use X DevAPI or X DevAPI for C require a MySQL server that has X
Plugin enabled. Connector/C++ applications that use the legacy JDBC-based API neither require nor
support X Plugin.

For more detailed requirements about required MySQL versions for Connector/C++ applications, see
Platform Support and Prerequisites.

For notes detailing the changes in each release of Connector/C++, see MySQL Connector/C++
Release Notes.

https://dev.mysql.com/doc/relnotes/connector-cpp/en/
https://dev.mysql.com/doc/relnotes/connector-cpp/en/
http://forums.mysql.com
https://downloads.mysql.com/docs/licenses/connector-cpp-8.3-com-en.pdf
https://downloads.mysql.com/docs/licenses/connector-cpp-8.3-gpl-en.pdf
https://dev.mysql.com/doc/refman/8.0/en/document-store.html
https://dev.mysql.com/doc/refman/8.0/en/document-store.html
https://dev.mysql.com/doc/refman/8.0/en/x-plugin.html
https://dev.mysql.com/doc/refman/8.0/en/x-plugin.html
https://dev.mysql.com/doc/relnotes/connector-cpp/en/
https://dev.mysql.com/doc/relnotes/connector-cpp/en/

Connector/C++ Benefits

e Connector/C++ Benefits

X DevAPI and X DevAPI for C

Legacy JDBC API and JDBC Compatibility

Platform Support and Prerequisites

Connector/C++ Benefits

MySQL Connector/C++ offers the following benefits for C++ users compared to the MySQL C API
provided by the MySQL client library:

» Convenience of pure C++.
» Support for these application programming interfaces:
* X DevAPI
* X DevAPI for C
* Legacy JDBC 4.0-based API
e Support for the object-oriented programming paradigm.
» Reduced development time.
* Licensed under the GPL with the FLOSS License Exception.

 Available under a commercial license upon request.

X DevAPI and X DevAPI for C

Connector/C++ implements X DevAPI, which enables connecting to MySQL servers that implement a
document store with X Plugin. X DevAPI also enables applications to execute SQL statements.

Connector/C++ also implements a similar interface called X DevAPI for C for use by applications
written in plain C.

For general information about X DevAPI, see X DevAPI User Guide. For reference information specific
to the Connector/C++ implementation of X DevAPI and X DevAPI for C, see MySQL Connector/C++ X
DevAPI Reference in the X DevAPI section of MySQL Documentation.

Legacy JDBC API and JDBC Compatibility

Connector/C++ implements the JDBC 4.0 API, if built to include the legacy JDBC connector:
» Connector/C++ binary distributions include the JDBC connector.

« If you build Connector/C++ from source, the JDBC connector is not built by default, but can be
included by enabling the W TH_JDBC CVake option. See Section 2.4, “Installing Connector/C++ from
Source”.

The Connector/C++ JDBC API is compatible with the JDBC 4.0 API. Connector/C++ does

not implement the entire JDBC 4.0 API, but does feature these classes: Connecti on,

Dat abaseMet aDat a, Dri ver, Prepar edSt at enent , Resul t Set, Resul t Set Met aDat a,
Savepoi nt, St at enent .

The JDBC 4.0 API defines approximately 450 methods for the classes just mentioned. Connector/C++
implements approximately 80% of these.

https://dev.mysql.com/doc/refman/8.0/en/document-store.html
https://dev.mysql.com/doc/refman/8.0/en/x-plugin.html
https://dev.mysql.com/doc/x-devapi-userguide/en/
https://dev.mysql.com/doc/

Platform Support and Prerequisites

Note

The legacy JDBC connector in Connector/C++ 8.3 is based on the connector
provided by Connector/C++ 1.1. For more information about using the JDBC
API in Connector/C++ 8.3, see MySQL Connector/C++ 1.1 Developer Guide.

Platform Support and Prerequisites

To see which platforms are supported, visit the Connector/C++ downloads page.

On Windows platforms, Commercial and Community Connector/C++ distributions require the Visual
C++ Redistributable for Visual Studio. The Redistributable is available at the Visual Studio Download
Center; install it before installing Connector/C++. The acceptable Redistributable versions depend on
your Connector/C++ version:

» Connector/C++ 8.0.19 and higher: VC++ Redistributable 2017 or higher.
» Connector/C++ 8.0.14 to 8.0.18: VC++ Redistributable 2015 or higher.

The following requirements apply to building and running Connector/C++ applications, and to building
Connector/C++ itself if you build it from source:

» To run Connector/C++ applications, the MySQL server requirements depend on the API the
application uses:

e Connector/C++ applications that use X DevAPI or X DevAPI for C require a server from MySQL
8.3 (8.3.0), 8.2 (8.2.0), 8.1 (8.1.0), MySQL 8.0 (8.0.11 or later), or MySQL 5.7 (5.7.12 or later),
with X Plugin enabled. For MySQL 8.0 and later, X Plugin is enabled by default. For MySQL 5.7, X
Plugin must be enabled explicitly. (Some X Protocol features may not work with MySQL 5.7.)

« Applications that use the JDBC API can use a server from MySQL 5.6 or higher. X Plugin is
neither required nor supported.

 To build Connector/C++ applications:
* The MySQL version does not apply.

« On Windows, Microsoft Visual Studio is required. The acceptable MSVC versions depend on your
Connector/C++ version and the type of linking you use:

» Connector/C++ 8.0.20 and higher: Same as Connector/C++ 8.0.19, with the addition that binary
distributions are also compatible with MSVC 2017 using the static X DevAPI connector library.
This means that binary distributions are fully compatible with MSVC 2019, and fully compatible
with MSVC 2017 with the exception of the static legacy (JDBC) connector library.

e Connector/C++ 8.0.19: Connector/C++ binary distributions are compatible with projects built
using MSVC 2019 (using either dynamic or static connector libraries) or MSVC 2017 (using
dynamic connector libraries).

» Connector/C++ 8.0.14 to 8.0.18: MSVC 2017 or 2015.
» Connector/C++ prior to 8.0.14: MSVC 2015.
* To build Connector/C++ from source:
e The MySQL C API client library may be required:

» For Connector/C++ built without the JDBC connector (which is the default), the client library is
not needed.

* To build Connector/C++ with the JDBC connector, configure Connector/C++ with the
W TH_JDBC CMake option enabled. In this case, the JDBC connector requires a client library

https://dev.mysql.com/doc/connector-cpp/1.1/en/
https://dev.mysql.com/downloads/connector/cpp/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://dev.mysql.com/doc/refman/8.0/en/x-plugin.html

Obtaining Connector/C++

from MySQL 8.3 (8.3.0), 8.2 (8.2.0), 8.1 (8.1.0), MySQL 8.0 (8.0.11 or later), or MySQL 5.7
(5.7.9 or later).

« On Windows, Microsoft Visual Studio is required. The acceptable MSVC versions depend on your
Connector/C++ version:

e Connector/C++ 8.0.19 and higher;: MSVC 2019 or 2017.
e Connector/C++ 8.0.14 to 8.0.18: MSVC 2017 or 2015.

« Connector/C++ prior to 8.0.14: MSVC 2015.

2.2 Obtaining Connector/C++

Connector/C++ binary and source distributions are available, in platform-specific packaging formats.
To obtain a distribution, visit the Connector/C++ downloads page. It is also possible to clone the
Connector/C++ Git source repository.

» Connector/C++ binary distributions are available for Microsoft Windows, and for Unix and Unix-like
platforms. See Section 2.3, “Installing Connector/C++ from a Binary Distribution”.

» Connector/C++ source distributions are available as compressed t ar files or Zip archives and can
be used on any supported platform. See Section 2.4, “Installing Connector/C++ from Source”.

» The Connector/C++ source code repository uses Git and is available at GitHub. See Section 2.4,
“Installing Connector/C++ from Source”.

2.3 Installing Connector/C++ from a Binary Distribution

To obtain a Connector/C++ binary distribution, visit the Connector/C++ downloads page.

For some platforms, Connector/C++ binary distributions are available in platform-specific packaging
formats. Binary distributions are also available in more generic format, in the form of compressed t ar
files or Zip archives.

Note

Generic Linux packages do not contain Connector/C++ static libraries. If you
intend to link your application to a static library, consider installing a package
that is specific to the platform on which you build your final application.

For descriptions here that refer to documentation files, those files have names such as

CONTRI BUTI NG. nd, READVE. nd, README. t xt , README, LI CENSE. t xt , LI CENSE, | NFO_BI N,
and | NFO_SRC. (Prior to Connector/C++ 8.0.14, the information file is BUI LDI NFQO. t xt rather than
I NFO Bl Nand | NFO_SRC))

Installation on Windows

Installation on Linux

Installation on macOS

Installation on Solaris

Installation Using a tar or Zip Package

Installation on Windows
Important

On Windows platforms, Commercial and Community Connector/C++
distributions require the Visual C++ Redistributable for Visual Studio.

https://dev.mysql.com/downloads/connector/cpp/
https://dev.mysql.com/downloads/connector/cpp/

Installation on Windows

The Redistributable is available at the Visual Studio Download Center;
install it before installing Connector/C++. For information about which VC
++ Redistributable versions are acceptable, see Platform Support and
Prerequisites.

These methods of installing binary distributions are available on Windows:

» Windows MSI Installer. As of Connector/C++ 8.0.12, an MSI Installer is available for Windows.
To use the MSI Installer (. nsi file), launch it and follow the prompts in the screens it presents. The
MSI Installer can install components for these connectors:

* The connector for X DevAPI (including X DevAPI for C).

« The connector for the legacy JDBC API.

For each connector, there are two components:

e The DLL component includes the connector DLLs and libraries to satisfy runtime dependencies.
The DLL component is required to run Connector/C++ application binaries that use the connector.

* The Developer component includes header files, static libraries, and import libraries for DLLs. The
Developer component is required to build from source Connector/C++ applications that use the
connector.

The MSI Installer requires administrative privileges. It begins by presenting a welcome screen that
enables you to continue the installation or cancel it. If you continue the installation, the MSI Installer
overview screen enables you to select the type of installation to perform:

* The Complete installation installs the DLL and Developer components for both connectors.
* The Typical installation installs the DLL component for both connectors.

« The Custom installation enables you to specify the installation location and select which
components to install. The DLL and Developer components for the X DevAPI connector are
preselected, but you can override the selection. The Developer component for a connector cannot
be selected without also selecting the connector DLL component.

The MSI Installer performs these actions:

« It checks whether the required Visual C++ Redistributable for Visual Studio is present. If not,
the installer asks you to install it and exits with an error. For information about which VC++
Redistributable versions are acceptable, see Platform Support and Prerequisites.

* |t installs documentation files.

To install Connector/C++ from the command line in batch mode, use a command similar to:

nsi exec. exe /i packages\ nysqgl - connect or - cpp- commer ci al - 8. X. X-wi nx64. nsi /qgn /| vx*
nsi _install.log ALLUSERS=1 | NSTALLDI R=C:\t np\ c- cpp- unpacked | NSTALLLEVEL=4

To uninstall Connector/C++ from the command line in batch mode, use a command similar to:

msi exec. exe /x packages\ nysql - connect or - cpp- conmrer ci al - 8. X. X-wi nx64. nsi /gn /1 vx*
msi _uni nstall .| og

« Zip archive package without installer. To install from a Zip archive package (. zi p file), see
Installation Using a tar or Zip Package.

In addition to the standard Zip archive packages, packages are available that were built in debug
mode. However, applications should use the same build mode as Connector/C++. If you install
Connector/C++ packages built in debug mode, build applications in debug mode. If you install
Connector/C++ packages built in release mode, build applications in release mode.

https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/

Installation on Linux

Installation on Linux
These methods of installing binary distributions are available on Linux:

» RPM package. RPM packages are available for Linux (as of Connector/C++ 8.0.12). The
packages are distinguished by their base names (the full names include the Connector/C++ version
and suffixes):

e mysql - connect or - c++: This package provides the shared connector library implementing X
DevAPI and X DevAPI for C.

e nysql - connect or - c++-j dbc: This package provides the shared legacy connector library
implementing the JDBC API.

e nmysqgl - connect or - c++- devel : This package installs development files required for building
applications that use Connector/C++ libraries provided by the other packages, and static connector
libraries. This package depends on the shared libraries provided by the other packages. It cannot
be installed by itself without the other two packages.

» Debian package. Debian packages are available for Linux (as of Connector/C++ 8.0.14). The
packages are distinguished by their base names (the full names include the Connector/C++ version
and suffixes):

e |'i bmysql cppconn8- 1: This package provides the shared connector library implementing X
DevAPI and X DevAPI for C.

e |i bmysql cppconn7: This package provides the shared legacy connector library implementing
the JDBC API.

e i bnmysgl cppconn- dev: This package installs development files required for building
applications that use Connector/C++ libraries provided by the other packages, and static connector
libraries. This package depends on the shared libraries provided by the other packages. It cannot
be installed by itself without the other two packages.

e Compressed tar file. To install from a compressed t ar file (. t ar. gz file), see Installation Using
a tar or Zip Package.

Installation on macOS
These methods of installing binary distributions are available on macOS:

« DMG package. DMG (disk image) packages for macOS are available as of Connector/C++
8.0.12. A DMG package provides shared and static connector libraries implementing X DevAPI and
X DeVvAPI for C, and the legacy connector library implementing the JDBC API. The package also
includes OpenSSL libraries, public header files, and documentation files.

» Compressed tar file. To install from a compressed t ar file (. t ar. gz file), see Installation Using
a tar or Zip Package.

Installation on Solaris

These methods of installing binary distributions are available on Solaris:

» Compressed tar file. To install from a compressed t ar file (. t ar. gz file), see Installation Using
a tar or Zip Package.

Installation Using a tar or Zip Package

Connector/C++ binary distributions are available for several platforms, packaged in the form of
compressed t ar files or Zip archives, denoted here as PACKAGE. t ar . gz or PACKAGE. zi p.

Installing Connector/C++ from Source

Note
Generic Linux packages do not contain Connector/C++ static libraries.

To unpack a compressed t ar file, use this command in the intended installation directory:

tar zxvf PACKACE.tar.gz

To install from a Zip archive package (. zi p file), use W nZi p or another tool that can read . zi p files
to unpack the file into the location of your choosing.

2.4 Installing Connector/C++ from Source

This chapter describes how to install Connector/C++ using a source distribution or a copy of the Git
source repository.

2.4.1 Source Installation System Prerequisites
To install Connector/C++ from source, the following system requirements must be satisfied:
 Build Tools
* MySQL Client Library
e Boost C++ Libraries
e SSL Support
Build Tools
You must have the cross-platform build tool CVake (3.0 or higher).
You must have a C++ compiler that supports C++17 (as of Connector/C++ 8.0.33).
MySQL Client Library
To build Connector/C++ from source, the MySQL C API client library may be required:

* Building the JDBC connector requires a client library from MySQL 8.3 (8.3.0), 8.2 (8.2.0), 8.1 (8.1.0),
MySQL 8.0 (8.0.11 or later), or MySQL 5.7 (5.7.9 or later). This occurs when Connector/C++ is
configured with the W TH_JDBC CMeke option enabled to include the JDBC connector.

» For Connector/C++ built without the JDBC connector, the client library is not needed.

Typically, the MySQL client library is installed when MySQL is installed. However, check your operating
system documentation for other installation options.

To specify where to find the client library, set the MYSQL_DI R Cvake option appropriately at
configuration time as necessary (see Section 2.4.4, “Connector/C++ Source-Configuration Options”).

Boost C++ Libraries

To compile Connector/C++ the Boost C++ libraries are needed only if you build the legacy JDBC API
or if the version of the C++ standard library on your system does not implement the UTF8 converter
(codecvt _ut f 8).

If the Boost C++ libraries are needed, Boost 1.59.0 or newer must be installed. To obtain Boost and its
installation instructions, visit the official Boost site.

After Boost is installed, use the W TH BOOST ClVake option to indicate where the Boost files are
located (see Section 2.4.4, “Connector/C++ Source-Configuration Options”):

http://www.boost.org

Obtaining and Unpacking a Connector/C++ Source Distribution

crmake [other_options] -DW TH BOOST=/usr/| ocal /boost_1_59_0

Adjust the path as necessary to match your installation.

SSL Support

Use the W TH_SSL CVake option to specify which SSL library to use when compiling Connector/C++.
OpenSSL 1.0.x or higher is required. Your other options are:

» As of Connector/C++ 8.0.18, it is possible to compile against OpenSSL 1.1.
» As of Connector/C++ 8.0.30, it is possible to compile against OpenSSL 3.0.

For more information about W TH_SSL and SSL libraries, see Section 2.4.4, “Connector/C++ Source-
Configuration Options”.

2.4.2 Obtaining and Unpacking a Connector/C++ Source Distribution

To obtain a Connector/C++ source distribution, visit the Connector/C++ downloads page. Alternatively,
clone the Connector/C++ Git source repository.

A Connector/C++ source distribution is packaged as a compressed t ar file or Zip archive, denoted
here as PACKACE. t ar . gz or PACKAGE. zi p. A source distribution in t ar file or Zip archive format can
be used on any supported platform.

The distribution when unpacked includes an | NFO_SRCfile that provides information about the product
version and the source repository from which the distribution was produced. The distribution also
includes other documentation files such as those listed in Section 2.3, “Installing Connector/C++ from a
Binary Distribution”.

To unpack a compressed t ar file, use this command in the intended installation directory:

tar zxvf PACKAGE.tar.gz

After unpacking the distribution, build it using the appropriate instructions for your platform later in this
chapter.

To install from a Zip archive package (. zi p file), use W nZi p or another tool that can read . zi p files
to unpack the file into the location of your choosing. After unpacking the distribution, build it using the
appropriate instructions for your platform later in this chapter.

To clone the Connector/C++ code from the source code repository located on GitHub at https://
github.com/mysql/mysgl-connector-cpp, use this command:

git clone https://github.con nysqgl/nysql-connector-cpp.git

That command should create a mysql - connect or - cpp directory containing a copy of the entire
Connector/C++ source tree.

The gi t cl one command sets the sources to the nast er branch, which is the branch that contains
the latest sources. Released code is in the 8. 0 branche (the 8. 0 branch contains the same sources
as the mast er branch). If necessary, use gi t checkout in the source directory to select the desired
branch. For example, to build Connector/C++ 8.0:

cd nysql - connect or - cpp
git checkout 8.0

After cloning the repository, build it using the appropriate instructions for your platform later in this
chapter.

After the initial checkout operation to get the source tree, run gi t pul | periodically to update your
source to the latest version.

10

https://dev.mysql.com/downloads/connector/cpp/
https://github.com/mysql/mysql-connector-cpp
https://github.com/mysql/mysql-connector-cpp

Installing Connector/C++ from Source

2.4.3 Installing Connector/C++ from Source

To install Connector/C++ from source, verify that your system satisfies the requirements outlined in
Section 2.4.1, “Source Installation System Prerequisites”.

» Configuring Connector/C++

» Specifying External Dependencies

Building Connector/C++

Installing Connector/C++

 Verifying Connector/C++ Functionality
Configuring Connector/C++

Use CMake to configure and build Connector/C++. Only out-of-source-builds are supported, so create a
directory to use for the build and change location into it. Then configure the build using this command,
where concpp_sour ce is the directory containing the Connector/C++ source code:

cmake concpp_source
It may be necessary to specify other options on the configuration command. Some examples:
» By default, these installation locations are used:
e /usr/local /mysql/connector-c++-8. 0 (Unix and Unix-like systems)
e User _honme/ \ySQL/"MySQL Connector C++ 8.0" (Windows)
To specify the installation location explicitly, use the CVAKE | NSTALL_PREFI X option:
- DCVAKE_| NSTALL_PREFI X=pat h_nane
» On Windows, you can use the - Gand - A options to select a particular generator:
e -G "Visual Studio 16" -A x64 (64-bit builds)
e -G "Visual Studio 16" -A W n32 (32-bit builds)

Consult the Cvake manual or check cimake - - hel p to find out which generators are supported by
your C\Vake version. (However, it may be that your version of C\Vake supports more generators than
can actually be used to build Connector/C++.)

« If the Boost C++ libraries are needed, use the W TH_BOOST option to specify their location:
- DW TH_BOOST=pat h_nane

» By default, the build creates dynamic (shared) libraries. To build static libraries, enable the
BUI LD_STATI C option:

- DBUI LD_STATI C=ON

» By default, the legacy JDBC connector is not built. To include the JDBC connector in the build,
enable the W TH_JDBC option:

- DW TH_JDBC=ON
Note

If you configure and build the test programs later, use the same CVake
options to configure them as the ones you use to configure Connector/C++

11

Installing Connector/C++ from Source

(- G W TH_BQOOST, BUI LD _STATI C, and so forth). Exceptions: Path name
arguments will differ, and you need not specify CVAKE | NSTALL PREFI X.

For information about C\Veke configuration options, see Section 2.4.4, “Connector/C++ Source-
Configuration Options”.

Specifying External Dependencies

Use CMake options to configure and build Connector/C++ with external sources that you can substitute
for the required third-party dependencies currently bundled with the connector. If the dependency is an
external library, then the library is linked dynamically to the connector. In contrast, bundled third-party
libraries used by connector are linked statically to it.

Note

Using an external third-party library that cannot be linked to the connector
dynamically causes the build to fail, even when the static library is available.

The supported options are:
« W TH_BOOST

« WTH LZ4

« WTH MYSQL

* WTH_PROTOBUF

« WTH SSL

e WTH ZLI B

« WTH ZSTD

For example, to use an external installation of Protobuf, instead of building it from bundled sources,
specify the W TH_PROTOBUF option and provide the path name to the location where CVvake can find
the alternative dependency.

Note

If an external dependency cannot be found (or is unusable), then the build fails.
No attempt is made to locate the bundled source.

crmake [ot her_options] -DW TH PROTOBUF=pat h_nane_t o_pr ot obuf _i nst al |

To configure the standard system-wide location for an external dependency, use the literal value
syst emrather than providing a path name. For example:

- DW TH_SSL=syst em

For information about CVake configuration options, see Section 2.4.4, “Connector/C++ Source-
Configuration Options”.

External dependencies make it possible to use shared third-party libraries that are linked dynamically
to the connector. This can be an advantage because, for example, you cannot use the connector static
library with an application that also links to a Protobuf library.

When running an application that is linked to the connector dynamic library, the third-party libraries
on which the connector depends should be correctly found if they are placed in the file system next to
the connector library. The application should also work when the libraries are installed at the standard
system-wide locations. This assumes that the external third-party dependency version is expected by
Connector/C++.

12

Installing Connector/C++ from Source

Except for Windows, it should be possible to run an application linked to the connector dynamic library
when the connector library and the third-party libraries are placed in a nonstandard location, provided
that these locations were stored as runtime paths when building the application (gcc - r pat h option).

For Windows, an application that is linked to the connector shared library can be run only if the
connector library and the libraries are stored either:

* In the Windows system folder
* In the same folder as the application
 In afolder listed in the PATH environment variable

If the application is linked to the connector static library, it remains true that the required libraries must
be found in one of the preceding locations.

Building Connector/C++

After configuring the Connector/C++ distribution, build it using this command:

cmake --build . --config build_type

The - - conf i g option is optional. It specifies the build configuration to use, such as Rel ease or
Debug. If you omit - - conf i g, the default is Debug.

Important

If you specify the - - conf i g option on the preceding command, specify the
same - - conf i g option for later steps, such as the steps that install Connector/
C++ or that build test programs.

If the build is successful, it creates the connector libraries in the build directory. (For Windows, look
for the libraries in a subdirectory with the same name as the bui | d_t ype value specified for the - -
confi g option.)

« If you build dynamic libraries, they have these names:
e |ibnysqgl cppconn8. so. 1 (Unix)
e |ibmmysqgl cppconn8. 3. dyl i b (macOS)
e nmysqgl cppconn8-1-vsl14.dl | (Windows)
« If you build static libraries, they have these names:
e |ibmmysqgl cppconn8-stati c. a (Unix, macOS)
e nysql cppconn8-static.|ib (Windows)

If you enabled the W TH_JDBC option to include the legacy JDBC connector in the build, the following
additional library files are created.

* If you build legacy dynamic libraries, they have these names:
e i bmysgl cppconn. so. 7 (Unix)
e i brmysgl cppconn. 7. dyl i b (macOS)
e nmysql cppconn-7-vsl4. dl | (Windows)

* If you build legacy static libraries, they have these names:

e i bmysgl cppconn-stati c. a (Unix, macOS)

13

Connector/C++ Source-Configuration Options

e nmysql cppconn-static.|ib (Windows)
Installing Connector/C++

To install Connector/C++, use this command:

cmake --build . --target install --config build_ type

Verifying Connector/C++ Functionality

To verify connector functionality, build and run one or more of the test programs included in the
t est app directory of the source distribution. Create a directory to use and change location into it. Then
issue the following commands:

cmake [other_options] -DW TH CONCPP=concpp_i nstall concpp_source/testapp
cmake --build . --config=build_type

W TH_CONCPP is an option used only to configure the test application. ot her _opti ons consists
of the options that you used to configure Connector/C++ itself (- G W TH_BOOST, BUI LD _STATI C,
and so forth). concpp_sour ce is the directory containing the Connector/C++ source code, and
concpp_i nstal | is the directory where Connector/C++ is installed:

The preceding commands should create the devapi _test and xapi _t est programs in the r un
directory of the build location. If you enable W TH_JDBC when configuring the test programs, the build
also creates the j dbc_t est program.

Before running test programs, ensure that a MySQL server instance is running with X Plugin enabled.
The easiest way to arrange this is to use the nysql -t est - run. pl script from the MySQL distribution.
For MySQL 8.0, X Plugin is enabled by default, so invoke this command in the mysql - t est directory
of that distribution:

perl nysql-test-run.pl --start-and-exit

For MySQL 5.7, X Plugin must be enabled explicitly, so add an option to do that:

perl nysqgl-test-run.pl --start-and-exit --nysql d=--plugin-Ioad=nysql x

The command should start a test server instance with X Plugin enabled and listening on port 13009
instead of its standard port (33060).

Now you can run one of the test programs. They accept a connection-string argument, so if the server
was started as just described, you can run them like this:

run/ devapi _test nysql x://root @27.0.0.1: 13009
run/ xapi _test mnysql x://root @27.0.0.1: 13009

The connection string assumes availability of a r oot user account without any password and the
programs assume that there is at est schema available (assumptions that hold for a server started
using nysql -t est-run. pl).

Totestj dbc_t est, you need a MySQL server, but X Plugin is not required. Also, the connection

options must be in the form specified by the JDBC API. Pass the user name as the second argument.
For example:

run/jdbc_test tcp://127.0.0.1: 13009 root

2.4.4 Connector/C++ Source-Configuration Options

Connector/C++ recognizes the CVake options described in this section.

14

Connector/C++ Source-Configuration Options

Table 2.1 Connector/C++ Source-Configuration Option Reference

MySQL client library

Formats Description Default
BU LD_STATIC Whether to build a static librarty |OFF
BUNDLE_DEPENDENCI ES Whether to bundle external OFF
dependency libraries with the
connector
CVAKE _BUI LD TYPE Type of build to produce Debug
CMAKE | NSTALL_DOCDI R Documentation installation
directory
CVAKE_ | NSTALL_| NCLUDEDI R |Header file installation directory
CVAKE | NSTALL_LI BDI R Library installation directory
CMAKE_| NSTALL_PREFI X Installation base directory /usr/ | ocal
MAI NTAI NER_MODE For internal use only OFF
MYSQLCLI ENT_STATI C_BI NDI N®Vhether to link to the shared ON
MySQL client library
MYSQLCLI ENT_STATI C_LI NKI N®Vhether to statically link to the |OFF

MYSQL_CONFI G_EXECUTABLE

Path to the mysql_config

${MYSQL_DI R}/ bi n/

program nysql _config

MYSQL_DI R MySQL Server installation
directory

STATI C_MSVCRT Use the static runtime library

W TH_BOCST The Boost source directory system

W TH_DOC Whether to generate Doxygen OFF
documentation

W TH_JDBC Whether to build legacy JDBC OFF
library

W TH Lz4 The LZ4 source directory

W TH_MYSQL The MySQL Server source system
directory

W TH_PROTOBUF The Protobuf source directory

W TH_SSL The SSL source directory system

WTH ZLI B The ZLIB source directory

W TH ZSTD The ZSTD source directory

» -DBUI LD_STATI C=bool

By default, dynamic (shared) libraries are built. If this option is enabled, static libraries are built

instead.

» - DBUNDLE_DEPENDENCI ES=bool

This is an internal option used for creating Connector/C++ distribution packages.

e - DCMAKE_BUI LD _TYPE=t ype
The type of build to produce:

* Debug: Disable optimizations and generate debugging information. This is the default.

¢ Rel ease: Enable optimizations.

15

Connector/C++ Source-Configuration Options

« Rel Wt hDebl nf o: Enable optimizations and generate debugging information.

- DCMAKE_| NSTALL_DOCDI R=di r _nane

The documentation installation directory, relative to CMAKE_| NSTALL_PREFI X. If not specified, the
default is to install in CVAKE | NSTALL PREFI X.

This option requires that W TH_DCC be enabled.

This option was added in Connector/C++ 8.0.14.

- DCVAKE_| NSTALL_| NCLUDEDI R=di r _nane

The header file installation directory, relative to CMAKE | NSTALL_PREFI X. If not specified, the
defaultis i ncl ude.

This option was added in Connector/C++ 8.0.14.

- DCMAKE_| NSTALL_LI BDI R=di r _name

The library installation directory, relative to CVAKE | NSTALL_PREFI X. If not specified, the default is
lib64orlib.

This option was added in Connector/C++ 8.0.14.

- DCMAKE_| NSTALL_PREFI X=di r _nane

The installation base directory (where to install Connector/C++).

- DVAI NTAI NER_MODE=bool

This is an internal option used for creating Connector/C++ distribution packages. It was added in
Connector/C++ 8.0.12.

- DMYSQLCLI ENT_STATI C_BI NDI NG=bool

Whether to link to the shared MySQL client library. This option is used only if

MYSQLCLI ENT_STATI C_LI NKI NGis disabled to enable dynamic linking of the MySQL client
library. In that case, if MYSQLCLI ENT_STATI C_BI NDI NGis enabled (the default), Connector/C++ is
linked to the shared MySQL client library. Otherwise, the shared MySQL client library is loaded and
mapped at runtime.

This option applies only if you are building the legacy JDBC connector (that is, only if W TH_JDBCis
enabled). It was added in Connector/C++ 8.0.16.

- DMYSQLCLI ENT_STATI C_LI NKI NG=bool

Whether to link statically to the MySQL client library. The default depends on the legacy JDBC
connector that you are building:

¢ From Connector/C++ 8.0.33, the default is OFF (use dynamic linking to the client library). Enabling
this option disables dynamic linking to the client library.

« For Connector/C++ 8.0.16 to 8.0.32, the default is ON (use static linking to the client library).
Disabling this option enables dynamic linking to the client library. CVake verifies that the current
compiler and standard libraries can build without errors at configuration time.

This option applies only if you are building the legacy JDBC connector (that is, only if W TH_JDBCis
enabled). It was added in Connector/C++ 8.0.16.

16

Connector/C++ Source-Configuration Options

e - DMYSQL_CONFI G_EXECUTABLE=fi | e_nane
The path to the nysqgl _confi g program.

On non-Windows systems, CVake checks to see whether MYSQL_CONFI G_EXECUTABLE is set. If
not, CMake tries to locate nysql _confi g in the default locations.

This option applies only if you are building the legacy JDBC connector (that is, only if W TH_JDBCis
enabled).

e -DMYSQ._DI R=di r _nane
The directory where MySQL is installed.

This option applies only if you are building the legacy JDBC connector (that is, only if W TH_JDBCis
enabled).

» - DSTATI C_MSVCRT=bool

(Windows only) Use the static runtime library (the / M'* compiler option). This option might be
necessary if code that uses Connector/C++ also uses the static runtime library.

e - DW TH _BOOST={ syst en] pat h_nane}

This option specifies which BOOST header file to use when compiling Connector/C++ with an
external dependency. The option value to use:

e syst em Use the system BOOST header file.

e pat h_nane is the path name to the file to use.

For consistency with C\Vake conventions, BOOST_DI R or BOOST_ROOT_DI R can be used instead
of W TH_BQOOST to indicate the base location of the dependency. As an alternative that implies the
W TH_BOOST option (without specifying it), use BOOST_| NCLUDE_DI R to provide the header file
location instead of deriving it from the BOOST_ROOT DI R value.

This option applies only if you are building the legacy JDBC connector (that is, only if W TH_JDBCis
enabled).

» - DW TH_DOC=bool

Whether to enable generating the Doxygen documentation. As of Connector/C++ 8.0.16, enabling
this option also causes the Doxygen documentation to be built by the al | target.

- - DW TH_JDBC=bool

Whether to build the legacy JDBC connector. This option is disabled by default. If it is enabled,
Connector/C++ 8.0 applications can use the legacy JDBC API, just like Connector/C++ 1.1
applications.

17

Connector/C++ Source-Configuration Options

e -DW TH _LZ4={syst en] pat h_nane}

This option specifies which LZ4 installation to use when compiling Connector/C++ with an external
dependency. The option value to use:

« syst em Use the system LZ4 location.

e pat h_nane is the path name to the installation location to use.

For consistency with CVake conventions, LZ4 DI Ror LZ4_ROOT_DI R can be used instead of
W TH_LZ4 to indicate the base location of the dependency.

To imply the W TH_LZ4 option but with more fine-grained specification of installation directories,
use LZ4 | NCLUDE DI Ror LZ4 LI B DI Rto indicate the header file (or library) location instead
of deriving it from the LZ4_ROOT_DI Rvalue. To specify a list of external libraries to link to, use
LZ4 LI BRARY instead of the W TH_LZ4 option.

If you specify both LZ4 LI BRARY and LZ4 LI B DI R, thenLZ4 LI B DI Ris used as an additional
prefix when finding the library file and LZ4 LI BRARY should be relative to that prefix. On Windows,
LZ4 LI BRARY should point at the import library of the DLL.

- DW TH_MYSQL={ syst en] pat h_nane}

The location where the MySQL sources are installed. The client library is linked statically when you
specify this option unless you also request MYSQLCLI ENT_STATI C_LI NKI NG=OFF. The option
value to use:

e syst em Use the system MYSQL location.

e pat h_nane is the path name to the installation location to use.

This option applies only if you are building the legacy JDBC connector (that is, only if W TH_JDBCis
enabled).

For consistency with C\Vake conventions, MYSQL_DI Ror MYSQL_ROOT_DI R can be used instead of
W TH_MYSQL to indicate the base location of the dependency.

To imply the W TH_MYSCQL option but with more fine-grained specification of installation directories,
use MYSQL_| NCLUDE_DI Ror MYSQL_LI B DI Rto indicate the header file (or library) location
instead of deriving it from the MYSQL_ROOT_DI R value. To specify a list of external libraries to link to,
use MYSQL_LI BRARY instead of the W TH_MYSQL option.

If you specify both MYSQL_ LI BRARY and MYSQL_LI B DI R, then M\ySQL_LI B DI Ris used as an
additional prefix when finding the library file and MYSQL_ LI BRARY should be relative to that prefix.
On Windows, MYSQL_ LI BRARY should point at the import library of the DLL.

- DW TH_PROTOBUF={ syst eni pat h_nane}

This option specifies which Protobuf installation to use when compiling Connector/C++ with an
external dependency. Although the library in Connector/C++ binary packages still links in Protobuf

18

Connector/C++ Source-Configuration Options

statically, using this option makes it possible to build from external sources a variant that links in
Protobuf dynamically.

The option value to use:
¢ syst em Use the system Protobuf location.

e pat h_nane is the path name to the installation location to use.

For consistency with Cvake conventions, PROTOBUF_DI R or PROTOBUF_ROOT_DI R can be used
instead of W TH_PROTOBUF to indicate the base location of the dependency.

To imply the W TH_PROTOBUF option but with more fine-grained specification of installation
directories, use PROTOBUF_| NCLUDE DI Ror PROTOBUF_LI B_DI Rto indicate the header file (or
library) location instead of deriving it from the PROTOBUF_ROOT_DI R value. To specify a list of
external libraries to link to, use PROTOBUF_LI| BRARY instead of the W TH_PROTOBUF option.

If you specify both PROTOBUF_L| BRARY and PROTOBUF_LI B_DI R, then PROTOBUF_LI B_DI Ris
used as an additional prefix when finding the library file and PROTOBUF LI BRARY should be relative
to that prefix. On Windows, PROTOBUF_ LI BRARY should point at the import library of the DLL.

Similarly, specifying PROTOBUF_BI N_DI R makes it possible to locate the binaries required to use the
dependency and find the compiler.

- DW TH_SSL={ syst en| pat h_nane}

This option specifies which SSL library to use when compiling Connector/C++. The option value to
use:

e syst em Use the system OpenSSL library.

e pat h_nane is the path name to the SSL installation to use. It should be the path to the installed
OpenSSL library, and must point to a directory containing a | i b subdirectory with OpenSSL
libraries that are already built. Specifying a path name for the OpenSSL installation can be
preferable to using syst embecause it can prevent Cvake from detecting and using an older or
incorrect OpenSSL version installed on the system.

For consistency with C\Vake conventions, SSL_DI Ror SSL_ROOT_DI R (OPENSSL_ROOT_DI R) can
be used instead of W TH_SSL to indicate the base location of the dependency.

To imply the W TH_SSL option but with more fine-grained specification of installation directories,
use OPENSSL | NCLUDE_DI Ror OPENSSL_ LI B_DI Rto indicate the header file (or library) location
instead of deriving it from the SSL_ROOT_DI Rvalue. To specify a list of external libraries to link to,
use SSL_LI BRARY instead of the W TH_SSL option.

If you specify both SSL_ LI BRARY and OPENSSL_LI B DI R, then OPENSSL_LI B _DI Ris used as an
additional prefix when finding the library file and SSL_ LI BRARY should be relative to that prefix. On
Windows, SSL_ LI BRARY should point at the import library of the DLL.

19

Building Connector/C++ Applications

e -DW TH _ZLI B={ syst em pat h_nane}

This option specifies which ZLIB installation to use when compiling Connector/C++ with an external
dependency. The option value to use:

e syst em Use the system ZLIB location.
e pat h_nane is the path name to the installation location to use.

For consistency with C\Vake conventions, ZLI B_DI Ror ZLI B_ROOT_DI R can be used instead of
W TH_ZLI B to indicate the base location of the dependency.

To imply the W TH_ZLI B option but with more fine-grained specification of installation directories,
use ZLI B | NCLUDE DI Ror ZLI B_LI B_DI Rto indicate the header file (or library) location instead
of deriving it from the ZL1 B_ROOT_DI Rvalue. To specify a list of external libraries to link to, use
ZL1 B_LI BRARY instead of the W TH_ZL| B option.

If you specify both ZLI B LI BRARY and ZLI B LI B DI R, then ZLI B_LI B_DI Ris used as an
additional prefix when finding the library file and ZLI| B_LI BRARY should be relative to that prefix. On
Windows, ZLI B_LI BRARY should point at the import library of the DLL,

o -DW TH ZSTD={ syst enj pat h_nane}

This option specifies which ZSTD installation to use when compiling Connector/C++ with an external
dependency. The option value to use:

e syst em Use the system ZSTD location.
e pat h_nane is the path name to the installation location to use.

For consistency with C\Vake conventions, ZSTD DI Ror ZSTD_ROOT_DI R can be used instead of
W TH_ZSTDto indicate the base location of the dependency.

To imply the W TH_ZSTD option but with more fine-grained specification of installation directories,
use ZSTD | NCLUDE DI Ror ZSTD LI B_DI Rto indicate the header file (or library) location instead
of deriving it from the ZSTD _ROOT DI Rvalue. To specify a list of external libraries to link to, use
ZSTD LI BRARY instead of the W TH_ZSTD option.

If you specify both ZSTD LI BRARY and ZSTD LI B DI R, then ZSTD LI B_DI Ris used as an
additional prefix when finding the library file and ZSTD_ LI BRARY should be relative to that prefix. On
Windows, ZSTD LI BRARY should point at the import library of the DLL.

2.5 Building Connector/C++ Applications

This chapter provides guidance on building Connector/C++ applications:

» General considerations for building Connector/C++ applications successfully. See Section 2.5.1,
“Building Connector/C++ Applications: General Considerations”.

* Information about building Connector/C++ applications that applies to specific platforms such
as Windows, macOS, generic Linux, and Solaris. See Section 2.5.2, “Building Connector/C++
Applications: Platform-Specific Considerations”.

For discussion of the programming interfaces available to Connector/C++ applications, see Section 2.1,
“Introduction to Connector/C++",

2.5.1 Building Connector/C++ Applications: General Considerations

This section discusses general considerations to keep in mind when building Connector/C++
applications. For information that applies to particular platforms, see the section that applies to your
platform in Section 2.5.2, “Building Connector/C++ Applications: Platform-Specific Considerations”.

20

Building Connector/C++ Applications: General Considerations

Commands shown here are as given from the command line (for example, as invoked from a
Makef i |). The commands apply to any platform that supports make and command-line build tools
such as g++, cc, or cl ang, but may need adjustment for your build environment.

 Build Tools and Configuration Settings

e C++17 Support

» Connector/C++ Header Files

» Connector/C++ Version Macros

» Boost Header Files

 Link Libraries

* Runtime Libraries

» Using the Connector/C++ Dynamic Library

» Using the Connector/C++ Static Library
Build Tools and Configuration Settings

It is important that the tools you use to build your Connector/C++ applications are compatible with the
tools used to build Connector/C++ itself. Ideally, build your applications with the same tools that were
used to build the Connector/C++ binaries.

To avoid issues, ensure that these factors are the same for your applications and Connector/C++ itself:
» Compiler version.

* Runtime library.

* Runtime linker configuration settings.

To avoid potential crashes, the build configuration of Connector/C++ should match the build
configuration of the application using it. For example, do not use a release build of Connector/C++ with
a debug build of the client application.

To use a different compiler version, release configuration, or runtime library, first build Connector/C+
+ from source using your desired settings (see Section 2.4, “Installing Connector/C++ from Source”),
then build your applications using those same settings.

Connector/C++ binary distributions include an | NFO_BI N file that describes the environment and
configuration options used to build the distribution. If you installed Connector/C++ from a binary
distribution and experience build-related issues on a platform, it may help to check the settings that
were used to build the distribution on that platform. Binary distributions also include an | NFO_SRC
file that provides information about the product version and the source repository from which the
distribution was produced. (Prior to Connector/C++ 8.0.14, look for BUI LDI NFO. t xt rather than

I NFO_BI Nand | NFO_SRC))

C++17 Support

X DevAPI uses C++17 language features (as of Connector/C++ 8.0.33). To compile Connector/C++
applications that use X DevAPI, enable C++17 support in the compiler using the - st d=c++17 option.
This option is not needed for applications that use X DevAPI for C (which is a plain C API) or the legacy
JDBC API (which is based on plain C++), unless the application code uses C++17.

Connector/C++ Header Files

The API an application uses determines which Connector/C++ header files it should include.
The following include directives work under the assumption that the include path contains

21

Building Connector/C++ Applications: General Considerations

$MYSQL_CPPCONN_DI R/ i ncl ude, where $MYSQL_CPPCONN_DI R is the Connector/C++ installation
location. Pass an -1 $MYSQL_CPPCONN_DI R/ i ncl ude option on the compiler invocation command

to ensure this.

» For applications that use X DevAPI:

#i ncl ude <mysql x/ xdevapi . h>

» For applications that use X DevAPI for C:

#i ncl ude <mysql x/ xapi . h>

» For applications that use the legacy JDBC API, the header files are version dependent:

* As of Connector/C++ 8.0.16, a single #i ncl ude directive suffices:

#i ncl ude <nysql/j dbc. h>

* Prior to Connector/C++ 8.0.16, use this set of #i ncl ude directives:

#i ncl ude <j dbc/ nysql _driver. h>

#i ncl ude <j dbc/ nysql _connecti on. h>

#i ncl ude <j dbc/cppconn/*. h>

The notation <j dbc/ cppconn/ *. h> means that you should include all header files from the
j dbc/ cppconn directory that are needed by your application. The particular files needed depend

on the application.

« Legacy code that uses Connector/C++ 1.1 has #i ncl ude directives of this form:

#i ncl ude <nysql _driver. h>
#i ncl ude <nysql _connecti on. h>
#i ncl ude <cppconn/*. h>

To build such code with Connector/C++ 8.0 without modifying it, add $MySQL_CPPCONN_DI R/

i ncl ude/ j dbc to the include path.

To compile code that you intend to link statically against Connector/C++, define a macro that adjusts
API declarations in the header files for usage with the static library. For details, see Using the

Connector/C++ Static Library.

Connector/C++ Version Macros

Starting with Connector/C++ 8.0.30, version-related macros are defined in public header files. The
intent of the macros is to provide a way to systematically and predictably maintain version numbering of
the Connector/C++ product. The following table describes the version-related macros.

Macro Name

Description

MYSQL_CONCPP_VERS| ON_MAJOR

Major number of the product version; currently 8.

MYSQL_CONCPP_VERSI ON_M NOR

Minor number of the product version; currently 00.

MYSQL_CONCPP_VERSI ON_M CRO

Micro number of the product version; initially 30.

MYSQL_CONCPP_VERSI ON_NUVBER

Full Connector/C++ version number, which
combines the major, minor, and micro numbers.
For example, the combined version number
8000030 represents Connector/C++ 8.0.30.

Note

The version numbers maintained by these macros apply to the Connector/C
++ product only and are unrelated to API or ABI versions, which are handled

separately.

22

Building Connector/C++ Applications: General Considerations

Connector/C++ applications that use X DevAPI, X DevAPI for C, or the legacy JDBC API can

specify the MYSQL_CONCPP_VERSI ON_NUMBER macro to add conditional tests that determine the
inclusion or exclusion of feature dependencies, based on which Connector/C++ version introduced the
dependency. For example, it is possible to use the MYSQL_CONCPP_VERSI ON_NUVBER macro in the
following cases:

» When a Connector/C++ application needs a guard that checks for features introduced after the
specified version. The following example specifies version 8.0.32, which has the macro defined in
public header files. The same conditional-compilation directive also works when the macro is not
defined (with pre-8.0.30 header files), because the value is treated as 0.

#i f MySQL_CONCPP_VERSI ON_NUMBER > 8000032
/] use sonme 8.0.32+ feature
#endi f

* When a Connector/C++ application requires all features introduced before the specified version.

#i f MYSQL_CONCPP_VERSI ON_NUMBER < 8000032
/] this usage is OK; it conpiles with 8.0.31 and all previous versions
#endi f

* When a Connector/C++ application that uses X DevAPI also uses the Char act er Set : : ut f 8nmb3
enumeration constant or any of the new ut f 8nb4 collation members. If the application compiles with
the pre-8.0.30 connector, then it is possible to guard the use of these new API elements.

#i f MYSQL_CONCPP_VERSI ON_NUMBER >= 8000030
if (CharacterSet::utf8mb3 == cs)

#el se
if (CharacterSet::utf8 == cs)

#endi f

{

/Il cs is the id of the utf8 character set

}

* When a Connector/C++ application that uses X DevAPI needs to check the name of the ut f 8nb3
character set or any of its collations, and it must also be compiled with the pre-8.0.30 connector.

#i f MYSQL_CONCPP_VERSI ON_NUMBER >= 8000030

if ("utf8nmb3" == character Set Nanme(cs))
#el se

if ("utf8" == characterSet Nane(cs))
#endi f

{

/Il cs is the id of the utf8 character set

}
Note

Alternatively, you can compare against numeric enumeration constant value,
which should work regardless of the connector version.

» When a Connector/C++ application that uses the legacy JDBC API needs to check the name of
the ut f 8nb3 character set or any of its collations, and it must also be compiled with the pre-8.0.30
connector.

#i f MYSQL_CONCPP_VERSI ON_NUMBER >= 8000030

if ("utf8mb3" == netadata->get Col umcChar set (col um))
#el se

if ("utf8" == netadata->get Col umcChar set (col um))
#endi f

/1 colum is the colum index using the utf8 character set

}

Do not use the MYSQL_ CONCPP_VERSI ON_NUMBER macro to check against versions earlier than
Connector/C++ 8.0.30, which can produce unreliable results. For example:

23

Building Connector/C++ Applications: General Considerations

#i f MYSQL_CONCPP_VERSI ON_NUMBER > 8000028
// this does not conpile the with 8.0.29 connector
#endi f
#i f MYSQL_CONCPP_VERSI ON_NUMBER < 8000028
/'l this conpiles with the 8.0.29 connector
#endi f

Boost Header Files

The Boost header files are needed under these circumstances:

» Prior to Connector/C++ 8.0.16, on Unix and Unix-like platforms for applications that use X DevAPI
or X DeVvAPI for C, if you build using gcc and the version of the C++ standard library on your system
does not implement the UTF8 converter (codecvt _ut f 8).

 Prior to Connector/C++ 8.0.23, to compile Connector/C++ applications that use the legacy JDBC
API.

If the Boost header files are needed, Boost 1.59.0 or newer must be installed, and the location of the
headers must be added to the include path. To obtain Boost and its installation instructions, visit the
official Boost site.

Link Libraries

When running an application that uses the shared Connector/C++ library, the library and its runtime
dependencies must be found by the dynamic linker. The dynamic linker must be properly configured to
find Connector/C++ libraries and their dependencies. This includes adding - | r esol v explicitly to the
compile/link command.

Building Connector/C++ using OpenSSL makes the connector library dependent on OpenSSL dynamic
libraries. In that case:

« When linking an application to Connector/C++ dynamically, this dependency is relevant only at
runtime.

* When linking an application to Connector/C++ statically, link to the OpenSSL libraries as well. On
Linux, this means adding - | ssl -1 crypt o explicitly to the compile/link command. On Windows,
this is handled automatically.

On Windows, link to the dynamic version of the C++ Runtime Library.

Runtime Libraries

X DevAPI for C applications need | i bst dc++ at runtime. Depending on your platform or build tools, a
different library may apply. For example, the library is | i bc++ on macOS; see Section 2.5.2.2, “macOS
Notes”.

If an application is built using dynamic link libraries, those libraries must be present not just on the build
host, but on target hosts where the application runs. The dynamic linker must be properly configured to
find those libraries and their runtime dependencies, as well as to find Connector/C++ libraries and their
runtime dependencies.

Connector/C++ libraries built by Oracle depend on the OpenSSL libraries. The latter must be installed
on the system in order to run code that links against Connector/C++ libraries. Another option is to

put the OpenSSL libraries in the same location as Connector/C++, in which case, the dynamic linker
should find them next to the connector library. See also Section 2.5.2.1, “Windows Notes”, and
Section 2.5.2.2, “macOS Notes”.

Note

The TLSv1 and TLSv1.1 connection protocols are no longer supported as of
Connector/C++ 8.0.28, making TLSv1.2 the earliest supported connection
protocol.

24

https://www.boost.org
https://www.boost.org

Building Connector/C++ Applications: General Considerations

Using the Connector/C++ Dynamic Library

The Connector/C++ dynamic library name depends on the platform. These libraries implement X
DevAPI and X DevAPI for C, where A in the library name represents the ABI version:

o |ibnmysgl cppconn8. so. A (Unix)
e |ibnmysqgl cppconn8. A. dyl i b (macOS)
* mysql cppconn8- A- vsNN. dl |, with import library vsNN/ nmysql cppconn8. | i b (Windows)

For the legacy JDBC API, the dynamic libraries are named as follows, where B in the library name
represents the ABI version:

e i bnmysgl cppconn. so. B (Unix)
e i bnmysqgl cppconn. B. dyl i b (macOS)
* nysql cppconn- B-vsNN. dI |, with import library vsNN/ nysql cppconn-static. i b (Windows)

On Windows, the vsNN value in library names depends on the MSVC toolchain version used to build
the libraries. (Connector/C++ libraries provided by Oracle use vs14, and they are compatible with
MSVC 2019 and 2017.) This convention enables using libraries built with different versions of MSVC on
the same system. See also Section 2.5.2.1, “Windows Notes”.

To build code that uses X DevAPI or X DevAPI for C, add - | mysql cppconn8 to the linker options. To
build code that uses the legacy JDBC API, add - | nysql cppconn.

You must also indicate whether to use the 64-bit or 32-bit libraries by specifying the appropriate
library directory. Use an - L linker option to specify $MyYSQL_CONCPP_DI R/ | i b64 (64-bit libraries) or
$MYSQL_CONCPP_DI R/ I i b (32-bit libraries), where $MyYSQL__CPPCONN_DI R is the Connector/C++
installation location. On FreeBSD, / | i b64 is not used. The library name always ends with / | i b.

To build a Connector/C++ application that uses X DevAPI, has sources in app. cc, and links
dynamically to the connector library, the Makef i | e might look like this:

MYSQL_CONCPP_DI R = Connector/C++ installation | ocation

CPPFLAGS = -|1 $(MYSQL_CONCPP_DIR)/include -L $(MYSQL_CONCPP_DIR)/|i b64
LDLI BS = -1 nysql cppconn8

CXXFLAGS = -std=c++17

app : app.cc

With that Makefi | e, the command nake app generates the following compiler invocation:

g++ -std=c++17 -1 .../include -L .../lib64 app.cc -Ilnysqgl cppconn8 -0 app

To build a plain C application that uses X DevAPI for C, has sources in app. ¢, and links dynamically to
the connector library, the Makef i | e might look like this:

MYSQL_CONCPP_DI R = Connector/ C++ installation | ocation

CPPFLAGS = -1 $(MYSQL_CONCPP_DIR)/include -L $(MYSQL_CONCPP_DIR)/|i b64
LDLI BS = - nysql cppconn8
app : app.c

With that Makefi | e, the command make app generates the following compiler invocation:

cc -1 .../linclude -L .../lib64 app.c -1lmysqgl cppconn8 -0 app
Note

The resulting code, even though it is compiled as plain C, depends on the C++
runtime (typically | i bst dc++, though this may differ depending on platform or
build tools; see Runtime Libraries).

To build a plain C++ application that uses the legacy JDBC API, has sources in app. ¢, and links
dynamically to the connector library, the Makef i | e might look like this:

25

Building Connector/C++ Applications: General Considerations

MYSQL_CONCPP_DI R = Connector/C++ installation |ocation

CPPFLAGS = -1 $(MYSQL_CONCPP_DI R)/include -L $(MYSQL_CONCPP_DI R)/|i b64
LDLI BS = -1 mysqgl cppconn
app : app.c

The library option in this case is - | nysql cppcon, rather than - | nysql cppcon8 as for an X DevAPI
or X DevAPI for C application.

With that Makefi | e, the command nake app generates the following compiler invocation:
cc -l .../include -L .../lib64 app.c -|nysqgl cppconn -0 app
Note

When running an application that uses the Connector/C++ dynamic library, the
library and its runtime dependencies must be found by the dynamic linker. See
Runtime Libraries.

Using the Connector/C++ Static Library

It is possible to link your application with the Connector/C++ static library. This way there is no runtime
dependency on the connector, and the resulting binary can run on systems where Connector/C++ is
not installed.

Note

Even when linking statically, the resulting code still depends on all runtime
dependencies of the Connector/C++ library. For example, if Connector/C++
is built using OpenSSL, the code has a runtime dependency on the OpenSSL
libraries. See Runtime Libraries.

The Connector/C++ static library name depends on the platform. These libraries implement X DevAPI
and X DevAPI for C:

e |ibnmysqgl cppconn8-stati c. a (Unix, macOS)
* VSN nysql cppconn8-static.|ib (Windows)
For the legacy JDBC API, the static libraries are named as follows:
e |ibnysgl cppconn-stati c. a (Unix, macOS)
* VvsNN/ nysql cppconn-static.|ib (Windows)
Note

Generic Linux packages do not contain any Connector/C++ static libraries.
If you intend to link your application to a static library, consider installing a
package that is specific to the platform on which you build your final application.

On Windows, the vsNN value in library names depends on the MSVC toolchain version used to build
the libraries. (Connector/C++ libraries provided by Oracle use vs14, and they are compatible with
MSVC 2019 and 2017.) This convention enables using libraries built with different versions of MSVC on
the same system. See also Section 2.5.2.1, “Windows Notes”.

To compile code that you intend to link statically against Connector/C++, define a macro that adjusts
API declarations in the header files for usage with the static library. One way to define the macro is by
passing a - D option on the compiler invocation command:

» For applications that use X DevAPI, X DevAPI for C, or (as of Connector/C++ 8.0.16) the legacy
JDBC API, define the STATI C_CONCPP macro. All that matters is that you define it; the value does
not matter. For example: - DSTATI C_CONCPP

26

Building Connector/C++ Applications: General Considerations

 Prior to Connector/C++ 8.0.16, for applications that use the legacy JDBC API, define
the CPPCONN_PUBLI C_FUNC macro as an empty string. To ensure this, define the
macro as CPPCONN_PUBLI C_FUNC=, not as CPPCONN_PUBLI C_FUNC. For example: -
DCPPCONN_PUBLI C_FUNC=

To build a Connector/C++ application that uses X DevAPI, has sources in app. cc, and links statically
to the connector library, the Makef i | e might look like this:

MYSQL_CONCPP_DI R = Connector/ C++ installation | ocation

CPPFLAGS = - DSTATI C_CONCPP -1 $(MySQL_CONCPP_DI R)/i ncl ude

LDLI BS = $(MYSQL_CONCPP_DI R)/ | i b64/ i brrysql cppconn8-static.a -I1ssl -lcrypto -Ipthread
CXXFLAGS = -std=c++17

app : app.cc
With that Makefi | e, the command nake app generates the following compiler invocation:

g++ -std=c++17 - DSTATI C_CONCPP -| .../include app.cc
...11ib64/libnysql cppconn8-static.a -Issl -lcrypto -Ipthread -o app

Note

To avoid having the linker report unresolved symbols, the compile line must
include the OpenSSL libraries and the pt hr ead library on which Connector/C+
+ code depends.

OpenSSL libraries are not needed if Connector/C++ is built without them, but
Connector/C++ distributions built by Oracle do depend on OpenSSL.

The exact list of libraries required by Connector/C++ library depends on the
platform. For example, on Solaris, the socket, rt, and nsl libraries might be
needed.

To build a plain C application that uses X DevAPI for C, has sources in app. ¢, and links statically to
the connector library, the Makef i | e might look like this:

MYSQL_CONCPP_DI R = Connector/C++ installation |ocation
CPPFLAGS = - DSTATI C_CONCPP -1 $(MYSQL_CONCPP_DI R)/ i ncl ude
LDLI BS = $(MYSQL_CONCPP_DI R)/ | i b64/ i brrysql cppconn8-static.a -I1ssl -lcrypto -I pthread

app : app.c
With that Makef i | e, the command maeke app generates the following compiler invocation:

cc - DSTATIC_CONCPP -1 .../include app.c
...11ib64/libnysql cppconn8-static.a -Issl -lcrypto -Ipthread -o app

To build a plain C application that uses the legacy JDBC API, has sources in app. ¢, and links statically
to the connector library, the Makef i | e might look like this:

MYSQL_CONCPP_DI R = Connector/C++ installation | ocation
CPPFLAGS = - DCPPCONN_PUBLI C_FUNC= -1 $(MySQL_CONCPP_DI R)/i ncl ude
LDLI BS = $(MYSQL_CONCPP_DI R)/ | i b64/ | i brrysql cppconn-static.a -I1ssl -lcrypto -I pthread

app : app.c

The library option in this case names | i bnysql cppcon-stati c. a, ratherthan | i brrysql cppcon8-
stati c. a as for an X DevAPI or X DevAPI for C application.

With that Makefi | e, the command nake app generates the following compiler invocation:

cc -std=c++17 --DCPPCONN_PUBLI C FUNC= -1 .../include app.c
.../1ib64/1ibnysqgl cppconn-static.a -1ssl -lcrypto -l pthread -o app

When building plain C code, it is important to take care of connector's dependency on the C++ runtime,
which is introduced by the connector library even though the code that uses it is plain C:

» One approach is to ensure that a C++ linker is used to build the final code. This approach is taken by
the Makef i | e shown here:

27

Building Connector/C++ Applications: Platform-Specific Considerations

MYSQL_CONCPP_DI R = Connector/C++ installation |ocation

CPPFLAGS = - DSTATI C_CONCPP -1 $(MYSQL_CONCPP_DI R)/i ncl ude

LDLI BS = $(MYSQL_CONCPP_DI R)/ | i b64/ i brrysql cppconn8-static.a -Issl -lcrypto -I|pthread
LINK. o = $(LINK. cc) # use C++ |inker

app : app.o

With that Makef i | e, the build process has two steps: first compile the application source in app. c
using a plain C compiler to produce app. o, then link the final executable (app) using the C++ linker,
which takes care of the dependency on the C++ runtime. The commands look something like this:

cc -DSTATIC_ CONCPP -1 .../include -c -0 app.0 app.cC
g++ - DSTATI C_CONCPP -| .../include app.o
.../1ibnysql cppconn8-static.a -Issl -lcrypto -Ipthread -o app

» Another approach is to use a plain C compiler and linker, but add the | i bst dc++ C++ runtime
library as an explicit option to the linker. This approach is taken by the Makef i | e shown here:

MYSQL_CONCPP_DI R = Connector/C++ installation |ocation
CPPFLAGS = - DSTATI C_CONCPP -1 $(MySQL_CONCPP_DI R)/i ncl ude
LDLI BS = $(MYSQL_CONCPP_DI R)/ | i b64/ i brysql cppconn8-static.a -Issl -lcrypto -l pthread -Istdc++

app : app.c
With that Makef i | e, the compiler is invoked as follows:

cc - DSTATI C_CONCPP -1 .../include app.c
.../1ibnysql cppconn8-static.a -Issl -lcrypto -Ipthread -Istdc++ -0 app

Note

Even if the application that uses Connector/C++ is written in plain C, the final
executable depends on the C++ runtime which must be installed on the target
computer on which the application is to run.

2.5.2 Building Connector/C++ Applications: Platform-Specific
Considerations

This section discusses platform-specific considerations to keep in mind when building Connector/C++
applications. For general considerations that apply on a platform-independent basis, see Section 2.5.1,
“Building Connector/C++ Applications: General Considerations”.

2.5.2.1 Windows Notes

This section describes aspects of building Connector/C++ applications that are specific to Microsoft
Windows. For general application-building information, see Section 2.5.1, “Building Connector/C++
Applications: General Considerations”.

On Windows, applications can be built in different build configurations, which determine the type of the
C++ runtime library that is used by the final executable:

* An application can be built in 32-bit or 64-bit mode.
* An application can be built in release or debug mode.

* You can choose between the dynamic runtime library (/ VD linker option) or static runtime library (/
MT linker option). Different versions of the MSVC compiler also use different versions of the runtime
library.

To build Connector/C++ applications, developers using Windows must satisfy these conditions:
» An acceptable version of Microsoft Visual Studio is required.

» Applications should use the same build configuration as that used to build Connector/C++. Build
configuration includes the build mode (release mode or debug mode) and the linker option (for
example, / VD or / MDd).

28

Building Connector/C++ Applications: Platform-Specific Considerations

e Target hosts running client applications must have an acceptable version of the Visual C++
Redistributable for Visual Studio installed.

For information about acceptable versions of Visual Studio and VC++ Redistributable, see Platform
Support and Prerequisites.

The following sections provide additional detail about several aspects of building Connector/C++
applications:

» Application Build Configuration Must Match Connector/C++

» Linking Connector/C++ to Applications

 Building Connector/C++ Applications with Microsoft Visual Studio
Application Build Configuration Must Match Connector/C++

It is important to use a compatible compiler version to build applications and Connector/C++. It is also
important to build applications using the same build configuration as that used to build Connector/C+
+. That is, applications should use the same build mode and linker option, to ensure that the connector
and the application use the same runtime library.

The following table shows the linker option appropriate for each combination of build mode and runtime
library. It also shows for each combination whether a Connector/C++ binary package is available from
Oracle. (If not, you must build Connector/C++ from source yourself.)

Table 2.2 Connector/C++ Linker Option Per Build Mode and Runtime Library

Build Mode Runtime Library Linker Option Binary Package
Available

Release Dynamic / ND Yes

Debug Dynamic / vDd Yes

Release Static / M No (build from source)

Debug Static / Mrd No (build from source)

Standard Connector/C++ binary packages available from Oracle are built in release mode. If you
install such a package, build applications in release mode to match. Oracle packages built in debug
mode are available as well. To build applications in debug mode, you must either install an Oracle-built
Connector/C++ package that was built in debug mode, or build Connector/C++ from source yourself
using debug mode.

Linking Connector/C++ to Applications

Connector/C++ binary distributions are available as 64-bit or 32-bit packages, which store libraries
under a directory named | i b64 or | i b, respectively. Package names and certain library file and
directory names also include vsNN. The vsNN value in these names depends on the MSVC toolchain
version used to build the libraries. This convention enables using libraries built with different versions of
MSVC on the same system.

Note

The vsNN value represents the major version of the MSVC toolchain used to
build the libraries. Currently it is vs 14, which is the toolchain used by MSVC
2015 through 2019.

Connector/C++ binary packages include libraries built using the dynamic runtime library in either
release mode (/ MD) or debug mode (/ MDd). The Connector/C++ libraries are compatible with MSVC
2019 and 2017, and code that uses these libraries can be built with either MSVC 2019 or 2017 using
the appropriate linker option (that is, / MD for release mode or / MDd for debug mode). To build code

29

https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/

Building Connector/C++ Applications: Platform-Specific Considerations

with a different linker option (/ MTI or / MTd), first build Connector/C++ from source with that option (see
Section 2.4.3, “Installing Connector/C++ from Source”), then build applications using the same option.

Note

One exception for compiler version compatibility is that to build applications
using the static JDBC legacy connector, MSVC 2019 is required; 2017 does not
work.

Connector/C++ is available as a dynamic or static library to use with your application. Which library
you choose determines the library files needed, and the location of those files within a Connector/C

++ package depends on whether the package was built in release or debug mode. Library files are
located under the library directory, which, as previously mentioned, is | i b64 for 64-bit packages or

I i b for 32-bit packages. Denote this directory as LI B. The following table shows the directory in which
to find library files for each type of library (including import libraries, which are used in conjunction with
dynamic libraries).

Table 2.3 Connector/C++ Library File Directories

Library Type

Library File Directory (Release
Build)

Library File Directory (Debug
Build)

Dynamic Library LIB LI B/ debug
Import Library LI B/vsl4 LI B/ vs14/ debug
Static Library LI B/vsl4 LI B/ vs14/ debug

For dynamic linking, the following table indicates which dynamic and import library files to use.

Table 2.4 Connector/C++ Dynamic and Import Library Files Per Connector

Connector Dynamic Library File Import Library File
X DevAPI, X DevAPI for C mysql cppconn8-2-vsl4.dl | |nysql cppconn8.lib
JDBC nysql cppconn- 7-vsi14. dl | nysql cppconn.lib

For the X DevAPI or X DevAPI for C connector, use the dynamic library file named

nysql cppconn8- 2-vs14. dl | , together with with the import library file named

nysql cppconn8. |'i b from the import library directory. The 2 in the dynamic library name is the major
ABI version number. (This helps when using compatibility libraries with an old ABI together with new
libraries having a different ABI.) The libraries installed on your system may have a different ABI version
in their file names.

For the legacy JDBC connector, use the dynamic library file named nysql cppconn- 7-vs14.dl |,
together with the import library file named mysql cppconn. | i b from the import library directory.

For static linking, the following table indicates which static library file to use.

Table 2.5 Connector/C++ Static Library File Per Connector

Connector Static Library File
X DevAPI, X DevAPI for C nysql cppconn8-static.lib
JDBC nmysql cppconn-static.lib

For the X DevAPI or X DevAPI for C connector, use the static library file named nmysql cppconn8-
static.|ib from the static library directory.

For the legacy JDBC connector, use the static library file named nmysql cppconn-static.|ib from
the static library directory.

When building code that uses Connector/C++ libraries, use these guidelines for setting build options in
the project configuration:

30

Building Connector/C++ Applications: Platform-Specific Considerations

* As an additional include directory, specify $MYSQL_CPPCONN_DI R/ i ncl ude.

» As an additional library directory, specify the directory containing the libraries the application must
link to, as indicated in Table 2.3, “Connector/C++ Library File Directories”. For example, to specify
the import or static library directory for building in release mode, use $MYSQL_CONCPP_DI R/

l'i b64/ vs14 (for 64-bit libraries) or $MYSQL_CONCPP_DI R/ | i b/ vs14 (for 32-bit libraries). For
building in debug mode, change vs14 to vs14/ debug.

» To use a dynamic library file (. dl | extension), link your application with a . | i b import library:
nysql cppconn8. | i b to the linker options, or nysql cppconn. | i b for legacy code.

e To use a static library file (. | i b extension), link your application with the library: mysql cppconn8-
static.lib,ornysql cppconn-static.|ib forlegacy code.

For static linking, the application must also be linked with import libraries for the required OpenSSL
libraries. If the connector was installed from a binary package provided by Oracle, these are

present in the vs 14 subdirectory under the main library directory ($MyYSQL_CONCPP_DI R/ | i b64 or
$MYSQL_CONCPP_DI R/ I i b), and the corresponding OpenSSL . dI | libraries are present in the main
library directory.

Note

A Windows application that uses the connector dynamic library must be able
to locate it at runtime, as well as its dependencies such as OpenSSL. The
common way of arranging this is to copy all the required DLLs to the same
location as the application executable.

Building Connector/C++ Applications with Microsoft Visual Studio
To build a Connector/C++ application with Microsoft Visual Studio, follow this procedure:
1. Start a new Visual C++ project in Visual Studio.
2. Set the required include paths.

From the main menu, select Project, Properties. This can also be accessed using the hot key
ALT + F7. Under Configuration Properties, open the tree view. Select C/C++, General in the tree
view.

In the Additional Include Directories text field:

e Addthe i ncl ude/ directory of Connector/C++. This directory should be located within the
Connector/C++ installation directory.

« If Boost is required to build the application, also add the Boost library root directory. (See
Section 2.5.1, “Building Connector/C++ Applications: General Considerations”.)

3. Set the library locations.
In the tree view, open Linker, General, Additional Library Directories.
In the Additional Library Directories text field, add the Connector/C++ import or static library
directory as specified in Table 2.3, “Connector/C++ Library File Directories”. Set appropriate paths
for release and debug builds.

Note

For building in debug mode, the Connector/C++ debug package must be
installed.

4. Set the connector library to use.

31

Building Connector/C++ Applications: Platform-Specific Considerations

Open Linker, Input in the Property Pages dialog.

For building with the Connector/C++ dynamic library, enter the import library name:
nysql cppconn8. |i b, or mysql cppconn. | i b for legacy applications.

For building with the Connector/C++ static library, enter the static library name: mysql cppconn8-
static.lib,ornysql cppconn-static.|ib forlegacy applications.

Note
Generic Linux packages do not contain Connector/C++ static libraries.
5. Define macros for static linking.

To compile code that is linked statically with the connector library, you must define a macro that
adjusts API declarations in the header files for usage with the static library. By default, the macro is
undefined to declare functions to be compatible with an application that calls a DLL.

In the Project, Properties tree view, under C++, Preprocessor, enter the appropriate macro into
the Preprocessor Definitions text field:

« For applications that use X DevAPI, X DevAPI for C, or (as of Connector/C++ 8.0.16) the legacy
JDBC API, define the STATI C_CONCPP macro. All that matters is that you define it; the value
does not matter. For example: - DSTATI C_CONCPP

« Prior to Connector/C++ 8.0.16, for applications that use the legacy JDBC API, define the
CPPCONN_PUBLI C_FUNC macro as an empty string. To ensure this, define the macro as
CPPCONN_PUBLI C_FUNC=, not as CPPCONN_PUBLI C_FUNC.

Notes

¢ Target hosts running the client application must have the Visual C++
Redistributable for Visual Studio installed. For information about which
VC++ Redistributable versions are acceptable, see Platform Support and
Prerequisites.

« If your code uses the Connector/C++ dynamic library, it must be present on
the target host where the application is run. Copy the appropriate Connector/
C++ dynamic library to the same directory as the application executable
(see Linking Connector/C++ to Applications). Alternatively, extend the PATH
environment variable using SET PATH=%ATHY C. \ pat h\ t o\ cpp, or
copy the dynamic library to the Windows installation directory, typically C.
\'wi ndows.

« If your code uses the Connector/C++ static library, the required OpenSSL
libraries must be found on the target host where the application is run.
For Connector/C++ binary distributions, the OpenSSL . dl | libraries are
present in the main library directory ($MySQL_CONCPP_DI R/ | i b64 or
$MYSQL_CONCPP_DI R/ | i b). Copy them to the same location as the
application executable or to some directory listed in the system PATH.

2.5.2.2 macOS Notes

This section describes aspects of building Connector/C++ applications that are specific to macOS.
For general application-building information, see Section 2.5.1, “Building Connector/C++ Applications:
General Considerations”.

The binary distribution of Connector/C++ for macOS is compiled using the macOS native cl ang
compiler. For that reason, an application that uses Connector/C++ should be built with the same cl ang
compiler.

32

https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/

Authentication Support

The cl ang compiler can use two different implementations of the C++ runtime library: either the native
| i bc++ orthe GNU | i bst dc++ library. It is important that an application uses the same runtime
implementation as Connector/C++ that is, the native | i bc++. To ensure that, the - st dl i b=l i bc++
option should be passed to the compiler and the linker invocations.

To build a Connector/C++ application that uses X DevAPI, has sources in app. cc, and links
dynamically to the connector library, the Makef i | e for building on macOS might look like this:

MYSQL_CONCPP_DI R = Connector/ C++ installation | ocation

CPPFLAGS = -1 $(MYSQL_CONCPP_DIR)/include -L $(MYSQL_CONCPP_DI R)/|i b64
LDLI BS = -1 nysql cppconn8

CXX = cl ang++ -stdlib=libc++

CXXFLAGS = -std=c++17

app : app.cc

Binary packages for macOS include OpenSSL libraries that are required by code linked with the
connector. These libraries are installed in the same location as the connector libraries and should be
found there by the dynamic linker.

2.5.2.3 Generic Linux Notes

This section describes aspects of building Connector/C++ applications that are specific to Linux.
Generic Linux packages do not contain Connector/C++ static libraries. For general application-building
information, see Section 2.5.1, “Building Connector/C++ Applications: General Considerations”.

Note

Connector/C++ 8.0.32 provides generic Linux packages for ARM architecture
(64 bit). All Connector/C++ versions provide generic Linux packages for Intel
architecture (both 32 and 64 hits).

Previously, generic Linux packages were built on the EL7 platform and on that platform GCC is
configured to use an older ABI of | i bst dc++. Some of the symbols exported by the library include
standard library types in their names, and consequently, are not compatible with the new CXX11 ABI,
which is the default for modern GCC on most platforms (EL7 being an exception). So, unless you
build your code on EL7, and use GCC6 or later compiler, it defaults to new CXX11 ABI and looks for
Connector/C++ symbols that have new ABI names in them.

As of Connector/C++ 8.0.30, Connector/C++ uses the new CXX11 ABI. With this change, you might
encounter following problems when using Connector/C++ installed from a generic Linux package:

» An upgrade from Connector/C++ 8.0.29 (or earlier) to 8.0.30 (or later) could produce runtime errors
after the upgrade, even if the previous version of Connector/C++ ran successfully.

« It will not work with GCC5 or earlier, because the old compiler uses the old ABI and cannot link to
code that uses new the ABI.

« It will not work on EL6, EL7, or any other platform that modifies GCC settings to use
the old ABI by default. However, in this situation a workaround is to build code under -
D GLI BCXX_USE_CXX11_ABI =1.

For a majority of platforms, including EL8, the GCC default was changed to the new ABI.

2.5.3 Authentication Support

For connections to the server made using the legacy JDBC API (that is, not made using X DevAPI or X
DevAPI for C), Connector/C++ supports different client-side authentication plugins and authentication
methods for:

* LDAP Authentication

» Kerberos Authentication

33

Authentication Support

OCI Authentication

Multifactor Authentication

FIDO Authentication

¢ WebAuthn Authentication

LDAP Authentication

LDAP authentication enables Connector/C++ (8.0.22 and later) application programs to connect to
MySQL servers using simple LDAP authentication, or SASL LDAP authentication using the SCRAM-
SHA-1 authentication method. LDAP authentication requires use of a server from a MySQL Enterprise
Edition distribution. For more information about the LDAP authentication plugins, see LDAP Pluggable
Authentication.

Connector/C++ binary distributions include the libraries that provide the client-side LDAP authentication
plugins, as well as any dependent libraries required by the plugins.

Note

In Connector/C++ 8.0.23, a dependency on the nysql - cl i ent - pl ugi ns
package was removed. This package now is required only on hosts where
Connector/C++ applications make connections using commercial MySQL
server accounts with LDAP authentication. In that case, additional libraries
must also be installed: cyr us- sasl - scr amfor installations that use RPM
packages and | i bsasl| 2- nodul es- gssapi - mi t for installations that use
Debian packages. These SASL packages provide the support required to use
the SCRAM-SHA-256 and GSSAPI/Kerberos authentication methods for LDAP.

If Connector/C++ was installed from a compressed t ar file or Zip archive, the application program will
need to set the OPT_PLUG N_DI R connection option to the appropriate directory so that the bundled
plugin library can be found. (Alternatively, copy the required plugin library to the default directory
expected by the client library.)

For example:

sql : : Connect Opti onsMap connecti on_properti es;

/] To use sinple LDAP authentication ...

connecti on_properties["userNane"] = "sinple_ | dap_user_nane";
connection_properties["password"] = "sinple_ | dap_password";

connecti on_properties[OPT_ENABLE CLEARTEXT_PLUG N] =t r ue;

/'l To use SASL LDAP aut hentication using SCRAM SHA-1 ...

connecti on_properties["userNane"] = "sasl _|dap_user_nane";
connection_properties["password"] = "sasl _|dap_scram password";

/'l Needed if Connector/Ct++ was installed fromtar file or Zip archive ...
connection_properti es[] OPT_PLUA N.DIR] = "${I NSTALL_DI R}/ 1i b{64}/pl ugi n";
auto *driver = get_driver_instance();

auto *con = driver->connect (connection_properties);

/] Execute statenents ...

con->cl ose();

Kerberos Authentication

Kerberos authentication enables Connector/C++ application programs to establish connections for
accounts that use the aut hent i cati on_ker ber os server-side authentication plugin, provided that
the correct Kerberos tickets are available or can be obtained from Kerberos. This capability is available
on client hosts running Linux (starting with 8.0.26).

On Windows (starting with 8.0.32), the OPT_AUTHENTI CATI ON_KERBEROS CLI ENT_MODE
connection option can be set to either SSPI (default) or GSSAPI . The option permits choosing between
SSPI and GSSAPI at runtime for the aut hent i cati on_ker ber os_cl i ent authentication plugin on
Windows. Connector/C++ implements GSSAPI mode through the MIT kerberos library and this mode is
compatible with the Java SE security tools (for example, kl i st and ki ni t commands) on Windows.

34

https://dev.mysql.com/doc/refman/8.0/en/ldap-pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.0/en/ldap-pluggable-authentication.html

Authentication Support

In this mode, the ticket search on Windows hosts is restricted to the MIT Kerberos cache only. If the
cache has no ticket, the connection fails even if the Windows ticket is valid

Previously, Connector/C++ supported Kerberos authentication through the Windows SSPI Kerberos
library only (starting with 8.0.27). SSPI is not capable of acquiring cached credentials that were
generated using the ki ni t command. In SSPI mode, the Windows single sign-on ticket is used for
authentication if the client user provides no password and the authentication method considers the
Windows ticket exclusively. If the ticket is missing or invalid, the connection fails even if the Kerberos
cache contains a valid ticket. For more information, see Commands for Windows Clients in SSPI Mode.

It is possible to connect to Kerberos-authenticated accounts without giving a user name under these
conditions:

» The user has a Kerberos principal name assigned, a MySQL Kerberos account for that principal
name exists, and the user has the required tickets.

» The default authentication method must be set to the aut henti cati on_ker beros_cl i ent client-
side authentication plugin using the OPT_DEFAULT_AUTH connection option.

It is possible to connect without giving a password, provided that the user has the required tickets in the
Kerberos cache on Linux or the MIT Kerberos cache on Windows (for example, created by ki ni t or a
similar command).

Note

The SSPI Kerberos library is not compatible with Java SE security

tools. To use the ki ni t command, the client application must set the
OPT_AUTHENTI CATI ON_KERBERGS_CLI| ENT MODE connection option to
GSSAPI .

If the required tickets are not present in the Kerberos cache (or the MIT Kerberos cache) and a
password was given, Connector/C++ obtains the tickets from Kerberos using that password. If the
required tickets are found in the cache, any password given is ignored and the connection might
succeed even if the password is incorrect.

On client hosts running Windows, you can override the default location of the MIT Kerberos
configuration file by setting the KRB5_CONFI G environment variable and the default MIT Kerberos
credential cache name with the KRB5CCNANME environment variable (for example, KRB5CCNAVE=DI R: /

nydir/).

For details about using the MIT Kerberos configuration and cache, see:

» KRB5_ CONFI G https://web.mit.edu/kerberos/krb5-devel/doc/admin/conf_files/krb5_conf.html
» KRB5CCNANE: https://web.mit.edu/kerberos/krb5-1.12/doc/basic/ccache_def.html

For more information about Kerberos authentication, see Kerberos Pluggable Authentication.

OCI Authentication

OCI authentication enables Connector/C++ application programs to make connections without
passwords for accounts that use the aut hent i cati on_oci server-side authentication plugin,
provided that the correct configuration entries are available to map to one unique user in a specific
Oracle Cloud Infrastructure tenancy. This supported was added in the Connector/C++ 8.0.27 release.

To ensure correct account mapping, the client-side Oracle Cloud Infrastructure configuration
must contain a fingerprint of the API key to use for authentication (f i nger pri nt entry)

and the location of a PEM file with the private part of the APl key (key _fi | e entry).

Both entries should be specified in the [DEFAULT] profile of the configuration file. In
Connector/C++ 8.0.33, the OPT_OCI _CLI ENT_CONFI G_PROFI LE connection option permits
selecting a profile in the configuration file to use for authentication. By default, the value of
OPT_CQOCI _CLI ENT_CONFI G_PROFI LE is the [DEFAULT] profile.

35

https://dev.mysql.com/doc/refman/8.0/en/kerberos-pluggable-authentication.html#kerberos-usage-win-sspi-client-commands
https://web.mit.edu/kerberos/krb5-devel/doc/admin/conf_files/krb5_conf.html
https://web.mit.edu/kerberos/krb5-1.12/doc/basic/ccache_def.html
https://dev.mysql.com/doc/refman/8.0/en/kerberos-pluggable-authentication.html

Authentication Support

Unless an alternative path to the configuration file is specified with the OPT_OCI _CONFI G FI LE
connection option, the following default locations are used:

e ~/.oci/confi g on Linux or Posix host types
* %OVEDRI VEY®4HOVEPATHY . oci / confi g on Windows host types

If the MySQL user name is not provided as a connection option, then the operating system user name
is substituted. Specifically, if the private key and correct Oracle Cloud Infrastructure configuration are
present on the client side, then a connection can be made without giving any options.

To support Oracle Cloud Infrastructure ephemeral key-based authentication, Connector/C++ 8.0.33
(and later) obtains the location of the token file from the security_token_fil e entry. For example:

[DEFAULT]

fingerprint=59:8a:0b[...]
key_file=~/.oci/sessions/ DEFAULT/ oci _api _key. pem
t enancy=oci d1. tenancy.ocl.[...]

regi on=us- ashburn-1

security_token_fil e=~/.oci/sessi ons/ DEFAULT/t oken

Connector/C++ sends to the server a JSON attribute (named "t oken™) with the value extracted from
the security_token_fil e field. If the target file referenced in the profile does not exist, or if the
file exceeds a specified maximum value, then Connector/C++ terminates the action and returns an
exception with the cause.

Connector/C++ sends an empty token value in the JSON payload if:
e The security-token file is empty.

» The configuration option securi ty_t oken_fi | e is found but the value in the configuration file is
empty.

In all other cases, Connector/C++ adds the content of the security-token file intact to the JSON
document.

Multifactor Authentication

Starting with Connector/C++ 8.0.28, applications can establish connections using multifactor
authentication, such that up to three passwords can be specified at connect time. The
OPT_PASSWORDL, OPT_PASSWORD2, and OPT_PASSWORD3 connection options are available for
specifying the first, second, and third multifactor authentication passwords, respectively.

OPT_PASSWORDL is an alias for the existing OPT_PASSWORD option; if both are provided,
OPT_PASSWORD is ignored. For more information about this authentication option, see Multifactor
Authentication.

FIDO Authentication

FIDO authentication to MySQL Server supports using devices such as smart cards, security keys, and
biometric readers. This authentication method is based on the Fast Identity Online (FIDO) standard. To
ensure client applications using the legacy JBDC API are notified when a user is expected to interact
with the FIDO device, Connector/C++ 8.0.29 (and later) implements a new set Cal | back() method in
the MySQL_Dri ver class that accepts a single callback argument named Fi do_Cal | back.

cl ass Fi do_Cal | back

{
publi c:
Fi do_Cal | back(std: : function<voi d(SQLStri ng)>);
/**
* Override this nmessage to receive Fido Acti on Requests
*/
virtual void FidoActionRequested(sql::SQ.String nsg);

36

https://dev.mysql.com/doc/refman/8.0/en/multifactor-authentication.html
https://dev.mysql.com/doc/refman/8.0/en/multifactor-authentication.html

Authentication Support

Any connection created by the driver can use the callback, if needed. However, if an application does
not set the callback explicitly, | i bmysql cl i ent determines the behavior by default, which involves
printing a message to standard output.

Note

On Windows, the client application must run as administrator. The
is a requirement of the f i do2. dI | library, which is used by the
aut hentication_fi do plugin.

A client application has two options for obtaining a callback from the connector:

» By passing a function or lambda to Fi do_Cal | back.

driver->set Cal | Back(Fi do_Cal | back([] (SQ.String nmsg) {...}));

» By implementing the virtual method Fi doAct i onRequest ed.

class MyW ndow : public Fido_Callback

{
voi d Fi doActi onRequested(sql::SQ.String nsg) override;
IE
M/W ndow wi ndow;
driver->set Cal | Back(w ndow) ;

Setting a new callback always removes the previous callback. To disable the active callback and
restore the default behavior, pass nul | pt r as a function callback. Example:

driver->set Cal | Back(Fi do_Cal | back(nul | ptr));

For more information about FIDO authentication, see FIDO Pluggable Authentication.
WebAuthn Authentication

WebAuthn authentication supports both the FIDO and FIDO2 standards. This authentication method
overcomes the limitations associated with FIDO authentication that prevented WebAuthn applications
like web browsers from authenticating to MySQL Server. To ensure client applications using the

legacy JBDC API are notified when a user is expected to interact with the FIDO/FIDO2 device,
Connector/C++ 8.2.0 (and later) adds a second callback argument named WebAut hn_Cal | back to
the set Cal | back() method inthe MySQL_Dr i ver class that was introduced for FIDO authentication.
The WebAut hn_Cal | back class has a callback method named Act i onRequest ed() .

cl ass WebAut hn_Cal | back

{
publi c:
WebAut hn_Cal | back(std:: function<voi d(SQLString)>);

/**

* QOverride this nessage to recei ve WebAut hn Acti on Requests
*/
virtual void ActionRequested(sql::SQString nsg);

}s

Set the WebAut hn_Cal | back callback explicitly for authentication to accounts that use WebAuthn
authentication. If a Fi do_Cal | back callback is registered with a driver instance, then it should be set
during authentication for accounts using both FIDO and WebAuthn authentication. It is not permitted to
register Fi do_Cal | back after first registering WebAut hn_Cal | back.

Note

On Windows, the client application must run as administrator. The
is a requirement of the f i do2. dl | library, which is used by the
aut henti cati on_webaut hn plugin.

A client application can obtain a callback from the connector, or disable the active callback, as shown
in FIDO Authentication. Substitute WebAut hn_Cal | back and Act i onRequest ed() as needed.

37

https://dev.mysql.com/doc/refman/8.0/en/fido-pluggable-authentication.html

OpenTelemetry Tracing Support

For more information about WebAuthn authentication, see WebAuthn Pluggable Authentication.

2.5.4 OpenTelemetry Tracing Support

For applications that use the legacy JDBC API (that is, not X DevAPI or X DevAPI for C) on Linux
systems and use OpenTelemetry (OTel) instrumentation, the connector adds query and connection
spans to the trace generated by application code and forwards the current OpenTelemetry context to
the server. OpenTelemetry tracing was introduced in the Connector/C++ 8.1.0 release.

Note

OTel context forwarding works only with MySQL Enterprise Edition, a
commercial product. To learn more about commercial products, see https://
www.mysgl.com/products/.

Enabling and Disabling Tracing

By default, the connector generates spans only when an instrumented application links with the
required OpenTelemetry SDK libraries and configures the trace exporter to send trace data to some
destination. If the application code does not use instrumentation, then the legacy connector does not
use it either.

Connector/C++ supports a connection property option, OPT_OPENTELENMETRY, which has these values:

» OTEL_DI SABLED: The connector does not create OpenTelemetry spans or forward the
OpenTelemetry context to the server.

e OTEL_PREFERRED: Default. Use instrumentation in the connection if the required OpenTelemetry
instrumentation is available. Otherwise, permit the connection to operate without any OpenTelemetry
instrumentation.

The OPT_OPENTELEMETRY option also accepts a Boolean value in which f al se corresponds to
OTEL_DI SABLED. f al se is the only accepted Boolean value for this option; setting it to t r ue has no
meaning and emits an error.

For example, an application can specify OPT_OPENTELEMETRY in either form using the connect ()
syntax that takes an option map argument:

connecti on_properties["OPT_OPENTELEMETRY"]
connecti on_properties["OPT_OPENTELEMETRY"]

fal se;
OTEL_DI SABLED;

When you build code that links to Connector/C++ and uses OTel instrumentation, the additional spans
generated by the connector appear in the traces generated by your code. Spans generated by the
connector are sent to the same destination (trace exporter) where other spans generated by the user
code are sent as configured by user code. It is not possible to send spans generated by the connector
to any other destination.

This implementation is distinct from the implementation provided through the MySQL client library (or
the related t el emet ry_cl i ent client-side plugin).

2.6 Connector/C++ Known Issues

To report bugs, use the MySQL Bug System. See How to Report Bugs or Problems.

For notes detailing the changes in each release of Connector/C++, see MySQL Connector/C++
Release Notes.

» Generally speaking, C++ library binaries are less portable than C library binaries. Issues can be
caused by name mangling, different Standard Template Library (STL) versions, and using different
compilers and linkers for linking against the libraries than were used for building the library itself.

38

https://dev.mysql.com/doc/refman/8.2/en/webauthn-pluggable-authentication.html
https://www.mysql.com/products/
https://www.mysql.com/products/
https://dev.mysql.com/doc/refman/8.0/en/bug-reports.html
https://dev.mysql.com/doc/relnotes/connector-cpp/en/
https://dev.mysql.com/doc/relnotes/connector-cpp/en/

Connector/C++ Support

Even a small change in the compiler version can cause problems. If you obtain error messages that
you suspect are related to binary incompatibilities, build Connector/C++ from source, using the same
compiler and linker that you use to build and link your application.

Due to variations between Linux distributions, compiler versions, linker versions, and STL versions, it
is not possible to provide binaries for every possible configuration. However, Connector/C++ binary
distributions include an | NFO_BI Nfile that describes the environment and configuration options used
to build the binary versions of the connector libraries. Binary distributions also include an | NFO_SRC
file that provides information about the product version and the source repository from which the
distribution was produced. (Prior to Connector/C++ 8.0.14, look for BUI LDl NFO. t xt rather than

| NFO_BI Nand | NFO_SRC))

» To avoid potential crashes, the build configuration of Connector/C++ should match the build
configuration of the application using it. For example, do not use a release build of Connector/C++
with a debug build of the client application.

2.7 Connector/C++ Support

For general discussion of Connector/C++, please use the C/C++ community forum.
To report bugs, use the MySQL Bug System. See How to Report Bugs or Problems.

For notes detailing the changes in each release of Connector/C++, see MySQL Connector/C++
Release Notes.

For Licensing questions, and to purchase MySQL Products and Services, please see http://
www.mysgl.com/buy-mysql/.

39

http://forums.mysql.com/list.php?167
https://dev.mysql.com/doc/refman/8.0/en/bug-reports.html
https://dev.mysql.com/doc/relnotes/connector-cpp/en/
https://dev.mysql.com/doc/relnotes/connector-cpp/en/
http://www.mysql.com/buy-mysql/
http://www.mysql.com/buy-mysql/

40

Chapter 3 MySQL Connector/J Developer Guide

Table of Contents

3.1 Overview of MySQL CONNECIONJ .. c.uuiiiiieiei et e e e e e e e e et e e e e e e e e eeanns 42
3.2 Compatibility with MySQL and Java VEIrSIONScccuuieiinieiiiieiii et e eeiee e e et e e e eeaaeeanneeanns 42
3.3 CoNNECLONI INSTAIIALIONceiiiiee et e et e e e e et e e eebe e eees 43
3.3.1 Installing Connector/J from a Binary Distributioncccooiiiiiiiiiicn e 43
3.3.2 Installing ConNector/J USING MAVENcccuiiiiiiiiiieeeii e e e e e e e et e e e e eeeen 45
3.3.3 INStalling frOM SOUICE . ..uuiiit e e e e e e et e e e e an s 45
3.3.4 Upgrading from an Older VEISIONociiuiiiiii e e e e e e e e e e e aa s a7
IR T =11 1T @] =] (o] A 52
G @] o 0 1= Tox (o] I e T 4] o] =T 53
3.5 CoNNECLOII REFEIEINCE .. .cvviiiiiii ettt e e et e e eean s 54
3.5.1 Driver/Datasource Class NAMEccuuuiiiiiiiiiee et e et e e et e eeearn e eeene 54
3.5.2 CONNECION URL SYNTAX ..uiietiiiiiiieiiiieiie e ee e e s e e e e s e e e e e s e et e e et e e eanaeean e eeneeenns 54
3.5.3 Configuration PrOPEITIESuiiiueieiiieie et e e e e e e e e e e e e e e e anas 58
3.5.4 JDBC API Implementation NOLEScc.uiiiiiiiiiiieei e e e e e e e e e e e e e e eanaeees 102
3.5.5 Java, JDBC, and MYSQL TYPES ..ucieuiiiiiiiiieiii e et e e e e e e e n e et s e e e e e et e e e e eaneee 105
3.5.6 Handling of Date-Time ValUESccvuniiiiiieii e e e e e e eees 107
3.5.7 Using Character Sets and UnNICOAEccouuiiiiiiiiiiiie e e e e e e 113
3.5.8 Using QUETY ALHDULESiei e 115
3.5.9 Connecting Securely USING SSLiiiiiiiiic e e e e e 117
3.5.10 Connecting Using UniXx DOMain SOCKELSc.uiviiiiiiiieii i eee e e e 122
3.5.11 Connecting UsiNg Named PIPESciuuiiiiiiiii et e e e e e e e 123
3.5.12 Connecting Using Various Authentication Methodsc.cccivviiiiiiiii i, 124
3.5.13 Using Source/Replica Replication with ReplicationConnectioncccceevveviviveeennn.. 126
3.5.14 Support for DNS SRV RECOMSuuiiiiiiiiieiii e e e e e e e e e e e eanaeees 126
3.5.15 Client Session State TraCKerc..uu i 127
3.5.16 Mapping MySQL Error Numbers to JDBC SQLState COdesSccevvvvevveiiieiinnennnnnns 128
TSI 1 = T @ @0 g o =Y o £ 134
3.6.1 Connecting to MySQL Using the JDBC Dr i ver Manager Interfacecccoocvvvevnnnnnns 134
3.6.2 Using JDBC St at enent Objects to EXeCute SQL ...c.vvviviiiiiieii i eeiees 136
3.6.3 Using JDBC Cal | abl eSt at enent s to Execute Stored Procedurescccevevvnnenns 137
3.6.4 Retrieving AUTO | NCREMENT Column Values through JDBCccovveiiviiiieiiiieeis 139
3.7 Connection Pooling With CONNECIONJc.uiiiiiiei e e e e e e e eees 142
3.8 MUItI-HOSE CONNECLIONSiiiiii et e et e et e et e e e e b 145
3.8.1 Configuring Server Failover for Connections Using JDBCc.cccovvvviiviiiiieviiieeeeeeen, 145
3.8.2 Configuring Server Failover for Connections Using X DeVAPIcccoovviiiiiiiiiivineennnn. 148
3.8.3 Configuring Load Balancing with CONNECtOr/Jcccoviviiiiiiiiiie e 148
3.8.4 Configuring Source/Replica Replication with Connector/Jcccoceeveviiiiviniiii e, 151
3.8.5 Advanced Load-balancing and Failover Configurationc.cccoevvviiiiiiieiiii e 154
3.9 Using the X DeVvAPI with Connector/J: Special TOPICScvvuiviiiiiiiiieeii e e e e e 156
3.9.1 Connection Compression UsiNg X DEVAPIcoouiiiiiiii e 156
3.9.2 Schema Validationiiiiiiiii e et e 157
3.10 Using the Connector/J INtErCeptor CIASSES ...vuuuiiiii it e e e e e e e e 159
3.11 Using Logging Frameworks With SLFAJccouiiiiiiiii i e e e e e e 159
3.12 Using Connector/J With TOMCALoviuiiiiiiei e e e e r e e e e ean s 161
3.13 Using Connector/J With SPIINGciuuiei e e e e e e e e e et e e e e eaeeeens 162
0 I 0 A U g o N o o T I =Y 0= 164
3.13.2 Transactional JDBC ACCESSuuiiiiiiieiiiii ettt e et et e e e et e et eeeaa s 165
3.13.3 Connection Pooling With SPrinNgc.uiiiiiiii e e e e e 166
3.14 Troubleshooting Connector/J APPlICAtIONSuivieiiiiiee e e 167
3.15 Known ISsues and LImMitatiONSveiieiiiiiiiiiie et e et e et eeene s 173
10 I G @ a0 1= Tox 1o T A S U]] o o1 A 173
3.16.1 Connector/J COMMUNILY SUPPOIT ...vvuuiiiiiieei et e e e e e e e e e e e e et e e eeanes 173

41

Overview of MySQL Connector/J

3.16.2 How to Report Connector/J Bugs or Problemscccooiiiiiiiiiii e 173
MySQL Connector/J is a JDBC driver for communicating with MySQL servers.

For notes detailing the changes in each release of Connector/J, see MySQL Connector/J Release
Notes.

For legal information, see the Legal Notices.

For help with using MySQL, please visit the MySQL Forums, where you can discuss your issues with
other MySQL users.

Licensing information. This product may include third-party software, used under license. If you
are using a Commercial release of MySQL Connector/J, see this document for licensing information,
including licensing information relating to third-party software that may be included in this Commercial
release. If you are using a Community release of MySQL Connector/J, see this document for licensing
information, including licensing information relating to third-party software that may be included in this
Community release.

3.1 Overview of MySQL Connector/J

MySQL provides connectivity for client applications developed in the Java programming language with
MySQL Connector/J. Connector/J implements the Java Database Connectivity (JDBC) API, as well as
a number of value-adding extensions of it. It also supports the new X DevAPI.

MySQL Connector/J is a JDBC Type 4 driver, implementing the JDBC 4.2 specification. The Type 4
designation means that the driver is a pure Java implementation of the MySQL protocol and does not
rely on the MySQL client libraries. See Section 3.2, “Compatibility with MySQL and Java Versions” for
compatibility information.

Connector/J 8.0 provides ease of development features including auto-registration with the Driver
Manager, standardized validity checks, categorized SQLEXxceptions, support for large update

counts, support for local and offset date-time variants from the j ava. t i me package, support for
JDBC-4.x XML processing, support for per connection client information, and support for the NCHAR,
NVARCHAR and NCLOB data types. See Section 3.2, “Compatibility with MySQL and Java Versions” for
compatibility information.

For large-scale programs that use common design patterns of data access, consider using one of the
popular persistence frameworks such as Hibernate, Spring's JDBC templates or MyBatis SQL Maps to
reduce the amount of JDBC code for you to debug, tune, secure, and maintain.

Key Topics
» For installation instructions for Connector/J, see Section 3.3, “Connector/J Installation”.

» For help with connection strings, connection options, and setting up your connection through JDBC,
see Section 3.5, “Connector/J Reference”.

» For information on connection pooling, see Section 3.7, “Connection Pooling with Connector/J”.
» For information on multi-host connections, see Section 3.8, “Multi-Host Connections”.

» For information on using the X DevAPI with Connector/J, see Section 3.9, “Using the X DevAPI with
Connector/J: Special Topics”.

3.2 Compatibility with MySQL and Java Versions

Here is some compatibility information for Connector/J 8.0:

» JDBC versions: Connector/J 8.0 implements JDBC 4.2. While Connector/J 8.0 works with libraries
of higher JDBC versions, it returns a SQLFeat ur eNot Suppor t edExcept i on for any calls of
methods supported only by JDBC 4.3 and higher.

42

https://dev.mysql.com/doc/relnotes/connector-j/en/
https://dev.mysql.com/doc/relnotes/connector-j/en/
http://forums.mysql.com
https://downloads.mysql.com/docs/licenses/connector-j-8.3-com-en.pdf
https://downloads.mysql.com/docs/licenses/connector-j-8.3-gpl-en.pdf
http://www.oracle.com/technetwork/java/javase/jdbc/index.html
http://docs.oracle.com/javase/6/docs/technotes/guides/jdbc/
https://dev.mysql.com/doc/refman/8.0/en/char.html
https://dev.mysql.com/doc/refman/8.0/en/char.html
http://www.hibernate.org/
http://www.springframework.org/
http://www.mybatis.org/

Connector/J Installation

* MySQL Server versions: Connector/J 8.0 supports MySQL 5.7, 8.0, 8.1, and 8.0.
» JRE versions: Connector/J 8.0 supports JRE 8 or higher.

» JDK Required for Compilation: JDK 8.0 or higher is required for compiling Connector/J 8.0. Also, a
customized JSSE provider might be required to use some later TLS versions and cipher suites when
connecting to MySQL servers. For example, because Oracle's Java 8 releases before 8u261 were
shipped with JSSE implementations that support TLS up to version 1.2 only, you need a customized
JSSE implementation to use TLSv1.3 on those Java 8 platforms. Oracle Java 8u261 and above do
support TLSv1.3, so no customized JSSE implementation is needed.

3.3 Connector/J Installation

You can install the Connector/J package using either a binary or source distribution. While the binary
distribution provides the easiest method for installation, the source distribution lets you customize your
installation. Both types of distributions are available from the Connector/J Download page. The source
code for Connector/J is also available on GitHub at https://github.com/mysql/mysqgl-connector-j.

Connector/J is also available as a Maven artifact in the Central Repository. See Section 3.3.2,
“Installing Connector/J Using Maven” for details.

If you are upgrading from a previous version, read the upgrade information in Section 3.3.4, “Upgrading
from an Older Version” before continuing.

Important

Third-party Libraries: According to how you use Connector/J 8.0, you may also
need to install the following third-party libraries on your system for it to work:

« Protocol Buffers (pr ot obuf - j ava) 3.21.9 is required for using X DevAPI

¢ Oracle Cloud Infrastructure SDK for Java (oci -] ava- sdk) 2.47.0 is required
to support OCI AIM authentication

¢ Simple Logging Facade API (sl f 4j - api) 2.0.3 is required for using
the logging capabilities provided by the default implementation of
org.slf4j.Logger. Sl f4JLogger by Connector/J

These and other third-party libraries are required for building Connector/J from
source—see the section for more information.

3.3.1 Installing Connector/J from a Binary Distribution

Obtaining and Using the Binary Distribution Packages

Different types of binary distribution packages for Connector/J are available from the Connector/J
Download page. The following explains how to use each type of the packages to install Connector/J.

Using Platform-independent Archives: .t ar. gz or. zi p archives are available for installing
Connector/J on any platform. Using the appropriate graphical or command-line utility (for example, t ar
forthe . t ar. gz archive and W nZi p for the .zip archive), extract the JAR archive from the . t ar . gz
or . zi p archive to a suitable location.

Note

Because there are potentially long file names in the distribution, the Connector/
J archives use the GNU Tar archive format. Use GNU Tar or a compatible
application to unpack the . t ar . gz variant of the distribution.

Using Packages for Software Package Management Systems on Linux Platforms: RPM and Debian
packages are available for installing Connector/J on a number of Linux distributions like Oracle Linux,

43

https://dev.mysql.com/downloads/connector/j/
https://github.com/mysql/mysql-connector-j
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/

Installing Connector/J from a Binary Distribution

Debian, Ubuntu, SUSE, and so on. Install these packages using your system's software package
management system.

On Windows Platforms: You cannot install Connector/J on Windows platforms using the MySQL
Installer for Windows. Notice that there are also no stand-alone Windows installer files (.msi) for
installing Connector/J. Use the platform-independent archives instead for installations on Windows
platforms.

Configuring the CLASSPATH

Once nysql - connect or-j -versi on. j ar has been extracted from the binary distribution package
to the right place, finish installing the driver by placing the JAR archive in your Java classpath, either by
adding its full file path to your CLASSPATH environment variable, or by directly specifying the file path
with the command line switch - cp when starting the JVM.

For example, on Linux platforms, add the Connector/J driver to your CLASSPATH using one of the
following forms, depending on your command shell:

Bour ne-conpati bl e shell (sh, ksh, bash, zsh):

$> export CLASSPATH=/ pat h/ nysql - connector-j-ver.jar: $CLASSPATH

C shell (csh, tcsh):
$> setenv CLASSPATH / pat h/ nysql - connector-j -ver. j ar: $CLASSPATH

You can also set the CLASSPATH environment variable in a profile file, either locally for a user within
the user's. profil e, .| ogin, orother login file, or globally by editing the global / et ¢/ pr ofi | e file.

For Windows platforms, you set the environment variable through the System Control Panel.
Important

Remember to also add the locations of the third-party libraries required for using
Connector/J to CLASSPATH.

Configuring Connector/J for Application Servers

To use MySQL Connector/J with an application server such as GlassFish or Tomcat, read your
vendor's documentation for information on how to configure third-party class libraries, as most
application servers ignore the CLASSPATH environment variable. For configuration examples for some
J2EE application servers, see Section 3.7, “Connection Pooling with Connector/J”, Section 3.8.3,
“Configuring Load Balancing with Connector/J”, and Section 3.8.5, “Advanced Load-balancing and
Failover Configuration”. However, the authoritative source for JDBC connection pool configuration
information is the documentation for your own application server.

If you are developing servlets or JSPs and your application server is J2EE-compliant, you can

put the driver's . | ar file in the WEB- | NF/ | i b subdirectory of your web application, as this is a
standard location for third-party class libraries in J2EE web applications. You can also use the

Mysql Dat aSour ce or Mysgl Connect i onPool Dat aSour ce classes in the com nysql . c¢j . j dbc
package, if your J2EE application server supports or requires them. The j avax. sql . XADat aSour ce
interface is implemented using the com nysql . cj . j dbc. Mysqgl XADat aSour ce class, which
supports XA distributed transactions. The various Mysql Dat aSour ce classes support the following
parameters (through standard set mutators):

e user
* password
* server Nane

» dat abaseNane

e port

44

https://dev.mysql.com/doc/refman/8.0/en/mysql-installer.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-installer.html

Installing Connector/J Using Maven

3.3.2 Installing Connector/J Using Maven

You can also use Maven dependencies manager to install and configure the Connector/J library in
your project. Connector/J is published in The Maven Central Repository with the following groupld and
artifactld:

e groupld: com nysq|l
« artifactld: nysql - connect or - |

You can link the Connector/J library to your project by adding the following dependency in your
pom xmi file:

<dependency>
<gr oupl d>com nysgql </ gr oupl d>
<artifactld>nysql-connector-j</artifactld>
<ver si on>x.y. z</ ver si on>

</ dependency>

Notice that if you use Maven to manage your project dependencies, you do not need to explicitly refer
to the library pr ot obuf - j ava as it is resolved by dependency transitivity. However, if you do not want
to use the X DevAPI features, you may also want to add a dependency exclusion to avoid linking the
unneeded sub-library. For example:

<dependency>
<gr oupl d>com nysgql </ gr oupl d>
<artifactld>nysql-connector-j</artifactld>
<versi on>x.y. z</ ver si on>
<excl usi ons>
<excl usi on>
<gr oupl d>com googl e. pr ot obuf </ gr oupl d>
<artifact!d>protobuf-java</artifactld>
</ excl usi on>
</ excl usi ons>
</ dependency>

Note
For Connector/J 8.0.29 and earlier, use the following Maven coordinates:
e groupld: nysql

« artifactld: nysql - connect or -j ava

3.3.3 Installing from Source
Caution

You need to install Connector/J from source only if you want to build a
customized version of Connector/J or if you are interested in helping us

test our new code. To just get MySQL Connector/J up and running on your
system, install Connector/J using a standard binary release distribution; see
Section 3.3.1, “Installing Connector/J from a Binary Distribution” for instructions.

To install MySQL Connector/J from source, make sure that you have the following software on your
system:
Tip

It is suggested that the latest versions available for the following software
be used for compiling Connector/J; otherwise, some features might not be
available.

» A Git client, if you want to check out the sources from our GitHub repository (available from http://qgit-
scm.com/downloads).

45

https://search.maven.org/search?q=g:mysql%20AND%20a:mysql-connector-java
http://git-scm.com/downloads
http://git-scm.com/downloads

Installing from Source

» Apache Ant version 1.10.6 or newer (available from http://ant.apache.org/).

» JDK 1.8.x (available from https://www.oracle.com/technetwork/java/javase/downloads/jdk8-
downloads-2133151.html).

» The following third-party libraries:

* JUnit 5.9 (see installation and download information in the JUnit 5 User Guide). The following JAR
files are required:

e junit-jupiter-api-5.9.1.jar (available from, for example, https://search.maven.org/
artifact/org.junit.jupiter/junit-jupiter-api/5.9.1/jar).

e junit-jupiter-engine-5.9.1.jar (available from, for example, https://search.maven.org/
artifact/org.junit.jupiter/junit-jupiter-engine/5.9.1/jar).

e junit-platformconmons-1.9.1.jar (available from, for example, https://
search.maven.org/artifact/org.junit.platform/junit-platform-commons/1.9.1/jar).

e junit-platformengine-1.9.1.]ar (available from, for example, https://
search.maven.org/artifact/org.junit.platform/junit-platform-engine/1.9.1/jar).

e junit-platformlauncher-1.9.1.jar (available from, for example, https://
search.maven.org/artifact/org.junit.platform/junit-platform-launcher/1.9.1/jar).

» These additional JAR files, which JUnit 5 depends on:

e api guardi an-api -1. 1. 2.j ar (available from, for example, https://search.maven.org/
artifact/org.apiguardian/apiguardian-api/1.1.2/jar).

e opentest4j-1.2.0.]ar (available from, for example, https://search.maven.org/artifact/
org.opentestdj/opentest4j/1.2.0/jar).

e Javassist 3.29.2 (j avassi st 3. 29. 2- GA.] ar, available from, for example, https://
search.maven.org/artifact/org.javassist/javassist/3.29.2-GA/bundle).

< Protocol Buffers Java APl 3.21.9 (pr ot obuf - j ava- 3. 21. 9. j ar, available from, for example,
https://search.maven.org/artifact/com.google.protobuf/protobuf-java/3.21.9/bundle).

» Simple Logging Facade APl 2.0.3 or newer (sl f 4] - api - 2. 0. 3.] ar, available from, for
example, https://search.maven.org/artifact/org.slf4j/slf4j-api/2.0.3/jar).

» Java Hamcrest 2.2 or newer (hancr est - 2. 2. j ar, available from, for example, https://
search.maven.org/artifact/org.hnamcrest/hamcrest/2.2/jar).

¢ Oracle Cloud Infrastructure SDK for Java (oci - j ava- sdk- conmon- 2. 47. 0. j ar, available
from, for example, https://search.maven.org/artifact/com.oracle.oci.sdk/oci-java-sdk-
common/2.47.0/jar).

To build MySQL Connector/J from source, follow these steps:
1. Make sure that you have JDK 1.8.x installed.
2. Obtain the sources for Connector/J by one of the following means:

« Download the platform independent distribution archive (in . t ar. gz or . zi p format) for
Connector/J, which contains the sources, from the Connector/J Download page. Extract contents
of the archive into a folder named, for example, nysql - connect or - .

» Download a source RPM package for Connector/J from Connector/J Download page and install
it.

46

http://ant.apache.org/
https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://junit.org/junit5/docs/current/user-guide/
https://search.maven.org/artifact/org.junit.jupiter/junit-jupiter-api/5.9.1/jar
https://search.maven.org/artifact/org.junit.jupiter/junit-jupiter-api/5.9.1/jar
https://search.maven.org/artifact/org.junit.jupiter/junit-jupiter-engine/5.9.1/jar
https://search.maven.org/artifact/org.junit.jupiter/junit-jupiter-engine/5.9.1/jar
https://search.maven.org/artifact/org.junit.platform/junit-platform-commons/1.9.1/jar
https://search.maven.org/artifact/org.junit.platform/junit-platform-commons/1.9.1/jar
https://search.maven.org/artifact/org.junit.platform/junit-platform-engine/1.9.1/jar
https://search.maven.org/artifact/org.junit.platform/junit-platform-engine/1.9.1/jar
https://search.maven.org/artifact/org.junit.platform/junit-platform-launcher/1.9.1/jar
https://search.maven.org/artifact/org.junit.platform/junit-platform-launcher/1.9.1/jar
https://search.maven.org/artifact/org.apiguardian/apiguardian-api/1.1.2/jar
https://search.maven.org/artifact/org.apiguardian/apiguardian-api/1.1.2/jar
https://search.maven.org/artifact/org.opentest4j/opentest4j/1.2.0/jar
https://search.maven.org/artifact/org.opentest4j/opentest4j/1.2.0/jar
https://search.maven.org/artifact/org.javassist/javassist/3.29.2-GA/bundle
https://search.maven.org/artifact/org.javassist/javassist/3.29.2-GA/bundle
https://search.maven.org/artifact/com.google.protobuf/protobuf-java/3.21.9/bundle
https://search.maven.org/artifact/org.slf4j/slf4j-api/2.0.3/jar
https://search.maven.org/artifact/org.hamcrest/hamcrest/2.2/jar
https://search.maven.org/artifact/org.hamcrest/hamcrest/2.2/jar
https://search.maven.org/artifact/com.oracle.oci.sdk/oci-java-sdk-common/2.47.0/jar
https://search.maven.org/artifact/com.oracle.oci.sdk/oci-java-sdk-common/2.47.0/jar
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/

Upgrading from an Older Version

« Check out the code from the source code repository for MySQL Connector/J located on GitHub at
https://github.com/mysqgl/mysqgl-connector-j. The latest release of the Connector/J 8.0 series is on
the r el ease/ 8. 0 branch; use the following command to check it out:

$> git clone --branch rel ease/ 8.0 https://github.com nysqgl/nysql -connector-j.git

Under the current directory, the command creates a nysql - connect or - j subdirectory , which
contains the code you want.

3. Place all the required third-party libraries in a the directory called | i b at the root of the source
tree (that is, in mysql - connect or-j /I i b, if you have followed the steps above), or put them
elsewhere and supply the location to Ant later (see Step 5 below).

4. Change your current working directory to the nmysql - connect or -] directory created in step 2
above.

5. In the directory, create a file named bui | d. properti es to indicate to Ant the location of the
root directory for your JDK 1.8.x installation with the property com nysql . cj . bui | d. j dk, as
well as the location for the extra libraries, if they are not in nysql - connect or-j /| i b, with the
property com nysql . cj . extra. |l i bs. Here is a sample file with those properties set (replace the
“pat h_t o_*" parts with the appropriate file paths):

com nysql .cj.build.jdk=path_to jdk_ 1.8
comnysql .cj.extra.libs=path_to folder_for_extra_libraries

Alternatively, you can set the values of those properties through the Ant - D options.
Note

Going from Connector/J 5.1 to 8.0 and beyond, a humber of Ant properties
for building Connector/J have been renamed or removed; see Changes for
Build Properties for details.

6. Issue the following command to compile the driver and create a . j ar file for Connector/J:

$> ant build

This creates a bui | d directory in the current directory, where all the build output goes. A directory
is created under the bui | d directory, whose name includes the version number of the release you
are building. That directory contains the sources, the compiled . cl ass files,and a . j ar file for
deployment.

For information on all the build targets, including those that create a fully packaged distribution,
issue the following command:

$> ant -projecthel p

7. Install the newly created . | ar file for the JDBC driver as you would install a binary . j ar file you
download from MySQL by following the instructions given in Configuring the CLASSPATH or
Configuring Connector/J for Application Servers.

3.3.4 Upgrading from an Older Version

This section has information for users who are upgrading from one version of Connector/J to another,
or to a new version of the MySQL server that supports a more recent level of JDBC. A newer version of
Connector/J might include changes to support new features, improve existing functionality, or comply
with new standards.

Depending on the platform and the way you used to install Connector/J, upgrading can be performed
by one of the following methods:

47

https://github.com/mysql/mysql-connector-j

Upgrading from an Older Version

« Downloading a new platform-independent archive (. tar, . tar. gz, . zi p, etc.) and overwriting with
it your original installation created by an older archive.

» Updating the version of the Connector/J dependency in your Maven . pomfile.
» Using the upgrade command of your Linux distro's package management system.
 Using the MySQL Installer for Windows, which can also perform automatic updates for Connector/J

See Section 3.3, “Connector/J Installation” for details on the installation and upgrade methods. You
should also pay attention to any important changes in the new version like changes in 3rd-party
dependencies, incompatibilities, etc.

3.3.4.1 Upgrading to MySQL Connector/J 8.0

Upgrading an application developed for Connector/J 5.1 to use Connector/J 8.0 and beyond might
require certain changes to your code or the environment in which it runs. Here are some changes for
Connector/J going from 5.1 to 8.0 and beyond, for which adjustments might be required:

Running on the Java 8 Platform

Connector/J 8.0 and beyond is created specifically to run on the Java 8 platform. While Java 8 is
known to be strongly compatible with earlier Java versions, incompatibilities do exist, and code
designed to work on Java 7 might need to be adjusted before being run on Java 8. Developers should
refer to the incompatibility information provided by Oracle.

Changes in Connection Properties

A complete list of Connector/J 8.0 connection properties are available in Section 3.5.3, “Configuration
Properties”. The following are connection properties that have been changed (removed, added, have
their names changed, or have their default values changed) going from Connector/J 5.1 to 8.0 and
beyond.

Properties that have been removed (do not use them during connection):
» useDynam cCharsetlnfo

e useBl obToSt or eUTF8CQut si deBMP, ut f 8Qut si deBnpExcl udedCol utmNanePat t er n, and
ut f 8Qut si deBnpl ncl udedCol utTmNanePat t er n: MySQL 5.6 and later supports the utf8mb4
character set, which is the character set that should be used by Connector/J applications for
supporting characters beyond the Basic Multilingual Plane (BMP) of Unicode Version 3.

» useJvntChar set Convert ers: JVM character set conversion is now used in all cases
» The following date and time properties:

e dynam cCal endar s

e noTzConver si onFor Ti neType

e noTzConver si onFor Dat eType

e cacheDef aul t Ti rezone

e useFast | nt Parsing

e useFast Dat ePar si ng

¢ useJDBCConpl i ant Ti nezoneShi ft

e uselLegacyDat et i neCode

48

https://dev.mysql.com/doc/refman/8.0/en/mysql-installer.html
http://www.oracle.com/technetwork/java/javase/8-compatibility-guide-2156366.html#A999198

Upgrading from an Older Version

Changes

¢ useSSPSConpat i bl eTi mezoneShi f t
e useTi nezone
e useGnm M I 1isForDatetines
e dunmpMet adat aOnCol urmNot Found
* rel axAut oConmi t
e strictFl oati ngPoi nt
e runni ngCTS13
* retai nStat enent Aft er Resul t Set Cl ose
* nul | NamePat t er nivat chesAl | (removed since release 8.0.9)
Properties that have been added:
* nysql x. useAsyncPr ot ocol (deprecated since release 8.0.22)
Property that has its name changed:

e comnysql .jdbc. faultlnjection.serverCharsetl ndex changed to
comnysqgl.cj.testsuite.faultlnjection.serverCharsetl ndex

* | oadBal anceEnabl eJMXto ha. enabl eJMX

* replicationEnabl eJMXto ha. enabl eJMX
Properties that have their default values changed:

* nul | Cat al ogMeansCur r ent is now f al se by default
in the Connector/J API

This section describes some of the more important changes to the Connector/J API going from version
5.1 to 8.0 and beyond. You might need to adjust your API calls accordingly:

» The name of the class that implements j ava. sql . Dri ver in MySQL Connector/J has changed
from com nysql . j dbc. Dri ver tocom nysql . cj.jdbc. Driver. The old class name has been
deprecated.

» The names of these commonly-used classes and interfaces have also been changed:

« Exceptioninterceptor: from com nysql . j dbc. Excepti onl nt er cept or to
com nysql . cj.exceptions. Exceptionl nterceptor

¢ Statementinterceptor: from com nysql . j dbc. St at ement | nt er cept or V2 to
com nysql.cj.interceptors. Queryl nterceptor

« ConnectionLifecyclelnterceptor: from com nysql . j dbc. Connecti onLi f ecycl el nt er cept or
tocom nysql . cj.jdbc.interceptors. ConnectionLifecycl el nterceptor

¢ AuthenticationPlugin: from com nysql . j dbc. Aut henti cati onPl ugi n to
com nysql . cj.protocol. Aut henticati onPl ugi n

< BalanceStrategy: from com nysql . j dbc. Bal anceSt r at egy to
com nysql . cj.jdbc. ha. Bal anceStr at egy

* MysqglDataSource: from com nysql . j dbc. j dbc2. opti onal . Mysql Dat aSour ce to
com nysql . cj.jdbc. Mysql Dat aSour ce

49

Upgrading from an Older Version

* MysqglDataSourceFactory: from
com nysql . jdbc.jdbc2. optional . Mysql Dat aSour ceFact ory to
com nysql . cj.jdbc. Mysql Dat aSour ceFact ory

* MysqglConnectionPoolDataSource: from
com nysql . j dbc. jdbc2. opti onal . Mysql Connect i onPool Dat aSour ce to
com nysql . cj . j dbc. Mysqgl Connect i onPool Dat aSour ce

* MysqglXADataSource: from com nysql . j dbc. j dbc2. opti onal . Mysql XADat aSour ce to
com nysql . cj.jdbc. Mysqgl XADat aSour ce

e MysqlXid: from com nysql . j dbc. j dbc2. opti onal . Mysql Xi d to
com nysql.cj.jdbc. Mysqgl Xi d

Changes for Build Properties

A number of Ant properties for building Connector/J from source have been renamed; see Table 3.1,
“Changes with the Build Properties from Connector/J 5.1 to 8.0 and Beyond”

Table 3.1 Changes with the Build Properties from Connector/J 5.1 to 8.0 and Beyond

Old name New name

com nysql .jdbc.extra.libs comnysql . cj.extra.libs

com nysql . j dbc. | dk comnysql.cj.build.jdk

debug. enabl e com nysql . cj . bui | d. addDebugl nf o

com nysql . j dbc. noCl eanBet weenConpi | es [com nysql . ¢j . bui | d. noCl eanBet weenConpi|l es
com nysql . j dbc. cormerci al Bui | d com nysql . cj . buil d.cormerci a

comnysql .jdbc.filterlLicense comnysqgl.cj.build.filterLicense

com nysql . j dbc. noCrypt oBui | d com nysql.cj.build. noCrypto

com nysql . j dbc. noSour ces com nysql . cj.build. noSources

com nysql . j dbc. noMavenSour ces com nysql . cj . bui | d. noMavenSour ces

maj or _version comnysql.cj.build.driver.version. nmgjdr

nmi nor _ver si on com nysql . cj.build.driver.version.mnmngr
submi nor _version com nysql.cj.build.driver.version.subrmnor
ver si on_stat us com nysql . cj.build.driver.version. stat|us
extra.version comnysql.cj.build.driver.version.extrla
snapshot . version com nysql.cj.build.driver.version.snagshot
versi on com nysql.cj.build.driver.version
full.version com nysql . cj.build.driver.version.ful

pr odDi spl ayNane comnysql.cj.build.driver.displayNane

pr odNane com nysql . cj.build.driver.name

ful | ProdNane com nysql.cj.build.driver.full Nane
bui l dDi r comnysql.cj.build. dir

buil dDriverDir comnysql.cj.build.dir.driver

mavenUpl oadDi r com nysql . cj.build.dir.mven

distDr comnysql.cj.dist.dir

t oPackage comnysql.cj.dist.dir.prepare

packageDest com nysql.cj.dist.dir.package

com nysql . j dbc. docs. sourceDi r comnysql.cj.dist.dir.prebuilt.docs

Upgrading from an Older Version

Change for Test Properties

A number of Ant properties for testing Connector/J have been renamed or removed; see Table 3.2,
“Changes with the Test Properties from Connector/J 5.1 to 8.0 and Beyond”

Table 3.2 Changes with the Test Properties from Connector/J 5.1 to 8.0 and Beyond

Old name New name

bui | dTestDi r comnysql.cj.testsuite. build. dir

junit.results comnysql.cj.testsuite.junit.results

comnysql .jdbc.testsuite.jvm comnysql.cj.testsuite.jvm

t est comnysqgl.cj.testsuite.test.class

met hods com nysql . cj.testsuite.test. nethods

com nysql . jdbc.testsuite. url comnysql.cj.testsuite. url

com nysql . jdbc.testsuite.adm n-url comnysql.cj.testsuite.url.admn

com nysql . jdbc.testsuite. ClusterUrl comnysqgl.cj.testsuite.url.cluster

com nysql .jdbc.testsuite.url.sha256deflaoht mysql . cj.testsuite. url.openssl

com nysql . j dbc.testsuite.cant G ant comnysql.cj.testsuite.cant Gant

com nysql . jdbc.testsuite.no-nulti- comnysqgl.cj.testsuite.disable.mltihd

hosts-tests

com nysql . j dbc. test.ds. host com nysqgl .cj.testsuite.ds. host

com nysql . jdbc. test.ds. port com nysql . cj.testsuite.ds. port

com nysql . jdbc.test.ds.db comnysql.cj.testsuite.ds.db

com nysql . j dbc.test.ds. user com nysql.cj.testsuite.ds. user

com nysql . j dbc. test.ds. password com nysql .cj.testsuite.ds. password

com nysql . jdbc. test.tabl etype com nysql . cj.testsuite.l oadstoreperf.t

com nysql . jdbc. testsuite. | oadstoreperflcoseBygBesuajtsestsuite. | oadstoreperf.

com nysql . j dbc. testsuite. M ni Adm nTest|coun8fisgtoen. t est suite. mi ni Adm nTest . r

com nysql . j dbc. t est sui t e. noDebugCQut putjcom nmysqgl . cj .t est sui t e. noDebugQut put

com nysqgl .jdbc.testsuite.retainArtifagcem nmysql.cj.testsuite.retainArtifactg

com nysql . jdbc.testsuite.runLongTests [com nysql.cj.testsuite.runLongTests

com nysql . jdbc.test. ServerControl | er. hasedinysql . cj.testsuite.serverControll g

com nysql . j dbc. Repl i cati onConnecti on. ijsS8hawgsql . cj.testsuite.replicati onConn

com nysql . j dbc. test.isLocal Host naneRepRensowk

com nysql . jdbc.testsuite.driver Removed

com nysql . jdbc.testsuite.url.default |Removed. Nolonger needed, as multi-JVM tests
have been removed from the test suite.

Changes for Exceptions

Some exceptions have been removed from Connector/J going from version 5.1 to 8.0 and beyond.
Applications that used to catch the removed exceptions should now catch the corresponding
exceptions listed in Table 3.3 below.

Note

Some of these Connector/J 5.1 exceptions are duplicated in the
com.mysql.jdbc.exception.jdbc4 package; that is indicated by “[jdbc4.]" in their
names in Table 3.3.

51

st.tes

abl ety
seBi gF
unShut

r.base
ectior

Testing Connector/J

Table 3.3 Changes for Exceptions from Connector/J 5.1 to 8.0 and Beyond

Removed Exception in Connector/J 5.1

com nysql . j dbc. exceptions. j dbc4. Cormuni cati onsExcepti on

com nysql . j dbc. exceptions. [jdbc4.] MySQLDat aExcepti on

com nysql . j dbc. exceptions.[]jdbc4.] MySQLI nt egrityConstraintViol ati onException

com nysql . j dbc. exceptions. [jdbc4.] MySQLI nval i dAut hori zati onSpecExcepti on

com nysql . j dbc. exceptions. [jdbc4.] MySQLNonTr ansi ent Connect i onExcepti on

com nysql . j dbc. exceptions. [jdbc4.] MySQLNonTr ansi ent Excepti on

com nysql . j dbc. exceptions. []jdbc4.] MySQLQuer yl nt errupt edExcepti on

com nysql . j dbc. excepti ons. MySQLSt at ement Cancel | edExcepti on

com nysql . j dbc. exceptions. []jdbc4.] MySQLSynt axErr or Excepti on

com nysql . j dbc. exceptions. []jdbc4.] MySQLTi meout Excepti on

com nysql . j dbc. exceptions.[]jdbc4.] MySQLTr ansact i onRol | backExcepti on

com nysql . j dbc. exceptions.[]jdbc4.] MySQLTr ansi ent Connecti onExcepti on

com nysql . j dbc. exceptions. []jdbc4.] MySQLTr ansi ent Excepti on

com nysql . j dbc. exceptions.[]jdbc4.] MySQLI ntegrityConstraintViol ati onException

Other Changes

Here are other changes with Connector/J 8.0 and beyond:

» Removed Repl i cationDri ver. Instead of using a separate driver, you can now obtain a
connection for a replication setup just by using the j dbc: mysql : replication:// scheme.

» See Section 3.3, “Connector/J Installation” for third-party libraries required for Connector/J 8.0 to
work.

» For Connector/J 8.0.22 and earlierr: Connector/J 8.0 always performs time offset adjustments on
date-time values, and the adjustments require one of the following to be true:

* The MySQL server is configured with a canonical time zone that is recognizable by Java (for
example, Europe/Paris, Etc/GMT-5, UTC, etc.)

e The server's time zone is overridden by setting the Connector/J connection property
server Ti nezone (for example, ser ver Ti nezone=Eur ope/ Pari s).

Note

The Connector/J's behavior in this respect has changed since release
8.0.23. See Section 3.5.6.1, “Preserving Time Instants” for details.
server Ti mezone is now an alias for the connection property
connecti onTi neZone, which has replaced ser ver Ti mezone.

3.3.5 Testing Connector/J

The Connector/J source code repository or packages that are shipped with source code include an
extensive test suite, containing test cases that can be executed independently. The test cases are
divided into the following categories:

» Unit tests: They are methods located in packages aligning with the classes that they test.

» Functional tests: Classes from the package t est sui t e. si npl e. Include test code for the main
features of Connector/J.

52

Connector/J Examples

» Performance tests: Classes from the package t est sui t e. per f. Include test code to make
measurements for the performance of Connector/J.

» Regression tests: Classes from the package t est sui t e. r egr essi on. Includes code for testing
bug and regression fixes.

» X DevAPI and X Protocol tests: Classes from the package t est sui t e. x for testing X DevAPI and
X Protocol functionality.

The bundled Ant build file contains targets like t est , which can facilitate the process of running the
Connector/J tests; see the target descriptions in the build file for details. To run the tests, in addition
to fulfilling the requirements described in Section 3.3.3, “Installing from Source”, you must also set the
following properties in the bui | d. properti es file or through the Ant - D options:

e comnysql.cj.testsuite.]jvmthe JVM to be used for the tests. If the property is not set, the
JVM supplied with com nysql . cj . bui | d. j dk will be used.

e comnysql.cj.testsuite.url:itspecifies the JDBC URL for connection to a MySQL test
server; see Section 3.5.2, “Connection URL Syntax”.

e comnysql.cj.testsuite.url.openssl: (for release 8.0.26 and earlier only) it specifies
the JDBC URL for connection to a MySQL test server compiled with OpenSSL; see Section 3.5.2,
“Connection URL Syntax”.

e comnysql.cj.testsuite.nysql x. url: it specifies the X DevAPI URL for connection to a
MySQL test server; see Section 3.5.2, “Connection URL Syntax”.

e comnysql.cj.testsuite.nysql x.url.openssl : (for release 8.0.26 and earlier only) it
specifies the X DevAPI URL for connection to a MySQL test server compiled with OpenSSL; see
Section 3.5.2, “Connection URL Syntax”.

After setting these parameters, run the tests with Ant in the following ways:

» Building the t est target with ant t est runs all test cases by default on a single server
instance. If you want to run a particular test case, put the test's fully qualified class nhames in the
comnysql.cj.testsuite.test.class variable; for example:

shell > ant -Dcom nysql.cj.testsuite.test.class=testsuite.sinple.StringUilsTest test

You can also run individual tests in a test case by specifying the names of the corresponding
methods in the com nysql . cj . testsui te. test. net hods variable, separating multiple methods
by commas; for example:

shell > ant -Dcom nysql.cj.testsuite.test.class=testsuite.sinple.StringUilsTest \
-Dcom nmysql . cj.testsuite.test. methods=t est| ndexCf | gnor eCase, t est Get Byt es test

While the test results are partially reported by the console, complete reports in HTML and XML formats
are provided. View the HTML report by opening bui | dt est/j uni t/report/i ndex. ht m . XML
version of the reports are located in the folder bui | dt est /] uni t.

Note

Going from Connector/J 5.1 to 8.0 and beyond, a number of Ant properties
for testing Connector/J have been renamed or removed; see Change for Test
Properties for details.

3.4 Connector/J Examples

Examples of using Connector/J are located throughout this document. This section provides a
summary and links to these examples.

« Example 3.4, “Connector/J: Obtaining a connection from the Dr i ver Manager”

53

Connector/J Reference

« Example 3.5, “Connector/J: Using java.sql.Statement to execute a SELECT query”
» Example 3.6, “Connector/J: Calling Stored Procedures”

» Example 3.7, “Connector/J: Using Connecti on. prepareCal | ()”

» Example 3.8, “Connector/J: Registering output parameters”

» Example 3.9, “Connector/J: Setting Cal | abl eSt at enent input parameters”

» Example 3.10, “Connector/J: Retrieving results and output parameter values”

» Example 3.11, “Connector/J: Retrieving AUTO_| NCREMENT column values using
St at enent . get Gener at edKeys()”

« Example 3.12, “Connector/J; Retrieving AUTO_| NCREMENT column values using SELECT
LAST | NSERT_ID()”

» Example 3.13, “Connector/J: Retrieving AUTO_| NCREMENT column values in Updat abl e
Resul t Set s”

» Example 3.14, “Connector/J: Using a connection pool with a J2EE application server”

» Example 3.15, “Connector/J: Example of transaction with retry logic”

3.5 Connector/J Reference

This section of the manual contains reference material for MySQL Connector/J.

3.5.1 Driver/Datasource Class Name

The name of the class that implements j ava. sql . Dri ver in MySQL Connector/J is
com nysql . cj.jdbc.Driver.

3.5.2 Connection URL Syntax

This section explains the syntax of the URLs for connecting to MySQL.

This is the generic format of the connection URL:

protocol / /[hosts] [/ dat abase] [?properti es]
The URL consists of the following parts:
Important

Any reserved characters for URLs (for example, /,:, @(,),[,], & #, =, ?,
and space) that appear in any part of the connection URL must be percent
encoded.

pr ot ocol
There are the possible protocols for a connection:
» jdbc: nysql : is for ordinary and basic JDBC failover connections.

e jdbc: nysql : | oadbal ance: is for load-balancing JDBC connections. See Section 3.8.3,
“Configuring Load Balancing with Connector/J” for details.

* jdbc: nysql :replication: isfor JDBC replication connections. See Section 3.8.4, “Configuring
Source/Replica Replication with Connector/J” for details.

» nysql x: is for X DevAPI connections.

54

Connection URL Syntax

host s

e jdbc: nysql +srv: is for ordinary and basic failover JDBC connections that make use of DNS SRV
records.

e jdbc: nysql +srv: | oadbal ance: is for load-balancing JDBC connections that make use of DNS
SRV records.

e jdbc: nysqgl +srv:replication: is for replication JDBC connections that make use of DNS SRV
records.

e nysqgl x+srv: is for X DevAPI connections that make use of DNS SRV records.

Depending on the situation, the host s part may consist simply of a host name, or it can be a complex
structure consisting of various elements like multiple host names, port numbers, host-specific
properties, and user credentials.

» Single host:
» Single-host connections without adding host-specific properties:

e The host s part is written in the format of host :por t . This is an example of a simple single-host
connection URL:

jdbc: nysql : // host 1: 33060/ saki | a

« host can be an IPv4 or an IPv6 host name string, and in the latter case it must be put inside
square brackets, for example “[1000:2000::abcd].” When host is not specified, the default value
of | ocal host is used.

* port is astandard port number, i.e., an integer between 1 and 65535. The default port number
for an ordinary MySQL connection is 3306, and it is 33060 for a connection using the X Protocol.
If por t is not specified, the corresponding default is used.

* Single-host connections adding host-specific properties:

« In this case, the host is defined as a succession of key=val ue pairs. Keys are used to identify
the host, the port, as well as any host-specific properties. There are two alternate formats for
specifying keys:

» The “address-equals” form:
addr ess=(host =host _or _i p) (port=port) (keyl=val uel) (key2=val ue2)... (keyN=val ueN)
Here is a sample URL using the“address-equals” form :
j dbc: nysql : // addr ess=(host =nyhost) (port=1111) (keyl=val uel)/db
e The “key-value” form:
(host =host, port =port, keyl=val uel, key2=val ue2, . . ., keyN=val ueN)
Here is a sample URL using the “key-value” form :
jdbc: nysql : // (host =nyhost, port=1111, keyl=val uel)/db

» The host and the port are identified by the keys host and port . The descriptions of the format
and default values of host and port in Single host without host-specific properties [55]
above also apply here.

« Other keys that can be added include user, passwor d, pr ot ocol , and so on. They override
the global values set in the pr oper ti es part of the URL. Limit the overrides to user, password,

55

Connection URL Syntax

network timeouts, and statement and metadata cache sizes; the effects of other per-host
overrides are not defined.

- Different protocols may require different keys. For example, the nysql x: scheme uses two
special keys, address and priority.address isahost:port pairandpriority an
integer. For example:

nysql x: // (addr ess=host: 1111, pri ori ty=1, keyl=val uel)/db

» key is case-sensitive. Two keys differing in case only are considered conflicting, and there are
no guarantees on which one will be used.

» Multiple hosts

There are two formats for specifying multiple hosts:

 List hosts in a comma-separated list:

host 1, host 2, ..., hostN

Each host can be specified in any of the three ways described in Single host [55] above. Here
are some examples:

jdbc: nysql ://nmyhost 1: 1111, nyhost 2: 2222/ db

j dbc: nysql : //address=(host =nmyhost 1) (port=1111) (keyl=val uel), addr ess=(host =myhost 2) (port =2222) (key2=val |
jdbc: nysql : // (host =nyhost 1, port=1111, keyl=val uel), (host =nyhost 2, port =2222, key2=val ue2)/ db

jdbc: nysql : // myhost 1: 1111, (host =nyhost 2, port =2222, key2=val ue2)/ db

nmysql x: // (addr ess=host 1: 1111, pri ori ty=1, keyl=val uel), (addr ess=host 2: 2222, pri ori t y=2, key2=val ue2)/ db

 List hosts in a comma-separated list, and then encloses the list by square brackets:

[host 1, host 2, ..., hostN|

This is called the host sublist form, which allows sharing of the user credentials by all hosts in
the list as if they are a single host. Each host in the list can be specified in any of the three ways
described in Single host [55] above. Here are some examples:

jdbc: nysql : //sandy: secret @ nyhost 1: 1111, nyhost 2: 2222] / db
jdbc: nysqgl : //sandy: secr et @ addr ess=(host =nyhost 1) (port=1111) (keyl=val uel), addr ess=(host =nyhost 2) (port =
jdbc: nysqgl : //sandy: secret @ nyhost 1: 1111, addr ess=(host =nyhost 2) (port =2222) (key2=val ue2)]/db

While it is not possible to write host sublists recursively, a host list may contain host sublists as its
member hosts.

Connection URL Syntax

dat abase

User credentials

User credentials can be set outside of the connection URL—for example, as arguments when getting
a connection from the j ava. sql . Dri ver Manager (see Section 3.5.3, “Configuration Properties”
for details). When set with the connection URL, there are several ways to specify them:

» Prefix the a single host, a host sublist (see Multiple hosts [56]), or any host in a list of hosts with
the user credentials with an @

user: passwor d@ost _or _host _subl i st
For example:
nmysql x: // sandy: secret @ (addr ess=host 1: 1111, pri ori ty=1, keyl=val uel), (addr ess=host 2: 2222, pri ority=2, k
e Use the keys user and passwor d to specify credentials for each host:
(user =sandy) (passwor d=nypass)

For example:

jdbc: mysqgl : //[(host =nyhost 1, port=1111, user =sandy, passwor d=secr et), (host =nyhost 2, por t =2222, user =fi nr
j dbc: nysqgl : // addr ess=(host =nyhost 1) (port=1111) (user =sandy) (passwor d=secr et) , addr ess=(host =nyhost 2) (

In both forms, when multiple user credentials are specified, the one to the left takes precedence—
that is, going from left to right in the connection string, the first one found that is applicable to a host
is the one that is used.

Inside a host sublist, no host can have user credentials in the @ format, but individual host can have
user credentials specified in the key format.

The default database or catalog to open. If the database is not specified, the connection is made with
no default database. In this case, either call the set Cat al og() method on the Connect i on instance,
or specify table names using the database name (that is, SELECT dbnane. t abl enane. col nane
FROM dbnane. t abl enane. . .) in your SQL statements. Opening a connection without specifying the
database to use is, in general, only useful when building tools that work with multiple databases, such
as GUI database managers.

Note

Always use the Connect i on. set Cat al og() method to specify the desired
database in JDBC applications, rather than the USE dat abase statement.

properties

A succession of global properties applying to all hosts, preceded by ? and written as key=val ue pairs
separated by the symbol “&. " Here are some examples:

jdbc: nysql : // (host =nyhost 1, port=1111), (host =nyhost 2, port =2222) / db?keyl=val uel&key2=val ue2&key3=val ue3

The following are true for the key-value pairs:

key and val ue are just strings. Proper type conversion and validation are performed internally in
Connector/J.

key is case-sensitive. Two keys differing in case only are considered conflicting, and it is uncertain
which one will be used.

Any host-specific values specified with key-value pairs as explained in Single host with host-specific
properties [55] and Multiple hosts [56] above override the global values set here.

See Section 3.5.3, “Configuration Properties” for details about the configuration properties.

57

Configuration Properties

3.5.3 Configuration Properties

Configuration properties define how Connector/J will make a connection to a MySQL server. Unless
otherwise noted, properties can be set for a Dat aSour ce object or for a Connect i on object.

Configuration properties can be set in one of the following ways:

» Using the set * () methods on MySQL implementations of j ava. sql . Dat aSour ce (which is the
preferred method when using implementations of j ava. sqgl . Dat aSour ce):

e comnysql.cj.jdbc. Mysql Dat aSour ce
e comnysql.cj.jdbc. Mysql Connecti onPool Dat aSour ce

e As a key-value pairinthe j ava. util . Properti es instance passed to
Dri ver Manager . get Connection() orDriver. connect ()

* As a JDBC URL parameter in the URL given to j ava. sqgl . Dri ver Manager . get Connecti on(),
java.sqgl . Driver.connect () orthe MySQL implementations of the j avax. sql . Dat aSour ce
set URL() method. If you specify a configuration property in the URL without providing a value for
it, nothing will be set; for example, adding useSer ver Pr epSt nt s alone to the URL does not make
Connector/J use server-side prepared statements; you need to add useSer ver PrepSt nmt s=t r ue.

Note

If the mechanism you use to configure a JDBC URL is XML-based, use the
XML character literal &anp; to separate configuration parameters, as the
ampersand is a reserved character for XML.

The properties are listed by categories in the following tables and then in the subsections that follow.
Click on a property name in the tables to see its full description in the subsections.

Table 3.4 Authentication Properties

Name Default Value Since Version
user - all versions
password - all versions
passwor dl - 8.0.28
passwor d2 - 8.0.28
passwor d3 - 8.0.28

aut henti cati onPl ugi ns - 5.1.19

di sabl edAut henti cati onPl ugi ns 5.1.19

def aul t Aut henti cati onPl ugi n |mysqgl_native_password 5.1.19

| dapSer ver Host nane - 8.0.23

oci ConfigFile - 8.0.27

oci ConfigProfile DEFAULT 8.0.33

aut henti cati onFi doCal | backHandl er 8.0.29

aut henti cati onWebAut hnCal | bgekHandl er 8.2.0

Table 3.5 Connection Properties

Name Default Value Since Version
connecti onAttri butes - 5.1.25
connecti onLi fecycl el nt er ceptlers 5.1.4
useConfi gs - 3.15

58

Configuration Properties

Name Default Value Since Version
clientl|nfoProvider com.mysql.cj.jdbc.CommentClientinfgBribvdder
cr eat eDat abasel f Not Exi st false 3.1.9
dat abaseTerm CATALOG 8.0.17
det ect Cust onCol | ati ons false 5.1.29
di sconnect OnExpi r edPasswor dgtrue 5.1.23
interactivedient false 3.1.0
passwor dChar act er Encodi ng - 5.1.7
propertiesTransform - 3.14
rol | backOnPool edd ose true 3.0.15
useAf f ect edRows false 5.1.7

Table 3.6 Session Properties

Name
sessi onVari abl es

Default Value

Since Version
3.1.8

char act er Encodi ng - 1.1g

characterSet Results - 3.0.13
connectionCol | ation - 3.0.13
cust onChar set Mappi ng - 8.0.26
trackSessionState false 8.0.26

Table 3.7 Networking Properties

Name
socksPr oxyHost

Default Value

Since Version
5.1.34

socksProxyPort

1080

5.1.34

socket Factory

com.mysql.cj.protocol.StandardSocke

tF8cdory

connect Ti neout 0 3.0.1
socket Ti meout 0 3.0.1
dnsSrv false 8.0.19
| ocal Socket Addr ess - 5.0.5
maxAl | owedPacket 65535 5.1.8
socksPr oxyRenot eDns false 8.0.29
t cpKeepAl i ve true 5.0.7
t cpNoDel ay true 5.0.7
t cpRevBuUf 0 5.0.7
t cpSndBuf 0 5.0.7
tcpTrafficd ass 0 5.0.7
useConpr essi on false 3.0.17
useUnbuf f er edl nput true 3.0.11

Table 3.8 Security Properties

Name
par anoi d

Default Value
false

Since Version
3.0.1

server RSAPubl i cKeyFi |l e

5.1.31

59

Configuration Properties

Name Default Value Since Version
al | owPubl i cKeyRetri eval false 5.1.31
ssl Mode PREFERRED 8.0.13
trustCertificateKeyStoreUrl |- 5.1.0
trustCertificat eKeySt oreTypeJKS 5.1.0
trustCertificateKeySt orePasgword 5.1.0
fal | backToSyst enilrust Store |true 8.0.22
clientCertificateKeyStoreUrl|- 5.1.0
clientCertificateKeyStoreTypdKS 5.1.0
clientCertificateKeyStorePagsword 5.1.0
fal |l backToSyst enKeySt or e true 8.0.22
t1 sCi phersuites - 5.1.35
tl sVersions - 8.0.8
fi psConpli ant Jsse false 8.1.0
KeyManager Fact or yPr ovi der - 8.1.0
t rust Manager Fact or yProvi der |- 8.1.0
keySt or eProvi der - 8.1.0
ssl Cont ext Provi der - 8.1.0
al | omLoadLocal Infile false 3.0.3
al | owLoadLocal I nfil el nPath |- 8.0.22
al l owmul ti Queri es false 3.1.1
al lowrl I nLocal Infile false 3.14
requi r eSSL false 3.1.0
useSSL true 3.0.2
verifyServerCertificate false 5.1.6

Table 3.9 Statements Properties

Name Default Value Since Version
cacheDef aul t Ti neZone true 8.0.20

conti nueBat chOnErr or true 3.0.3

dont TrackQpenResour ces false 3.1.7

queryl nterceptors - 8.0.7

quer yTi meout Ki | | sConnecti on (false 5.1.9

Table 3.10 Prepared Statements Properties

Name Default Value Since Version
al | omNanAndI nf false 3.15

aut oCl osePSt nt St r eans false 3.1.12
conpensat eOnDupl i cat eKeyUpdafassmunt s 5.1.7

enul at eUnsupport edPst nt s true 3.1.7

gener at eSi npl ePar anet er Met adédlse 5.0.5

pr ocessEscapeCodesFor Pr epSt mntreie 3.1.12
useServer PrepStnt s false 3.1.0

60

Configuration Properties

Name
useSt reanLengt hsl nPrepSt nt s

Default Value
true

Since Version
3.0.2

Table 3.11 Result Sets Properties

Name Default Value Since Version
cl obber Streani ngResul ts false 3.0.9
enptyStri ngsConvert ToZer o true 3.1.8

hol dResul t sOpenOver St at enent|@lsse 3.1.7

j dbcConpl i ant Truncati on true 3.1.2

max Rows -1 all versions
net Ti meout For St r eam ngResul t{600 5.1.0
padChar sWt hSpace false 5.0.6
popul at el nsert RowW t hDef aul t|f&saies 5.0.5
scrol | Tol er ant Forwar dOnl y false 8.0.24
strict Updat es true 3.04
tinylntlisBit true 3.0.16
transf or nedBi t | sBool ean false 3.1.9

Table 3.12 Metadata Properties

Name Default Value Since Version
get Procedur esRet ur nsFunct i onfrue 5.1.26
noAccessToPr ocedur eBodi es false 5.0.3

nul | Dat abaseMeansCur r ent false 3.1.8

useHost sl nPrivil eges true 3.0.2

usel nf or mat i onSchema false 5.0.0

Table 3.13 BLOB/CLOB processing Properties

Name Default Value Since Version
bl obSendChunksSi ze 1048576 3.1.9
bl obsAreStri ngs false 5.0.8
cl obChar act er Encodi ng - 5.0.0
emul at eLocat ors false 3.1.0
functionsNever Ret ur nBl obs false 5.0.8
| ocat or Fet chBuf fer Si ze 1048576 3.21

Table 3.14 Datetime types processing Properties

Name
connectionTi neZone

Default Value

Since Version
3.0.2

forceConnecti onTi neZoneToSeg&lsm 8.0.23
noDat eti meStri ngSync false 3.1.7
preservel nstants true 8.0.23
sendFr acti onal Seconds true 5.1.37
sendFr act i onal SecondsFor Ti ngtrue 8.0.23
treat Mysql Dat et i neAsTi nest anfalse 8.2.0
treatUti| Dat eAsTi nest anp true 5.0.5

61

Configuration Properties

Name Default Value Since Version
year | sDat eType true 3.1.9
zer oDat eTi neBehavi or EXCEPTION 3.14

Table 3.15 High Availability and Clu

stering Properties

Name Default Value Since Version
aut oReconnect false 1.1
aut oReconnect For Pool s false 3.1.3
fail Over ReadOnl y true 3.0.12
maxReconnect s 3 1.1
reconnect At TxEnd false 3.0.10
retriesAl | Down 120 5.1.6
i nitialTimeout 2 1.1
quer i esBef or eRet rySour ce 50 3.0.2
secondsBef or eRet r ySour ce 30 3.0.2
al | owRepl i caDownConnect i ons |false 6.0.2
al | owSour ceDownConnect i ons |false 5.1.27
ha. enabl eJIMX false 5.1.27
| oadBal anceHost Renoval G aceR&@5000 6.0.3
r eadFr onSour ceWhenNoRepl i cagfalse 6.0.2
sel f Dest ruct OnPi ngMaxQper at i|6ns 5.1.6
sel f Dest ruct OnPi ngSecondsLi f|8ti nme 5.1.6
ha. | oadBal anceSt r at egy random 5.0.6
| oadBal anceAut oCommi t St at engnt Regex 5.1.15
| oadBal anceAut oCommi t St at enmgft Thr eshol d 5.1.15
| oadBal anceBl ockl i st Ti meout |0 5.1.0
| oadBal anceConnecti onGroup |- 5.1.13
| oadBal anceExcepti onChecker |com.mysql.cj.jdbc.ha.StandardLoadBebahd@ExceptionChecker
| oadBal ancePi ngTi neout 0 5.1.13
| oadBal anceSQLExcepti onSubcl{assFai | over 5.1.13
| oadBal anceSQLSt at eFai | over |- 5.1.13
| oadBal anceVal i dat eConnect i gfelpeswapSer ver 5.1.13
pi nd obal TxToPhysi cal Connect|false 5.0.1
replicationConnecti onG oup |- 8.0.7
resourceld - 5.0.1
server AffinityOrder - 8.0.8
Table 3.16 Performance Extensions Properties

Name Default Value Since Version
cal | abl eSt nt CacheSi ze 100 3.1.2
net adat aCacheSi ze 50 3.11
uselLocal Sessi onSt at e false 3.1.7
uselLocal Transacti onState false 5.1.7

62

Configuration Properties

Name Default Value Since Version
prepSt mt CacheSi ze 25 3.0.10
prepSt m CacheSql Li mit 256 3.0.10
queryl nfoCacheFact ory com.mysql.cj.PerConnectionLRUFactdy.1
server Confi gCacheFact ory com.mysql.cj.util.PerVmServerConfigGatHeFactory
al waysSendSet | sol ati on true 3.1.7
mai nt ai nTi meSt at s true 3.1.9
useCur sor Fet ch false 5.0.0
cacheCal | abl eStnt s false 3.1.2
cachePrepStnts false 3.0.10
cacheResul t Set Met adat a false 3.1.1
cacheServer Confi guration false 3.15
def aul t Fet chSi ze 0 3.1.9
dont CheckOnDupl i cat eKeyUpdat|élsesQL 5.1.32
el i deSet Aut oCommi t s false 3.1.3
enabl eEscapePr ocessi ng true 6.0.1
enabl eQuer yTi neout s true 5.0.6
| ar geRowSi zeThr eshol d 2048 5.1.1
readOnl yPr opagat esToServer |[true 5.1.35
rewiteBat chedStat enents false 3.1.13
useReadAheadl nput true 3.15

Table 3.17 Debugging/Profiling Properties

Name Default Value Since Version
| ogger com.mysql.cj.log.StandardLogger 3.1.1
profil er Event Handl er com.mysql.cj.log.LoggingProfilerEventbargiler
useNanosFor El apsedTi ne false 5.0.7
maxQuerySi zeToLog 2048 3.1.3
mexByt eAr r ay AsHex 1024 8.0.31
profil eSQ false 3.1.0

| 0gSI owQueri es false 3.1.2

sl owQueryThreshol dM | i s 2000 3.1.2

sl owQuer yThr eshol dNanos 0 5.0.7
aut oSl owlLog true 5.1.4
expl ai nSl owQueri es false 3.1.2
gat her Perf Metrics false 3.1.2
reportMetricslinterval MI1is 30000 3.1.2

| ogXaConmands false 5.0.5
tracePr ot ocol false 3.1.2
enabl ePacket Debug false 3.1.3
packet DebugBuf f er Si ze 20 3.1.3
useUsageAdvi sor false 3.1.1
resul t Set Si zeThreshol d 100 5.0.5

63

Configuration Properties

Name
aut oCener at eTest caseScr i pt

Default Value
false

Since Version
3.1.9

Table 3.18 Exceptions/Warnings Properties

Name

Default Value

Since Version

dunmpQuer i esOnExcepti on false 3.1.3
exceptionlnterceptors - 5.1.8
i gnoreNonTxTabl es false 3.0.9
i ncl udel nnodbSt at usl nDeadl ogkdfzeept i ons 5.0.7
i ncl udeThr eadDunpl nDeadl ock Efadept i ons 5.1.15
i ncl udeThr eadNanesAsSt at enmenfalsement 5.1.15
useOnl yServer Error Messages |true 3.0.15

Table 3.19 Tunes for integration wit

h other products Properties

Name
overri deSupportsintegrityEnh

Default Value
falsenent Facil ity

Since Version
3.1.12

ul t raDevHack

false

2.0.3

Table 3.20 JDBC compliance Prope

rties

Name Default Value Since Version
useCol umNanes! nFi ndCol umm |false 5.1.7
pedantic false 3.0.0
used dAl i asMet adat aBehavi or |false 5.04
Table 3.21 X Protocol and X DevAPI Properties

Name Default Value Since Version
xdevapi . auth PLAIN 8.0.8
xdevapi . conpr essi on PREFERRED 8.0.20
xdevapi . conpr essi on- zstd_stream,lz4_message,deflate_streath?22
al gorithns

xdevapi . conpr essi on- - 8.0.22
ext ensi ons

xdevapi . connect - t i meout 10000 8.0.13
xdevapi . connecti on- - 8.0.16
attributes

xdevapi . dns-srv false 8.0.19
xdevapi . fal | back-to- true 8.0.22
system keystore

xdevapi . fal | back-to- true 8.0.22
systemtruststore

xdevapi . ssl - keystore - 8.0.22
xdevapi . ssl - keyst or e- - 8.0.22
password

xdevapi . ssl - keystore-type JKS 8.0.22
xdevapi . ssl - node REQUIRED 8.0.7
xdevapi . ssl -truststore - 6.0.6

64

Configuration Properties

Name

xdevapi . ssl -truststore-
passwor d

Default Value

Since Version
6.0.6

xdevapi . ssl -truststore- JKS 6.0.6
type

xdevapi . tl s-ci phersuites - 8.0.19
xdevapi . tl s-versions - 8.0.19

3.5.3.1 Authentication

e user

The user to connect as. If none is specified, it is authentication plugin dependent what user name is
used. Built-in authentication plugins default to the session login user name.

Since Version all versions
e password

The password to use when authenticating the user.

Since Version all versions

e passwordl

The password to use in the first phase of a Multi-Factor Authentication workflow. It is a synonym of

the connection property ‘password' and can also be set with user credentials in the connection string.

Since Version

8.0.28

e password2

The password to use in the second phase of a Multi-Factor Authentication workflow.

Since Version

8.0.28

e password3

The password to use in the third phase of a Multi-Factor Authentication workflow.

Since Version

8.0.28

e aut henticationPl ugi ns

Comma-delimited list of classes that implement the interface
‘com.mysql.cj.protocol.AuthenticationPlugin'. These plugins will be loaded at connection initialization
and can be used together with their sever-side counterparts for authenticating users, unless they are
disabled in the connection property 'disabledAuthenticationPlugins'.

Since Version

5.1.19

o di sabl edAut henti cati onPl ugi ns

Comma-delimited list of authentication plugins client-side protocol names or classes implementing
the interface 'com.mysql.cj.protocol.AuthenticationPlugin'. The authentication plugins listed will
not be used for authenticating users and, if anyone of them is required during the authentication
exchange, the connection fails. The default authentication plugin specified in the property
'defaultAuthenticationPlugin' cannot be disabled.

65

Configuration Properties

Since Version 5.1.19

def aul t Aut henti cati onPl ugi n

The default authentication plugin client-side protocol name or a fully qualified name of a class that
implements the interface ‘com.mysql.cj.protocol.AuthenticationPlugin'. The specified authentication
plugin must be either one of the built-in authentication plugins or one of the plugins listed in the
property 'authenticationPlugins'. Additionally, the default authentication plugin cannot be disabled
with the property 'disabledAuthenticationPlugins'. Neither an empty nor unknown plugin name or
class can be set for this property.

By default, Connector/J honors the server-side default authentication plugin, which is known after
receiving the initial handshake packet, and falls back to this property's default value if that plugin
cannot be used. However, when a value is explicitly provided to this property, Connector/J then
overrides the server-side default authentication plugin and always tries first the plugin specified with
this property.

Default Value mysql_native_password

Since Version 5.1.19

| dapSer ver Host nane

When using MySQL's LDAP pluggable authentication with GSSAPI/Kerberos authentication method,
allows setting the LDAP service principal hostname as configured in the Kerberos KDC. If this
property is not set, Connector/J takes the system property ‘java.security.krb5.kdc' and extracts

the hostname (short name) from its value and uses it. If neither is set, the connection fails with an
exception.

Since Version 8.0.23

oci ConfigFile

The location of the OCI configuration file as required by the OCI SDK for Java. Default value is
"~/.oci/config" for Unix-like systems and "%HOMEDRIVE%%HOMEPATH%.oci\config" for Windows.

Since Version 8.0.27

oci ConfigProfile

The profile in the OCI configuration file specified in 'ociConfigFile', from where the configuration to
use in the 'authentication_oci_client' authentication plugin is to be read.

Default Value DEFAULT

Since Version 8.0.33

aut henti cati onFi doCal | backHandl er

Fully-qualified class name of a class implementing the interface
‘com.mysql.cj.callback.MysglCallbackHandler'. This class will be used by the FIDO authentication
plugin to obtain the authenticator data and signature required for the FIDO authentication process.
See the documentation of 'com.mysql.cj.callback.FidoAuthenticationCallback' for more details.

Since Version 8.0.29

aut henti cati onWebAut hnCal | backHandl er

Fully-qualified class name of a class implementing the interface
‘com.mysql.cj.callback.MysglCallbackHandler'. This class will be used by the

66

Configuration Properties

WebAuthn authentication plugin to obtain the authenticator data and signature
required for the FIDO authentication process. See the documentation of
com.mysql.cj.callback.WebAuthnAuthenticationCallback for more details.

Since Version

8.2.0

3.5.3.2 Connection

connecti onAttri butes

A comma-delimited list of user-defined "key:value" pairs, in addition to standard MySQL-defined
"key:value" pairs, to be passed to MySQL Server for display as connection attributes in the

'PERFORMANCE_SCHEMA' tables 'session_account_connect_attrs' and 'session_connect_attrs'.

Example usage: "connectionAttributes=key1l:valuel,key2:value2" This functionality is available
for use with MySQL Server version 5.6 or later only. Earlier versions of MySQL Server do
not support connection attributes, causing this configuration option to be ignored. Setting
"connectionAttributes=none" will cause connection attribute processing to be bypassed for situations
where Connection creation/initialization speed is critical.

Since Version

5.1.25

connectionLi fecyclelnterceptors

A comma-delimited list of classes that implement

‘com.mysql.cj.jdbc.interceptors.ConnectionLifecyclelnterceptor' that should be notified of
connection lifecycle events (creation, destruction, commit, rollback, setting the current database
and changing the autocommit mode) and potentially alter the execution of these commands.
‘ConnectionLifecyclelnterceptors' are stackable, more than one interceptor may be specified via the
configuration property as a comma-delimited list, with the interceptors executed in order from left to

right.

Since Version

5.14

useConfi gs

Load the comma-delimited list of configuration properties for specifying combinations of options
for particular scenarios. These properties are loaded before parsing the URL or applying user-

specified properties. Allowed values are "3-0-Compat”, "clusterBase", "coldFusion"”, "fullDebug",

"maxPerformance", "maxPerformance-8-0" and "solarisMaxPerformance", and they correspond to

properties files shipped within the Connector/J jar file, under "com/mysql/cj/configurations".

Since Version

\3.1.5

clientlnfoProvider

The name of a class that implements the ‘com.mysql.cj.jdbc.ClientinfoProvider' interface in order to
support JDBC-4.0's 'Connection.get/setClientinfo()' methods.

Default Value

com.mysql.cj.jdbc.CommentClientinfoProvider

Since Version

5.1.0

cr eat eDat abasel f Not Exi st

Creates the database given in the URL if it doesn't yet exist. Assumes the configured user has

permissions to create databases.

Default Value

false

Since Version

3.1.9

67

Configuration Properties

e dat abaseTerm

MySQL uses the term "schema" as a synonym of the term "database," while Connector/J historically
takes the JDBC term "catalog" as synonymous to "database". This property sets for Connector/J
which of the JDBC terms "catalog" and "schema" is used in an application to refer to a database.

The property takes one of the two values "CATALOG" or "SCHEMA" and uses it to determine

(1) which Connection methods can be used to set/get the current database (e.g. 'setCatalog()’'

or 'setSchema()'?), (2) which arguments can be used within the various 'DatabaseMetaData’
methods to filter results (e.g. the catalog or 'schemaPattern' argument of 'getColumns()'?), and

(3) which fields in the result sets returned by 'DatabaseMetaData’ methods contain the database
identification information (i.e., the "TABLE_CAT' or 'TABLE_SCHEM:' field in the result set returned by
'getTables()?).

If "databaseTerm=CATALOG", 'schemaPattern’ for searches are ignored and calls of schema
methods (like 'setSchema()' or get 'Schema()') become no-ops, and vice versa.

Default Value CATALOG
Since Version 8.0.17

e detect CustontCol | ati ons

Should the driver detect custom charsets/collations installed on server? If this option set to "true" the
driver gets actual charsets/collations from the server each time a connection establishes. This could
slow down connection initialization significantly.

Default Value false
Since Version 5.1.29

e di sconnect OnExpi r edPasswor ds

If 'disconnectOnExpiredPasswords' is set to "false" and password is expired then server enters
sandbox mode and sends 'ERR(08001, ER_MUST_CHANGE_PASSWORD)' for all commands that
are not needed to set a new password until a new password is set.

Default Value true
Since Version 5.1.23

e interactivedient

Set the 'CLIENT_INTERACTIVE' flag, which tells MySQL to timeout connections based on
'interactive_timeout' instead of ‘wait_timeout'.

Default Value false

Since Version 3.1.0

e passwor dChar act er Encodi ng

Instructs the server to use the default character set for the specified Java encoding during the
authentication phase. If this property is not set, Connector/J falls back to the collation name

specified in the property 'connectionCollation’ or to the Java encoding specified in the property
‘characterEncoding’, in that order of priority. The default collation of the character set utf8mb4 is used
if none of the properties is set.

Since Version 5.1.7

Configuration Properties

e propertiesTransform

An implementation of ‘com.mysql.cj.conf.ConnectionPropertiesTransform' that the driver will use to
modify connection string properties passed to the driver before attempting a connection.

‘Since Version 3.14

e roll backOnPool edd ose

Should the driver issue a 'rollback()' when the logical connection in a pool is closed?

Default Value true
Since Version 3.0.15

e useAffectedRows

Don't set the '"CLIENT_FOUND_ROWS' flag when connecting to the server. Note that this is not
JDBC-compliant and it will break most applications that rely on "found" rows vs. "affected rows" for
DML statements, but does cause correct update counts from "INSERT ... ON DUPLICATE KEY
UPDATE" statements to be returned by the server.

Default Value false

Since Version 5.1.7

3.5.3.3 Session

e sessionVari abl es

A comma or semicolon separated list of "name=value" pairs to be sent as "SET [SESSION] ..." to the
server when the driver connects.

Since Version 3.1.8 ‘

e characterEncodi ng

Instructs the server to set session system variables ‘character_set_client' and
‘character_set_connection' to the default character set supported by MySQL for the specified Java
character encoding and set 'collation_connection’ to the default collation for this character set. If
neither this property nor the property ‘connectionCollation’ is set:

For Connector/J 8.0.25 and earlier, the driver will try to use the server's default character set;

For Connector/J 8.0.26 and later, the driver will use "utf8mb4".

Since Version 1.1g

e characterSetResults

Instructs the server to return the data encoded with the default character set for the specified Java
encoding. If not set or set to "null”", the server will send data in its original character set and the driver
will decode it according to the result metadata.

Since Version 3.0.13

e connectionCol | ati on

Instructs the server to set session system variable 'collation_connection' to the specified collation
name and set 'character_set_client' and 'character_set_connection' to a corresponding character set.
This property overrides the value of 'characterEncoding' with the default character set this collation

69

Configuration Properties

belongs to, if and only if ‘characterEncoding' is not configured or is configured with a character set
that is incompatible with the collation. That means 'connectionCollation' may not always correct

a mismatch of character sets. For example, if ‘connectionCollation’ is set to "latinl_swedish_ci",

the corresponding character set is "latin1" for MySQL, which maps it to the Java character set
"windows-1252"; so if 'characterEncoding’ is not set,"windows-1252" is the character set that will

be used; but if '‘characterEncoding' has been set to, e.g. "ISO-8859-1", that is compatible with
"latinl_swedish_ci", so the character encoding setting is left unchanged; and if client is actually
using "windows-1252" (which is similar but different from "1SO-8859-1"), errors would occur for some
characters. If neither this property nor the property ‘characterEncoding'’ is set:

For Connector/J 8.0.25 and earlier, the driver will try to use the server's default character set;

For Connector/J 8.0.26 and later, the driver will use utf8mb4's default collation.

Since Version 3.0.13

» cust onChar set Mappi ng
A comma-delimited list of custom "charset:java encoding" pairs.

In case the MySQL server is configured with custom character sets and
"detectCustomCollations=true", Connector/J needs to know which Java character
encoding to use for the data represented by these character sets. Example usage:
"customCharsetMapping=charset1:UTF-8,charset2:Cp1252".

Since Version ‘8.0.26

e trackSessionState

Receive server session state changes on query results. These changes are accessible via
'MysqlConnection.getServerSessionStateController()'.

Default Value false

Since Version 8.0.26

3.5.3.4 Networking

» socksProxyHost

Name or IP address of a SOCKS host to connect through.

Since Version 5.1.34

e socksProxyPort

Port of the SOCKS server.

Default Value 1080

Since Version 5.1.34

* socket Factory

The name of the class that the driver should use for creating socket connections to the server. This
class must implement the interface 'com.mysql.cj.protocol.SocketFactory' and have a public no-args

constructor.
Default Value com.mysql.cj.protocol.StandardSocketFactory
Since Version 3.0.3

70

Configuration Properties

connect Ti neout

Timeout for socket connect (in milliseconds), with 0 being no timeout.

Default Value

0

Since Version

3.0.1

socket Ti neout

Timeout, specified in milliseconds, on network socket operations. Value "0" means no timeout.

Default Value

0

Since Version

3.01

dnsSrv

Should the driver use the given host name to lookup for DNS SRV records and use the resulting
list of hosts in a multi-host failover connection? Note that a single host name and no port must be

provided when this option is enabled.

Default Value

false

Since Version

8.0.19

| ocal Socket Addr ess

Hostname or IP address given to explicitly configure the interface that the driver will bind the client

side of the TCP/IP connection to when connecting.

Since Version

5.0.5

maxAl | onedPacket

Maximum allowed packet size to send to server. If not set, the value of system variable
'max_allowed_packet' will be used to initialize this upon connecting. This value will not take effect
if set larger than the value of 'max_allowed_packet'. Also, due to an internal dependency with the

property '‘blobSendChunkSize', this setting has a minimum value of "8203" if 'useServerPrepStmts' is

set to "true".
Default Value 65535
Since Version 5.1.8

socksPr oxyRenot eDns

When using a SOCKS proxy, whether the DNS lookup for the database host should be performed

locally or through the SOCKS proxy.

Default Value

false

Since Version

8.0.29

t cpKeepAl i ve

If connecting using TCP/IP, should the driver set 'SO_KEEPALIVE'?

Default Value

true

Since Version

5.0.7

t cpNoDel ay

71

Configuration Properties

If connecting using TCP/IP, should the driver set 'SO_TCP_NODELAY", disabling the Nagle

Algorithm?
Default Value true
Since Version 5.0.7

* tcpRcvBuUf

If connecting using TCP/IP, should the driver set 'SO_RCV_BUF' to the given value? The default
value of "0", means use the platform default value for this property.

Default Value

5.0.7

Since Version

e tcpSndBuf

If connecting using TCP/IP, should the driver set 'SO_SND_BUF' to the given value? The default
value of "0", means use the platform default value for this property.

Default Value

5.0.7

Since Version

e tcpTrafficd ass

If connecting using TCP/IP, should the driver set traffic class or type-of-service fields? See the
documentation for ‘java.net.Socket.setTrafficClass()' for more information.

Default Value

5.0.7

Since Version

e useConpression

Use zlib compression when communicating with the server?

Default Value false

3.0.17

Since Version

» useUnbuf f er edl nput

Don't use 'BufferedinputStream' for reading data from the server.

Default Value true

3.0.11

Since Version

3.5.3.5 Security

e paranoid

Take measures to prevent exposure sensitive information in error messages and clear data
structures holding sensitive data when possible?

£al
alsSc

NDafairds \ /ol
UcTiaudlit vaiuc

72
Since Version 3.01

» server RSAPubl i cKeyFi |l e

Configuration Properties

File path to the server RSA public key file for 'sha256_password' authentication. If not specified, the
public key will be retrieved from the server.

Since Version 5.1.31

al | owPubl i cKeyRetri eval

Allows special handshake round-trip to get an RSA public key directly from server.

Default Value false
Since Version 5.1.31
ssl| Mbde

By default, network connections are SSL encrypted; this property permits secure connections

to be turned off, or a different levels of security to be chosen. The following values are allowed:
"DISABLED" - Establish unencrypted connections; "PREFERRED" - Establish encrypted connections
if the server enabled them, otherwise fall back to unencrypted connections; "REQUIRED" - Establish
secure connections if the server enabled them, fail otherwise; "VERIFY_CA" - Like "REQUIRED"

but additionally verify the server TLS certificate against the configured Certificate Authority (CA)
certificates; "VERIFY_IDENTITY" - Like "VERIFY_CA", but additionally verify that the server
certificate matches the host to which the connection is attempted.

This property replaced the deprecated legacy properties 'useSSL', 'requireSSL', and
‘verifyServerCertificate', which are still accepted but translated into a value for 'ssiIMode'

if 'ssIMode’ is not explicitly set: "useSSL=false" is translated to "ssIMode=DISABLED";
{"useSSL=true", "requireSSL=false", "verifyServerCertificate=false"} is translated to
"ssIMode=PREFERRED"; {"useSSL=true", "requireSSL=true", "verifyServerCertificate=false"}

is translated to "ssIMode=REQUIRED"; {"useSSL=true", "verifyServerCertificate=true"}

is translated to "ssIMode=VERIFY_CA". There is no equivalent legacy settings for
"ssIMode=VERIFY_IDENTITY". Note that, for all server versions, the default setting of 'ssIMode' is
"PREFERRED", and it is equivalent to the legacy settings of "useSSL=true", "requireSSL=false", and
"verifyServerCertificate=false", which are different from their default settings for Connector/J 8.0.12
and earlier in some situations. Applications that continue to use the legacy properties and rely on

their old default settings should be reviewed.

The legacy properties are ignored if 'ssIMode' is set explicitly. If none of 'ssIMode' or 'useSSL' is set
explicitly, the default setting of "ssIMode=PREFERRED" applies.

Default Value PREFERRED
Since Version 8.0.13

trustCertificateKeyStoreUrl
URL for the trusted root certificates key store.

If not specified, the property 'fallbackToSystemTrustStore' determines if system-wide trust store is
used.

Since Version 5.1.0

trustCertificateKeyStoreType
Key store type for trusted root certificates.

Null or empty means use the default, which is "JKS". Standard key store types supported by the JVM
are "JKS" and "PKCS12", your environment may have more available depending on what security
providers are installed and available to the JVM.

73

Configuration Properties

Default Value JKS
Since Version 5.1.0
trustCertificateKeySt orePassword

Password for the trusted root certificates key store.
Since Version 5.1.0

fall backToSyst emlr ust St ore

Whether the absence of setting a value for 'trustCertificateKeyStoreUrl' falls back to
using the system-wide default trust store or one defined through the system properties
'jlavax.net.ssl.trustStore*",

Default Value true

Since Version 8.0.22

clientCertificateKeyStoreUrl
URL for the client certificate KeyStore.

If not specified, the property 'fallbackToSystemKeyStore' determines if system-wide key store is
used.

Since Version 5.1.0

clientCertificateKeyStoreType
Key store type for client certificates.

Null or empty means use the default, which is "JKS". Standard key store types supported by the JVM
are "JKS" and "PKCS12", your environment may have more available depending on what security
providers are installed and available to the JVM.

Default Value JKS

Since Version 5.1.0

clientCertificateKeyStorePassword

Password for the client certificates key store.

Since Version 5.1.0

fal |l backToSyst enKeySt or e

Whether the absence of setting a value for 'clientCertificateKeyStoreUr!' falls back to using the
system-wide key store defined through the system properties 'javax.net.ssl.keyStore*'.

Default Value true

Since Version 8.0.22

t1 sC phersuites

When establishing secure connections, overrides the cipher suites enabled for use on the underlying
SSL sockets. This may be required when using external JSSE providers or to specify cipher suites
compatible with both MySQL server and used JVM. Prior to version 8.0.28, this property was named
‘enabledSSLCipherSuites', which remains as an alias.

Configuration Properties

Since Version 5.1.35

t1 sVersions

List of TLS protocols to allow when establishing secure connections. Overrides the TLS protocols
enabled in the underlying SSL sockets. This can be used to restrict connections to specific TLS
versions and, by doing that, avoid TLS negotiation fallback. Allowed and default values are
"TLSv1.2" and "TLSv1.3". Prior to version 8.0.28, this property was named 'enabledTLSProtocols',
which remains as an alias.

Since Version 8.0.8

fi psConpliant Jsse

Enables Connector/J to be compatible to JSSE operating in FIPS mode. Should be set to "true” if
the JSSE is configured to operate in FIPS mode and Connector/J receives the error "FIPS mode:
only SunJSSE TrustManagers may be used" when creating secure connections. If set to “true"
then, when establishing secure connections, the driver operates as if the 'ssIMode’ was set to
"VERIFY_CA" or "VERIFY_IDENTITY", i.e., all secure connections require at least server certificate
validation, for which a trust store must be configured or fall back to the system-wide trust store must
be enabled.

Default Value false

Since Version 8.1.0

KeyManager Fact or yPr ovi der

The name of the a Java Security Provider that provides a ‘javax.net.ssl.KeyManagerFactory'
implementation. If none is specified then the default one is used.

Since Version 8.1.0

t rust Manager Fact or yPr ovi der

The name of the a Java Security Provider that provides a 'javax.net.ssl. TrustManagerFactory'
implementation. If none is specified then the default one is used.

Since Version 8.1.0

keySt or eProvi der

The name of the a Java Security Provider that provides a ‘java.security.KeyStore' implementation
that supports the key stores types specified with 'clientCertificateKeyStoreType' and
‘trustCertificateKeyStoreType'. If none is specified then the default one is used.

Since Version 8.1.0

ssl| Cont ext Provi der

The name of the a Java Security Provider that provides a ‘javax.net.ssl.SSLContext' implementation.
If none is specified then the default one is used.

Since Version 8.1.0

75

Configuration Properties

e allowLoadLocal Infile
Should the driver allow use of "LOAD DATA LOCAL INFILE ..."?

Setting to "true" overrides whatever path is set in 'allowLoadLocallnfileInPath’, allowing uploading
files from any location.

Default Value false

Since Version 3.0.3

e all owloadLocal I nfil el nPat h

Enables "LOAD DATA LOCAL INFILE ..." statements, but only allows loading files from the specified
path. Files within sub-directories are also allowed, but relative paths or symlinks that fall outside this
path are forbidden.

Since Version 8.0.22

e allowwultiQueries

Allow the use of ;" to delimit multiple queries during one statement. This option does not affect the
‘addBatch()' and ‘executeBatch()' methods, which rely on 'rewriteBatchStatements' instead.

Default Value false

Since Version 3.1.1

e allowJrlInLocallnfile

Should the driver allow URLs in "LOAD DATA LOCAL INFILE ..." statements?

Default Value false

Since Version 3.14

e requireSSL
DEPRECATED: See 'ssIMode’ property description for details.

For 8.0.12 and earlier: Require server support of SSL connection if "useSSL=true".

Default Value false
Since Version 3.1.0
e useSSL

DEPRECATED: See 'ssIMode' property description for details.

For 8.0.12 and earlier: Use SSL when communicating with the server, default is "true" when
connecting to MySQL 5.5.45+, 5.6.26+ or 5.7.6+, otherwise default is "false".

For 8.0.13 and later: Default is "true".

Default Value true

Since Version 3.0.2

Configuration Properties

e verifyServerCertificate

DEPRECATED: See 'ssIMode’ property description for details.

For 8.0.12 and earlier: If 'useSSL' is set to "true", should the driver verify the server's
certificate? When using this feature, the key store parameters should be specified by the
‘clientCertificateKeyStore*' properties, rather than system properties. Default is "false” when
connecting to MySQL 5.5.45+, 5.6.26+ or 5.7.6+ and 'useSSL' was not explicitly set to "true".

Otherwise default is "true".

For 8.0.13 and later: Default is "false".

Default Value

false

Since Version

5.1.6

3.5.3.6 Statements

e cacheDef aul t Ti neZone

Caches client's default time zone. This results in better performance when dealing with time zone
conversions in Date and Time data types, however it won't be aware of time zone changes if they

happen at runtime.

Default Value

true

Since Version

8.0.20

e conti nueBat chOnError

Should the driver continue processing batch commands if one statement fails. The JDBC spec allows

either way.
Default Value true
Since Version 3.0.3

e dont TrackOpenResour ces

The JDBC specification requires the driver to automatically track and close resources,

however if your application doesn't do a good job of explicitly calling 'close()' on statements

or result sets this can cause memory leakage. Setting this property to "true" relaxes this
constraint, and can be more memory efficient for some applications. Also the automatic

closing of the statement and current result set in 'Statement.closeOnCompletion()’

and 'Statement.getMoreResults([Statement. CLOSE_CURRENT_RESULT |
Statement.CLOSE_ALL_RESULTS]), respectively, ceases to happen. This property automatically

sets "holdResultsOpenOverStatementClose=true".

Default Value

false

Since Version

3.1.7

e querylnterceptors

A comma-delimited list of classes that implement ‘com.mysql.cj.interceptors.Querylnterceptor' that
intercept query executions and are able influence the results. Query iterceptors are chainable: the
results returned by the current interceptor will be passed on to the next in the chain, from left-to-right

in the order specified in this property.

Since Version

8.0.7

e queryTi neout Ki | I sConnecti on

77

Configuration Properties

If the timeout given in 'Statement.setQueryTimeout()' expires, should the driver forcibly abort the
connection instead of attempting to abort the query?

Default Value

false

Since Version

5.1.9

3.5.3.7 Prepared Statements

al | owNanAnd| nf

Should the driver allow NaN or +/- INF values in 'PreparedStatement.setDouble()'?

Default Value

false

Since Version

3.15

aut oCl osePSt nt St r eans

Should the driver automatically call the method 'close()' on streams/readers passed as arguments via

'set*()' methods?

Default Value

false

Since Version

3.1.12

conpensat eOnDupl i cat eKeyUpdat eCount s

Should the driver compensate for the update counts of "INSERT ... ON DUPLICATE KEY UPDATE"
statements (2 = 1, 0 = 1) when using prepared statements?

Default Value

false

Since Version

5.1.7

enul at eUnsupportedPstnt s

Should the driver detect prepared statements that are not supported by the server, and replace them

with client-side emulated versions?

Default Value

true

Since Version

3.1.7

gener at eSi npl ePar anet er Met adat a

Should the driver generate simplified parameter metadata for prepared statements when no
metadata is available either because the server couldn't support preparing the statement, or server-

side prepared statements are disabled?

Default Value

false

Since Version

5.0.5

* processEscapeCodesFor PrepStnts

Should the driver process escape codes in queries that are prepared? Default escape processing
behavior in non-prepared statements must be defined with the property ‘enableEscapeProcessing'.

78

Default Value

true

Since Version

3.1.12

Configuration Properties

e useServerPrepStnts

Use server-side prepared statements if the server supports them? The server may limit the number
of prepared statements with 'max_prepared_stmt_count' or disable them altogether. In case of
not being possible to prepare new server-side prepared statements, it depends on the value of
‘emulateUnsupportedPstmts' to whether return an error or fall back to client-side emulated prepared

statements.
Default Value false
Since Version 3.1.0

e useStreaniengt hsl nPrepStnts

Honor stream length parameter in 'PreparedStatement/ResultSet.set*Stream()' method calls?

Default Value

true

Since Version

3.0.2

3.5.3.8 Result Sets

» cl obber Stream ngResul ts

This will cause a streaming result set to be automatically closed, and any outstanding data still
streaming from the server to be discarded if another query is executed before all the data has been

read from the server.

Default Value

false

Since Version

3.0.9

e enptyStringsConvertToZero

Should the driver allow conversions from empty string fields to numeric values of "0"?

Default Value

true

Since Version

3.1.8

e hol dResul t sQpenOver St at enent Cl ose

Should the driver close result sets on 'Statement.close()' as required by the JDBC specification?

Default Value

false

Since Version

3.1.7

e jdbcConpliant Truncation

Should the driver throw ‘java.sgl.DataTruncation' exceptions when data is truncated as is
required by the JDBC specification? This property has no effect if the server sql-mode includes

'STRICT_TRANS_TABLES..

Default Value

true

Since Version

3.1.2

e maxRows

The maximum number of rows to return. The default "0" means return all rows.

Default Value

-1

79

Configuration Properties

Since Version

all versions

net Ti meout For St r eanm ngResul ts

What value should the driver automatically set the server setting 'net_write_timeout' to when the
streaming result sets feature is in use? Value has unit of seconds, the value "0" means the driver will

not try and adjust this value.

Default Value

600

Since Version

5.1.0

padChar sW t hSpace

If a result set column has the CHAR type and the value does not fill the amount of characters
specified in the DDL for the column, should the driver pad the remaining characters with space (for

ANSI compliance)?

Default Value

false

Since Version

5.0.6

popul at el nsert RowW t hDef aul t Val ues

When using result sets that are 'CONCUR_UPDATABLE', should the driver pre-populate the insert
row with default values from the DDL for the table used in the query so those values are immediately
available for 'ResultSet' accessors? This functionality requires a call to the database for metadata
each time a result set of this type is created. If disabled, the default values will be populated by the
an internal call to 'refreshRow()' which pulls back default values and/or values changed by triggers.

Default Value

false

Since Version

5.0.5

scrol | Tol erant Forwar dOnl y

Should the driver contradict the JDBC API and tolerate and support backward and absolute cursor
movement on result sets of type 'ResultSet. TYPE_FORWARD_ONLY'?

Regardless of this setting, cursor-based and row streaming result sets cannot be navigated in the

prohibited directions.

Default Value

false

Since Version

8.0.24

strict Updat es

Should the driver do strict checking, i.e. all primary keys selected, of updatable result sets?

Default Value

true

Since Version

3.04

tinylntlisBit

Since the MySQL server silently converts BIT to TINYINT(1) when creating tables, should the driver

treat the datatype TINYINT(1) as the BIT type?

80

Default Value

true

Since Version

3.0.16

Configuration Properties

transf or medBi t | sBool ean

If the driver converts TINYINT(1) to a different type, should it use BOOLEAN instead of BIT?

Default Value false

Since Version 3.19

3.5.3.9 Metadata

get Procedur esRet ur nsFuncti ons

Pre-JDBC4 'DatabaseMetaData’ API has only the 'getProcedures()' and ‘getProcedureColumns()'
methods, so they return metadata info for both stored procedures and functions. JDBC4

was extended with the 'getFunctions()' and 'getFunctionColumns()' methods and the

expected behaviours of previous methods are not well defined. For JDBC4 and higher,

default "true" value of the option means that calls of 'DatabaseMetaData.getProcedures()'

and 'DatabaseMetaData.getProcedureColumns()' return metadata for both procedures and
functions as before, keeping backward compatibility. Setting this property to "false" decouples
Connector/J from its pre-JDBC4 behaviours for 'DatabaseMetaData.getProcedures()' and
'‘DatabaseMetaData.getProcedureColumns()', forcing them to return metadata for procedures only.

true
5.1.26

Default Value

Since Version

noAccessToProcedur eBodi es

When determining procedure parameter types for 'CallableStatement’, and the connected user can't
access procedure bodies through "SHOW CREATE PROCEDURE" or SELECT on mysqgl.proc
should the driver instead create basic metadata, with all parameters reported as INOUT VARCHARSs,
instead of throwing an exception?

false
5.0.3

Default Value

Since Version

nul | Dat abaseMeansCur r ent

In 'DatabaseMetaData’ methods that take a 'catalog’ or 'schema’ parameter, does the value "null"
mean to use the current database? See also the property 'databaseTerm'.

false
3.1.8

Default Value

Since Version

useHost sl nPrivil eges

Add '@hostname’ to users in 'DatabaseMetaData.getColumn/TablePrivileges()'.

true
3.0.2

Default Value

Since Version

usel nf or mat i onSchenn

Should the driver use the INFORMATION_SCHEMA to derive information used by
'DatabaseMetaData'? Default is "true" when connecting to MySQL 8.0.3+, otherwise default is
"false".

Default Value

false

Since Version

5.0.0

Configuration Properties

3.5.3.10 BLOB/CLOB processing
* bl obSendChunkSi ze

Chunk size to use when sending BLOB/CLOBS via server-prepared statements. Note that this
value cannot exceed the value of ‘maxAllowedPacket' and, if that is the case, then this value will be

corrected automatically.

Default Value

1048576

Since Version

3.1.9

bl obsAreStrings

Should the driver always treat BLOBs as Strings - specifically to work around dubious metadata

returned by the server for GROUP BY clauses?

Default Value

false

Since Version

5.0.8

e cl obCharact er Encodi ng

The character encoding to use for sending and retrieving TEXT, MEDIUMTEXT and LONGTEXT
values instead of the configured connection ‘characterEncoding'.

Since Version

5.0.0 \

e emul at eLocators

Should the driver emulate 'java.sql.Blob' with locators? With this feature enabled, the driver will delay
loading the actual Blob data until the one of the retrieval methods (‘getinputStream()’, 'getBytes()’,
and so forth) on the blob data stream has been accessed. For this to work, you must use a column
alias with the value of the column to the actual name of the Blob. The feature also has the following
restrictions: The SELECT that created the result set must reference only one table, the table must
have a primary key; the SELECT must alias the original blob column name, specified as a string, to
an alternate name; the SELECT must cover all columns that make up the primary key.

Default Value

false

Since Version

3.1.0

e functionsNever Ret ur nBl obs

Should the driver always treat data from functions returning BLOBs as Strings - specifically to work
around dubious metadata returned by the server for "GROUP BY" clauses?

Default Value

false

Since Version

5.0.8

e | ocatorFetchBufferSize

If '‘emulateLocators' is configured to "true", what size buffer should be used when fetching BLOB data

for 'getBinarylnputStream()'?

Default Value

1048576

Since Version

3.2.1

3.5.3.11 Datetime types processing

e connectionTi neZone

82

Configuration Properties

Configures the connection time zone which is used by Connector/J if conversion between the JVM
default and a target time zone is needed when preserving instant temporal values.

Accepts a geographic time zone name or a time zone offset from Greenwich/UTC, using a syntax

'jlava.time.Zoneld' is able to parse, or one of the two logical values "LOCAL" and "SERVER". Default

is "LOCAL". If set to an explicit time zone then it must be one that either the JVM or both the JVM
and MySQL support. If set to "LOCAL" then the driver assumes that the connection time zone is

the same as the JVM default time zone. If set to "SERVER" then the driver attempts to detect the
session time zone from the values configured on the MySQL server session variables 'time_zone'

or 'system_time_zone'. The time zone detection and subsequent mapping to a Java time zone may
fail due to several reasons, mostly because of time zone abbreviations being used, in which case an

explicit time zone must be set or a different time zone must be configured on the server.

This option itself does not set MySQL server session variable 'time_zone' to the given value. To do
that the 'forceConnectionTimeZoneToSession' connection option must be set to "true”.

Please note that setting a value to 'connectionTimeZone' in conjunction with

"forceConnectionTimeZoneToSession=false" and "preservelnstants=false" has no effect since, in this
case, neither this option is used to change the session time zone nor used for time zone conversions

of time-based data.

Former connection option 'serverTimezone' is still valid as an alias of this one but may be deprecated

in the future.

See also 'forceConnectionTimeZoneToSession' and ‘preservelnstants' for more details.

Since Version

3.0.2

f orceConnecti onTi neZoneToSessi on

If enabled, sets the time zone value determined by 'connectionTimeZone' connection property to
the current server session 'time_zone' variable. If the time zone value is given as a geographical

time zone, then Connector/J sets this value as-is in the server session, in which case the time zone
system tables must be populated beforehand (consult the MySQL Server documentation for further
details); but, if the value is given as an offset from Greenwich/UTC in any of the supported syntaxes,

then the server session time zone is set as a numeric offset from UTC.

With that no intermediate conversion between JVM default time zone and connection time zone is
needed to store correct milliseconds value of instant Java objects such as ‘java.sql.Timestamp' or
'java.time.OffsetDateTime' when stored in TIMESTAMP columns.

Note that it also affects the result of MySQL functions such as 'NOW()', 'CURTIME()' or

'CURDATE().".

This option has no effect if used in conjunction with "connectionTimeZone=SERVER" since, in this
case, the session is already set with the required time zone.

See also 'connectionTimeZone' and 'preservelnstants' for more details.

Default Value

false

Since Version

8.0.23

noDat eti meStri ngSync

Don't ensure that 'ResultSet.getTimestamp().toString().equals(ResultSet.getString())'.

Default Value

false

Since Version

3.1.7

83

Configuration Properties

preservel nstants

If enabled, Connector/J does its best to preserve the instant point on the time-line for Java instant-
based objects such as 'java.sqgl.Timestamp' or 'java.time.OffsetDateTime' instead of their original
visual form. Otherwise, the driver always uses the JVM default time zone for rendering the values it
sends to the server and for constructing the Java objects from the fetched data.

MySQL uses implied time zone conversion for TIMESTAMP values: they are converted from the
session time zone to UTC for storage, and back from UTC to the session time zone for retrieval. So,
to store the correct correct UTC value internally, the driver converts the value from the original time
zone to the session time zone before sending to the server. On retrieval, Connector/J converts the
received value from the session time zone to the JVM default one.

When storing, the conversion is performed only if the target 'SQLType', either the explicit one or the

default one, is TIMESTAMP. When retrieving, the conversion is performed only if the source column
has the TIMESTAMP, DATETIME or character type and the target class is an instant-based one, like
'java.sgl.Timestamp' or ‘java.time.OffsetDateTime".

Note that this option has no effect if used in conjunction with "connectionTimeZone=LOCAL" since,
in this case, the source and target time zones are the same. Though, in this case, it's still possible to
store a correct instant value if set together with "forceConnectionTimeZoneToSession=true".

See also 'connectionTimeZone' and 'forceConnectionTimeZoneToSession' for more details.

Default Value true
Since Version 8.0.23

sendFr acti onal Seconds

If set to "false”, the fractional seconds will always be truncated before sending any data to the server.
This option applies only to prepared statements, callable statements or updatable result sets.

Default Value true
Since Version 5.1.37

sendFr acti onal SecondsFor Ti ne

If set to "false”, the fractional seconds of 'java.sql.Time' will be ignored as required by JDBC
specification. If set to "true", its value is rendered with fractional seconds allowing to store
milliseconds into MySQL TIME column. This option applies only to prepared statements, callable
statements or updatable result sets. It has no effect if "sendFractionalSeconds=false".

Default Value true
Since Version 8.0.23

treat Mysql Dat et i neAsTi nest anp

Should the driver treat the MySQL DATETIME type as TIMESTAMP in 'ResultSet.getObject()'?
Enabling this option changes the default MySQL data type to Java type mapping for DATETIME from
'Java.time.LocalDateTime' to ‘java.sql.Timestamp'. Given the nature of the DATETIME type and its
inability to represent instant values, it is not advisable to enable this option unless the driver is used
with a framework or API that expects exclusively objects following the default MySQL data types to
Java types mapping, which is the case of, for example, 'javax.sql.rowset.CachedRowSet'".

Default Value false

Since Version 8.2.0

treat Uti | Dat eAsTi nest anp

84

Configuration Properties

Should the driver treat ‘java.util.Date' as a TIMESTAMP in 'PreparedStatement.setObject()'?

Default Value

true

Since Version

5.0.5

e yearl sDateType

Should the JDBC driver treat the MySQL type YEAR as a ‘java.sql.Date’, or as a SHORT?

Default Value

true

Since Version

3.1.9

« zeroDat eTi neBehavi or

What should happen when the driver encounters DATETIME values that are composed entirely of
zeros - used by MySQL to represent invalid dates? Valid values are "EXCEPTION", "ROUND" and

"CONVERT_TO_NULL".

Default Value

EXCEPTION

Since Version

3.14

3.5.3.12 High Availability and Clustering

e aut oReconnect

Should the driver try to re-establish stale and/or dead connections? If enabled the driver will throw an
exception for queries issued on a stale or dead connection, which belong to the current transaction,
but will attempt reconnect before the next query issued on the connection in a new transaction. The
use of this feature is not recommended, because it has side effects related to session state and

data consistency when applications don't handle SQLExceptions properly, and is only designed to
be used when you are unable to configure your application to handle SQLEXxceptions resulting from
dead and stale connections properly. Alternatively, as a last option, investigate setting the MySQL
server variable 'wait_timeout' to a high value, rather than the default of 8 hours.

Default Value

false

Since Version

1.1

e aut oReconnect For Pool s

Use a reconnection strategy appropriate for connection pools?

Default Value

false

Since Version

3.1.3

o fail OverReadOnly

When failing over in ‘autoReconnect’' mode, should the connection be set to 'read-only'?

Default Value

true

Since Version

3.0.12

e maxReconnects

Maximum number of reconnects to attempt if 'autoReconnect' is "true".

Default Value

3

85

Configuration Properties

86

Since Version 1.1

reconnect At TxEnd

If ‘autoReconnect' is set to "true", should the driver attempt reconnections at the end of every
transaction?

Default Value false

Since Version 3.0.10

retri esAl | Down

When using load balancing or failover, the number of times the driver should cycle through available
hosts, attempting to connect. Between cycles, the driver will pause for 250 ms if no servers are
available.

Default Value 120

Since Version 5.1.6

i nitial Ti meout

If ‘autoReconnect' is enabled, the initial time to wait between re-connect attempts (in seconds,
defaults to "2").

Default Value

Since Version 1.1

quer i esBef or eRet r ySour ce

When using multi-host failover, the number of queries to issue before falling back to the
primary host when failed over. Whichever condition is met first, '‘queriesBeforeRetrySource' or
'secondsBeforeRetrySource' will cause an attempt to be made to reconnect to the primary host.
Setting both properties to "0" disables the automatic fall back to the primary host at transaction
boundaries.

Default Value 50

Since Version 3.0.2

secondsBef or eRet r ySour ce

How long, in seconds, should the driver wait when failed over, before attempting to reconnect
to the primary host? Whichever condition is met first, ‘queriesBeforeRetrySource' or
'secondsBeforeRetrySource' will cause an attempt to be made to reconnect to the source host.
Setting both properties to "0" disables the automatic fall back to the primary host at transaction
boundaries.

Default Value 30

Since Version 3.0.2

al | onRepl i caDownConnect i ons

By default, a replication-aware connection will fail to connect when configured replica hosts are
all unavailable at initial connection. Setting this property to "true" allows to establish the initial

Configuration Properties

connection to read-only state. The property 'readFromSourceWhenNoReplicas' should be used for

this purpose.

Default Value

false

Since Version

6.0.2

al | owSour ceDownConnecti ons

By default, a replication-aware connection will fail to connect when configured source hosts are
all unavailable at initial connection. Setting this property to "true" allows to establish the initial
connection, by failing over to the replica servers, in read-only state. It won't prevent subsequent
failures when switching back to the source hosts i.e. by setting the replication connection to read/

write state.

Default Value

false

Since Version

5.1.27

ha. enabl eJMX

Enables JMX-based management of load-balanced connection groups, including live addition/
removal of hosts from load-balancing pool. Enables JMX-based management of replication
connection groups, including live replica promaotion, addition of new replicas and removal of source
or replica hosts from load-balanced source and replica connection pools.

Default Value

false

Since Version

5.1.27

| oadBal anceHost Renoval GracePeri od

Sets the grace period to wait for a host being removed from a load-balanced connection, to be

released when it is currently the active host.

Default Value

15000

Since Version

6.0.3

r eadFr onSour ceWhenNoRepl i cas

Replication-aware connections distribute load by using the source hosts when in read/write state and
by using the replica hosts when in read-only state. If, when setting the connection to read-only state,
none of the replica hosts are available, an 'SQLEXxception' is thrown back. Setting this property to

"true" allows to fail over to the source hosts, while setting the connection state to read-only, when no

replica hosts are available at switch instant.

Default Value

false

Since Version

6.0.2

sel f Dest ruct OnPi ngMaxQper at i ons

If set to a non-zero value, the driver will report close the connection and report failure when
‘com.mysql.cj.jdbc.JdbcConnection.ping()' or ‘java.sql.Connection.isValid(int)' is called if the
connection's count of commands sent to the server exceeds this value.

Default Value

Since Version

5.1.6 8

Configuration Properties

sel f Dest ruct OnPi ngSecondsLi feti ne

If set to a non-zero value, the driver will close the connection and report failure when
‘com.mysql.cj.jdbc.JdbcConnection.ping()' or ‘java.sql.Connection.isValid(int)' is called if the
connection's lifetime exceeds this value, specified in milliseconds.

Default Value 0

Since Version 5.1.6

ha. | oadBal anceStr at egy

If using a load-balanced connection to connect to SQL servers in a MySQL Cluster configuration (by
using the URL prefix "jdbc:mysgl:loadbalance://"), which load balancing algorithm should the driver
use: (1) "random" - the driver will pick a random host for each request. This tends to work better than
round-robin, as the randomness will somewhat account for spreading loads where requests vary in
response time, while round-robin can sometimes lead to overloaded nodes if there are variations in
response times across the workload. (2) "bestResponseTime" - the driver will route the request to
the host that had the best response time for the previous transaction. (3) "serverAffinity" - the driver
initially attempts to enforce server affinity while still respecting and benefiting from the fault tolerance
aspects of the load-balancing implementation. The server affinity ordered list is provided using the
property 'serverAffinityOrder'. If none of the servers listed in the affinity list is responsive, the driver
then refers to the "random" strategy to proceed with choosing the next server.

Default Value random

Since Version 5.0.6

| oadBal anceAut oConmi t St at ement Regex

When load-balancing is enabled for auto-commit statements (via
'loadBalanceAutoCommitStatementThreshold'), the statement counter will only increment when the
SQL matches the regular expression. By default, every statement issued matches.

Since Version ‘5.1.15

| oadBal anceAut oConmi t St at enent Thr eshol d

When auto-commit is enabled, the number of statements which should be executed before triggering
load-balancing to rebalance. Default value of "0" causes load-balanced connections to only
rebalance when exceptions are encountered, or auto-commit is disabled and transactions are
explicitly committed or rolled back.

Default Value 0

Since Version 5.1.15

| oadBal anceBl ockl i st Ti neout

Time in milliseconds between checks of servers which are unavailable, by controlling how long a
server lives in the global blocklist.

Default Value 0

Since Version 5.1.0

| oadBal anceConnecti onGr oup

Logical group of load-balanced connections within a class loader, used to manage different groups
independently. If not specified, live management of load-balanced connections is disabled.

Since Version 5.1.13

88

Configuration Properties

| oadBal anceExcepti onChecker

Fully-qualified class name of custom exception checker. The class must implement
‘com.mysql.cj.jdbc.ha.LoadBalanceExceptionChecker' interface, and is used to inspect
'SQLException' exceptions and determine whether they should trigger fail-over to another host in a

load-balanced deployment.

Default Value

com.mysql.cj.jdbc.ha.StandardLoadBalanceExcep

Since Version

5.1.13

| oadBal ancePi ngTi nmeout

Time in milliseconds to wait for ping responses from each of load-balanced physical connections

when using a load-balanced connection.

Default Value

0

Since Version

5.1.13

| oadBal anceSQLExcepti onSubcl assFai | over

Comma-delimited list of classes/interfaces used by default load-balanced exception checker to
determine whether a given 'SQLException' should trigger a failover. The comparison is done using
'Class.isInstance(SQLEXxception)' using the 'SQLException' thrown.

Since Version

5.1.13

| oadBal anceSQLSt at eFai | over

Comma-delimited list of 'SQLState' codes used by the default load-balanced exception checker
to determine whether a given 'SQLException' should trigger a failover. The 'SQLState' of a given
'SQLEXxception' is evaluated to determine whether it begins with any of the values specified in the

comma-delimited list.

Since Version

5.1.13

| oadBal anceVal i dat eConnecti onOnSwapSer ver

Should the load-balanced connection explicitly check whether the connection is live when swapping

to a new physical connection at commit/rollback?

Default Value

false

Since Version

5.1.13

pi nd@ obal TxToPhysi cal Connecti on

When using XA connections, should the driver ensure that operations on a given XID are always
routed to the same physical connection? This allows the "XAConnection' to support "XA START ...

JOIN" after "XA END" has been called.

Default Value

false

Since Version

5.0.1

replicationConnecti onG oup

Logical group of replication connections within a class loader, used to manage different groups
independently. If not specified, live management of replication connections is disabled.

tionChe

Since Version

8.0.7

89

Configuration Properties

e resourceld

A globally unique name that identifies the resource that this data source or connection is connected

to, used for "XAResource.isSameRM()' when the driver can't determine this value based on
hostnames used in the URL.

Since Version 5.0.1

* serverAffinityOder

A comma separated list containing the host/port pairs that are to be used in load-balancing
"serverAffinity" strategy. Only the sub-set of the hosts enumerated in the main hosts section in this

URL will be used and they must be identical in case and type, i.e., can't use an IP address in one
place and the corresponding host name in the other.

Since Version 8.0.8

3.5.3.13 Performance Extensions

e cal |l abl eSt nt CacheSi ze

If ‘cacheCallableStmts' is enabled, how many callable statements should be cached?

Default Value 100

3.1.2

Since Version

 net adat aCacheSi ze

The number of queries to cache 'ResultSetMetadata’ for if ‘cacheResultSetMetaData' is set to "true".

Default Value
Since Version

50
3.1.1

e uselocal Sessi onSt at e

Should the driver refer to the internal values of auto-commit and transaction isolation that are set by
‘Connection.setAutoCommit()' and 'Connection.setTransactionlsolation()' and transaction state as

maintained by the protocol, rather than querying the database or blindly sending commands to the
database for ‘commit()' or 'rollback()' method calls?

Default Value false

3.1.7

Since Version

e uselLocal Transacti onSt ate

Should the driver use the in-transaction state provided by the MySQL protocol to determine if a
‘commit()' or 'rollback()' should actually be sent to the database?

Default Value false

5.1.7

Since Version

* prepStnt CacheSi ze

If prepared statement caching is enabled, how many prepared statements should be cached?

Default Value 25

3.0.10

Since Version

Configuration Properties

prepSt nmt CacheSql Li m t

If prepared statement caching is enabled, what's the largest SQL the driver will cache the parsing

for?
Default Value 256
Since Version 3.0.10

quer yl nf oCacheFact ory

Name of a class implementing ‘com.mysql.cj.CacheAdapterFactory' which will be used to create
caches for the parsed representation of prepared statements. Prior to version 8.0.29, this property
was named ‘parselnfoCacheFactory', which remains as an alias.

Default Value

com.mysql.cj.PerConnectionLRUFactory

Since Version

511

server Confi gCacheFact ory

Name of a class implementing 'com.mysql.cj.CacheAdapterFactory', which will be used to create

caches for MySQL server configuration values.

Default Value

com.mysql.cj.util.PerVmServerConfigCacheFactor

Since Version

511

al waysSendSet | sol ati on

Should the driver always communicate with the database when
‘Connection.setTransactionlsolation()' is called? If set to "false", the driver will only communicate with
the database when the requested transaction isolation is different than the whichever is newer, the
last value that was set via 'Connection.setTransactionlsolation()', or the value that was read from the
server when the connection was established. Note that "useLocalSessionState=true" will force the
same behavior as "alwaysSendSetlsolation=false", regardless of how 'alwaysSendSetlsolation' is

set.
Default Value true
Since Version 3.1.7

mai nt ai nTi neSt at s

Should the driver maintain various internal timers to enable idle time calculations as well as more
verbose error messages when the connection to the server fails? Setting this property to false
removes at least two calls to 'System.getCurrentTimeMillis()' per query.

Default Value

true

Since Version

3.1.9

useCur sor Fet ch

Should the driver use cursor-based fetching to retrieve rows? If set to "true" and 'defaultFetchSize'
is set to a value higher than zero or 'setFetchSize()' with a value higher than zero is called on a

statement, then the cursor-based result set will be used. Please note that 'useServerPrepStmts' is
automatically set to "true" in this case because cursor functionality is available only for server-side

prepared statements.

Default Value

false

Since Version

5.0.0

91

Configuration Properties

cacheCal | abl eStnt s

Should the driver cache the parsing stage of CallableStatements?

Default Value

false

Since Version

3.1.2

cachePrepStnts

Should the driver cache the parsing stage of PreparedStatements of client-side prepared statements,
the "check" for suitability of server-side prepared and server-side prepared statements themselves?

Default Value

false

Since Version

3.0.10

cacheResul t Set Met adat a

Should the driver cache 'ResultSetMetaData' for statements and prepared statements?

Default Value

false

Since Version

3.11

cacheServer Confi guration

Should the driver cache the results of "SHOW VARIABLES" and "SHOW COLLATION" on a per-URL

basis?

Default Value

false

Since Version

3.15

defaul t Fet chSi ze

The driver will call 'setFetchSize(n)' with this value on all newly-created statements.

Default Value

Since Version

3.1.9

dont CheckOnDupl i cat eKeyUpdat el nSQL

Stops checking if every INSERT statement contains the "ON DUPLICATE KEY UPDATE" clause. As
a side effect, obtaining the statement's generated keys information will return a list where normally it
would not. Also be aware that, in this case, the list of generated keys returned may not be accurate.

The effect of this property is canceled if set simultaneously with "rewriteBatchedStatements=true".

Default Value

false

Since Version

5.1.32

el i deSet Aut oCommi t's

Should the driver only issue 'set autocommit=n' queries when the server's state doesn't match the
requested state by 'Connection.setAutoCommit(boolean)'?

92

Default Value

false

Since Version

3.1.3

Configuration Properties

enabl eEscapePr ocessi ng

Sets the default escape processing behavior for Statement objects. The method
'Statement.setEscapeProcessing()' can be used to specify the escape processing behavior for an
individual statement object. Default escape processing behavior in prepared statements must be
defined with the property 'processEscapeCodesForPrepStmts'.

Default Value true

Since Version 6.0.1

enabl eQuer yTi neout s

When enabled, query timeouts set via 'Statement.setQueryTimeout()' use a shared 'java.util. Timer'
instance for scheduling. Even if the timeout doesn't expire before the query is processed, there will
be memory used by the 'TimerTask' for the given timeout which won't be reclaimed until the time the
timeout would have expired if it hadn't been cancelled by the driver. High-load environments might
want to consider disabling this functionality.

Default Value true

Since Version 5.0.6

| ar geRowSi zeThr eshol d

What size result set row should the JDBC driver consider large, and thus use a more memory-
efficient way of representing the row internally?

Default Value 2048

Since Version 5.1.1

readOnl yPr opagat esToSer ver

Should the driver issue appropriate statements to implicitly set the transaction access mode on
server side when 'Connection.setReadOnly()' is called? Setting this property to "true" enables
InnoDB read-only potential optimizations but also requires an extra roundtrip to set the right
transaction state. Even if this property is set to "false", the driver will do its best effort to prevent the
execution of database-state-changing queries.

Default Value true
Since Version 5.1.35

rew iteBat chedSt at enents

Should the driver use multi-queries, regardless of the setting of 'allowMultiQueries', as well as
rewriting of prepared statements for INSERT and REPLACE queries into multi-values clause
statements when 'executeBatch()' is called?

Notice that this might allow SQL injection when using plain statements and the provided input is
not properly sanitized. Also notice that for prepared statements, if the stream length is not specified
when using 'PreparedStatement.set*Stream()’, the driver would not be able to determine the
optimum number of parameters per batch and might return an error saying that the resultant packet
is too large.

‘Statement.getGeneratedKeys()', for statements that are rewritten only works when the entire batch
consists of INSERT or REPLACE statements.

Be aware that when using "rewriteBatchedStatements=true" with "INSERT ... ON DUPLICATE
KEY UPDATE" for rewritten statements, the server returns only one value for all affected (or
found) rows in the batch, and it is not possible to map it correctly to the initial statements; in this

93

Configuration Properties

case the driver returns "0" as the result for each batch statement if total count was zero, and
'Statement. SUCCESS_NO_INFO' if total count was above zero.

Default Value false

Since Version 3.1.13

useReadAheadl nput

Use optimized non-blocking buffered input stream when reading from the server?

Default Value true

Since Version 3.1.5

3.5.3.14 Debugging/Profiling

| ogger

The name of a class that implements '‘com.mysql.cj.log.Log' that will be used to log messages to.
(default is 'com.mysql.cj.log.StandardLogger', which logs to STDERR).

Default Value com.mysql.cj.log.StandardLogger

Since Version 3.11

profil er Event Handl er

Name of a class that implements the interface ‘com.mysql.cj.log.ProfilerEventHandler' that will be
used to handle profiling/tracing events.

Default Value com.mysql.cj.log.LoggingProfilerEventHandler

Since Version 5.1.6

useNanosFor El apsedTi ne

For profiling/debugging functionality that measures elapsed time, should the driver try to use
nanoseconds resolution?

Default Value false

Since Version 5.0.7

maxQuerySi zeTolLog

Controls the maximum length of the part of a query that will get logged when profiling or tracing.

Default Value 2048

Since Version 3.1.3

maxByt eAr r ay AsHex

Maximum size for a byte array parameter in a prepared statement that is converted to a hexadecimal
literal when interpolated by 'JdbcPreparedStatement.toString()'. Any byte arrays larger than this
value are interpolated generically as "** BYTE ARRAY DATA **",

94

Default Value 1024

Since Version 8.0.31

Configuration Properties

Trace queries and their execution/fetch times to the configured 'profilerEventHandler'.

Default Value

false

Since Version

3.1.0

| ogSl owQueri es

Should queries that take longer than 'slowQueryThresholdMillis' or detected by the 'autoSlowLog'
monitoring be reported to the registered 'profilerEventHandler'?

Default Value

false

Since Version

3.1.2

sl owQueryThresholdM I li s

If 'logSlowQueries' is enabled, how long, in milliseconds, should a query take before it is logged as

slow?

Default Value

2000

Since Version

3.1.2

sl owQuer yThr eshol dNanos

If 'logSlowQueries' is enabled, 'useNanosForElapsedTime' is set to "true", and this property is set to
a non-zero value, the driver will use this threshold, in nanosecond units, to determine if a query was

slow.

Default Value

Since Version

5.0.7

aut oSl owlLog

Instead of using 'slowQueryThreshold*' to determine if a query is slow enough to be logged, maintain
statistics that allow the driver to determine queries that are outside the 99th percentile?

Default Value

true

Since Version

5.14

expl ai nSl owQueri es

If 'logSlowQueries' is enabled, should the driver automatically issue an 'EXPLAIN' on the server and
send the results to the configured logger at a WARN level?

Default Value

false

Since Version

3.1.2

gat her Perf Metri cs

Should the driver gather performance metrics, and report them via the configured logger every

‘reportMetricsintervalMillis' milliseconds?

Default Value

false

Since Version

(o]
al

3.1.2

Configuration Properties

reportMetricsintervalMIlis

If 'gatherPerfMetrics' is enabled, how often should they be logged (in milliseconds)?

Default Value

30000

Since Version

3.1.2

| ogXaCommands

Should the driver log XA commands sent by 'MysqglXaConnection' to the server, at the DEBUG level

of logging?
Default Value false
Since Version 5.0.5

tracePr ot ocol

Should the network protocol be logged at the TRACE level?

Default Value

false

Since Version

3.1.2

enabl ePacket Debug

When enabled, a ring-buffer of 'packetDebugBufferSize' packets will be kept, and dumped when
exceptions are thrown in key areas in the driver's code.

Default Value

false

Since Version

3.1.3

packet DebugBuf fer Si ze

The maximum number of packets to retain when 'enablePacketDebug’ is "true".

Default Value

20

Since Version

3.1.3

useUsageAdvi sor

Should the driver issue usage warnings advising proper and efficient usage of JDBC and MySQL

Connector/J to the 'profilerEventHandler'?

Default Value

false

Since Version

3.11

resul t Set Si zeThr eshol d

If 'useUsageAdvisor' is "true”, how many rows should a result set contain before the driver warns that

it is suspiciously large?

Default Value

100

Since Version

5.0.5

aut oGener at eTest caseScri pt

Should the driver dump the SQL it is executing, including server-side prepared statements to

STDERR?

Configuration Properties

Default Value false

Since Version 3.19

3.5.3.15 Exceptions/Warnings

dunpQueri esOnExcepti on

Should the driver dump the contents of the query sent to the server in the message for

SQLExceptions?
Default Value false
Since Version 3.1.3

exceptionlnterceptors

Comma-delimited list of classes that implement the interface
‘com.mysql.cj.exceptions.Exceptioninterceptor'. These classes will be instantiated one per
‘Connection' instance, and all 'SQLException' exceptions thrown by the driver will be allowed to be
intercepted by these interceptors, in a chained fashion, with the first class listed as the head of the

chain.

Since Version 5.1.8

i gnor eNonTxTabl es

Ignore non-transactional table warning for rollback?

Default Value false

Since Version 3.09

i ncl udel nnodbSt at usl nDeadl ockExcepti ons

Include the output of "SHOW ENGINE INNODB STATUS" in exception messages when deadlock

exceptions are detected?

Default Value false

Since Version

5.0.7

i ncl udeThr eadDunpl nDeadl ockExcepti ons

Include current Java thread dump in exception messages when deadlock exceptions are detected?

Default Value

false

Since Version

5.1.15

i ncl udeThr eadNanmesAsSt at enent Conment

Include the name of the current thread as a comment visible in "SHOW PROCESSLIST", or in

Innodb deadlock dumps, useful in correlation with "includelnnodbStatusinDeadlockExceptions=true"
and "includeThreadDumplnDeadlockExceptions=true".

Default Value

false

Since Version

5.1.15

useOnl ySer ver Err or Messages

Don't prepend standard 'SQLState' error messages to error messages returned by the server.

97

Configuration Properties

Default Value true

Since Version 3.0.15

3.5.3.16 Tunes for integration with other products

overrideSupportsintegrityEnhancenentFacility

Should the driver return "true" for 'DatabaseMetaData.supportsintegrityEnhancementFacility()' even
if the database doesn't support it to workaround applications that require this method to return "true”
to signal support of foreign keys, even though the SQL specification states that this facility contains

much more than just foreign key support (one such application being OpenOffice)?

Default Value false

Since Version 3.1.12

ul t raDevHack

Create prepared statements for 'prepareCall()' when required, because UltraDev is broken and
issues a 'prepareCall()' for all statements?

Default Value false

Since Version 2.0.3

3.5.3.17 JDBC compliance

useCol umNanes| nFi ndCol um

Prior to JDBC-4.0, the JDBC specification had a bug related to what could be given as a

column name to result set methods like ‘findColumn()’', or getters that took a String property.
JDBC-4.0 clarified "column name" to mean the label, as given in an "AS" clause and returned by
'ResultSetMetaData.getColumnLabel()’, and if no "AS" clause is specified, the column name. Setting
this property to "true” will result in a behavior that is congruent to JDBC-3.0 and earlier versions of
the JDBC specification, but which could have unexpected results. This property is preferred over
‘'useOldAliasMetadataBehavior' unless in need of the specific behavior that it provides with respect to
'ResultSetMetadata’.

Default Value false
Since Version 5.1.7
pedantic

Follow the JDBC specification to the letter.

Default Value false

Since Version 3.0.0

used dAl i asMet adat aBehavi or

Should the driver use the legacy behavior for "AS" clauses on columns and tables, and only return
aliases ,if any, for 'ResultSetMetaData.getColumnName()' or 'ResultSetMetaData.getTableName()'
rather than the original column/table name?

Default Value false

98

Since Version 5.04

Configuration Properties

3.5.3.18 X Protocol and X DevAPI
e xdevapi . auth

Authentication mechanism to use with the X Protocol. Allowed values are "SHA256_ MEMORY",
"MYSQL41", "PLAIN", and "EXTERNAL". Value is case insensitive. If the property is not set, the
mechanism is chosen depending on the connection type: "PLAIN" is used for TLS connections and
"SHA256_MEMORY" or "MYSQL41" is used for unencrypted connections.

Default Value PLAIN
Since Version 8.0.8

« xdevapi . conpressi on

X DevAPI-specific network traffic compression. This option accepts one of the three values:
"PREFERRED", "REQUIRED", and "DISABLED". Setting this option to "PREFERRED" or
"REQUIRED" enables compression algorithm negotiation between Connector and Server, and turns
on compression of large X Protocol packets, as long as a consensus is reached between client and
server regarding the compression algorithm to use. If a consensus cannot be reached, connection
fails if the option is set to "REQUIRED" and continues without compression if the option is set to
"PREFERRED". Setting this option as "DISABLED" skips the compression negotiation phase and
forbids the interchange of compressed messages between client and server.

Default Value PREFERRED
Since Version 8.0.20

» xdevapi . conpressi on-al gorithns

A comma-delimited list of compression algorithms, each one identified by its name and

operating mode, (e.g. "Iz4_message"; consult the description for the MySQL global variable
'mysqlx_compression_algorithms' for a list of supported and enabled algorithms), that defines the
order and which algorithms will be attempted when negotiating connection compression with the
server.

The compression algorithm 'deflate_stream’ is supported natively. Additional compression
algorithms require using third-party libraries and enabling them with the connection property
'xdevapi.compression-extensions'.

This option is meaningful only when network traffic compression is enabled using the connection
property 'xdevapi.compression'.

As an alternative to the default algorithm names, that contain a reference to the compression
operation mode, the aliases "zstd", "lz4", and "deflate" can be used instead of "zstd_stream",
"Iz4_message", and "deflate_stream".

Default Value zstd_stream,lz4_message,deflate_stream
Since Version 8.0.22

« xdevapi . conpressi on- ext ensi ons

A comma-delimited list of triplets, with their elements delimited by colon, that enables the support

for additional compression algorithms. Each triplet must contain: first, an algorithm name and
operating mode (e.g. "Iz4_message"; consult the description for the MySQL global variable
'mysqlx_compression_algorithms' for a list of supported and enabled algorithms); second, a fully-
qualified class name of a class implementing the interface ‘java.io.InputStream’ that will be used

to inflate data compressed with the named algorithm; third, a fully-qualified class name of a class
implementing the interface ‘java.io.OutputStream™ that will be used to deflate data Using the named gq

Configuration Properties

algorithm. Along with this setting, the library containing implementations of the designated classes
must be available in the application's class path.

Any number of triplets defining compression algorithms and their inflater and deflater
implementations can be provided but only the ones supported and enabled on the MySQL Server
can be used.

The compression algorithm ‘deflate_stream' is supported natively. Additional compression algorithms
require using third-party libraries.

This option is meaningful only when network traffic compression is enabled using the connection
property 'xdevapi.compression'.

As an alternative to the default algorithm names, that contain a reference to the compression
operation mode, the aliases "zstd", "lz4", and "deflate" can be used instead of "zstd_stream",
"Iz4_message", and "deflate_stream".

Since Version 8.0.22

xdevapi . connect -t i meout

X DevAPI-specific timeout, in milliseconds, for socket connect, with "0" being no timeout. If
'xdevapi.connect-timeout' is not set explicitly and 'connectTimeout' is, 'xdevapi.connect-timeout' takes
up the value of 'connectTimeout'.

Default Value 10000
Since Version 8.0.13

xdevapi . connection-attributes

An X DevAPI-specific comma-delimited list of user-defined "key=value" pairs, in addition to standard
X Protocol-defined "key=value" pairs, to be passed to MySQL Server for display as connection
attributes in the 'PERFORMANCE_SCHEMA' tables 'session_account_connect_attrs' and
'session_connect_attrs'. Example usage: "xdevapi.connection-attributes=keyl=valuel,key2=value2"
or "xdevapi.connection-attributes=[keyl=valuel,key2=value2]". This functionality is available for

use with MySQL Server version 8.0.16 or later only. Earlier versions of X Protocol do not support
connection attributes, causing this configuration option to be ignored. For situations where Session
creation/initialization speed is critical, setting "xdevapi.connection-attributes=false" will cause
connection attribute processing to be bypassed.

Since Version 8.0.16

xdevapi . dns-srv

X DevAPI-specific option for instructing the driver use the given host name to lookup for DNS SRV
records and use the resulting list of hosts in a multi-host failover connection. Note that a single host
name and no port must be provided when this option is enabled.

Default Value false
Since Version 8.0.19

xdevapi . fal | back-to-system keystore

X DevAPI-specific switch to specify whether in the absence of a set value for 'xdevapi.ssl-
keystore' (or 'clientCertificateKeyStoreUrl"), Connector/J falls back to using the system-wide key
store defined through the system properties ‘javax.net.ssl.keyStore*'. If not specified, the value of
'fallbackToSystemKeyStore' is used.

‘ Default Value ‘true

100

Configuration Properties

‘Since Version ‘8.0.22

» xdevapi . fall back-to-systemtruststore

X DevAPI-specific switch to specify whether in the absence of a set value for 'xdevapi.ssl-
truststore' (or 'trustCertificateKeyStoreUrl'), Connector/J falls back to using the system-wide default
trust store or one defined through the system properties ‘javax.net.ssl.trustStore*'. If not specified,
the value of 'fallbackToSystemTrustStore' is used.

Default Value true

Since Version 8.0.22

» xdevapi . ssl -keystore

X DevAPI-specific URL for the client certificate key store. If not specified, use
‘clientCertificateKeyStoreUrl' value.

Since Version 8.0.22

» xdevapi . ssl - keyst or e- passwor d

X DevAPI-specific password for the client certificate key store. If not specified, use
‘clientCertificateKeyStorePassword' value.

Since Version 8.0.22

» xdevapi . ssl -keystore-type

X DevAPI-specific type of the client certificate key store. If not specified, use
‘clientCertificateKeyStoreType' value.

Default Value JKS
Since Version 8.0.22

xdevapi . ssl - node

X DevAPI-specific SSL mode setting. If not specified, use 'ssIMode'. Because the "PREFERRED"
mode is not applicable to X Protocaol, if 'xdevapi.ssl-mode' is not set and 'ssIMode' is set to
"PREFERRED", 'xdevapi.ssl-mode' is set to "REQUIRED".

Default Value REQUIRED
Since Version 8.0.7

» xdevapi.ssl-truststore

X DevAPI-specific URL for the trusted CA certificates key store. If not specified, use
'trustCertificateKeyStoreUrl' value.

Since Version 6.0.6

» xdevapi . ssl -truststore-password

X DevAPI-specific password for the trusted CA certificates key store. If not specified, use
‘trustCertificateKeyStorePassword' value.

Since Version 6.0.6

e xdevapi.ssl-truststore-type

101

JDBC API Implementation Notes

X DevAPI-specific type of the trusted CA certificates key store. If not specified, use
'trustCertificateKeyStoreType' value.

Default Value JKS

Since Version 6.0.6

* xdevapi .tls-ciphersuites

X DevAPI-specific property overriding the cipher suites enabled for use on the underlying SSL
sockets. If not specified, the value of ‘enabledSSLCipherSuites' is used.

Since Version 8.0.19

» xdevapi .tls-versions

X DevAPI-specific property that takes a list of TLS protocols to allow when creating secure sessions.
Overrides the TLS protocols enabled in the underlying SSL socket. If not specified, then the value of
'tlsVersions' is used instead. Allowed and default values are "TLSv1.2" and "TLSv1.3".

‘Since Version ‘8.0.19

3.5.4 JDBC API Implementation Notes

MySQL Connector/J, as a rigorous implementation of the JDBC API, passes all of the tests in the
publicly available version of Oracle's JDBC compliance test suite. The JDBC specification is flexible

on how certain functionality should be implemented. This section gives details on an interface-by-
interface level about implementation decisions that might affect how you code applications with MySQL
Connector/J.

» BLOB

You can emulate BLOBs with locators by adding the property enul at eLocat or s=t r ue to your
JDBC URL. Using this method, the driver will delay loading the actual BLOB data until you retrieve
the other data and then use retrieval methods (get | nput St rean{() , get Byt es(), and so forth) on
the BLOB data stream.

You must use a column alias with the value of the column to the actual name of the BLOB, for
example:

SELECT id, 'data' as blob_data from bl obt abl e
You must also follow these rules:
« The SELECT must reference only one table. The table must have a primary key.

e The SELECT must alias the original BLOB column name, specified as a string, to an alternate
name.

e The SELECT must cover all columns that make up the primary key.

The BLOB implementation does not allow in-place modification (they are copies, as reported

by the Dat abaseMet aDat a. | ocat or sUpdat eCopi es() method). Because of this, use the
corresponding Pr epar edSt at enent . set Bl ob() or Resul t Set . updat eBl ob() (in the case of
updatable result sets) methods to save changes back to the database.

» Connection

The i sCl osed() method does not ping the server to determine if it is available. In accordance with
the JDBC specification, it only returns true if cl osed() has been called on the connection. If you

102

http://www.oracle.com/technetwork/java/javase/jdbc/index.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_primary_key
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/select.html

JDBC API Implementation Notes

need to determine if the connection is still valid, issue a simple query, such as SELECT 1. The driver
will throw an exception if the connection is no longer valid.

DatabaseMetaData

Foreign key information (get | npor t edKeys() /get Export edKeys() and

get Cr ossRef erence()) is only available from | nnoDB tables. The driver uses SHON CREATE
TABLE to retrieve this information, so if any other storage engines add support for foreign keys, the
driver would transparently support them as well.

PreparedStatement

Two variants of prepared statements are implemented by Connector/J, the client-side and the
server-side prepared statements. Client-side prepared statements are used by default because
early MySQL versions did not support the prepared statement feature or had problems with

its implementation. Server-side prepared statements and binary-encoded result sets are used
when the server supports them. To enable usage of server-side prepared statements, set
useServer PrepSt nt s=true.

Be careful when using a server-side prepared statement with large parameters that

are set using set Bi naryStrean(), set Ascii Strean(), set Uni codeSt ream(),

set Charact er Strean(), set NCharacter Strean{(), set Bl ob(), set Cl ob(), or

set NCLob() . To re-execute the statement with any large parameter changed to a nonlarge
parameter, call cl ear Par anet er s() and set all parameters again. The reason for this is as
follows:

« During both server-side prepared statements and client-side emulation, large data is exchanged
only when Pr epar edSt at enent . execut e() is called.

* Once that has been done, the stream used to read the data on the client side is closed (as per the
JDBC spec), and cannot be read from again.

 If a parameter changes from large to nonlarge, the driver must reset the server-side state of
the prepared statement to allow the parameter that is being changed to take the place of the
prior large value. This removes all of the large data that has already been sent to the server,
thus requiring the data to be re-sent, using the set Bi narySt rean(), set Ascii Strean(),
set Uni codeStrean(), set Character Strean(), set NCharacter Strean(), set Bl ob(),
set Cl ob(), orset NCLob() method.

Consequently, to change the type of a parameter to a nonlarge one, you must call
cl ear Par anet er s() and set all parameters of the prepared statement again before it can be re-
executed.

ResultSet

By default, ResultSets are completely retrieved and stored in memory. In most cases this is the
most efficient way to operate and, due to the design of the MySQL network protocol, is easier to
implement. If you are working with ResultSets that have a large number of rows or large values and
cannot allocate heap space in your JVM for the memory required, you can tell the driver to stream
the results back one row at a time.

To enable this functionality, create a St at enent instance in the following manner:

stnmt = conn. createStatement (j ava. sgl . Resul t Set . TYPE_FORWARD_ONLY,
java. sql . Resul t Set . CONCUR_READ_ONLY) ;

103

https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_foreign_key
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/show-create-table.html
https://dev.mysql.com/doc/refman/8.0/en/show-create-table.html

JDBC API Implementation Notes

stnt. set FetchSi ze(l nteger. M N_VALUE) ;

The combination of a forward-only, read-only result set, with a fetch size of | nt eger . M N_VALUE
serves as a signal to the driver to stream result sets row-by-row. After this, any result sets created
with the statement will be retrieved row-by-row.

There are some caveats with this approach. You must read all of the rows in the result set (or close
it) before you can issue any other queries on the connection, or an exception will be thrown.

The earliest the locks these statements hold can be released (whether they be Myl SAMtable-level
locks or row-level locks in some other storage engine such as | nnoDB) is when the statement
completes.

If the statement is within scope of a transaction, then locks are released when the transaction
completes (which implies that the statement needs to complete first). As with most other databases,
statements are not complete until all the results pending on the statement are read or the active
result set for the statement is closed.

Therefore, if using streaming results, process them as quickly as possible if you want to maintain
concurrent access to the tables referenced by the statement producing the result set.

Another alternative is to use cursor-based streaming to retrieve a set number of rows each time.
This can be done by setting the connection property useCur sor Fet ch to true, and then calling
set Fet chSi ze(i nt) withi nt being the desired number of rows to be fetched each time:

conn = DriverManager. get Connection("jdbc: nysql://|ocal host/ ?useCursor Fet ch=true", "user", "s3cr3t");
stm = conn.createStatenent();

stnt. set Fet chSi ze(100) ;

rs = stnt.executeQuery("SELECT * FROM your _tabl e_here");

* Statement

Connector/J includes support for both St at enent . cancel () and

St at ement . set Quer yTi neout () . Both require a separate connection to issue the KI LL QUERY
statement. In the case of set Quer yTi neout (), the implementation creates an additional thread to
handle the timeout functionality.

Note

Failures to cancel the statement for set Quer yTi neout () may manifest
themselves as Runt i mneExcept i on rather than failing silently, as there

is currently no way to unblock the thread that is executing the query being
cancelled due to timeout expiration and have it throw the exception instead.

MySQL does not support SQL cursors, and the JDBC driver does not emulate them, so
set Cur sor Namre() has no effect.

Connector/J also supplies two additional methods:

e setLocal I nfil el nput Strean() sets an | nput St r eaminstance that will be used to
send data to the MySQL server for a LOAD DATA LOCAL | NFI LE statement rather than a
Fi | el nput St r eamor URLI nput St r eamthat represents the path given as an argument to the
statement.

This stream will be read to completion upon execution of a LOAD DATA LOCAL | NFI LE
statement, and will automatically be closed by the driver, so it needs to be reset before each call

104

https://dev.mysql.com/doc/refman/8.0/en/kill.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html

Java, JDBC, and MySQL Types

to execut e* () that would cause the MySQL server to request data to fulfill the request for LOAD
DATA LOCAL | NFI LE.

If this value is set to NULL, the driver will revert to using a Fi | el nput St r eamor
URLI nput St r eamas required.

e getLocal I nfil el nput Strean() returns the | nput St r eaminstance that will be used to send
data in response to a LOAD DATA LOCAL | NFI LE statement.

This method returns NULL if no such stream has been set using
set Local I nfil el nputStream).

3.5.5 Java, JDBC, and MySQL Types

MySQL Connector/J is flexible in the way it handles conversions between MySQL data types and Java
data types.

In general, any MySQL data type can be converted to aj ava. | ang. St ri ng, and any numeric type
can be converted to any of the Java numeric types, although round-off, overflow, or loss of precision
may occur.

Connector/J issues warnings or throws Dat aTr uncat i on exceptions as is required by the
JDBC specification, unless the connection was configured not to do so by using the property
j dbcConpl i ant Truncat i on and setting it to f al se.

The conversions that are always guaranteed to work are listed in the following table. The first column
lists one or more MySQL data types, and the second column lists one or more Java types to which the
MySQL types can be converted.

Table 3.22 Possible Conversions Between MySQL and Java Data Types

These MySQL Data Types Can always be converted to these Java types

CHAR, VARCHAR, BLOB, TEXT, ENUM and |java.lang. String,

SET java.io.lnputStream java.io.Reader,
java. sql . Bl ob, java.sql.d ob

FLOAT, REAL, DOUBLE PRECI SI ON, java.lang. String, java.lang. Short,

NUVERI C, DECI MAL, TINYINT, SMALLINT, |java.l ang.Integer,

MEDI UM NT, | NTEGER, BI G NT j ava. l ang. Long, java.l ang. Doubl e,
j ava. mat h. Bi gDeci nal

DATE, TI Mg, DATETI ME, TI MESTAMP java.lang. String, java.sql.Date,
java. sgl . Ti nest anp

Note

Round-off, overflow or loss of precision may occur if you choose a Java humeric
data type that has less precision or capacity than the MySQL data type you are
converting to/from.

The Resul t Set . get Obj ect () method uses the type conversions between

MySQL and Java types, following the JDBC specification where appropriate.

The values returned by Resul t Set Met aDat a. Get Col unmTypeNane() and

Resul t Set Met aDat a. Get Col urmCl assNane() are shown in the table below. For more information
on the JDBC types, see the reference on the java.sql.Types class.

Table 3.23 MySQL Types and Return Values for ResultSetMetaData.GetColumnTypeName()and
ResultSetMetaData.GetColumnClassName()

MySQL Type Name Return value of Return value of Get Col uimdCl assNane
Get Col umTypeNane
BIT(1) BIT j ava. | ang. Bool ean

105

https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
http://docs.oracle.com/javase/8/docs/api/java/sql/Types.html

Java, JDBC, and MySQL Types

MySQL Type Name

Return value of
Get Col umTypeNane

Return value of Get Col unmC assNane

BIT(> 1)

BIT

byt e[]

TINYI NT(1) SI GNED,
BOOLEAN

If
tinylntlisBit=true
and

transf ornedBi t | sBog
BI T

If
tinylntlisBit=true
and

t ransf ornedBi t | sBog
BOOLEAN

If

tinylntlisBit=fal se:

IftinylntlisBit=trueand
t ransf or nedBi t | sBool ean=f al se:
j ava. | ang. Bool ean

| ean=f al se:
IftinylntlisBit=trueand

t ransf or nedBi t | sBool ean=t r ue:
j ava. | ang. Bool ean

IftinylntlisBit=fal se:
i a4a=t ppe: | nt eger

TI NYI NT
TINYINT(> 1) TI NYI NT j ava. | ang. | nt eger
S| GNED
TINYINT(any) TINYI NT UNSI GNED |j ava. | ang. | nt eger
UNSI GNED
SMALLI NT[(M] SIVALLI NT java.l ang. | nt eger (regardless of whether it is
[UNSI GNED] [UNSI GNED] UNSI GNED or not)
VEDI UM NT[(M] VEDI UM NT java. |l ang. | nt eger (regardless of whether it is
[UNSI GNED) [UNSI GNED] UNSI GNED or not)
I NT, | NTEGER[(M] | NTEGER j ava. | ang. | nt eger

I NT, | NTEGER[(M]

I NTEGER UNSI GNED

java. |l ang. Long

UNSI GNED

BIGANT[(M] Bl G NT java. |l ang. Long

BIGANT[(M] Bl G NT UNSI GNED j ava. mat h. Bi gl nt eger

UNSI GNED

FLOAT[(M D)] FLOAT j ava. | ang. Fl oat

DOUBLE[(M B)] DOUBLE j ava. | ang. Doubl e (regardless of whether it is

[UNSI GNED) UNSI GNED or not)

DECI MAL[(M, D))] DECI VAL j ava. mat h. Bi gDeci mal (regardless of whether

[UNSI GNED] it is UNSI GNED or not)

DATE DATE java. sql . Dat e

DATETI ME DATETI ME java.tine. Local Dat eTi ne

TI MESTAMP[(M] TI MESTAMP java.sqgl . Ti mest anp

TI ME TI ME java.sql . Time

YEAR[(2] 4)] YEAR If year | sDat eType configuration property
is setto f al se, then the returned object type
isjava. sql . Short.Ifsettotrue (the
default), then the returned object is of type
j ava. sql . Dat e.

CHAR(M CHAR java.lang. String

VARCHAR(M VARCHAR java.lang. String

Bl NARY(M , CHAR(M |BI NARY byt e[]

Bl NARY

106

Handling of Date-Time Values

MySQL Type Name Return value of Return value of Get Col utmdC assNane
Get Col umTypeNane

VARBI NARY(M) , VARBI NARY byt e[]

VARCHAR(M BI NARY

BLOB BLOB byt e[]

TI NYBLOB TI NYBLOB byt e[]

MEDI UVBLOB MEDI UVBLOB byt e[]

LONGBLOB LONGBLOB byt e[]

TEXT TEXT java.lang. String

TI NYTEXT TI NYTEXT java.lang. String

VEDI UMTEXT VEDI UMTEXT java.lang. String

LONGTEXT LONGTEXT java.l ang. String

JSON JSON java.lang. String

GEOVETRY GEOVETRY byt e[]

ENUM ' val uel', ' val UEBAR . .) java.lang. String

SET(' val uel', ' val ugZHAR .) java.l ang. String

3.5.6 Handling of Date-Time Values
3.5.6.1 Preserving Time Instants

Background

A time instant is a specific moment on a time-line. A time instant is said to be preserved when it always
refers to the same point in time when its value is being stored to or retrieved from a database, no
matter what time zones the database server and the clients are operating in.

TI MESTAMP is the only MySQL data type designed to store instants. To preserve time instants, the
server applies time zone conversions in incoming or outgoing time values when needed. Incoming
values are converted by server from the connection session's time zone to Coordinated Universal Time
(UTC) for storage, and outgoing values are converted from UTC to the session time zone. Starting
from MySQL 8.0.19, you can also specify a time zone offset when storing TI MESTAMP values (see

The DATE, DATETIME, and TIMESTAMP Types for details), in which case the TI MESTAMP values are
converted to the UTC from the specified offset instead of the session time zone. But, once stored, the
original offset information is no longer preserved.

The situation is less straightforward with the DATETI VE data type: it does not represent an instant
and, when no time zone offset is specified, there is no time zone conversion for DATETI ME values, so
they are stored and retrieved as they are. However, with a specified time zone offset, the input value
is converted to the session time zone before it is stored; the result is that, when retrieved in a different
session with a different time zone offset as the specified one, the DATETI ME value becomes different
from the original input value.

Because MySQL data types other than TI MESTAMP (and the Java wrapper classes for those other
MySQL data types) do not represent true time instants; mixing up instant-representing and non-instant-
representing date-time types when storing and retrieving values might give rise to unexpected results.
For example:

* When storing j ava. sqgl . Ti mest anp to, for example, a DATETI ME column, you might not get back
the same instant value when retrieving it into a client that is in a different time zone than the one the
client was in when storing the value.

» When storing, for example, a j ava.tine. Local Dat eTi ne to a TI MESTAMP column, you might
not be storing the correct UTC-based value for it, because the time zone for the value is actually
undefined.

107

https://dev.mysql.com/doc/refman/8.0/en/time-zone-support.html#time-zone-variables
https://dev.mysql.com/doc/refman/8.0/en/datetime.html

Handling of Date-Time Values

Therefore, do not pass instant date-time types (j ava. uti | . Cal endar,j ava. util . Date,
java.tinme. O fsetDateTine, java. sql . Ti nest anp) to non-instant date-time types (for example,
j ava. sql . DATE, j ava. ti ne. Local Date,java.tine. Local Tine,java.tinme. O fsetTine)
or vice versa, when working with the server.

The rest of the section discusses how to preserve time instants when working with Connector/J.

Preserving Instants with Connector/J

The scenario: Let us assume that an application is running on a certain application server and is
connecting to a MySQL server using Connector/J. Certain events take place in a connection session,
for which timestamps are generated, and the event timestamps are associated with the JVM time zone
of the application server. These timestamps are to be stored onto a MySQL Server, and are also to be
retrieved from it later.

The challenge: The timestamps' instant values need to be preserved when they are saved onto or
retrieved from the server using Connector/J. Because the MySQL Server always assumes implicitly
that a time instant value references to the connection session time zone (which is set by the session

ti me_zone variable) when being saved to or retrieved form the server, a time instant value is properly
preserved only in the following situations:

1. When Connector/J is running in the same time zone as the MySQL Server (i.e., the server's session
time zone is the same as the JVM's time zone), time instants are naturally preserved, and no time
zone conversion is needed. Note that in this case, time instants are really preserved only if the
server and the JVM continue to run always in the same time zone in the future.

2. When Connector/J is running in a different time zone from that of the MySQL Server (i.e., the
JVM's time zone is different from the server's session time zone), Connector/.J performs one of the
following:

a. Queries the value of the session time zone from the server, and converts the event timestamps
between the session time zone and the JVM time zone.

b. Changes the server's session time zone to that of the JVM time zone, after which no time zone
conversion will be required.

c. Changes the server session time zone to a desired time zone specified by the user, and then
converts the timestamps between the JVM time zone and the user-specified time zone.

We identify the above solutions for time instant preservation as Solution 1, 2a, 2b, and 2c. To achieve
these solutions, the following connection properties have been introduced in Connector/J since release
8.0.23:

» preservel nstant s={true| f al se}: Whether to attempt to preserve time instant values by
adjusting timestamps.

« When itis f al se, no conversions are attempted; a timestamp is sent to the server as-is for
storage, and its visual presentation, not the actual time instant is preserved. When it is retrieved
from the server by Connector/J, different time zones might be associated with it, as the retrieval
might happen in different JVM time zones. For example: For example:

e Time zones: UTC for JVM, UTC+1 for server session
 Original timestamp from client (in UTC): 2020- 01- 01 01: 00: 00
« Timestamp sent to server by Connector/J: 2020- 01- 01 01: 00: 00 (no conversion)

« Timestamp values stored internally on the server: 2020- 01- 01 00: 00: 00 UTC (after internal
conversion of 2020- 01- 01 00: 00: 00 UTC+1 to UTC)

» Timestamp value retrieved later into a server section (in UTC+1): 2020- 01- 01 01: 00: 00
(after internal conversion of 2020- 01- 01 00: 00: 00 from UTC to UTC+1)

108

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_time_zone

Handling of Date-Time Values

» Timestamp values constructed by Connector/J in some other JVM time zone then before (say, in
UTC+3): 2020- 01- 01 01:00: 00

« Comment: Time instant is not preserved

* When itis t r ue, Connector/J attempts to preserve the time instants by performing the
conversions in a manner defined by the connection properties connect i onTi neZone and
forceConnecti onTi neZoneToSessi on.

When storing a value, the conversion is performed only if the target data type, either the explicit
one or the default one, is TI MESTAMP. When retrieving a value, the conversion is performed only if
the source column has the TI MESTANMP, DATETI VE, or a character data type and the target class
is an instant-preserving one, like j ava. sql . Ti nest anp orj ava. ti ne. O f set Dat eTi ne.

e connectionTi meZone={ LOCAL| SERVER| user - def i ned-ti ne- zone} : Specifies how the
server's session time zone (in reference to which the timestamps are saved onto the server) is to be
determined by Connector/J. It takes on one of the following values:

« LOCAL: Connector/J assumes that the server's session time zone either (a) is the same as
the JVM time zone for Connector/J, or (b) should be set as the same as the JVM time zone
for Connector/J. Connector/J takes the situation as (a) or (b) depending on the value of the
connection property f or ceConnect i onTi neZoneToSessi on.

* SERVER: Connector/J should query the session's time zone from the server, instead of making
any assumptions about it. If the session time zone actually turns out to be different from
Connector/J's JVM time zone and pr eser vel nst ant s=t r ue, Connector/J performs time zone
conversion between the session time zone and the JVM time zone.

e user-defined-tine-zone: Connector/J assumes that the server's session time zone either
(a) is the same as the user-defined time zone, or (b) should be set as the user-defined time zone.
Connector/J takes the situation as (a) or (b) depending on the value of the connection property
forceConnecti onTi neZoneToSessi on.

Note

For Connector/J 8.0.23 and later, ser ver Ti nezone is an alias

for connect i onTi neZone. For Connector/J 8.0.22 and earlier,

server Ti mezone was used to override the session time zone setting on the
server.

» forceConnectionTi neZoneToSessi on={true| f al se}: Controls whether the session
ti me_zone variable is to be set to the value specified in connect i onTi neZone.

Now, here are the connection properties values to be used for achieving the Solutions defined above
for preserving time instants:

» Solution 1: Use either preservelnstants=false or connectionTimeZone=LOCAL&
forceConnectionTimeZoneToSession=false. Because it can be safely assumed that the server
session time zone is the same as Connector/J' s JVM timezone, no query of the server's session
time zone occurs, and no time zone conversion occurs. For example:

» Time zones: UTC+1 for both the JVM and the server session
 Original timestamp from client (in UTC+1): 2020- 01- 01 01: 00: 00
« Timestamp sent to server by Connector/J: 2020- 01- 01 01: 00: 00 (no conversion needed)

« Timestamp values stored internally on the server: 2020- 01- 01 00: 00: 00 UTC (after internal
conversion from UTC+1 to UTC)

109

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_time_zone

Handling of Date-Time Values

Timestamp value retrieved later into a server time session in UTC+1 that Connector/J connects to:
2020- 01- 01 01: 00: 00 (after internal conversion from UTC to UTC+1)

Timestamp value constructed by Connector/J in the same JVM time zone as before (UTC+1) and
returned to an application: 2020- 01- 01 01: 00: 00

Comment: Time instant is preserved without conversion.
Note

This setting corresponds to the default behavior of Connector/J 5.1

» Solution 2a: Use preservelnstants=true&connectionTimeZone=SERVER . Connector/J then
queries the value of the session time zone from the server, and converts the event timestamps
between the session time zone and the JVM time zone. For example:

Time zones: UTC+2 for JVM, UTC+1 for server session
Original timestamp from client (in UTC+2): 2020- 01- 01 02: 00: 00

Timestamp sent to server by Connector/J; 2020- 01- 01 01: 00: 00 (after conversion from UTC+2
to UTC+1)

Timestamp value stored internally on the server: 2020- 01- 01 00: 00: 00 UTC (after internal
conversion from UTC+1 to UTC)

Timestamp value retrieved later into a server session in UTC+1: 2020- 01- 01 01: 00: 00 (after
internal conversion from UTC to UTC+1)

Timestamp values constructed by Connector/J in the same JVM time zone as before (UTC+2) and
returned to an application: 2020- 01- 01 02: 00: 00 (after conversion from UTC+1 to UTC+2)

Timestamp values constructed by Connector/J in another JVM time zone (say, UTC+3) and
returned to an application: 2020- 01- 01 03: 00: 00 (after conversion from UTC+1 to UTC+3)

Comment: Time instant is preserved.
Notes

« This setting corresponds to the default behavior of Connector/
J 8.0.22 and before and to the behavior of Connector/J 5.1 with
uselLegacyDat et i neCode=f al se.

110

Handling of Date-Time Values

 Solution 2b: Use connectionTimeZone=LOCAL& forceConnectionTimeZoneToSession=true.
Connector/J then changes the server's session time zone to that of the JVM time zone, after which
no timezone conversions are required when storing or achieving the timestamps. For example:

Time zones: UTC+1 for JVM, UTC+2 for server session originally, but now modified to UTC+1 by
Connector/J

Original timestamp from client (in UTC+1): 2020- 01- 01 01: 00: 00
Timestamp sent to server by Connector/J;: 2020- 01- 01 01: 00: 00 (no conversion)

Timestamp values stored internally on the server: 2020- 01- 01 00: 00: 00 (after internal
conversion from UTC+1 to UTC)

Timestamp values retrieved later into a server session (in UTC+1, as set by Connector/J):
2020- 01- 01 01: 00: 00 (after internal conversion from UTC to UTC+1)

Timestamp value constructed by Connector/J in the same JVM time zone as before (UTC+1):
2020- 01- 01 01: 00: 00 (no conversion needed)

Timestamp values retrieved later into a server session (time zone modified to, say, UTC+3, by
Connector/J): 2020- 01- 01 03: 00: 00 (after internal conversion from UTC to UTC+3)

Timestamp value constructed by Connector/J in the JVM time zone of UTC+3: 2020- 01- 01
03: 00: 00 (no conversion needed)

Comment: Time instant is preserved without conversion by Connector/J, because the session time
zone is changed by Connector/J to its JVM's value.

Warnings

» « Altering the session time zone affects the results of MySQL functions
such as NOW() , CURTI ME(), or CURDATE() —if you do not want those
functions to be affected, do not use this setting.

« If you use this setting on different clients in different time zones, the
clients are going to modify their connection session's time zones to
different values; if you want to keep the same visual date-time value
representation for the same time instant for all the clients and in all their
sessions, store the values to a DATETI VE instead of a Tl VESTAMP
column and use non-instant Java classes for them, for example,
java.tine. Local Dat eTi ne.

e Solution 2c: Use preservelnstants=true&connectionTimeZone=user - def i ned-ti ne- zone&
forceConnectionTimeZoneToSession=true. Connector/J then changes the server's session time
zone to the user-defined time zone, and converts the timestamps between the user-defined time
zone and the JVM time zone. A typical use case for this setting is when the session time zone value
on the server is known to be unrecognizable by Connector/J (e.g., CST or CEST). For example:

Time zones: UTC+2 for JVM, CET for server session originally, but now modified to user-specified
Eur ope/ Ber | i n by Connector/J

Original timestamp from client (in UTC+2): 2020- 01- 01 02: 00: 00

Timestamp sent to server by Connector/J;: 2020- 01- 01 01: 00: 00 (after conversion between
JVM time zone (UTC+2) and user-defined time zone (Eur ope/ Ber | i n=UTC+1))

Timestamp values stored internally on the server: 2020- 01- 01 00: 00: 00 (after internal
conversion from UTC+1 to UTC)

111

Handling of Date-Time Values

« Timestamp value retrieved into a server session (time zone modified to Eur ope/ Ber | i n (=UTC
+1) by Connector/J): 2020- 01- 01 01: 00: 00 (after internal conversion from UTC to UTC+1)

< Timestamp value constructed by Connector/J in the same JVM time zone as before (UTC+2) and
returned to an application: 2020- 01- 01 02: 00: 00 (after conversion between user-defined time
zone (UTC+1) and JVM time zone (UTC+2)).

« Comment: Time instant is preserved with conversion and with the session time zone being
changed by Connector/J according to a user-defined value.

As an alternative to this solution, the user might want the same conversion of the timestamps
between the JVM time zone and the user-defined time zone as described above, without
actually correcting the unrecognizable time zone value on the server. To do so, use,
preservel nst ant s=true&connecti onTi neZone=user - defi ned-ti me- zone&
forceConnecti onTi mneZoneToSessi on=f al se. This achieves the same result of preserving the
time instant.

Warnings

See the warnings above for Solution 2b.

3.5.6.2 Fractional Seconds

While aj ava. sql . TI ME instance, according to the JDBC specification, is not supposed to contain
fractional seconds by design, because j ava. sqgl . TI MEis a wrapper around j ava. uti | . Dat e, it
is possible to store fractional seconds in aj ava. sqgl . TI ME instance. However, when Connector/
Jinserted aj ava. sql . Tl ME into the server as a MySQL Tl VE value, the fractional seconds were
always truncated. To allow the fractional seconds to be sent to the server, a connection property,
sendFr act i onal SecondsFor Ti ne, has been introduced in release 8.0.23: when the property is
t r ue (which is the default value), the fractional seconds for j ava. sql . Tl VE are sent to the server;
otherwise, the fractional seconds are truncated.

Also, the connection property sendFr act i onal Seconds has become a global control for

the sending of fractional seconds for ALL date-time types since release 8.0.23. As a result, if
sendFracti onal Seconds=f al se, fractional seconds are not sent irrespective of the value of
sendFr act i onal SecondsFor Ti ne.

3.5.6.3 Handling of YEAR Values

How a value in a MySQL YEAR column is handled is controlled by the connection property
yearlsDateType:

 If yearlsDateType is t r ue (the default), YEAR is mapped to the Java data type j ava. sql . Dat e.

 If yearlsDateType is f al se, YEAR is mapped to the Java data type j ava. sqgl . Short.

Connector/J follows the same rules that govern how values are inserted by a mysql client; see
explanations in The YEAR Type for details.

Connector/J handles the retrieval of zero values from a YEAR column differently than a nysql client.
Treatments of zero values depend on whether they are strings or numbers, and on the value of
yearlsDateType:

e Ifastring value of ' 0' ,' 00", or' 000" is entered into a YEAR column, when retrieved by
Connector/J:

« If yearlsDateType is true, the retrieved value is equivalent to January 1, 2000 00:00:00.000.

« If yearlsDateType is false, the retrieved value is 2000

112

https://dev.mysql.com/doc/refman/8.0/en/year.html
https://dev.mysql.com/doc/refman/8.0/en/year.html
https://dev.mysql.com/doc/refman/8.0/en/year.html
https://dev.mysql.com/doc/refman/8.0/en/year.html

Using Character Sets and Unicode

« If a numeric value of 0, 00, 000, or 0000 is entered into a YEAR column, when retrieved by
Connector/J,

« If yearlsDateType is true, the retrieved value is equivalent to January 1, 2000 00:00:00.000.

« If yearlsDateType is false, the retrieved value is O

3.5.7 Using Character Sets and Unicode

All strings sent from the JDBC driver to the server are converted automatically from native

Java Unicode form to the connection's character encoding, including all queries sent using

St at enent . execut e(), St at enent . execut eUpdat e(), and St at enent . execut eQuery(), as
well as all Pr epar edSt at enent and Cal | abl eSt at enent parameters, excluding parameters set
using the following methods:

« set Bl ob()

set Byt es()

» setC ob()

* set NCl ob()

e setAscii Stream()

e setBinaryStream)

e set Character Stream)
» set NCharacterStream))

» set Uni codeStream()
Number of Encodings Per Connection

Connector/J supports a single character encoding between the client and the server, and any number
of character encodings for data returned by the server to the client in Resul t Set s.

Setting the Character Encoding

For Connector/J 8.0.25 and earlier: The character encoding between the client and the server

is automatically detected upon connection (provided that the Connector/J connection properties
char act er Encodi ng and connecti onCol | ati on are not set). The encoding on the

server is specified using the system variable char act er _set server (for more information,

see Server Character Set and Collation), and the driver automatically uses the encoding.

For example, to use the 4-byte UTF-8 character set with Connector/J, configure the MySQL

server with char act er _set server =ut f 8nb4, and leave char act er Encodi ng and
connectionCol | at i on out of the Connector/J connection string. Connector/J will then autodetect
the UTF-8 setting. To override the automatically detected encoding on the client side, use the

char act er Encodi ng property in the connection URL to the server.

For Connector/J 8.0.26 and later: There are two phases during the connection initialization in which the
character encoding and collation are set.

» Pre-Authentication Phase: In this phase, the character encoding between the client and the server is
determined by the settings of the Connector/J connection properties, in the following order of priority:

e passwor dChar act er Encodi ng
e connectionCol |l ation

e charact er Encodi ng

113

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_server
https://dev.mysql.com/doc/refman/8.0/en/charset-server.html
https://dev.mysql.com/doc/refman/8.0/en/charset-unicode-utf8mb4.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_server

Using Character Sets and Unicode

e Setto UTF8 (corresponds to ut f 8nmb4 on MySQL servers), if none of the properties above is set

» Post-Authentication Phase: In this phase, the character encoding between the client and the server
for the rest of the session is determined by the settings of the Connector/J connection properties, in
the following order of priority:

e connectionCol I ation
e charact er Encodi ng
« Set to UTF8 (corresponds to ut f 8nb4 on MySQL servers), if none of the properties above is set

This means Connector/J needs to issue a SET NAMES Statement to change the
character set and collation that were established in the pre-authentication phase
only if passwor dChar act er Encodi ng is set, but its setting is different from

that of connect i onCol | at i on, or different from that of char act er Encodi ng
(when connecti onCol | ati on is not set), or different from ut f 8nb4 (when both
connectionCol | ati on and char act er Encodi ng are not set).

Custom Character Sets and Collations

For Connector/J 8.0.26 and later only: To support the use of custom character sets and
collations on the server, set the Connector/J connection property det ect Cust onCol | ati ons
tot r ue, and provide the mapping between the custom character sets and the Java

character encodings by supplying the cust onChar set Mappi ng connection property

with a comma-delimited list of cust om char set : j ava_encodi ng pairs (for example:

cust onChar set Mappi ng=char set 1: UTF- 8, char set 2: Cp1252).

MySQL to Java Encoding Name Translations

Use Java-style names when specifying character encodings. The following table lists MySQL character
set names and their corresponding Java-style names:

Table 3.24 MySQL to Java Encoding Name Translations

MySQL Character Set Name Java-Style Character Encoding Name
asci i US- ASCl |

bi g5 Bi g5

gbk GBK

sjis SJI'S or Cp932
cp932 Cp932 or MS932
gh2312 EUC_CN

ujis EUC JP

euckr EUC KR

latinl Cpl252

latin2 | SCB8859 2

gr eek | SC8859 7

hebr ew | SO8859_8
cp866 Cp866

tis620 TI S620

cpl250 Cpl1250

cpl251 Cp1251

cpl257 Cpl257

114

https://dev.mysql.com/doc/refman/8.0/en/set-names.html

Using Query Attributes

MySQL Character Set Name Java-Style Character Encoding Name
macr oman MacRoman

macce MacCent r al Eur ope

For 8.0.12 and earlier: ut f 8 UTF- 8

For 8.0.13 and later: ut f 8nb4
ucs? Uni codeBi g

Notes

For Connector/J 8.0.12 and earlier: In order to use the ut f 8nb4

character set for the connection, the server MUST be configured with
character_set server=utf 8nb4; if that is not the case, when UTF- 8
is used for char act er Encodi ng in the connection string, it will map to the
MySQL character set name ut f 8, which is an alias for ut f 8nb3.

For Connector/J 8.0.13 and later:

* When UTF- 8 is used for char act er Encodi ng in the connection string, it
maps to the MySQL character set name ut f 8nb4.

« If the connection option connecti onCol | at i on is also set alongside
char act er Encodi ng and is incompatible with it, char act er Encodi ng will
be overridden with the encoding corresponding to connecti onCol | ati on.

« Because there is no Java-style character set name for ut f mb3 that you
can use with the connection option char at er Encodi ng, the only way
to use ut f 8nb3 as your connection character set is to use a ut f 8nb3
collation (for example, ut f 8 _gener al _ci) for the connection option
connecti onCol | at i on, which forces a ut f 8nmb3 character set to be used,
as explained in the last bullet.

Warning

Do not issue the query SET NAMES with Connector/J, as the driver will not
detect that the character set has been changed by the query, and will continue
to use the character set configured when the connection was first set up.

3.5.8 Using Query Attributes

For Connector/J 8.0.26 and later: Connector/J supports Query Attributes when it has been enabled
on the server by installing the query_at t ri but es component (see Prerequisites for Using Query
Attributes for details).

Attributes are set for a query by using the set At t ri but e() method of the Jdbc St at enent
interface. Here is the method's signature:

JdbcSt at enent . set Attri bute(Stri ng nanme, Cbject val ue)

Here is an example of using the query attributes with a Jdbc St at enment :
Example 3.1 Using Query Attributes with a Plain Statement

conn = DriverManager. get Connection("jdbc: nysqgl://|ocal host/test", "nyuser", "password");
Statenent stnt = conn.createStatenent();
JdbcSt at enent jdbcStmt = (JdbcStatenent) stnt;
j dbcSt nt . execut eUpdat e(" CREATE TABLE t 11 (cl CHAR(20), c2 CHAR(20))");
jdbcStnt.setAttribute("attr1", "cat");
jdbcStnt.setAttribute("attr2", "mat");
j dbcSt nt . execut eUpdat e(" 1 NSERT I NTO t11 (cl, c2) VALUES(\n" +
" nysql _query_attribute_string('attrl'),\n" +
" nysql _query_attribute_string('attr2')\n" +

115

https://dev.mysql.com/doc/refman/8.0/en/charset-unicode-utf8mb4.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_server
https://dev.mysql.com/doc/refman/8.0/en/charset-unicode-utf8.html
https://dev.mysql.com/doc/refman/8.0/en/set-names.html
https://dev.mysql.com/doc/refman/8.0/en/query-attributes.html
https://dev.mysql.com/doc/refman/8.0/en/query-attributes.html#query-attributes-prerequisites
https://dev.mysql.com/doc/refman/8.0/en/query-attributes.html#query-attributes-prerequisites

Using Query Attributes

"))
Resul t Set rs = stnt.executeQery("SELECT * fromt11");
while(rs.next()) {

String coll = rs.getString(1);

String col2 = rs.getString(2);

System out . println("The "+col 1+" is on the "+col 2);

}

While query attributes are cleared on the server after each query, they are kept on the side
of Connector/J, so they can be resent for the next query. To clear the attributes, use the
clearAttributes() method of the JdbcSt at enent interface:

JdbcSt at enent . cl ear Attri but es()

The following example (a continuation of the code in Example 3.1, “Using Query Attributes with a Plain
Statement”) shows how the attributes are preserved for a statement until it is cleared :

Example 3.2 Preservation of Query Attributes

/* Continuing fromthe code in the | ast exanple, where query attributes have
al ready been set and used */
rs = stnt.executeQuery("SELECT c2 FROMt11 where " +
"cl = nysql _query_attribute_string('attrl')");
if (rs.next()) {
String coll = rs.getString(1);
Systemout.printlin("lIt is on the "+col 1);
}
[/l Prints "It is on the mat"
jdbcStnt.clearAttributes();
rs = stnt.executeQuery("SELECT c2 FROMt11 where " +
"cl = nysql _query_attribute_string('attrl')");
if (rs.next()) {
String coll = rs.getString(1);
Systemout.printlin("lt is on the "+col 1);

}
el se {

Systemout.println("No results!");
}

// Prints "No results!" as attribute string attrl is enpty

Attributes can also be set for client-side and server-side prepared statements, using the
set Attri but e() method:

Example 3.3 Using Query Attributes with a Prepared Statement

conn = Driver Manager. get Connection("j dbc: mysqgl://1 ocal host/test", "myuser", "password");
Prepar edSt at enent ps = conn. pr epar eSt at enent (
"select ?, c2 fromtll where cl1 = nysql _query_attribute_string('attrl')");

ps.setString(1l, "It is on a");
JdbcSt at enent j dbcPs = (JdbcSt at enent) ps;
jdbcPs. setAttribute("attrl1", "cat");
rs = ps.executeQery();
if (rs.next()) {

Systemout.println(rs.getString(1l)+" "+ rs.getString(2));
}

Not all MySQL data types are supported by the set At t ri but e() method; only the following MySQL
data types are supported and are directly mapped to from specific Java objects or their subclasses:

Table 3.25 Data Type Mappings for Query Attributes

MySQL Data Type Java Object

MYSQL_TYPE_STRI NG java.lang. String

MYSQL_TYPE_TI NY j ava. | ang. Bool ean, j ava. | ang. Byt e
MYSQL_TYPE_SHORT j ava. | ang. Short

MYSQL_TYPE_LONG j ava. | ang. | nt eger
MYSQL_TYPE_LONGLONG j ava. |l ang. Long, j ava. mat h. Bi gl nt eger

116

Connecting Securely Using SSL

MySQL Data Type Java Object

MYSQL_TYPE_FLOAT j ava. | ang. Fl oat

MYSQL_TYPE DOUBLE j ava. | ang. Doubl e, j ava. nat h. Bi gDeci nal
MYSQ._TYPE_DATE java.sql .Date,java.tine. Local Date
MYSQL_TYPE_TI ME java.sqgl . Time,java. tine. Local Ti ne,

java.tine. O fsetTine,
java.tine.Duration

MYSQL_TYPE_DATETI ME java.tine. Local Dat eTi ne

MYSQL_TYPE_TI VESTAVP java. sql . Ti nestanp, j ava. ti ne. I nst ant,
java.tine. O fset Dat eTi ne,

java.tine. ZonedDat eTi ne,
java.util.Date,java.util.Cal endar

When there is no direct mapping from a Java object type to any MySQL data type, the attribute
is set with a string value that comes from converting the supplied object to a St ri ng using the
.toString() method.

3.5.9 Connecting Securely Using SSL

Connector/J can encrypt all data communicated between the JDBC driver and the server (except for
the initial handshake) using SSL. There is a performance penalty for enabling connection encryption,
the severity of which depends on multiple factors including (but not limited to) the size of the query, the
amount of data returned, the server hardware, the SSL library used, the network bandwidth, and so on.

The system works through two Java keystore files: one file contains the certificate information for
the server (t r ust st or e in the examples below), and another contains the keys and certificate for
the client (keyst or e in the examples below). All Java keystore files are protected by the password
supplied to the keyt ool when you created the files. You need the file names and the associated
passwords to create an SSL connection.

For SSL support to work, you must have the following:

* A MySQL server that supports SSL, and compiled and configured to do so. For more information,
see Using Encrypted Connections and Configuring SSL Library Support.

» A signed client certificate, if using mutual (two-way) authentication.

By default, Connector/J establishes secure connections with the MySQL servers. Note that MySQL
servers 5.7, 8.0, and 8.1, when compiled with OpenSSL, can automatically generate missing SSL files
at startup and configure the SSL connection accordingly.

For 8.0.12 and earlier: As long as the server is correctly configured to use SSL, there is no need
to configure anything on the Connector/J client to use encrypted connections (the exception is
when Connector/J is connecting to very old server versions like 5.6.25 and earlier or 5.7.5 and
earlier, in which case the client must set the connection property useSSL=t r ue in order to use
encrypted connections). The client can demand SSL to be used by setting the connection property
requi r eSSL=t r ue; the connection then fails if the server is not configured to use SSL. Without
requi r eSSL=t r ue, the connection just falls back to non-encrypted mode if the server is not
configured to use SSL.

For 8.0.13 and later: As long as the server is correctly configured to use SSL, there is no need

to configure anything on the Connector/J client to use encrypted connections. The client can
demand SSL to be used by setting the connection property ss| Mode=REQUI RED, VERI FY_CA,
or VERI FY_| DENTI TY; the connection then fails if the server is not configured to use SSL. With
ss| Mode=PREFERRED, the connection just falls back to non-encrypted mode if the server is not
configured to use SSL. For X-Protocol connections, the connection property xdevapi . ssl - node
specifies the SSL Mode setting, just like ssl Mode does for MySQL-protocol connections (except
that PREFERRED is not supported by X Protocol); if not explicitly set, xdevapi . ssl - node takes

117

https://dev.mysql.com/doc/refman/8.0/en/encrypted-connections.html
https://dev.mysql.com/doc/refman/8.0/en/source-ssl-library-configuration.html

Connecting Securely Using SSL

up the value of ssl Mbde (if xdevapi . ssl - node is not set and ss| Mode is set to PREFERRED,
xdevapi . ssl - node is set to REQUI RED).

For additional security, you can setup the client for a one-way (server or client) or two-way (server and
client) SSL authentication, allowing the client or the server to authenticate each other's identity.

TLS versions: The allowable versions of TLS protocol can be restricted using the connection properties
t | sVer si ons and, for X DevAPI connections and for release 8.0.19 and later, xdevapi . t| s-

ver si ons (when xdevapi . t| s- ver si ons is not specified, it takes up the value of t | sVer si ons).
If no such restrictions have been specified, Connector/J attempts to connect to the server with the
TLSv1.2 and TLSv1.3.

Notes

« Since Connector/J 8.0.28, the connection property enabl edTLSPr ot ocol s
has been renamed to t | sVer si ons, and enabl edSSLCi pher Sui t es has
been renamed to t | sCi pher sui t es; the original names remain as aliases.

e For Connector/J 8.0.26 and later: TLSv1 and TLSv1.1 were deprecated in
Connector/J 8.0.26 and removed in release 8.0.28; the removed values are
considered invalid for use with connection options and session settings.
Connections can be made using the more-secure TLSv1.2 and TLSv1.3
protocols. Using TLSv1.3 requires that the server be compiled with OpenSSL
1.1.1 or higher and Connector/J be run with a JVM that supports TLSv1.3 (for
example, Oracle Java 8u261 and above).

e For Connector/J 8.0.18 and earlier when connecting to MySQL
Community Server 5.6 and 5.7 using the JDBC API: Due to
compatibility issues with MySQL Server compiled with yaSSL,
Connector/J does not enable connections with TLSv1.2 and higher
by default. When connecting to servers that restrict connections to
use those higher TLS versions, enable them explicitly by setting the
Connector/J connection property enabl edTLSPr ot ocol s (e.g., set
enabl edTLSPr ot ocol s=TLSv1. 2, TLSv1. 3).

Cipher Suites: Since release 8.0.19, the cipher suites usable by Connector/J are pre-

restricted by a properties file that can be found at sr ¢/ mai n/ r esour ces/ com nysql / cj/

Tl sSettings. properti es inside the sr c folder on the source tree or in the platform-independent
distribution archive (in . t ar. gz or . zi p format) for Connector/J. The file contains four sections, listing
in each the mandatory, approved, deprecated, and unacceptable ciphers. Only suites listed in the first
three sections can be used. The last section (unacceptable) defines patterns or masks that blocklist
unsafe cipher suites. Practically, with the allowlist already given in the first three sections, the blocklist
patterns in the forth section are redundant; but they are there as an extra safeguard against unwanted
ciphers. The allowlist and blocklist of cipher suites apply to both JDBC and X DevAPI connections.

The allowable cipher suites for SSL connections can be restricted using the connection properties

t | sCi pher sui t es and, for X DevAPI connections and for release 8.0.19 and later, xdevapi . t| s-
ci phersui t es (when xdevapi . t| s-ci phersui t es is not specified, it takes up the value of

t I sCi pher sui t es). If no such restrictions have been specified, Connector/J attempts to establish
SSL connections with any allowlisted cipher suites that the server accepts.

3.5.9.1 Setting up Server Authentication

For 8.0.12 and earlier: Server authentication via server certificate verification is enabled when the
Connector/J connection properties useSSL AND veri fyServer Certifi cat e are both true.
Hostname verification is not supported—host authentication is by certificates only.

For 8.0.13 and later: Server authentication via server certificate verification is enabled when the
Connector/J connection property ssl Mode is set to VERI FY_CA or VERI FY_| DENTI TY. If ss| Mbde
is not set, server authentication via server certificate verification is enabled when the legacy properties
useSSL AND veri fyServer Certi fi cat e are both true.

118

Connecting Securely Using SSL

Certificates signed by atrusted CA. When server authentication via server certificate verification
is enabled, if no additional configurations are made regarding server authentication, Java verifies the
server certificate using its default trusted CA certificates, usually from $JAVA HOVE/ | i b/ security/
cacerts.

Using self-signed certificates. It is pretty common though for MySQL server certificates to be self-
signed or signed by a self-signed CA certificate; the auto-generated certificates and keys created by
the MySQL server are based on the latter—that is, the server generates all required keys and a self-
signed CA certificate that is used to sign a server and a client certificate. The server then configures
itself to use the CA certificate and the server certificate. Although the client certificate file is placed in
the same directory, it is not used by the server.

To verify the server certificate, Connector/J needs to be able to read the certificate that signed it, that
is, the server certificate that signed itself or the self-signed CA certificate. This can be accomplished
by either importing the certificate (ca. pemor any other certificate) into the Java default truststore
(although tampering the default truststore is not recommended) or by importing it into a custom Java
truststore file and configuring the Connector/J driver accordingly. Use Java's keytool (typically located
in the bi n subdirectory of your JDK or JRE installation) to import the server certificates:

$> keytool -inportcert -alias MySQLCACert -file ca.pem)\
-keystore truststore -storepass nmypassword

Supply the proper arguments for the command options. If the truststore file does not already exist,
a new one will be created; otherwise the certificate will be added to the existing file. Interaction with
keyt ool looks like this:

Omner: CN=MySQL_Server_5.7.17_Auto_GCenerated_CA Certificate
| ssuer: CN=MySQL_Server _5.7.17_Auto_GCenerated_CA Certificate
Serial nunber: 1
Valid from Thu Feb 16 11:42:43 EST 2017 until: Sun Feb 14 11:42:43 EST 2027
Certificate fingerprints:
MD5: 18:87:97: 37: EA: CB: OB: 5A: 24: AB: 27: 76: 45: A4: 78: C1
SHAL1: 2B: 0D: D9: 69: 2C: 99: BF: 1E: 2A: 25: 4E: 8D: 2D: 38: B8: 70: 66: 47: FA: ED
SHA256: C3:29: 67: 1B: E5: 37: 06: F7: A9: 93: DF: C7: B3: 27: 5E: 09: C7: FD: EE: 2D: 18: 86: F4: 9C: 40: D3: 26: CB: DA: 95: AO:
Si gnature al gorithm nane: SHA256wi t hRSA
Subj ect Public Key Algorithm 2048-bit RSA key
Version: 1
Trust this certificate? [no]: vyes
Certificate was added to keystore

The output of the command shows all details about the imported certificate. Make sure you remember
the password you have supplied. Also, be mindful that the password will have to be written as plain text
in your Connector/J configuration file or application source code.

The next step is to configure Java or Connector/J to read the truststore you just created or modified.
This can be done by using one of the following three methods:

1. Using the Java command line arguments:

-D avax.net.ssl.trustStore=path to truststore file
- D avax. net. ssl . trust St or ePasswor d=nypasswor d

2. Setting the system properties directly in the client code:

System set Property("javax. net.ssl.trustStore","path_to_truststore file");
System set Property("j avax. net. ssl.trust St orePassword", "nypassword");

3. Setting the Connector/J connection properties:

trustCertificateKeyStoreUrl=file:path_to_truststore_file
trustCertificat eKeySt orePasswor d=nypasswor d

Notice that when used together, the connection properties override the values set by the other two
methods. Also, whatever values set with connection properties are used in that connection only,
while values set using the system-wide values are used for all connections (unless overridden

by the connection properties). For Connector/J 8.0.22 and later: Setting the connection property

119

Connecting Securely Using SSL

fal |l backToSyst enilr ust St or e to f al se prevents Connector/J from falling back to the system-
wide truststore setup you created using method (1) or (2) when method (3) is not used.

With the above setup and the server authentication enabled, all connections established are going to
be SSL-encrypted, with the server being authenticated in the SSL handshake process, and the client
can now safely trust the server it is connecting to.

For X-Protocol connections, the connection properties xdevapi . ssl -t rust st or e,

xdevapi . ssl -truststore-type, xdevapi . ssl -trust store-password, and

xdevapi . ssl -fal | backToSyst enilr ust St or e specify the truststore settings,
justliketrust CertificateKeyStoreUrl,trustCertificateKeyStoreType,
trustCertificat eKeySt orePasswordamdfal | backToSyst enilr ust St or e do for
MySQL-protocol connections; if not explicitly set, xdevapi . ssl -t rust st or e, xdevapi . ssl -
truststore-type, xdevapi . ssl -truststore-password, and xdevapi . ssl -

fall backToSyst emlr ust St or e take up the values of t rust Certi fi cat eKeyStoreUrl,
trustCertificateKeyStoreType,trustCertificateKeyStorePassword, and

fal |l backToSyst emlr ust St or e respectively.

Service Identity Verification. For 8.0.13 and later: Beyond server authentication via server
certificate verification, when ss| Mode is set to VERI FY_| DENTI TY, Connector/J also performs host
name identity verification by checking whether the host name that it uses for connecting matches the
Common Name value in the server certificate.

3.5.9.2 Setting up Client Authentication

The server may want to authenticate a client and require the client to provide an SSL certificate to it,
which it verifies against its known certificate authorities or performs additional checks on the client
identity if needed (see CREATE USER SSL/TLS Options for details). In that case, Connector/J needs
to have access to the client certificate, so it can be sent to the server while establishing new database
connections. This is done using the Java keystore files.

To allow client authentication, the client connecting to the server must have its own set of keys and

an SSL certificate. The client certificate must be signed so that the server can verify it. While you

can have the client certificates signed by official certificate authorities, it is more common to use an
intermediate, private, CA certificate to sign client certificates. Such an intermediate CA certificate may
be self-signed or signed by a trusted root CA. The requirement is that the server knows a CA certificate
that is capable of validating the client certificate.

Some MySQL server builds are able to generate SSL keys and certificates for communication
encryption, including a certificate and a private key (contained in the cl i ent - cert . pemand
cli ent - key. pemfiles), which can be used by any client. This SSL certificate is already signed by the
self-signed CA certificate ca. pem which the server may have already been configured to use.

If you do not want to use the client keys and certificate files generated by the server, you can also
generate new ones using the procedures described in Creating SSL and RSA Certificates and Keys.
Notice that, according to the setup of the server, you may have to reuse the already existing CA
certificate the server is configured to work with to sign the new client certificate, instead of creating a
new one.

Once you have the client private key and certificate files you want to use, you need to import them
into a Java keystore so that they can be used by the Java SSL library and Connector/J. The following
instructions explain how to create the keystore file:

» Convert the client key and certificate files to a PKCS #12 archive:

$> openssl| pkcsl2 -export -in client-cert.pem-inkey client-key. pem\
-nane "mysqlclient" -passout pass:nypassword -out client-keystore.pl2

» Import the client key and certificate into a Java keystore:

$> keytool -inportkeystore -srckeystore client-keystore.pl2 -srcstoretype pkcsl2 \
-srcstorepass mypassword -destkeystore keystore -deststoretype JKS -deststorepass nypassword

120

https://dev.mysql.com/doc/refman/8.0/en/create-user.html#create-user-tls
https://dev.mysql.com/doc/refman/8.0/en/creating-ssl-rsa-files.html

Connecting Securely Using SSL

Supply the proper arguments for the command options. If the keystore file does not already exist,
a new one will be created; otherwise the certificate will be added to the existing file. Output by
keyt ool looks like this:

Entry for alias nysqlclient successfully inported.
I nport command conpleted: 1 entries successfully inported, O entries failed or cancelled

Make sure you remember the password you have chosen. Also, be mindful that the password will
have to be written as plain text in your Connector/J configuration file or application source code.

After the step, you can delete the PKCS #12 archive (cl i ent - keyst or e. p12 in the example).

The next step is to configure Java or Connector/J so that it reads the keystore you just created or
modified. This can be done by using one of the following three methods:

1. Using the Java command line arguments:

-D avax. net. ssl . keyStore=path_to_keystore _file
- D avax. net . ssl . keySt or ePasswor d=nmypasswor d

2. Setting the system properties directly in the client code:

System set Property("javax. net.ssl.keyStore", "path_to_keystore file");
System set Property("j avax. net. ssl . keySt or ePassword", " mypassword");

3. Through Connector/J connection properties:

clientCertificateKeyStoreUr |l =file:path to_ truststore file
clientCertificateKeyStorePassword=mypassword

Notice that when used together, the connection properties override the values set by the other two
methods. Also, whatever values set with connection properties are used in that connection only,
while values set using the system-wide values are used for all connections (unless overridden

by the connection properties). For Connector/J 8.0.22 and later: Setting the connection property
fall backToSyst enKeySt or e to f al se prevents Connector/J from falling back to the system-wide
keystore setup you created using method (1) or (2) when method (3) is not used.

With the above setups, all connections established are going to be SSL-encrypted with the client being
authenticated in the SSL handshake process, and the server can now safely trust the client that is
requesting a connection to it.

For Connector/J 8.0.22 and later: For X-Protocol connections, the connection properties

xdevapi . ssl - keyst or e, xdevapi . ssl - keyst ore-type, xdevapi . ssl - keyst or e-
passwor d, and xdevapi . ssl -fal | backToSyst enKey St or e specify the keystore

settings, just like t rust Certifi cateKeyStoreUrl,trustCertificat eKeyStoreType,
trustCertificateKeyStorePassword, andfal | backToSyst enifKey St or e do for MySQL-
protocol connections; if not explicitly set, xdevapi . ssl - keyst or e, xdevapi . ssl - keyst or e-
type, xdevapi . ssl - keyst or e- passwor d, and xdevapi . ssl -fal | backToSyst enKeySt or e
take up the values of cl i ent Certifi cateKeyStoreUrl,clientCertificateKeyStoreType,
clientCertificateKeyStorePassword,andfall backToSyst enKeySt or e respectively.

3.5.9.3 Setting up 2-Way Authentication

Apply the steps outlined in both Section 3.5.9.1, “Setting up Server Authentication” and Section 3.5.9.2,
“Setting up Client Authentication” to set up a mutual, two-way authentication process in which the
server and the client authenticate each other before establishing a connection.

Although the typical setup described above uses the same CA certificate in both ends for mutual
authentication, it does not have to be the case. The only requirements are that the CA certificate
configured in the server must be able to validate the client certificate and the CA certificate imported
into the client truststore must be able to validate the server certificate; the two CA certificates used on
the two ends can be distinct.

121

Connecting Using Unix Domain Sockets

3.5.9.4 JSSE in FIPS Mode

When using a Java 8 to 12 JREs, if JSSE is configured to use FIPS mode, attempts to connect to a
MySQL Server may fail in some cases with a KeyManagenent Except i on, complaining that "FIPS
mode: only SunJSSE Tr ust Manager s may be used." This happens because, in that case, a custom
Trust Manager implemented by Connector/J that supports the different ss| Mode options is invoked
but is eventually rejected by the default implementation of SunJSSE.

The issue can be overcome by telling Connector/J not to use its custom Tr ust Manager
implementation, but use your own security providers instead. This can be done by setting the following
connection properties:

o fipsConpliantJsse: Settotr ue to overcome the above-mentioned issue with FIPS mode.
Note

When set to true, Connector/J always performs server certificate validation
(even if ssl Mbde is set to PREFERRED or REQUI RED), which means a
truststore must be configured with the connection proprieties described
below, or the fallback system-wide truststore must be enabled.

» KeyManager Fact or yPr ovi der : The name of the a Java Security Provider that provides a
j avax. net . ssl . KeyManager Fact or y implementation.

e trust Manager Fact or yProvi der : The name of the a Java Security Provider that provides a
j avax. net. ssl . Trust Manager Fact or y implementation.

» keySt or eProvi der: The name of the a Java Security Provider that provides a
j ava. security. KeySt or e implementation, supporting the key stores types specified with
clientCertificateKeyStoreTypeandtrustCertificateKeyStoreType.

3.5.9.5 Debugging an SSL Connection

JSSE provides debugging information to st dout when you set the system property -

Dj avax. net . debug=al | . Java then tells you what keystores and truststores are being used, as well
as what is going on during the SSL handshake and certificate exchange. That will be helpful when you
are trying to debug a failed SSL connection.

3.5.10 Connecting Using Unix Domain Sockets

Connector/J does not natively support connections to MySQL Servers with Unix domain sockets.
However, there is provision for using 3rd-party libraries that supply the function via a pluggable socket
factory. Such a custom factory should implement the com nysql . cj . protocol . Socket Fact ory
interface or the legacy com nysql . j dbc. Socket Fact ory interface of Connector/J. Follow these
requirements when you use such a custom socket factory for Unix sockets :

» The MySQL Server must be configured with the system variable - - socket (for native protocol
connections using the JDBC API) or - - nysql x- socket (for X Protocol connections using the X
DevAPI), which must contain the file path of the Unix socket file.

» The fully-qualified class name of the custom factory should be passed to Connector/J via the
connection property socket Fact ory. For example, with the junixsocket library, set:

socket Fact or y=or g. newscl ub. net . mysql . AFUNI XDat abaseSocket Fact ory

You might also need to pass other parameters to the custom factory as connection properties.
For example, for the junixsocket library, provide the file path of the socket file with the property
juni xsocket . file:

j uni xsocket . fil e=pat h_to_socket _file

122

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_socket
https://dev.mysql.com/doc/refman/8.0/en/x-plugin-options-system-variables.html#sysvar_mysqlx_socket

Connecting Using Named Pipes

» Fore release 8.0.21 and earlier: When using the X Protocol, set the connection property
xdevapi . useAsyncPr ot ocol =f al se (that is the default setting for Connector/J
8.0.12 and later). Unix socket is not supported for asynchronous socket channels. When
xdevapi . useAsyncPr ot ocol =t r ue, the socket Fact or y property is ignored (the connection
property xdevapi . useAsyncPr ot ocol has been deprecated since release 8.0.22).

Note

For X Protocol connections, the provision to use custom socket factory for Unix
socket connefctions is only available for Connector/J 8.0.12 and later.

3.5.11 Connecting Using Named Pipes

Important

For MySQL 8.0.14 and later, 5.7.25 and later, and 5.6.43 and later, minimal
permissions on named pipes are granted to clients that use them to connect

to the server. Connector/J, however, can only use named pipes when

granted full access on them. As a workaround, the MySQL Server that
Connector/J wants to connect to must be started with the system variable
naned_pi pe_ful |l _access_gr oup, which specifies a Windows local group
containing the user by which the client application JVM (and thus Connector/J)
is being executed; see the description for nanmed_pi pe_ful | _access_group
for more details.

Note
Support for named pipes is not available for X Protocol connections.

Connector/J also supports access to MySQL using named pipes on Windows platforms with the
NanmedPi peSocket Fact ory as a plugin-sockets factory. If you do not use a nanedPi pePat h
property, the default of " \'\ . \ pi pe\ MySQL" is used. If you use the NanedPi peSocket Fact ory,
the host name and port number values in the JDBC URL are ignored. To enable this feature, set the
socket Fact ory property:

socket Fact ory=com nmysql . cj . prot ocol . NanmedPi peSocket Fact ory
Set this property, as well as the path of the named pipe, with the following connection URL.:

jdbc: nysql :///test ?socket Fact or y=com nysql . cj . pr ot ocol . NanedPi peSocket Fact or y&nanedPi pePat h=\\ . \ pi pe\ My

To create your own socket factories, follow the sample code in
com nysql . cj . prot ocol . NanedPi peSocket Fact ory or
com nysql . cj . prot ocol . St andar dSocket Fact ory.

An alternate approach is to use the following two properties in connection URLSs for establishing named
pipe connections on Windows platforms:

» (protocol =pi pe) for named pipes (default value for the property is t cp).
e (pat h=pat h_t o_pi pe) for path of named pipes. Default value for the pathis\\ . \ pi pe\ MySQL.

The “address-equals” or “key-value” form of host specification (see Single host [55] for details)
greatly simplifies the URL for a named pipe connection on Windows. For example, to use the default
named pipe of “\ \ . \ pi pe\ MySQL,” just specify:

jdbc: nysql : // addr ess=(pr ot ocol =pi pe)/t est
To use the custom named pipe of “\ \ . \ pi pe\ MySQL80" :
jdbc: nysql : // addr ess=(pr ot ocol =pi pe) (pat h=\\.\ pi pe\ M\ySQL80) / t est

With (pr ot ocol =pi pe), the NanedPi peSocket Fact ory is automatically selected.

123

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_named_pipe_full_access_group
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_named_pipe_full_access_group

Connecting Using Various Authentication Methods

Named pipes only work when connecting to a MySQL server on the same physical machine where the
JDBC driver is running. In simple performance tests, named pipe access is between 30%-50% faster
than the standard TCP/IP access. However, this varies per system, and named pipes are slower than
TCP/IP in many Windows configurations.

3.5.12 Connecting Using Various Authentication Methods

3.5.12.1 Connecting Using PAM Authentication

Java applications using Connector/J can connect to MySQL servers that use the pluggable
authentication module (PAM) authentication scheme.

For PAM authentication to work, you must have the following:

* A MySQL server that supports PAM authentication. See PAM Pluggable Authentication for more
information. Connector/J implements the same cleartext authentication method as in Client-Side
Cleartext Pluggable Authentication.

» SSL capability, as explained in Section 3.5.9, “Connecting Securely Using SSL". Because the PAM
authentication scheme sends the original password to the server, the connection to the server must
be encrypted.

PAM authentication support is enabled by default in Connector/J 8.0, so no extra configuration is
needed.

To disable the PAM authentication feature, specify nysql _cl ear _passwor d (the method) or

com nysql . cj . protocol . a. aut hentication. Mysql C ear Passwor dPl ugi n (the class name)
in the comma-separated list of arguments for the di sabl edAut henti cati onPl ugi ns connection
option. See Section 3.5.3, “Configuration Properties” for details about that connection option.

3.5.12.2 Connecting Using Kerberos

Kerberos is a ticket-based server-client mutual authentication protocol that is supported by the MySQL
Server (commercial versions only) since release 8.0.26 .

Support for Kerberos is implemented by Connector/J (release 8.0.26 and later) using the GSS-API,
JAAS API, and JCA API; providers for each of these APIs must be available on the Java Virtual
Machine running your application that uses Kerberos authentication. Using non-default providers can
lead to unexpected results.

Kerberos Authentication Workflow

The main usage of Kerberos authentication in MySQL is to allow users to create

connections without having to specify a user name and password in the connection string.

For that to work, Connector/J must be configured with the connection property setting

def aul t Aut henti cati onPl ugi n=aut henti cati on_kerberos_client andthenthe MySQL
user name may be extracted from the Kerberos principal associated to the locally cached Ticket-
Granting Ticket (TGT). Notice that a MySQL user name differs from a Kerberos principal in not
containing a realm part; therefore, Connector/J cuts all the characters in the principle after the “@” sign
and uses it as the MySQL user name.

If there is no TGT available in the local Kerberos cache, Connector/J uses the OS login user name as
the MySQL user name. A user name specified in the connection string always takes precedence over
names obtained by any other means for the MySQL user.

The MySQL user name is then sent to the MySQL server for validation. Non-existing users cause the
server to return an error. Existing users are allowed to proceed with the authentication process, and the
authentication mechanism that follows depends on how the MySQL user was created:

» For users created with the authentication plugin aut hent i cati on_ker ber os, MySQL server
sends the corresponding Kerberos realm back to Connector/J, which, in turn, uses it to construct

124

https://dev.mysql.com/doc/refman/8.0/en/pam-pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.0/en/cleartext-pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.0/en/cleartext-pluggable-authentication.html

Connecting Using Various Authentication Methods

the Kerberos principal that identifies the user on the Kerberos server. One of three things may then
happen:

« The newly constructed Kerberos principal matches the Kerberos principal associated to the locally
cached TGT; this TGT is then sent to the Kerberos server to obtain the desired MySQL Service
Ticket, and the authentication proceeds.

e The newly constructed Kerberos principal does not match the Kerberos principal associated to
the locally cached TGT, or there is no local Kerberos cache; this Kerberos principal, as well as the
password that may have been specified in the connection string (or an empty string if none was
specified), is sent to the Kerberos server to obtain first a valid TGT, and then the desired MySQL
Service Ticket; and the authentication proceeds.

« An error is thrown if Connector/J is unable to obtain the correct Kerberos configurations, unable to
communicate with the Kerberos server, or unable to perform either of the two steps above.

» For users defined with a plugin different from aut hent i cati on_ker ber os, the server requests
Connector/J to use another authentication method.

Client-side Kerberos configurations

In order to operate properly with the Kerberos server, Connector/J requires either a system-wide
Kerberos configuration, or these local system property settings for the JVM:

e -Djava. security. krb5. kdc=[the KDC host nane]
e -Djava. security. krb5.real me[the default Kerberos real nj
Debug Information

The process of configuring Connector/J to use Kerberos authentication is not always straightforward.
Enabling logging in the internal Java providers can help find potential problems. That can be done by
setting these system properties:

e -Dsun. security. krb5. debug=true

e -Dsun. security.jgss. debug=true
3.5.12.3 Connecting Using Multifactor Authentication

Multifactor authentication (MFA) is the use of multiple authentication factors during an authentication
process. MySQL Server supports MFA for up to three authentication factors.

Connection to MySQL Server with MFA is supported by Connector/J for release 8.0.28 and later. When
authenticating user accounts that require multiple passwords, up to three passwords can be specified
using the Connector/J connection properties passwor d1, passwor d2, and passwor d3 . Thisis a
sample connection string that uses the three connection properties for passwords:

jdbc: nysql : //1 ocal host/ db?user =j ohndoe&passwor d1=passwor d&passswor d2=passwor d&passwor d3=passwor d
The following apply when using the connection properties for passwords:

e passwor dl, passwor d2, and passwor d3 are passwords for authentication factors 1, 2, and 3,
respectively, as described in Getting Started with Multifactor Authentication.

« If any of the authentication factors (say, factor N) does not require a password, the corresponding
password (passwor dN) is ignored, even if supplied.

* Not specifying the corresponding password for an authentication factor that requires a password is
equivalent to supplying an empty password for the factor.

» password and passwor d1 are taken as synonyms except when both are supplied, in which case
passwor d1 overrides password.

125

https://dev.mysql.com/doc/refman/8.0/en/multifactor-authentication.html#multifactor-authentication-getting-started

Using Source/Replica Replication with ReplicationConnection

3.5.12.4 Connecting Using Fast Identity Online (FIDO) Authentication

Fast Identity Online (FIDO) authentication enables user authentication for MySQL Server using devices
such as smart cards, security keys, and biometric readers. FIDO enables passwordless authentication,
and can be used for MySQL accounts that use multifactor authentication. It is supported by MySQL
Enterprise Edition since release 8.0.27—see FIDO Pluggable Authentication for details.

Connector/J supports FIDO authentication since release 8.0.28. To use the feature, a custom
implementation of the com nysql . ¢j . cal | back. Mysql Cal | backHandl er interface must be
created (see the documentation for com nysql . cj . cal | back. Fi doAut henti cati onCal | back
for details), and the full class name of the implementation must be provided to Connector/J using the
connection property authenticationFidoCallbackHandler.

3.5.13 Using Source/Replica Replication with ReplicationConnection

See Section 3.8.4, “Configuring Source/Replica Replication with Connector/J” for details on the topic.

3.5.14 Support for DNS SRV Records

Connector/J supports the use of DNS SRV records for connections since release 8.0.19. For
information about DNS SRV support in MySQL, see Connecting to the Server Using DNS SRV
Records.

When multiple MySQL instances provide the same service for your applications, DNS SRV records can
be used to provide failover, load balancing, and replication services. They eliminate the need for clients
to identify each possible host in the connection string, or for connections to be handled by an additional
software component. Here is a summary for Connector/J's support for DNS SRV records:

e These new schemas in the connection URLs enable DNS SRV record support:

e jdbc: nysql +srv: For ordinary and basic failover JDBC connections that make use of DNS SRV
records.

e jdbc: nysql +srv: | oadbal ance: For load-balancing JDBC connections that make use of DNS
SRV records.

e jdbc: nysql +srv:replication: Forreplication JDBC connections that make use of DNS SRV
records.

e nmysql x+srv: For X DevAPI connections that make use of DNS SRV records.

» Besides using the new schemas in the connection URLs, DNS SRV record support can be enabled
or disabled using the two new connection properties, dnsSr v and xdevapi . dns- sr v, for JDBC
and X DevAPI connections respectively. For example, this connection URL enables DNS SRV record
support:

nysql x: // j ohndoe: secret @ nysql . _t cp. nyconpany. | ocal / db?xdevapi . dns- srv=true

However, using the DNS SRV schema with the DNS SRV connection properties set to f al se results
in an error; for example:

mysql x+srv: //johndoe: secret @nysql . _tcp. myconpany. | ocal / db?xdevapi . dns- srv=f al se
The connection URL causes Connector/J to throw an error

Here are some requirements and restrictions on the DNS SRV record support by Connector/J:

» Connector/J throws an exception if multiple hosts are specified in the connection URL for a DNS
SRV connection (except for a replication set up, created using j dbc: nysql +srv: replication,
which requires exactly one source and one replica server to be specified).

» Connector/J throws an exception if a port number is specified in the connection URL for a DNS SRV
connection.

126

https://dev.mysql.com/doc/refman/8.0/en/fido-pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.0/en/connecting-using-dns-srv.html
https://dev.mysql.com/doc/refman/8.0/en/connecting-using-dns-srv.html

Client Session State Tracker

* DNS SRV records are supported only for TCP/IP connections. Connector/J throws an exception if
you attempt to enable DNS SRV record support Windows named pipe connections.

DNS SRV Record Support for Load Balancing and Failover. For load-balancing and failover
connections, Connector/J uses the pri ori ty field of the DNS SRV records to decide on the priorities
for connection attempts for hosts.

DNS SRV Record Support for Connection Pooling. In an X DevAPI connection pooling setup,
Connector/J re-queries the DNS SRV records regularly and phases out gracefully any connections
whose hosts no longer appear in the records, and readmits the connections into the pool when their
hosts reappear in the records.

Looking up DNS SRV Records. Itis the users' responsibility to provide a full service host name;
Connector/J does not append any prefix nor validate the host name structure. The following are
examples of valid service host name patterns:

» foo. domain. | ocal

e nysqgl. _tcp.foo.domain. | ocal

e _nysql x. _tcp. foo. domai n. | ocal

e readonly. tcp.foo.donmain.local
e readwite. _tcp.foo.donunin.local

See Connections Using DNS SRV Records in the X DevAPI User Guide for details.

3.5.15 Client Session State Tracker

For Connection/J 8.0.26 and later: Connector/J can receive information on client session state changes
tracked by the server if the tracking has been enabled on the server. The reception of the information is
enabled by setting the Connector/J connection property t r ackSessi onSt at e to t r ue (default value
is f al se for the property).

When the function is enabled, information on session state changes received from the
server are stored inside the Sessi onSt at eChanges object, accessible through a
Server Sessi onSt at eControl | er and its get Sessi onSt at eChanges() method:

Ser ver Sessi onSt at eChanges ssc =
Mysql Connect i on. get Ser ver Sessi onSt at eControl | er (). get Sessi onSt at eChanges() ;

In Sessi onSt at eChanges is a list of Sessoi nSt at eChange objects, accessible by the
get Sessi onSt at eChangesLi st () method:

Li st <Sessi onSt at eChange> ssclLi st = ssc. get Sessi onSt at eChangesLi st () ;

Each Sessi onSt at eChange has the fields t ype and val ues, accessible by the get Type() and
get Val ues() methods. The types and their corresponding values are described below:

Table 3.26 SessionStateChange Type and Values

Type Number of Values in the value |Values
List
SESSI ON. TRACK_SYSTEM VARI BBLES The name of the changed
system variable and its new
value
SESSI ON_TRACK _SCHENMA 1 The new schema name

SESSI ON_TRACK_STATE_CHANG

"1" or "0"

SESSI ON_TRACK_GTI DS

List of GTIDs as reported by
server

127

https://dev.mysql.com/doc/x-devapi-userguide/en/
https://dev.mysql.com/doc/refman/8.0/en/session-state-tracking.html
https://dev.mysql.com/doc/refman/8.0/en/session-state-tracking.html

Mapping MySQL Error Numbers to JDBC SQLState Codes

Type Number of Values in the value |Values
List
SESSI ON_ TRACK_TRANSACTI ON ICHARACTERI STI CS Transaction characteristics
statement
SESSI ON. TRACK _TRANSACTI ON ISTATE Transaction state record

Connector/J receives changes only from the most recent OK packet sent by the server. With

get Sessi onSt at eChanges(), some changes returned by the intermediate queries issued

by Connector/J could be missed. However, the session state change information can also

be received using a Sessi onSt at eChangesLi st ener, which has to be registered with a

Server Sessi onSt at eCont rol | er using the addSessi onSt at eChangesLi st ener () method.
The following example implements Sessi onSt at eChangesLi st ener in a class, which also provides
a method to print the change information:

cl ass SSCLi stener inplenents SessionStat eChangesLi stener {
Ser ver Sessi onSt at eChanges changes = nul | ;
public void handl eSessi onSt at eChanges(Ser ver Sessi onSt at eChanges ch) {
t hi s. changes = ch;
for (SessionStateChange change : ch. get Sessi onSt at eChangesList()) {
pri nt Change(change) ;
}
}
private void printChange(Sessi onSt at eChange change) {
System out . pri nt (change. get Type() + " == > ");
int pos = 0;
if (change. get Type() == Server Sessi onStateControl | er. SESSI ON_TRACK_SYSTEM VARI ABLES) {
I/l There are two values with this change type, the systemvariable name and its new val ue
System out . pri nt (change. get Val ues() . get (pos++) + "=");

}
System out . printl n(change. get Val ues() . get (pos));

}

Sessi onSt at eChangesLi stener |istener = new SSCLi st ener();
Mysgl Connect i on. get Ser ver Sessi onSt at eControl | er (). addSessi onSt at eChangesLi st ener (1 i stener);

With a registered Sessi onSt at eChangesLi st ener, users have access to all intermediate results,
though the listener might slow down the delivery of query results. That is because the listener is
invoked immediately after the OK packet is consumed by Connector/J, before the Resul t Set is
constructed.

3.5.16 Mapping MySQL Error Numbers to JDBC SQLState Codes

The table below provides a mapping of the MySQL error numbers to JDBC SQLSt at e values.
Table 3.27 Mapping of MySQL Error Numbers to SQLStates

MySQL MySQL Error Name SQL
Error Standard
Number SQLState
1022 ER_DUP_KEY 23000
1037 ER_OUTOFMEMORY HY001
1038 ER_OUT_OF_SORTMEMORY HY001
1040 ER_CON_COUNT_ERROR 08004
1042 ER_BAD_HOST_ERROR 08S01
1043 ER_HANDSHAKE_ERROR 08s01
1044 ER_DBACCESS_DENIED_ERROR 42000
1045 ER_ACCESS_DENIED_ERROR 28000
1046 ER_NO_DB_ERROR 3D000
1047 ER_UNKNOWN_COM_ERROR 08s01

128

Mapping MySQL Error Numbers to JDBC SQLState Codes

MySQL MySQL Error Name SQL
Error Standard
Number SQLState
1048 ER_BAD_NULL_ERROR 23000
1049 ER_BAD_DB_ERROR 42000
1050 ER_TABLE EXISTS ERROR 42501
1051 ER_BAD_TABLE_ERROR 42502
1052 ER_NON_UNIQ_ERROR 23000
1053 ER_SERVER_SHUTDOWN 08s01
1054 ER_BAD_FIELD_ERROR 42522
1055 ER_WRONG_FIELD_WITH_GROUP 42000
1056 ER_WRONG_GROUP_FIELD 42000
1057 ER_WRONG_SUM_SELECT 42000
1058 ER_WRONG_VALUE_COUNT 21S01
1059 ER_TOO_LONG_IDENT 42000
1060 ER_DUP_FIELDNAME 42521
1061 ER_DUP_KEYNAME 42000
1062 ER_DUP_ENTRY 23000
1063 ER_WRONG_FIELD_SPEC 42000
1064 ER_PARSE_ERROR 42000
1065 ER_EMPTY_QUERY 42000
1066 ER_NONUNIQ_TABLE 42000
1067 ER_INVALID_DEFAULT 42000
1068 ER_MULTIPLE_PRI_KEY 42000
1069 ER_TOO_MANY_KEYS 42000
1070 ER_TOO_MANY_KEY_PARTS 42000
1071 ER_TOO_LONG_KEY 42000
1072 ER_KEY_COLUMN_DOES_NOT_EXITS 42000
1073 ER_BLOB_USED_AS KEY 42000
1074 ER_TOO_BIG_FIELDLENGTH 42000
1075 ER_WRONG_AUTO_KEY 42000
1080 ER_FORCING_CLOSE 08s01
1081 ER_IPSOCK_ERROR 08s01
1082 ER_NO_SUCH_INDEX 42512
1083 ER_WRONG_FIELD_TERMINATORS 42000
1084 ER_BLOBS_AND_NO_TERMINATED 42000
1090 ER_CANT_REMOVE_ALL_FIELDS 42000
1091 ER_CANT_DROP_FIELD _OR_KEY 42000
1101 ER_BLOB_CANT_HAVE_DEFAULT 42000
1102 ER_WRONG_DB_NAME 42000
1103 ER_WRONG_TABLE_NAME 42000
1104 ER_TOO_BIG_SELECT 42000

129

Mapping MySQL Error Numbers to JDBC SQLState Codes

MySQL MySQL Error Name SQL
Error Standard
Number SQLState
1106 ER_UNKNOWN_PROCEDURE 42000
1107 ER_WRONG_PARAMCOUNT_TO_PROCEDURE 42000
1109 ER_UNKNOWN_TABLE 42502
1110 ER_FIELD_SPECIFIED_TWICE 42000
1112 ER_UNSUPPORTED_EXTENSION 42000
1113 ER_TABLE_MUST_HAVE_COLUMNS 42000
1115 ER_UNKNOWN_CHARACTER_SET 42000
1118 ER_TOO_BIG_ROWSIZE 42000
1120 ER_WRONG_OUTER_JOIN 42000
1121 ER_NULL_COLUMN_IN_INDEX 42000
1131 ER_PASSWORD_ANONYMOUS_USER 42000
1132 ER_PASSWORD_NOT_ALLOWED 42000
1133 ER_PASSWORD_NO_MATCH 42000
1136 ER_WRONG_VALUE_COUNT_ON_ROW 21S01
1138 ER_INVALID_USE_OF_NULL 22004
1139 ER_REGEXP_ERROR 42000
1140 ER_MIX_OF_GROUP_FUNC_AND_FIELDS 42000
1141 ER_NONEXISTING_GRANT 42000
1142 ER_TABLEACCESS DENIED_ERROR 42000
1143 ER_COLUMNACCESS DENIED_ERROR 42000
1144 ER_ILLEGAL_GRANT_FOR_TABLE 42000
1145 ER_GRANT_WRONG_HOST_OR_USER 42000
1146 ER_NO_SUCH_TABLE 42502
1147 ER_NONEXISTING_TABLE_GRANT 42000
1148 ER_NOT_ALLOWED_COMMAND 42000
1149 ER_SYNTAX_ERROR 42000
1152 ER_ABORTING_CONNECTION 08S01
1153 ER_NET_PACKET_TOO_LARGE 08s01
1154 ER_NET_READ_ERROR_FROM_PIPE 08s01
1155 ER_NET_FCNTL_ERROR 08s01
1156 ER_NET_PACKETS _OUT_OF_ORDER 08S01
1157 ER_NET_UNCOMPRESS ERROR 08s01
1158 ER_NET_READ_ERROR 08s01
1159 ER_NET_READ_INTERRUPTED 08s01
1160 ER_NET_ERROR_ON_WRITE 08S01
1161 ER_NET_WRITE_INTERRUPTED 08s01
1162 ER_TOO_LONG_STRING 42000
1163 ER_TABLE_CANT_HANDLE_BLOB 42000
1164 ER_TABLE_CANT_HANDLE_AUTO_INCREMENT 42000

130

Mapping MySQL Error Numbers to JDBC SQLState Codes

MySQL MySQL Error Name SQL
Error Standard
Number SQLState
1166 ER_WRONG_COLUMN_NAME 42000
1167 ER_WRONG_KEY_COLUMN 42000
1169 ER_DUP_UNIQUE 23000
1170 ER_BLOB_KEY_WITHOUT_LENGTH 42000
1171 ER_PRIMARY_CANT_HAVE_NULL 42000
1172 ER_TOO_MANY_ROWS 42000
1173 ER_REQUIRES PRIMARY_KEY 42000
1176 ER_KEY_DOES NOT_EXITS 42000
1177 ER_CHECK_NO_SUCH_TABLE 42000
1178 ER_CHECK_NOT_IMPLEMENTED 42000
1179 ER_CANT_DO_THIS _DURING_AN_TRANSACTION 25000
1184 ER_NEW_ABORTING_CONNECTION 08s01
1189 ER_SOURCE_NET_READ 08s01
1190 ER_SOURCE_NET_WRITE 08s01
1203 ER_TOO_MANY_USER_CONNECTIONS 42000
1205 ER_LOCK_WAIT_TIMEOUT 40001
1207 ER_READ_ONLY_TRANSACTION 25000
1211 ER_NO_PERMISSION_TO_CREATE_USER 42000
1213 ER_LOCK _DEADLOCK 40001
1216 ER_NO_REFERENCED_ROW 23000
1217 ER_ROW_IS_REFERENCED 23000
1218 ER_CONNECT_TO_SOURCE 08s01
1222 ER_WRONG_NUMBER_OF COLUMNS IN_SELECT 21000
1226 ER_USER_LIMIT_REACHED 42000
1227 ER_SPECIFIC_ACCESS_DENIED_ERROR 42000
1230 ER_NO_DEFAULT 42000
1231 ER_WRONG_VALUE_FOR_VAR 42000
1232 ER_WRONG_TYPE_FOR_VAR 42000
1234 ER_CANT_USE_OPTION_HERE 42000
1235 ER_NOT_SUPPORTED_YET 42000
1239 ER_WRONG_FK_DEF 42000
1241 ER_OPERAND_COLUMNS 21000
1242 ER_SUBQUERY_NO_1_ROW 21000
1247 ER_ILLEGAL_REFERENCE 42522
1248 ER_DERIVED_MUST_HAVE_ALIAS 42000
1249 ER_SELECT_REDUCED 01000
1250 ER_TABLENAME_NOT_ALLOWED_HERE 42000
1251 ER_NOT_SUPPORTED_AUTH_MODE 08004
1252 ER_SPATIAL_CANT_HAVE_NULL 42000

131

Mapping MySQL Error Numbers to JDBC SQLState Codes

MySQL MySQL Error Name SQL
Error Standard
Number SQLState
1253 ER_COLLATION_CHARSET_MISMATCH 42000
1261 ER_WARN_TOO_FEW_RECORDS 01000
1262 ER_WARN_TOO_MANY_RECORDS 01000
1263 ER_WARN_NULL_TO_NOTNULL 22004
1264 ER_WARN_DATA_OUT_OF_RANGE 22003
1265 ER_WARN_DATA_TRUNCATED 01000
1280 ER_WRONG_NAME_FOR_INDEX 42000
1281 ER_WRONG_NAME_FOR_CATALOG 42000
1286 ER_UNKNOWN_STORAGE_ENGINE 42000
1292 ER_TRUNCATED_WRONG_VALUE 22007
1303 ER_SP_NO_RECURSIVE_CREATE 2F003
1304 ER_SP_ALREADY_EXISTS 42000
1305 ER_SP_DOES_NOT_EXIST 42000
1308 ER_SP_LILABEL_MISMATCH 42000
1309 ER_SP_LABEL_REDEFINE 42000
1310 ER_SP_LABEL_MISMATCH 42000
1311 ER_SP_UNINIT_VAR 01000
1312 ER_SP_BADSELECT 0A000
1313 ER_SP_BADRETURN 42000
1314 ER_SP_BADSTATEMENT 0A000
1315 ER_UPDATE_LOG_DEPRECATED_IGNORED 42000
1316 ER_UPDATE_LOG_DEPRECATED_TRANSLATED 42000
1317 ER_QUERY_INTERRUPTED 70100
1318 ER_SP_WRONG_NO_OF_ARGS 42000
1319 ER_SP_COND_MISMATCH 42000
1320 ER_SP_NORETURN 42000
1321 ER_SP_NORETURNEND 2F005
1322 ER_SP_BAD_CURSOR_QUERY 42000
1323 ER_SP_BAD_CURSOR_SELECT 42000
1324 ER_SP_CURSOR_MISMATCH 42000
1325 ER_SP_CURSOR_ALREADY_OPEN 24000
1326 ER_SP_CURSOR_NOT_OPEN 24000
1327 ER_SP_UNDECLARED_VAR 42000
1329 ER_SP_FETCH_NO_DATA 02000
1330 ER_SP_DUP_PARAM 42000
1331 ER_SP_DUP_VAR 42000
1332 ER_SP_DUP_COND 42000
1333 ER_SP_DUP_CURS 42000
1335 ER_SP_SUBSELECT_NYI 0A000

132

Mapping MySQL Error Numbers to JDBC SQLState Codes

MySQL MySQL Error Name SQL
Error Standard
Number SQLState
1336 ER_STMT_NOT_ALLOWED_IN_SF _OR_TRG 0A000
1337 ER_SP_VARCOND_AFTER_CURSHNDLR 42000
1338 ER_SP_CURSOR_AFTER_HANDLER 42000
1339 ER_SP_CASE_NOT_FOUND 20000
1365 ER_DIVISION_BY_ZERO 22012
1367 ER_ILLEGAL_VALUE_FOR_TYPE 22007
1370 ER_PROCACCESS_DENIED_ERROR 42000
1397 ER_XAER_NOTA XAEQ04
1398 ER_XAER_INVAL XAEOQ5
1399 ER_XAER_RMFAIL XAEOQO7
1400 ER_XAER_OUTSIDE XAEO09
1401 ER_XA RMERR XAEOQ3
1402 ER_XA_RBROLLBACK XA100
1403 ER_NONEXISTING_PROC_GRANT 42000
1406 ER_DATA _TOO_LONG 22001
1407 ER_SP_BAD_SQLSTATE 42000
1410 ER_CANT_CREATE_USER_WITH_GRANT 42000
1413 ER_SP_DUP_HANDLER 42000
1414 ER_SP_NOT_VAR_ARG 42000
1415 ER_SP_NO_RETSET 0A000
1416 ER_CANT_CREATE_GEOMETRY_OBJECT 22003
1425 ER_TOO_BIG_SCALE 42000
1426 ER_TOO_BIG_PRECISION 42000
1427 ER_M_BIGGER_THAN_D 42000
1437 ER_TOO_LONG_BODY 42000
1439 ER_TOO_BIG_DISPLAYWIDTH 42000
1440 ER_XAER_DUPID XAEO08
1441 ER_DATETIME_FUNCTION_OVERFLOW 22008
1451 ER_ROW_IS_REFERENCED_2 23000
1452 ER_NO_REFERENCED_ROW_2 23000
1453 ER_SP_BAD_VAR_SHADOW 42000
1458 ER_SP_WRONG_NAME 42000
1460 ER_SP_NO_AGGREGATE 42000
1461 ER_MAX_PREPARED_STMT_COUNT_REACHED 42000
1463 ER_NON_GROUPING_FIELD _USED 42000
1557 ER_FOREIGN_DUPLICATE_KEY 23000
1568 ER_CANT_CHANGE_TX_ISOLATION 25001
1582 ER_WRONG_PARAMCOUNT_TO_NATIVE_FCT 42000
1583 ER_WRONG_PARAMETERS_TO_NATIVE_FCT 42000

133

JDBC Concepts

MySQL MySQL Error Name SQL
Error Standard
Number SQLState
1584 ER_WRONG_PARAMETERS_TO_STORED_FCT 42000
1586 ER_DUP_ENTRY_WITH_KEY_NAME 23000
1613 ER_XA_RBTIMEOUT XA106
1614 ER_XA RBDEADLOCK XA102
1630 ER_FUNC_INEXISTENT_NAME_COLLISION 42000
1641 ER_DUP_SIGNAL_SET 42000
1642 ER_SIGNAL_WARN 01000
1643 ER_SIGNAL_NOT_FOUND 02000
1645 ER_RESIGNAL_WITHOUT_ACTIVE_HANDLER 0KO000
1687 ER_SPATIAL_MUST_HAVE_GEOM_COL 42000
1690 ER_DATA OUT_OF_RANGE 22003
1698 ER_ACCESS_DENIED_NO_PASSWORD_ERROR 28000
1701 ER_TRUNCATE_ILLEGAL_FK 42000
1758 ER_DA_INVALID_CONDITION_NUMBER 35000
1761 ER_FOREIGN_DUPLICATE_KEY_WITH_CHILD_INFO 23000
1762 ER_FOREIGN_DUPLICATE_KEY_WITHOUT_CHILD_INFO 23000
1792 ER_CANT_EXECUTE_IN_READ_ONLY_TRANSACTION 25006
1845 ER_ALTER_OPERATION_NOT_SUPPORTED 0A000
1846 ER_ALTER_OPERATION_NOT_SUPPORTED_REASON 0A000
1859 ER_DUP_UNKNOWN_IN_INDEX 23000
1873 ER_ACCESS_DENIED_CHANGE_USER_ERROR 28000
1887 ER_GET_STACKED_DA_WITHOUT_ACTIVE_HANDLER 02002
1903 ER_INVALID_ARGUMENT_FOR_LOGARITHM 2201E

3.6 JDBC Concepts

This section provides some general JDBC background.

3.6.1 Connecting to MySQL Using the JDBC Dri ver Manager Interface

When you are using JDBC outside of an application server, the Dri ver Manager class manages the
establishment of connections.

Specify to the Dr i ver Manager which JDBC drivers to try to make Connections with. The easiest way
to do this is to use Cl ass. f or Nanme() on the class that implements the j ava. sql . Dri ver interface.
With MySQL Connector/J, the name of this class is com nysql . cj . j dbc. Dri ver. With this method,
you could use an external configuration file to supply the driver class name and driver parameters to
use when connecting to a database.

The following section of Java code shows how you might register MySQL Connector/J from the

mai n() method of your application. If testing this code, first read the installation section at Section 3.3,
“Connector/J Installation”, to make sure you have connector installed correctly and the CLASSPATH set
up. Also, ensure that MySQL is configured to accept external TCP/IP connections.

i nport java. sql. Connecti on;
i mport java.sql.DriverManager;
i nport java. sql.SQ.Excepti on;

134

Connecting to MySQL Using the JDBC Dr i ver Manager Interface

/1 Notice, do not inport com nysql.cj.jdbc.*
/'l or you will have probl ens!
public class LoadDriver {
public static void main(String[] args) {
try {
/'l The new nstance() call is a work around for sone
/1 broken Java inpl enent ati ons
Cl ass. forNane("com nysql .cj.jdbc. Driver").new nstance();
} catch (Exception ex) {
/1 handl e the error
}

}

After the driver has been registered with the Dr i ver Manager , you can obtain a Connect i on instance
that is connected to a particular database by calling Dri ver Manager . get Connecti on():

Example 3.4 Connector/J: Obtaining a connection from the Dri ver Manager

If you have not already done so, please review the portion of Section 3.6.1, “Connecting to MySQL
Using the JDBC Dr i ver Manager Interface” above before working with the example below.

This example shows how you can obtain a Connect i on instance from the Dr i ver Manager . There
are a few different signatures for the get Connect i on() method. Consult the APl documentation that
comes with your JDK for more specific information on how to use them.

i mport java.sql.Connecti on;
i mport java.sql.DriverManager;
i mport java.sql.SQLException;
Connection conn = nul|;
try {
conn =
Dri ver Manager . get Connecti on("j dbc: nysql : //1 ocal host/test?" +

"user =m nt y&passwor d=gr eat sql db") ;
/1 Do sonething with the Connection

} catch (SQLException ex) {
/'l handl e any errors
System out . printl n("SQLException: " + ex.getMessage());
Systemout.println("SQLState: " + ex.getSQ.State());
System out . println("VendorError: " + ex.getErrorCode());
}

Once a Connect i on is established, it can be used to create St at enment and Pr epar edSt at enent
objects, as well as retrieve metadata about the database. This is explained in the following sections.

For Connector/J 8.0.24 and later: When the user for the connection is unspecified, Connector/J's
implementations of the authentication plugins use by default the name of the OS user who runs the
application for authentication with the MySQL server (except when the Kerberos authentication plugin
is being used; see Section 3.5.12.2, “Connecting Using Kerberos” for details).

Note

A user name is considered unspecified only when the following conditions are
all met:

1. The method Dri ver Manager . get Connection(String url, String
user, String password) is notused.

2. The connection property user is not used in, for example, the connection
URL,or elsewhere.

3. The user is not mentioned in the authority of the connection URL, as
inj dbc: nysql ://1ocal host: 3306/ test,or jdbc: mysql://
@ ocal host : 3306/t est.

135

Using JDBC St at enent Objects to Execute SQL

Notice if (1) or (2) is not true and an empty string is passed, the user name is an
empty string then, and is not considered unspecified.

3.6.2 Using JDBC St at enent Objects to Execute SQL

St at ement objects allow you to execute basic SQL queries and retrieve the results through the
Resul t Set class, which is described later.

To create a St at ement instance, you call the cr eat eSt at enent () method on the
Connect i on object you have retrieved using one of the Dr i ver Manager . get Connecti on() or
Dat aSour ce. get Connect i on() methods described earlier.

Once you have a St at enent instance, you can execute a SELECT query by calling the
execut eQuery(String) method with the SQL you want to use.

To update data in the database, use the execut eUpdat e(Stri ng SQ.) method. This method
returns the number of rows matched by the update statement, not the number of rows that were
modified.

If you do not know ahead of time whether the SQL statement will be a SELECT or an UPDATE/I NSERT,
then you can use the execut e(String SQL) method. This method will return true if the SQL query
was a SELECT, or false if it was an UPDATE, | NSERT, or DELETE statement. If the statement was a
SELECT query, you can retrieve the results by calling the get Resul t Set () method. If the statement
was an UPDATE, | NSERT, or DELETE statement, you can retrieve the affected rows count by calling
get Updat eCount () onthe St at enent instance.

Example 3.5 Connector/J: Using java.sql.Statement to execute a SELECT query

i mport java.sql.Connecti on;
i nport java.sql.DriverManager;
i nport java.sql.SQ.Excepti on;
import java.sql. Statenent;
i mport java.sql.Result Set;
/] assune that conn is an already created JDBC connection (see previous exanpl es)
Statenent stnt = null;
Resul tSet rs = null;
try {
stnmt = conn. createStatenment();
rs = stnt.executeQuery("SELECT foo FROM bar");
/Il or alternatively, if you don't know ahead of tine that
/'l the query will be a SELECT...
if (stnt.execute("SELECT foo FROM bar")) {
rs = stnt.getResultSet();
}
/1 Now do sonething with the ResultSet
}
catch (SQLException ex){
// handl e any errors
System out. printl n("SQLException: " + ex.getMessage());
Systemout.println("SQLState: " + ex.getSQ.State());
System out . println("VendorError: " + ex.getErrorCode());
}
finally {
/Il it is a good idea to rel ease
/Il resources in a finally{} block
/Il in reverse-order of their creation
/1 if they are no-|onger needed
if (rs!=null) {
try {
rs.close();
} catch (SQLException sqlEx) { } // ignore
rs = null;

if (stnt !'=null) {

136

https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/delete.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/delete.html

Using JDBC Cal | abl eSt at enent s to Execute Stored Procedures

try {
stnt.cl ose();

} catch (SQLException sqlEx) { } // ignore
stmt = null;

}
3.6.3 Using JDBC Cal | abl eSt at enent s to Execute Stored Procedures

Connector/J fully implements the j ava. sql . Cal | abl eSt at enent interface.
For more information on MySQL stored procedures, please refer to Using Stored Routines.
Connector/J exposes stored procedure functionality through JDBC's Cal | abl eSt at enent interface.

The following example shows a stored procedure that returns the value of i nQut Par amincremented
by 1, and the string passed in using i nput Par amas a Resul t Set :

Example 3.6 Connector/J: Calling Stored Procedures

CREATE PROCEDURE denmpSp(| N i nput Par am VARCHAR(255), \
I NOUT i nQut Par am | NT)
BEG N
DECLARE z | NT;
SET z = inQut Param + 1;
SET i nQut Param = z;
SELECT i nput Par am
SELECT CONCAT(' zyxw , i nput Paranj;
END

To use the denmpbSp procedure with Connector/J, follow these steps:
1. Prepare the callable statement by using Connect i on. prepareCal | ().

Notice that you have to use JDBC escape syntax, and that the parentheses surrounding the
parameter placeholders are not optional:

Example 3.7 Connector/J: Using Connecti on. prepareCal | ()

i nport java.sql.Call abl eSt at enent ;

/'l Prepare a call to the stored procedure 'denpSp'
// with two paraneters

/] Notice the use of JDBC-escape syntax ({call ...})

Cal | abl eStatement cStnt = conn. prepareCal |l ("{cal | demdSp(?, ?)}");
cStnt.setString(1, "abcdefg");

Note

Connection. prepareCal | () is an expensive method, due to

the metadata retrieval that the driver performs to support output
parameters. For performance reasons, minimize unnecessary calls to
Connection. prepareCal | () byreusing Cal | abl eSt at enent
instances in your code.

2. Register the output parameters (if any exist)

To retrieve the values of output parameters (parameters specified as OUT or | NOUT when you
created the stored procedure), JDBC requires that they be specified before statement execution
using the various r egi st er Qut put Par anet er () methods in the Cal | abl eSt at enent
interface:

137

https://dev.mysql.com/doc/refman/8.0/en/stored-routines.html

Using JDBC Cal | abl eSt at enent s to Execute Stored Procedures

Example 3.8 Connector/J: Registering output parameters

i mport java.sql. Types;

/'l Connector/J supports both named and i ndexed
/] output paraneters. You can register output
/] paraneters using either nethod, as well

/] as retrieve output paraneters using either
/1 method, regardl ess of what nethod was

/Il used to register them

/1 The follow ng exanpl es show how to use

/1 the various nethods of registering

/'l output paraneters (you shoul d of course
/] use only one registration per paraneter).

/! Registers the second paraneter as output, and

/] uses the type 'INTEGER for values returned from
/] get Cbject()

/1

cStnt. registerQutParaneter (2, Types.|NTECGER);

/1

/'l Registers the naned paraneter 'inQutParanm, and
/] uses the type 'INTEGER for values returned from
/1 get Object()

/1

cStnt. registerQutParaneter("inQutParant, Types.|NTEGER);

3. Set the input parameters (if any exist)

Input and infout parameters are set as for Pr epar edSt at ement objects. However,
Cal | abl eSt at enent also supports setting parameters by name:

Example 3.9 Connector/J: Setting Cal | abl eSt at enent input parameters

/1

/] Set a paraneter by index
/1

cStnt.setString(l, "abcdefg");
/1

/l Alternatively, set a parameter using
/'l the paraneter name

/1

cStnt.setString("inputParant, "abcdefg");

/1

[/l Set the 'in/out' paranmeter using an index
/1

cStnt.setint(2, 1);

/1

/] Alternatively, set the '"in/out' paraneter
/1 by nane

/1

cStnt.setlnt("inQutParant, 1);

4. Execute the Cal | abl eSt at enent , and retrieve any result sets or output parameters.

Although Cal | abl eSt at enent supports calling any of the St at enent execute methods
(execut eUpdat e(), execut eQuery() orexecut e()), the most flexible method to call is
execut e(), as you do not need to know ahead of time if the stored procedure returns result sets:

Example 3.10 Connector/J: Retrieving results and output parameter values

bool ean hadResults = cStnt.execute();

138

Retrieving AUTO | NCREMENT Column Values through JDBC

/1

/Il Process all returned result sets

/1

whi | e (hadResults) {
ResultSet rs = cStnt.getResultSet();
/] process result set

hadResults = cStnt.get MoreResul ts();
}
/1
/'l Retrieve output paraneters
/1
/| Connector/J supports both index-based and
/1 name-based retrieval
/1
int outputValue = cStnt.getlnt(2); // index-based
out putVal ue = cStnt.getlnt("inQutParan'); // name-based

3.6.4 Retrieving AUTO | NCRENMENT Column Values through JDBC

get Gener at edKeys() is the preferred method to use if you need to retrieve AUTO | NCREVENT
keys and through JDBC; this is illustrated in the first example below. The second example shows how
you can retrieve the same value using a standard SELECT LAST | NSERT | D() query. The final
example shows how updatable result sets can retrieve the AUTO | NCREMENT value when using the

i nsert Row() method.

Example 3.11 Connector/J: Retrieving AUTO | NCREMENT column values using
St at enent . get Gener at edKeys()

Statenment stnt = nul | ;
ResultSet rs = null;
try {
/1
/Il Create a Statenent instance that we can use for
/1 '"normal' result sets assumi ng you have a
/'l Connection 'conn' to a MySQL dat abase al r eady
/1 avail abl e
stnt = conn.createStatenent();
/1
/'l 1ssue the DDL queries for the table for this exanple
/1
st nt . execut eUpdat e(" DROP TABLE | F EXI STS aut ol ncTutorial ");
st nt . execut eUpdat e(
" CREATE TABLE aut ol ncTutorial ("
+ "priKey INT NOT NULL AUTO_| NCREMENT,
+ "dataFi el d VARCHAR(64), PRI MARY KEY (priKey))");
/1
/'l Insert one row that will generate an AUTO | NCREMENT
/Il key in the 'priKey' field
/1
st nt . execut eUpdat e(
"I NSERT | NTO aut ol ncTutori al (dataFi el d)
+ "values ('Can | Get the Auto Increnent Field?)",
St at ement . RETURN_GENERATED_KEYS) ;
/1
/| Exanpl e of using Statenment.get Gener at edKeys()
I/l to retrieve the value of an auto-increnment

/] val ue
/1
i nt autol nckeyFromApi = -1;

rs = stnt.get Gener at edKeys();

if (rs.next()) {
aut ol ncKeyFromApi = rs.getlnt(1);

} else {
/1 throw an exception from here

}

System out . println("Key returned from get Gener at edKeys(): "
+ aut ol ncKeyFr omApi) ;

139

Retrieving AUTO | NCREMENT Column Values through JDBC

} finally {
if (rs!=null) {
try {
rs.close();
} catch (SQLException ex) {
/'l ignore
}
if (stnt !'=null) {
try {

stnt.cl ose();

} catch (SQLException ex) {
/'l ignore

}

Example 3.12 Connector/J: Retrieving AUTO | NCREMENT column values using SELECT
LAST_| NSERT_I IX()

Statenment stnt = nul|;
ResultSet rs = null;
try {
I
/Il Create a Statenent instance that we can use for
/1 *normal' result sets.
stnt = conn. createStatenent();
I/
/'l 1ssue the DDL queries for the table for this exanple
I
st nt . execut eUpdat e(" DROP TABLE | F EXI STS aut ol ncTutorial ");
st nt . execut eUpdat e(
" CREATE TABLE aut ol ncTutorial ("
+ "priKey INT NOT NULL AUTO_| NCREMENT,
+ "dataFi el d VARCHAR(64), PRI MARY KEY (priKey))");
I
/'l Insert one row that will generate an AUTO | NCREMENT
/Il key in the 'priKey' field
I/
st nt . execut eUpdat e(
"I NSERT | NTO aut ol ncTutori al (dataFi el d)
+ "values ("Can | Get the Auto Increnent Field?)");
I
/1 Use the MySQL LAST_I NSERT_I D()
/1 function to do the same thing as get Gener at edKeys()
I
i nt aut ol ncKkeyFronfunc = -1;
rs = stnt.executeQuery("SELECT LAST_INSERT_ID()");
if (rs.next()) {
aut ol ncKeyFronFunc = rs.getlnt(1);
} else {
/1 throw an exception from here

}

Systemout. println("Key returned from" +
"' SELECT LAST_INSERT_ID()': " +
aut ol ncKeyFr onfunc) ;

} finally {
if (rs!=null) {
try {
rs.close();
} catch (SQLException ex) {
/'l ignore
}
}
if (stnt !'=null) {
try {
stmt.cl ose();
} catch (SQLException ex) {
/1l ignore
}
}

140

Retrieving AUTO | NCREMENT Column Values through JDBC

}

Example 3.13 Connector/J: Retrieving AUTO_| NCREMENT column values in Updat abl e
Resul t Set s

Statement stnt = null;
ResultSet rs = null;
try {
/1
/] Create a Statenent instance that we can use for
/1 "normal' result sets as well as an 'updatabl e’
/'l one, assuming you have a Connection 'conn' to
/'l a MySQ. dat abase al ready avail abl e
/1
stnt = conn. createSt at ement (j ava. sql . Resul t Set . TYPE_FORWARD_ONLY,
j ava. sqgl . Resul t Set . CONCUR_UPDATABLE) ;
/1
/1 lssue the DDL queries for the table for this exanple
/1
st nt . execut eUpdat e(" DROP TABLE | F EXI STS aut ol ncTutorial ");
st nt . execut eUpdat e(
" CREATE TABLE autol ncTutorial ("
+ "priKey INT NOT NULL AUTO_| NCREMENT,
+ "dat aFi el d VARCHAR(64), PRI MARY KEY (priKey))");
/1
/] Exanple of retrieving an AUTO | NCREMENT key
/1 from an updatable result set
/1
rs = stnt.executeQuery("SELECT pri Key, dataField "
+ "FROM aut ol ncTutorial ");
rs. moveTol nsert Row() ;
rs.updateString("dataFi el d, "AUTO | NCREMENT here?");
rs.insertRow();
/1
// the driver adds rows at the end
/1
rs.last();
/1
/1 W shoul d now be on the row we just inserted
/1
i nt autol nckeyFronRS = rs.getlnt("priKey");
Systemout. println("Key returned for inserted row
+ aut ol ncKeyFr onRS) ;

} finally {
if (rs!=null) {
try {
rs.close();
} catch (SQLException ex) {
/'l ignore
}
}
if (stnmt !'=null) {
try {
stnt.cl ose();
} catch (SQLException ex) {
/'l ignore
}
}
}

Running the preceding example code should produce the following output:

Key returned from get Generat edKeys(): 1
Key returned from SELECT LAST INSERT_ID(): 1
Key returned for inserted row 1

At times, it can be tricky to use the SELECT LAST | NSERT | D() query, as that function's value

is scoped to a connection. So, if some other query happens on the same connection, the value is
overwritten. On the other hand, the get Gener at edKeys() method is scoped by the St at enent
instance, so it can be used even if other queries happen on the same connection, but not on the same
St at ement instance.

141

Connection Pooling with Connector/J

3.7 Connection Pooling with Connector/J

Connection pooling is a technique of creating and managing a pool of connections that are ready for
use by any thread that needs them. Connection pooling can greatly increase the performance of your
Java application, while reducing overall resource usage.

How Connection Pooling Works

Most applications only need a thread to have access to a JDBC connection when they are actively
processing a transaction, which often takes only milliseconds to complete. When not processing a
transaction, the connection sits idle. Connection pooling enables the idle connection to be used by
some other thread to do useful work.

In practice, when a thread needs to do work against a MySQL or other database with JDBC, it requests
a connection from the pool. When the thread is finished using the connection, it returns it to the pool, so
that it can be used by any other threads.

When the connection is loaned out from the pool, it is used exclusively by the thread that
requested it. From a programming point of view, it is the same as if your thread called

Dri ver Manager . get Connecti on() every time it needed a JDBC connection. With connection
pooling, your thread may end up using either a new connection or an already-existing connection.

Benefits of Connection Pooling

The main benefits to connection pooling are:
* Reduced connection creation time.

Although this is not usually an issue with the quick connection setup that MySQL offers compared to
other databases, creating new JDBC connections still incurs networking and JDBC driver overhead
that will be avoided if connections are recycled.

» Simplified programming model.

When using connection pooling, each individual thread can act as though it has created its own
JDBC connection, allowing you to use straightforward JDBC programming techniques.

» Controlled resource usage.

If you create a new connection every time a thread needs one rather than using connection pooling,
your application's resource usage can be wasteful, and it could lead to unpredictable behaviors for
your application when it is under a heavy load.

Using Connection Pooling with Connector/J

The concept of connection pooling in JDBC has been standardized through the JDBC 2.0 Optional
interfaces, and all major application servers have implementations of these APIs that work with MySQL
Connector/J.

Generally, you configure a connection pool in your application server configuration files, and access it
through the Java Naming and Directory Interface (JNDI). The following code shows how you might use
a connection pool from an application deployed in a J2EE application server:

Example 3.14 Connector/J: Using a connection pool with a J2EE application server

i mport java.sqgl.Connecti on;
i mport java.sql.SQLException;
import java.sql.Statenment;
i mport javax.nam ng. | nitial Context;
i mport javax. sql . Dat aSour ce;
public class MyServl etJspOE b {
publ i c void doSonet hing() throws Exception {
/*

142

https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_thread
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_transaction

Using Connection Pooling with Connector/J

* Create a JNDI Initial context to be able to

* | ookup the DataSource

*

* In production-|level code, this should be cached as

* an instance or static variable, as it can

* be quite expensive to create a JNDI context.

*

* Note: This code only works when you are using servlets
* or EJBs in a J2EE application server. If you are

* using connection pooling in standal one Java code, you
* will have to create/configure datasources using whatever
* mechani sns your particul ar connection pooling library
* provides.

*

/

Initial Context ctx = new Initial Context();

/*
* Lookup the DataSource, which will be backed by a pool
* that the application server provides. DataSource instances
* are al so a good candidate for caching as an instance
* variable, as JNDI | ookups can be expensive as well.
*/

Dat aSource ds =
(Dat aSour ce) ct x. | ookup("j ava: conp/ env/ j dbc/ MySQLDB") ;

/*

* The followi ng code is what woul d actually be in your

* Servlet, JSP or EJB 'service' nethod...where you need
* to work with a JDBC connecti on.

*/

Connection conn = nul|;

Statement stnt = nul|;

try {

conn = ds. get Connection();

/*

* Now, use normal JDBC programmng to work with

* MySQ., neking sure to close each resource when you're
* finished with it, which permits the connection pool
* resources to be recovered as quickly as possible
*/

stnt = conn.createStatenent();

stnt. execut e(" SOVE SQL QUERY");

stnt.cl ose();

stmt = null;
conn. cl ose();
conn = null;
} finally {
/*
* close any jdbc instances here that weren't
* explicitly closed during normal code path, so
* that we don't 'leak' resources...
*/
if (stnt !'=null) {
try {
stnt.cl ose();
} catch (sql exception sqglex) {
/'l ignore, as we can't do anything about it here
stmt = null;
}
if (conn != null) {
try {
conn. cl ose();
} catch (sql exception sqgl ex) {
/'l ignore, as we can't do anything about it here
}
conn = null;
}
}

}

As shown in the example above, after obtaining the JNDI | ni ti al Cont ext , and looking up the
Dat aSour ce, the rest of the code follows familiar JDBC conventions.

143

Sizing the Connection Pool

When using connection pooling, always make sure that connections, and anything created by them
(such as statements or result sets) are closed. This rule applies no matter what happens in your
code (exceptions, flow-of-control, and so forth). When these objects are closed, they can be re-used;
otherwise, they will be stranded, which means that the MySQL server resources they represent (such
as buffers, locks, or sockets) are tied up for some time, or in the worst case can be tied up forever.

Sizing the Connection Pool

Each connection to MySQL has overhead (memory, CPU, context switches, and so forth) on both

the client and server side. Every connection limits how many resources there are available to your
application as well as the MySQL server. Many of these resources will be used whether or not the
connection is actually doing any useful work! Connection pools can be tuned to maximize performance,
while keeping resource utilization below the point where your application will start to fail rather than just
run slower.

The optimal size for the connection pool depends on anticipated load and average database
transaction time. In practice, the optimal connection pool size can be smaller than you might expect.
If you take Oracle's Java Petstore blueprint application for example, a connection pool of 15-20
connections can serve a relatively moderate load (600 concurrent users) using MySQL and Tomcat
with acceptable response times.

To correctly size a connection pool for your application, create load test scripts with tools such as
Apache JMeter or The Grinder, and load test your application.

An easy way to determine a starting point is to configure your connection pool's maximum number

of connections to be unbounded, run a load test, and measure the largest amount of concurrently
used connections. You can then work backward from there to determine what values of minimum and
maximum pooled connections give the best performance for your particular application.

Validating Connections

MySQL Connector/J can validate the connection by executing a lightweight ping against a server. In
the case of load-balanced connections, this is performed against all active pooled internal connections
that are retained. This is beneficial to Java applications using connection pools, as the pool can

use this feature to validate connections. Depending on your connection pool and configuration, this
validation can be carried out at different times:

1. Before the pool returns a connection to the application.
2. When the application returns a connection to the pool.
3. During periodic checks of idle connections.

To use this feature, specify a validation query in your connection pool that starts with / * pi ng

*/ . Note that the syntax must be exactly as specified. This will cause the driver send a ping to the
server and return a dummy lightweight result set. When using a Repl i cat i onConnecti on or
LoadBal ancedConnect i on, the ping will be sent across all active connections.

It is critical that the syntax be specified correctly. The syntax needs to be exact for reasons of
efficiency, as this test is done for every statement that is executed:

protected static final String PING MARKER = "/* ping */";

it (sql.charAt(0) == '/') {
if (sqgl.startsWth(Pl NG MARKER)) {
doPi ngl nst ead() ;

None of the following snippets will work, because the ping syntax is sensitive to whitespace,
capitalization, and placement:

144

Multi-Host Connections

sgql = "/* PING */ SELECT 1";

sql = "SELECT 1 /* ping*/";

sql = "/*ping*/ SELECT 1";

sql =" /* ping */ SELECT 1";

sql = "/*to ping or not to ping*/ SELECT 1";

All of the previous statements will issue a normal SELECT statement and will not be transformed into
the lightweight ping. Further, for load-balanced connections, the statement will be executed against
one connection in the internal pool, rather than validating each underlying physical connection. This
results in the non-active physical connections assuming a stale state, and they may die. If Connector/
J then re-balances, it might select a dead connection, resulting in an exception being passed to the
application. To help prevent this, you can use | oadBal anceVal i dat eConnecti onOnSwapSer ver
to validate the connection before use.

If your Connector/J deployment uses a connection pool that allows you to specify a validation query,
take advantage of it, but ensure that the query starts exactly with / * pi ng */. This is particularly
important if you are using the load-balancing or replication-aware features of Connector/J, as it will help
keep alive connections which otherwise will go stale and die, causing problems later.

3.8 Multi-Host Connections

The following sections discuss a number of topics that involve multi-host connections, namely, server
load-balancing, failover, and replication.

Developers should know the following things about multi-host connections that are managed through
Connector/J:

» Each multi-host connection is a wrapper of the underlying physical connections.

» Each of the underlying physical connections has its own session. Sessions cannot be tracked,
shared, or copied, given the MySQL architecture.

» Every switch between physical connections means a switch between sessions.

« Within a transaction boundary, there are no switches between physical connections. Beyond a
transaction boundary, there is no guarantee that a switch does not occur.

Note

If an application reuses session-scope data (for example, variables, SSPs)
beyond a transaction boundary, failures are possible, as a switch between the
physical connections (which is also a switch between sessions) might occur.
Therefore, the application should re-prepare the session data and also restart
the last transaction in case of an exception, or it should re-prepare session
data for each new transaction if it does not want to deal with exception
handling.

3.8.1 Configuring Server Failover for Connections Using JDBC

MySQL Connector/J supports server failover. A failover happens when connection-related errors occur
for an underlying, active connection. The connection errors are, by default, propagated to the client,
which has to handle them by, for example, recreating the working objects (St at enent , Resul t Set ,
etc.) and restarting the processes. Sometimes, the driver might eventually fall back to the original host
automatically before the client application continues to run, in which case the host switch is transparent
and the client application will not even notice it.

A connection using failover support works just like a standard connection: the client does not
experience any disruptions in the failover process. This means the client can rely on the same
connection instance even if two successive statements might be executed on two different physical
hosts. However, this does not mean the client does not have to deal with the exception that triggered
the server switch.

145

Configuring Server Failover for Connections Using JDBC

The failover is configured at the initial setup stage of the server connection by the connection URL (see
explanations for its format here):

jdbc:nysqgl://[primary host][:port],[secondary host 1][:port][,[secondary host 2][:port]]...[/[database]]»
[?pr oper t yNanel=pr opertyVal uel[&or opert yNane2=propertyVal ue?]...]

The host list in the connection URL comprises of two types of hosts, the primary and the secondary.
When starting a new connection, the driver always tries to connect to the primary host first and, if
required, fails over to the secondary hosts on the list sequentially when communication problems are
experienced. Even if the initial connection to the primary host fails and the driver gets connected to a
secondary host, the primary host never loses its special status: for example, it can be configured with
an access mode distinct from those of the secondary hosts, and it can be put on a higher priority when
a host is to be picked during a failover process.

The failover support is configured by the following connection properties (their functions are explained
in the paragraphs below):

e fail Over ReadOnly
» secondsBef or eRet rySour ce

e queri esBef oreRet rySour ce

retriesAl | Down
e aut oReconnect

e aut oReconnect For Pool s

Configuring Connection Access Mode

As with any standard connection, the initial connection to the primary host is in read/write mode.
However, if the driver fails to establish the initial connection to the primary host and it automatically
switches to the next host on the list, the access mode now depends on the value of the property

fail Over ReadOnl y, which is “true” by default. The same happens if the driver is initially connected
to the primary host and, because of some connection failure, it fails over to a secondary host. Every
time the connection falls back to the primary host, its access mode will be read/write, irrespective of
whether or not the primary host has been connected to before. The connection access mode can be
changed any time at runtime by calling the method Connecti on. set ReadOnl y(bool ean), which
partially overrides the property f ai | Over ReadOnl y. When f ai | Over ReadOnl y=f al se and the
access mode is explicitly set to either true or false, it becomes the mode for every connection after

a host switch, no matter what host type are being connected to; but, if f ai | Over ReadOnl y=t r ue,
changing the access mode to read/write is only possible if the driver is connecting to the primary host;
however, even if the access mode cannot be changed for the current connection, the driver remembers
the client's last intention and, when falling back to the primary host, that is the mode that will be used.
For an illustration, see the following successions of events with a two-host connection.

e Sequence A, with f ai | Over ReadOnl y=t r ue:
1. Connects to primary host in read/write mode
2. Sets Connecti on. set ReadOnl y(true); primary host now in read-only mode
3. Failover event; connects to secondary host in read-only mode
4. Sets Connecti on. set ReadOnl y(f al se) ; secondary host remains in read-only mode
5. Falls back to primary host; connection now in read/write mode
» Sequence B, with f ai | Over ReadOnl y=f al se

1. Connects to primary host in read/write mode

146

Configuring Server Failover for Connections Using JDBC

2. Sets Connecti on. set ReadOnl y(true); primary host now in read-only mode
3. Failover event; connects to secondary host in read-only mode

4. Set Connection. set ReadOnl y(f al se); connection to secondary host switches to read/write
mode

5. Falls back to primary host; connection now in read/write mode

The difference between the two scenarios is in step 4: the access mode for the secondary host in
sequence A does not change at that step, but the driver remembers and uses the set mode when
falling back to the primary host, which would be read-only otherwise; but in sequence B, the access
mode for the secondary host changes immediately.

Configuring Fallback to Primary Host

As already mentioned, the primary host is special in the failover arrangement when it comes to the
host's access mode. Additionally, the driver tries to fall back to the primary host as soon as possible by
default, even if no communication exception occurs. Two properties, secondsBef or eRet r ySour ce
and quer i esBef or eRet r ySour ce, determine when the driver is ready to retry a reconnection to the
primary host (the Sour ce in the property names stands for the primary host of our connection URL,
which is not necessarily a source host in a replication setup):

» secondsBef or eRet r ySour ce determines how much time the driver waits before trying to fall back
to the primary host

e queri esBef or eRet r ySour ce determines the number of queries that are executed
before the driver tries to fall back to the primary host. Note that for the driver, each call to
a St at enent . execut e* () method increments the query execution counter; therefore,
when calls are made to St at enent . execut eBat ch() orifal | owul ti Queri es
orrew it eBat chSt at enent s are enabled, the driver may not have an accurate
count of the actual number of queries executed on the server. Also, the driver calls the
St at enent . execut e* () methods internally in several occasions. All these mean you can only use
quer i esBef or eRet r ySour ce only as a coarse specification for when to fall back to the primary
host.

In general, an attempt to fallback to the primary host is made when at least one of the conditions
specified by the two properties is met, and the attempt always takes place at transaction

boundaries. However, if auto-commit is turned off, the check happens only when the method
Connection. conm t () or Connection. rol | back() is called. The automatic fallback to the
primary host can be turned off by setting simultaneously secondsBef or eRet r ySour ce and

guer i esBef or eRet r ySour ce to “0". Setting only one of the properties to “0” only disables one part
of the check.

Configuring Reconnection Attempts

When establishing a new connection or when a failover event occurs, the driver tries to connect
successively to the next candidate on the host list. When the end of the list has been reached, it
restarts all over again from the beginning of the list; however, the primary host is skipped over, if (a)
NOT all the secondary hosts have already been tested at least once, AND (b) the fallback conditions
defined by secondsBef or eRet r ySour ce and quer i esBef or eRet r ySour ce are not yet fulfilled.
Each run-through of the whole host list, (which is not necessarily completed at the end of the host list)
counts as a single connection attempt. The driver tries as many connection attempts as specified by
the value of the property r et ri esAl | Down.

Seamless Reconnection

Although not recommended, you can make the driver perform failovers without invalidating the
active St at ement or Resul t Set instances by setting either the parameter aut oReconnect

147

Configuring Server Failover for Connections Using X DevAPI

or aut oReconnect For Pool s to t r ue. This allows the client to continue using the same object
instances after a failover event, without taking any exceptional measures. This, however, may lead to
unexpected results: for example, if the driver is connected to the primary host with read/write access
mode and it fails-over to a secondary host in read-only mode, further attempts to issue data-changing
gueries will result in errors, and the client will not be aware of that. This limitation is particularly relevant
when using data streaming: after the failover, the Resul t Set looks to be alright, but the underlying
connection may have changed already, and no backing cursor is available anymore.

Configuring Server Failover Using JDBC with DNS SRV

See Section 3.5.14, “Support for DNS SRV Records” for details.

3.8.2 Configuring Server Failover for Connections Using X DevAPI

When using the X Protocol, Connector/J supports a client-side failover feature for establishing a
Session. If multiple hosts are specified in the connection URL, when Connector/J fails to connect to a
listed host, it tries to connect to another one. This is a sample X DevAPI URL for configuring client-side
failover:

nysql x: // sandy: mypasswor d@ host 1: 33060, host 2: 33061] / t est

With the client-side failover configured, when there is a failure to establish a connection, Connector/J
keeps attempting to connect to a host on the host list. The order in which the hosts are attempted for
connection is as follows:

» For connections with the pri or ity property set for each host in the connection URL, hosts are
attempted according to the set priorities for the hosts, which are specified by any numbers between 0
to 100, with a larger number indicating a higher priority for connection. For example:

nysql x: / / sandy: nypasswor d@ (addr ess=host 1: 33060, pri ority=2), (address=host 2: 33061, priority=1)]/test
In this example, host 1 is always attempted before host 2 when new sessions are created.
Priorities should either be set for all or no hosts.
» For connections with the pri ori ty property NOT set for each host in the connection URL:
« Forrelease 8.0.19 and later, hosts are attempted one after another in a random order.

 for release 8.0.18 and earlier, hosts are attempted one after another in the order they appear in the
connection URL—a host appearing earlier in the list will be attempted before a host appearing later
in the list.

Notice that the server failover feature for X DevAPI only allows for a failover when Connector/J is trying
to establish a connection, but not during operations after a connection has already been made.

Connection Pooling Using X DevAPl. When using connection pooling with X DevAPI,
Connector/J keeps track of any host it failed to connect to and, for a short waiting period after

the failure, avoids connecting to it during the creation or retrieval of a Sessi on. However, if

all other hosts have already been tried, those excluded hosts will be retried without waiting.

Once all hosts have been tried and no connections can be established, Connector/J throws a

com nysql . cj.exceptions. CJConmuni cat i onsExcept i on and returns the message Unabl e
to connect to any of the target hosts.

Configuring Server Failover Using X DevAPI with DNS SRV
See Section 3.5.14, “Support for DNS SRV Records” for details.
3.8.3 Configuring Load Balancing with Connector/J

Connector/J has long provided an effective means to distribute read/write load across multiple MySQL
server instances for Cluster or source-source replication deployments. You can dynamically configure

148

Configuring Load Balancing with Connector/J

load-balanced connections, with no service outage. In-process transactions are not lost, and no
application exceptions are generated if any application is trying to use that particular server instance.

The load balancing is configured at the initial setup stage of the server connection by the following
connection URL, which has a similar format as the general JDBC URL for MySQL connection, but a
specialized scheme:

jdbc: nysqgl : | oadbal ance: //[host1][:port],[host2][:port][,[host3][:port]]...[/[database]] »
[?propertyNanel=propertyVal uel[&r opertyNane2=propertyVal ue2]...]

There are two configuration properties associated with this functionality:

e | oadBal anceConnecti onG oup — This provides the ability to group connections from different
sources. This allows you to manage these JDBC sources within a single class loader in any
combination you choose. If they use the same configuration, and you want to manage them as a
logical single group, give them the same name. This is the key property for management: if you
do not define a name (string) for | oadBal anceConnect i onG oup, you cannot manage the
connections. All load-balanced connections sharing the same | oadBal anceConnecti onG oup
value, regardless of how the application creates them, will be managed together.

* ha. enabl eJMX - The ability to manage the connections is exposed when you define a
| oadBal anceConnect i onG oup; but if you want to manage this externally, enable JIMX by
setting this property to t r ue. This enables a JMX implementation, which exposes the management
and monitoring operations of a connection group. Further, start your application with the -
Dcom sun. managenent . j nxr enot e JVM flag. You can then perform connect and perform
operations using a JMX client such as j consol e.

Once a connection has been made using the correct connection properties, a number of monitoring
properties are available:

» Current active host count.

» Current active physical connection count.
» Current active logical connection count.
 Total logical connections created.

Total transaction count.

The following management operations can also be performed:
* Add host.
* Remove host.

The JMX interface, com nysql . cj . j dbc. j nx. LoadBal anceConnect i onGr oupManager MBean,
has the following methods:

e int getActiveHost Count (String group);

e int getTotal Host Count (String group);

* | ong get Tot al Logi cal Connecti onCount (String group);

* | ong get Acti velLogi cal Connecti onCount (String group);
* | ong get Acti vePhysi cal Connecti onCount (String group);
* | ong get Tot al Physi cal Connecti onCount (String group);

| ong get Total Transacti onCount (String group);

149

Configuring Load Balancing with Connector/J

e« void renpveHost (String group, String host) throws SQLExcepti on;

» voi d stopNewConnecti onsToHost (String group, String host) throws
SQLExcepti on;

e void addHost (String group, String host, bool ean forExisting);
e String getActiveHostsList(String group);
» String getRegisteredConnecti onG oups();

The get Regi st er edConnect i onG oups() method returns the names of all connection groups
defined in that class loader.

You can test this setup with the following code:

public class Test {

private static String URL = "jdbc: nysql: | oadbal ance: //" +
"l ocal host : 3306, | ocal host : 3310/ t est ?" +
"| oadBal anceConnecti onG oup=fi r st & a. enabl eJMX=t rue";

public static void main(String[] args) throws Exception {
new Thread(new Repeater()).start();
new Thread(new Repeater()).start();
new Thread(new Repeater()).start();

static Connecti on get NewConnection() throws SQ.Exception, C assNot FoundException {
Cl ass. for Nane("com nysql . cj.jdbc. Driver");
return Driver Manager. get Connecti on(URL, "root", "");
}
static voi d executeSi npl eTransacti on(Connection ¢, int conn, int trans){
try {
c.set Aut oCommi t (f al se);
Statenent s = c.createStatenent();
s. execut eQuery("SELECT SLEEP(1) /* Connection: " + conn + ", transaction: " + trans + " */");
c.commt();
} catch (SQLException e) {
e.printStackTrace();
}
}

public static class Repeater inplenents Runnable {
public void run() {
for(int i=0; i < 100; i++){
try {
Connection ¢ = get NewConnection();
for(int j=0; j < 10; j++){
execut eSi npl eTransaction(c, i, j);
Thr ead. sl eep(Mat h. round(100 * Math.random()));
}

c.close();
Thr ead. sl eep(100) ;
} catch (Exception e) {
e.printStackTrace();
}

After compiling, the application can be started with the - Dcom sun. managenent . j nxr enot e

flag, to enable remote management. j consol e can then be started. The Test main class

will be listed by j consol e. Select this and click Connect. You can then navigate to the

com nysql . cj.jdbc.]nx. LoadBal anceConnecti onG oupManager bean. At this point, you can
click on various operations and examine the returned result.

If you now had an additional instance of MySQL running on port 3309, you could ensure that
Connector/J starts using it by using the addHost () , which is exposed in j consol e. Note that these
operations can be performed dynamically without having to stop the application running.

150

Configuring Source/Replica Replication with Connector/J

For further information on the combination of load balancing and failover, see Section 3.8.5, “Advanced
Load-balancing and Failover Configuration”.

Configuring Load Balancing with DNS SRV

See Section 3.5.14, “Support for DNS SRV Records” for details.

3.8.4 Configuring Source/Replica Replication with Connector/J

This section describe a number of features of Connector/J's support for replication-aware deployments.

The replication is configured at the initial setup stage of the server connection by the connection URL,
which has a similar format as the general JDBC URL for MySQL connection, but a specialized scheme:

jdbc: nysql :replication://[source host][:port],[replica host 1][:port][,[replica host 2][:port]]...[/[da
[?propertyNanel=propertyVal uel[&r opertyNane2=propertyVal ue2]...]

Users may specify the property al | owSour ceDownConnect i ons=t r ue to allow Connecti on
objects to be created even though no source hosts are reachable. Such Connect i on objects

report they are read-only, and i sSour ceConnecti on() returns false for them. The Connecti on
tests for available source hosts when Connecti on. set ReadOnl y(f al se) is called, throwing an
SQLException if it cannot establish a connection to a source, or switching to a source connection if the
host is available.

Users may specify the property al | owRepl i casDownConnect i ons=t r ue to allow Connecti on
objects to be created even though no replica hosts are reachable. A Connect i on then, at runtime,
tests for available replica hosts when Connect i on. set ReadOnl y(true) is called (see explanation
for the method below), throwing an SQLEXxception if it cannot establish a connection to a replica, unless
the property r eadFr onSour ceWhenNoRepl i cas is set to be “true” (see below for a description of the

property).
Scaling out Read Load by Distributing Read Traffic to Replicas

Connector/J supports replication-aware connections. It can automatically send queries to a read/
write source host, or a failover or round-robin loadbalanced set of replicas based on the state of
Connecti on. get ReadOnl y().

An application signals that it wants a transaction to be read-only by calling

Connecti on. set ReadOnl y(true) . The replication-aware connection will use one of

the replica connections, which are load-balanced per replica host using a round-robin

scheme. A given connection is sticky to a replica until a transaction boundary command

(a commit or rollback) is issued, or until the replica is removed from service. After calling

Connecti on. set ReadOnl y(true), if you want to allow connection to a source when no replicas
are available, set the property r eadFr onSour ceWhenNoRepl i cas to “true.” Notice that the source
host will be used in read-only state in those cases, as if it is a replica host. Also notice that setting
readFr onSour ceWhenNoRepl i cas=t r ue might result in an extra load for the source host in a
transparent manner.

If you have a write transaction, or if you have a read that is time-sensitive (remember,

replication in MySQL is asynchronous), set the connection to be not read-only, by calling

Connecti on. set ReadOnl y(f al se) and the driver will ensure that further calls are sent to the
source MySQL server. The driver takes care of propagating the current state of autocommit, isolation
level, and catalog between all of the connections that it uses to accomplish this load balancing
functionality.

To enable this functionality, use the specialized replication scheme (
j dbc: nysql : replication://)when connecting to the server.

Here is a short example of how a replication-aware connection might be used in a standalone
application:

151

Configuring Source/Replica Replication with Connector/J

i mport java.sql.Connecti on;
import java.sql.ResultSet;
inmport java.util.Properties;
import java.sql.DriverManager;
public class Replicati onDeno {
public static void main(String[] args) throws Exception {

Properties props = new Properties();

/'l W& want this for failover on the replicas
props. put ("aut oReconnect", "true");

/1 W& want to | oad bal ance between the replicas
props. put ("roundRobi nLoadBal ance", "true");

props. put ("user", "foo");
props. put ("password", "password");
/1

/'l Looks like a normal MySQL JDBC url, with a
/! comma-separated |ist of hosts, the first
/] being the 'source', the rest being any nunber
/1 of replicas that the driver will |oad bal ance agai nst
/1
Connection conn =
Dri ver Manager . get Connecti on("j dbc: nmysql :replication://source, replical,replica2,replica3/test",

props);
/1
/] Performread/wite work on the source
/1 by setting the read-only flag to "fal se"
/1
conn. set ReadOnl y(f al se);
conn. set Aut oCommi t (f al se) ;
conn. cr eat eSt at enent () . execut eUpdat e(" UPDATE sone_table");
conn.comit();
/1
/1l Now, do a query froma replica, the driver automatically picks one
I/l fromthe |ist
/1
conn. set ReadOnl y(true);
ResultSet rs =
conn. creat eSt at enent () . execut eQuery (" SELECT a,b FROM alt _table");

Consider using the Load Balancing JDBC Pool (I bpool) tool, which provides a wrapper around the
standard JDBC driver and enables you to use DB connection pools that includes checks for system
failures and uneven load distribution. For more information, see Load Balancing JDBC Driver for
MySQL (mysql-lbpool).

Support for Multiple-Source Replication Topographies
Connector/J supports multi-source replication topographies.

The connection URL for replication discussed earlier (i.e., in the format of

jdbc: nysql :replication://source, replical,replica2, replica3/test)assumes that
the first (and only the first) host is the source host. Supporting deployments with an arbitrary number of
sources and replicas requires the "address-equals" URL syntax for multiple host connection discussed
in Section 3.5.2, “Connection URL Syntax”, with the property t ype=[sour ce| repl i ca] ; for example:

jdbc: nysql :replication://address=(type=source) (host =sour celhost), address=(type=source) (host =sour ce2host), ac

Connector/J uses a load-balanced connection internally for management of the source connections,
which means that Repl i cati onConnect i on, when configured to use multiple sources, exposes the
same options to balance load across source hosts as described in Section 3.8.3, “Configuring Load
Balancing with Connector/J”.

Live Reconfiguration of Replication Topography

Connector/J also supports live management of replication host (single or multi-source) topographies.
This enables users to promote replicas for Java applications without requiring an application restart.

152

http://code.google.com/p/mysql-lbpool/
http://code.google.com/p/mysql-lbpool/

Configuring Source/Replica Replication with Connector/J

The replication hosts are most effectively managed in the context of a replication connection

group. A ReplicationConnectionGroup class represents a logical grouping of connections which

can be managed together. There may be one or more such replication connection groups in a

given Java class loader (there can be an application with two different JDBC resources needing

to be managed independently). This key class exposes host management methods for replication
connections, and Repl i cati onConnect i on objects register themselves with the appropriate

Repl i cati onConnecti onG oup if a value for the new r epl i cati onConnecti onG oup property
is specified. The Repl i cat i onConnecti onG oup object tracks these connections until they are
closed, and it is used to manipulate the hosts associated with these connections.

Some important methods related to host management include:

e get Sour ceHost s() : Returns a collection of strings representing the hosts configured as source
hosts

» get Repl i caHost s() : Returns a collection of strings representing the hosts configured as replica
hosts

e addRepl i caHost (String host): Adds new host to pool of possible replica hosts for selection at
start of new read-only workload

e pronot eRepl i caToSour ce(String host): Removes the host from the pool of potential replica
hosts for future read-only processes (existing read-only process is allowed to continue to completion)
and adds the host to the pool of potential source hosts

e renoveReplicaHost (String host, bool ean cl oseGently): Removes the host (host name
match must be exact) from the list of configured replica hosts; if cl oseGent | y is false, existing
connections which have this host as currently active will be closed hardly (application should expect
exceptions)

e renoveSour ceHost (String host, bool ean cl oseGently): Same as
renoveRepl i caHost (), but removes the host from the list of configured source hosts

Some useful management metrics include:

e get Connecti onCount Wt hHost AsRepl i ca(String host): Returns the number of
ReplicationConnection objects that have the given host configured as a possible replica host

e get Connecti onCount Wt hHost AsSour ce(String host) : Returns the number of
ReplicationConnection objects that have the given host configured as a possible source host

e get Nunmber O Repl i casAdded() : Returns the number of times a replica host has been
dynamically added to the group pool

« get Nunber Of Repl i casRenoved() : Returns the number of times a replica host has been
dynamically removed from the group pool

e get Nunber Of Repl i caPr onot i ons() : Returns the number of times a replica host has been
promoted to be a source host

e get Tot al Connecti onCount () : Returns the number of ReplicationConnection objects which have
been registered with this group

e get Acti veConnecti onCount () : Returns the number of ReplicationConnection objects currently
being managed by this group

ReplicationConnectionGroupManager

com nysql.cj.jdbc. ha. Replicati onConnecti onGr oupManager provides access to the
replication connection groups, together with some utility methods.

e get ConnectionG oup(String groupNane): Returns the Repl i cati onConnecti onG oup
object matching the groupName provided

153

Advanced Load-balancing and Failover Configuration

The other methods in Repl i cati onConnect i onG oupManager mirror those of

Repl i cati onConnecti onG oup, except that the first argument is a String group name.
These methods will operate on all matching ReplicationConnectionGroups, which are
helpful for removing a server from service and have it decommissioned across all possible
Repl i cati onConnecti onG oups.

These methods might be useful for in-JVM management of replication hosts if an application triggers
topography changes. For managing host configurations from outside the JVM, JMX can be used.

Using JMX for Managing Replication Hosts

When Connector/J is started with ha. enabl eJMX=t r ue and a value set for the
property r epl i cati onConnecti onG oup, a JMX MBean will be registered, allowing
manipulation of replication hosts by a JMX client. The MBean interface is defined in
com nysql . cj.jdbc.jnx.ReplicationG oupManager MBean, and leverages the
Repl i cati onConnecti onG oupManager static methods:

public abstract void addReplicaHost(String groupFilter, String host) throws SQ.Exception;
public abstract void renoveReplicaHost(String groupFilter, String host) throws SQ.Exception;
public abstract void pronoteReplicaToSource(String groupFilter, String host) throws SQ.Exception;
public abstract void renoveSourceHost (String groupFilter, String host) throws SQ.Exception;
public abstract String get SourceHostsList(String group);

public abstract String getReplicaHostsList(String group);

public abstract String getRegi steredConnecti onG oups();

public abstract int getActiveSourceHost Count(String group);

public abstract int getActiveReplicaHostCount(String group);

public abstract int getReplicaPronotionCount(String group);

public abstract |ong get Total Logi cal Connecti onCount (String group);

public abstract |ong getActivelLogi cal Connecti onCount (String group);

Configuring Source/Replica Replication with DNS SRV

See Section 3.5.14, “Support for DNS SRV Records” for details.

3.8.5 Advanced Load-balancing and Failover Configuration

Connector/J provides a useful load-balancing implementation for MySQL Cluster or multi-source
deployments, as explained in Section 3.8.3, “Configuring Load Balancing with Connector/J” and
Support for Multiple-Source Replication Topographies. This same implementation is used for balancing
load between read-only replicas for replication-aware connections.

When trying to balance workload between multiple servers, the driver has to determine when it is
safe to swap servers, doing so in the middle of a transaction, for example, could cause problems. Itis
important not to lose state information. For this reason, Connector/J will only try to pick a new server
when one of the following happens:

1. Attransaction boundaries (transactions are explicitly committed or rolled back).
2. A communication exception (SQL State starting with "08") is encountered.

3. When a SQLExcept i on matches conditions defined by user, using the extension points defined by
the | oadBal anceSQ_St at eFai | over, | oadBal anceSQLExcept i onSubcl assFai | over or
| oadBal anceExcept i onChecker properties.

The third condition revolves around three properties, which allow you to control which SQLExcept i ons
trigger failover:

» | oadBal anceExcept i onChecker - The | oadBal anceExcept i onChecker property
is really the key. This takes a fully-qualified class name which implements the new
com nysql . cj.jdbc. ha. LoadBal anceExcepti onChecker interface. This interface is very
simple, and you only need to implement the following method:

154

Advanced Load-balancing and Failover Configuration

publ i ¢ bool ean shoul dExcepti onTri gger Fai | over (SQLExcepti on ex)

A SQLExcept i on is passed in, and a boolean returned. A value of t r ue triggers a failover, f al se
does not.

You can use this to implement your own custom logic. An example where this might be useful is
when dealing with transient errors when using MySQL Cluster, where certain buffers may become
overloaded. The following code snippet illustrates this:

publ i c cl ass NdbLoadBal anceExcept i onChecker
ext ends St andar dLoadBal anceExcepti onChecker {
publ i ¢ bool ean shoul dExcepti onTri gger Fai | over (SQLExcepti on ex) {
return super.shoul dExcepti onTri gger Fai |l over (ex)
|| checkNdbExcepti on(ex);

}
private bool ean checkNdbExcepti on(SQLException ex) {

/'l Have to parse the nessage since nmost NDB errors

/] are mapped to the same DEMC.
return (ex.getMessage().startsWth("Lock wait timeout exceeded") ||
(ex. get Message().startsWth("CGot tenporary error")
&& ex. get Message().endsWth("from NDB")));

}
}

The code above extends

com nysql . cj . jdbc. ha. St andar dLoadBal anceExcept i onChecker, which is the
default implementation. There are a few convenient shortcuts built into this, for those who
want to have some level of control using properties, without writing Java code. This default
implementation uses the two remaining properties: | oadBal anceSQLSt at eFai | over and
| oadBal anceSQLExcept i onSubcl assFai | over.

» | oadBal anceSQLSt at eFai | over - allows you to define a comma-delimited list of SQLSt at e
code prefixes, against which a SQLExcept i on is compared. If the prefix matches, failover is
triggered. So, for example, the following would trigger a failover if a given SQLExcept i on starts with
"00", or is "12345"

| oadBal anceSQ.St at eFai | over =00, 12345

» | oadBal anceSQLExcepti onSubcl assFai | over - can be used in conjunction with
| oadBal anceSQLSt at eFai | over or on its own. If you want certain subclasses of SQLExcept i on
to trigger failover, simply provide a comma-delimited list of fully-qualified class or interface names
to check against. For example, if you want all SQLTr ansi ent Connect i onExcept i ons to trigger
failover, you would specify:

| oadBal anceSQLExcept i onSubcl assFai | over =j ava. sql . SQLTr ansi ent Connect i onExcepti on

While the three failover conditions enumerated earlier suit most situations, if aut oconmi t is enabled,
Connector/J never re-balances, and continues using the same physical connection. This can be
problematic, particularly when load-balancing is being used to distribute read-only load across multiple
replicas. However, Connector/J can be configured to re-balance after a certain number of statements
are executed, when aut oconmi t is enabled. This functionality is dependent upon the following
properties:

e | oadBal anceAut oConmmi t St at enent Thr eshol d — defines the number of matching statements
which will trigger the driver to potentially swap physical server connections. The default value, 0,
retains the behavior that connections with aut ocommri t enabled are never balanced.

» | oadBal anceAut oConmi t St at enent Regex — the regular expression against which statements
must match. The default value, blank, matches all statements. So, for example, using the following
properties will cause Connector/J to re-balance after every third statement that contains the string
“test”:

155

Using the X DevAPI with Connector/J: Special Topics

| oadBal anceAut oConmi t St at ement Thr eshol d=3
| oadBal anceAut oConmi t St at enent Regex=. *t est . *

| oadBal anceAut oConmi t St at ement Regex can prove useful in a number of situations. Your
application may use temporary tables, server-side session state variables, or connection state,
where letting the driver arbitrarily swap physical connections before processing is complete could
cause data loss or other problems. This allows you to identify a trigger statement that is only
executed when it is safe to swap physical connections.

Configuring Load Balancing and Failover with DNS SRV

See Section 3.5.14, “Support for DNS SRV Records” for details.

3.9 Using the X DevAPI with Connector/J: Special Topics

Connector/J 8.0 supports the X DevAPI, through which native support by MySQL 8.0 for JSON,
NoSQL, document collection, and other features are provided to Java applications. See Using MySQL
as a Document Store, the X DevAPI User Guide, and the Connector/J X DevAPI Reference available at
Connectors and APIs for details.

Information on using the X DevAPI with Connector/J can be found in different chapters in this manual.
This chapter explores some special topics that are not covered elsewhere.

3.9.1 Connection Compression Using X DevAPI

Staring form release 8.0.20, Connector/J supports data compression for X DevAPI connections
when working with MySQL Server 8.0.19 and later. General details about this feature can be found
in Connection Compression with X Plugin. For details on how to configure connection compression
for Connector/J, see the descriptions for the connection properties xdevapi . conpr essi on,
xdevapi . conpr essi on- al gorit hns, and xdevapi . conpr essi on- ext ensi ons in

Section 3.5.3, “Configuration Properties”. The following is a summary of the feature:

For Connector/J 8.0.22 and later: The compression algorithms to be negotiated with the server and
the priority of negotiation can be specified using the connection property xdevapi . conpr essi on-

al gorithmns. It accepts alistof [al gorithm nane] [operati on-node], separated by commas
(,). If the property is not set, the default value of “zst d_stream | z4_nessage, def | at e_st reanf
is used. The priority for negotiation follows the order the algorithms appear in the list. Setting an empty
string explicitly for the property means compression should be disabled for the connection.

Note

When specifying compression algorithms with xdevapi . conpr essi on-
al gori t his, the aliases zst d, | z4, and def | at e can be used in place of
zstd_stream| z4 _nessage, and def | at e_st r eam respectively.

For Connector/J 8.0.21 and earlier: Connector/J negotiates a compression algorithm following the
priority recommended by X DeVvAPI: trying zstd first, then LZ4, and finally Deflate.

Out of all the compression algorithms now supported by MySQL 8.0 for X DevAPI connections,
Connector/J provides out-of-the-box support for Deflate only; this is because none of the other
compression algorithms (LZ4 and zstd, for now) are natively supported by the existing JREs. To
support those algorithms, the client application must provide implementations for the corresponding
deflate and inflate operations in the form of an Qut put St r eamand an | nput St r eamobject,
respectively. The easiest way to accomplish this is by using a third-party library such as the
Apache Commons Compress library, which supports LZ4 and zstd. The connection option

xdevapi . conpr essi on- ext ensi ons allows users to configure Connector/J to use any
compression algorithm that is supported by MySQL Server, as long as there is a Java implementation
for that algorithm. The option takes a list of triplets separated by commas (,), and each triplet in turn
contains the following elements, separated by colons (:):

156

https://dev.mysql.com/doc/refman/8.0/en/document-store.html
https://dev.mysql.com/doc/refman/8.0/en/document-store.html
https://dev.mysql.com/doc/x-devapi-userguide/en/
https://dev.mysql.com/doc/index-connectors.html
https://dev.mysql.com/doc/refman/8.0/en/x-plugin-connection-compression.html

Schema Validation

» The compression algorithm name, indicated by the identifier used by the server (see Connection
Compression with X Plugin; aliases mentioned in the Note above can be used).

« A fully-qualified name of a class implementing the interface j ava. i 0. | nput St r eamthat will be
used to inflate data compressed with the named algorithm.

A fully-qualified name of a class implementing the interface j ava. i 0. Qut put St r eamthat will be
used to deflate data using the named algorithm.

Here is an example that sets up the support for the algorithms | z4_nessage and zst d_st r eamusing
the Apache Commons Compress library:

String connStr = "jdbc: nysql://johndoe: secret @ ocal host: 33060/ nydb?"
"xdevapi . conpr essi on- ext ensi ons="

"l z4 _message"+":" [/ LZ4 triplet

FranedLZ4Conpr essor | nput Stream cl ass. get Nane() + ":"

Fr anedLZ4Conpr essor Qut put Stream cl ass. get Nane() + ","
"zstd_strean'+":" // zstd triplet

Zst dConpr essor | nput Stream cl ass. get Nane() + ":"

Zst dConpr essor Qut put Stream cl ass. get Nanme() ;

Sessi onFactory sessFact = new Sessi onFactory();

Sessi on sess = sessFact. get Sessi on(connStr);

Col | ection col = sess. getDefaultSchema().getCollection("nyCollection");
I(...)

sess. cl ose();

+ o+ 4+ + o+

4L

Note

For Connector/J 8.0.21 and earlier: The connection property

xdevapi . conpr essi on- ext ensi ons described above is named

xdevapi . conpr essi on- al gori t hmfor Connector/J 8.0.21 and earlier,
and the elements in each triplet should be separated by commas (,) instead of
colons (2).

Negotiation for a compression algorithm is attempted by default

(xdevapi . conpr essi on=Pr ef er r ed by default), unless the connection property

xdevapi . conpr essi on is set to DI SABLED. The final choice of compression algorithm depends

on what algorithms are enabled on the server. By default, because compression is not required, if the
negotiation fails, the connection will not be compressed, but the client will still be able to communicate
with the server; however, if the connection property xdevapi . conpr essi on is set to REQUI RED, the
connection attempt fails with an error if no algorithm can be negotiated for successfully.

3.9.2 Schema Validation

For Connector/J 8.0.21 and later, when working with MySQL Server 8.0.19 and later: Schema
validation can be configured for a Col | ect i on, so that documents in the Col | ect i on are validated
against a schema before they can be inserted or updated. This is done by specifying a JSON Schema
during Col | ect i on creation or modification; schema validation is then performed by the server at a
document creation or update, and an error is returned if the document does not validate against the
assigned schema. For more information on JSON schema validation in MySQL, see JSON Schema
Validation Functions. This section describes how to configure schema validation for a Col | ecti on
with Connector/J.

To configure schema validation during the creation of a Col | ect i on, pass to the
createCol | ecti on() method a Creat eCol | ecti onOpt i ons object, which has these fields:

» reuse: aboolean set by the set ReuseExi st i ng method. Ifitis t r ue, when the Col | ect i on
to be created already exists within the Schena that is to contain it, Connector/J returns success
(without any attempt to apply JSON schema to the existing Col | ect i on); in the same case,
Connector/J returns an error if the parameter is setto f al se. If r euse is not set, it is taken to be
fal se.

» val idation:aValidation objectsetbythe setValidation() method. AVal i dati on object
in turns contains these fields:

157

https://dev.mysql.com/doc/refman/8.0/en/x-plugin-connection-compression.html
https://dev.mysql.com/doc/refman/8.0/en/x-plugin-connection-compression.html
http://json-schema.org
https://dev.mysql.com/doc/refman/8.0/en/json-validation-functions.html
https://dev.mysql.com/doc/refman/8.0/en/json-validation-functions.html

Schema Validation

e | evel : a enumeration of the class Val i dat i onLevel , set by the set Level () method; it can be
one of the following two values:

e STRI CT: Strict validation. Attempting to insert or modify a document that violates the validation
schema results in a server error being raised.

« OFF: No validation. Schema validation is turned off.
If | evel is not set, it is taken as OFF for MySQL Server 8.0.19, and STRI CT for 8.0.20 and later.

e schena: A string representing a JSON Schema to be used to validate a Docunent in the
Col | ecti on; set by the set Scherma() method.

If schemna is not provided but | evel is setto STRICT, the Col | ect i on is validated against the
default schema {"type" : "object"}.

This is an example of how to configure schema validation at the creation of a Col | ecti on:

Col I ection coll = this.schema.createCollection(coll Nane,
new Creat eCol | ecti onOpti ons()
. set ReuseExi sti ng(fal se)
. set Val i dati on(new Val i dati on()
.set Level (Val i dati onLevel . STRI CT)
. set Schena(
"{\"id\": \"http://]son-schema. org/geo\","
+ "\"$schema\": \"http://json-schena. org/draft-06/schema#\","

" \"description\": \"A geographi cal coordinate\","
" \"type\": \"object\","
" \"properties\": {"
" \"latitude\": {"
" \"type\": \"nunmber\""

1
" \"longitude\": {"
" \"type\": \"nunmber\""
o 3
o 1
" \"required\": [\"latitude\", \"longitude\"]"
Y

++ + + o+ o+

)));
The set fields are accessible by the corresponding getter methods.

To modify the schema validation configuration for a Col | ect i on, use the nodi fyCol | ecti on()
method and pass to it a Mbdi f yCol | ecti onOpt i ons object, which has the same fields as

the Creat eCol | ect i onOpt i ons object except for the r euse field, which does not exist for a

Modi fyCol | ecti onOpti ons object. For the Val i dat i on object of a Modi f yCol | ecti onOpti ons
object, users can set either its | evel or schema, or both. Here is an example of using the

nodi f yCol | ecti on() to change the schema validation configuration:

schema. nodi fyCol | ecti on(col | Nare,
new Modi fyCol | ecti onOpti ons()
. set Val i dat i on(new Val i dati on()
.set Level (Val i dati onLevel . OFF)
. set Schena(
“{\"id\": \"http://json-schema.org/geo\","
"\"$schema\": \"http://json-schema. org/draft-06/schema#\","
" \"description\": \"NEW geographical coordinate\","
\"type\": \"object\","
\"properties\": {"
\"latitude\": {"
\"type\": \"nunber\""
3

\"l ongi tude\": {"
\"type\": \"nunber\""
3

i

++ o+ o+ o+

158

http://json-schema.org

Using the Connector/J Interceptor Classes

+ " \"required\": [\"latitude\", \"longitude\"]"
)

If the Collection contains documents that do not validate against the new JSON schema supplied
through Modi f yCol | ecti onOpt i ons, the server will reject the schema modification with the error
ERRCR 5180 (HYO00) Docunent is not valid according to the schema assigned to
col I ection.

Note

createCol | ection() and nodi fyCol | ecti on() are overloaded: they can
be called without passing to them the Cr eat eCol | ect i onOpt i ons or the
Modi fyCol | ecti onOpt i ons, respectively, in which case schema validation
will not be applied to the Col | ecti on.

3.10 Using the Connector/J Interceptor Classes

An interceptor is a software design pattern that provides a transparent way to extend or modify
some aspect of a program, similar to a user exit. No recompiling is required. With Connector/J, the
interceptors are enabled and disabled by updating the connection string to refer to different sets of
interceptor classes that you instantiate.

The connection properties that control the interceptors are explained in Section 3.5.3, “Configuration
Properties”:

e connectionLi fecycl el nt ercept or s, where you specify the fully qualified names of classes
that implement the
comnysql.cj.jdbc.interceptors. ConnectionLifecycl el nterceptor interface.
In these kinds of interceptor classes, you might log events such as rollbacks, measure the time
between transaction start and end, or count events such as calls to set Aut oConmi t ().

» exceptionl nt ercept ors, where you specify the fully qualified names of classes that implement
the com nysql . cj . excepti ons. Excepti onl nt er cept or interface. In these kinds of
interceptor classes, you might add extra diagnostic information to exceptions that can have multiple
causes or indicate a problem with server settings. except i onl nt er cept or s classes are called
when handling an Except i on thrown from Connector/J code.

» queryl nterceptors, where you specify the fully qualified names of classes that implement the
comnysql.cj.interceptors. Queryl nterceptor interface. In these kinds of interceptor
classes, you might change or augment the processing done by certain kinds of statements, such
as automatically checking for queried data in a mencached server, rewriting slow queries, logging
information about statement execution, or route requests to remote servers.

3.11 Using Logging Frameworks with SLF4J

Besides its default logger com nmysql . cj . | og. St andar dLogger , which logs to st der r, Connector/
J supports the SLF4J logging facade, allowing end users of applications using Connector/J to plug

in logging frameworks of their own choices at deployment time. Popular logging frameworks such as
java.util.logging,| ogback, and | og4j are supported by SLF4J. Follow these requirements to
use a logging framework with SLF4J and Connector/J:

 In the development environment:

« Install on your system sl f 4j - api - x. y. z. j ar (available at https://www.slf4j.org/download.html)
and add it to the Java classpath.

* In the code of your application, obtain an SLF4JLogger as a Log instantiated within a
Mysql Connecti on Sessi on, and then use the Log instance for your logging.

¢ On the deployment system:

159

https://www.slf4j.org/download.html

Using Logging Frameworks with SLF4J

« Install on your system sl f 4] - api - x. y. z. j ar and add it to the Java classpath

« Install on your system the SLF4J binding for the logging framework of your choice and add it
to your Java classpath. SLF4J bindings are available at, for example, https://www.slf4j.org/
manual.html#swapping.

Note

Do not put more than one SLF4J binding in you Java classpath. Switch
from one logging framework to another by removing a binding and adding a
new one to the classpath.

« Install the logging framework of your choice on your system and add it to the Java classpath.

» Configure the logging framework of your choice. This often consists of setting up appenders or
handlers for log messages using a configuration file; see your logging framework's documentation
for details.

* When connecting the application to the MySQL Server, set the Connector/J connection property
| ogger to Sl f 4JLogger.

The log category name used by Connector/J with SLF4J is MySQL. See the SLF4J user manual for
more details about using SLF4J, including discussions on Maven dependency and bindings. Here is a
sample code for using SLF4J with Connector/J:

i mport java.
i mport java.
i mport java.
i mport java.
i mport java.

sql .

sql

sql .

sql
sql

Dri ver Manager ;
. Connecti on;
Resul t Set ;

. SQLExcepti on;
. St at enent ;

i mport com nysql.cj.jdbc.JdbcConnecti on;
import com nysql.cj.!|og.Log;
public class JDBCDenp {

public static void main(String[] args) {

Connection conn = null;
Statenent statement = null;

Resul t Set

Log | ogger

try {

resultSet = null;

= null;

/| Dat abase paraneters

String url = "jdbc:nysql :// myexanpl e. com 3306/ pet s?l ogger =S| f 4JLogger &expl ai nSI owQueri es=true";
String user = "user";
String password = "password";

/] create a connection to the database
Dri ver Manager . get Connecti on(url, user, password);
| ogger = ((JdbcConnecti on)conn). get Sessi on() . getLog();

conn =

}

catch (SQLException e) {
Systemerr.println(e.get Message());
Systemexit(1);

}
try {

st at enent
resul t Set
whi | e(resul t Set. next()){

Systemout.printf("%\t%\t%\t %$ty. %St m %$td \ n",

resultSet.getlnt(1),

resultSet.getString(2),

resultSet.getString(3),

resul t Set.getDate(4));

}
}

= conn. createStatenent ();
= statenent. execut eQuery("SELECT * FROM pets. dogs");

cat ch(SQLException e) {
| ogger. | ogWarn("Warni ng: Select failed!");

160

https://www.slf4j.org/manual.html#swapping
https://www.slf4j.org/manual.html#swapping
http://www.slf4j.org/manual.html

Using Connector/J with Tomcat

}
}
}

If you want to use, for example, Log4j 2.17.1 as your logging framework when running this program,
put these JAR files in your Java classpath:

e sl f4j-api-2.0.3.jar (SLF4J API module, available at, for example, https://search.maven.org/
artifact/org.slf4j/sIf4j-api/2.0.3/jar).

* logdj-api-2.17.1.jar andl og4j -core-2.17. 1. ar (Log4J library, available at, for
example, https://search.maven.org/artifact/org.apache.logging.log4j/log4j-api/2.17.1/jar and https://
search.maven.org/artifact/org.apache.logging.log4j/log4j-core/2.17.1/jar).

e log4j-slfdj-inpl-2.17.1.)ar (SLF4J's binding for Log4J 2.17.1, available at, for example,
https://search.maven.org/artifact/org.apache.logging.log4j/log4j-slf4j-impl/2.17 . 1/jar).

Here is output of the program when the SELECT statement failed:

[2021- 09- 05 12:06: 19, 624] WARN O[main] - WARN MySQL - Warning: Select fail ed!

3.12 Using Connector/J with Tomcat

The following instructions are based on the instructions for Tomcat-5.x, available at http://
tomcat.apache.org/tomcat-5.5-doc/jndi-datasource-examples-howto.html which is current at the time
this document was written.

First, install the . j ar file that comes with Connector/J in $CATALI NA HOVE/ common/ | i b so that it is
available to all applications installed in the container.

Next, configure the JNDI DataSource by adding a declaration resource to $CATALI NA_HOVE/ conf /
server. xm in the context that defines your web application:

<Context>

<Resour ce nanme="j dbc/ MySQ.DB"
aut h="Cont ai ner"
type="j avax. sql . Dat aSour ce"/ >
<Resour cePar ans nane="j dbc/ MySQLDB" >
<par anet er >
<nane>f act or y</ nane>
<val ue>or g. apache. commons. dbcp. Basi cDat aSour ceFact or y</ val ue>
</ par anet er >
<par anet er >
<nane>maxAct i ve</ name>
<val ue>10</ val ue>
</ par anet er >
<par anet er >
<nane>max| dl e</ nane>
<val ue>5</ val ue>
</ par anet er >
<par anet er >
<nane>val i dat i onQuer y</ name>
<val ue>SELECT 1</val ue>
</ par anet er >
<par anet er >
<nanme>t est OnBor r ow</ name>
<val ue>t rue</ val ue>
</ par anet er >
<par anet er >
<nane>t est Wi | el dl e</ nane>
<val ue>t rue</ val ue>
</ par anet er >
<par anet er >
<nane>t i meBet weenEvi cti onRunsM I | i s</ name>
<val ue>10000</ val ue>

161

https://search.maven.org/artifact/org.slf4j/slf4j-api/2.0.3/jar
https://search.maven.org/artifact/org.slf4j/slf4j-api/2.0.3/jar
https://search.maven.org/artifact/org.apache.logging.log4j/log4j-api/2.17.1/jar
https://search.maven.org/artifact/org.apache.logging.log4j/log4j-core/2.17.1/jar
https://search.maven.org/artifact/org.apache.logging.log4j/log4j-core/2.17.1/jar
https://search.maven.org/artifact/org.apache.logging.log4j/log4j-slf4j-impl/2.17.1/jar
http://tomcat.apache.org/tomcat-5.5-doc/jndi-datasource-examples-howto.html
http://tomcat.apache.org/tomcat-5.5-doc/jndi-datasource-examples-howto.html

Using Connector/J with Spring

</ par anet er >
<par anet er >
<nane>mi nEvi ct abl el dl eTi neM | | i s</ nane>
<val ue>60000</ val ue>
</ par anet er >
<par anet er >
<name>user nane</ nane>
<val ue>soneuser </ val ue>
</ par anet er >
<par anet er >
<nanme>passwor d</ nane>
<val ue>sonepass</ val ue>
</ par anet er >
<par anet er >
<nane>dri ver Cl assNanme</ nanme>
<val ue>com nysql . cj . j dbc. Dri ver </ val ue>
</ par anet er >
<par anet er >
<nane>ur | </ name>
<val ue>j dbc: nysql : / /| ocal host : 3306/t est </ val ue>
</ par anet er >
</ Resour cePar ans>
</ Cont ext >

Connector/J introduces a facility whereby, rather than use a val i dat i onQuery value of SELECT 1,
it is possible to use val i dat i onQuery with a value setto/* pi ng */. This sends a ping to the
server which then returns a fake result set. This is a lighter weight solution. It also has the advantage
that if using Repl i cat i onConnecti on or LoadBal ancedConnect i on type connections, the ping
will be sent across all active connections. The following XML snippet illustrates how to select this
option:

<par anet er >
<nane>val i dat i onQuer y</ name>
<val ue>/* ping */</val ue>

</ par anet er >

Note that/* pi ng */ has to be specified exactly.

In general, follow the installation instructions that come with your version of Tomcat, as the way you
configure datasources in Tomcat changes from time to time, and if you use the wrong syntax in your
XML file, you will most likely end up with an exception similar to the following:

Error: java.sql.SQLException: Cannot |oad JDBC driver class '"null ' SQL
state: null

Note that the auto-loading of drivers having the META- | NF/ ser vi ce/ j ava. sql . Dri ver

class in JDBC 4.0 and later causes an improper undeployment of the Connector/J driver in

Tomcat on Windows. Namely, the Connector/J jar remains locked. This is an initialization

problem that is not related to the driver. The possible workarounds, if viable, are as follows: use

"ant i Resour ceLocki ng=t r ue" as a Tomcat Context attribute, or remove the META- | NF/ directory.

3.13 Using Connector/J with Spring

The Spring Framework is a Java-based application framework designed for assisting in application
design by providing a way to configure components. The technique used by Spring is a well known
design pattern called Dependency Injection (see Inversion of Control Containers and the Dependency
Injection pattern). This article will focus on Java-oriented access to MySQL databases with Spring 2.0.
For those wondering, there is a .NET port of Spring appropriately named Spring.NET.

Spring is not only a system for configuring components, but also includes support for aspect oriented
programming (AOP). This is one of the main benefits and the foundation for Spring's resource and
transaction management. Spring also provides utilities for integrating resource management with JDBC
and Hibernate.

162

http://www.martinfowler.com/articles/injection.html
http://www.martinfowler.com/articles/injection.html

Using Connector/J with Spring

For the examples in this section the MySQL world sample database will be used. The first task is to
set up a MySQL data source through Spring. Components within Spring use the “bean” terminology.
For example, to configure a connection to a MySQL server supporting the world sample database, you
might use:

<util:map i d="dbProps">
<entry key="db.driver" val ue="com nysql.cj.jdbc.Driver"/>
<entry key="db.jdbcurl" val ue="jdbc: nysql://Iocal host/world"/>
<entry key="db. usernane" val ue="nyuser"/>
<entry key="db. password" val ue="nypass"/>

</util:map>

In the above example, we are assigning values to properties that will be used in the configuration. For
the datasource configuration:

<bean i d="dat aSour ce"
cl ass="org. spri ngframewor k. j dbc. dat asour ce. Dri ver Manager Dat aSour ce" >
<property nane="driverCl assNane" val ue="${db. driver}"/>
<property name="url" val ue="${db.jdbcurl}"/>
<property nane="usernane" val ue="${db. usernane}"/>
<property nane="password" val ue="${db. password}"/>
</ bean>

The placeholders are used to provide values for properties of this bean. This means that we can
specify all the properties of the configuration in one place instead of entering the values for each
property on each bean. We do, however, need one more bean to pull this all together. The last bean is
responsible for actually replacing the placeholders with the property values.

<bean

cl ass="org. spri ngframewor k. beans. factory. confi g. PropertyPl acehol der Confi gurer">
<property nanme="properties" ref="dbProps"/>

</ bean>

Now that we have our MySQL data source configured and ready to go, we write some Java code to
access it. The example below will retrieve three random cities and their corresponding country using
the data source we configured with Spring.

/Il Create a new application context. this processes the Spring config
Appl i cationContext ctx =
new Cl assPat hXm Appl i cati onCont ext (" exlappCont ext.xm ") ;
/'l Retrieve the data source fromthe application context
Dat aSource ds = (DataSource) ctx.getBean("dataSource");
/'l Open a database connection using Spring' s DataSourceUtils
Connection ¢ = DataSourceUtils. get Connecti on(ds);
try {
Il retrieve a list of three randomcities
Prepar edSt at enent ps = c. prepareSt at enent (
"select City.Nane as 'Gity', Country.Name as 'Country' " +
"fromCity inner join Country on G ty. CountryCode = Country.Code " +
"“order by rand() limt 3");
Resul t Set rs = ps. executeQuery();
while(rs.next()) {
String city = rs.getString("Gty");
String country = rs.getString("Country");
Systemout.printf("The city % is in %%", city, country);

}
} catch (SQLException ex) {
/'l something has failed and we print a stack trace to anal yse the error
ex. print StackTrace();
/'l ignore failure closing connection
try { c.close(); } catch (SQ.Exception e) { }

} finally {
/'l properly rel ease our connection

163

Using JdbcTenpl at e

Dat aSour celUti | s. rel easeConnecti on(c, ds);

}

This is very similar to normal JDBC access to MySQL with the main difference being that we are using
DataSourceUltils instead of the DriverManager to create the connection.

While it may seem like a small difference, the implications are somewhat far reaching. Spring manages
this resource in a way similar to a container managed data source in a J2EE application server. When
a connection is opened, it can be subsequently accessed in other parts of the code if it is synchronized
with a transaction. This makes it possible to treat different parts of your application as transactional
instead of passing around a database connection.

3.13.1 Using JdbcTenpl at e

Spring makes extensive use of the Template method design pattern (see Template Method

Pattern). Our immediate focus will be on the JdbcTenpl at e and related classes, specifically
NarmedPar anet er JdbcTenpl at e. The template classes handle obtaining and releasing a connection
for data access when one is needed.

The next example shows how to use NanedPar anet er JdbcTenpl at e inside of a DAO (Data Access
Object) class to retrieve a random city given a country code.

public class Ex2JdbcDao {

/**

* Data source reference which will be provided by Spring.
*/

private DataSource dataSource;

/**

* Qur query to find a randomcity given a country code. Notice
* the ":country" paraneter toward the end. This is called a
* pamed paraneter.
*/
private String queryString = "select Name fromCity " +
"where CountryCode = :country order by rand() limt 1";
/**
* Retrieve a randomcity using Spring JDBC access cl asses.
*/
public String get RandonCityByCountryCode(String cntryCode) {
/Il A tenplate that permits using queries with named paraneters
NamedPar anet er JdbcTenpl ate tenpl ate =
new NanmedPar anmet er JdbcTenpl at e(dat aSour ce) ;
/1l Ajava.util.Map is used to provide values for the paraneters
Map paranms = new HashMap();
par ans. put ("country", cntryCode);
/1 W query for an Cbject and specify what class we are expecting
return (String)tenplate. queryFor Obj ect (queryString, paranms, String.class);
}
/**
* A JavaBean setter-style method to allow Spring to inject the data source.
* @ar am dat aSour ce
*/
publ i c voi d set Dat aSour ce(Dat aSour ce dat aSource) {
t hi s. dat aSour ce = dat aSour ce;
}

}

The focus in the above code is on the get RandonCi t yByCount r yCode() method. We pass a
country code and use the NanedPar anet er JdbcTenpl at e to query for a city. The country code is
placed in a Map with the key "country”, which is the parameter is named in the SQL query.

To access this code, you need to configure it with Spring by providing a reference to the data source.

<bean i d="dao" cl ass="code. Ex2JdbcDao" >
<property nane="dat aSour ce" ref="dataSource"/>
</ bean>

164

http://en.wikipedia.org/wiki/Template_method_pattern
http://en.wikipedia.org/wiki/Template_method_pattern

Transactional JDBC Access

At this point, we can just grab a reference to the DAO from Spring and call
get RandonCi t yByCount r yCode() .

/] Create the application context
ApplicationContext ctx =
new C assPat hXm Appl i cati onCont ext (" ex2appCont ext.xm ") ;
/] Ootain a reference to our DAO
Ex2JdbcDao dao = (Ex2JdbcDao) ctx. get Bean("dao");
String countryCode = "USA";
/!l Find a fewrandomcities in the US
for(int i =0; i < 4; ++i)
Systemout.printf("A randomcity in % is %%", countryCode,
dao. get RandonCi t yByCount r yCode(count r yCode)) ;

This example shows how to use Spring's JDBC classes to completely abstract away the use of
traditional JDBC classes including Connect i on and Pr epar edSt at enent .

3.13.2 Transactional JDBC Access

Spring allows us to add transactions into our code without having to deal directly with the JDBC
classes. For that purpose, Spring provides a transaction management package that not only replaces
JDBC transaction management, but also enables declarative transaction management (configuration
instead of code).

To use transactional database access, we will need to change the storage engine of the tables in

the world database. The downloaded script explicitly creates MylSAM tables, which do not support
transactional semantics. The InnoDB storage engine does support transactions and this is what we will
be using. We can change the storage engine with the following statements.

ALTER TABLE City ENG NE=I nnoDB;
ALTER TABLE Country ENG NE=I nnoDB;
ALTER TABLE CountrylLanguage ENG NE=| nnoDB;

A good programming practice emphasized by Spring is separating interfaces and implementations.
What this means is that we can create a Java interface and only use the operations on this interface
without any internal knowledge of what the actual implementation is. We will let Spring manage the
implementation and with this it will manage the transactions for our implementation.

First you create a simple interface:

public interface Ex3Dao {
Integer createCity(String name, String countryCode,
String district, Integer popul ation);

}

This interface contains one method that will create a new city record in the database and return the id
of the new record. Next you need to create an implementation of this interface.

public class Ex3Daol npl inplenments Ex3Dao {
prot ect ed Dat aSource dataSource;
protected Sql Updat e updat eQuery;
protected Sgl Function idQuery;
public Integer createCity(String name, String countryCode,
String district, Integer population) {
updat eQuery. updat e(new Obj ect[] { nane, countryCode,
district, population });
return getlLastld();
}
protected | nteger getlLastld() {
return i dQuery.run();
}

}

You can see that we only operate on abstract query objects here and do not deal directly with the
JDBC API. Also, this is the complete implementation. All of our transaction management will be dealt
with in the configuration. To get the configuration started, we need to create the DAO.

165

Connection Pooling with Spring

<bean i d="dao" cl ass="code. Ex3Daol npl ">
<property nanme="dat aSource" ref="dataSource"/>
<property name="updateQuery">...</property>
<property name="idQuery">...</property>

</ bean>

Now we need to set up the transaction configuration. The first thing we must do is create transaction
manager to manage the data source and a specification of what transaction properties are required for
the dao methods.

<bean i d="transacti onManager "
cl ass="org. spri ngframewor k. j dbc. dat asour ce. Dat aSour ceTr ansact i onManager " >

<property nane="dat aSour ce" ref="dataSource"/>

</ bean>

<t x: advi ce id="txAdvi ce" transacti on- manager="transacti onManager" >
<tx:attributes>

<t x: met hod nane="*"/>

</tx:attributes>

</t x: advi ce>

The preceding code creates a transaction manager that handles transactions for the data source
provided to it. The t xAdvi ce uses this transaction manager and the attributes specify to create a
transaction for all methods. Finally we need to apply this advice with an AOP pointcut.

<aop: confi g>
<aop: poi nt cut i d="daoMet hods"
expr essi on="executi on(* code. Ex3Dao.*(..))"/>
<aop: advi sor advi ce-ref ="t xAdvi ce" poi ntcut-ref="daoMet hods"/ >
</ aop: confi g>

This basically says that all methods called on the Ex3Dao interface will be wrapped in a transaction. To
make use of this, we only have to retrieve the dao from the application context and call a method on
the dao instance.

Ex3Dao dao
Integer id

(Ex3Dao) ctx. get Bean("dao");
dao. createCity(name, countryCode, district, pop);

We can verify from this that there is no transaction management happening in our Java code and it is
all configured with Spring. This is a very powerful notion and regarded as one of the most beneficial
features of Spring.

3.13.3 Connection Pooling with Spring

In many situations, such as web applications, there will be a large number of small database
transactions. When this is the case, it usually makes sense to create a pool of database connections
available for web requests as needed. Although MySQL does not spawn an extra process when a
connection is made, there is still a small amount of overhead to create and set up the connection.
Pooling of connections also alleviates problems such as collecting large amounts of sockets in the
TI VE_WAI T state.

Setting up pooling of MySQL connections with Spring is as simple as changing the data source
configuration in the application context. There are a number of configurations that we can use. The
first example is based on the Jakarta Commons DBCP library. The example below replaces the source
configuration that was based on Dr i ver Manager Dat aSour ce with DBCP's BasicDataSource.

<bean i d="dat aSour ce" destroy-nethod="cl ose"
cl ass="org. apache. commons. dbcp. Basi cDat aSour ce" >
<property nanme="driverCl assNane" val ue="${db. driver}"/>

166

http://jakarta.apache.org/commons/dbcp/

Troubleshooting Connector/J Applications

<property name="url" val ue="${db.jdbcurl}"/>
<property nanme="usernane" val ue="${db. usernane}"/>
<property nanme="password" val ue="${db. password}"/>
<property name="initial Size" val ue="3"/>

</ bean>

The configuration of the two solutions is very similar. The difference is that DBCP will pool connections
to the database instead of creating a new connection every time one is requested. We have also set

a parameter here called i ni ti al Si ze. This tells DBCP that we want three connections in the pool
when it is created.

3.14 Troubleshooting Connector/J Applications

This section explains the symptoms and resolutions for the most commonly encountered issues with
applications using MySQL Connector/J.

Questions

» 3.14.1: When | try to connect to the database with MySQL Connector/J, | get the following
exception:

SQLException: Server configuration denies access to data source
SQLState: 08001
VendorError: 0

What is going on? | can connect just fine with the MySQL command-line client.
» 3.14.2: My application throws an SQLException 'No Suitable Driver'. Why is this happening?

» 3.14.3: I'm trying to use MySQL Connector/J in an applet or application and | get an exception
similar to:

SQLException: Cannot connect to MySQL server on host: 3306.
Is there a MySQL server running on the nachi ne/port you
are trying to connect to?

(java. security. AccessControl Excepti on)

SQ.State: 08S01

VendorError: 0

» 3.14.4: | have a servlet/application that works fine for a day, and then stops working overnight

e 3.14.5: | cannot connect to the MySQL server using Connector/J, and I'm sure the connection
parameters are correct.

e 3.14.6: Updating a table that contains a primary key that is either FLOAT or compound primary key
that uses FLOAT fails to update the table and raises an exception.

e 3.14.7: I getan ER_NET_PACKET_TOO LARGE exception, even though the binary blob size | want to
insert using JDBC is safely below the max_al | owed_packet size.

» 3.14.8: What should | do if | receive error messages similar to the following: “Communications link
failure — Last packet sent to the server was X ms ago”?

» 3.14.9: Why does Connector/J not reconnect to MySQL and re-issue the statement after a
communication failure instead of throwing an Exception, even though | use the aut oReconnect
connection string option?

* 3.14.10: How can | use 3-byte UTF8 with Connector/J?
* 3.14.11: How can | use 4-byte UTF8 (ut f 8nb4) with Connector/J?

» 3.14.12: Using useSer ver PrepSt nt s=f al se and certain character encodings can lead to
corruption when inserting BLOBs. How can this be avoided?

167

https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_primary_key
https://dev.mysql.com/doc/refman/8.0/en/floating-point-types.html
https://dev.mysql.com/doc/refman/8.0/en/floating-point-types.html
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_net_packet_too_large
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_max_allowed_packet

Troubleshooting Connector/J Applications

Questions and Answers

3.14.1: When | try to connect to the database with MySQL Connector/J, | get the following
exception:

SQLException: Server configuration denies access to data source
SQLSt at e: 08001
Vendor Error: 0O

What is going on? | can connect just fine with the MySQL command-line client.

Connector/J normally uses TCP/IP sockets to connect to MySQL (see Section 3.5.10, “Connecting
Using Unix Domain Sockets” and Section 3.5.11, “Connecting Using Named Pipes” for exceptions).
The security manager on the MySQL server uses its grant tables to determine whether a TCP/IP
connection is permitted. You must therefore add the necessary security credentials to the MySQL
server for the connection by issuing a GRANT statement to your MySQL Server. See GRANT
Statement, for more information.

Warning

Changing privileges and permissions improperly on MySQL can potentially
cause your server installation to have non-optimal security properties.

Note

Testing your connectivity with the nysql command-line client will not work
unless you add the - - host flag, and use something other than | ocal host

for the host. The mysgl command-line client will try to use Unix domain
sockets if you use the special host name | ocal host . If you are testing TCP/IP
connectivity to | ocal host, use 127. 0. 0. 1 as the host name instead.

3.14.2: My application throws an SQLException 'No Suitable Driver'. Why is this happening?
There are three possible causes for this error;

» The Connector/J driver is not in your CLASSPATH, see Section 3.3, “Connector/J Installation”.

» The format of your connection URL is incorrect, or you are referencing the wrong JDBC driver.

» When using DriverManager, the j dbc. dri ver s system property has not been populated with the
location of the Connector/J driver.

3.14.3: I'm trying to use MySQL Connector/J in an applet or application and | get an exception
similar to:

SQ.Excepti on: Cannot connect to MySQ server on host: 3306.
I's there a MyYSQL server running on the nachi ne/port you
are trying to connect to?

(java. security. AccessControl Excepti on)

SQLState: 08S01

VendorError: 0

Either you're running an Applet, your MySQL server has been installed with the ski p_net wor ki ng
system variable enabled, or your MySQL server has a firewall sitting in front of it.

Applets can only make network connections back to the machine that runs the web server that served
the .class files for the applet. This means that MySQL must run on the same machine (or you must
have some sort of port re-direction) for this to work. This also means that you will not be able to test
applets from your local file system, but must always deploy them to a web server.

Connector/J normally uses TCP/IP sockets to connect to MySQL (see Section 3.5.10, “Connecting
Using Unix Domain Sockets” and Section 3.5.11, “Connecting Using Named Pipes” for exceptions).
TCP/IP communication with MySQL can be affected by the ski p_net wor ki ng system variable
or the server firewall. If MySQL has been started with ski p_net wor ki ng enabled, you need to

168

https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_host
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_skip_networking
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_skip_networking
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_skip_networking

Troubleshooting Connector/J Applications

comment it out in the file / et ¢/ mysql / ny. cnf or/ et c/ my. cnf for TCP/IP connections to work.
(Note that your server configuration file might also exist in the dat a directory of your MySQL server,
or somewhere else, depending on how MySQL was compiled; binaries created by Oracle always look
for/ et c/ ny. cnf and dat adi r/ ny. cnf ; see Using Option Files for details.) If your MySQL server
has been firewalled, you will need to have the firewall configured to allow TCP/IP connections from the
host where your Java code is running to the MySQL server on the port that MySQL is listening to (by
default, 3306).

3.14.4: | have a servlet/application that works fine for a day, and then stops working overnight

MySQL closes connections after 8 hours of inactivity. You either need to use a connection pool that
handles stale connections or use the aut oReconnect parameter (see Section 3.5.3, “Configuration
Properties”).

Also, catch SQLExcept i ons in your application and deal with them, rather than propagating them all
the way until your application exits. This is just good programming practice. MySQL Connector/J will
setthe SQLSt at e (see j ava. sql . SQLExcept i on. get SQLSt at e() in your APl docs) to 08S01
when it encounters network-connectivity issues during the processing of a query. Attempt to reconnect
to MySQL at this point.

The following (simplistic) example shows what code that can handle these exceptions might look like:

Example 3.15 Connector/J: Example of transaction with retry logic

publ i c voi d doBusi nessOp() throws SQLException {
Connection conn = nul|;
Statenment stnt = nul | ;
ResultSet rs = null;
/1
/1 How many tines do you want to retry the transaction
/1 (or at least _getting_ a connection)?
/1
int retryCount = 5;
bool ean transacti onConpl eted = fal se;
do {
try {
conn = get Connection(); // assume getting this froma
/] javax.sql.DataSource, or the
/'l java.sql.Driver Manager
conn. set Aut oCommi t (f al se) ;
/1
/]l Okay, at this point, the 'retry-ability' of the
/'l transaction really depends on your application |ogic,
/'l whether or not you're using autocommit (in this case
/'l not), and whether you're using transactional storage
/'l engi nes
/1
/'l For this exanple, we'll assune that it's _not_ safe
/Il to retry the entire transaction, so we set retry
/'l count to O at this point
/1
/1 1f you were using exclusively transaction-safe tables,
/'l or your application could recover froma connecti on goi ng
/1 bad in the mddle of an operation, then you woul d not
/'l touch 'retryCount' here, and just let the | oop repeat
/1 until retryCount == 0.
/1
retryCount = 0;
stnt = conn.createStatenent();
String query = "SELECT foo FROM bar ORDER BY baz";
rs = stnt.executeQuery(query);
while (rs.next()) {
}
rs.close();
rs = null;
stnt.cl ose();
stmt = null;
conn.comit();

169

https://dev.mysql.com/doc/refman/8.0/en/option-files.html

Troubleshooting Connector/J Applications

conn. cl ose();
conn = null;
transacti onConpl eted = true;
} catch (SQLException sqgl Ex) {
/1
/'l The two SQL states that are 'retry-able' are 08S01
/1 for a communications error, and 40001 for deadl ock.
/1
/Il Only retry if the error was due to a stal e connecti on,
/1 comuni cati ons probl em or deadl ock

I/
String sql State = sgl Ex. get SQLState();
if ("08S01".equal s(sqgl State) || "40001".equal s(sql State)) {
retryCount -= 1,
} else {
retryCount = O;
} finally {
if (rs!=null) {
try {
rs.close();
} catch (SQLException sqgl Ex) {
/1 You'd probably want to log this...
}
}
if (stnt !'=null) {
try {
stnt.cl ose();
} catch (SQLException sql Ex) {
/1 You'd probably want to log this as well...
}
}
if (conn !=null) {
try {
I/
/1l 1f we got here, and conn is not null, the
/1 transaction should be rolled back, as not
/1 all work has been done
try {
conn. rol | back();
} finally {
conn. cl ose();
}
} catch (SQLException sql Ex) {
I/
/1 1f we got an exception here, sonething
/] pretty serious is going on, so we better
/] pass it up the stack, rather than just
Il logging it...
t hrow sqgl Ex;
}
}

} while (!transacti onConpl eted && (retryCount > 0));

Note

Use of the aut oReconnect option is not recommended because there is

no safe method of reconnecting to the MySQL server without risking some
corruption of the connection state or database state information. Instead, use
a connection pool, which will enable your application to connect to the MySQL
server using an available connection from the pool. The aut oReconnect
facility is deprecated, and may be removed in a future release.

3.14.5: | cannot connect to the MySQL server using Connector/J, and I'm sure the connection
parameters are correct.

Make sure that the ski p_net wor ki ng system variable has not been enabled on your server.
Connector/J must be able to communicate with your server over TCP/IP; named sockets are not

170

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_skip_networking

Troubleshooting Connector/J Applications

supported. Also ensure that you are not filtering connections through a firewall or other network
security system. For more information, see Can't connect to [local] MySQL server.

3.14.6: Updating a table that contains a primary key that is either FLOAT or compound primary
key that uses FLOAT fails to update the table and raises an exception.

Connector/J adds conditions to the WHERE clause during an UPDATE to check the old values of the
primary key. If there is no match, then Connector/J considers this a failure condition and raises an
exception.

The problem is that rounding differences between supplied values and the values stored in the
database may mean that the values never match, and hence the update fails. The issue will affect all
gueries, not just those from Connector/J.

To prevent this issue, use a primary key that does not use FLOAT. If you have to use a floating point
column in your primary key, use DOUBLE or DECI MAL types in place of FLOAT.

3.14.7: I getan ER NET_PACKET TOO LARGE exception, even though the binary blob size | want
to insert using JDBC is safely below the max_al | owed_packet size.

This is because the hexEscapeBl ock() method in
com nysql . cj . Abstract PreparedQuery. st reamloByt es() may almost double the size of
your data.

3.14.8: What should I do if | receive error messages similar to the following: “Communications
link failure — Last packet sent to the server was X ms ago”?

Generally speaking, this error suggests that the network connection has been closed. There can be
several root causes:

» Firewalls or routers may clamp down on idle connections (the MySQL client/server protocol does not
ping).

e The MySQL Server may be closing idle connections that exceed the wai t _ti neout or
i nteractive_tineout threshold.

Although network connections can be volatile, the following can be helpful in avoiding problems:

» Ensure connections are valid when used from the connection pool. Use a query that starts with / *
pi ng */ to execute a lightweight ping instead of full query. Note, the syntax of the ping needs to be
exactly as specified here.

« Minimize the duration a connection object is left idle while other application logic is executed.

» Explicitly validate the connection before using it if the connection has been left idle for an extended
period of time.

* Ensurethatwai t _tinmeout andinteractive_tinmeout are set sufficiently high.
» Ensure that t cpKeepal i ve is enabled.

» Ensure that any configurable firewall or router timeout settings allow for the maximum expected
connection idle time.

Note

Do not expect to be able to reuse a connection without problems if it has being
lying idle for a period. If a connection is to be reused after being idle for any
length of time, ensure that you explicitly test it before reusing it.

3.14.9: Why does Connector/J not reconnect to MySQL and re-issue the statement after a
communication failure instead of throwing an Exception, even though | use the aut oReconnect
connection string option?

171

https://dev.mysql.com/doc/refman/8.0/en/can-not-connect-to-server.html
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_primary_key
https://dev.mysql.com/doc/refman/8.0/en/floating-point-types.html
https://dev.mysql.com/doc/refman/8.0/en/floating-point-types.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/floating-point-types.html
https://dev.mysql.com/doc/refman/8.0/en/floating-point-types.html
https://dev.mysql.com/doc/refman/8.0/en/fixed-point-types.html
https://dev.mysql.com/doc/refman/8.0/en/floating-point-types.html
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_net_packet_too_large
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_max_allowed_packet

Troubleshooting Connector/J Applications

There are several reasons for this. The first is transactional integrity. The MySQL Reference Manual
states that “there is no safe method of reconnecting to the MySQL server without risking some
corruption of the connection state or database state information”. Consider the following series of
statements for example:

conn. creat eSt at enent () . execut e(

" UPDATE checki ng_account SET bal ance = bal ance - 1000. 00 WHERE custonmer='Smth'");
conn. creat eSt at enent () . execut e(

" UPDATE savi ngs_account SET bal ance = bal ance + 1000. 00 WHERE customer='Smth'");
conn. commi t();

Consider the case where the connection to the server fails after the UPDATE to checki ng_account .
If no exception is thrown, and the application never learns about the problem, it will continue executing.
However, the server did not commit the first transaction in this case, so that will get rolled back. But
execution continues with the next transaction, and increases the savi ngs_account balance by 1000.
The application did not receive an exception, so it continued regardless, eventually committing the
second transaction, as the commit only applies to the changes made in the new connection. Rather
than a transfer taking place, a deposit was made in this example.

Note that running with aut ocomm t enabled does not solve this problem. When Connector/J
encounters a communication problem, there is no means to determine whether the server processed
the currently executing statement or not. The following theoretical states are equally possible:

» The server never received the statement, and therefore no related processing occurred on the
server.

e The server received the statement, executed it in full, but the response was not received by the
client.

If you are running with aut ocommi t enabled, it is not possible to guarantee the state of data on

the server when a communication exception is encountered. The statement may have reached the
server, or it may not. All you know is that communication failed at some point, before the client received
confirmation (or data) from the server. This does not only affect aut oconmi t statements though. If

the communication problem occurred during Connect i on. conmi t (), the question arises of whether
the transaction was committed on the server before the communication failed, or whether the server
received the commit request at all.

The second reason for the generation of exceptions is that transaction-scoped contextual data may be
vulnerable, for example:

» Temporary tables.
» User-defined variables.
» Server-side prepared statements.

These items are lost when a connection fails, and if the connection silently reconnects without
generating an exception, this could be detrimental to the correct execution of your application.

In summary, communication errors generate conditions that may well be unsafe for Connector/J to
simply ignore by silently reconnecting. It is necessary for the application to be notified. It is then for the
application developer to decide how to proceed in the event of connection errors and failures.

3.14.10: How can | use 3-byte UTF8 with Connector/J?

For 8.0.12 and earlier: To use 3-byte UTF8 with Connector/J set char act er Encodi ng=ut f 8 and set
useUni code=t r ue in the connection string.

For 8.0.13 and later: Because there is no Java-style character set name for ut f nb3 that you can use
with the connection option char at er Encodi ng, the only way to use ut f 8nmb3 as your connection
character set is to use a ut f 8nb3 collation (for example, ut f 8_gener al _ci) for the connection

172

Known Issues and Limitations

option connect i onCol | at i on, which forces a ut f 8nb3 character set to be used. See Section 3.5.7,
“Using Character Sets and Unicode” for details.

3.14.11: How can | use 4-byte UTF8 (ut f 8mb4) with Connector/J?

To use 4-byte UTF8 with Connector/J configure the MySQL server with

character_set_server =ut f 8nmb4. Connector/J will then use that setting, if char act er Encodi ng
and connect i onCol | at i on have not been set in the connection string. This is equivalent to
autodetection of the character set. See Section 3.5.7, “Using Character Sets and Unicode” for

details. For 8.0.13 and later: You can use char act er Encodi ng=UTF- 8 to use ut f 8nb4, even if
character_set _server on the server has been set to something else.

3.14.12: Using useSer ver PrepSt nt s=f al se and certain character encodings can lead to
corruption when inserting BLOBs. How can this be avoided?

When using certain character encodings, such as SJIS, CP932, and BIG5, it is possible that BLOB
data contains characters that can be interpreted as control characters, for example, backslash, '\'. This
can lead to corrupted data when inserting BLOBs into the database. There are two things that need to
be done to avoid this:

1. Set the connection string option useSer ver PrepStnts totr ue.

2. Set SQL_MODE to NO_BACKSLASH_ESCAPES.

3.15 Known Issues and Limitations

The following are some known issues and limitations for MySQL Connector/J:

» When Connector/J retrieves timestamps for a daylight saving time (DST) switch day using the
get Ti meSt anp() method on the result set, some of the returned values might be wrong. In order
to avoid such errors, we recommend setting a connection time zone that uses a monotonic clock
by, for example, setting connect i onTi neZone=UTC, and configuring other date-time connection
properties according to your needs; see Section 3.5.6, “Handling of Date-Time Values” for details.

» The functionality of the property el i deSet Aut oConmi t s has been disabled due to Bug# 66884.
Any value given for the property is ignored by Connector/J.

* MySQL Server uses a proleptic Gregorian calendar internally. However, Connector/J uses
j ava. sql . Dat e, which is non-proleptic. Therefore, when setting and retrieving dates that were
before the Julian-Gregorian cutover (October 15, 1582) using the Pr epar edSt at enent methods,
always supply explicitly a proleptic Gregorian calendar to the set Dat e() and get Dat e() methods,
in order to avoid possible errors with dates stored to and calculated by the server.

* For MySQL 8.0.14 and later, 5.7.25 and later, and 5.6.43 and later: To use Windows named pipes
for connections, the MySQL Server that Connector/J wants to connect to must be started with the
system variable nanmed_pi pe_ful | _access_gr oup; see Section 3.5.11, “Connecting Using
Named Pipes” for details.

3.16 Connector/J Support
3.16.1 Connector/J Community Support

You can join the #connect or s channel in the MySQL Community Slack workspace, where you can
get help directly from MySQL developers and other users.

3.16.2 How to Report Connector/J Bugs or Problems

The normal place to report bugs is http://bugs.mysqgl.com/, which is the address for our bugs database.
This database is public, and can be browsed and searched by anyone. If you log in to the system, you
will also be able to enter new reports.

173

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_server
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_server
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_named_pipe_full_access_group
https://mysqlcommunity.slack.com/messages/connectors
http://bugs.mysql.com/

How to Report Connector/J Bugs or Problems

If you find a sensitive security bug in MySQL Server, please let us know immediately by sending an
email message to <secal ert _us@r acl e. conr. Exception: Support customers should report all
problems, including security bugs, to Oracle Support at http://support.oracle.com/.

Writing a good bug report takes patience, but doing it right the first time saves time both for us and for
yourself. A good bug report, containing a full test case for the bug, makes it very likely that we will fix
sooner rather than later.

This section will help you write your report correctly so that you do not waste your time doing things
that may not help us much or at all.

If you have a repeatable bug report, please report it to the bugs database at http://bugs.mysql.com/.
Any bug that we are able to repeat has a high chance of being fixed sooner rather than later.

To report other problems, you can use one of the MySQL mailing lists.

Remember that it is possible for us to respond to a message containing too much information, but
not to one containing too little. People often omit facts because they think they know the cause of a
problem and assume that some details do not matter.

A good principle is this: If you are in doubt about stating something, state it. It is faster and less
troublesome to write a couple more lines in your report than to wait longer for the answer if we must
ask you to provide information that was missing from the initial report.

The most common errors made in bug reports are (a) not including the version number of Connector/
J or MySQL used, and (b) not fully describing the platform on which Connector/J is installed (including
the JVM version, and the platform type and version number that MySQL itself is installed on).

This is highly relevant information, and in 99 cases out of 100, the bug report is useless without it. Very
often we get questions like, “Why doesn't this work for me?” Then we find that the feature requested
was not implemented in that MySQL version, or that a bug described in a report has already been fixed
in newer MySQL versions.

Sometimes the error is platform-dependent; in such cases, it is next to impossible for us to fix anything
without knowing the operating system and the version number of the platform.

If at all possible, create a repeatable, standalone testcase that doesn't involve any third-party classes.

To streamline this process, we ship a base class for testcases with Connector/J, named

‘com nysql .cj.jdbc.util.BaseBugReport'. To create a testcase for Connector/J using this
class, create your own class that inherits from com nysql . ¢j . j dbc. uti | . BaseBugReport and
override the methods set Up(), t ear Down() and runTest ().

In the set Up() method, create code that creates your tables, and populates them with any data
needed to demonstrate the bug.

Inthe runTest () method, create code that demonstrates the bug using the tables and data you
created in the set Up method.

In the t ear Down() method, drop any tables you created in the set Up() method.

In any of the above three methods, use one of the variants of the get Connect i on() method to create
a JDBC connection to MySQL.:

» get Connecti on() - Provides a connection to the JDBC URL specified inget Url (). Ifa
connection already exists, that connection is returned, otherwise a new connection is created.

» get NewConnecti on() - Use this if you need to get a new connection for your bug report (that is,
there is more than one connection involved).

e get Connection(String url) - Returns a connection using the given URL.

174

http://support.oracle.com/
http://bugs.mysql.com/

How to Report Connector/J Bugs or Problems

e get Connection(String url, Properties props) - Returns a connection using the given
URL and properties.

If you need to use a JDBC URL that is different from 'jdbc:mysql:///test’, override the method get Ur | ()
as well.

Use the assert True(bool ean expressi on) and assert True(String fail ureMessage,
bool ean expressi on) methods to create conditions that must be met in your testcase
demonstrating the behavior you are expecting (vs. the behavior you are observing, which is why you
are most likely filing a bug report).

Finally, create a mai n() method that creates a new instance of your testcase, and calls the r un
method:

public static void main(String[] args) throws Exception {

new MyBugReport ().run();
}

Once you have finished your testcase, and have verified that it demonstrates the bug you are reporting,
upload it with your bug report to http://bugs.mysqgl.com/.

175

http://bugs.mysql.com/

176

Chapter 4 MySQL Connector/NET Developer Guide

Table of Contents

4.1 Introduction to MySQL ConNECIONNETuuiiiiiiiiiei e e e e e e e e e e e e eans 178
4.2 CONNECLOI/NET VEISIONS ..eevuiiiiiiiiieeetii e ettt e et e et e et e e et et e e e e et e e e eeta e e e eeta e eeeatnnaeaees 179
4.3 ConNECtOr/NET INSLAIALIONuiiiiiiie e 181
4.3.1 Installing ConNector/NET 0N WINAOWScc.uuiviiiiiii e e e e e e e e e e e e e eanaeees 181
4.3.2 Installing Connector/NET on UniX With MONOcoooviiiiiiiii e 183
4.3.3 Installing ConNector/NET from SOUICEoiiiiiiiei e ee e e e e e e eaaee e 184
4.4 CONNECLOI/NET CONNECLIONSuiiiiiiiiiiiii ettt ettt e et e e et e e e et e 185
4.4.1 Creating a Connector/NET Connection StrNGcc.vveiieiiiiieiii e ee e ee e e e 186
4.4.2 Managing a Connection Pool in ConNeCtor/NETcoviuiiiiiiiiiiieecie e eeee e 188
N C T o = TaTo | Ta Vo I @40 o] g =Tod 1] o =1] ¢ 189
4.4.4 Connector/NET AUNENTICALIONuiiiiii e 190
4.4.5 Connector/NET Connection Options Referencecccovevuiiviiiiiiiiiiiicceee e 195
VSR o] g a=Tex (o] ¢4 | =i I =d oo [ir= 10 0 1n 11 o P 211
4.5.1 Using GetSchema 0N @ CONNECHIONc.uuiiiuiiiiii e ee e e e e e e e eenas 212
4.5.2 UsiNg MySqICOMMANGcoouuiiiiiiii e e e e e e e e e e e e e e e e et e e e e eeanees 213
4.5.3 Using Connector/NET with Table Cachingccovvviiiiiiiiiiiie e 216
4.5.4 Preparing Statements in ConNNECION/NETcoviiiiiiiiii e e 217
4.5.5 Creating and Calling Stored ProCeAUIEScccvuuiiiiiiiiiiieii e e e e e e 218
4.5.6 Handling BLOB Data With Connector/NEToiiiiiiiiiiiiei e ee e e e 221
4.5.7 Working with Partial Trust / Medium TIUSEccouuiiiiii e e e 224
4.5.8 Writing a Custom Authentication PIUQINc.iiiiiiiiiic e 227
4.5.9 Using the Connector/NET Interceptor CIaSSESovvvuveiiieiiiiieiiecee e e e 230
4.5.10 Handling Date and Time Information in Connector/NETccccoivviiiiviiiiieiiiieei e, 232
4.5.11 Using the MySqIBUIKLOAAEr CIASScvuuiiiiieiiiiei e e e e e e e e e e e 233
S 7 @3 | 1= Tod 1o 1 74NN | = I I - o3 T 235
4.5.13 Using Connector/NET with Crystal REPOIScc.uvvviiiiiiiiieii e ee e 240
4.5.14 AsSynchronous MethOOSccivuniiiiiii e e e e e e e aaeees 244
4.5.15 Binary and NONBINAIY ISSUESccuuiiiiiiiiiiee e e e e e e e e 250
4.5.16 Character Set Considerations for ConnNectOr/NETccoviiiiiiiiiiiiiiieieiiii e 251
4.6 CONNECLOI/NET TULOTIAIS ... ciieiiei ettt e et e e et eeeaen s 251
4.6.1 Tutorial: An Introduction to Connector/NET Programmingccc.ccuovveeiiviiiiieriineennennn. 251
4.6.2 ASP.NET Provider Model and TULONAISooeeiiiiiiiiiiiiieecei e 260
4.6.3 Tutorial: Using an Entity Framework Entity as a Windows Forms Data Source 275
4.6.4 Tutorial: Data Binding in ASP.NET Using LINQ on Entitiescccovvviiiiviiiiiiieeiis 282
4.6.5 Tutorial: Generating MySQL DDL from an Entity Framework Modelccccoeeuniii. 285
4.6.6 Tutorial: Basic CRUD Operations with Connector/NETccoovveiiiiiiiiiiieciieeeeeeen, 286
4.6.7 Tutorial: Configuring SSL with ConNeCtOr/NETvviviiiiiiiiii e e e 289
4.6.8 Tutorial: USING MYSQISCIIPL ...uiieiieii e e e e e e e e e eanaeees 292
4.7 Connector/NET for Entity FrameWOIKooouuiiiiiii e e e e e e e 295
4.7.1 Entity Framework 6 SUPPOI ..covuu e e e e e e e e e e e e e e e e e e e aa e e eneeeens 296
4.7.2 Entity Framework COre SUPPOI .. c.uuiiii e eei e e e et e e e e e e e e s e e e e e e e eeenaeeanaeees 301
4.8 ConNECtOr/NET APl REFEIEINCE ...c.uniiiiiiii et 310
4.8.1 MySql.Data.Common.DNSCHENTiiiiieiie e e e e e e eaneees 310
4.8.2 MySql.Data.MySqIClient NaMESPACEcc.uueveriiiiiieiiiieeiieeee e e e e e e e e e e eenaeeees 310
4.8.3 MySql.Data.MySqlClient.Authentication NamespacCeccceeuveveiiieiiiieriiieeiiieeeieeeias 313
4.8.4 MySql.Data.MySqlClient.Interceptors NameSpaCeoevevuievenieriiieeeiieeeieeeiieeenneeaens 313
4.8.5 MySql.Data.MySqIClient.Replication NameSPacecccovvvrieiiiieeinieieiieeeiieeeieeeieeeenns 313
4.8.6 MySql.Data. TYPES NAMESPACEceuueeurniieiieeeieetiieeeeeeete e eet e e e e et e eea e eet e eeanaerenaeenns 313
4.8.7 MySql.Data.EntityFramework NameSPaACEc..veveiuiieiieiiieriieei e eeinee e e et se e e eaneees 314
4.8.8 Microsoft.EntityFrameworkCore NameSPACEvevuueieiiieeiiieeiieeiieeeineeeieeraeeeanaeeees 315
4.8.9 MySql.EntityFrameworkCore NamMESPACEcvuuiiiunieeiiieiiiieeeree e e e e e e e eaanes 315
4.8.10 MySql.WeD NAMESPACEcvuuiiiieeeii it e e e e e e e e e e et e e et e e e e e eeannas 317

177

Introduction to MySQL Connector/NET

/e I O] a1 aT=Tox (o] 74 V1 = ST o] Lo) o A PPN 319
4.9.1 Connector/NET COmMMUNILY SUPPOIT ..oevniiiiiieii e et e e e e e e e e e e eaae e 319
4.9.2 How to Report Connector/NET Problems or BUgSovvviiiiiiiciiiieceeeee e, 319

MySQL Connector/NET is the connector that enables .NET applications to communicate with MySQL
servers.

For notes detailing the changes in each release of Connector/NET, see MySQL Connector/NET
Release Notes.

For legal information, see the Legal Notices.

For help with using MySQL, please visit the MySQL Forums, where you can discuss your issues with
other MySQL users.

Licensing information. This product may include third-party software, used under license. If

you are using a Commercial release of MySQL Connector/NET, see this document for licensing
information, including licensing information relating to third-party software that may be included in
this Commercial release. If you are using a Community release of MySQL Connector/NET, see this
document for licensing information, including licensing information relating to third-party software that
may be included in this Community release.

4.1 Introduction to MySQL Connector/NET

MySQL Connector/NET enables you to develop .NET applications that require secure, high-
performance data connectivity with MySQL. It implements the required ADO.NET interfaces and
integrates into ADO.NET-aware tools. You can build applications using your choice of .NET languages.
Connector/NET is a fully managed ADO.NET data provider written in 100% pure C#. It does not use
the MySQL C client library.

Connector/NET source code and tests are available from the NuGet Gallery and GitHub. For notes
detailing the changes in each release of Connector/NET, see MySQL Connector/NET Release Notes.

Connector/NET includes full support for:
» Features provided by MySQL Server, up to and including the MySQL 8.1 release series.

* MySQL as a document store (NoSQL), along with X Protocol connection support to access MySQL
data using X Plugin ports.

» Large-packet support for sending and receiving rows and BLOB values up to 2 gigabytes in size.
» Protocol compression, which enables compressing the data stream between the client and server.
» Connections using TCP/IP sockets, named pipes, or shared memory on Windows.
» Connections using TCP/IP sockets or Unix sockets on Unix.
» Encrypted connections using:
e TLSv1.2 protocol over TCP/IP with Connector/NET 8.0.11 and later.
e TLSv1.3 protocol over TCP/IP with Connector/NET 8.0.20 and later.
» .NET Standard and runs on the Universal Windows Platform (UWP) .NET implementation.
 Entity Framework 6 and Entity Framework Core to migrate data to and from MySQL data tables.
e The Open Source Mono framework developed by Novell.

Connector/NET supports Microsoft Visual Studio 2013, 2015, 2017, and 2019, although the extent of
support may be limited depending on the versions of Connector/NET and Visual Studio you use. For
details, see Section 4.2, “Connector/NET Versions”.

178

https://dev.mysql.com/doc/relnotes/connector-net/en/
https://dev.mysql.com/doc/relnotes/connector-net/en/
http://forums.mysql.com
https://downloads.mysql.com/docs/licenses/connector-net-8.3-com-en.pdf
https://downloads.mysql.com/docs/licenses/connector-net-8.3-gpl-en.pdf
https://downloads.mysql.com/docs/licenses/connector-net-8.3-gpl-en.pdf
https://dev.mysql.com/doc/relnotes/connector-net/en/
https://dev.mysql.com/doc/refman/8.0/en/blob.html

Key Topics

Key Topics

» For connection string properties when using the MySgl Connect i on class, see Section 4.4.5,
“Connector/NET Connection Options Reference”.

4.2 Connector/NET Versions

MySQL Connector/NET 8.2 is a continuation of Connector/NET 8.0, but now named to synchronize
with the (latest) MySQL server version it supports. This version combines the functionality of the
previous Connector/NET release series, including support for X Protocol connections. Connector/NET
customizes Entity Framework Core to operate with MySQL data, enables compression in the .NET
driver implementation, and extends cross-platform support to Linux and macOS.

Secure connections using the TLSv1.2 protocol require Connector/NET 8.0.11 or later. In addition, your
Microsoft Windows host must have the TLSv1.2 protocol enabled. Connections made using Windows
named pipes or shared memory do not support the TLSv1.2 protocol. For general guidance about
configuring the server and clients for secure connections, see Configuring MySQL to Use Encrypted
Connections.

Note

.NET 8, .NET 7, .NET 6, and .NET Framework 4.8 (Windows only) include
support for the TLSv1.3 protocol. Be sure to confirm that the operating system
running your application also supports TLSv1.3 before using it exclusively for
connections.

The following table shows the versions of ADO.NET, .NET (Core and Framework), and MySQL Server
that are supported or required by MySQL Connector/NET. For the specific Entity Framework versions
that Connector/NET targets, see Section 4.7, “Connector/NET for Entity Framework”.

Table 4.1 Connector/NET Requirements for Related Products

Connector/NET |ADO.NET .NET Versions and Visual Studio MySQL
Version Version Server
8.3.0 2.x+ For apps that target .NET 8, use VS 2022 (v17.8 or |MySQL 8.3,
later) MySQL 8.2,
MySQL 8.1,
For apps that target .NET 7, use VS 2022 (v17.4 or |MySQL 8.0,
later) and MySQL
5.7
For apps that target .NET 6, use VS 2022 (v17.0
and later) or VS 2022 for Mac (v17.6 or later)
For apps that target .NET Framework 4.8, use VS
2019 (v16.3 or later)
For apps that target .NET Framework 4.6.2, use VS
2017 (v15.9 or later)
8.2.0 2.x+ For apps that target .NET 8 preview, use VS 2022 |MySQL 8.2,
(v17.6 or later) MySQL 8.1,
MySQL 8.0,
For apps that target .NET 7, use VS 2022 (v17.4 or |and MySQL
later) 5.7
For apps that target .NET 6, use VS 2022 (v17.0
and later) or VS 2022 for Mac (v17.6 or later)
For apps that target .NET Framework 4.8, use VS
2019 (v16.3 or later)

179

https://dev.mysql.com/doc/refman/8.0/en/using-encrypted-connections.html
https://dev.mysql.com/doc/refman/8.0/en/using-encrypted-connections.html

Connector/NET Versions

Connector/NET |ADO.NET .NET Versions and Visual Studio MySQL
Version Version Server

For apps that target .NET Framework 4.6.2, use VS
2017 (v15.9 or later)

8.1.0 2.X+ For apps that target .NET 7, use VS 2022 (v17.4 or |MySQL 8.1,
later) MySQL 8.0,
and MySQL

For apps that target .NET 6, use VS 2022 (v17.0 5.7
and later) or VS 2022 for Mac (v17.6 or later)

For apps that target .NET Framework 4.8, use VS
2019 (v16.3 or later)

For apps that target .NET Framework 4.6.2, use VS
2017 (v15.9 or later)

Archived Connector/NET versions and their requirements:

C/NET 8.0.33: .NET 7, use VS 2022 (v17.4 or later) | .NET 6, use VS 2022 (v17.0) or VS 2022 for
Mac (v17.0 preview) | .NET Core 3.1, use VS 2019 (v16.4 or later) | .NET Framework 4.8, use VS
2019 (v16.3 or later) | .NET Framework 4.6.2, use VS 2017 (v15.9 or later)

Recommended minimum server version: MySQL 8.0.33 or MySQL 5.7.42

C/NET 8.0.28+: .NET 6, use VS 2022 (v17.0 or later) or VS 2019 for Mac (v8.10) | .NET 5, use
VS 2019 (v16.8) or VS 2019 for Mac (v8.8) | .NET Core 3.1, use VS 2019 (v16.4 or later) | .NET
Framework 4.8, use VS 2019 (v16.3 or later) | .NET Framework 4.6.2, use VS 2017 (v15.9 or later)

Recommended minimum server version: MySQL 8.0.28 or MySQL 5.7.37

C/NET 8.0.23+: .NET 5, use VS 2019 (v16.8) or VS 2019 for Mac (v8.8) | .NET Core 3.1, use VS
2019 (v16.4 or later) | .NET Framework 4.8, use VS 2019 (v16.3 or later)

Recommended minimum server version: MySQL 8.0.23 or MySQL 5.7.33

C/NET 8.0.22+: .NET 5, use VS 2019 (v16.7) or VS 2019 for Mac (v8.7) | .NET Core 3.1, use VS
2019 (v16.4 or later) | .NET Framework 4.8, use VS 2019 (v16.3 or later)

Recommended minimum server version: MySQL 8.0.22 or MySQL 5.7.32

C/NET 8.0.20+: .NET Core 3.1, use VS 2019 (v16.4 or later) | .NET Framework 4.8, use VS 2019
(v16.3 or later)

Recommended minimum server version: MySQL 8.0.20 or MySQL 5.7.30

C/NET 8.0.19+: .NET Core 3.0, use VS 2019 (v16.3 or later) | .NET Framework 4.8, use VS 2019
(v16.3 or later)

Recommended minimum server version: MySQL 8.0.19 or MySQL 5.7.29
C/NET 8.0.18+: .NET Core 3.0, use VS 2019 (v16.3 or later)
Recommended minimum server version: MySQL 8.0.18 or MySQL 5.7.28

C/NET 8.0.17+: .NET Core 2.2, use VS 2017 (v15.0.9 or later) | .NET Core 2.1, use VS 2017
(v15.0.7 or later)

Recommended minimum server version: MySQL 8.0.17 or MySQL 5.7.27
C/NET 8.0.10+: .NET Core 2.0, use VS 2017 (v15.0.3 or later)

Recommended minimum server version: MySQL 8.0.17 or MySQL 5.7.27

180

Connector/NET Installation

* C/NET 8.0.8+: .NET Framework 4.5.x, use VS 2013/ 2015/ 2017

Recommended minimum server version: MySQL 8.0.17 or MySQL 5.7.27

4.3 Connector/NET Installation

MySQL Connector/NET runs on any platform that supports the .NET Standard (.NET Framework, .NET
Core, and Mono). The .NET Framework is primarily supported on recent versions of Microsoft Windows
and Microsoft Windows Server.

Cross-platform options:
» .NET Core provides support on Windows, macOS, and Linux.
» Open Source Mono platform provides support on Linux.

Connector/NET is available for download as a standalone MSI Installer or from the NuGet gallery. The
source code is available for download from MySQL Download MySQL Connector/NET or at GitHub
from the MySQL Connector/NET repository.

Note

Starting with Connector/NET 8.0.33, application developers must ensure
the availability of following libraries at run time. Previously, the libraries were
bundled with Connector/NET installations.

For applications using OCI Authentication and SSL Certificates validation:

e Portabl e. BouncyCast | e (see https://www.nuget.org/packages/
Portable.BouncyCastle)

For applications using X DevAPI:

e Kdos. Conpressi on. LZ4. St reans (see https://www.nuget.org/packages/
K4os.Compression.LZ4.Streams)

e CGoogl e. Prot obuf (see https://www.nuget.org/packages/Google.Protobuf)

4.3.1 Installing Connector/NET on Windows

On Microsoft Windows, you can install either through a binary installation process using a Connector/
NET MSI, using NuGet, or by downloading and using the source code.

Before installing, ensure that your system is up to date, including installing the latest version of
the .NET Framework or .NET Core. For additional information, see Section 4.2, “Connector/NET
Versions”.

4.3.1.1 Installing Connector/NET Using the Standalone Installer

You can install MySQL Connector/NET through a Windows Installer (. nsi) installation package, which
can install Connector/NET on supported Windows operating systems. The MSI package is a file named
nysgl - connect or - net - ver si on. nsi , where ver si on indicates the Connector/NET version.

To install Connector/NET:
1. Double-click the MSI installer file, and click Next to start the installation.
2. Choose the type of installation to perform (Typical, Custom, or Complete) and then click Next.

* The typical installation is suitable in most cases. Click Typical and proceed to Step 5.

181

http://www.mono-project.com/
https://dev.mysql.com/downloads/connector/net/
https://www.nuget.org/profiles/MySQL/
https://dev.mysql.com/downloads/connector/net/
https://github.com/mysql/mysql-connector-net
https://www.nuget.org/packages/Portable.BouncyCastle
https://www.nuget.org/packages/Portable.BouncyCastle
https://www.nuget.org/packages/K4os.Compression.LZ4.Streams
https://www.nuget.org/packages/K4os.Compression.LZ4.Streams
https://www.nuget.org/packages/Google.Protobuf

Installing Connector/NET on Windows

« A Complete installation installs all the available files. To conduct a Complete installation, click the
Complete button and proceed to step 5.

< To customize your installation, including choosing the components to install and some installation
options, click the Custom button and proceed to Step 3.

The Connector/NET installer will register the connector within the Global Assembly Cache (GAC) -
this will make the Connector/NET component available to all applications, not just those where you
explicitly reference the Connector/NET component. The installer will also create the necessary links
in the Start menu to the documentation and release notes.

3. If you have chosen a custom installation, you can select the individual components to install,
including the core interface component, supporting documentation options, examples, and the
source code. Click Disk Usage to determine the disk-space requirements of your component
choices.

Select the items and their installation level and then click Next to continue the installation.

4. You will be given a final opportunity to confirm the installation. Click Install to copy and install the
files onto your computer. Use Back to return to the modify your component options.

5. When prompted, click Finish to exit the MSI installer.

Unless you choose a different folder, Connector/NET is installed in C: \ Program Fi | es
(x86)\ MySQL\ MySQL Connect or Net versi on (the version installed). New installations do not
overwrite existing versions of Connector/NET.

You may also use the / qui et or/ g command-line option with the nsi exec tool to install the
Connector/NET package automatically (using the default options) with no notification to the user. Using
this method the user cannot select options. Additionally, no prompts, messages or dialog boxes will be
displayed.

C.\> nsi exec /package connector-net.nmsi /quiet

To provide a progress bar to the user during automatic installation, use the / passi ve option.

4.3.1.2 Installing Connector/NET Using NuGet

MySQL Connector/NET functionality is available as packages from NuGet, an open-source package
manager for the Microsoft development platform (including .NET Core). The NuGet Gallery is the
central software package repository populated with the most recent NuGet packages for Connector/
NET.

You can install or upgrade one or more individual Connector/NET packages with NuGet, making it a
convenient way to introduce existing technology, such as Entity Framework, to your project. NuGet
manages dependencies across the related packages and all of the prerequisites are listed in the NuGet
Gallery. For a description of each Connector/NET package, see Connector/NET Packages (NuGet).

Important

For projects that require Connector/NET assemblies to be stored in the GAC or
integration with Entity Framework Designer (Visual Studio), use the standalone
MSI to install Connector/NET, rather than installing the NuGet packages.

Consuming Connector/NET Packages with NuGet

The NuGet Gallery (https://www.nuget.org/) provides several client tools that can help you install or
upgrade Connector/NET packages. If you are not familiar with the tool options or processes, see
Package consumption workflow to get started. After locating a package description in NuGet, confirm
the following information:

182

https://www.nuget.org/
https://docs.microsoft.com/en-us/nuget/consume-packages/overview-and-workflow

Installing Connector/NET on Unix with Mono

» The identity and version number of the package are correct. Use the Version History list to select
the current version.

 All of the prerequisites are installed. See the Dependencies list for details.

» The license terms are met. See the License Info link to view this information.
Connector/NET Packages (NuGet)

Connector/NET provides the following five NuGet packages:

MySql . Dat a This package contains the core functionality of Connector/NET,
including using MySQL as a document store (with Connector/NET
8.0 only). It implements the required ADO.NET interfaces and
integrates with ADO.NET-aware tools. In addition, the packages
provides access to multiple versions of MySQL server and
encapsulates database-specific protocols.

MySql . Wb The MySql . Web package includes support for the ASP.NET 2.0
provider model (see Section 4.6.2, “ASP.NET Provider Model and
Tutorials”). This model enables you to focus on the business logic
of your application, rather than having to recreate boilerplate items
such as membership and roles support. The package supports the
membership, role, profile, and session-state providers.

Package dependency: MySql . Dat a.

MySql . Dat a. Ent i t yFr amewor kThis package provides object-relational mapper (ORM) capabilities,
which enables you to work with MySQL databases using domain-
specific objects, thereby eliminating the need for most of the data
access code. Select this package for your Entity Framework 6
applications (see Section 4.7.1, “Entity Framework 6 Support”).

Package dependency: MySql . Dat a.

MySql . Dat a. Ent i t yFr anmewor Kluis package is similar to the MySql . Dat a. Ent i t yFr amewor k
package; however, it provides multi-platform support for Entity
Framework tasks. Select this package for your Entity Framework
Core applications (see Section 4.7.2, “Entity Framework Core
Support”).

MySql . Dat a. Ent i t yFr amewor KlDue &y Bgki Bat a. Ent i t yFr amewor kCor e. Desi gn package
includes shared design-time components for Entity Framework Core
tools, which enable you to scaffold and migrate MySQL databases.

Note

Beginning with Connector/NET 8.0.20,

the functionality provided in this

package has been relocated to the

MySql . Dat a. Ent i t yFr amewor kCor e
package. The original

MySql . Dat a. Ent i t yFr amewor kCor e. Desi gn
package is deprecated.

4.3.2 Installing Connector/NET on Unix with Mono
There is no installer available for installing the MySQL Connector/NET component on your Unix

installation. Before installing, ensure that you have a working Mono project installation. To test whether
your system has Mono installed, enter:

183

Installing Connector/NET from Source

$> nono --version

The version of the Mono JIT compiler is displayed.

To compile C# source code, make sure a Mono C# compiler is installed.
Note

There are three Mono C# compilers available: nts, which accesses the 1.0-
profile libraries, gnts, which accesses the 2.0-profile libraries, and dnts, which
accesses the 4.0-profile libraries.

To install Connector/NET on Unix/Mono:

1. Download the nmysql - connect or - net - ver si on-noi nstal | . zi p and extract the contents to a
directory of your choice, for example: ~/ connect or - net /.

2. In the directory where you unzipped the connector to, change into the bi n subdirectory. Ensure the
file MySql . Dat a. dl | is present. This filename is case-sensitive.

3. You must register the Connector/NET component, MySql . Dat a, in the Global Assembly Cache
(GAC). In the current directory enter the gacut i | command:

#> gacutil /i MSql . Data.dl |

This will register My Sgl . Dat a into the GAC. You can check this by listing the contents of / usr/
I'i b/ nono/ gac, where you will find MySql . Dat a if the registration has been successful.

You are now ready to compile your application. You must ensure that when you compile your
application you include the Connector/NET component using the - r : command-line option. For
example:

$> gnts -r:Systemdl|l -r:SystemData.dl|l -r:MSql.Data.dl| Hellowrld.cs

The referenced assemblies depend on the requirements of the application, but applications using
Connector/NET must provide - r : MySql . Dat a at a minimum.

You can further check your installation by running the compiled program, for example:

$> nono Hel | oWorl d. exe

4.3.3 Installing Connector/NET from Source

Building MySQL Connector/NET from the source code enables you to customize build parameters
and target platforms such as Linux and macOS. The procedures in this section describe how to build
source with Microsoft Visual Studio (Windows or macOS) and .NET Core CLI (Windows, macOS, or
Linux).

MySQL Connector/NET source code is available for download from https://dev.mysqgl.com/downloads/
connector/net/. Select Sour ce Code from the Select Operating System list. Use the Archive tab to
download a previous version of Connector/NET source code.

Source code is packaged as a ZIP archive file with a name similar to nysql - connect or -
net - 8. 0. 19-src. zi p. Unzip the file to local directory.

The file includes the following directories with source files:
» EFCor e: Source and test files for Entity Framework Core features.
* EntityFranmewor k: Source and test files for Entity Framework 6 features.

« MySQL. Dat a: Source and test files for features using the MySQL library.

184

https://dev.mysql.com/downloads/connector/net/
https://dev.mysql.com/downloads/connector/net/

Connector/NET Connections

* MySQL. V\eb: Source and test files for the web providers, including the membership, role, profile
providers that are used in ASP.NET or ASP.NET Core websites.

Building Source Code with Visual Studio

The following procedure can be used to build the connector on Microsoft Windows or macOS.
Connector/NET supports various versions of Microsoft Visual Studio and .NET libraries. For guidance
about the Connector/NET version you intend to build, see Section 4.2, “Connector/NET Versions”
before you begin.

1. Navigate to the root of the source code directory and then to the directory with the source files to
build, such as MySql . Dat a. Each source directory contains a Microsoft Visual Studio solution file
with the . s| n (for example, My Sql Dat a. sl n).

2. Double-click the solutions file to start Visual Studio and open the solution.

Visual Studio opens the solution files in the Solution Explorer. All of the projects related to the
solution also appear in the navigation tree. These related projects can include test files and the
projects that your solutions requires.

3. Locate the project with the same name as the solution (MySql . Dat a in this example). Right-click
the node and select Build from the context menu to build the solution.

Building Source Code with .NET Core CLI

The following procedure can be used to build the connector on Microsoft Windows, Linux, or macOS.
A current version of the .NET Core SDK must be installed locally to execute dot net commands. For
additional usage information, visit https://docs.microsoft.com/en-us/dotnet/core/tools/.

1. Open aterminal such as Power Shel | , Command Pronpt, or bash.

Navigate to the root of the source code directory and then to the directory with the source files to
build, such as My SQL. Dat a.

2. Clean the output of the previous build.

dot net cl ean

3. Type the following command to build the solution file (MySqgl . Dat a. sl n in this example) using the
default command arguments:

dotnet build

Solution and project default. When no directory and file name is provided on the command
line, the default value depends on the current directory. If the command is executed from the top
directory, such as My SQL. Dat a, the solution file is selected (new with the .NET Core 3.0 SDK).

Otherwise, if executed from the sr ¢ subdirectory, the project file is used.

Configuration default, - ¢ | - - confi gurati on. Defaults to the Debug build configuration.
Alternatively, - ¢ Rel ease is the other supported build configuration argument value.

Framework default, - f | --franmewor k. When no framework is specified on the command line,
the solution or project is built for all possible frameworks that apply. To determine which frameworks
are supported, use a text editor to open the related project file (for example, MySql . Dat a. cspr oj
in the sr c subdirectory) and search for the <Tar get Fr amewor ks> element.

To build source code on Linux and macOS, you must target .NET Standard (- f net st andar d2. 0
or-f netstandard2. 1). To build source code on Microsoft Windows, you can target .NET
Standard and .NET Framework (-f net 452 or-f net 48).

4.4 Connector/NET Connections

185

https://docs.microsoft.com/en-us/dotnet/core/tools/

Creating a Connector/NET Connection String

All interaction between a .NET application and the MySQL server is routed through a
My Sgl Connect i on object when using the classic MySQL protocol. Before your application can
interact with the server, it must instantiate, configure, and open a MySql Connect i on object.

Even when using the My Sql Hel per class, a MySql Connect i on object is created by the helper class.
Likewise, when using the MySqgl Connecti onStri ngBui | der class to expose the connection options
as properties, your application must open a MySql Connect i on object.

This sections in this chapter describe how to connect to MySQL using the My Sql Connect i on object.

4.4.1 Creating a Connector/NET Connection String

The MySql Connect i on object is configured using a connection string. A connection string contains
several key-value pairs, separated by semicolons. In each key-value pair, the option name and its
corresponding value are joined by an equal sign. For the list of option names to use in the connection
string, see Section 4.4.5, “Connector/NET Connection Options Reference”.

The following is a sample connection string:

"server=127. 0. 0. 1; ui d=r oot ; pwd=12345; dat abase=t est "

In this example, the My Sql Connect i on object is configured to connect to a MySQL server at
127. 0. 0. 1, with a user name of r oot and a password of 12345. The default database for all
statements will be the t est database.

Connector/NET supports several connection models:
» Opening a Connection to a Single Server
» Opening a Connection for Multiple Hosts with Failover

» Opening a Connection Using a Single DNS Domain

Opening a Connection to a Single Server

After you have created a connection string it can be used to open a connection to the MySQL server.

The following code is used to create a MySgl Connect i on object, assign the connection string, and
open the connection.

MySQL Connector/NET can also connect using the native Windows authentication plugin. See
Section 4.4.4, “Connector/NET Authentication” for details.

You can further extend the authentication mechanism by writing your own authentication plugin. See
Section 4.5.8, “Writing a Custom Authentication Plugin” for details.

C# Example

M/Sql . Dat a. MySql d i ent . MySqgl Connecti on conn;
string myConnectionString;
nyConnectionString = "server=127.0.0. 1; ui d=root;" +
" pwd=12345; dat abase=t est";
try
{
conn = new MySqgl . Data. MySgl Cl i ent . MySql Connecti on();
conn. ConnectionString = myConnecti onStri ng;
conn. Open() ;

}
catch (MySqgl . Data. MySgl Cl i ent. MySgl Excepti on ex)
{

MessageBox. Show(ex. Message) ;
}

Visual Basic Example

186

Creating a Connector/NET Connection String

Di m conn As New MySql . Data. MySqgl d i ent . MySgl Connect i on
Di m myConnectionString as String
myConnectionString = "server=127.0.0.1;" _

& "uid=root;" _
& "pwd=12345; " _
& "dat abase=t est"
Try
conn. ConnectionString = nmyConnecti onString
conn. Open()

Catch ex As MySqgl . Data. MySgl Cl i ent. MySqgl Excepti on
MessageBox. Show(ex. Message)
End Try

You can also pass the connection string to the constructor of the MySqgl Connect i on class:

C# Example

M/Sql . Dat a. MySql d i ent . MySqgl Connecti on conn;
string myConnectionString;
nmyConnectionString = "server=127.0.0. 1; uid=root;" +
"pwd=12345; dat abase=t est";
try
{
conn = new MySqgl . Data. MySqgl C i ent . MySqgl Connecti on(myConnecti onStri ng);

conn. Qpen();
}
catch (MySql . Data. MySql d i ent . MySql Excepti on ex)

MessageBox. Show(ex. Message) ;
}

Visual Basic Example

Di m nyConnectionString as String
nmyConnectionString = "server=127.0.0.1;" _
& "ui d=root ;"

& "pwd=12345; " _
& "dat abase=t est"
Try
Di m conn As New MySql . Dat a. MySql Cl i ent . MySql Connect i on(myConnect i onStri ng)
conn. Open()
Catch ex As MySql . Data. MySgl Cl i ent. MySgl Excepti on
MessageBox. Show(ex. Message)
End Try

After the connection is open, it can be used by the other Connector/NET classes to communicate with
the MySQL server.

Opening a Connection for Multiple Hosts with Failover

Data used by applications can be stored on multiple MySQL servers to provide high availability.
Connector/NET provides a simple way to specify multiple hosts in a connection string for cases in
which multiple MySQL servers are configured for replication and you are not concerned about the
precise server your application connects to in the set. For an example of how to configure multiple
hosts with replication, see Using Replication & Load balancing.

Starting in Connector/NET 8.0.19, both classic MySQL protocol and X Protocol connections permit the
use of multiple host names and multiple endpoints (a host : port pair) in a connection string or URI
scheme. For example:

/] classic protocol exanple

"server=10. 10. 10. 10: 3306, 192. 101. 10. 2: 3305, | ocal host : 3306; ui d=t est ; passwor d=xxxx"
/'l X Protocol exanple

mysql x: //test:test @192. 1. 10. 10: 3305, 127. 0. 0. 1: 3306]

An updated failover approach selects the target for connection first by priority order, if provided,
or random order when no priority is specified. If the attempted connection to a selected target is

187

https://blogs.oracle.com/mysql/how-to:-using-replication-load-balancing-with-connectornet

Managing a Connection Pool in Connector/NET

unsuccessful, Connector/NET selects a new target from the list until no more hosts are available.
If enabled, Connector/NET uses connection pooling to manage unsuccessful connections (see
Section 4.4.2, “Managing a Connection Pool in Connector/NET").

Opening a Connection Using a Single DNS Domain

When multiple MySQL instances provide the same service in your installation, you can apply DNS
Service (SRV) records to provide failover, load balancing, and replication services. DNS SRV records
remove the need for clients to identify each possible host in the connection string, or for connections to
be handled by an additional software component. They can also be updated centrally by administrators
when servers are added or removed from the configuration or when their host names are changed.
DNS SRV records can be used in combination with connection pooling, in which case connections

to hosts that are no longer in the current list of SRV records are removed from the pool when they
become idle. For information about DNS SRV support in MySQL, see Connecting to the Server Using
DNS SRV Records.

A service record is a specification of data managed by your domain name system that defines the
location (host name and port number) of servers for the specified services. The record format defines
the priority, weight, port, and target for the service as defined in the RFC 2782 specification (see
https://tools.ietf.org/html/rfc2782). In the following SRV record example with four server targets (for
_nysgl . _tcp.foo.abc. com), Connector/NET uses the server selection order of f 002, f 001,

f 003, and f 004.

Nane TTL d ass Priority Weight Port Target

_nysqgl . _tcp.foo.abc.com 86400 IN SRV 0 5 3306 fool.abc.com
_nysqgl . _tcp. foo.abc.com 86400 IN SRV 0 10 3306 fo002.abc.com
_nysqgl . _tcp. foo.abc.com 86400 IN SRV 10 5 3306 fo003.abc.com
_nysqgl . _tcp. foo.abc.com 86400 IN SRV 20 5 3306 foo4.abc.com

To open a connection using DNS SRV records, add the dns- sr v connection option to your connection
string. For example:

C# Example

var conn = new MySqgl Connecti on("server=_nysql._tcp.foo.abc.com ;dns-srv=true;" +
"user id=user;password=****: dat abase=test");

For additional usage examples and restrictions for both classic MySQL protocol and X Protocol, see
Options for Both Classic MySQL Protocol and X Protocol.

4.4.2 Managing a Connection Pool in Connector/NET

The MySQL Connector/NET supports connection pooling for better performance and scalability

with database-intensive applications. This is enabled by default. You can turn it off or adjust its
performance characteristics using the connection string options Pool i ng, Connecti on Reset,
Connection Lifetinme, Cache Server Properties, Max Pool SizeandM n Pool Size.
See Section 4.4.1, “Creating a Connector/NET Connection String” for further information.

Connection pooling works by keeping the native connection to the server live when the client disposes
of a MySgl Connect i on. Subsequently, if a new MySql Connect i on object is opened, it is created
from the connection pool, rather than creating a new native connection. This improves performance.

Guidelines

To work as designed, it is best to let the connection pooling system manage all connections. Do not
create a globally accessible instance of My Sql Connect i on and then manually open and close it. This
interferes with the way the pooling works and can lead to unpredictable results or even exceptions.

One approach that simplifies things is to avoid creating a My Sql Connect i on object manually.
Instead, use the overloaded methods that take a connection string as an argument. With this approach,

188

https://dev.mysql.com/doc/refman/8.0/en/connecting-using-dns-srv.html
https://dev.mysql.com/doc/refman/8.0/en/connecting-using-dns-srv.html
https://tools.ietf.org/html/rfc2782

Handling Connection Errors

Connector/NET automatically creates, opens, closes and destructs connections, using the connection
pooling system for best performance.

Typed Datasets and the Menber shi pProvi der and Rol ePr ovi der classes use this approach. Most
classes that have methods that take a My Sql Connect i on as an argument, also have methods that
take a connection string as an argument. This includes My Sql Dat aAdapt er .

Instead of creating My Sgl Conmrand objects manually, you can use the static methods of the
My Sql Hel per class. These methods take a connection string as an argument and they fully support
connection pooling.

Resource Usage

Connector/NET runs a background job every three minutes and removes connections from pool that
have been idle (unused) for more than three minutes. The pool cleanup frees resources on both client
and server side. This is because on the client side every connection uses a socket, and on the server
side every connection uses a socket and a thread.

Multiple endpoints. Starting with Connector/NET 8.0.19, a connection string can include multiple
endpoints (ser ver : port) with connection pooling enabled. At runtime, Connector/NET selects one of
the addresses from the pool randomly (or by priority when provided) and attempts to connect to it. If the
connection attempt is unsuccessful, Connector/NET selects another address until the set of addresses
is exhausted. Unsuccessful endpoints are retried every two minutes. Successful connections are
managed by the connection pooling mechanism.

4.4.3 Handling Connection Errors

Because connecting to an external server is unpredictable, it is important to add error handling to
your .NET application. When there is an error connecting, the MySql Connect i on class will return a
My Sql Except i on object. This object has two properties that are of interest when handling errors:

* Message: A message that describes the current exception.
* Nunber : The MySQL error number.

When handling errors, you can adapt the response of your application based on the error number. The
two most common error numbers when connecting are as follows:

» 0: Cannot connect to server.
» 1045: Invalid user name, user password, or both.

The following code example shows how to manage the response of an application based on the actual
error:

C# Example

MySql . Dat a. MySgl Cl i ent. MySgl Connecti on conn;

string myConnectionStri ng;

myConnectionString = "server=127.0.0. 1; ui d=root; " +
"pwd=12345; dat abase=t est";

try

{
conn = new MySqgl . Dat a. MySqgl Cl i ent. MySgl Connecti on(myConnecti onString);
conn. Qpen();

}
catch (MySql . Data. MySql C i ent. MySql Excepti on ex)
{
switch (ex. Number)
{
case O:
MessageBox. Show(" Cannot connect to server. Contact administrator");
br eak;

189

Connector/NET Authentication

case 1045:
MessageBox. Show("I nval i d user nane/ password, please try again");
br eak;

}

Visual Basic Example

Di m nyConnectionString as String
nyConnectionString = "server=127.0.0.1;" _
& "uid=root;" _
& "pwd=12345;" _
& "dat abase=t est"
Try
Di m conn As New MySql . Dat a. MySql d i ent . MySqgl Connect i on(myConnecti onStri ng)
conn. Open()
Catch ex As MySgl . Data. MySgl Cl i ent. MySgl Excepti on
Sel ect Case ex. Number

Case 0
MessageBox. Show(" Cannot connect to server. Contact adm nistrator")
Case 1045
MessageBox. Show("I nval i d user nane/ password, please try again")
End Sel ect

End Try
Important

If you are using multilanguage databases then you must specify the character
set in the connection string. If you do not specify the character set, the
connection defaults to the | at i n1 character set. You can specify the character
set as part of the connection string, for example:

MySgl Connecti on myConnecti on = new MySql Connecti on("server=127.0.0. 1; uid=root;" +
"pwd=12345; dat abase=t est ; Charset =l ati n1");

4.4.4 Connector/NET Authentication

MySQL Connector/NET implements a variety of authentication plugins that MySQL Server can invoke
to authenticate a user. Pluggable authentication enables the server to determine which plugin applies,
based on the user name and host name that your application passes to the server when making a
connection. For a complete description of the authentication process, see Pluggable Authentication.

Connector/NET provides the following authentication plugins and methods:
» authentication_kerberos_client

 authentication_ldap_sasl_client

» authentication_oci_client

» authentication_webauthn_client

 authentication_windows_client

» caching_sha2_password

* mysql_clear_password

* mysql_native_password

» sha256_password

authentication_kerberos_client

For general information, see Kerberos Pluggable Authentication.

190

https://dev.mysql.com/doc/refman/8.0/en/pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.0/en/kerberos-pluggable-authentication.html

Connector/NET Authentication

Applications and MySQL servers are able use the Kerberos authentication protocol

to authenticate MySQL Enterprise Edition user accounts and services. With the

aut henti cation_kerberos_cl i ent plugin, both the user and the server are able to verify each
other's identity. No passwords are ever sent over the network and Kerberos protocol messages are
protected against eavesdropping and replay attacks. The server-side plugin is supported only on Linux.

Note

The Def aul t aut henti cati onpl ugi n connection-string option is mandatory
for supporting userless and passwordless Kerberos authentications (see
Options for Classic MySQL Protocol Only).

The availability of and the requirements for enabling Kerberos authentication differ by host type.
Connector/NET does not provide Kerberos authentication for .NET applications running on macOS.
On Windows, the Kerberos mode can be set using the Ker ber osAut hivbde connection option (see
Section 4.4.5, “Connector/NET Connection Options Reference”).

Applications running on Linux and Windows participate in Kerberos authentication based on the
following interfaces:

» Generic Security Service Application Program Interface (GSSAPI)
Minimum version:
e Connector/NET 8.0.26 for classic MySQL protocol connections. Supported on Linux only.

* Connector/NET 8.0.32 for classic MySQL protocol connections through the MIT Kerberos library.
Supported on Windows only.

MIT Kerberos must be installed on each client system to enable authentication of request tickets for
Connector/NET by a MySQL server. The | i bgssapi _kr b5. so. 2 library for Linux is required. On

Windows, use the KRB5 CONFI Gand KRB5CCNANME environment variables to specify configuration

and cache locations when using GSSAPI through the MIT Kerberos library.

For an overview of the connection process, see Connection Commands for Linux Clients.
» Security Support Provider Interface (SSPI) for Windows

Minimum version: Connector/NET 8.0.27 for classic MySQL protocol connections. Supported on
Windows only.

Connector/NET uses SSPI/Kerberos for authentication. On Windows, SSPI implements GSSAPI.
The behavioral differences between SSPI and GSSAPI include:

e Configuration. Windows clients do not use any external libraries or Kerberos configuration.
For example, with GSSAPI you can set the ticket-granting ticket (TGT) expiry time, key distribution
center (KDC) port, and so on. With SSPI, you cannot set any of these options.

e TGT tickets caching. If you provide a user name and password for authentication in SSPI
mode, those credentials can be obtained from the Windows in-memory cache, but the obtained
tickets are not stored in the Kerberos cache. New tickets are obtained every time.

* Userless and passwordless authentication. In SSPI mode, Windows logged-in user name
and credentials are used. Windows client must be part of the Active Directory domain of the server
for a successful login.

For an overview of the connection process, see Connection Commands for Windows Clients in SPPI
Mode.

authentication_ldap_sasl_client

For general information, see LDAP Pluggable Authentication.

191

https://dev.mysql.com/doc/refman/8.0/en/kerberos-pluggable-authentication.html#kerberos-usage-mysql-client-usage
https://dev.mysql.com/doc/refman/8.0/en/kerberos-pluggable-authentication.html#kerberos-usage-mysql-client-usage
https://dev.mysql.com/doc/refman/8.0/en/kerberos-pluggable-authentication.html#kerberos-usage-mysql-client-usage
https://dev.mysql.com/doc/refman/8.0/en/ldap-pluggable-authentication.html

Connector/NET Authentication

SASL-based LDAP authentication requires MySQL Enterprise Edition and can be used to establish
classic MySQL protocol connections only. This authentication protocol applies to applications running
on Linux, Windows (partial support), but not macQOS.

Minimum version:

e Connector/NET 8.0.22 (SCRAM SHA- 1) on Linux and Windows.

e Connector/NET 8.0.23 (SCRAM SHA- 256) on Linux and Windows.
e Connector/NET 8.0.24 (GSSAPI) on Linux only.

MIT Kerberos must be installed on each client system to enable authentication of request tickets for
Connector/NET by a MySQL server. The aut henti cati on_| dap_sasl| plugin must be configured
to use the GSSAPI mechanism and the application user must be identified as follows:

| DENTI FI ED W TH ' aut henti cati on_| dap_sasl '

The | i bgssapi _krb5. so. 2 library for Linux is required.

authentication_oci_client

Minimum version: Connector/NET 8.0.27 for classic MySQL protocol connections only.

Connector/NET supports Oracle Cloud Infrastructure pluggable authentication, which enables .NET
applications to access MySQL HeatWave Service in a secure way without using passwords. This
pluggable authentication is not supported for .NET Framework 4.5.x implementations.

Prerequisites for this type of connection include access to a tenancy, a Compute instance, a DB
System attached to a private network, and properly configured groups, compartments, and policies. An
Oracle Cloud Infrastructure administrator can provide the basic setup for MySQL user accounts.

In addition, the DB System must have the server-side authentication plugin installed and loaded before
a connection can be attempted. Connector/NET implements the client-side authentication plugin.

During authentication, the client-side plugin locates the client user’'s Oracle Cloud Infrastructure
configuration file from which it obtains a signing key file. The location of the configuration file can

be specified with the oci Conf i gFi | e connection option; otherwise, the default location is used. In
Connector/NET 8.0.33, the Cci Confi gPr of i | e connection option permits selecting a profile in the
configuration file to use for authentication. Connector/NET then signs a token it receives from the
server, uses the token to create the SHA256 RSA signature that it returns to the server, and waits for
the success or failure of the authentication process.

To support Oracle Cloud Infrastructure ephemeral key-based authentication, Connector/NET 8.0.33
(and later) obtains the location of the token file from the security token fil e entry. For example:

[DEFAULT]

fingerprint=59:8a:0b[...]

key file=~/.oci/sessi ons/ DEFAULT/ oci _api _key. pem
tenancy=oci dl. tenancy.ocl.[...]

regi on=us- ashburn-1

security_token_fil e=~/.oci/sessi ons/ DEFAULT/t oken

Connector/NET sends to the server a JSON attribute (named "t oken™) with the value extracted from
the security token_ fil e field. If the target file referenced in the profile does not exist, or if the
file exceeds a specified maximum value, then Connector/NET terminates the action and returns an
exception with the cause.

Connector/NET sends an empty token value in the JSON payload if:
» The security-token file is empty.

» The configuration option security token fil e is found but the value in the configuration file is
empty.

192

Connector/NET Authentication

In all other cases, Connector/NET adds the content of the security-token file intact to the JISON
document.

Potential error conditions include:

 Private key could not be found at |ocation given by OCl configuration
entry 'key file'.

Connector/NET could not find the private key at the specified location.
e« OClI configuration entry 'key file' does not reference a valid key file.
Connector/NET was unable to load or use the specified private key.

e OCl configuration file does not contain a "fingerprint' or "key file'
entry.

The configuration file is missing the f i nger pri nt entry, the key_fi | e entry, or both.
e OCl configuration file could not be read

Connector/NET could not find or load the configuration file. Be sure the oci Confi gFi | e value
matches the location of the file.

e The OCI SDK cannot be found or is not installed
Connector/NET could not load the Oracle Cloud Infrastructure SDK library at run time.

Connector/NET references the OCl . Dot Net SDK. Conmon NuGet package in the Oracle Cloud
Infrastructure SDK library to read configuration-file entry values and this package must be available.

Tip

To manage the size of your .NET project, include only the required package for
authentication rather than the full set of packages in the library.

For specific details about usage and support, see SDK and CLI Configuration File.

authentication_webauthn_client
For general information, see WebAuthn Pluggable Authentication.

MySQL Enterprise Edition supports authentication to MySQL Server 8.2.0 (and higher) using devices
such as smart cards, security keys, and biometric readers. This authentication method is based on the
FIDO and FIDO2 standards, and uses a pair of plugins, aut hent i cati on_webaut hn on the server
side and aut hent i cati on_webaut hn_cl i ent on the client side. Connector/NET 8.2.0 supports the
client-side WebAuthn authentication plugin.

The WebAuthn authentication method can be used directly for one-factor authentication (1FA) or
combined with existing MySQL authentication methods to support accounts that use 2FA or 3FA.
Connector/NET provides a callback mechanism to notify the application that the user is expected to
interact with the FIDO/FIDO2 device through its authenticator. For example:

public void OpenConnection()

{
usi ng(var connection = new MySQ.Connection("host=foo; .. "))
connecti on. WebAut hnAct i onRequest ed += WebAut hnAct i onRequest ed;
connecti on. Open() ;
...
}
publ i c voi d WebAut hnAct i onRequest ed()
{
Consol e. WitelLine("Pl ease i nsert WebAut hn device and perform gesture action for authentication to c
}

193

https://www.nuget.org/packages/OCI.DotNetSDK.Common/
https://docs.oracle.com/en-us/iaas/Content/API/Concepts/sdkconfig.htm#SDK_and_CLI_Configuration_File
https://dev.mysql.com/doc/refman/8.2/en/webauthn-pluggable-authentication.html

Connector/NET Authentication

If the following requirements are satisfied, Connector/NET notifies the application that it is expecting
user interaction with the FIDO/FIDO2 device:

» The FIDO/FIDO2 device must be registered for the specific authentication factor associated with
each user account.

» The application, Connector/NET, and the FIDO/FIDO2 device must be available on the same host or
within a trusted network.

« On Windows, the application must run as administrator to access the required | i bf i do2 library,
which must be present on the client.

The authentication process terminates after a reasonable time interval has elapsed without user-device
interaction.

Note

The related aut henti cation_fido_client pluginand
Fi doActi onCal | back callback (both added in Connector/NET 8.0.29) were
removed in Connector/NET 8.4.0 in favor of using WebAuthn authentication.

authentication_windows_client

Supported for all versions of Connector/NET. For general information, see Windows Pluggable
Authentication.

MySQL Connector/NET applications can authenticate to a MySQL server using the Windows Native
Authentication Plugin. Users who have logged in to Windows can connect from MySQL client
programs to the server based on the information in their environment without specifying an additional
password. The interface matches the MySql.Data.MySq|IClient object. To enable, pass in | nt egr at ed
Secur i ty to the connection string with a value of yes or sspi .

Passing in a user ID is optional. When Windows authentication is set up, a MySQL user is created and
configured to be used by Windows authentication. By default, this user ID is named aut h_w ndows,
but can be defined using a different name. If the default name is used, then passing the user ID to

the connection string from Connector/NET is optional, because it will use the aut h_wi ndows user.
Otherwise, the name must be passed to the connection string using the standard user ID element.

caching_sha2_password

Minimum version: Connector/NET 8.0.11 for classic MySQL protocol connections only. For general
information, see Caching SHA-2 Pluggable Authentication.

mysql_clear_password

Minimum version: Connector/NET 8.0.22 for classic MySQL protocol connections only. For general
information, see Client-Side Cleartext Pluggable Authentication.

nmysqgl _cl ear _passwor d requires a secure connection to the server, which is satisfied by either
condition at the client:

» The SsIlMode connection option has a value other than Di sabl ed or None (deprecated in
Connector/NET 8.0.29). The value is set to Pr ef er r ed by default.

» The ConnectionProtocol connection option is set to uni x for Unix domain sockets.
mysql_native_password

Supported for all versions of Connector/NET to establish classic MySQL protocol and X Protocol
connections. For general information, see Native Pluggable Authentication.

194

https://dev.mysql.com/doc/refman/8.0/en/windows-pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.0/en/windows-pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.0/en/caching-sha2-pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.0/en/cleartext-pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.0/en/native-pluggable-authentication.html

Connector/NET Connection Options Reference

sha256_password

Minimum version: Connector/NET 8.0.11 for classic MySQL protocol connections or X Protocol
connections with the MYSQL41 mechanism (see the Auth connection option). For general information,
see SHA-256 Pluggable Authentication.

4.4.5 Connector/NET Connection Options Reference

This chapter describes the full set of MySQL Connector/NET 8.0 connection options. The protocol
you use to make a connection to the server (classic MySQL protocol or X Protocol) determines which
options you should use. Connection options have a default value that you can override by defining
the new value in the connection string (classic MySQL protocol and X Protocol) or in the URI-like
connection string (X Protocol). Connector/NET option names and synonyms are not case sensitive.

For instructions about how to use connection strings, see Section 4.4.1, “Creating a Connector/NET
Connection String”. For alternative connection styles, see Connecting to the Server Using URI-Like
Strings or Key-Value Pairs.

The following sections list the connection options that apply to both protocols, classic MySQL protocol
only, and X Protocol only:

» Options for Both Classic MySQL Protocol and X Protocol
» Options for Classic MySQL Protocol Only

» Options for X Protocol Only
Options for Both Classic MySQL Protocol and X Protocol

The following Connector/NET connection options can be used with either protocol.
Connector/NET 8.0 exposes the options in this section as properties in both

the MySql . Dat a. MySgl C i ent. MySgl Connecti onStri ngBui | der and

My Sqgl X. XDevAPI . MySgl XConnecti onStri ngBui | der classes.

CertificateFile, Default: nul |

Certificate File
This option specifies the path to a certificate file in PKCS #12 format
(. pf x). For an example of usage, see Section 4.6.7.2, “Using PFX
Certificates in Connector/NET".

CertificatePassword, Default: nul |

Certificate Password
Specifies a password that is used in conjunction with a certificate
specified using the option Certi fi cat eFi | e. For an example of
usage, see Section 4.6.7.2, “Using PFX Certificates in Connector/
NET".

CertificateStorelLocati on Default: nul |

, Certificate Store

Locati on Enables you to access a certificate held in a personal store, rather
than use a certificate file and password combination. For an
example of usage, see Section 4.6.7.2, “Using PFX Certificates in
Connector/NET".

CertificateThunbprint , Default: nul |

Certificate Thunbprint
Specifies a certificate thumbprint to ensure correct identification of
a certificate contained within a personal store. For an example of
usage, see Section 4.6.7.2, “Using PFX Certificates in Connector/
NET".

195

https://dev.mysql.com/doc/refman/8.0/en/sha256-pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.0/en/connecting-using-uri-or-key-value-pairs.html
https://dev.mysql.com/doc/refman/8.0/en/connecting-using-uri-or-key-value-pairs.html

Connector/NET Connection Options Reference

Char act er Set , Character Specifies the character set that should be used to encode all queries
Set , Char Set sent to the server. Results are still returned in the character set of
the result data.

Connecti onPr ot ocol Default: socket (ortcp)
Pr ot ocol , Connecti on »)
Pr ot ocol Specifies the type of connection to make to the server. Values can
be:
* socket ortcp for a socket connection using TCP/IP.
e pi pe for a named pipe connection (not supported with X
Protocol).
e uni x for a UNIX socket connection.
e nmenory to use MySQL shared memory (not supported with X
Protocol).
Dat abase, I nitial Default: mysql
Cat al og . -
The case-sensitive name of the database to use initially.
dns-srv, dnssrv Default: f al se

Enables the connection to resolve service (SRV) addresses in a
DNS SRV record, which defines the location (host name and port
number) of servers for the specified services when it is used with
the default transport protocol (t cp). A single DNS domain can map
to multiple targets (servers) using SRV address records. Each SRV
record includes the host name, port, priority, and weight. DNS SRV
support was introduced in Connector/NET 8.0.19 to remove the
need for clients to identify each possible host in the connection
string, with or without connection pooling.

Specifying multiple host names, a port number, or a Unix
socket, named pipe, or shared memory connection (see the
Connect i onPr ot ocol option) in the connection string is not
permitted when DNS SRV is enabled.

Using classic MySQL protocol. The dns- srv option applies
to connection strings; the DnsSr v property is declared in the
MySql ConnectionStri ngBui |l der class.

/] Connection string exanple

var conn = new MySqgl Connection("server=_nysqgl._tcp. exanpl e. abc. com;
dns-srv=true;
user id=user;
passwor d=****;
dat abase=test");

/'l MySqgl Connecti onStringBuil der cl ass exanpl e

var sb = new MySqgl Connecti onStri ngBuil der();
{

Server = " _nmysql._tcp. exanpl e. abc. com",
UserI D = "user",
Password = "#****"

DnsSrv = true,
Dat abase = "test"

}s

var conn = new M/Sqgl Connecti on(shbh. ConnectionString);

196

Connector/NET Connection Options Reference

Using X Protocol. The dns- sr v option applies to connection
strings and anonymous objects. The DnsSr v property is declared in
the MySql XConnect i onSt ri ngBui | der class. An error is raised
if both dns- srv=f al se and the URI scheme of nysql x+srv://
are combined to create a conflicting connection configuration. For
details about using the nysql x+srv:// scheme elementin URI-
like connection strings, see Connections Using DNS SRV Records.

/] Connection string exanple

var session = MySQLX. Get Sessi on("server=_nysql x. _tcp. exanpl e. abc. com ;
dns-srv=true;
user id=user;
passwor d=****;
dat abase=test");

/1 Anonynous object exanple

var connstri ng = new

{

server = "_nysql x. _tcp. exanpl e. abc. com "
user = "user",
password = "****"

dnssrv = true

}s

var session = MySQLX. Get Sessi on(connString);

/'l MySql XConnectionStri ngBuil der class exanpl e

var sb = new MySgl XConnecti onStri ngBuil der () ;
{

Server = " _nysql x. _tcp. exanpl e. abc. com ",
UserI D = "user",
Password = "#****"

DnsSrv = true,
Dat abase = "test"

}s

var session = MySQLX. Get Sessi on(sb. ConnectionString);

Keepal i ve, Keep Alive Default: 0

For TCP connections, idle connection time measured in seconds,
before the first keepalive packet is sent. A value of 0 indicates that
keepal i ve is not used. Before Connector/NET 6.6.7/6.7.5/6.8.4,
this value was measured in milliseconds.

Password, Passwordl, pwd Default: an empty string

. pwdl
The password for the MySQL account being used for one-factor/
single-factor authentication (LFA/SFA), which uses only one
authentication method such as a password.

Starting with Connector/NET 8.0.28, this option also provides the
first secret password for an account that has multiple authentication
factors. The server can require one (1FA), two (2FA), or three (3FA)
passwords to authenticate the MySQL account. For example, if an
account with 2FA is created as follows:

CREATE USER ' abe' @1 ocal host'
| DENTI FI ED W TH cachi ng_sha2_passwor d
BY ' sha2_passwor d'
AND | DENTI FI ED W TH aut henti cati on_| dap_sasl

197

https://dev.mysql.com/doc/x-devapi-userguide/en/connecting-dns-srv.html

Connector/NET Connection Options Reference

Passwor d2 , pwd2

Passwor d3, pwd3

Por t

Server , Host , Data
Sour ce, Dat aSource

AS ' ui d=ul_| dap, ou=Peopl e, dc=exanpl e, dc=com ;

Then your application can specify a connection string with this
option (passwor d or its synonyms) and a value, sha2_passwor d
in this case, to satisfy the first authentication factor.

var connString = "server=local host;
user =abe;
passwor d=sha2_passwor d;
passwor d2=| dap_passwor d;
port =3306";

Alternatively, for a connection made using the
MySql Connecti onStringBui | der object:

MySqgl Connecti onStringBui |l der settings = new MySqgl ConnectionStringBuil der ()
{

Server = "l ocal host",
User| D = "abe",

Pwdl = "sha2_password",
Pwd2 = "| dap_password",
Port = 3306

}s

If the server does not require a secret password be used with an
authentication method, then the value specified for the passwor d,
passwor d2, or passwor d3 option is ignored.

Default: an empty string

The second secret password for an account that has multiple
authentication factors (see the Passwor d connection option).

Default: an empty string

The third secret password for an account that has multiple
authentication factors (see the Passwor d connection option).

Default: 3306

The port MySQL is using to listen for connections. This value is
ignored if Unix socket is used.

Default: | ocal host

The name or network address of one or more host computers.
Multiple hosts are separated by commas and a priority (0 to 100), if
provided, determines the host selection order. As of Connector/NET
8.0.19, host selection is random when priorities are omitted or are
the same for each host.

/Il Selects the host with the highest priority (100) first
server =(addr ess=192. 10. 1. 52: 3305, pri ori t y=60), (addr ess=I ocal host: 3306, pri or

No attempt is made by the provider to synchronize writes to

the database, so take care when using this option. In UNIX
environments with Mono, this can be a fully qualified path to a
MySQL socket file. With this configuration, the UNIX socket is used
instead of the TCP/IP socket. Currently, only a single socket name
can be given, so accessing MySQL in a replicated environment
using UNIX sockets is not currently supported.

198

Connector/NET Connection Options Reference

Ssl Ca, Ssl-Ca

Ssl Cert , Ssl-Cert

Ssl Key , Ssl - Key

Default: nul |

Based on the type of certificates being used, this option either
specifies the path to a certificate file in PKCS #12 format (. pf x) or
the path to a file in PEM format (. pemn) that contains a list of trusted
SSL certificate authorities (CA).

With PFX certificates in use, this option engages when the Ss| Mode
connection option is set to a value of Requi r ed, Veri f yCA, or
Ver i fyFul | ; otherwise, it is ignored.

With PEM certificates in use, this option engages when the
Ss| Mode connection option is set to a value of Ver i f yCA or
Ver i fyFul | ; otherwise, it is ignored.

For examples of usage, see Section 4.6.7.1, “Using PEM
Certificates in Connector/NET".

Default: nul |

The name of the SSL certificate file in PEM format to use for
establishing an encrypted connection. This option engages only
when Ver i f yFul | is set for the Ss| Mode connection option and
the Ss| Ca connection option uses a PEM certificate; otherwise, it is
ignored. For an example of usage, see Section 4.6.7.1, “Using PEM
Certificates in Connector/NET".

Default: nul |

The name of the SSL key file in PEM format to use for establishing
an encrypted connection. This option engages only when

Veri fyFul | is set for the Ss| Mode connection option and the

Ssl| Ca connection option uses a PEM certificate; otherwise, it is
ignored. For an example of usage, see Section 4.6.7.1, “Using PEM
Certificates in Connector/NET".

199

Connector/NET Connection Options Reference

Ss| Mode, Ssl Mode, Ssl -
Mode

tlsversion, tls-version,
tls version

Default: Depends on the version of Connector/NET and the protocol
in use. Named-pipe and shared-memory connections are not
supported with X Protocol.

¢ Requi r ed for 8.0.8 to 8.0.12 (both protocols); 8.0.13 and later (X
Protocol only).

e Preferred for8.0.13 and later (classic MySQL protocol only).

This option has the following values:

e Di sabl ed — Do not use SSL. Non-SSL enabled servers require
this option be set to Di sabl ed explicitly for Connector/NET
8.0.29 or later.

* None — Do not use SSL. Non-SSL enabled servers require this
option be set to None explicitly for Connector/NET 8.0.8 or later.

Note

This value is deprecated starting with
Connector/NET 8.0.29. Use Di sabl ed
instead.

e Preferred— Use SSL if the server supports it, but allow
connection in all cases. This option was removed in Connector/
NET 8.0.8 and reimplemented in 8.0.13 for classic MySQL
protocol only.

Note

Do not use this option for X Protocol
operations.

e Requi r ed — Always use SSL. Deny connection if server does not
support SSL.

* VerifyCA— Always use SSL. Validate the certificate authorities
(CA), but tolerate a name mismatch.

e VerifyFull — Always use SSL. Fail if the host name is not
correct.

Default: A fallback solution decides which version of TLS to use.

Restricts the set of TLS protocol versions to use during the TLS
handshake when both the client and server support the TLS
versions indicated and the value of the Ss| Mode connection-
string option is not set to Di sabl ed or None (deprecated in
Connector/NET 8.0.29). This option accepts a single version

or a list of versions separated by a comma, for example, t | s-
versi on=TLSv1. 2, TLSvl1. 3;.

Connector/NET supports the following values:
e TLSv1. 3
e TLSv1. 2

An error is reported when a value other than those listed is
assigned. Likewise, an error is reported when an empty list

200

Connector/NET Connection Options Reference

Userl D, User Id,
Usernane, U d, User nane
, User

is provided as the value, or if all of the versions in the list are
unsupported and no connection attempt is made.

Default: nul |

The MySQL login account being used.

Options for Classic MySQL Protocol Only

Options related to systems using a connection pool appear together at the end of the list of general
options (see Connection-Pooling Options). Connector/NET 8.0 exposes the options in this section as
properties in the MySql . Dat a. MySql Cl i ent. MySgl Connecti onStri ngBui |l der class.

General Options. The Connector/NET options that follow are for general use with connection
strings and the options apply to all MySQL server configurations:

Al | owBat ch, Al |l ow Bat ch

Al | owLoadLocal Infil e,
Al |l ow Load Local Infile

Default: t r ue

When t r ue, multiple SQL statements can be sent with one
command execution. Batch statements should be separated by the
server-defined separator character.

Default: f al se

Disables (by default) or enables the server functionality to load the
data local infile. If this option is set to t r ue, uploading files from
any location is enabled, regardless of the path specified with the
Al'l owLoadLocal I nfil el nPat h option.

Al | owLoadLocal I nfil el nPat hDefault: nul |

, Al l ow Load Local
Infile In Path

Specifies a safe path from where files can be read and uploaded

to the server. When the related Al | owlLoadLocal I nfile

option is set to f al se, which is the default value, only those

files from the safe path or any valid subfolder specified with the

Al | owLoadLocal I nfil el nPat h option can be loaded. For
example, if / t np is set as the restricted folder, then file requests for
[tp/ nyfileand/tnp/ nyfol der/ nmyfil e can succeed. No
relative paths or symlinks that fall outside of this path are permitted.

The following table shows the behavior that results when the
Al l owLoadLocal I nfil e and Al |l owLoadLocal I nfil el nPat h
connection string options are combined.

AllowLoadLocalkifde/LoadLocaBeHalri®ath
Value Value
true Empty string or |All uploads are
nul | value permitted.
true A valid path All uploads
are permitted
(the path is not
respected).
fal se Empty string or |No uploads are
nul | value permitted.
fal se A valid path Only uploads
from the
specified folder
and subfolder
are permitted.

201

Connector/NET Connection Options Reference

Al | owPubl i cKeyRet ri eval

Al | owUser Vari abl es
Al |l ow User Vari abl es

Al | owZer oDat eTi ne, Al | ow
Zero Datetine

Aut oEnl i st , Auto Enli st

Bl obAsUTF8Exc| udePat t ern

Bl obAsUTF8I ncl udePattern

Default: f al se

Setting this option to t r ue informs Connector/NET that RSA public
keys should be retrieved from the server and that connections
using the classic MySQL protocol, when SSL is disabled, will fail by
default. Exceptions to the default behavior can occur when previous
successful connection attempts were made or when pooling is
enabled and a pooled connection can be reused. This option was
introduced with the 8.0.10 connector.

Caution

This option is prone to man-in-the-middle
attacks, so it should be used only in
situations where you can ensure by other
means that your connections are made to
trusted servers.

Default: f al se

Setting this to t r ue indicates that the provider expects user
variables in the SQL.

Default: f al se

If setto Tr ue, MySql Dat aReader . Get Val ue() returns a

My Sql Dat eTi e object for date or datetime columns that
have disallowed values, such as zero datetime values, and a
Syst em Dat eTi e object for valid values. If set to Fal se (the
default setting) it causes a Syst em Dat eTi ne object to be
returned for all valid values and an exception to be thrown for
disallowed values, such as zero datetime values.

Default: t r ue

If Aut oEnl i st is settotrue, which is the default, a connection
opened using Tr ansact i onScope participates in this

scope, it commits when the scope commits and rolls back if
Transact i onScope does not commit. However, this feature is
considered security sensitive and therefore cannot be used in a
medium trust environment.

As of 8.0.10, this option is supported in .NET Core 2.0
implementations.

Default: nul |

A POSIX-style regular expression that matches the names of
BLOB columns that do not contain UTF-8 character data. See
Section 4.5.16, “Character Set Considerations for Connector/NET”
for usage details.

Default: nul |

A POSIX-style regular expression that matches the names of BLOB
columns containing UTF-8 character data. See Section 4.5.16,
“Character Set Considerations for Connector/NET” for usage details.

202

Connector/NET Connection Options Reference

CheckPar anet ers, Check
Par anet ers

Conmandl nt erceptors,
Conmand | nterceptors

Connect i onTi meout
, Connect Ti neout ,
Connection Ti neout

Convert Zer oDat eTi e ,
Convert Zero Datetine

Default: t r ue

Indicates if stored routine parameters should be checked against the
server.

The list of interceptors that can intercept SQL command operations.

Default: 15

The length of time (in seconds) to wait for a connection to the server
before terminating the attempt and generating an error.

Default: f al se

Uset r ue to have MySql Dat aReader . Get Val ue()

and My Sgl Dat aReader . Cet Dat eTi ne() return

Dat eTi me. M nVal ue for date or datetime columns that have
disallowed values.

Def aul t Aut henti cati onPl ugi Takes precedence over the server-side default authentication

Def aul t CommandTi neout ,
Def aul t Command Ti neout

Def aul t Tabl eCacheAge ,
Def ault Tabl e Cache Age

Exceptionlnterceptors,
Exception Interceptors

FunctionsReturnString,
Functions Return String

plugin when a valid authentication plugin is specified

(see Section 4.4.4, “Connector/NET Authentication”). The

Def aul t aut hent i cati onpl ugi n option is mandatory for
supporting userless and passwordless Kerberos authentications
in which the credentials are retrieved from a cache or the Key
Distribution Center (KDC). For example:

MySql Connecti onStringBui | der settings = new MySgl Connecti onStri ngBui |l de
{

Server = "l ocal host",

UserID = "",

Password = "",

Dat abase = "nydb",

Port = 3306,

Def aul t Aut henti cati onPl ugi n = "aut henti cati on_kerberos_client"

}s

If no value is set, the server-side default authentication plugin is
used.

This option was introduced with the 8.0.26 connector.
Default: 30

Sets the default value of the command timeout to be used. This
does not supersede the individual command timeout property on
an individual command object. If you set the command timeout
property, that will be used.

Default: 60

Specifies how long a Tabl eDi r ect result should be cached,
in seconds. For usage information about table caching, see
Section 4.5.3, “Using Connector/NET with Table Caching”.

The list of interceptors that can triage thrown MySqgl Excepti on
exceptions.

Default: f al se

Causes the connector to return bi nary or var bi nary values as
strings, if they do not have a table name in the metadata.

203

Connector/NET Connection Options Reference

I ncl udesecurityasserts, Default:fal se

I nclude security asserts
Must be set to t r ue when using the MySQLCl i ent Per m ssi ons
class in a partial trust environment, with the library installed in the
GAC of the hosting environment. See Section 4.5.7, “Working with
Partial Trust / Medium Trust” for details.

As of 8.0.10, this option is supported in .NET Core 2.0
implementations.

I nt eracti veSessi on, Default: f al se
Interactive, Interactive
Sessi on If settot r ue, the client is interactive. An interactive client is one

in which the server variable CLI ENT_| NTERACTI VE is set. If an
interactive client is set, the wai t _ti meout variable is set to the
value of i nt eracti ve_ti meout . The client session then times
out after this period of inactivity. For more information, see Server
System Variables in the MySQL Reference Manual.

As of 8.0.10, this option is supported in .NET Core 2.0
implementations.

I nt egrat edSecurity, Default: no

Integrated Security
Use Windows authentication when connecting to server. By default,
it is turned off. To enable, specify a value of yes. (You can also
use the value sspi as an alternative to yes.) For details, see
Section 4.4.4, “Connector/NET Authentication”.

Currently not supported for .NET Core implementations.

Ker ber osAut hivbde , Default: AUTO

ker beros auth node
On Windows, provides authentication support using Security
Support Provider Interface (SSPI), which is capable of acquiring
credentials from the Windows in-memory cache, and Generic
Security Service Application Program Interface (GSSAPI) through
the MIT Kerberos library. GSSAPI is capable of acquiring cached
credentials previously generated using the ki ni t command. The
default value for this option (AUTO) attempts to authenticate with
GSSAPI if the authentication using SSPI fails.

Note

This option is permitted in Windows
environments only. Using it in non-Windows
environments produces an Option not
supported exception.

Possible values for this connection option are:
e AUTO- Use SSPI and fall back to GSSAPI in case of failure.
e SSPI — Use SSPI only and raise an exception in case of failure.

e GSSAPI — Use GSSAPI only and raise an exception in case
of failure. Always use the KRB5 _CONFI Gand KRB5CCNANVE
environment variables to specify configuration and cache
locations when using GSSAPI through the MIT Kerberos library
on Windows.

204

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html

Connector/NET Connection Options Reference

Loggi ng Default: f al se

When the value is set to t r ue, various pieces of information
are sent to all configured trace listeners. For a more detailed
description, see Section 4.5.12, “Connector/NET Tracing”.

As of 8.0.10, this option is supported in .NET Core 2.0
implementations.

oci ConfigFile, OC Defaults to one of the following path names:

Config File
e ~/.oci/configon Linux and macOS host types

e %HOVEDRI VEY®4HOVEPATH% . oci \ confi g on Windows host
types

If set, this option specifies an alternative location to the Oracle
Cloud Infrastructure configuration file. Connector/NET 8.0.27
(and later) uses the Oracle Cloud Infrastructure SDK to obtain a
fingerprint of the API key to use for authentication (f i nger pri nt
entry) and location of a PEM file with the private part of the API
key (key_fi | e entry). The entries should be specified in the

[DEFAULT] profile. If the [DEFAULT] profile is missing from the
configuration file, Connector/NET locates the next profile to use
instead.

Not supported for .NET Framework 4.5.x implementations.

Cci ConfigProfile, OCl If set in Connector/NET 8.0.33 (or later), this option specifies which

Config Profile profile in an Oracle Cloud Infrastructure configuration file to use.
The profile value defaults to the DEFAULT profile when no value is
provided.

Not supported for .NET Framework 4.5.x implementations.
O dGuids, AOd Guids Default: f al se

The back-end representation of a GUID type was changed from

Bl NARY(16) to CHAR(36) . This was done to allow developers to
use the server function UUI () to populate a GUID table - UUI X)
generates a 36-character string. Developers of older applications
canadd' O d Gui ds=true' tothe connection string to use a
GUID of data type Bl NARY(16) .

QA dGet St ri ngBehavi or Default: f al se

As of Connector/NET 8.3.0, calling the
MySqglDataReader.GetString() method throws an

I nval i dCast Except i on exception if the column is not a string
type. All text types including char and varchar are allowed; and blob
is not considered a text type.

Setting this OldGetStringBehavior connection optionto t r ue
restores previous behavior by logging a deprecation warning instead
of throwing the exception.

This option was added in 8.3.0 and will be removed in the near
future (potentially 9.0.0) as it's a temporary measure.

Persi st Securitylnfo, Default: f al se
Persist Security Info

205

https://dev.mysql.com/doc/refman/8.0/en/miscellaneous-functions.html#function_uuid
https://dev.mysql.com/doc/refman/8.0/en/binary-varbinary.html

Connector/NET Connection Options Reference

Pi peNane , Pi pe Nane,
Pi pe

Procedur eCacheSi ze
Procedure Cache Size
, procedure cache,

pr ocedur ecache

Repl i cation

Respect Bi nar yFl ags ,

Respect Binary Fl ags

Shar edMenor yNane , Shar ed
Menory Nanme

Sql Server Mode , Sql
Server Mode

When set to f al se or no (strongly recommended), security-
sensitive information, such as the password, is not returned as part
of the connection if the connection is open or has ever been in an
open state. Resetting the connection string resets all connection
string values, including the password. Recognized values are t r ue,
fal se,yes, and no.

Default: mysql

When set to the name of a named pipe, the My Sql Connect i on
attempts to connect to MySQL on that named pipe. This setting only
applies to the Windows platform.

Important

For MySQL 8.0.14 and later, 5.7.25

and later, and 5.6.43 and later, minimal
permissions on named pipes are granted
to clients that use them to connect to the
server. However, Connector/NET can
use named pipes only when granted full
access on them. As a workaround, create
a Windows local group containing the
user that executes the client application.
Restart the target server with the
naned_pi pe_full _access_group
system variable and specify the local group
name as its value.

Currently not supported for .NET Core implementations.
Default: 25

Sets the size of the stored procedure cache. By default, Connector/
NET stores the metadata (input/output data types) about the last 25
stored procedures used. To disable the stored procedure cache, set
the value to zero (0).

Default: f al se
Indicates if this connection is to use replicated servers.

As of 8.0.10, this option is supported in .NET Core 2.0
implementations.

Default: t r ue

Setting this option to f al se means that Connector/NET ignores a
column's binary flags as set by the server.

Default: mysql

The name of the shared memory object to use for communication if
the transport protocol is set to nenor y. This setting only applies to
the Windows platform.

Currently not supported for .NET Core implementations.

Default: f al se

206

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_named_pipe_full_access_group

Connector/NET Connection Options Reference

Tabl eCachi ng, Tabl e
Cache, Tabl eCache

Tr eat Bl obsAsUTF8, Tr eat
BLOBs as UTF8

Tr eat Ti nyAsBool ean,
Treat Tiny As Bool ean

UseAf f ect edRows , Use
Af fect ed Rows

UseConpr essi on, Conpress
, Use Conpression

Allow SQL Server syntax. When set to t r ue, enables Connector/
NET to support square brackets around symbols instead of
backticks. This enables Visual Studio wizards that bracket symbols
between the [and] characters to work with Connector/NET.

This option incurs a performance hit, so should only be used if
necessary.

Default: f al se

Enables or disables caching of Tabl eDi r ect commands. A
value of t r ue enables the cache while f al se disables it. For
usage information about table caching, see Section 4.5.3, “Using
Connector/NET with Table Caching”.

Default: f al se

Setting this value to t r ue causes BLOB columns to have a
character set of ut f 8 with the default collation for that character
set. To convert only some of your BLOB columns, you can

make use of the ' Bl obAsUTF8I ncl udePattern' and

' Bl obAsUTF8Excl udePat t er n' keywords. Set these to a regular
expression pattern that matches the column names to include or
exclude respectively.

Default: t r ue

Setting this value to f al se causes TI NYI NT(1) to be treated as
an | NT. See Numeric Data Type Syntax for a further explanation of
the TI NYI NT and BOCL data types.

Default: f al se

When t r ue, the connection reports changed rows instead of found
rows.

Default: f al se

Setting this option to t r ue enables compression of packets
exchanged between the client and the server. This exchange is
defined by the MySQL client/server protocol.

Compression is used if both client and server support ZLIB
compression, and the client has requested compression using this
option.

A compressed packet header is: packet length (3 bytes), packet
number (1 byte), and Uncompressed Packet Length (3 bytes). The
Uncompressed Packet Length is the number of bytes in the original,
uncompressed packet. If this is zero, the data in this packet has

not been compressed. When the compression protocol is in use,
either the client or the server may compress packets. However,
compression will not occur if the compressed length is greater than
the original length. Thus, some packets will contain compressed
data while other packets will not.

UseDef aul t CommandTi neout Fobé&fault: f al se

, Use Default Conmand
Ti meout For EF

Enforces the command timeout of EFMy Sql Conrmand, which is set
to the value provided by the Def aul t ConmandTi nmeout property.

207

https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/integer-types.html
https://dev.mysql.com/doc/refman/8.0/en/numeric-type-syntax.html
https://dev.mysql.com/doc/refman/8.0/en/integer-types.html
https://dev.mysql.com/doc/refman/8.0/en/integer-types.html

Connector/NET Connection Options Reference

UsePer f or mancelbni t or

Use Performance Monitor ,

User Per f Mon, Perf Mon

UseUsageAdvi sor , Use
Usage Advi sor , Usage
Advi sor

Connection-Pooling Options.

Default: f al se

Indicates that performance counters should be updated during
execution.

Currently not supported for .NET Core implementations.
Default: f al se
Logs inefficient database operations.

As of 8.0.10, this option is supported in .NET Core 2.0
implementations.

The following options are related to connection pooling within

connection strings. For more information about connection pooling, see Opening a Connection to a

Single Server.

CacheServer Properties,
Cache Server Properties

Connecti onLi f eTi ne,
Connection Lifetinme

Connecti onReset |
Connecti on Reset

Maxi munPool si ze , Max
Pool Size, Maxi num Pool
Si ze, MaxPool Si ze

M ni munPool Si ze, M n
Pool Size, M ni num Pool
Size, M nPool Si ze

Pool i ng

Default: f al se

Specifies whether server variable settings are updated by a SHOW
VARI ABLES command each time a pooled connection is returned.
Enabling this setting speeds up connections in a connection pool
environment. Your application is not informed of any changes to
configuration variables made by other connections.

Default: 0

When a connection is returned to the pool, its creation time is
compared with the current time and the connection is destroyed
if that time span (in seconds) exceeds the value specified by
Connection Lifetine. This option is useful in clustered
configurations to force load balancing between a running server
and a server just brought online. A value of zero (0) sets pooled
connections to the maximum connection timeout.

Default: f al se

If t r ue, the connection state is reset when it is retrieved from the
pool. The default value of false avoids making an additional server
round trip when obtaining a connection, but the connection state is
not reset.

Default: 100
The maximum number of connections allowed in the pool.

Default: 0

The minimum number of connections allowed in the pool.

Default: t r ue

When t r ue, the MySql Connect i on object is drawn from the
appropriate pool, or if necessary, is created and added to the
appropriate pool. Recognized values are t r ue, f al se, yes, and
no.

Connector/NET Connection Options Reference

Options for X Protocol Only

The connection options that follow are valid for connections made with X Protocol.
Connector/NET 8.0 exposes the options in this section as properties in the
My Sqgl X. XDevAPI . MySgl XConnect i onStri ngBui | der class.

Aut h, Aut hentication,
Aut henti cati on Mbde

Conpr essi on, use-
conpr essi on

conpression-al gorithns,
Conpr essi onAl gori t hms

Authentication mechanism to use with the X Protocol. This option
was introduced with the 8.0.9 connector and has the following
values, which are not case-sensitive: M\YSQL41, PLAI N, and
EXTERNAL. If the Aut h option is not set, the mechanism is

chosen depending on the connection type. PLAI Nis used for
secure connections (TLS or Unix sockets) and MYSQL41 is used

for unencrypted connections. EXTERNAL is used for external
authentication methods such as PAM, Windows login IDs, LDAP, or
Kerberos. (EXTERNAL is not currently supported.)

The Aut h option is not supported for classic MySQL protocol
connections and returns Not Suppor t edExcept i on if used.

Default: pref erred

Compression is used to send and receive data when both the client
and server support it for X Protocol connections and the client
requests compression using this option. After a successful algorithm
negotiation is made, Connector/NET can start compressing data
immediately. To prevent the compression of small data packets,

or of data already compressed, Connector/NET defines a size
threshold of 1000 bytes.

When multiple compression algorithms are supported by

the server, Connector/NET applies the following priority by
default: zst d_st r eam(first), | z4_nessage (second), and
def | at e_st ream(third). The def | at e_st r eamalgorithm is
supported for use with .NET Core, but not for .NET Framework.

Tip

Use the conpr essi on- al gori t hns option
to specify one ore more supported algorithms
in a different order. The algorithms are
negotiated in the order provided by client.
For usage details, see the conpr essi on-

al gori t hns option.

Data compression for X Protocol connections was added in the
Connector/NET 8.0.20 release. The Conpr essi on option accepts
the following values:

» preferred to apply data compression if the server supports the
algorithms chosen by the client. Otherwise, the data is sent and
received without compression.

e required to ensure that compression is used or to terminate the
connection and return an error message.

« di sabl ed to prevent data compression.

As of Connector/NET 8.0.22, a client application can specify the
order in which supported compression algorithms are negotiated
with the server. The value of the Conpr essi on connection option

209

Connector/NET Connection Options Reference

connection-attri butes,
Connecti onAttri butes

must be set to pr ef err ed or to r equi r ed for this option to apply.
Unsupported algorithms are ignored.

This option accepts the following algorithm names and synonyms:
e | z4_nessage orl z4
e zstd _streamorzstd

e defl ate_streamordef | at e (not valid with .NET Framework)

Algorithm names and synonyms can be combined in a comma-
separated list or provided as a standalone value (with or without
brackets). Examples:

/| Conpression option set to preferred (default)

MySQLX. Get Sessi on("nysql x://test:test@ocal host: 3306?conpr essi on-al gorithm
MySQLX. Get Sessi on("nysql x://test:test@ocal host: 3306?conpr essi onal gori t his:
MySQLX. Get Sessi on("nysql x://test:test@ocal host: 3306?conpr essi on=pr ef err ed

/| Conpression option set to required

MySQLX. Get Sessi on("nysql x://test:test@ocal host: 3306?conpr essi on=r equi r ed&
MySQLX. Get Sessi on("nysql x://test:test@ocal host: 3306?conpr essi on=r equi r ed&
MySQLX. Get Sessi on("nysql x://test:test@ocal host: 3306?conpr essi on=r equi r ed&

/1 Connection string
MySQLX. Get Sessi on("server =l ocal host ; port =3306; ui d=t est; passwor d=t est ; conpr

/1 Anonynous obj ect
MySQLX. Get Sessi on(new {

server = "local host",

port = "3306",

uid = "test",

password = "test",

conpr essi on="requi red",

conpr essi onal gorithms = "defl ate_streant' })

For additional information, see Connection Compression with X
Plugin.

Default: t r ue

This option was introduced in Connector/NET 8.0.16 for submitting
a set of attributes to be passed together with default connection
attributes to the server. The aggregate size of connection

attribute data sent by a client is limited by the value of the
performance_schenma_sessi on_connect _attrs_si ze server
variable. The total size of the data package should be less than

the value of the server variable. For general information about
connection attributes, see Performance Schema Connection
Attribute Tables.

The connection-attributes parameter value can be empty (the
same as specifying t r ue), a Boolean value (t r ue or f al se to
enable or disable the default attribute set), or a list or zero or
more key=val ue specifiers separated by commas (to be sent in
addition to the default attribute set). Within a list, a missing key
value evaluates as the NULL value. Examples:

/] Sessions

MySQLX. Get Sessi on($" nysql x: // user @ost/schema")

MySQLX. Get Sessi on($" nysql x: // user @ost/schema?connection-attri butes")
MySQLX. Get Sessi on($" nysql x: // user @ost/schema?connection-attri butes=true")
MySQLX. Get Sessi on($" nysql x: // user @ost/schema?connecti on-attri but es=f al se")
MySQLX. Get Sessi on($" nysql x: // user @ost/schema?connecti on-attributes=[attr1:

210

https://dev.mysql.com/doc/refman/8.0/en/x-plugin-connection-compression.html
https://dev.mysql.com/doc/refman/8.0/en/x-plugin-connection-compression.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-system-variables.html#sysvar_performance_schema_session_connect_attrs_size
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-connection-attribute-tables.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-connection-attribute-tables.html

Connector/NET Programming

M/SQLX. CGet Sessi on($" nysql x: // user @ost/ schema?connection-attributes=[]"

/1 Pooling

M/SQLX. Get O i ent ($" nysql x: // user @ost/schem")

M/SQLX. Get G i ent ($" mysql x: // user @ost/schenma?connecti on-attributes")
M/SQLX. Get O i ent ($" mysql x: // user @ost/ schema?connection-attributes=true
M/SQLX. Get O i ent ($" mysql x: // user @ost/schema?connection-attributes=fals
M/SQLX. Get O i ent ($" mysql x: // user @ost/ schema?connection-attributes=[att
M/SQLX. Get O i ent ($" mysql x: // user @ost/schema?connection-attributes=[]")

Application-defined attribute names cannot begin with _ because
such names are reserved for internal attributes.

If connection attributes are not specified in a valid way, an error
occurs and the connection attempt fails.

Connect - Ti neout Default: 10000

Connect Ti neout) o)
The length of time (in milliseconds) to wait for an X Protocol

connection to the server before terminating the attempt and
generating an error. You can disable the connection timeout by
setting the value to zero. This option can be specified as follows:

¢ URI-like connection string example

MySQLX. Get Sessi on("nysql x://test:test@ocal host: 33060?connect -t i neout

» Connection string example

MySQLX. Get Sessi on(" server =l ocal host ; user =t est ; port =33060; connect -t i ne

* Anonymous object example

MySQLX. Get Sessi on(new { server="|ocal host", user="test", port=33060,

* MySqgl XConnecti onStringBuil der class example
var buil der = new MySqgl XConnecti onStri ngBuil der ("server=l ocal host ; use
bui | der. Connect Ti meout = 2000;
MySQLX. Get Sessi on(bui | der. Connecti onString);
SslCrl, Ssl-Crl Default: nul |
Path to a local file containing certificate revocation lists.
Important

Although the Ssl Cr | connection-string
option is valid for use, applying it raises a
Not Support edExcept i on message.

4.5 Connector/NET Programming

MySQL Connector/NET comprises several classes that are used to connect to the database, execute
gueries and statements, and manage query results.

The following are the major classes of Connector/NET:

* MySqgl Connect i on: Represents an open connection to a MySQL database (see Section 4.4,
“Connector/NET Connections”).

The MySql Connect i onStri ngBui | der class aids in the creation of a connection string by
exposing the connection options as properties.

* MySqgl Command: Represents an SQL statement to execute against a MySQL database.

211

Using GetSchema on a Connection

* MySqgl CormandBui | der : Automatically generates single-table commands used to reconcile
changes made to a DataSet with the associated MySQL database.

» MySql Dat aAdapt er : Represents a set of data commands and a database connection that are used
to fill a data set and update a MySQL database.

* MySql Dat aReader : Provides a means of reading a forward-only stream of rows from a MySQL
database.

 MySqgl Excepti on: The exception that is thrown when MySQL returns an error.
* MySql Hel per : Helper class that makes it easier to work with the provider.

* MySqgl Transact i on: Represents an SQL transaction to be made in a MySQL database.

4.5.1 Using GetSchema on a Connection

The Get Scherma() method of the connection object can be used to retrieve schema information
about the database currently connected to. The schema information is returned in the form of a

Dat aTabl e. The schema information is organized into a number of collections. Different forms of the
CGet Schena() method can be used depending on the information required. There are three forms of
the Get Schenma() method:

» Get Schenmm() - This call will return a list of available collections.

e Get Schema(String) - This call returns information about the collection named in the string
parameter. If the string “MetaDataCollections” is used then a list of all available collections is
returned. This is the same as calling Get Schena() without any parameters.

e Cet Schema(String, String[]) - Inthis call the first string parameter represents the collection
name, and the second parameter represents a string array of restriction values. Restriction values
limit the amount of data that will be returned. Restriction values are explained in more detail in the
Microsoft .NET documentation.

Collections

The collections can be broadly grouped into two types: collections that are common to all data
providers, and collections specific to a particular provider.

Common Collections. The following collections are common to all data providers:
* MetaDataCollections

» DataSourcelnformation

* DataTypes

» Restrictions

» ReservedWords

Provider-Specific Collections. The following are the collections currently provided by Connector/
NET, in addition to the common collections shown previously:

» Databases
» Tables

» Columns
* Users

» Foreign Keys

212

https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_transaction
http://msdn.microsoft.com/en-us/library/ms254934(VS.80).aspx

Using MySglCommand

* IndexColumns

* Indexes

» Foreign Key Columns
 UDF

* Views

* ViewColumns

» Procedure Parameters
* Procedures
 Triggers

C# Code Example. A list of available collections can be obtained using the following code:

usi ng System

usi ng System Dat a;
usi ng System Text;
usi ng MySql . Dat a;

using MySql . Data. MySgl d i ent ;
namespace Consol eAppl i cation2

{
cl ass Program
{
private static void D splaybDat a(System Dat a. Dat aTabl e t abl e)
{
foreach (System Data. Dat aRow row i n tabl e. Rows)
{
foreach (System Data. Dat aCol uim col in table. Col utms)
{
Consol e. WiteLine("{0} = {1}", col.ColumNane, rowfcol]);
}
Consol e. WiteLine(" ")
}
}
static void Main(string[] args)
{
string connStr = "server =l ocal host ; user =r oot ; dat abase=wor | d; port =3306; passwor d=******x"_
MySgl Connecti on conn = new MySqgl Connecti on(connStr);
try
{
Consol e. Wi teLine("Connecting to MySQL...");
conn. Open();
Dat aTabl e tabl e = conn. Get Schema(" Met aDat aCol | ecti ons") ;
/| Dat aTabl e tabl e = conn. Get Schema(" UDF") ;
Di spl ayDat a(t abl e) ;
conn. Cl ose();
catch (Exception ex)
{
Consol e. WiteLine(ex. ToString());
}
Consol e. Wi teLi ne("Done.");
}
}
}

Further information on the Get Schena() method and schema collections can be found in the
Microsoft .NET documentation.

4.5.2 Using MySglCommand

The MySglCommand class represents a SQL statement to execute against a MySQL database. Class
methods enable you to perform the following database operations:

213

http://msdn.microsoft.com/en-us/library/kcax58fh(VS.80).aspx

Using MySglCommand

e Query a database
* Insert, update, and delete data
* Return a single value

Command-based database operations can run within a transaction, if needed. For a short tutorial
demonstrating how and when to use the Execut eReader, Execut eNonQuer y, and Execut eScal ar
methods, see Section 4.6.1.2, “The MySqglCommand Object”.

An instance of MySgl Conmaind can be organized to execute as a prepared statement for faster
excecution and reuse, or as a stored procedure. A flexible set of class properties permits you to
package MySQL commands in several forms. The remainder of this section describes following
My Sql Command properties:

» CommandText and CommandType Properties
« Parameters Property
 Attributes Property

» CommandTimeout Property
CommandText and CommandType Properties

The My Sgl Command class provides the CommandText and ConmrandType properties that you may
combine to create the type of SQL statements needed for your project. The ConmmandText property
is interpreted differently, depending on how you set the CormandType property. The following
ConmandType types are permitted:

* Text - An SQL text command (default).
» St or edPr ocedur e - Name of a stored procedure.
» Tabl eDi rect - Name of a table.

The default ConmandType type, Text , is used for executing queries and other SQL commands. See
Section 4.6.1.2, “The MySglCommand Object” for usage examples.

If CormandType is set to St or edPr ocedur e, set ConmandText to the name of the stored procedure
to access. For use-case examples of the CommandType property with type St or edPr ocedur e, see
Section 4.5.5, “Creating and Calling Stored Procedures”.

If ComandType is setto Tabl eDi r ect, all rows and columns of the named table are returned when
you call one of the execute methods. In effect, this command performs a SELECT * on the table
specified. The CormandText property is set to the name of the table to query. This usage is illustrated
by the following code snippet:

MySgl Command cnd = new MySql Command() ;

cnd. CommandText = "mytabl e";

cnd. Connecti on = sonmeConnect i on;

cnd. CommandType = CommandType. Tabl eDi rect ;
MySql Dat aReader reader = cnd. Execut eReader () ;
whi | e (reader. Read())

{
Consol e. WitelLn(reader[0], reader[1]...);
}

Parameters Property

The Par anet er s property gives you control over the data you use to build a SQL query. Defining
a parameter is the preferred practice to reduce the risk of acquiring unwanted or malicous input. For
usage information and examples, see:

214

Using MySglCommand

» Working with Parameters
» Accessing a Stored Procedure

» Preparing Statements in Connector/NET
Attributes Property

As of Connector/NET 8.0.26, an instance of My Sgl Command can be organized to execute simple
Transact-SQL statements or stored procedures, both can be used in a prepared statement for faster
execution and reuse. The query_attri but es component must be installed on the server (see
Prerequisites for Using Query Attributes) before attributes can be searched for and used on the server
side.

Query-attributes support varies by server version:
» Prior to MySQL Server 8.0.23: no support for query attributes.
» MySQL Server 8.0.23 to 8.0.24: support for query attributes in regular statements only.

* MySQL Server 8.0.25 and higher: support for query attributes in both regular and prepared
statements.

If you send query attribute metadata to a server that does not support query attributes, the attempt is
logged by the connector but no error is emitted.

Like parameters, attributes must be named. Unlike a parameter, an attribute represents an object from
the underlying query, such as a field or table. Connector/NET does not check or enforce whether your

attribute names are unique. Parameters and attributes can be combined together in commands without
restrictions.

You can declare an attritue name and value directly by using the Set At t ri but e method

to create an instance of MySql At t ri but e that is exposed in a collection through the

MySql At tri but eCol | ecti on object within MySql Conmrand. For example, to declare a single
attribute named gal, use the following C# syntax:

nmyConmand. Attri butes. Set Attri bute("gal", "gaVal ue");

Alternatively, you can declare a variable of type MySql At t ri but e to hold your attribute name and
value. Both forms persist the attribute after the query is executed, until the Cl ear method is called on
the MySql Attri but eCol | ecti on object. The next snippet declares two attributes named gal and
ga2 as variables mySql Attri butel and mySql Attri but e2.

M/Sql Command nyCommand = new MySql Command() ;

myConmand. Connecti on = nmyConnecti on;

M/Sql Attribute nySql Attributel = new MySql Attri bute("qal", "qaVal ue");
M/Sql Attribute nySql Attribute2 = new MySql Attri bute("qa2", 2);
myConmand. Attri butes. Set Attribute(nmySgl Attributel);

myConmand. Attri butes. Set Attribute(mySgl Attri bute2);

With attribute names and values defined, a statement specifying attributes can be sent to the server.
The following SELECT statement includes the nysql _query_attri bute_string() loadable
function that is used to retrieve the two attributes decared previously and then prints the results. For
more readable and convenient syntax, the $ symbol is used in this example to identify string literals as
interpolated strings.

nmyCommand. CommandText = $"SELECT nysql _query_attribute_string('{nySql Attributel. AttributeNane}') AS att
$"nysql _query_attribute_string('{nySgl Attribute2. AttributeNane}') AS attr2";
usi ng (var reader = nyConmand. Execut eReader ())

whi | e (reader. Read())
{

215

https://dev.mysql.com/doc/refman/8.0/en/query-attributes.html#query-attributes-prerequisites
https://dev.mysql.com/doc/refman/8.0/en/select.html

Using Connector/NET with Table Caching

Consol e. WiteLine($"Attributel Value: {reader.GetString(0)}");
Consol e. WiteLine($"Attribute2 Value: {reader.GetString(1)}");

}
}
/* Qutput:
Attributel Val ue: gaVval ue
Attribute2 Value: 2
*/

The following code block shows the same process for setting attributes and retrieving the results using
Visual Basic syntax.

Publ i c Sub CreateMySqgl CommandW t hQuer yAttri but es(ByVal myConnection As MySgl Connecti on)
Di m myCommand As MySgl Cormand = New MySgl Conmand()
my Cormand. Connecti on = nyConnecti on
Dim nmySqgl Attributel As MySgl Attribute = New MySgl Attri bute("gal", "gaVal ue")
Dim nmySqgl Attribute2 As MySgl Attribute = New MySgl Attri bute("ga2", 2)
myCommand. Attributes. SetAttribute(mySql Attri butel)
myCommand. Attributes. SetAttribute(mSql Attri bute2)
nmyCommand. ConmandText = $"SELECT nysql _query_attribute_string('{nySql Attributel. AttributeNane}') AS attr:
$"nysql _query_attribute_string(' {nySql Attribute2. Attri buteNane}') AS attr2"
Usi ng reader = myConmand. Execut eReader ()
Wi | e reader. Read()
Consol e. WitelLine($"Attributel Value: {reader.GetString(0)}")
Consol e. WitelLine($"Attribute2 Value: {reader.GetString(1)}")
End Wil e
End Usi ng
End Sub

CommandTimeout Property

Commands can have a timeout associated with them. This feature is useful as you may not want a
situation were a command takes up an excessive amount of time. A timeout can be set using the
ConmandTi neout property. The following code snippet sets a timeout of one minute:

MySgl Command cnd = new MySql Command() ;
cnd. CommandTi meout = 60;

The default value is 30 seconds. Avoid a value of 0, which indicates an indefinite wait. To change the
default command timeout, use the connection string option Def aul t Conmmand Ti neout .

Connector/NET supports timeouts that are aligned with how Microsoft handles

Sql Command. ConmandTi neout . This property is the cumulative timeout for all network reads

and writes during command execution or processing of the results. A timeout can still occur in the

My Sqgl Reader . Read method after the first row is returned, and does not include user processing time,
only 10 operations.

Further details on this can be found in the relevant Microsoft documentation.

4.5.3 Using Connector/NET with Table Caching

Table caching is a feature that can be used to cache slow-changing datasets on the client side. This is
useful for applications that are designed to use readers, but still want to minimize trips to the server for
slow-changing tables.

This feature is transparent to the application, and is disabled by default.
Configuration
» To enable table caching, add ' t abl e cache = true' tothe connection string.
» Optionally, specify the ' Def aul t Tabl e Cache Age' connection string option, which represents

the number of seconds a table is cached before the cached data is discarded. The default value is
60.

216

http://msdn.microsoft.com/en-us/library/system.data.sqlclient.sqlcommand.commandtimeout.aspx

Preparing Statements in Connector/NET

» You can turn caching on and off and set caching options at runtime, on a per-command basis.

4.5.4 Preparing Statements in Connector/NET

Prepared statements can provide significant performance improvements on queries that are executed
more than one time. Prepared execution is faster than direct execution for statements executed more
than once, primarily because the query is parsed only one time. In the case of direct execution, the
query is parsed every time it is executed. In addition, prepared execution can provide a reduction of
network traffic because for each execution of the prepared statement, it is necessary only to send the
data for the parameters.

Another advantage of prepared statements is that, with server-side prepared statements enabled, it
uses a binary protocol that makes data transfer between client and server more efficient.

To prepare a statement, use the following sequence of steps:
1. Create a MySgl Commrand object and set the ConmmandText property to your query.

2. After entering your statement, call the Pr epar e method of the command object. When the
statement is prepared, add parameters for each of the dynamic elements in the query.

3. Execute the statement using the Execut eNonQuer y(), Execut eScal ar (), or Execut eReader
methods.

For subsequent executions, you need only modify the values of the parameters and call the execute
method again, there is no need to set the CommandText property or redefine the parameters.

C# Code Example

MySql . Dat a. MySgl C i ent. MySgl Connecti on conn;

MySql . Dat a. MySgl Cl i ent . MySgl Command cnd;

conn = new MySql . Dat a. MySqgl d i ent . MySgl Connecti on();
cnd = new MySqgl . Dat a. MySgl d i ent. MySgl Cormand() ;
conn. ConnectionString = strConnecti on;

try
{
conn. Qpen();
cnd. Connecti on = conn;
cnd. CommandText = "1 NSERT | NTO nyTabl e VALUES(NULL, @unber, @ext)";
cnd. Prepare();
cnd. Par anet er s. AddW t hval ue(" @unber ", 1);
cnd. Par anet ers. AddW t hVal ue(" @ext", "One");
for (int i=1; i <= 1000; i++)
{
cnd. Par anet er s[" @wunber"]. Value = i;
cnd. Paraneters["@ext"].Value = "A string val ue";
cnd. Execut eNonQuery();
}
}

catch (MySql . Data. MySql d i ent . MySqgl Excepti on ex)
{

MessageBox. Show("Error " + ex.Nunber + " has occurred: " + ex.Message,
"Error", MessageBoxButtons. OK, MessageBoxl| con. Error);

}

Visual Basic Code Example

Di m conn As New MySqgl Connecti on
Dimcnmd As New MySql Command
conn. ConnectionString = strConnection

Try
conn. Open()
cnmd. Connecti on = conn
cnd. CommandText = "I NSERT | NTO nyTabl e VALUES(NULL, @wunber, @ext)"

cmd. Prepare()

217

Creating and Calling Stored Procedures

cnd. Par anet er s. AddW t hval ue(" @unber", 1)
cnd. Par anet ers. AddW t hVal ue(" @ext", "One")

For i = 1 To 1000
cnd. Par anet er s(" @unber ") . Val ue = i
cnd. Paraneters("@ext").Value = "A string val ue"
cnd. Execut eNonQuer y()
Next

Catch ex As MySqgl Excepti on

MessageBox. Show("Error " & ex.Nunber & " has occurred: " &

ex. Message, "Error", MessageBoxButtons. OK, MessageBoxl| con. Error)
End Try

4.5.5 Creating and Calling Stored Procedures

A stored procedure is a set of SQL statements that is stored in the server. Clients make a single call to
the stored procedure, passing parameters that can influence the procedure logic and query conditions,
rather than issuing individual hardcoded SQL statements.

Stored procedures can be particularly useful in situations such as the following:

» Stored procedures can act as an API or abstraction layer, allowing multiple client applications to
perform the same database operations. The applications can be written in different languages and
run on different platforms. The applications do not need to hardcode table and column names,
complicated queries, and so on. When you extend and optimize the queries in a stored procedure, all
the applications that call the procedure automatically receive the benefits.

» When security is paramount, stored procedures keep applications from directly manipulating
tables, or even knowing details such as table and column names. Banks, for example, use stored
procedures for all common operations. This provides a consistent and secure environment, and
procedures can ensure that each operation is properly logged. In such a setup, applications and
users would not get any access to the database tables directly, but can only execute specific stored
procedures.

This section does not provide in-depth information on creating stored procedures. For such information,
see Using Stored Routines.

Creating a Stored Procedure

Stored procedures in MySQL can be created using a variety of tools, such as:
* The nysgl command-line client

* MySQL Workbench

e The MySgl Conmand object

Unlike the command-line and GUI clients, you are not required to specify a special delimiter when
creating stored procedures in Connector/NET using the My Sgl Command class. For example, to create
a stored procedure named add_enp, use the CommandText property with the default command type
(SQL text commands) to execute each individual SQL statement in the context of your command that
has an open connection to a server.

cnd. CommandText = " DROP PROCEDURE | F EXI STS add_enp";
cnd. Execut eNonQuery();

cnd. CommandText = "DROP TABLE | F EXI STS enp";

cnd. Execut eNonQuery();

cnd. CommandText = " CREATE TABLE enp (+

“enmpno | NT UNSI GNED NOT NULL AUTO_ | NCREMENT PRI MARY KEY, first_name VARCHAR(20),"

"l ast _nane VARCHAR(20), birthdate DATE)";
cnd. Execut eNonQuery();
cnd. CommandText = " CREATE PROCEDURE add_enp(" +
"IN fname VARCHAR(20), IN | nane VARCHAR(20), |N bday DATETI ME, OUT enpno | NT)"
"BEG N | NSERT | NTO enp(first_name, |ast_nane, birthdate) " +
"VALUES(f name, | name, DATE(bday)); SET enmpno = LAST_INSERT_ID(); END';

218

+

https://dev.mysql.com/doc/refman/8.0/en/stored-routines.html

Creating and Calling Stored Procedures

cnd. Execut eNonQuery();
Accessing a Stored Procedure

After the stored procedure is named, you define one My Sqgl Command parameter for every parameter
in the stored procedure. | N parameters are defined with the parameter name and the object containing
the value, OUT parameters are defined with the parameter name and the data type that is expected to
be returned. All parameters need the parameter direction defined.

To call a stored procedure using Connector/NET, you create a My Sgl Comrand object and pass the
stored procedure name as the CommandText property. You then set the CommandType property to
ConmandType. St or edPr ocedur e. After defining the parameters, you call the stored procedure by
using the MySgl Command. Execut eNonQuer y() method.

cmd. CommandText = "add_enp";

cnd. CommandType = CommandType. St or edPr ocedur e;

cnd. Par anet er s. AddW t hval ue(" @ nanme", "Jones");

cnd. Paraneters["@nane"].Direction = ParaneterDirection. | nput;
cnd. Par anet er s. AddW t hval ue(" @ name", "Toni');

cnd. Paraneters["@nane"].Direction = ParaneterDirection. | nput;
cnd. Par anet er s. AddW t hVal ue(" @day", "1940-06-07");

cnd. Paraneters[" @day"].Directi on = ParaneterDirection. | nput;
cnd. Par anet er s. Add(" @npno", M/Sql DbType. I nt 32);

cnd. Par anet ers[" @npno"] . Directi on = Paranet erDirection. Qut put;
cnd. Execut eNonQuery();

Connector/NET supports the calling of stored procedures through the My Sql Conmrand object. Data can
be passed in and out of a MySQL stored procedure through use of the My Sql Cormand. Par anet er s
collection.

After the stored procedure is called, the values of the output parameters can be retrieved by using the
. Val ue property of the MySql Command. Par anet er s collection.

Consol e. Wi teLi ne("Enpl oyee nunber: "+cnd. Paraneters[" @npno"]. Val ue);
Consol e. WiteLine("Birthday: " + cnd. Paraneters[" @day"]. Val ue);

Note

When a stored procedure is called using My Sql Commrand. Execut eReader
and the stored procedure has output parameters, the output parameters are set
only after the MySql Dat aReader returned by Execut eReader is closed.

Stored Procedure Code Example

The following C# code example demonstrates the use of stored procedures. This example assumes
the 'employees' database was created in advance:

usi ng System

usi ng System Col | ecti ons. Generi c;
usi ng System Linq;

usi ng System Text;

usi ng System Dat a;

usi ng MySql . Dat a;

usi ng MySql . Data. MySgl Cl i ent ;
nanespace Usi ngSt or edPr ocedures

{
cl ass Program
{
static void Main(string[] args)
{
M/Sql Connecti on conn = new MySql Connection();
conn. ConnectionString = "server =l ocal host ; user =r oot ; dat abase=enpl oyees; port =3306; passwor d=*
MySgl Command cnd = new MySql Commrand() ;
try
{

Consol e. WitelLine("Connecting to MySQ....");

219

Creating and Calling Stored Procedures

conn. Qpen();
crd. Connecti on = conn;
cmd. CommandText = " DROP PROCEDURE | F EXI STS add_enp";
cnd. Execut eNonQuery();
cmd. CommandText = "DROP TABLE | F EXI STS enp";
cnd. Execut eNonQuery();
cmd. CommandText = " CREATE TABLE enmp (" +
"enpno | NT UNSI GNED NOT NULL AUTO | NCREMENT PRI MARY KEY, " +
"first_nanme VARCHAR(20), |ast_name VARCHAR(20), birthdate DATE)";
cnd. Execut eNonQuery();
cmd. CommandText = " CREATE PROCEDURE add_enp(" +
"IN fname VARCHAR(20), IN | nane VARCHAR(20), |N bday DATETI ME, OUT enpno
"BEG N | NSERT | NTO enp(first_name, |ast_nane, birthdate) " +
"VALUES(f name, | name, DATE(bday)); SET enmpno = LAST_INSERT_ID(); END';
cnd. Execut eNonQuery();
}
catch (M/Sgl Exception ex)

Console. WiteLine ("Error " + ex.Nunmber + " has occurred: " + ex.Message);
}
conn. Cl ose();
Consol e. Wit eLi ne("Connection cl osed.");
try
{
Consol e. Wi teLine("Connecting to MySQL...");
conn. Qpen();
crd. Connecti on = conn;
cmd. CommandText = "add_enp";
cmd. CommandType = CommandType. St or edPr ocedur e;
cnd. Par anet er s. AddW t hval ue(" @ name", "Jones");
cnd. Paraneters["@nanme"].Direction = ParaneterDirection. | nput;
cnd. Par anet er s. AddW t hval ue(" @ name", "Toni');
cnd. Paraneters["@nanme"].Direction = ParaneterDirection. | nput;
cnd. Par anet er s. AddW t hVal ue(" @day", "1940-06-07");
cnd. Paraneters[" @day"].Directi on = ParaneterDirection. | nput;
cnd. Par anet er s. Add(" @npno", M/Sql DbType. I nt 32);
cnd. Par anet er s[" @npno"] . Directi on = Paranet erDirection. Qut put;
cnd. Execut eNonQuery();
Consol e. Wi teLi ne("Enpl oyee nunber: "+cnd. Paraneters[" @npno"]. Val ue);
Consol e. WiteLine("Birthday: " + cnd. Paraneters[" @day"]. Val ue);

}
catch (MySql . Data. MySql C i ent. MySql Excepti on ex)
{

Consol e. WiteLine("Error " + ex.Nunber + " has occurred: " + ex. Message);
}
conn. Cl ose();
Consol e. Wi telLi ne("Done.");

The following code shows the same application in Visual Basic:

I mports System

Imports System Col | ecti ons. Generic
I mports System Linq

I nmports System Text

I nports System Dat a

I nmports MySql . Dat a

I nmports MySql . Data. MySgl C i ent
Modul e Modul el

Sub Mai n()
Di m conn As New MySqgl Connecti on()
conn. ConnectionString = "server =l ocal host ; user =r oot ; dat abase=wor | d; port =3306; passwor d=******"
Dimcnd As New MySql Commrand()
Try
Consol e. Wi telLine("Connecting to MySQL...")
conn. Open()
crd. Connection = conn
cnd. CommandText = " DROP PROCEDURE | F EXI STS add_enp"
cnd. Execut eNonQuery()
cnd. CommandText = "DROP TABLE | F EXI STS enp"

220

Handling BLOB Data With Connector/NET

cnd. Execut eNonQuery()
cmd. CommandText = " CREATE TABLE enp (" &
"enpno | NT UNSI GNED NOT NULL AUTO_| NCREMENT PRI MARY KEY,
"first_nane VARCHAR(20), |ast_name VARCHAR(20), birthdate DATE)"
cnd. Execut eNonQuery()
cnd. CommandText = " CREATE PROCEDURE add_enp(" &
"IN fname VARCHAR(20), IN | nane VARCHAR(20), |N bday DATETI ME, OUT enpno
"BEG N | NSERT | NTO enp(first_nanme, |ast_nane, birthdate) " &
"VALUES(f name, | name, DATE(bday)); SET enmpno = LAST_INSERT_ID(); END'
cnd. Execut eNonQuery()
Catch ex As MySqgl Excepti on
Consol e. WiteLine(("Error " & ex.Nunber & " has occurred: ") + ex.Message)
End Try
conn. Cl ose()
Consol e. Wit eLi ne("Connection cl osed.")
Try
Consol e. Wi telLi ne("Connecting to MySQL...")
conn. Open()
crd. Connecti on = conn
cnd. CommandText = "add_enp"
cmd. CommandType = CommandType. St or edPr ocedur e
cnd. Par anet er s. AddW t hVal ue(" @ nane", "Jones")
cnd. Paraneters("@nanme").Directi on = ParaneterDirection. | nput
cnd. Par anet er s. AddW t hVal ue(" @ nane", "Tont)
cnd. Paraneters("@nanme").Directi on = ParaneterDirection. | nput
cnd. Par anet er s. AddW t hVal ue(" @day", "1940-06-07")
cnd. Par anet ers(" @day").Directi on = ParaneterDirection. | nput
cnd. Par anet er s. Add(" @npno", M/Sqgl DbType. | nt 32)
cnd. Par anet er s(" @npno").Directi on = Paranet erDirecti on. Qut put
cnd. Execut eNonQuery()
Consol e. Wi teLi ne("Enpl oyee nunber: " & cnd. Paranet ers(" @npno") . Val ue)
Consol e. WitelLine("Birthday: " & cnd. Paraneters(" @day"). Val ue)
Catch ex As MySqgl . Data. MySgl Cl i ent. MySqgl Excepti on
Consol e. WiteLine(("Error " & ex.Nunber & " has occurred: ") + ex.Message)
End Try
conn. Cl ose()
Consol e. Wit eLi ne("Done. ")
End Sub
End Modul e

4.5.6 Handling BLOB Data With Connector/NET

One common use for MySQL is the storage of binary data in BLOB columns. MySQL supports four
different BLOB data types: TI NYBLOB, BLOB, MEDI UVBLOB, and LONGBLOB, all described in The
BLOB and TEXT Types and Data Type Storage Requirements.

Data stored in a BLOB column can be accessed using MySQL Connector/NET and manipulated using
client-side code. There are no special requirements for using Connector/NET with BLOB data.

Simple code examples will be presented within this section, and a full sample application can be found
in the Sanpl es directory of the Connector/NET installation.

4.5.6.1 Preparing the MySQL Server

The first step is using MySQL with BLOB data is to configure the server. To start, create a table that can
be accessed. File tables often have four columns: an AUTO | NCREMENT column of appropriate size
(UNSI GNED SMALLI NT) to serve as a primary key to identify the file, a VARCHAR column that stores
the file name, an UNSI GNED MEDI UM NT column that stores the size of the file, and a MEDI UVBLOB
column that stores the file itself. For this example, use the following table definition:

CREATE TABLE fil e(

file_id SMALLI NT UNSI GNED AUTO | NCREVENT NOT NULL PRI MARY KEY,
file_name VARCHAR(64) NOT NULL,

file_size MEDI UM NT UNSI GNED NOT NULL,

file MEDI UVBLOB NOT NULL):

After creating a table, you might need to modify the nex_al | owed_packet system variable. This
variable determines how large of a packet (that is, a single row) can be sent to the MySQL server. By

221

https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/storage-requirements.html

Handling BLOB Data With Connector/NET

default, the server only accepts a maximum size of 1MB from the client application. If you intend to
exceed 1MB in your file transfers, increase this number.

The max_al | owed_packet option can be modified using the MySQL Workbench Server
Administration screen. Adjust the Maximum permitted option in the Data / Memory size section of the
Networking tab to an appropriate setting. After adjusting the value, click the Apply button and restart
the server using the St art up / Shut down screen of MySQL Workbench. You can also adjust this
value directly in the ny. cnf file (add a line that reads max_al | owed_packet =xxM), or use the SET
max_al | owed_packet =xxM syntax from within MySQL.

Try to be conservative when setting nax_al | owed_packet , as transfers of BLOB data can take some
time to complete. Try to set a value that will be adequate for your intended use and increase the value
if necessary.

4.5.6.2 Writing a File to the Database

To write a file to a database, we need to convert the file to a byte array, then use the byte array as a
parameter to an | NSERT query.

The following code opens a file using a FileStream object, reads it into a byte array, and inserts it into
thefi| e table:

C# Code Example

MySql . Dat a. MySgl Cl i ent. MySgl Connecti on conn;

MySql . Dat a. MySgl Cl i ent . MySql Command cnd;

conn = new MySql . Data. MySqgl C i ent. MySgl Connecti on() ;

cnmd = new MySql . Dat a. MySgl i ent . MySgl Conmand() ;

string SQ;

U nt32 FileSize;

byte[] rawbDat a;

Fil eStream fs;

conn. ConnectionString = "server=127.0.0. 1; ui d=root; " +
" pwd=12345; dat abase=t est";

try

{
fs = new FileStream(@c: \inage. png", FileMde. Open, Fil eAccess. Read);

FileSize = fs. Length;

rawDat a = new byte[Fil eSi ze] ;

fs. Read(rawbata, 0, FileSize);

fs.d ose();

conn. Qpen();

SQL = "INSERT INTO file VALUES(NULL, @ileNane, @ileSize, @ile)";

crd. Connecti on = conn;

cnd. CommandText = SQL;

cnd. Par anet ers. AddW t hVval ue(" @i | eNane", strFil eNane);

cnd. Par anet ers. AddW t hVal ue(" @i | eSi ze", Fil eSi ze);

cnd. Par anet ers. AddW t hVal ue(" @il e", rawbData);

cnd. Execut eNonQuery();

MessageBox. Show("Fil e I nserted into database successful ly!",
"Success! ", MessageBoxButtons. OK, MessageBoxl con. Ast eri sk) ;

conn. Cl ose();

}
catch (MySql . Data. MySql C i ent. MySqgl Excepti on ex)
{

MessageBox. Show("Error " + ex.Nunber + " has occurred: " + ex.Message,
"Error", MessageBoxButtons. K, MessageBoxl con. Error);

}

Visual Basic Code Example

Di m conn As New MySqgl Connecti on
Dimcnmd As New MySql Command
Dim SQL As String

Dim Fil eSize As Ul nt 32
DimrawbData() As Byte
Dimfs As Fil eStream

222

https://dev.mysql.com/doc/refman/8.0/en/insert.html

Handling BLOB Data With Connector/NET

conn. ConnectionString = "server=127.0.0.1;" _
& "uid=root;" _
& "pwd=12345; " _
& "dat abase=t est"
Try
fs = New Fil eStream("c:\inmage. png", Fil eMde. Open, Fil eAccess. Read)
FileSize = fs.Length
rawData = New Byte(Fil eSize) {}
fs. Read(rawbata, 0, FileSize)
fs.d ose()
conn. Open()
SQ = "INSERT INTO file VALUES(NULL, @il eNane, @il eSize, @ile)"
crd. Connecti on = conn
cnd. CommandText = SQL
cnd. Par anet er s. AddW t hVal ue(" @i | eNanme", strFil eNane)
cnd. Par anet ers. AddW t hVal ue(" @i | eSi ze", Fil eSi ze)
cnd. Par anet ers. AddW t hVal ue(" @i | e", rawbDat a)
cnd. Execut eNonQuery()
MessageBox. Show("Fil e I nserted into database successful ly!",
"Success! ", MessageBoxButtons. OK, MessageBoxl con. Ast eri sk)
conn. Cl ose()
Catch ex As Exception
MessageBox. Show(" There was an error: " & ex.Message, "Error",
MessageBoxBut t ons. OK, MessageBoxI con. Error)
End Try

The Read method of the Fi | eSt r eamobject is used to load the file into a byte array which is sized
according to the Lengt h property of the Fi | eSt r eamobject.

After assigning the byte array as a parameter of the MySqgl Conmrand object, the Execut eNonQuery
method is called and the BLOB is inserted into the f i | e table.

4.5.6.3 Reading a BLOB from the Database to a File on Disk

C# Code

After afile is loaded into the f i | e table, we can use the MySqgl Dat aReader class to retrieve it.

The following code retrieves a row from the f i | e table, then loads the data into a Fi | eSt r eamobject
to be written to disk:

Example

MySql . Dat a. MySgl Cl i ent. MySgl Connecti on conn;
MySql . Dat a. MySgl Cl i ent . MySqgl Command cnd;
MySql . Dat a. MySgl Cl i ent. MySgl Dat aReader nyDat a;
conn = new MySql . Data. MySqgl C i ent. MySgl Connecti on() ;
cmd = new MySql . Data. MySgl d i ent. MySgl Conmand() ;
string SQ;
U nt32 FileSize;
byte[] rawbDat a;
Fil eStream fs;
conn. ConnectionString = “server=127.0.0. 1; ui d=root; " +
"pwd=12345; dat abase=t est";
SQL = "SELECT file_nanme, file_size, file FROMfile";
try
{
conn. Qpen() ;

crd. Connection = conn;
cnd. CommandText = SQL;
nmyDat a = cnd. Execut eReader () ;
if (! nyData. HasRows)
t hrow new Exception("There are no BLOBs to save");
nmyDat a. Read() ;
Fil eSi ze = nyDat a. Get Ul nt 32(nmyDat a. Get Ordi nal ("file_size"));
rawDat a = new byte[Fil eSi ze] ;
nmyDat a. Get Byt es(nyData. Get Ordi nal ("file"), 0, rawbata, 0, (int)FileSize);
fs = new FileStream(@C:\newfile.png", FileMde. OpenOrCreate, FileAccess. Wite);
fs.Wite(rawbata, 0, (int)FileSize);
fs.C ose();
MessageBox. Show("Fi |l e successfully witten to disk!",

223

Working with Partial Trust / Medium Trust

"Success! ", MessageBoxButtons. OK, MessageBoxl con. Ast eri sk) ;
nmyDat a. Cl ose() ;
conn. Cl ose();

}
catch (MySql . Data. MySql C i ent. MySql Excepti on ex)
{

MessageBox. Show("Error " + ex.Nunber + " has occurred: " + ex.Message,
"Error", MessageBoxButtons. K, MessageBoxl con. Error);

}

Visual Basic Code Example

Di m conn As New MySqgl Connecti on
Dimcnd As New MySql Conmand

Di m nyData As MySql Dat aReader
Dim SQL As String
DimrawData() As Byte

Dim Fil eSize As Ul nt 32

Dmfs As FileStream

conn. ConnectionString = "server=127.0.0.1;" _

& "uid=root;" _

& "pwd=12345; " _

& "dat abase=t est"
SQ = "SELECT file_nane, file_size, file FROMfile"
Try

conn. Open()

cnd. Connecti on = conn

crd. CommandText = SQL

nyDat a = cnd. Execut eReader

If Not nyData.HasRows Then Throw New Excepti on("There are no BLOBs to save")
nmyDat a. Read()

Fil eSize = nyData. Get U nt32(nyData. Get Ordi nal ("file_size"))

rawData = New Byte(Fil eSize) {}

nmyDat a. Get Byt es(nyData. Get Ordi nal ("file"), 0, rawbata, 0, FileSize)

fs = New FileStream("C:\newfile.png", FileMde. OpenOrCreate, FileAccess.Wite)
fs.Wite(rawbata, 0, FileSize)

fs.d ose()

MessageBox. Show("Fi |l e successfully witten to disk!", "Success!", MessageBoxButtons. K, MessageBoxl con.

nmyDat a. Cl ose()
conn. Cl ose()
Catch ex As Exception

MessageBox. Show(" There was an error: " & ex.Message, "Error", MessageBoxButtons. OK, MessageBoxl con. Err¢

End Try

After connecting, the contents of the f i | e table are loaded into a My Sql Dat aReader object. The
CGet Byt es method of the MySql Dat aReader is used to load the BLOB into a byte array, which is then
written to disk using a Fi | eSt r eamobject.

The Get Or di nal method of the MySqglDataReader can be used to determine the integer index of a
named column. Use of the GetOrdinal method prevents errors if the column order of the SELECT query
is changed.

4.5.7 Working with Partial Trust / Medium Trust

.NET applications operate under a given trust level. Normal desktop applications operate under full
trust, while web applications that are hosted in shared environments are normally run under the partial
trust level (also known as “medium trust”). Some hosting providers host shared applications in their
own app pools and allow the application to run under full trust, but this configuration is relatively

rare. The MySQL Connector/NET support for partial trust has improved over time to simplify the
configuration and deployment process for hosting providers.

4.5.7.1 Evolution of Partial Trust Support Across Connector/NET Versions
The partial trust support for MySQL Connector/NET has improved rapidly throughout the 6.5.x

and 6.6.x versions. The latest enhancements do require some configuration changes in existing
deployments. Here is a summary of the changes for each version.

224

https://dev.mysql.com/doc/refman/8.0/en/select.html

Working with Partial Trust / Medium Trust

6.6.4 and Above: Library Can Be Inside or Outside GAC

Now you can install the MySql . Dat a. dI | library in the Global Assembly Cache (GAC) as explained
in Section 4.5.7.2, “Configuring Partial Trust with Connector/NET Library Installed in GAC”, or in a bi n
or | i b folder inside the project or solution as explained in Section 4.5.7.3, “Configuring Partial Trust
with Connector/NET Library Not Installed in GAC”. If the library is not in the GAC, the only protocol
supported is TCP/IP.

6.5.1 and Above: Partial Trust Requires Library in the GAC

Connector/NET 6.5 fully enables our provider to run in a partial trust environment when the library is
installed in the Global Assembly Cache (GAC). The new MySgl Cl i ent Per mi ssi on class, derived
from the .NET DBDat aPer m ssi on class, helps to simplify the permission setup.

5.0.8/5.1.3 and Above: Partial Trust Requires Socket Permissions

Starting with these versions, Connector/NET can be used under partial trust hosting that has been
modified to allow the use of sockets for communication. By default, partial trust does not include
Socket Per i ssi on. Connector/NET uses sockets to talk with the MySQL server, so the hosting
provider must create a new trust level that is an exact clone of partial trust but that has the following
permissions added:

e System Net. Socket Per m ssi on
» System Security. Perm ssions. Refl ecti onPermi ssi on
» System Net . DnsPer i ssi on

e System Security. Perm ssions. SecurityPerm ssion
Prior to 5.0.8 /5.1.3: Partial Trust Not Supported

Connector/NET versions prior to 5.0.8 and 5.1.3 were not compatible with partial trust hosting.
4.5.7.2 Configuring Partial Trust with Connector/NET Library Installed in GAC

If the library is installed in the GAC, you must include the connection option
i ncl udesecurityasserts=true in your connection string. This is a new requirement as of MySQL
Connector/NET 6.6.4.

The following list shows steps and code fragments needed to run a Connector/NET application in
a partial trust environment. For illustration purposes, we use the Pipe Connections protocol in this
example.

1. Install Connector/NET: version 6.6.1 or later, or 6.5.4 or later.
2. After installing the library, make the following configuration changes:

In the Securi t yCl asses section, add a definition for the MySql Cl i ent Per m ssi on class,
including the version to use.

<confi gurati on>
<nscorlib>
<security>
<pol i cy>
<Pol i cyLevel version="1">
<SecurityC asses>

<SecurityC ass Nanme="M/Sgl C i ent Per m ssi on" Description="M/Sqgl . Data. MySgl Cli ent. MySgl O i
MySql . Data, Version=6.6.4.0, Culture=neutral, PublicKeyToken=c5687fc88969c44d" />

Scroll down to the ASP. Net section:

225

Working with Partial Trust / Medium Trust

<Per m ssi onSet cl ass="NanedPer m ssi onSet" version="1" Name="ASP. Net">

Add a new entry for the detailed configuration of the MySgl Cl i ent Per mi ssi on class:

<l Perm ssi on cl ass="M/Sqgl C i ent Perm ssi on" versi on="1" Unrestricted="true"/>
Note
This configuration is the most generalized way that includes all keywords.

3. Configure the MySQL server to accept pipe connections, by adding the - - enabl e- naned- pi pe
option on the command line. If you need more information about this, see Installing MySQL on
Microsoft Windows.

4. Confirm that the hosting provider has installed the Connector/NET library (MySqgl . Dat a. dl |) in
the GAC.

5. Optionally, the hosting provider can avoid granting permissions globally by using
the new MySql Cl i ent Per mi ssi on class in the trust policies. (The alternative
is to globally enable the permissions Syst em Net . Socket Per ni ssi on,
System Security. Perm ssions. Refl ecti onPerm ssi on, System Net. DnsPer ni ssi on,
and Syst em Security. Perni ssions. SecurityPerni ssion.)

6. Create a simple web application using Visual Studio 2010.
7. Add the reference in your application for the MySql . Dat a. MySql C i ent library.

8. Edit your web. conf i g file so that your application runs using a Medium trust level:

<syst em web>
<trust |evel ="Mdiun'/>
</ syst em web>

9. Addthe WySql . Dat a. MySgl Cl i ent namespace to your server-code page.
10. Define the connection string, in slightly different ways depending on the Connector/NET version.

Only for 6.6.4 or later: To use the connections inside any web application that will run in
Medium trust, add the new i ncl udesecuri t yassert s option to the connection string.

i ncl udesecurityassert s=true that makes the library request the following permissions
when required: Socket Per m ssi ons, Ref | ecti onPer i ssi ons, DnsPer m ssi ons,
Securi t yPer m ssi ons among others that are not granted in Medium trust levels.

For Connector/NET 6.6.3 or earlier: No special setting for security is needed within the
connection string.

MySql Connecti onStri ngBui | der myconnString = new MySqgl Connecti onStri ngBui |l der ("server =l ocal host ; User |d=
myconnSt ri ng. Pi peNane = " M/SQL55";

myconnSt ri ng. Connect i onProtocol = MySql Connecti onProt ocol . Pi pe;

// Following attribute is a new requirenent when the library is in the GAC

/] Could al so be done by addi ng incl udesecurityasserts=true; to the string literal

/1 in the constructor above.

/1 Not needed with Connector/NET 6.6.3 and earlier.

myconnSt ring. | ncl udeSecurityAsserts = true;

11. Define the My Sql Connect i on to use:

MySql Connecti on myconn = new MySgl Connecti on(nmyconnStri ng. ConnectionString);
nmyconn. Open() ;

12. Retrieve some data from your tables:

MySgl Conmand cnd = new MySgl Conmand(" Sel ect * from products", nyconn);
MySql Dat aAdapt er da = new MySql Dat aAdapt er (cnd) ;
Dat aSet1 tds = new Dat aSet 1();

226

https://dev.mysql.com/doc/refman/8.0/en/windows-installation.html
https://dev.mysql.com/doc/refman/8.0/en/windows-installation.html

Writing a Custom Authentication Plugin

da.Fill(tds, tds.Tabl es[0]. Tabl eNane);
Gi dVi ewl. Dat aSour ce = tds;

G i dVi ewl. Dat aBi nd() ;

myconn. Cl ose()

13. Run the program. It should execute successfully, without requiring any special code or
encountering any security problems.

4.5.7.3 Configuring Partial Trust with Connector/NET Library Not Installed in GAC

When deploying a web application to a Shared Hosted environment, where this environment is
configured to run all their .NET applications under a partial or medium trust level, you might not be able
to install the MySQL Connector/NET library in the GAC. Instead, you put a reference to the library in
the bi n or | i b folder inside the project or solution. In this case, you configure the security in a different
way than when the library is in the GAC.

Connector/NET is commonly used by applications that run in Windows environments where the
default communication for the protocol is used via sockets or by TCP/IP. For this protocol to operate is
necessary have the required socket permissions in the web configuration file as follows:

1. Open the medium trust policy web configuration file, which should be under this folder:

%M ndi r% M crosof t. NET\ Fr amewor k\ { ver si on}\ CONFI G web_nedi unt rust . confi g

Use Fr amewor k64 in the path instead of Fr anmewor k if you are using a 64-bit installation of the
framework.

2. Locate the SecurityCl asses tag:
<Securityd ass Name="Socket Permi ssi on"

Descri pti on="Syst em Net. Socket Per m ssi on, System Version=4.0.0.0,
Cul ture=neutral, PublicKeyToken=b77a5c561934e089"/>

3. Scroll down and look for the following Per ni ssi onSet :

<Per mi ssi onSet versi on="1" Nanme="ASP. Net ">

4. Add the following inside this Per ni ssi onSet :

<l Perm ssi on cl ass="Socket Perm ssi on" version="1" Unrestricted="true" />

This configuration lets you use the driver with the default Windows protocol TCP/IP without having
any security issues. This approach only supports the TCP/IP protocol, so you cannot use any other
type of connection.

Also, since the MySQLCl i ent Per m ssi ons class is not added to the medium trust policy, you
cannot use it. This configuration is the minimum required in order to work with Connector/NET
without the GAC.

4.5.8 Writing a Custom Authentication Plugin

Advanced users with special security requirements can create their own authentication plugins for
MySQL Connector/NET applications. You can extend the handshake protocol, adding custom logic. For
background and usage information about MySQL authentication plugins, see Authentication Plugins
and Writing Authentication Plugins.

To write a custom authentication plugin, you will need a reference to the assembly MySql . Dat a. dI | .
The classes relevant for writing authentication plugins are available at the namespace
MySql . Dat a. MySgl Cl i ent. Aut henti cati on.

How the Custom Authentication Plugin Works

At some point during handshake, the internal method

227

https://dev.mysql.com/doc/refman/8.0/en/authentication-plugins.html
https://dev.mysql.com/doc/extending-mysql/8.0/en/writing-authentication-plugins.html

Writing a Custom Authentication Plugin

voi d Aut henti cat e(bool reset)

of MySgl Aut henti cati onPl ugi n is called. This method in turns calls several overridable methods
of the current plugin.

Creating the Authentication Plugin Class

You put the authentication plugin logic inside a new class derived from
MySqgl . Dat a. MySgl Cl i ent. Aut hent i cati on. MySqgl Aut hent i cati onPl ugi n. The following
methods are available to be overridden:

protected virtual void CheckConstraints()

protected virtual void AuthenticationFail ed(Exception ex)
protected virtual void AuthenticationSuccessful ()
protected virtual byte[] MreData(byte[] data)

protected virtual void Authenticati onChange()

public abstract string Plugi nNane { get; }

public virtual string GetUsernane()

public virtual object GetPassword()

protected byte[] AuthData

The following is a brief explanation of each one:

/1] <summary>

/11 This method nust check authentication nmethod specific constraints in the
envi ronment and throw an Excepti on

/1l if the conditions are not met. The default inplenentation does nothing

/1l </ summary>

protected virtual void CheckConstraints()

/1] <summary>

/1l This method, called when the authentication failed, provides a chance to
pl ugins to nanage the error

/1l the way they consider decide (either showi ng a message, logging it, etc.).
/1l The default inplenentation waps the original exception in a M/Sgl Excepti on
with an standard nmessage and rethrows it.

/1l </ summary>

/1l <param nane="ex">The exception with extra infornmation on the error.</paranr
protected virtual void AuthenticationFail ed(Exception ex)

/1] <summary>

/1l This method is invoked when the authentication phase was successful accepted
by the server

/1l Derived classes nust override this if they want to be notified of such
condi tion

/1l </ summary>

/1l <remarks>The default inplementati on does not hi ng. </renar ks>

protected virtual void Authenticati onSuccessful ()

/1] <summary>

/1l This method provides a chance for the plugin to send nore data when the
server requests so during the

/1] authentication phase. This nmethod will be called at |east once, and nore
than one dependi ng upon whet her the

/1l server response packets have the 0x01 prefix

/1l </ summary>

/1l <param nane="dat a">The response data fromthe server, during the

aut henti cati on phase the first time is called is null, in

subsequent calls contains the server response.</paranr

/Il <returns>The data generated by the plugin for server consunption.</returns>
/1l <remar ks>The default inplenmentation always returns null.</renmar ks>
protected virtual byte[] MreData(byte[] data)

/1] <summary>

/1l The plugin nanme

/1l </ summary>

public abstract string Plugi nName { get; }

/1] <summary>

/1l Gets the user nane to send to the server in the authentication phase

/1l </ summary>

/1l <returns>An string with the user nane</returns>

/1l <remarks>Default inplenentation returns the Userld passed fromthe
connection string. </remarks>

public virtual string GetUsernane()

/1] <summary>

228

Writing a Custom Authentication Plugin

Il Gets the password to send to the server in the authentication phase. This
can be a string or a

/1l </ sunmmary>

/1l <returns>An object, can be byte[], string or null, with the password.
</returns>

/1l <remarks>Default inplenentation returns null.</remarks>

public virtual object GetPassword()

[l <summary>

/1] The authentication data passed when creating the plugin.

/1] For exanple in nysqgl_native_password this is the seed to encrypt the
passwor d.

/1] </ sunmmary>

protected byte[] AuthDat a;

Authentication Plugin Example

This example shows how to create the authentication plugin and then enable it by means of a
configuration file.

1. Create a console app, adding a reference to MySql . Dat a. dl | .

2. Design the main C# program as follows:

usi ng System

usi ng System Col | ecti ons. Generi c;
usi ng System Linq;

usi ng System Text;

using MySql . Data. MySgl i ent ;
nanmespace Aut hPl ugi nTest

{
cl ass Program
{
static void Main(string[] args)
{
/] Customi ze the connection string as necessary.
MySql Connecti on con = new MySql Connecti on("server =l ocal host ;
dat abase=t est; user id=nyuser; password=mypass");
con. Open();
con. Cl ose();
}
}
}

3. Create your plugin class. In this example, we add an “alternative” implementation of the Native
password plugin by just using the same code from the original plugin. We name our class
MySql Nat i vePasswor dPl ugi n2:

usi ng System | G

usi ng System

usi ng System Text;

usi ng System Security. Cryptography;

usi ng MySql . Dat a. MySgl Cl i ent . Aut henti cati on;
usi ng System Di agnosti cs;

nanespace Aut hPl ugi nTest

public class M/Sql Nati vePasswor dPl ugi n2 : M/Sql Aut henti cati onPl ugi n
{

public override string Plugi nName

{

get { return "nysql _native_password"; }
public override object GetPassword()

Debug. WiteLine("Calling MySqgl Nati vePasswor dPl ugi n2. Get Passwor d") ;
return Get4llPassword(Settings. Password, AuthData);

/1] <summary>

/// Returns a byte array containing the proper encryption of the

/1] given password/seed according to the new 4.1.1 authentication schene.
/1] </summary>

229

Using the Connector/NET Interceptor Classes

/1l <param nane="passwor d" ></ par an>

/1] <param nane="seed" ></ par an>

/1] <returns></returns>

private byte[] Get4llPassword(string password, byte[] seedBytes)

{
/[l if we have no password, then we just return 1 zero byte
if (password.Length == 0) return new byte[1];
SHA1 sha = new SHA1Crypt oServi ceProvi der();
byte[] firstHash = sha. Conput eHash(Encodi ng. Def aul t . Get Byt es(password)) ;
byte[] secondHash = sha. Conput eHash(firstHash);
byte[] input = new byte[seedBytes. Length + secondHash. Lengt h] ;
Array. Copy(seedBytes, 0, input, O, seedBytes.Length);
Array. Copy(secondHash, 0, input, seedBytes.Length, secondHash.Length);
byte[] thirdHash = sha. Conput eHash(i nput);
byte[] final Hash = new byt e[thirdHash. Length + 1];
final Hash[0] = 0x14;
Array. Copy(thirdHash, 0, finalHash, 1, thirdHash. Length);
for (int i =1; i < finalHash.Length; i++)

final Hash[i] = (byte)(final Hash[i] ~ firstHash[i - 1]);

return final Hash;

}

}
}

Notice that the plugin implementation just overrides Get Passwor d, and provides an
implementation to encrypt the password using the 4.1 protocol. Add the following line in the
CGet Passwor d body to provide confirmation that the plugin was effectively used.

Debug. WiteLine("Calling MySqgl Nati vePasswor dPl ugi n2. Get Passwor d") ;
Tip
You could also put a breakpoint on that method.

4. Enable the new plugin in the configuration file:

<?xm version="1.0"?>
<confi gurati on>
<confi gSecti ons>
<section name="M/SQ." type="M/Sqgl.Data. M/Sql C i ent. M/Sql Confi gurati on,
M/Sql . Dat a"/ >
</ confi gSecti ons>
<M/SQL>
<Aut henti cati onPl ugi ns>
<add nane="nysql _native_password"
t ype="Aut hPl ugi nTest. M/Sql Nat i vePasswor dPl ugi n2, Aut hPl ugi nTest " ></ add>
</ Aut henti cati onPl ugi ns>

</ MySQL>
<startup><supportedRunti me versi on="v4.0" sku=".NETFramewor k, Ver si on=v4. 0"/ >
</ st artup></confi gurati on>

5. Run the application. In Visual Studio, you will see the message Cal | i ng
My Sql Nat i vePasswor dPl ugi n2. Get Passwor d in the debug window.

Continue enhancing the authentication logic, overriding more methods if you required.

4.5.9 Using the Connector/NET Interceptor Classes

An interceptor is a software design pattern that provides a transparent way to extend or modify some
aspect of a program, similar to a user exit. No recompiling is required. With MySQL Connector/NET,
the interceptors are enabled and disabled by updating the connection string to refer to different sets of
interceptor classes that you instantiate.

Note

The classes and methods presented in this section do not apply to Connector/
NET applications developed with the .NET Core 1.1 framework.

230

Using the Connector/NET Interceptor Classes

Connector/NET includes the following interceptor classes:

» The BaseComandl nt er cept or lets you perform additional operations when a program issues
a SQL command. For example, you can examine the SQL statement for logging or debugging
purposes, substitute your own result set to implement a caching mechanism, and so on. Depending
on the use case, your code can supplement the SQL command or replace it entirely.

The BaseCommandl nt er cept or class has these methods that you can override:

public virtual bool ExecuteScal ar(string sql, ref object returnVal ue);

public virtual bool ExecuteNonQuery(string sql, ref int returnValue);

public virtual bool ExecuteReader(string sql, ConmandBehavi or behavior, ref M/Sql Dat aReader returnVal
public virtual void Init(MSgl Connection connection);

If your interceptor overrides one of the Execut e. . . methods, set the r et ur nVal ue output
parameter and return t r ue if you handled the event, or f al se if you did not handle the event. The
SQL command is processed normally only when all command interceptors return f al se.

The connection passed to the | ni t method is the connection that is attached to this interceptor.

* The BaseExcepti onl nt er cept or lets you perform additional operations when a program
encounters an SQL exception. The exception interception mechanism is modeled after the
Connector/J model. You can code an interceptor class and connect it to an existing program without
recompiling, and intercept exceptions when they are created. You can then change the exception
type and optionally attach information to it. This capability lets you turn on and off logging and
debugging code without hardcoding anything in the application. This technique applies to exceptions
raised at the SQL level, not to lower-level system or 1/O errors.

You develop an exception interceptor first by creating a subclass of the
BaseExcepti onl nt er cept or class. You must override the | nt er cept Excepti on() method.
You can also override the | ni t () method to do some one-time initialization.

Each exception interceptor has 2 methods:

publ i c abstract Exception |nterceptException(Exception exception,
MySql Connecti on connection);
public virtual void Init(MSqgl Connection connection);

The connection passed to | ni t () is the connection that is attached to this interceptor.

Each interceptor is required to override | nt er cept Except i on and return an exception. It can
return the exception it is given, or it can wrap it in a new exception. We currently do not offer the
ability to suppress the exception.

Here are examples of using the FQN (fully qualified name) on the connection string:

My/Sql Connection cl = new MySql Connecti on(@ ser ver =l ocal host ; pool i ng=f al se;
commandi nt er cept or s=CommrandApp. MyCommandl| nt er cept or, CommandApp") ;

M/Sql Connection c2 = new MySql Connecti on(@ ser ver =l ocal host ; pool i ng=f al se;

excepti oni nt er cept or s=Excepti onSt ackTraceTest. M/Excepti onl nt er cept or, Excepti onSt ackTraceTest");

In this example, the command interceptor is called ConrmandApp. My Conmmandl nt er cept or
and exists in the ConmandApp assembly. The exception interceptor is called

Excepti onSt ackTraceTest. MyExcepti onl nt er cept or and exists in the

Excepti onSt ackTraceTest assembly.

To shorten the connection string, you can register your exception interceptors in your app. confi g or
web. confi g file like this:

<confi gSecti ons>

<section nanme="M/SQ." type="M/Sql.Data. MySgl Cl i ent. MySgl Confi gurati on, MySgl . Data"/ >
</ confi gSecti ons>

<MySQL>

<Conmandl nt er cept or s>

231

Handling Date and Time Information in Connector/NET

<add name="nyC' type="ConmmandApp. MyConmandI nt er cept or, ConmandApp" />
</ ConmandI nt er cept or s>
</ MySQL>
<confi gSecti ons>
<section nanme="M/SQ" type="M/Sql.Data. M/Sql C i ent.M/Sql Configurati on,
M/Sql . Dat a"/ >
</ confi gSecti ons>
<MySQL>
<Excepti onl nt er cept or s>

<add nanme="nyE"

type="Excepti onSt ackTr aceTest. M/Excepti onl nt er cept or, Excepti onSt ackTraceTest" />
</ Excepti onl nt er cept or s>

</ MySQL>
After you have done that, your connection strings can look like these:

M/Sql Connection cl = new MySql Connecti on(@ ser ver =l ocal host ; pool i ng=f al se;
commandi nt er cept or s=nyC") ;

M/Sql Connection c2 = new MySql Connecti on(@ ser ver =l ocal host ; pool i ng=f al se;
excepti oni nt ercept ors=nyE") ;

4.5.10 Handling Date and Time Information in Connector/NET

MySQL and the .NET languages handle date and time information differently, with MySQL allowing
dates that cannot be represented by a .NET data type, such as '0000- 00- 00 00: 00: 00'. These
differences can cause problems if not properly handled.

The following sections demonstrate how to properly handle date and time information when using
MySQL Connector/NET.

4.5.10.1 Fractional Seconds

MySQL Connector/NET supports the fractional seconds feature in MySQL, where the fractional
seconds part of temporal values is preserved in data stored and retrieved through SQL. For fractional
second handling in MySQL 5.6.4 and higher, see Fractional Seconds in Time Values.

To use the more precise date and time types, specify a value from 1 to 6 when creating the table
column, for example Tl ME(3) or DATETI ME(6) , representing the number of digits of precision after
the decimal point. Specifying a precision of O leaves the fractional part out entirely. In your C# or

Visual Basic code, refer to the M | | i second member to retrieve the fractional second value from the
My Sql Dat eTi ne object returned by the Get My Sql Dat eTi ne function. The Dat eTi ne object returned
by the Get Dat eTi e function also contains the fractional value, but only the first 3 digits.

For related code examples, see the following blog post: https://blogs.oracle.com/MySqglOnWindows/
entry/milliseconds_value_support_on_datetime

4.5.10.2 Problems when Using Invalid Dates

The differences in date handling can cause problems for developers who use invalid dates. Invalid
MySQL dates cannot be loaded into native .NET Dat eTi nme objects, including NULL dates.

Because of this issue, .NET Dat aSet objects cannot be populated by the Fi | | method of the
My Sqgl Dat aAdapt er class as invalid dates will cause a Syst em Ar gunent Qut Of RangeExcepti on
exception to occur.

4.5.10.3 Restricting Invalid Dates

The best solution to the date problem is to restrict users from entering invalid dates. This can be done
on either the client or the server side.

Restricting invalid dates on the client side is as simple as always using the .NET Dat eTi ne class
to handle dates. The Dat eTi ne class will only allow valid dates, ensuring that the values in your
database are also valid. The disadvantage of this is that it is not useful in a mixed environment

232

https://dev.mysql.com/doc/refman/8.0/en/fractional-seconds.html
https://blogs.oracle.com/MySqlOnWindows/entry/milliseconds_value_support_on_datetime
https://blogs.oracle.com/MySqlOnWindows/entry/milliseconds_value_support_on_datetime

Using the MySqlIBulkLoader Class

where .NET and non .NET code are used to manipulate the database, as each application must
perform its own date validation.

Users of MySQL 5.0.2 and higher can use the new t r adi t i onal SQL mode to restrict invalid date
values. For information on using the t r adi ti onal SQL mode, see Server SQL Modes.

4.5.10.4 Handling Invalid Dates

Although it is strongly recommended that you avoid the use of invalid dates within your .NET
application, it is possible to use invalid dates by means of the MySql Dat eTi ne data type.

The My Sql Dat eTi ne data type supports the same date values that are supported by the MySQL
server. The default behavior of Connector/NET is to return a .NET DateTime object for valid date
values, and return an error for invalid dates. This default can be modified to cause Connector/NET to
return My Sql Dat eTi ne objects for invalid dates.

To instruct Connector/NET to return a My Sql Dat eTi ne object for invalid dates, add the following line
to your connection string:

Al | ow Zero Dateti ne=True
The My Sql Dat eTi ne class can still be problematic. The following are some known issues:

 Data binding for invalid dates can still cause errors (zero dates like 0000-00-00 do not seem to have
this problem).

» The ToSt ri ng method return a date formatted in the standard MySQL format (for example,
2005- 02- 23 08: 50: 25). This differs from the ToSt r i ng behavior of the .NET DateTime class.

e The MySql Dat eTi ne class supports NULL dates, while the .NET DateTime class does not. This can
cause errors when trying to convert a MySQLDateTime to a DateTime if you do not check for NULL
first.

Because of the known issues, the best recommendation is still to use only valid dates in your
application.

4.5.10.5 Handling NULL Dates

The .NET Dat eTi e data type cannot handle NULL values. As such, when assigning values from a
guery to a Dat eTi ne variable, you must first check whether the value is in fact NULL.

When using a My Sql Dat aReader , use the . | sDBNul | method to check whether a value is NULL
before making the assignment:

C# Code Example

if (! nyReader.|sDBNul |l (nyReader. Get Ordinal ("nmytine")))

nmyTi ne = nmyReader . Get Dat eTi me(nyReader. Get Ordi nal ("nytine"));
el se

nyTi me = DateTi me. M nVal ue;

Visual Basic Code Example

If Not nyReader.|sDBNull (nyReader. Get Ordi nal ("nytine")) Then
nyTi ne = nmyReader . Get Dat eTi me(nyReader . Get Ordi nal ("nyti ne"))
El se
nyTi me = DateTi me. M nVal ue
End | f

NULL values will work in a data set and can be bound to form controls without special handling.

4.5.11 Using the MySqlBulkLoader Class

233

https://dev.mysql.com/doc/refman/8.0/en/sql-mode.html

Using the MySqlIBulkLoader Class

MySQL Connector/NET features a bulk loader class that wraps the MySQL statement LOAD DATA
I NFI LE. This gives Connector/NET the ability to load a data file from a local or remote host to the
server, or a stream to a database (from Connector/NET 8.0.32).

The class concerned is My Sqgl Bul kLoader . This class has various methods, the main overloaded
method being | oad, which permits a stream object to be loaded directly to a database (8.0.32) or the
specified file to the server. Various parameters can be set to control how the data file is processed.
This is achieved through setting various properties of the class. For example, the field separator used,
such as comma or tab, can be specified, along with the record terminator, such as newline.

The following code shows a simple example of using the MySql Bul kLoader class. First an empty
table needs to be created, in this case in the t est database.

CREATE TABLE Career (
Name VARCHAR(100) NOT NULL,
Age | NTEGER,
Pr of essi on VARCHAR(200)

)i
A simple tab-delimited data file is also created (it could use any other field delimiter such as comma).

Tabl e Career in Test Database
Name Age Profession

Tony 47 Technical Witer
Ana 43 Nurse

Fred 21 |IT Specialist
Sinon 45 Hairy Biker

The first three lines need to be ignored with this test file, as they do not contain table data. This task is
accomplished in the following C# code example by setting the Nunber O Li nesToSki p property . The
file can then be loaded and used to populate the Car eer table in the t est database.

Note

As of Connector/NET 8.0.15, the Local property must be set to Tr ue explicitly
to enable the local-infile capability. Previous versions set this value to Tr ue by
default.

usi ng System

usi ng System Text;

usi ng MySql . Dat a;

using MySql . Data. MySgl d i ent ;
namespace Consol eApplicationl

{

cl ass Program
{
static void Main(string[] args)
{
string connStr = "server =l ocal host ; user =r oot ; dat abase=t est ; port =3306; passwor d=******" .
MySgl Connecti on conn = new MySql Connecti on(connStr);
M/Sql Bul kLoader bl = new MySql Bul kLoader (conn) ;

bl . Local = true;

bl . Tabl eNane = "Career";

bl . Fiel dTerm nator = "\t";

bl . Li neTerm nator = "\n";

bl .FileName = "c:/career_data.txt";
bl . Nunber O Li nesToSki p = 3;

try

{

Consol e. WitelLine("Connecting to MySQ....");

conn. Open() ;

/'l Upload data fromfile

int count = bl.Load();

Consol e. WitelLine(count + " |ines uploaded.");

string sgql = "SELECT Narme, Age, Profession FROM Career";
MySgl Command cnd = new MySql Command(sql, conn);

MySqgl Dat aReader rdr = cnd. Execut eReader () ;

234

https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html

Connector/NET Tracing

while (rdr.Read())

{
Consol e. WiteLine(rdr[O] + " -- " + rdr[1] + " -- " + rdr[2]);

}
rdr. d ose();
conn. Cl ose();

}

catch (Exception ex)

{

}
Consol e. Wi teLi ne("Done.");

Consol e. WitelLine(ex. ToString());

}

Further information on LOAD DATA | NFI LE can be found in LOAD DATA Statement. Further
information on My Sql Bul kLoader can be found in the reference documentation that was included
with your connector.

4.5.12 Connector/NET Tracing

4.5.12.1 Enabling OpenTelemetry Tracing

OpenTelementry (OTel) standardizes instrumentation, generation, collecting and exporting telemetry
data to be consumed by an Observability backend. For more details on OpenTelemetry, visit its official
site.

Starting in Connector/NET 8.1.0, support for OTel is encapsulated in the

MySQL. Dat a. OpenTel enet ry NuGet package. This package implements the functionality to add
the connector to the tracer provider using QpenTel enment ry. Api . Connector/NET neither creates nor
provides the means to create an OTel exporter. Instead, it relies on the default exporter supplied by
your application.

Note

OTel context forwarding works only with MySQL Enterprise Edition, a
commercial product. To learn more about commercial products, see https://
www.mysgl.com/products/.

Requirements for Enabling Tracing
+ .NET 5 and later.
» Connector/NET 8.1.0 MySQL. Dat a. OpenTel enet ry and MySQL. Dat a NuGet packages.
Note

The Connector/NET MSI file does not include support this OTel
implementation.

» An OpenTelemetry SDK of your choosing and an appropriate exporter package.

* MySQL Enterprise Edition server with the query attributes enabled. If the server does not support
query attributes or has them disabled, then Connector/NET skips the entire context propagation flow.

» Code that uses OTel instrumentation. If your code does not use instrumentation, then the connector
does not forward the current OTel context for each executed statement.

Enabling OpenTelemetry

To enable OTel tracing using the Connector/NET implementation, add the connector to the trace
provider builder as follows:

235

https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://opentelemetry.io/
https://opentelemetry.io/
https://www.mysql.com/products/
https://www.mysql.com/products/

Connector/NET Tracing

var tracerProvider = sdk. TraceProvi derBui | der (). AddConnect or Net (). Bui |l d();

When you build code that links to Connector/NET and uses OTel instrumentation, the additional spans
generated by the connector appear in the traces generated by your code. Spans generated by the
connector are sent to the same destination (trace exporter) where other spans generated by the user
code are sent as configured by user code. It is not possible to send spans generated by the connector
to any other destination.

4.5.12.2 Using the Connector/NET Trace Source Object

The .NET tracing architecture consists of four main parts:

» Source - This is the originator of the trace information. The source is used to send trace messages.
The name of the source provided by Connector/NET is mysql .

» Switch - This defines the level of trace information to emit. Typically, this is specified in the
app. conf i g file, so that it is not necessary to recompile an application to change the trace level.

« Listener - Trace listeners define where the trace information will be written to. Supported listeners
include, for example, the Visual Studio Output window, the Windows Event Log, and the console.

» Filter - Filters can be attached to listeners. Filters determine the level of trace information that will be
written. While a switch defines the level of information that will be written to all listeners, a filter can
be applied on a per-listener basis, giving finer grained control of trace information.

To use tracing MySql.Data.MySqlClient.MySqlTrace can be used as a TraceSource for Connector/
NET and the connection string must include "Logging=True".

To enable trace messages, configure a trace switch. Trace switches have associated with them a trace
level enumeration, these are Off, Error, Warning, Info, and Verbose.

M/Sql Trace. Swi t ch. Level = Sourcelevel s. Ver bose;
This sets the trace level to Verbose, meaning that all trace messages will be written.

It is convenient to be able to change the trace level without having to recompile the code. This is
achieved by specifying the trace level in application configuration file, app. conf i g. You then simply
need to specify the desired trace level in the configuration file and restart the application. The trace
source is configured within the syst em di agnost i cs section of the file. The following XML snippet
illustrates this:

<configuration>

<syst em di agnosti cs>
<sour ces>
<source nanme="mysqgl" switchNanme="M/Switch"
swi t chType="Syst em Di agnosti cs. SourceSw tch" />

</ sour ces>
<swi t ches>
<add nanme="M/Swi tch" val ue="Ver bose"/ >

</ swi tches>
</ syst em di agnosti cs>

</ confi guration>

By default, trace information is written to the Output window of Microsoft Visual Studio. There are a
wide range of listeners that can be attached to the trace source, so that trace messages can be written
out to various destinations. You can also create custom listeners to allow trace messages to be written
to other destinations as mobile devices and web services. A commonly used example of a listener is
Consol eTr acelLi st ener, which writes trace messages to the console.

To add a listener at runtime, use code such as the following:

236

Connector/NET Tracing

ts. Li steners. Add(new Consol eTraceLi stener());

Then, call methods on the trace source object to generate trace information. For example, the
Tracel nformation(), TraceEvent (), or TraceDat a() methods can be used.

Viewing MySQL Trace Information
This section describes how to set up your application to view MySQL trace information.

The first thing you need to do is create a suitable app. conf i g file for your application. For example:

<?xm version="1.0" encodi ng="utf-8" ?>
<confi guration>
<syst em di agnosti cs>
<sour ces>
<source nane="mnysqgl" swi tchNane="SourceSw t ch"
swi t chType="Syst em Di agnosti cs. SourceSw tch" >
<listeners>
<add nane="consol e" />
<renove nane ="Default" />
</listeners>
</ sour ce>
</ sour ces>
<sw t ches>

<I-- You can set the level at which tracing is to occur -->
<add nane="SourceSwi tch" val ue="Verbose" />

<l-- You can turn tracing off -->

<!--add nane="SourceSw tch" value="Of" -->

</ swi t ches>
<shar edLi st ener s>
<add nane="consol e"

type="Syst em Di agnosti cs. Consol eTr aceLi st ener"
initializeData="fal se"/>

</ shar edLi st ener s>

</ syst em di agnosti cs>
</ confi guration>

This configuration ensures that a suitable trace source is created, along with a switch. The switch level
in this case is set to Ver bose to display the maximum amount of information.

Next, add | oggi ng=t r ue to the connection string in your C# application. For example:

usi ng System

usi ng System Col | ecti ons. Generi c;
usi ng System Linq;

usi ng System Text;

usi ng System Di agnosti cs;

usi ng MySql . Dat a;

using MySql . Data. MySgl d i ent ;

usi ng MySql . Web;
namespace Consol eApplicationl

{
cl ass Program
{
static void Main(string[] args)
{
string connStr = "server =l ocal host ; user =r oot ; dat abase=wor | d; port =3306; passwor d=******: | oggi
MySql Connecti on conn = new MySql Connecti on(connStr);
try
{
Consol e. Wi teLine("Connecting to MySQL...");
conn. Qpen();
string sql = "SELECT Nane, HeadO State FROM Country WHERE Conti nent='Cceania'";

MySgl Conmand cnd = new MySql Command(sqgl, conn);
My Sqgl Dat aReader rdr = cnd. Execut eReader () ;
while (rdr.Read())

{
Consol e. WiteLine(rdr[O] + " -- " + rdr[1]);

}
rdr. d ose();

237

Connector/NET Tracing

conn. Cl ose();

catch (Exception ex)

{

}
Consol e. Wi telLi ne("Done.");

Consol e. WitelLine(ex. ToString());

}

This simple application then generates the following output:

Connecting to MySQL. . .
rrysql Information: 1 : 1: Connection Opened: connection string = 'server=local host; User |d=root;database=w
; passwor d=xxxxx x| oggl ng=Tr ue'

nysql Information: 3 : 1: Query Opened: SHOW VAR ABLES

nysql Information: 4 : 1: Resultset Opened: field(s) = 2, affected rows = -1, inserted id = -1
nysql Information: 5 : 1: Resultset Closed. Total rows=272, skipped rows=0, size (bytes)=7058
nysql Information: 6 : 1: Query Cl osed

nysqgl Information: 3 : 1: Query Opened: SHOW COLLATI ON

nysql Information: 4 : 1: Resultset Opened: field(s) = 6, affected rows = -1, inserted id = -1
nysqgl Information: 5 : 1: Resultset Closed. Total rows=127, skipped rows=0, size (bytes)=4102
nysql Information: 6 : 1: Query Cl osed

nysqgl Information: 3 : 1: Query Opened: SET character_set_resul t s=NULL

nysql Information: 4 : 1: Resultset Opened: field(s) = 0, affected rows = 0, inserted id = 0
nysqgl Information: 5 : 1: Resultset Closed. Total rows=0, skipped rows=0, size (bytes)=0

nysqgl Information: 6 : 1: Query Cl osed

nysqgl Information: 10 : 1: Set Database: world

nysqgl Information: 3 : 1: Query Opened: SELECT Nane, HeadOr State FROM Country WHERE Conti nent =' Cceani a'
nysqgl Information: 4 : 1: Resultset Opened: field(s) = 2, affected rows = -1, inserted id = -1

Anerican Sanpa -- George W Bush

Australia -- Elisabeth Il
Wal lis and Futuna -- Jacques Chirac
Vanuatu -- John Bani

United States Mnor Qutlying |Islands -- George W Bush

nysqgl Information: 5 : 1: Resultset Closed. Total rows=28, skipped rows=0, size (bytes)=788
nysql Information: 6 : 1: Query Cl osed

Done.

nysql Information: 2 : 1: Connection Cl osed

The first number displayed in the trace message corresponds to the MySQL event type. The second
number displayed in the trace message is the connection count. The following table describes each

MySQL event type.

Event Type Description

1 ConnectionOpened: connection string

2 ConnectionClosed:

3 QueryOpened: mysql server thread id, query text

4 ResultOpened: field count, affected rows (-1 if select), inserted id (-1 if
select)

5 ResultClosed: total rows read, rows skipped, size of result set in bytes

6 QueryClosed:

7 StatementPrepared: prepared sql, statement id

8 StatementExecuted: statement id, mysql server thread id

9 StatementClosed: statement id

10 NonQuery: [varies]

11 UsageAdvisorWarning: usage advisor flag. Nolndex = 1, Badindex = 2,
SkippedRows = 3, SkippedColumns = 4, FieldConversion = 5.

12 Warning: level, code, message

238

Connector/NET Tracing

Event Type Description

13 Error: error number, error message

Although this example uses the Consol eTr aceli st ener, any of the other standard listeners can
be used. Another possibility is to create a custom listener that uses the information passed in with
the Tr aceEvent method. For example, a custom trace listener can be created to perform active
monitoring of the MySQL event messages, rather than simply writing these to an output device.

It is also possible to add listeners to the MySQL Trace Source at runtime. This can be done with the
following code:

MySql Tr ace. Li st eners. Add(new Consol eTraceli stener());

Connector/NET provides the ability to switch tracing on and off at runtime. This can be achieved
using the calls MySql Tr ace. Enabl eQuer yAnal yzer (string host, int postlnterval)
and MySql Tr ace. Di sabl eQuer yAnal yzer () . The parameter host is the URL of the MySQL
Enterprise Monitor server to monitor. The parameter post | nt er val is how often to post the data to
MySQL Enterprise Monitor, in seconds.

Building Custom Listeners

To build custom listeners that work with the MySQL Connector/NET Trace Source, it is necessary to
understand the key methods used, and the event data formats used.

The main method involved in passing trace messages is the Tr aceSour ce. Tr aceEvent method.
This has the prototype:

public void TraceEvent (
TraceEvent Type event Type,
int id,
string format,
parans Object[] args

)

This trace source method will process the list of attached listeners and call the listener's
TracelLi st ener. TraceEvent method. The prototype for the Tr acelLi st ener. TraceEvent
method is as follows:

public virtual void TraceEvent (
TraceEvent Cache event Cache,
string source,
TraceEvent Type event Type,
int id,
string format,
parans Object[] args

)

The first three parameters are used in the standard as defined by Microsoft. The last three parameters
contain MySQL-specific trace information. Each of these parameters is now discussed in more detail.

int id

This is a MySQL-specific identifier. It identifies the MySQL event type that has occurred, resulting in a
trace message being generated. This value is defined by the MySql Tr aceEvent Type public enum
contained in the Connector/NET code:

public enum MySgl TraceEvent Type : int
{

Connecti onOpened = 1,

Connect i onCl osed,

Quer yOpened,

Resul t Opened,

Resul t O osed,

Queryd osed,

St at enent Pr epar ed,

239

http://msdn.microsoft.com/en-us/library/d193webf.aspx

Using Connector/NET with Crystal Reports

St at enent Execut ed,
St at enent Cl osed,
NonQuery,

UsageAdvi sor War ni ng,
Vr ni ng,

Error

}

The MySQL event type also determines the contents passed using the parameter par ans Cbj ect []
ar gs. The nature of the ar gs parameters are described in further detail in the following material.

string format

This is the format string that contains zero or more format items, which correspond to objects in the
args array. This would be used by a listener such as Consol eTr acelLi st ener to write a message to
the output device.

parans Object[] args

This is a list of objects that depends on the MySQL event type, i d. However, the first parameter
passed using this list is always the driver id. The driver id is a unique number that is incremented each
time the connector is opened. This enables groups of queries on the same connection to be identified.
The parameters that follow driver id depend on the MySQL event id, and are as follows:

MySQL-specific event type |Arguments (params Object[] args)

ConnectionOpened Connection string

ConnectionClosed No additional parameters

QueryOpened mysq|l server thread id, query text

ResultOpened field count, affected rows (-1 if select), inserted id (-1 if select)

ResultClosed total rows read, rows skipped, size of result set in bytes

QueryClosed No additional parameters

StatementPrepared prepared sql, statement id

StatementExecuted statement id, mysql server thread id

StatementClosed statement id

NonQuery Varies

UsageAdvisorWarning usage advisor flag. Nolndex = 1, BadIindex = 2, SkippedRows = 3,
SkippedColumns = 4, FieldConversion = 5.

Warning level, code, message

Error error number, error message

This information allows you to create custom trace listeners that can actively monitor the MySQL-
specific events.

4.5.13 Using Connector/NET with Crystal Reports

Crystal Reports is a common tool used by Windows application developers to perform reporting and
document generation. In this section we will show how to use Crystal Reports XI with MySQL and
MySQL Connector/NET.

4.5.13.1 Creating a Data Source

When creating a report in Crystal Reports there are two options for accessing the MySQL data while
designing your report.

The first option is to use Connector/ODBC as an ADO data source when designing your report. You will
be able to browse your database and choose tables and fields using drag and drop to build your report.

240

Using Connector/NET with Crystal Reports

The disadvantage of this approach is that additional work must be performed within your application to
produce a data set that matches the one expected by your report.

The second option is to create a data set in VB.NET and save it as XML. This XML file can then be
used to design a report. This works quite well when displaying the report in your application, but is less
versatile at design time because you must choose all relevant columns when creating the data set. If
you forget a column you must re-create the data set before the column can be added to the report.

The following code can be used to create a data set from a query and write it to disk:

C# Code Example

Dat aSet nyData = new Dat aSet () ;

MySql . Dat a. MySgl Cl i ent. MySqgl Connecti on conn;

MySql . Dat a. MySgl Al i ent . MySql Command cnd;

M/Sql . Dat a. MySgl Al i ent . MySqgl Dat aAdapt er nyAdapt er ;

conn = new MySql . Dat a. MySqgl d i ent . MySgl Connecti on() ;

cmd = new MySqgl . Data. MySgl d i ent. MySgl Conmand() ;

myAdapt er = new MySql . Dat a. MySql Cl i ent . MySql Dat aAdapt er () ;

conn. ConnectionString = "server=127.0.0. 1; ui d=root; " +
"pwd=12345; dat abase=t est";
try
{
cmd. CommandText = "SELECT city. name AS cityName, city.popul ation AS CityPopul ation, " +

"country. name, country.popul ati on, country.continent " +
"FROM country, city ORDER BY country.continent, country.name";
crd. Connection = conn;

myAdapt er . Sel ect Conmand = cnd;

myAdapt er. Fil |l (myDat a) ;

myData. WiteXm (@C: \dataset.xm ", Xml WiteMde. WiteSchem);

}
catch (MySql . Data. MySql C i ent. MySql Excepti on ex)
{

MessageBox. Show(ex. Message, "Report could not be created",
MessageBoxBut t ons. OK, MessageBoxI con. Error);

}

Visual Basic Code Example

Di m nyDat a As New Dat aSet
Di m conn As New MySqgl Connecti on
Dimcnd As New MySql Commrand
Di m myAdapt er As New MySql Dat aAdapt er
conn. ConnectionString = "server=127.0.0.1;" _
& "uid=root;" _
& "pwd=12345; " _
& "dat abase=wor| d"
Try
conn. Open()
cnd. CommandText = "SELECT city. name AS cityName, city. popul ation AS CityPopul ati on,
& "country.name, country. popul ati on, country.continent _
& "FROM country, city ORDER BY country.continent, country.nane"
cnd. Connecti on = conn
myAdapt er . Sel ect Command = cnd
myAdapt er. Fi | | (myDat a)
nmyData. WiteXm ("C:\dataset.xm ", Xml WiteMde. WiteSchenn)
Catch ex As Exception
MessageBox. Show(ex. Message, "Report could not be created", MessageBoxButtons. 0K, MessageBoxl con. Err
End Try

The resulting XML file can be used as an ADO.NET XML datasource when designing your report.

If you choose to design your reports using Connector/ODBC, it can be downloaded from
dev.mysqgl.com.

4.5.13.2 Creating the Report

For most purposes, the Standard Report wizard helps with the initial creation of a report. To start the
wizard, open Crystal Reports and choose the New > Standard Report option from the File menu.

241

https://dev.mysql.com/downloads/connector/odbc/3.51.html

Using Connector/NET with Crystal Reports

The wizard first prompts you for a data source. If you use Connector/ODBC as your data source,

use the OLEDB provider for ODBC option from the OLE DB (ADO) tree instead of the ODBC (RDO)
tree when choosing a data source. If using a saved data set, choose the ADO.NET (XML) option and
browse to your saved data set.

The remainder of the report creation process is done automatically by the wizard.

After the report is created, choose the Report Options entry from the File menu. Un-check the Save
Data With Report option. This prevents saved data from interfering with the loading of data within our
application.

4.5.13.3 Displaying the Report

To display a report we first populate a data set with the data needed for the report, then load the report
and bind it to the data set. Finally we pass the report to the crViewer control for display to the user.

The following references are needed in a project that displays a report:
» CrystalDecisions.CrystalReports.Engine

» CrystalDecisions.ReportSource

 CrystalDecisions.Shared

» CrystalDecisions.Windows.Forms

The following code assumes that you created your report using a data set saved using the code
shown in Section 4.5.13.1, “Creating a Data Source”, and have a crViewer control on your form named
my Vi ewer .

C# Code Example

usi ng Crystal Deci si ons. Cryst al Reports. Engi ne;
usi ng System Dat a;
using MySql . Data. MySgl d i ent ;
Repor t Document myReport = new Report Docunent () ;
Dat aSet nmyData = new Dat aSet () ;
MySql . Dat a. MySgl Cl i ent. MySgl Connecti on conn;
MySql . Dat a. MySgl Cl i ent . MySql Command cnd;
M/Sql . Dat a. MySgl Cl i ent . MySql Dat aAdapt er myAdapt er ;
conn = new MySql . Data. MySqgl d i ent . MySgl Connecti on() ;
cmd = new MySqgl . Dat a. MySgl i ent . MySgl Conmand() ;
myAdapt er = new MySql . Dat a. MySql Cl i ent . MySql Dat aAdapt er () ;
conn. ConnectionString = "server=127.0.0. 1; ui d=root; " +
" pwd=12345; dat abase=t est";
try
{
crmd. CommandText = "SELECT city.name AS cityName, city.popul ation AS C tyPopul ation, " +
"country. name, country.popul ati on, country.continent " +
"FROM country, city ORDER BY country.continent, country.name";
crd. Connecti on = conn;
myAdapt er . Sel ect Conmand = cnd;
myAdapt er. Fil | (myDat a) ;
myReport. Load(@.\world_report.rpt");
myReport . Set Dat aSour ce(nyDat a) ;
myVi ewer . Report Source = nyReport;

}
catch (MySql . Data. MySql C i ent. MySgl Excepti on ex)

MessageBox. Show(ex. Message, "Report could not be created",
MessageBoxBut t ons. OK, MessageBoxI con. Error);

}

Visual Basic Code Example

I nports Crystal Deci sions. Crystal Reports. Engi ne

Using Connector/NET with Crystal Reports

I nports System Dat a
I mports MySql . Data. MySgl C i ent
Di m myReport As New Report Docunent
Di m nyDat a As New Dat aSet
Di m conn As New MySqgl Connecti on
Dimcnmd As New MySql Command
Di m myAdapt er As New MySqgl Dat aAdapt er
conn. ConnectionString = _
"server=127.0.0.1;" _
& "uid=root;" _
& "pwd=12345; " _
& "dat abase=t est"
Try
conn. Open()
cnd. CommandText = "SELECT city. name AS cityName, city. popul ation AS CityPopul ati on,
& "country.name, country. popul ati on, country.continent _
& "FROM country, city ORDER BY country.continent, country.nane"
crd. Connecti on = conn
myAdapt er . Sel ect Conmand = cnd
myAdapt er. Fi | | (myDat a)
myReport. Load(".\world_report.rpt")
myReport . Set Dat aSour ce(nyDat a)
myVi ewer . Report Source = nyReport
Catch ex As Exception
MessageBox. Show(ex. Message, "Report could not be created", MessageBoxButtons. 0K, MessageBoxlcon. Err
End Try

A new data set it generated using the same query used to generate the previously saved data set.
Once the data set is filled, a ReportDocument is used to load the report file and bind it to the data set.
The ReportDocument is the passed as the ReportSource of the crViewer.

This same approach is taken when a report is created from a single table using Connector/ODBC. The
data set replaces the table used in the report and the report is displayed properly.

When a report is created from multiple tables using Connector/ODBC, a data set with multiple tables
must be created in our application. This enables each table in the report data source to be replaced
with a report in the data set.

We populate a data set with multiple tables by providing multiple SELECT statements in our
MySglCommand object. These SELECT statements are based on the SQL query shown in Crystal
Reports in the Database menu's Show SQL Query option. Assume the following query:

SELECT “country . Nane', “country . Continent’, “country . Population, “city . Name', “city . Populati
FROM “world*. country' “country’ LEFT OQUTER JON “world . city’ “city’ ON “country . Code = city . Cour
ORDER BY “country . Continent , “country . Name', “city . Nanme

This query is converted to two SELECT queries and displayed with the following code:

C# Code Example

usi ng Crystal Deci si ons. Cryst al Reports. Engi ne;
usi ng System Dat a;
using MySql . Data. MySgl d i ent ;
Repor t Document mnmyReport = new Report Docunent () ;
Dat aSet nyData = new Dat aSet () ;
MySql . Dat a. MySgl Cl i ent. MySgl Connecti on conn;
MySql . Dat a. MySgl Cl i ent. MySqgl Command cnd;
M/Sql . Dat a. MySgl Cl i ent . MySqgl Dat aAdapt er nyAdapt er ;
conn = new MySql . Data. MySqgl C i ent. MySgl Connecti on() ;
cmd = new MySql . Data. MySgl d i ent. MySgl Conmand() ;
myAdapt er = new MySql . Dat a. MySql Cl i ent . MySql Dat aAdapt er () ;
conn. ConnectionString = “server=127.0.0. 1; ui d=root; " +
" pwd=12345; dat abase=t est";
try
{
cnd. CommandText = " SELECT nane, popul ati on, countrycode FROM city ORDER " +

"BY countrycode, name; SELECT name, popul ation, code, continent FROM " +
"country ORDER BY continent, nane";
crd. Connecti on = conn;

243

https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/select.html

Asynchronous Methods

myAdapt er . Sel ect Conmand = cnd;

myAdapter. Fil |l (myDat a) ;

myReport. Load(@.\world_report.rpt");

myReport . Dat abase. Tabl es(0) . Set Dat aSour ce(myDat a. Tabl es(0));
myReport . Dat abase. Tabl es(1) . Set Dat aSour ce(nmyDat a. Tabl es(1));
myVi ewer . Report Source = nyReport;

}
catch (MySql . Data. MySql C i ent. MySql Excepti on ex)
{

MessageBox. Show(ex. Message, "Report could not be created",
MessageBoxBut t ons. OK, MessageBoxI con. Error);

}

Visual Basic Code Example

I nports Crystal Deci sions. Crystal Reports. Engi ne
I mports System Dat a
I nports MySql . Data. MySgl d i ent
Di m myReport As New Report Docunent
Di m myData As New Dat aSet
Di m conn As New MySqgl Connecti on
Dimcnd As New MySql Conmand
Di m myAdapt er As New MySql Dat aAdapt er
conn. ConnectionString = "server=127.0.0.1;" _
& "uid=root;" _
& "pwd=12345; " _
& "dat abase=wor| d"
Try
conn. Open()
cnd. CommandText = " SELECT nane, popul ati on, countrycode FROM city ORDER BY countrycode, nane;
& "SELECT nane, popul ation, code, continent FROM country ORDER BY continent, nang"
cnd. Connecti on = conn
nmyAdapt er . Sel ect Coomand = cnd
nmyAdapt er. Fi | | (myDat a)
nmyReport. Load(".\world_report.rpt")
nmyRepor t . Dat abase. Tabl es(0) . Set Dat aSour ce(nyDat a. Tabl es(0))
nmyRepor t . Dat abase. Tabl es(1) . Set Dat aSour ce(nyDat a. Tabl es(1))
nmyVi ewer . Report Source = nyReport
Catch ex As Exception
MessageBox. Show(ex. Message, "Report could not be created", MessageBoxButtons. OK, MessageBoxl con. Error)
End Try

It is important to order the SELECT queries in alphabetic order, as this is the order the report will expect
its source tables to be in. One SetDataSource statement is needed for each table in the report.

This approach can cause performance problems because Crystal Reports must bind the tables
together on the client-side, which will be slower than using a pre-saved data set.

4.5.14 Asynchronous Methods

The Task-based Asynchronous Pattern (TAP) is a pattern for asynchrony in the .NET Framework. It
is based on the Task and Task<TResul t > types in the Syst em Thr eadi ng. Tasks namespace,
which are used to represent arbitrary asynchronous operations.

Async-Await are new keywords introduced to work with the TAP. The Async modifier is used to
specify that a method, lambda expression, or anonymous method is asynchronous. The Await operator
is applied to a task in an asynchronous method to suspend the execution of the method until the
awaited task completes.

Requirements
» Async-Await support requires .NET Framework 4.5 or later
» TAP support requires .NET Framework 4.0 or later

» MySQL Connector/NET 6.9 or later

244

https://dev.mysql.com/doc/refman/8.0/en/select.html

Asynchronous Methods

Methods

The following methods can be used with either TAP or Async-Await.

* Namespace MySql . Dat a. Entity

¢ Class EFMySql Conmmrand

Task Prepar eAsync()

Task Prepar eAsync(Cancel | ati onToken)

» Namespace MySql . Dat a

Class My Sql Bul kLoader

Task<i nt > LoadAsync()

Task<i nt > LoadAsync(Cancel | ati onToken

Class MySqgl Connecti on

Task<MySqgl Tr ansact i on> Begi nTransact i onAsync()
Task<MySgl Tr ansacti on> Begi nTransacti onAsync (Cancel | ati onToken)
Task<MySgl Tr ansacti on> Begi nTransacti onAsync(| sol ati onLevel)

Task<MySqgl Transact i on> Begi nTransacti onAsync (Isol ati onLevel
Cancel | ati onToken)

Task ChangeDat abaseAsync(stri ng)

Task ChangeDat abaseAsync(string, Cancell ati onToken)

Task Cl oseAsync()

Task Cl oseAsync(Cancel | ati onToken)

Task Cl ear Pool Async(MySqgl Connect i on)

Task Cl ear Pool Async(MySqgl Connection, Cancel |l ati onToken)

Task C ear Al | Pool sAsync()

Task Cl ear Al | Pool sAsync(Cancel | ati onToken)

Task<MySql SchenaCol | ecti on> Get SchenmaCol | ection(string, string[])

Task<MySql SchenaCol | ecti on> Get SchenmaCol | ection(string, string[],
Cancel | ati onToken)

Class My Sql Dat aAdapt er

Task<int>Fi |l Async(Dat aSet)

Task<int>Fill Async(Dat aSet, Cancell ationToken)
Task<int>Fi || Async(Dat aTabl e)

Task<int>Fi |l Async(Dat aTabl e, Cancel |l ati onToken)

Task<int>Fill Async(Dat aSet, string)

245

Asynchronous Methods

Task<int>Fill Async(DataSet, string, CancellationToken)

Task<int>Fill Async(Dat aTabl e, | Dat aReader)

Task<int>Fi |l Async(Dat aTabl e, | Dat aReader,

Task<int>Fi |l Async(Dat aTabl e, | DbConmand,

Task<int>Fi |l Async(Dat aTabl e, | DbConmand,
Cancel | ati onToken)

Cancel | ati onToken)
ConmandBehavi or)

CommandBehavi or,

Task<int>Fill Async(int, int, parans DataTable[])

Task<int>Fill Async(int, int, parans DataTable[],

Task<int>Fill Async(DataSet, int, int, string)

Task<int>Fill Async(DataSet, int, int, string, CancellationToken)

Task<int>Fill Async(DataSet, string, |DataReader, int, int)

Task<int>Fill Async(DataSet, string, |DataReader, int, int,

Cancel | ati onToken)
Task<int>Fi |l Async(DataTable[], int, int,

Task<i nt>Fi | | Async(DataTabl e[], int, int,
Cancel | ati onToken)

| DbCommand, CommandBehavi or)

| DbCommand, ComrandBehavi or,

Task<int>Fill Async(DataSet, int, int, string, |DbConmand,

CommandBehavi or)

Task<int>Fill Async(DataSet, int, int, string, |DbConmand,

ConmandBehavi or, Cancel | ati onToken)
Task<Dat aTabl e[] > Fi | | SchemaAsync(Dat aSet ,

Task<Dat aTabl e[] > Fi | | SchemaAsync(Dat aSet ,
Cancel | ati onToken)

Task<Dat aTabl e[] > Fi | | SchemaAsync(Dat aSet ,

Task<Dat aTabl e[] > Fi | | SchemaAsync(Dat aSet ,
Cancel | ati onToken)

Task<Dat aTabl e[] > Fi | | SchemaAsync(Dat aSet ,
| Dat aReader)

Task<Dat aTabl e[] > Fi | | SchemaAsync(Dat aSet ,
| Dat aReader, Cancel | ati onToken)

Task<Dat aTabl e[] > Fi | | SchemaAsync(Dat aSet ,
string, ConmmandBehavi or)

Task<Dat aTabl e[] > Fi | | SchemaAsync(Dat aSet ,

string, ConmandBehavi or, Cancell ationToken)

Task<Dat aTabl e> Fi | | SchemaAsync(Dat aTabl e,

Task<Dat aTabl e> Fi | | SchenaAsync(Dat aTabl e,
Cancel | ati onToken)

SchemaType)

SchemaType,

SchemaType, string)

SchemaType, string,

SchemaType, string,

SchemaType, string,

SchemaType, | DbCommand,

SchemaType, | DbComand,

SchemaType)

SchemaType,

246

Cancel | ati onToken)

Asynchronous Methods

Task<Dat aTabl e> Fi | | SchenmaAsync(Dat aTabl e, SchemaType, | Dat aReader)

Task<Dat aTabl e> Fi | | SchemaAsync(Dat aTabl e, SchemaType, | Dat aReader,
Cancel | ati onToken)

Task<Dat aTabl e> Fi | | SchemaAsync(Dat aTabl e, SchemaType, | DbConmand,
ConmandBehavi or)

Task<Dat aTabl e> Fi | | SchemaAsync(Dat aTabl e, SchemaType, | DbConmand,
ConmandBehavi or, Cancel | ati onToken)

Task<i nt > Updat eAsync(Dat aRow])

Task<i nt > Updat eAsync(Dat aRow[], Cancel | ati onToken)

Task<i nt > Updat eAsync(Dat aSet)

Task<i nt > Updat eAsync(Dat aSet, Cancel | ati onToken)

Task<i nt > Updat eAsync(Dat aTabl e)

Task<i nt > Updat eAsync(Dat aTabl e, Cancel | ati onToken)

Task<i nt > Updat eAsync(Dat aRow[], Dat aTabl eMappi ng, Cancel | ati onToken)
Task<i nt > Updat eAsync(Dat aSet, string)

Task<i nt > Updat eAsync(Dat aSet, string, CancellationToken)

Class My Sql Hel per

Task<Dat aRow> Execut eDat aRowAsync(string, string, parans
MySql Par anmeter[])

Task<Dat aRow> Execut eDat aRowAsync(string, string, CancellationToken,
paranms MySql Paraneter[])

Task<i nt > Execut eNonQuer yAsync(MySql Connection, string, parans
MySql Par aneter[])

Task<i nt > Execut eNonQuer yAsync(MySqgl Connecti on, string,
Cancel | ati onToken, parans MySgl Paraneter[])

Task<i nt > Execut eNonQuer yAsync(string, string, paranms MySql Paranmeter[])

Task<i nt > Execut eNonQuer yAsync(string, string, CancellationToken,
parans MySqgl Paraneter[])

Task<Dat aSet > Execut eDat aset Async(string, string)
Task<Dat aSet > Execut eDat aset Async(string, string, CancellationToken)

Task<Dat aSet > Execut eDat aset Async(string, string, CancellationToken,
parans MySqgl Paraneter[])

Task<Dat aSet > Execut eDat aset Async(MySgl Connecti on, string)

Task<Dat aSet > Execut eDat aset Async(MySgl Connecti on, string,
Cancel | ati onToken)

247

Asynchronous Methods

e Task<Dat aSet > Execut eDat aset Async(M/Sql Connecti on, string, parans
MySql Par aneter[])

» Task<Dat aSet > Execut eDat aset Async(MySql Connecti on, string,
Cancel | ati onToken, parans MySgl Paraneter[])

e Task Updat eDat aSet Async(string, string, DataSet, string)

e Task Updat eDat aSet Async(string, string, DataSet, string,
Cancel | ati onToken)

« Task<MySql Dat aReader > Execut eReader Async(MySqgl Connecti on,
MySqgl Transaction, string, MSgl Parameter[], bool)

e Task<WySql Dat aReader > Execut eReader Async(MySqgl Connecti on,
MySqgl Transaction, string, MySql Paraneter[], bool, CancellationToken)

e Task<MySql Dat aReader > Execut eReader Async(string, string)

* Task<MySql Dat aReader > Execut eReader Async(string, string,
Cancel | ati onToken)

* Task<MySql Dat aReader > Execut eReader Async(MySqgl Connecti on, string)

e Task<MySql Dat aReader > Execut eReader Async(MySqgl Connecti on, string,
Cancel | ati onToken)

e Task<MySql Dat aReader > Execut eReader Async(string, string, parans
MySql Par aneter[])

» Task<MySql Dat aReader > Execut eReader Async(string, string,
Cancel | ati onToken, parans MySqgl Paraneter[])

e Task<MySql Dat aReader > Execut eReader Async(MySqgl Connecti on, string,
paranms MySql Paraneter[])

» Task<MySql Dat aReader > Execut eReader Async(MySqgl Connecti on, string,
Cancel | ati onToken, parans MySgl Paraneter[])

* Task<obj ect > Execut eScal ar Async(string, string)
e Task<obj ect > Execut eScal ar Async(string, string, CancellationToken)

e Task<obj ect > Execut eScal ar Async(string, string, parans
MySql Par aneter[])

e Task<obj ect > Execut eScal ar Async(string, string, CancellationToken,
params MySql Parameter[])

e Task<obj ect > Execut eScal ar Async(MySqgl Connecti on, string)

e Task<obj ect > Execut eScal ar Async(MySqgl Connecti on, string,
Cancel | ati onToken)

* Task<obj ect > Execut eScal ar Async(MySql Connection, string, parans
MySql Par aneter[])

e Task<obj ect > Execut eScal ar Async(MySqgl Connecti on, string,
Cancel | ati onToken, parans MySql Paraneter[])

248

Asynchronous Methods

e Class MySql Scri pt

Task<i nt > Execut eAsync()

Task<i nt > Execut eAsync(Cancel | ati onToken)

In addition to the methods listed above, the following are methods inherited from the .NET Framework:

e Namespace MySql . Data. Entity

Class EFMy Sql Commrand

Task<DbDat aReader > Execut eDbDat aReader Async(CommandBehavi our ,
Cancel | ati onToken)

Task<i nt > Execut eNonQuer yAsync()

Task<i nt > Execut eNonQuer yAsync(Cancel | ati onToken)
Task<DbDat aReader > Execut eReader Async()

Task<DbDat aReader > Execut eReader Async(Cancel | ati onToken)
Task<DbDat aReader > Execut eReader Async(CormandBehavi our)

Task<DbDat aReader > Execut eReader Async(CormandBehavi our ,
Cancel | ati onToken)

Task<obj ect > Execut eScal ar Async()

Task<obj ect > Execut eScal ar Async(Cancel | ati onToken)

« Namespace MySql . Dat a

Class Wy Sql Command

Task<DbDat aReader > Execut eDbDat aReader Async(CommandBehavi our,
Cancel | ati onToken)

Task<i nt > Execut eNonQuer yAsync()

Task<i nt > Execut eNonQuer yAsync(Cancel | ati onToken)
Task<DbDat aReader > Execut eReader Async()

Task<DbDat aReader > Execut eReader Async(Cancel | ati onToken)
Task<DbDat aReader > Execut eReader Async(CormandBehavi our)

Task<DbDat aReader > Execut eReader Async(CormandBehavi our,
Cancel | ati onToken)

Task<obj ect > Execut eScal ar Async()

Task<obj ect > Execut eScal ar Async(Cancel | ati onToken)

Class MySql Connecti on

Task OpenAsync()

Task OpenAsync(Cancel | ati onToken)

249

Binary and Nonbinary Issues

e Class MySql Dat aReader
e Task<T> Get Fi el dVal ueAsync<T>(int)
e Task<T> Cet Fi el dval ueAsync<T>(int, Cancell ationToken)
e Task<bool > 1 sDBNul | Async(i nt)
» Task<bool >1sDBNul | Async(int, CancellationToken)
e Task<bool > Next Resul t Async()
e Task<bool > Next Resul t Async(Cancel | ati onToken)
e Task<bool > ReadAsync()

e Task<bool > ReadAsync(Cancel | ati onToken)

Examples

The following C# code examples demonstrate how to use the asynchronous methods:

In this example, a method has the async modifier because the method awai t call made applies to
the method LoadAsync. The method returns a Task object that contains information about the result
of the awaited method. Returning Task is like having a void method, but you should not use async
voi d if your method is not a top-level access method like an event.

public async Task Bul kLoadAsync()
{
My/Sql Connect i on myConn
My/Sql Bul kLoader | oader

new MySgl Connecti on("M/ConnectionString");
new MySgl Bul kLoader (myConn) ;

| oader . Tabl eNane
| oader . Fi | eNane
| oader . Ti meout

"Bul kLoadTest";
@c:\ MyPat h\ MyFi l e. t xt";
0;

var result

}

awai t | oader. LoadAsync();

In this example, an "async void" method is used with "await" for the Execut eNonQuer yAsync
method, to correspond to the onclick event of a button. This is why the method does not return a Task.

private async void nyButton_Click()
{
MySql Connecti on myConn
MySql Conmand pr oc

new MySgl Connecti on("M/ConnectionString");
new MySgl Conmand(" MyAsyncSpTest", mnyConn);

proc. ConmandType ConmandType. St or edPr ocedur e;

int result

}

awai t proc. Execut eNonQuer yAsync() ;

4.5.15 Binary and Nonbinary Issues

There are certain situations where MySQL will return incorrect metadata about one or more columns.
More specifically, the server can sometimes report that a column is binary when it is not (and the
reverse). In these situations, it becomes practically impossible for the connector to be able to correctly
identify the correct metadata.

Some examples of situations that may return incorrect metadata are:

» Execution of SHOW PROCESSLI ST. Some of the columns are returned as binary even though they
only hold string data.

250

https://dev.mysql.com/doc/refman/8.0/en/show-processlist.html

Character Set Considerations for Connector/NET

* When a temporary table is used to process a result set, some columns may be returned with
incorrect binary flags.

» Some server functions such DATE_FORNAT return the column incorrectly as binary.

With the availability of Bl NARY and VARBI NARY data types, it is important to respect the metadata
returned by the server. However, some existing applications may encounter issues with this change
and can use a connection string option to enable or disable it. By default, Connector/NET respects
the binary flags returned by the server. You might need to make small changes to your application to
accommodate this change.

In the event that the changes required to your application are too large, adding ' r espect bi nary
fl ags=f al se' to your connection string causes the connector to use the prior behavior: any column
that is marked as string, regardless of binary flags, will be returned as string. Only columns that are
specifically marked as a BLOB will be returned as BLOB.

4.5.16 Character Set Considerations for Connector/NET

Treating Binary Blobs As UTF8

Before the introduction of 4-byte UTF-8 character set, MySQL did not support 4-byte UTF8 sequences.
This makes it difficult to represent some multibyte languages such as Japanese. To try and alleviate
this, MySQL Connector/NET supports a mode where binary blobs can be treated as strings.

To do this, you setthe ' Treat Bl obs As UTF8' connection string keyword to t r ue. This is

all that needs to be done to enable conversion of all binary blobs to UTF8 strings. To convert only
some of your BLOB columns, you can make use of the ' Bl obAsUTF8I ncl udePatt ern' and

' Bl obASUTF8Excl udePat t er n' keywords. Set these to a regular expression pattern that matches
the column names to include or exclude respectively.

When the regular expression patterns both match a single column, the include pattern is applied before
the exclude pattern. The result, in this case, is that the column is excluded. Also, be aware that this
mode does not apply to columns of type Bl NARY or VARBI NARY and also do not apply to nonbinary
BLOB columns.

This mode only applies to reading strings out of MySQL. To insert 4-byte UTF8 strings into blob
columns, use the .NET Encodi ng. Get Byt es function to convert your string to a series of bytes. You
can then set this byte array as a parameter for a BLOB column.

4.6 Connector/NET Tutorials

The following MySQL Connector/NET tutorials illustrate how to develop MySQL programs using
technologies such as Visual Studio, C#, ASP.NET, and the .NET, .NET Core, and Mono frameworks.
Work through the first tutorial to verify that you have the right software components installed and
configured, then choose other tutorials to try depending on the features you intend to use in your
applications.

4.6.1 Tutorial: An Introduction to Connector/NET Programming

This section provides a gentle introduction to programming with MySQL Connector/NET. The code
example is written in C#, and is designed to work on both Microsoft .NET Framework and Mono.

This tutorial is designed to get you up and running with Connector/NET as quickly as possible, it does
not go into detail on any particular topic. However, the following sections of this manual describe each
of the topics introduced in this tutorial in more detail. In this tutorial you are encouraged to type in and
run the code, modifying it as required for your setup.

This tutorial assumes you have MySQL and Connector/NET already installed. It also assumes that you
have installed the wor | d database sample, which can be downloaded from the MySQL Documentation
page. You can also find details on how to install the database on the same page.

251

https://dev.mysql.com/doc/refman/8.0/en/charset-unicode-utf8mb4.html
https://dev.mysql.com/doc/index-other.html
https://dev.mysql.com/doc/index-other.html

Tutorial: An Introduction to Connector/NET Programming

Note

Before compiling the code example, make sure that you have added
References to your project as required. The References required are Syst em
Syst em Dat a and MySql . Dat a.

4.6.1.1 The MySglConnection Object

For your MySQL Connector/NET application to connect to a MySQL database, it must establish a
connection by using a MySqgl Connect i on object.

The MySgl Connect i on constructor takes a connection string as one of its parameters. The
connection string provides necessary information to make the connection to the MySQL database.
The connection string is discussed more fully in Section 4.4, “Connector/NET Connections”. For a
list of supported connection string options, see Section 4.4.5, “Connector/NET Connection Options
Reference”.

The following code shows how to create a connection object/

usi ng System
usi ng System Dat a;

usi ng MySql . Dat a;
using MySql . Data. MySgl d i ent ;

public class Tutoriall

{
public static void Main()
{
string connStr = "server =l ocal host ; user =r oot ; dat abase=wor | d; port =3306; passwor d=******x" .
MySgl Connecti on conn = new MySqgl Connecti on(connStr);
try
{
Consol e. Wi telLine("Connecting to MySQL...");
conn. Open();
/] Perform dat abase operations
catch (Exception ex)
{
Consol e. WitelLine(ex. ToString());
}
conn. Cl ose();
Consol e. Wi telLi ne("Done.");
}
}

When the MySqgl Connect i on constructor is invoked, it returns a connection object, which is used for
subsequent database operations. Open the connection before any other operations take place. Before
the application exits, close the connection to the database by calling Cl ose on the connection object.

Sometimes an attempt to perform an Cpen on a connection object can fail, generating an exception
that can be handled using standard exception handling code.

In this section you have learned how to create a connection to a MySQL database, and open and close
the corresponding connection object.

4.6.1.2 The MySqlCommand Object

When a connection has been established with the MySQL database, the next step enables you to
perform database operations. This task can be achieved through the use of the My Sgl Comrand object.

After it has been created, there are three main methods of interest that you can call:

* Execut eReader to query the database. Results are usually returned in a MySqgl Dat aReader
object, created by Execut eReader .

252

Tutorial: An Introduction to Connector/NET Programming

e Execut eNonQuery to insert, update, and delete data.
* Execut eScal ar to return a single value.

After the My Sql Command object is created, you can call one of the previous methods on it to

carry out a database operation, such as perform a query. The results are usually returned into a

My Sql Dat aReader object, and then processed. For example, the results might be displayed as the
following code example demonstrates.

usi ng System
usi ng System Dat a;

usi ng MySql . Dat a;
using MySql . Data. MySgl d i ent ;

public class Tutorial2

{
public static void Main()
{
string connStr = "server =l ocal host ; user =r oot ; dat abase=wor | d; port =3306; passwor d=******x" .
MySgl Connecti on conn = new MySqgl Connecti on(connStr);
try
{
Consol e. Wi telLine("Connecting to MySQL...");
conn. Qpen() ;
string sql = "SELECT Nane, HeadO State FROM Country WHERE Conti nent='Cceania'";
M/Sql Command cnd = new MySql Command(sql, conn);
MySqgl Dat aReader rdr = cnd. Execut eReader () ;
while (rdr.Read())
{
Consol e. WiteLine(rdr[O]+" -- "+rdr[1]);
}
rdr. d ose();
}
catch (Exception ex)
{
Consol e. WitelLine(ex. ToString());
}
conn. Cl ose();
Consol e. Wi telLi ne("Done.");
}
}

When a connection has been created and opened, the code then creates a My Sgl Conmand

object. Then the SQL query to be executed is passed to the My Sql Conmand constructor. The

Execut eReader method is then used to generate a MySqgl Reader object. The My Sql Reader

object contains the results generated by the SQL executed on the My Sql Cormand object. When the
results have been obtained in a My Sql Reader object, the results can be processed. In this case, the
information is printed out by a whi | e loop. Finally, the My Sql Reader object is disposed of by invoking
the C ose method.

The next example shows how to use the Execut eNonQuer y method.

The procedure for performing an Execut eNonQuer y method call is simpler, as there is no need
to create an object to store results. This is because Execut eNonQuer y is only used for inserting,
updating and deleting data. The following example illustrates a simple update to the Count r y table:

usi ng System
usi ng System Dat a;

usi ng MySql . Dat a;
using MySql . Data. MySgl d i ent ;

public class Tutorial3

{

253

Tutorial: An Introduction to Connector/NET Programming

public static void Main()

{
string connStr = "server =l ocal host ; user =r oot ; dat abase=wor | d; port =3306; passwor d=******x"_
MySgl Connecti on conn = new MySqgl Connecti on(connStr);
try
{
Consol e. Wi teLine("Connecting to MySQL...");
conn. Qpen();
string sql = "INSERT I NTO Country (Name, HeadOf State, Continent) VALUES (' Disneyland ,'M ckey |
MySgl Command cnd = new MySql Command(sqgl, conn);
cnd. Execut eNonQuery();
}
catch (Exception ex)
{
Consol e. WitelLine(ex. ToString());
}
conn. Cl ose();
Consol e. Wi telLi ne("Done.");
}

}

The query is constructed, the My Sql Command object created and the Execut eNonQuer y method
called on the My Sql Command object. You can access your MySQL database with mysql and verify
that the update was carried out correctly.

Finally, you can use the Execut eScal ar method to return a single value. Again, this is
straightforward, as a MySqgl Dat aReader object is not required to store results, a variable is used
instead. The following code illustrates how to use the Execut eScal ar method:

usi ng System
usi ng System Dat a;

usi ng MySql . Dat a;
using MySql . Data. MySgl d i ent ;

public class Tutorial4
{
public static void Min()
{
string connStr = "server =l ocal host ; user =r oot ; dat abase=wor | d; port =3306; passwor d=x*****x" .
My/Sql Connecti on conn = new MySql Connecti on(connStr);
try
{
Consol e. WitelLine("Connecting to MySQ....");
conn. Qpen();

string sgql = "SELECT COUNT(*) FROM Country";
MySgl Command cnd = new MySgl Command(sql, conn);
obj ect result = cnd. ExecuteScal ar();
if (result !'= null)
{
int r = Convert. Tolnt32(result);
Consol e. Wi telLi ne("Nunber of countries in the world database is: " + r);

catch (Exception ex)

{
}

Consol e. WitelLine(ex. ToString());

conn. C ose();
Consol e. WitelLine("Done.");

}

This example uses a simple query to count the rows in the Count r y table. The result is obtained by
calling Execut eScal ar on the My Sql Cormand object.

254

Tutorial: An Introduction to Connector/NET Programming

4.6.1.3 Working with Decoupled Data

Previously, when using My Sql Dat aReader , the connection to the database was continually
maintained unless explicitly closed. It is also possible to work in a manner where a connection is only
established when needed. For example, in this mode, a connection could be established to read a
chunk of data, the data could then be modified by the application as required. A connection could then
be reestablished only if and when the application writes data back to the database. This decouples the
working data set from the database.

This decoupled mode of working with data is supported by MySQL Connector/NET. There are several
parts involved in allowing this method to work:

» Data Set. The Data Set is the area in which data is loaded to read or modify it. A Dat aSet object
is instantiated, which can store multiple tables of data.

» Data Adapter. The Data Adapter is the interface between the Data Set and the database
itself. The Data Adapter is responsible for efficiently managing connections to the database,
opening and closing them as required. The Data Adapter is created by instantiating an object of the
My Sql Dat aAdapt er class. The MySql Dat aAdapt er object has two main methods: Fi | | which
reads data into the Data Set, and Updat e, which writes data from the Data Set to the database.

« Command Builder. = The Command Builder is a support object. The Command Builder works
in conjunction with the Data Adapter. When a My Sgl Dat aAdapt er object is created, it is typically
given an initial SELECT statement. From this SELECT statement the Command Builder can work
out the corresponding | NSERT, UPDATE and DELETE statements that would be required to update
the database. To create the Command Builder, an object of the class My Sql CormandBui | der is
created.

The remaining sections describe each of these classes in more detail.
Instantiating a DataSet Object

A Dat aSet object can be created simply, as shown in the following code-snippet:
Dat aSet dsCountry;

dsCountry = new Dat aSet ();

Although this creates the Dat aSet object, it has not yet filled it with data. For that, a Data Adapter is
required.

Instantiating a MySqlDataAdapter Object

The MySql Dat aAdapt er can be created as illustrated by the following example:
M/ Sql Dat aAdapt er daCountry;

string sgql = "SELECT Code, Name, HeadOf State FROM Country WHERE Continent='North America'";
daCountry = new MySqgl Dat aAdapter (sqgl, conn);

Note
The MySql Dat aAdapt er is given the SQL specifying the data to work with.
Instantiating a MySqglCommandBuilder Object

Once the MySqgl Dat aAdapt er has been created, it is necessary to generate the additional statements
required for inserting, updating and deleting data. There are several ways to do this, but in this tutorial
you will see how this can most easily be done with MySgl ConmmandBui | der . The following code
shippet illustrates how this is done:

My Sql CommandBui | der cb = new MySql ConmandBui | der (daCountry) ;

255

https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/delete.html

Tutorial: An Introduction to Connector/NET Programming

Note

The My Sql Dat aAdapt er object is passed as a parameter to the command
builder.

Filling the Data Set

To do anything useful with the data from your database, you need to load it into a Data Set. This is one
of the jobs of the My Sql Dat aAdapt er object, and is carried out with its Fi | | method. The following
code example illustrates this point.

Dat aSet dsCountry;

.d.s.Oount ry = new DataSet ();

.d;a.Oount ry.Fill (dsCountry, "Country");

The Fi | | method is a MySqgl Dat aAdapt er method, and the Data Adapter knows how to establish a

connection with the database and retrieve the required data, and then populate the Data Set when the
Fi I | method is called. The second parameter “Country” is the table in the Data Set to update.

Updating the Data Set

The data in the Data Set can now be manipulated by the application as required. At some
point, changes to data will need to be written back to the database. This is achieved through a
My Sql Dat aAdapt er method, the Updat e method.

daCount ry. Updat e(dsCountry, "Country");

Again, the Data Set and the table within the Data Set to update are specified.

Working Example

The interactions between the Dat aSet , My Sql Dat aAdapt er and MySql ConmandBui | der classes
can be a little confusing, so their operation can perhaps be best illustrated by working code.

In this example, data from the wor | d database is read into a Data Grid View control. Here, the data
can be viewed and changed before clicking an update button. The update button then activates code to
write changes back to the database. The code uses the principles explained previously. The application
was built using the Microsoft Visual Studio to place and create the user interface controls, but the

main code that uses the key classes described previously is shown in the next code example, and is
portable.

usi ng System

usi ng System Col | ecti ons. Generi c;
usi ng Syst em Conponent Mbdel ;

usi ng System Dat a;

usi ng System Dr aw ng;

usi ng System Linq;

usi ng System Text;

usi ng Syst em W ndows. For ns;

usi ng MySql . Dat a;
using MySql . Data. MySgl d i ent ;

namespace W ndowsFor nsAppl i cati on5

{

public partial class Fornl : Form

{
My Sql Dat aAdapt er daCountry;
Dat aSet dsCountry;

public Formil()
{

}

InitializeConponent();

256

Tutorial: An Introduction to Connector/NET Programming

private void Forml_Load(object sender, EventArgs e)

{

string connStr = "server =l ocal host ; user =r oot ; dat abase=wor | d; port =3306; passwor d=******"_
MySgl Connecti on conn = new MySqgl Connecti on(connStr);
try
{
| abel 2. Text = "Connecting to MySQ....";

string sql = "SELECT Code, Nane, HeadOf State FROM Country WHERE Continent='North Aneric
daCountry = new MySqgl Dat aAdapter (sql, conn);
MySgl ConmandBui | der cb = new MySql CommandBui | der (daCountry) ;

dsCountry = new Dat aSet () ;

daCountry. Fill (dsCountry, "Country");
dat aGi dVi ewl. Dat aSour ce dsCountry;
dat aG i dVi ewl. Dat aMenber "Country";

}

catch (Exception ex)
| abel 2. Text = ex. ToString();

}

private void buttonl_Cick(object sender, EventArgs e)

{
daCount ry. Updat e(dsCountry, "Country");

| abel 2. Text = "MySQ. Dat abase Updated!";

}

The following figure shows the application started. The World Database Application updated data in
three columns: Code, Name, and HeadOfState.

Figure 4.1 World Database Application

s Fermi — m| *
World Database Application

MySQL Database Updated!
Code Name Head(f State ~
ABW Auba Beatrix |
AlA Anguilla Eksabeth 1|
ANT Nethedands Antill.. Beatrix ||
ATG Antigua and Barb... Elisabeth ||
BHS Bahamas Elisabeth ||
BLZ Belize Eksabeth 1|
BMU Bermuda Eksabeth Il
BRB Barbados Blisabeth I
CAN Canada Blisabeth 1|
CRI Costa Rica Miguel Aingel Ro...
CuB Cuba Fidel Castro Ruz

» |crm Cayman Islands
DMA Dominica Vemon Shaw
DOM Dominican Reoyy | HinB%n Meila | ¥

4.6.1.4 Working with Parameters

This part of the tutorial shows you how to use parameters in your MySQL Connector/NET application.

257

Tutorial: An Introduction to Connector/NET Programming

Although it is possible to build SQL query strings directly from user input, this is not advisable as it does
not prevent erroneous or malicious information being entered. It is safer to use parameters as they will
be processed as field data only. For example, imagine the following query was constructed from user
input:

string sgql = "SELECT Nanme, HeadOf State FROM Country WHERE Conti nent = "+user_conti nent;

If the string user _conti nent came from a Text Box control, there would potentially be no control
over the string entered by the user. The user could enter a string that generates a runtime error, or in
the worst case actually harms the system. When using parameters it is not possible to do this because
a parameter is only ever treated as a field parameter, rather than an arbitrary piece of SQL code.

The same query written using a parameter for user input is:

string sql = "SELECT Nane, HeadOf State FROM Country WHERE Continent = @ontinent";
Note

The parameter is preceded by an '@' symbol to indicate it is to be treated as a
parameter.

As well as marking the position of the parameter in the query string, it is necessary to add a parameter
to the MySgl Conmmand object. This is illustrated by the following code snippet:

cnd. Par anet er s. AddW t hVal ue(" @ontinent", "North Anmerica");

In this example the string "North America" is supplied as the parameter value statically, but in a more
practical example it would come from a user input control.

A further example illustrates the complete process:

usi ng System
usi ng System Dat a;

usi ng MySql . Dat a;
usi ng MySql . Data. MySgl Cl i ent ;

public class Tutorial5

{
public static void Min()
{
string connStr = "server=l ocal host; user=r oot ; dat abase=wor | d; port =3306; passwor d=******".
M/Sql Connecti on conn = new MySql Connecti on(connStr);
try
{

Consol e. WitelLine("Connecting to MySQ....");
conn. pen() ;

string sgql = "SELECT Name, HeadOf State FROM Country WHERE Conti nent =@onti nent";
M/Sql Command cnd = new MySql Command(sql, conn);

Consol e. WiteLine("Enter a continent e.g. 'North Anerica', 'Europe': ");
string user_input = Consol e. ReadLi ne() ;

cnd. Par anet ers. AddW t hVal ue(" @onti nent", user_input);

M/Sql Dat aReader rdr = cnd. Execut eReader () ;

while (rdr.Read())

{ Consol e. WiteLine(rdr["Nane"]+" --- "+rdr["HeadO State"]);
idr. Cl ose();

catch (Exception ex)

{
}

Consol e. WitelLine(ex. ToString());

258

Tutorial: An Introduction to Connector/NET Programming

conn. Cl ose();
Consol e. Wi telLi ne("Done.");

}

In this part of the tutorial you have see how to use parameters to make your code more secure.

4.6.1.5 Working with Stored Procedures

This section illustrates how to work with stored procedures. Putting database-intensive operations into
stored procedures lets you define an API for your database application. You can reuse this APl across
multiple applications and multiple programming languages. This technique avoids duplicating database
code, saving time and effort when you make updates due to schema changes, tune the performance

of queries, or add new database operations for logging, security, and so on. Before working through
this tutorial, familiarize yourself with the CREATE PROCEDURE and CREATE FUNCTI ON statements that
create different kinds of stored routines.

For the purposes of this tutorial, you will create a simple stored procedure to see how it can be called
from MySQL Connector/NET. In the MySQL Client program, connect to the wor | d database and enter
the following stored procedure:

DELI M TER //

CREATE PROCEDURE country_hos

(I'N con CHAR(20))

BEG N
SELECT Nane, HeadOr State FROM Country
WHERE Continent = con;

END //

DELI M TER ;

Test that the stored procedure works as expected by typing the following into the mysql command
interpreter:

CALL country_hos("' Europe');
Note

The stored routine takes a single parameter, which is the continent to restrict
your search to.

Having confirmed that the stored procedure is present and correct, you can see how to access it from
Connector/NET.

Calling a stored procedure from your Connector/NET application is similar to techniques you have seen
earlier in this tutorial. A MySql Conmrand object is created, but rather than taking an SQL query as a
parameter, it takes the name of the stored procedure to call. Set the My Sql Conmand object to the type
of stored procedure, as shown by the following code snippet:

string rtn = "country_hos";
MySgl Command cnd = new MySgl Command(rtn, conn);
cnd. CommandType = CommandType. St or edPr ocedur e;

In this case, the stored procedure requires you to pass a parameter. This can be achieved using the
techniques seen in the previous section on parameters, Section 4.6.1.4, “Working with Parameters”, as
shown in the following code snippet:

cnd. Par anet ers. AddW t hVal ue(" @on", "Europe");

The value of the parameter @ on could more realistically have come from a user input control, but for
simplicity it is set as a static string in this example.

At this point, everything is set up and you can call the routine using techniques also learned in earlier
sections. In this case, the Execut eReader method of the My Sql Command object is used.

259

https://dev.mysql.com/doc/refman/8.0/en/create-procedure.html
https://dev.mysql.com/doc/refman/8.0/en/create-function.html

ASP.NET Provider Model and Tutorials

The following code shows the complete stored procedure example.

usi ng System
usi ng System Dat a;

usi ng MySql . Dat a;
using MySql . Data. MySgl d i ent ;

public class Tutorial6

{
public static void Min()
{
string connStr = "server =l ocal host ; user =r oot ; dat abase=wor | d; port =3306; passwor d=*****x"
My/Sql Connecti on conn = new MySql Connecti on(connStr);
try
{
Consol e. WitelLine("Connecting to MySQ....");
conn. Qpen();
string rtn = "country_hos";
MySgl Command cnd = new MySql Command(rtn, conn);
cnd. CommandType = CommandType. St or edPr ocedur e;
cnd. Par anet ers. AddW t hVal ue(" @on", "Europe");
MySqgl Dat aReader rdr = cnd. Execut eReader () ;
while (rdr.Read())
{
Consol e. WiteLine(rdr[0] + " --- " + rdr[1]);
}
rdr. d ose();
catch (Exception ex)
{
Consol e. WitelLine(ex. ToString());
}
conn. C ose();
Consol e. WitelLine("Done.");
}
}

In this section, you have seen how to call a stored procedure from Connector/NET. For the moment,
this concludes our introductory tutorial on programming with Connector/NET.

4.6.2 ASP.NET Provider Model and Tutorials

MySQL Connector/NET includes a provider model for use with ASP.NET applications. This model
enables developers to focus on the business logic of their application instead of having to recreate
such boilerplate items as membership and roles support.

Connector/NET supports the following web providers:
» Membership provider

* Roles provider

 Profiles provider

» Session state provider

The following tables show the supported providers, their default provider and the corresponding
MySQL provider.

Membership Provider

Default Provider System Web. Security. Sgl Menber shi pProvi der

260

ASP.NET Provider Model and Tutorials

MySQL Provider

‘M/Sql . Wb. Security. MySQ_Menber shi pPr ovi der

Role Provider

Default Provider

Syst em Web. Security. Sql Rol eProvi der

MySQL Provider

MySql . Web. Security. MySQLRol ePr ovi der

Profile Provider

Default Provider

System Web. Profil e. Sql Profil eProvider

MySQL Provider

MySql . Web. Profile. MySQLProf i | eProvi der

Session State Provider

Default Provider

Syst em Web. Sessi onState. | nProcSessi onSt at eStore

MySQL Provider

MySql . Web. Sessi onSt at e. MySql Sessi onSt at eSt ore

Note

The MySQL session state provider uses slightly different capitalization on the
class name compared to the other MySQL providers.

Installing the Providers

The installation of Connector/NET installs the providers and registers them in the .NET configuration
file (machi ne. conf i g) on your computer. The additional entries modify the syst em web section of
the file, which appears similar to the following example after the installation.

<syst em web>
<pr ocessModel

aut oConfi g="true" />

<ht t pHandl ers />

<menber shi p>
<provi der s>

<add nanme="
<add name="

</ provi der s>
</ menber shi p>
<profil e>

<provi der s>

<add name="
<add name="

</ provi der s>
</profile>
<r ol eManager >

<provi der s>

<add name="
<add name="
<add nanme="

</ provi der s>
</rol eManager >
</ syst em web>

AspNet Sql Menber shi pProvi der" type="System Web. Security. Sql Menber shi pProvi der, System\V
MySQLMenber shi pProvi der" type="M/Sql . Web. Security. MySQLMenber shi pProvi der, M/Sql . Wb,

AspNet Sql Profi | eProvi der" connectionStri ngNane="Local Sql Server" applicati onName="/" ty
M/SQLProfi | eProvi der" type="M/Sql.Wb. Profile. M\SQLProfil eProvider, M/Sql.Whb, Versior

AspNet Sql Rol eProvi der" connecti onStri ngNane="Local Sql Server" applicati onNane="/" type-=
AspNet W ndows TokenRol eProvi der" appl i cati onNane="/" type="System Web. Security. WndowsT
M/SQLRol eProvi der" type="M/Sql . Web. Security. M/SQLRol eProvi der, M/Sql . Wb, Version=6.1.

Each provider type can have multiple provider implementations. The default provider can also be
set here using the def aul t Pr ovi der attribute, but usually this is set in the web. conf i g file either
manually or by using the ASP.NET configuration tool.

At time of writing, the My Sql Sessi onSt at eSt or e is not added to machi ne. confi g at install time,
and so add the following:

<sessi onSt at e>
<provi der s>

<add nanme="M/Sql Sessi onSt at eSt ore" type="M/Sqgl . Web. Sessi onSt at e. MySql Sessi onSt at eSt ore, M/Sql . Wb,

261

ASP.NET Provider Model and Tutorials

</ provi der s>
</ sessi onSt at e>

The session state provider uses the cust onPr ovi der attribute, rather than def aul t Provi der, to
set the provider as the default. A typical web. conf i g file might contain:

<syst em web>
<menber shi p def aul t Provi der =" MySQ_LMenber shi pProvi der" />
<rol eManager defaul t Provi der =" MySQLRol eProvi der" />
<profile defaultProvider="M/SQLProfil eProvider" />
<sessi onStat e custonProvi der ="M/Sqgl Sessi onSt ateStore" />
<conpi | ati on debug="fal se">

This sets the MySQL Providers as the defaults to be used in this web application.

The providers are implemented in the file mysql . web. dl | and this file can be found in your
Connector/NET installation folder. There is no need to run any type of SQL script to set up the
database schema, as the providers create and maintain the proper schema automatically.

Working with MySQL Providers

The easiest way to start using the providers is to use the ASP.NET configuration tool that is available
on the Solution Explorer toolbar when you have a website project loaded.

In the web pages that open, you can select the MySQL membership and roles providers by picking a
custom provider for each area.

When the provider is installed, it creates a dummy connection string named Local MySql Ser ver .
Although this has to be done so that the provider will work in the ASP.NET configuration tool, you
override this connection string in your web. conf i g file. You do this by first removing the dummy
connection string and then adding in the proper one, as shown in the following example:

<connectionStrings>

<renove nane="Local MySql Server"/>

<add nane="Local MySgl Server" connectionStri ng="server =xxx; ui d=xxx; pwd=xxx; dat abase=xxx"/>
</ connectionStri ngs>

Note
You must specify the database in this connection.

A tutorial demonstrating how to use the membership and role providers can be found in the following
section Section 4.6.2.1, “Tutorial: Connector/NET ASP.NET Membership and Role Provider”.

Deployment

To use the providers on a production server, distribute the MySql . Dat a and the MySgl . Wb
assemblies, and either register them in the remote systems Global Assembly Cache or keep them in
the bi n directory of your application.

4.6.2.1 Tutorial: Connector/NET ASP.NET Membership and Role Provider

Many websites feature the facility for the user to create a user account. They can then log into the
website and enjoy a personalized experience. This requires that the developer creates database tables
to store user information, along with code to gather and process this data. This represents a burden

on the developer, and there is the possibility for security issues to creep into the developed code.
However, ASP.NET introduced the membership system. This system is designed around the concept
of membership, profile, and role providers, which together provide all of the functionality to implement a
user system, that previously would have to have been created by the developer from scratch.

Currently, MySQL Connector/NET includes web providers for membership (or simple membership),
roles, profiles, session state, site map, and web personalization.

262

ASP.NET Provider Model and Tutorials

This tutorial shows you how to set up your ASP.NET web application to use the Connector/NET
membership and role providers. It assumes that you have MySQL Server installed, along with
Connector/NET and Microsoft Visual Studio. This tutorial was tested with Connector/NET 6.0.4 and
Microsoft Visual Studio 2008 Professional Edition. It is recommended you use 6.0.4 or above for this
tutorial.

1.

Create a new MySQL database using the MySQL Command-Line Client program (nmysql), or other
suitable tool. It does not matter what name is used for the database, but record it. You specify

it in the connection string constructed later in this tutorial. This database contains the tables,
automatically created for you later, used to store data about users and roles.

Create a new ASP.NET website in Visual Studio. If you are not sure how to do this, refer to
Section 4.6.4, “Tutorial: Data Binding in ASP.NET Using LINQ on Entities”, which demonstrates
how to create a simple ASP.NET website.

Add References to MySql . Dat a and MySql . Wb to the website project.

Locate the machi ne. conf i g file on your system, which is the configuration file for the .NET
Framework.

Search the machi ne. confi g file to find the membership provider My SQLMenber shi pPr ovi der.

Add the attribute aut ogener at eschena="tr ue". The appropriate section should now resemble
the following example.

Note
For the sake of brevity, some information is excluded.

<menber shi p>
<provi der s>
<add name="AspNet Sql Menber shi pProvi der"
t ype="Syst em Web. Security. Sql Menber shi pProvi der"

connecti onSt ri ngName="Local Sql Server"
e 1>
<add name="M/SQ.Menber shi pProvi der"
aut ogener at eschema="t r ue"
type="M/Sql . Wb. Security. MySQ_LMenber shi pProvi der,
MySql . Web, Version=6.0.4.0, Culture=neutral,
Publ i cKeyToken=c5687f c88969c44d"
connecti onSt ri ngName="Local MySqgl Ser ver"
. >
</ provi der s>
</ menber shi p>

Note

The connection string, Local MySql Ser ver, connects to the MySQL server
that contains the membership database.

The aut ogener at eschema="tr ue" attribute will cause Connector/NET to silently create, or
upgrade, the schema on the database server, to contain the required tables for storing membership
information.

It is now necessary to create the connection string referenced in the previous step. Load the
web. confi g file for the website into Visual Studio.

Locate the section marked <connecti onSt ri ngs>. Add the following connection string
information.

<connectionStri ngs>
<renove nane="lLocal MySql Server"/>
<add nane="Local MySqgl Server"
connectionStri ng="Dat asour ce=| ocal host ; Dat abase=user s; ui d=r oot ; pwd=passwor d"

263

ASP.NET Provider Model and Tutorials

10.

11.

12.

13.

14.

provi der Name="M/Sql . Data. MySql i ent"/ >
</ connectionStrings>

The database specified is the one created in the first step. You could alternatively have used an
existing database.

At this point build the solution to ensure no errors are present. This can be done by selecting Build,
Build Solution from the main menu, or pressing F6.

ASP.NET supports the concept of locally and remotely authenticated users. With local
authentication the user is validated using their Windows credentials when they attempt to access
the website. This can be useful in an Intranet environment. With remote authentication, a user is
prompted for their login details when accessing the website, and these credentials are checked
against the membership information stored in a database server such as MySQL Server. You will
now see how to choose this form of authentication.

Start the ASP.NET Website Administration Tool. This can be done quickly by clicking the small
hammer/Earth icon in the Solution Explorer. You can also launch this tool by selecting Website and
then ASP.NET Configuration from the main menu.

In the ASP.NET Website Administration Tool click the Security tab and do the following:
a. Click the User Authentication Type link.

b. Select the From the internet option. The website will now need to provide a form to allow the
user to enter their login details. The details will be checked against membership information
stored in the MySQL database.

You now need to specify the role and membership provider to be used. Click the Provider tab and
do the following:

a. Click the Select a different provider for each feature (advanced) link.

b. For membership provider, select the MySQLMembershipProvider option and for role provider,
select the MySQLRoleProvider option.

In Visual Studio, rebuild the solution by clicking Build and then Rebuild Solution from the main
menu.

Check that the necessary schema has been created. This can be achieved using SHOV
DATABASES; and SHOW TABLES; the nysql command interpreter.

nysql > SHOW DATABASES;

S +
| Dat abase |
S +
| information_schema |
| nysql |
| test |
| users |
| world |
S +

5 rows in set (0.01 sec)

nmysql > SHOW TABLES;

| my_aspnet_applications |
| my_aspnet _nmenber ship |
| my_aspnet_profiles |
| my_aspnet_rol es |
| my_aspnet _schemaver si on |
| my_aspnet _users |
| my_aspnet _usersinrol es |

264

ASP.NET Provider Model and Tutorials

7 rows in set (0.00 sec)

15. Assuming all is present and correct, you can now create users and roles for your web application.
The easiest way to do this is with the ASP.NET Website Administration Tool. However, many web
applications contain their own modules for creating roles and users. For simplicity, the ASP.NET
Website Administration Tool will be used in this tutorial.

16. In the ASP.NET Website Administration Tool, click the Security tab. Now that both the membership
and role provider are enabled, you will see links for creating roles and users. Click the Create or
Manage Roles link.

17. You can now enter the name of a new Role and click Add Role to create the new Role. Create new
Roles as required.

18. Click the Back button.

19. Click the Create User link. You can now fill in information about the user to be created, and also
allocate that user to one or more Roles.

20. Using the mysqgl command interpreter, you can check that your database has been correctly
populated with the membership and role data.

mysql > SELECT * FROM ny_aspnet _users;

nmysql > SELECT * FROM nmy_aspnet _rol es;

In this tutorial, you have seen how to set up the Connector/NET membership and role providers for use
in your ASP.NET web application.

4.6.2.2 Tutorial: Connector/NET ASP.NET Profile Provider

This tutorial shows you how to use the MySQL Profile Provider to store user profile information in a
MySQL database. The tutorial uses MySQL Connector/NET 6.9.9, MySQL Server 5.7.21 and Microsoft
Visual Studio 2017 Professional Edition.

Many modern websites allow the user to create a personal profile. This requires a significant amount of
code, but ASP.NET reduces this considerable by including the functionality in its Profile classes. The
Profile Provider provides an abstraction between these classes and a data source. The MySQL Profile
Provider enables profile data to be stored in a MySQL database. This enables the profile properties

to be written to a persistent store, and be retrieved when required. The Profile Provider also enables
profile data to be managed effectively, for example it enables profiles that have not been accessed
since a specific date to be deleted.

The following steps show you how you can select the MySQL Profile Provider:
1. Create a new ASP.NET web project.
Select the MySQL Application Configuration tool.
In the MySQL Application Configuration tool navigate through the tool to the Profiles page.

2
3
4. Select the Use MySQL to manage my profiles check box.
5. Select the Autogenerate Schema check box.

6

Click Edit and then configure a connection string for the database that will be used to store user
profile information.

7. Navigate to the last page of the tool and click Finish to save your changes and exit the tool.

At this point you are now ready to start using the MySQL Profile Provider. With the following steps you
can carry out a preliminary test of your installation.

1. Open your web. confi g file.

265

ASP.NET Provider Model and Tutorials

2. Add a simple profile such as the following example.

<syst em web>
<anonynousl dentificati on enabl ed="true"/>
<profile defaultProvider="M/SQ.Profil eProvider">

<properties>
<add name="Nane" al | owAnonynmous="true"/>
<add name="Age" al | owAnonynous="true" type="System Ul nt16"/>
<group name="Ul">
<add name="Col or" al | owAnonynous="true" defaultVal ue="Bl ue"/>
<add name="Styl e" all owAnonynous="true" defaultVal ue="Plain"/>
</ gr oup>
</ properties>
</profile>

Setting anonynousl denti fi cati on to true enables unauthenticated users to use profiles. They
are identified by a GUID in a cookie rather than by a user name.

Now that the simple profile has been defined in web. conf i g, the next step is to write some code to
test the profile.

1. In Design View, design a simple page with the added controls. The following figure shows the
Default.aspx tab open with various text box, list, and button controls.

Figure 4.2 Simple Profile Application

Chject Browser | web.config | Default.aspx.cs Default.asps - Start Page v X

L]
Profile Details

Mame: l
Age: |
Current color selected : Label

Select your color
Red =|

Store Prafile |
Clear Form |

Retrieve Profile |

3 Design | O Splt | [Source <html> || <body> || <form#form] > || <div> | | <asp:Label#labell >

These will allow the user to enter some profile information. The user can also use the buttons to
save their profile, clear the page, and restore their profile data.

2. Inthe Code View add the following code snippet.

protected void Page_Load(obj ect sender, EventArgs e)
{
if (!IsPostBack)
{
Text Box1l. Text = Profil e. Name;
Text Box2. Text = Profile.Age. ToString();
Label 1. Text = Profile. U . Col or;

266

ASP.NET Provider Model and Tutorials

}

[/l Store Profile
protected void Buttonl_Cick(object sender, EventArgs e)
{

Profile. Nane = Text Box1l. Text;

Profile. Age = U nt 16. Par se(Text Box2. Text) ;

}

/1l dear Form

protected void Button2_Cick(object sender, EventArgs e)

{
Text Box1. Text
Text Box2. Text
Label 1. Text = ""

}

/'l Retrieve Profile
protected void Button3_Cick(object sender, EventArgs e)

{
Text Box1l. Text = Profile. Name;

Text Box2. Text Profile. Age. ToString();
Label 1. Text = Profile. U . Col or;

}

protected void DropDownLi st1_Sel ect edl ndexChanged(obj ect sender, EventArgs e)
{
Profile. U . Col or = DropDownLi st 1. Sel ect edVal ue;
}
3. Save all files and build the solution to check that no errors have been introduced.
4. Run the application.

5. Enter your name, age, and select a color from the list. Now store this information in your profile by
clicking Store Profile.

Not selecting a color from the list uses the default color, Blue, that was specified in the
web. confi g file.

Click Clear Form to clear text from the text boxes and the label that displays your chosen color.
Now click Retrieve Profile to restore your profile data from the MySQL database.

Now exit the browser to terminate the application.

© ®©® N o

Run the application again, which also restores your profile information from the MySQL database.
In this tutorial you have seen how to using the MySQL Profile Provider with Connector/NET.
4.6.2.3 Tutorial: Web Parts Personalization Provider

MySQL Connector/NET provides a web parts personalization provider that allows you to use a MySQL
server to store personalization data.

Note
This feature was added in Connector/NET 6.9.0.

This tutorial demonstrates how to configure the web parts personalization provider using Connector/
NET.

Minimum Requirements
» An ASP.NET website or web application with a membership provider

e .NET Framework 3.0

267

ASP.NET Provider Model and Tutorials

« MySQL5.5
Configuring MySQL Web Parts Personalization Provider

To configure the provider, do the following:

1. Add References to MySql . Dat a and MySql . \\éb to the website or web application project.

2. Include a Connector/NET personalization provider into the syst em web section in the
web. confi g file.

<webPart s>
<personal i zati on def aul t Provi der =" MySQ.Per sonal i zat i onProvi der" >
<provi der s>
<cl ear/ >
<add name="M/SQLPersonal i zati onProvi der"
type="M/Sql . Wb. Per sonal i zat i on. MySqgl Per sonal i zat i onPr ovi der,
MySql . Web, Version=6.9.3.0, Culture=neutral,
Publ i cKeyToken=c5687f c88969c44d"
connecti onSt ri ngName="Local MySqgl Ser ver"
appl i cati onName="/" />
</ provi der s>
<aut hori zati on>
<al | ow verbs="nodi fyState" users="*" />
<al | ow ver bs="ent er Shar edScope" users="*"/>
</ aut hori zati on>
</ per sonal i zati on>
</ webPart s>

Creating Web Part Controls
To create the web part controls, follow these steps:

1. Create a web application using Connector/NET ASP.NET Membership. For information about doing
this, see Section 4.6.2.1, “Tutorial: Connector/NET ASP.NET Membership and Role Provider”.

Create a new ASP.NET page and then change to the Design view.
From the Toolbox, drag a WebPartManager control to the page.

Now define an HTML table with three columns and one row.

a > DN

From the WebParts Toolbox, drag and drop a V\ebPar t Zone control into both the first and second
columns.

6. From the WebParts Toolbox, drag and drop a Cat al ogZone with PageCat al ogPart and
Edi t or Zone controls into the third column.

7. Add controls to the WebPar t Zone, which should look similar to the following example:

<t abl e>
<tr>
<td>
<asp: WebPart Zone | D="LeftZone" runat="server" Header Text="Left Zone">
<ZoneTenpl at e>
<asp: Label |D="Label 1" runat="server" title="Left Zone">
<asp: Bul | et edLi st | D="Bul | et edLi st1" runat="server">
<asp: Listltem Text="Item 1"></asp: Li stlten>
<asp: Listltem Text="Item 2"></asp: Li stlten>
<asp: Listltem Text="Item 3"></asp: Li stlten>
</ asp: Bul | et edLi st >
</ asp: Label >
</ ZoneTenpl at e>
</ asp: WebPart Zone>
</td>
<t d>
<asp: WebPart Zone | D="Mai nZone" runat="server" Header Text="Mai n Zone">
<ZoneTenpl at e>
<asp: Label |D="Label 11" runat="server" title="Main Zone">
<h2>This is the Main Zone</h2>

268

ASP.NET Provider Model and Tutorials

</ asp: Label >
</ ZoneTenpl at e>
</ asp: WebPar t Zone>
</td>
<td>
<asp: Cat al ogZone | D="Cat al ogZonel" runat="server">
<ZoneTenpl at e>
<asp: PageCat al ogPart | D="PageCat al ogPart 1" runat="server" />
</ ZoneTenpl at e>
</ asp: Cat al ogZone>
<asp: Edi t or Zone | D="Editor Zonel" runat="server">
<ZoneTenpl at e>
<asp: Layout Edi t or Part | D="Layout Edi t or Part 1" runat ="server" />
<asp: Appear anceEdi t or Part | D="Appear anceEdi t or Part 1" runat ="server" />
</ ZoneTenpl at e>
</ asp: Edi t or Zone>
</td>
</tr>
</t abl e>

Outside of the HTML table, add a drop-down list, two buttons, and a label as follows.

<asp: Dr opDownLi st | D="Di spl ayMdes" runat="server" AutoPostBack="True"
OnSel ect edl ndexChanged="Di spl ayMddes_Sel ect edl ndexChanged" >

</ asp: Dr opDownLi st >

<asp: Button | D="ResetButton" runat="server" Text="Reset"
Ond i ck="ResetButton_d ick" />

<asp: Button | D="Toggl eButton" runat="server" OnCick="Toggl eButton_d i ck"
Text =" Toggl e Scope" />

<asp: Label |D="ScopelLabel" runat="server"></asp: Label >

The following code fills the list for the display modes, shows the current scope, resets the
personalization state, toggles the scope (between user and the shared scope), and changes the
display mode.

public partial class WbPart : System Web. Ul . Page
{

protected void Page_Load(obj ect sender, EventArgs e)
if (!lsPostBack)
foreach (WebPart Di spl ayMode npde i n WebPart Manager 1. Suppor t edDi spl ayMdes)
i f (node. | sEnabl ed(WebPart Manager 1))

Di spl ayModes. | t ems. Add(mode. Nane) ;
}
}

}
ScopelLabel . Text = WebPart Manager 1. Per sonal i zati on. Scope. ToStri ng();

}
protected void ResetButton_Click(object sender, EventArgs e)

i f (WebPart Manager 1. Per sonal i zati on. | sEnabl ed &&
WebPar t Manager 1. Per sonal i zati on. | svbdi fi abl e)
{

}
}

WebPar t Manager 1. Per sonal i zat i on. Reset Per sonal i zati onState();

protected void Toggl eButton_Cl i ck(object sender, EventArgs e)

WebPar t Manager 1. Per sonal i zat i on. Toggl eScope() ;
}

protected void D spl ayMdes_Sel ect edl ndexChanged(obj ect sender, EventArgs e)

{
var node = WebPart Manager 1. Support edDi spl ayMddes[Di spl ayMdes. Sel ect edVal ue] ;
if (node !'= null && node. | sEnabl ed(WebPart Manager 1))

{

269

ASP.NET Provider Model and Tutorials

WebPar t Manager 1. Di spl ayMbde = node;

}
}
}

Testing Web Part Changes

Use the following steps to validate your changes:

1. Run the application and open the web part page. The page should look like similar to the example
shown in the following figure in which the Toggle Scope button is set to Shar ed. The page also
includes the drop-down list, the Reset button, and the Left Zone and Main Zone controls.

Figure 4.3 Web Parts Page

Left Zone
Main Zone
= ltem 1
* [tem 2 - . -
. ltem 3 This is the Main Zone

Reset | | Toggle Scope | Shared

Initially when the user account is not authenticated, the scope is Shared by default. The user
account must be authenticated to change settings on the web-part controls. The following figure
shows an example in which an authenticated user is able to customize the controls by using the
Browse drop-down list. The options in the list are Desi gn, Cat al og, and Edi t .

Figure 4.4 Authenticated User Controls

Left Zone Minimize Close
Main Zone Minimize Close
= Item 1
= |ltem 2 - - .
. Item 3 This is the Main Zone

Reset | | Toggle Scope | User

Design
Catalog
Edit

2. Click Toggle Scope to switch the application back to the shared scope.

3. Now you can personalize the zones using the Edi t or Cat al og display modes at a specific user or
all-users level. The next figure shows Cat al og selected from the drop-down list, which include the
Catalog Zone control that was added previously.

270

ASP.NET Provider Model and Tutorials

Figure 4.5 Personalize Zones

Cataleg Zone Close

Left Zone

Left Zone Minimize Close Main Zone

5 [y Add a Web Part to this zone by dropping it here.

= Item 2
« Item 3 Add to:

Left Zone || Add| [Close

[Catalog v|| Reset | | Toggle Scope | User

4.6.2.4 Tutorial: Simple Membership Web Provider

This section documents the ability to use a simple membership provider on MVC 4 templates. The
configuration OAuth compatible for the application to login using external credentials from third-party
providers like Google, Facebook, Twitter, or others.

This tutorial creates an application using a simple membership provider and then adds third-party
(Google) OAuth authentication support.

Note
This feature was added in MySQL Connector/NET 6.9.0.
Requirements
» Connector/NET 6.9.x or later
* .NET Framework 4.0 or later
* Visual Studio 2012 or later
« MVC14
Creating and Configuring a New Project

To get started with a new project, do the following:

1. Open Visual Studio, create a new project of ASP.NET MVC 4 Web Application type, and configure
the project to use .NET Framework 4.5. The following figure shows and example of the New Project
window with the items selected.

271

ASP.NET Provider Model and Tutorials

Figure 4.6 Simple Membership: New Project

New Project +El
b Recent MET Framework 45 = BSort by: Defanit - EE ¢ zalled Templates (CtrieE 2-
d Ingtalied vl [Ty
" E’j HSP.HET Bty Web Agphcation Visual C2 Types Vsl (2
o Tomplaves A project for creating an application using
. D LT AN L ncd el &
¥ Veual Baic ;J ASPHET Wb Formes Applcation Yisuel CF ASPNET MVC 4 and Web API
4 Vigual (2
- =3
Windews Store QJ P NET MIVC 3 Web Appication Visual Co
Wirndows
e g‘J ASP.HET NVC 4 Wieb Application Visual G2
Extermibaliny
ca
b Oifice &y BSPNET Dynamic Data Entities Web Apghcation WViiual (2
Cleud =
o
Repering gy AP HET AIAX Server Control Vil C#
b SPaeePont
¥ 134 - o
Sheuight ‘ﬂy KSP HET ALA Server Control Extendes Visual C#
Tent
WCF 24
2 fi) OB Serves Conto Viual G5
Windzws Fhane
Workfiow
b Vinual G+
Windows Installer KWL
¥ Vaual F&
SO Server
b it -
¥ Online
Hame MhySqimplehlembership
Ledation: whusert\Prads documentsvaual shudio 010 Propects © | Browse.
Selutica name: MbySemiamplebembenship | Creste duectery for sobation

[Add 4o sousce eontrol

o Cincel |

2. Choose the template and view engine that you like. This tutorial uses the Internet Application
Template with the Razor view engine (see the next figure). Optionally, you can add a unit test
project by selecting Create a unit test project.

Figure 4.7 Simple Membership: Choose Template and Engine

New ASP.NET MVC 4 Project Ex
Praject Ternplate
Select s termplate: Description:)
59 Bi | Bd | B3 ek ot ks
Empty Basic Intermet Intranet Buthentication,

LI | Applicatson

&1 &1 &1

Moabile Web APl Single Page
Application Application
Yiew engine:
Razor w

[_] Create a unit test project

Additionsl Infa

oK Cancel

3. Add references to the MySql . Dat a, MySqgl . Dat a. Enti ti es, and MySgl . \eb assemblies. The
assemblies chosen must match the .NET Framework and Entity Framework versions added to the
project by the template.

4. Add a valid MySQL connection string to the web. confi g file, similar to the following example.

<add
name="M/Connecti on"
connecti onSt ri ng="server =l ocal host;
User | d=r oot ;
passwor d=pass;
dat abase=MySql Si npl eMenber shi p;

272

ASP.NET Provider Model and Tutorials

| oggi ng=t r ue; por t =3305"
provi der Name="M/Sql . Data. MySgql i ent"/ >

Under the <syst em dat a> node, add configuration information similar to the following example.

<menber shi p defaul t Provi der =" MySqgl Si npl eMenber shi pProvi der " >
<provi der s>
<cl ear/ >
<add
name="M/Sql Si npl eMenber shi pPr ovi der "
type="M/Sql . Wb. Security. MySql Si npl eMenber shi pProvi der, MySql . Wb,
Ver si on=6. 9. 2. 0, Cul ture=neutral , Publ i cKeyToken=c5687f c88969c44d"
appl i cati onName="M/Sql Si npl eMenber shi pTest "
descri pti on="M/SQLdef aul t appl i cati on"
connecti onSt ri ngName="M/Connect i on"
user Tabl eNane="M/User Tabl e"
user | dCol um="M/User | dCol umm*
user NameCol umm=" MyUser NaneCol um"
aut oGener at eTabl es="True"/ >
</ provi der s>
</ menber shi p>

Update the configuration with valid values for the following properties: connecti onSt ri ngNane,
user Tabl eNane, user | dCol umm, user NaneCol umm, and aut oGener at eTabl es.

e user Tabl eNane: Name of the table to store the user information. This table is independent from
the schema generated by the provider, and it can be changed in the future.

¢ user | d: Name of the column that stores the ID for the records in the user Tabl eNane.

* user Nanme: Name of the column that stores the name/user for the records in the
user Tabl eNane.

e connectionStri ngName: This property must match a connection string defined in
web. confi g file.

e aut oCener at eTabl es: This must be set to f al se if the table to handle the credentials already
exists.

Update your DBCont ext class with the connection string name configured.

OpenthelnitializeSi npl eMenbershi pAttri bute. cs file fromthe Fil ters/

folder and locate the Si npl eMenber shi plnitializer class. Then find the
WebSecurity. I nitializeDatabaseConnecti on method call and update the parameters
with the configuration for connect i onSt ri ngNane, user Tabl eNane, user | dCol unm, and
user NarmeCol um.

If the database configured in the connection string does not exist, then create it.

273

ASP.NET Provider Model and Tutorials

10. After running the web application, the generated home page is displayed on success (see the figure
that follows).

Figure 4.8 Simple Membership: Generated Home Page
-ciEl

legaant P RO 1 o Prge - Wy AP HET

Fegner Lo

Tobeaen meont about ASPNET MVC visit Bitesffassnet/ e . The page feabires vedeos, tutorials, nd simpies to heip you get the me from
ASPNET MVE I i) it ity Guititiofes about ASPNET MVC vl Qi Tifums

W suggest the following:
o -
AEFNET

s

e Add Wusfiet packages snd jump-itart your teding
st rmgkens @ pary o rial gned upclate e Bbeares and ook Laars

Gl

we ogting ompany at fters the right ma ol featunes and price for your spplcatons, L more

11. If the application executed with success, then the generated schema will be similar to the following
figure showing an object browser open to the tables.

Figure 4.9 Simple Membership: Generated Schema and Tables

Object Browser
SCHEMAS -

ATYYYYYYYY

] a plememb &rshp
w [0 Tables

» [1] wserprofile

» [1] webpages_membershio

» [1] webpages_osuthmembership
= B9 views
» B9 Routines

YYTYYYYYYYY

12. To create a user login, click Register on the generated web page. Type the user name and
password, and then execute the registration form. This action redirects you to the home page with
the newly created user logged in.

The data for the newly created user can be located in the User Pr of i | e and
Webpages_Menber shi p tables.

Adding OAuth Authentication to a Project

OAuth is another authentication option for websites that use the simple membership provider. A user
can be validated using an external account like Facebook, Twitter, Google, and others.

Use the following steps to enable authentication using a Google account in the application:

1. Locate the Aut hConfi g. cs file in the App_St ar t folder.

274

Tutorial: Using an Entity Framework Entity as a Windows Forms Data Source

2. As this tutorial uses Google, find the Regi st er Aut h method and uncomment the last line where it
calls Caut hWebSecurity. Regi st er Googl ed i ent.

3. Run the application. When the application is running, click Log in to open the log in page. Then,
click Google under Use another service to log in (shown in the figure that follows).

Figure 4.10 Simple Membership with OAuth: Google Service

- =N
9 cabes 2 [T .
-
Log in.
Use a local account to log in. Use another service to log in.

Google

4. This action redirects to the Google login page (at google.com), and requests you to sign in with
your Google account information.

5. After submitting the correct credentials, a message requests permission for your application to
access the user's information. Read the description and then click Accept to allow the quoted
actions, and to redirect back to the login page of the application.

6. The application now can register the account. The User name field will be filled in with the
appropriate information (in this case, the email address that is associated with the Google account).
Click Register to register the user with your application.

Now the new user is logged into the application from an external source using OAuth. Information
about the new user is stored in the User Pr of i | e and Webpages_Caut hMenber shi p tables.

To use another external option to authenticate users, you must enable the client in the same class
where we enabled the Google provider in this tutorial. Typically, providers require you to register your
application before allowing OAuth authentication, and once registered they typically provide a token/
key and an ID that must be used when registering the provider in the application.

4.6.3 Tutorial: Using an Entity Framework Entity as a Windows Forms Data
Source

This tutorial describes how to create a Windows Forms Data Source from an Entity in an Entity Data
Model using Microsoft Visual Studio. The steps are:

» Creating a New Windows Forms Application
» Adding an Entity Data Model

* Adding a New Data Source

* Using the Data Source in a Windows Form

» Adding Code to Populate the Data Grid View

* Adding Code to Save Changes to the Database

275

Tutorial: Using an Entity Framework Entity as a Windows Forms Data Source

To perform the steps in this tutorial, first install the wor | d database sample, which you may download
from the MySQL Documentation page. You can also find details on how to install the database on the
same page.

Creating a New Windows Forms Application
The first step is to create a new Windows Forms application.
1. In Visual Studio, select File, New, and then Project from the main menu.
2. Choose the Windows Forms Application installed template. Click OK. The solution is created.
To acquire the latest Entity Framework assembly for MySQL, download the NuGet package.
Adding an Entity Data Model
To add an Entity Data Model to your solution, do the following:

1. In the Solution Explorer, right-click your application and select Add and then New Item. From
Visual Studio installed templates, select ADO.NET Entity Data Model (see the figure that
follows). Click Add.

Figure 4.11 Add Entity Data Model

Add New Item - WinFormsAppTest ?
4 Installed Sort by: | Default | = P~
Visual C# ft = Visy = |t
“ '“"[’ ems ADO.NET Entity Data Model visual C# tems [RELS
ode A project item for creating an ADONET
t "
Dss i? DistaSet Visusl C# erns ENtity Data Model.
General
b Web
':‘-':'!dc'-'\-'s Forms ‘E‘:i EF 5. DbContext Generator Visual C# ltems
WPF
EF f.x DbContext Generato Visual C# lterns
b ASP.NET Core 'E? : o -
b Appl
FAe i Service-based Database Visual C# ltems
MySOL
0L S
0 !_“e' XML File Visual C# ltems
Kamarin.Forms Gy
h
Graphics 2 WML Schemas Visual C# tems
b Online
_E‘" XSLT File Visual C# Iems
Mame: Madell
Add Cancel

2. You will now see the Entity Data Model Wizard. You will use the wizard to generate the Entity
Data Model from the wor | d database sample. Select the icon EF Designer from database (or
Generate from database in older versions of Visual Studio). Click Next.

3. You can now select the | ocal host (wor | d) connection you made earlier to the database. Select
the following items:

* Yes, include the sensitive data in the connection string.
* Save entity connection settings in App. confi g as:

wor |l dEntities

276

https://dev.mysql.com/doc/index-other.html

Tutorial: Using an Entity Framework Entity as a Windows Forms Data Source

If you have not already done so, you can create the new connection at this time by clicking New
Connection (see the figure that follows).

Figure 4.12 Entity Data Model Wizard - Connection

Entity Data Model Wizard X

i_p Choose Your Data Connection

Which data connection should your application use to connect to the database?

localhost{world) w Mew Connection...

Connection string:

rmetadata=res://*/Model3.csdl|res//*/Model3.ssdl|
res://*/Model3.msl;provider=My5ql.Data.MySql Client; provider connection string="server=localhost;user
id=root; persistsecurityinfo=True database=world"

Save connection settings in App.Config as:

|worIdEntities'I

< Previous Mext = Cancel

Make a note of the entity connection settings to be used in App. Conf i g, as these will be used
later to write the necessary control code. Click Next.

4. The Entity Data Model Wizard connects to the database.

As the next figure shows, you are then presented with a tree structure of the database. From here
you can select the object you would like to include in your model. If you also created Views and

277

Tutorial: Using an Entity Framework Entity as a Windows Forms Data Source

Stored Routines, these items will be displayed along with any tables. In this example you just need
to select the tables. Click Finish to create the model and exit the wizard.

Figure 4.13 Entity Data Model Wizard - Objects and Settings

Entity Data Model Wizard

*

_.) Choose Your Database Objects and Settings

Which database objects do you want to include in your model?

v [8 world
MIm city
B country
B countrylanguage
Cap Views
e Stored Procedures and Functions

[Pluralize or singularize generated chject names

Include foreign key columns in the model

Muodel Namespace:

|worldf\-‘10de|

< Previous Einish Cancel

Visual Studio generates a model with three tables (city, country, and countrylanguage) and then
display it, as the following figure shows.

278

Tutorial: Using an Entity Framework Entity as a Windows Forms Data Source

Figure 4.14 Entity Data Model Diagram

Miackel], pderes [Diagramt] &

= Prepemies

& Code

& Mame

£ Contiment 1

& Region & Popylescn

B Surfscedoes = Maigaticn Properties

¥ indegivear

& Pepedstion

& Ldekxpactancy

& aup

e GHRO

& Localiame

K GovemmentFom

B HassOtame

2

; E::ef 8 CouniryCode
= Naigation Preperies !) i ::':9,:":‘

iy B Percentoge

Wi countrylinguige S Naigation P

w4 counary

3 PEL P «

From the Visual Studio main menu, select Build and then Build Solution to ensure that everything
compiles correctly so far.

Adding a New Data Source

You will now add a new Data Source to your project and see how it can be used to read and write to
the database.

1.

From the Visual Studio main menu select Data and then Add New Data Source. You will be
presented with the Data Source Configuration Wizard.

Select the Object icon. Click Next.

Select the object to bind to. Expand the tree as the next figure shows.

In this tutorial, you will select the city table. After the city table has been selected click Next.

279

Tutorial: Using an Entity Framework Entity as a Windows Forms Data Source

Figure 4.15 Data Source Configuration Wizard

Data Source Configuration Wizard
i_—.I) Select the Data Objects

Expand the referenced assemblies and namespaces to select your objects. If an object is missing from a referenced
assembly, cancel the wizard and rebuild the project that contains the object.

What objects do you want to bind to?

4 [A%] WinFormsAppTest (partially selected) A Add Reference...
4[} WinFormsAppTest (partially selected)
[I*z country
[J*z countrylanguage
[J*% Ferm1
[J*z Program
[J*= worldEntities
I} WinFormsAppTest.Properties
I C]E0 EntityFramework
i C]E EntityFramework.SqlServer
I 180 MySal.Data

Hide systemn assemblies

< Brevious Cancel

4. The wizard will confirm that the city object is to be added. Click Finish.

5. The city object will now appear in the Data Sources panel. If the Data Sources panel is not
displayed, select Data and then Show Data Sources from the Visual Studio main menu. The

docked panel will then be displayed.

Using the Data Source in a Windows Form

This step describes how to use the Data Source in a Windows Form.

1. Inthe Data Sources panel select the Data Source you just created and drag and drop it onto the
Form Designer. By default, the Data Source object will be added as a Data Grid View control as the

following figure shows.
Note

The Data Grid View control is bound to ci t yBi ndi ngSour ce, and the
Navigator control is bound to ci t yBi ndi ngNavi gat or .

280

Tutorial: Using an Entity Framework Entity as a Windows Forms Data Source

2.

Figure 4.16 Data Form Designer

T [———— LS P e s ow
M LN Yew Pl M Doy B ek et A

Save and rebuild the solution before continuing.

Adding Code to Populate the Data Grid View

You are now ready to add code to ensure that the Data Grid View control will be populated with data
from the city database table.

1.

2.

Double-click the form to access its code.

Add the following code to instantiate the Entity Data Model Ent i t yCont ai ner object and retrieve
data from the database to populate the control.

usi ng System W ndows. For ns;

namespace W ndowsFor msAppl i cati on4

{

public partial class Fornml : Form

{

wor | dEntities we;

public Formil()
{

}

private void Forml_Load(object sender, EventArgs e)

{

InitializeConponent();

we = new worl dEntities();
ci t yBi ndi ngSour ce. Dat aSource = we.city. ToList();

}
}
}

Save and rebuild the solution.

Run the solution. Confirm that the grid is populated (see the next figure for an example) and that
you can navigate the database.

281

Tutorial: Data Binding in ASP.NET Using LINQ on Entities

Figure 4.17 The Populated Grid Control

o5 Form1 - O x

1 of 4079 | b M |4p X

[n] Mame CountryCode Distric ™
v Kabul AFG Kabol
2 Qandahar AFG Qanda
3 Herat AFG Herat
4 Mazar-e-Sharif AFG Balkh
] Amsterdam NLD Moord-
6 Rotterdam NLD Zuid-H
7 Haag NLD Zuid-H
] Utrecht MNLD Utrech
] Eindhoven NLD Moord-
10 Tilburg NLD MNoord-
11 Groningen NLD Gronin
12 Breda NLD Noord- ¥
< >

Adding Code to Save Changes to the Database
This step explains how to add code that enables you to save changes to the database.

The Binding source component ensures that changes made in the Data Grid View control are also
made to the Entity classes bound to it. However, that data needs to be saved back from the entities to
the database itself. This can be achieved by the enabling of the Save button in the Navigator control,
and the addition of some code.

1. Inthe Form Designer, click the save icon in the form toolbar and confirm that its Enabled property
is setto Tr ue.

2. Double-click the save icon in the form toolbar to display its code.

3. Add the following (or similar) code to ensure that data is saved to the database when a user clicks
the save button in the application.

public Forml()
{

}

private void Fornl_Load(object sender, EventArgs e)

{

I nitializeConponent();

we = new wor | dEntities();
ci t yBi ndi ngSour ce. Dat aSource = we. city. ToList();
}

private void cityBi ndi ngNavi gat or Savel tem Cl i ck(obj ect sender, EventArgs e)

{
}

we. SaveChanges() ;

}
}

4. When the code has been added, save the solution and then rebuild it. Run the application and
verify that changes made in the grid are saved.

4.6.4 Tutorial: Data Binding in ASP.NET Using LINQ on Entities

In this tutorial you create an ASP.NET web page that binds LINQ queries to entities using the Entity
Framework mapping with MySQL Connector/NET.

282

Tutorial: Data Binding in ASP.NET Using LINQ on Entities

If you have not already done so, install the wor | d database sample prior to attempting this tutorial.
See the tutorial Section 4.6.3, “Tutorial: Using an Entity Framework Entity as a Windows Forms Data
Source” for instructions on downloading and installing this database.

Creating an ASP.NET Website

In this part of the tutorial, you create an ASP.NET website. The website uses the wor | d database. The
main web page features a drop-down list from which you can select a country. Data about the cities of
that country is then displayed in a GridView control.

1. From the Visual Studio main menu select File, New, and then Web Site.

2. From the Visual Studio installed templates select ASP.NET Web Site. Click OK. You will be
presented with the Source view of your web page by default.

3. Click the Design view tab situated underneath the Source view panel.
4. In the Design view panel, enter some text to decorate the blank web page.

5. Click Toolbox. From the list of controls, select DropDownList. Drag and drop the control to a
location beneath the text on your web page.

6. From the DropDownList control context menu, ensure that the Enable AutoPostBack check
box is enabled. This will ensure the control's event handler is called when an item is selected. The
user's choice will in turn be used to populate the GridView control.

7. From the Toolbox select the GridView control. Drag and drop the GridView control to a location
just below the drop-down list you already placed.

The following figure shows an example of the decorative text and two controls in the Design view
tab. The added GridView control produced a grid with three columns (Col urmO, Col unm1, and
Col um3) and the string abc in each cell of the grid.

Figure 4.18 Placed GridView Control

2] bt - Ui s Y X e Fla® x
el Vas P

g Bls Dwbey Tam Gewn Gmw Te s Wedss baw
g-c -t I R -

Workd Evample Dutsbaie
ol Calimma] Calliama
e

™
a

8. At this point it is recommended that you save your solution, and build the solution to ensure that
there are no errors.

9. If you run the solution you will see that the text and drop down list are displayed, but the list is
empty. Also, the grid view does not appear at all. Adding this functionality is described in the
following sections.

283

Tutorial: Data Binding in ASP.NET Using LINQ on Entities

At this stage you have a website that will build, but further functionality is required. The next step will be
to use the Entity Framework to create a mapping from the wor | d database into entities that you can
control programmatically.

Creating an ADO.NET Entity Data Model

In this stage of the tutorial you will add an ADO.NET Entity Data Model to your project, using the

wor | d database at the storage level. The procedure for doing this is described in the tutorial

Section 4.6.3, “Tutorial: Using an Entity Framework Entity as a Windows Forms Data Source”, and so
will not be repeated here.

Populating a List Box by Using the Results of a Entity LINQ Query

In this part of the tutorial you will write code to populate the DropDownList control. When the web
page loads the data to populate the list will be achieved by using the results of a LINQ query on the
model created previously.

1.
2.

In the Design view panel, double-click any blank area. This brings up the Page Load method.

Modify the relevant section of code according to the following listing example.

public partial class _Default : System Web. U . Page
{

wor | dvbdel . wor | dEntities we;

protected voi d Page_Load(object sender, EventArgs e)

{

we = new wor | dvbdel . wor | dEnti ties();

if (!lsPostBack)
{

var countryQuery = fromc in we.country

orderby c. Nanme

sel ect new { c.Code, c.Nane };
Dr opDownlLi st 1. Dat aVal ueFi el d = " Code";
Dr opDownlLi st 1. Dat aText Fi el d = " Nane";
Dr opDownlLi st 1. Dat aSour ce = countryQuery. TolLi st ();
Dat aBi nd() ;

The list control only needs to be populated when the page first loads. The conditional code ensures
that if the page is subsequently reloaded, the list control is not repopulated, which would cause the
user selection to be lost.

Save the solution, build it and run it. You should see that the list control has been populated. You
can select an item, but as yet the GridView control does not appear.

At this point you have a working Drop Down List control, populated by a LINQ query on your entity data
model.

Populating a Grid View Control by Using an Entity LINQ Query

In the last part of this tutorial you will populate the Grid View Control using a LINQ query on your entity
data model.

1.

In the Design view, double-click the DropDownList control. This action causes its
Sel ect edl ndexChanged code to be displayed. This method is called when a user selects an item
in the list control and thus generates an AutoPostBack event.

Modify the relevant section of code accordingly to the following listing example.

protected void DropDownlLi st1_Sel ect edl ndexChanged(obj ect sender, EventArgs e)

284

Tutorial: Generating MySQL DDL from an Entity Framework Model

var cityQuery = fromc in we.city
where c. CountryCode == DropDownLi st 1. Sel ect edVal ue
order by c. Name
sel ect new { c.Nane, c.Popul ation, c.CountryCode };
GridVi ewl. Dat aSource = cityQuery;
Dat aBi nd() ;

The grid view control is populated from the result of the LINQ query on the entity data model.

Save, build, and run the solution. As you select a country you will see its cities are displayed in the
GridView control. The following figure shows Belgium selected from the list box and a table with
three columns: Nane, Popul ati on, and Count r yCode.

Figure 4.19 The Working Website

(€ hittp: fflocalhost: 1174/ WebSite3/Default aspx

World Database Website
Belgium v
Name Population CountrvCode

Antwerpen 446525 BEL
Brugge 116246 BEL
Bruxelles [Brussel] 133859 BEL
Charleroi 200827 BEL
Gent 224180 BEL
Liége 185639 BEL
Mons 90935 BEL
Namur 105419 BEL
Schaerbeek 105692 BEL

In this tutorial you have seen how to create an ASP.NET website, you have also seen how you can
access a MySQL database using LINQ queries on an entity data model.

4.6.5 Tutorial: Generating MySQL DDL from an Entity Framework Model

This tutorial demonstrates how to create MySQL DDL from an Entity Framework model. Minimally, you
will need Microsoft Visual Studio 2017 and MySQL Connector/NET 6.10 to perform this tutorial.

1.

2.

Create a new console application in Visual Studio 2017.
Using the Solution Explorer, add a reference to MySql . Dat a. Entity.

From the Solution Explorer select Add, New Item. In the Add New Item dialog select Online
Templates. Select ADO.NET Entity Data Model and click Add to open the Entity Data Model
dialog.

In the Entity Data Model dialog select Empty Model. Click Finish to create a blank model.
Create a simple model. A single Entity will do for the purposes of this tutorial.
In the Properties panel select ConceptualEntityModel from the drop-down list.

In the Properties panel, locate the DDL Generation Template in the category Database Script
Generation.

285

https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_ddl

Tutorial: Basic CRUD Operations with Connector/NET

8. For the DDL Generation property select SSDLToMySQL.tt(VS) from the drop-down list.
9. Save the solution.

10. Right-click an empty space in the model design area to open the context-sensitive menu. From the
menu select Generate Database from Model to open the Generate Database Wizard dialog.

11. In the Generate Database Wizard dialog select an existing connection, or create a new connection
to a server. Select an appropriate option to show or hide sensitive data. For the purposes of this
tutorial, you can select Yes, although you might skip this for commercial applications.

12. Click Next to generate MySQL compatible DDL code and then click Finish to exit the wizard.

You have seen how to create MySQL DDL code from an Entity Framework model.

4.6.6 Tutorial: Basic CRUD Operations with Connector/NET

This tutorial provides instructions to get you started using MySQL as a document store with MySQL
Connector/NET.

* Minimum Requirements

* Import the Document Store Sample
» Add References to Required DLLs
* Import Namespaces

» Create a Session

* Find a Row Within a Collection

* Insert a New Document into a Collection
» Update an Existing Document

» Delete a Specific Document

* Close the Session

» Complete Code Example

For concepts and additional usage examples, see X DevAPI User Guide.

Minimum Requirements

* MySQL Server 8.0.11 with X Protocol enabled
» Connector/NET 8.0.11

Visual Studio 2013/2015/2017

* wor | d_x database sample

Import the Document Store Sample

A MySQL script is provided with data and a JSON collection. The sample contains the following:
» Collection

« countryinfo: Information about countries in the world.
* Tables

« country: Minimal information about countries of the world.

« city: Information about some of the cities in those countries.

286

https://dev.mysql.com/doc/x-devapi-userguide/en/

Tutorial: Basic CRUD Operations with Connector/NET

e countrylanguage: Languages spoken in each country.
To install the wor | d_x database sample, follow these steps:
1. Download wor | d_x. zi p from http://dev.mysqgl.com/doc/index-other.html.
2. Extract the installation archive to a temporary location such as / t np/ .
Unpacking the archive results in two files, one of them named wor | d_x. sql .
3. Connect to the MySQL server using the MySQL Client with the following command:
$> nysqgl -u root -p

Enter your password when prompted. A non-root account can be used as long as the account has
privileges to create new databases. For more information about using the MySQL Client, see mysq|
— The MySQL Command-Line Client.

4. Execute the wor | d_x. sql script to create the database structure and insert the data as follows:

nmysql > SOURCE /tenp/worl d_x. sql ;
Replace / t enp/ with the path to the wor | d_x. sql file on your system.
Add References to Required DLLs

Create a new Visual Studio Console Project targeting .NET Framework 4.6.2 (or later), .NET Core 1.1,
or .NET Core 2.0. The code examples in this tutorial are shown in the C# language, but you can use
any .NET language.

Add a reference in your project to the following DLLs:
* MySql . Data.dll
e Googl e. Protobuf. dl|

Import Namespaces

Import the required namespaces by adding the following statements:

usi ng MySgl X. XDevAPI ;
usi ng MySgl X. XDevAPI . Conmon;
usi ng MySgl X. XDevAPI . CRUD;

Create a Session

A session in the X DevAPI is a high-level database session concept that is different from working with
traditional low-level MySQL connections. It is important to understand that this session is not the same
as a traditional MySQL session. Sessions encapsulate one or more actual MySQL connections.

The following example opens a session, which you can use later to retrieve a schema and perform
basic CRUD operations.

string schemaNanme = "worl d_x";
/] Define the connection string
string connectionURI = "nmysql x://test:test@ocal host: 33060";

Sessi on sessi on = MySQ.X. Get Sessi on(connecti onURl);
/'l Get the schema obj ect
Schema schema = sessi on. Get Schema(schemaNane) ;

Find a Row Within a Collection

After the session is instantiated, you can execute a find operation. The next example uses the session
object that you created:

287

http://dev.mysql.com/doc/index-other.html
https://dev.mysql.com/doc/refman/8.0/en/mysql.html
https://dev.mysql.com/doc/refman/8.0/en/mysql.html

Tutorial: Basic CRUD Operations with Connector/NET

/'l Use the collection 'countryinfo'
var myCol | ection = schema. Get Col | ecti on("countryinfo");
var docParanms = new DbDoc(new { nanel = "Al bania", _idl = "ALB" });

/1 Find a document
DocResult foundDocs = nyCol |l ection. Find("Name = :nanel || _id = :_id1l").Bi nd(docParans). Execute();

whi | e (foundDocs. Next ())

{
Consol e. Wit eLi ne(foundDocs. Current["Nanme"]);

Consol e. Wit eLi ne(foundDocs. Current[" _id"]);
}

Insert a New Document into a Collection

//1nsert a new docunent with an identifier
var obj = new { _id = "UKN', Nane = "Unknown" };
Result r = myCol | ecti on. Add(obj) . Execute();

Update an Existing Document

/] using the same docParans object previously created

docParanms = new DbDoc(new { namel = "Unknown", _idl = "UKN' });

r = nyCollection. Modi fy(" _id = :1d").Bind("id", "UKN').Set("G\P', "3308").Execute();

if (r.AffectedltemsCount == 1)

{
foundDocs = nyCol |l ection. Find("Nane = :nanmel|| _id = :_idl").Bind(docParans).Execute();
whi | e (foundDocs. Next ())
{

Consol e. Wit eLi ne(foundDocs. Current["Nane"]);
Consol e. Wi teLi ne(foundDocs. Current[" _id"]);
Consol e. Wi telLi ne(foundDocs. Current["GNP"]);
}
}

Delete a Specific Document

r = nyCol |l ection. Remove("_id = :id").Bind("id", "UKN').Execute();

Close the Session

sessi on. d ose();
Complete Code Example

The following example shows the basic operations that you can perform with a collection.

usi ng MySgl X. XDevAPI ;

usi ng MySgl X. XDevAPI . Conmon;
usi ng MySgl X. XDevAPI . CRUD;
usi ng System

nanespace MySQ.X Tutori al

{
cl ass Program
{
static void Main(string[] args)
{
string schemaNanme = "worl d_x";
string connecti onURI = "nysql x://test:test@ocal host: 33060";

Sessi on sessi on = MySQ.X. Get Sessi on(connecti onURl);
Schema schema = sessi on. Get Schema(schemaNane) ;

/1 Use the collection 'countryinfo'
var nyCol | ecti on = schena. Get Col | ecti on("countryinfo");
var docParans = new DbDoc(new { nanel = "Al bania", _idl = "ALB" });

/! Find a docunent

288

Tutorial: Configuring SSL with Connector/NET

DocResult foundDocs = nyCol |l ection. Find("Name = :nanel || _id = :_id1l").Bi nd(docPar ans). Execut e()

whi | e (foundDocs. Next ())

{
Consol e. Wit eLi ne(foundDocs. Current["Nanme"]);
Consol e. Wi telLi ne(foundDocs. Current[" _id"]);

}

//lnsert a new docunent with an id

var obj = new { _id = "UKN', Nane = "Unknown" };
Result r = nmyCol | ecti on. Add(obj) . Execute();

//updat e an exi sting docunent

docParams = new DbDoc(new { namel = "Unknown", _idl = "UKN' });

r = nyCollection.Modify("_id = :1d").Bind("id", "UKN').Set("G\P', "3308").Execute();

if (r.AffectedltensCount == 1)
foundDocs = nyCol | ection. Find("Nane = :nanmel|| _id = :_idl").Bi nd(docParans).Execute();
whi | e (foundDocs. Next ())
{

Consol e. Wi teLi ne(foundDocs. Current["Nanme"]);
Consol e. Wi telLi ne(foundDocs. Current[" _id"]);
Consol e. Wi teLi ne(foundDocs. Current["GNP"]);

}
}

/Il delete a row in a docunent
r = nyCol |l ection. Remove("_id = :id").Bind("id", "UKN').Execute();

/'l cl ose the session
sessi on. C ose();

Consol e. ReadKey() ;

}
}
}

4.6.7 Tutorial: Configuring SSL with Connector/NET

In this tutorial you will learn how you can use MySQL Connector/NET to connect to a MySQL server
configured to use SSL. Support for SSL client PFX certificates was added to the Connector/NET 6.2
release series. PFX is the native format of certificates on Microsoft Windows. More recently, support for
SSL client PEM certificates was added in the Connector/NET 8.0.16 release.

MySQL Server uses the PEM format for certificates and private keys. Connector/NET enables the use
of either PEM or PFX certificates with both classic MySQL protocol and X Protocol. This tutorial uses
the test certificates from the server test suite by way of example. You can obtain the MySQL Server
source code from MySQL Downloads. The certificates can be found in the . / nysql -t est/ st d_dat a
directory.

To apply the server-side startup configuration for SSL connections:

1. Inthe MySQL Server configuration file, set the SSL parameters as shown in the follow PEM format
example. Adjust the directory paths according to the location in which you installed the MySQL
source code.

ssl -ca=path/to/ repo/ mysql -t est/std_data/ cacert. pem
ssl -cert=pat h/to/repo/ nysql -test/std_datal/server-cert.pem
ssl - key=pat h/ t o/ repo/ mysql -t est/ st d_dat a/ ser ver - key. pem

The Ssl Ca connection option accepts both PEM and PFX format certificates, using the file
extension to determine how to process certificates. Change cacert . pemto cacert . pf x if you
intend to continue with the PFX portion of this tutorial.

For a description of the connection string options used in this tutorial, see Section 4.4.5,
“Connector/NET Connection Options Reference”.

289

https://dev.mysql.com/downloads/mysql/5.1.html#source

Tutorial: Configuring SSL with Connector/NET

2. Create a test user account to use in this tutorial and set the account to require SSL. Using the
MySQL Command-Line Client, connect as r oot and create the user ssl cl i ent (witht est as the
account password). Then, grant all privileges to the new user account as follows:

CREATE USER sslclient@% |DENTIFIED BY 'test' REQU RE SSL;

GRANT ALL PRIVILEGES ON *.* TO sslclient@% ;

For detailed information about account-management strategies, see Access Control and Account
Management.

Now that the server-side configuration is finished, you can begin the client-side configuration using
either PEM or PFX format certificates in Connector/NET.

4.6.7.1 Using PEM Certificates in Connector/NET

The direct use of PEM format certificates was introduced to simplify certificate management in
multiplatform environments that include similar MySQL products. In previous versions of Connector/
NET, your only choice was to use platform-dependent PFX format certificates.

For this example, use the test client certificates from the MySQL server repository (ser ver -
repository-root/nysql -test/std_data). Inyour application, add a connection string using the
t est database and the ssl cl i ent user account (created previously). For example:

1. Setthe Ss| Mbde connection option to the level of security needed. PEM certificates are only
validated for Veri f yCAand Veri f yFul | SSL mode values. All other mode values ignore
certificates even if they are provided.

usi ng (MySgl Connecti on connection = new MySql Connect i on(
"dat abase=t est; user=ssiclient;" +
" Ss| Mode=VerifyFul | "

2. Add the appropriate SSL certificates. Because this tutorial sets the Ss| Mode option to
Veri fyFul | , you must also provide values for the Ssl Ca, Ssl Cert, and Ss| Key connection
options. Each option must point to a file with the . pemfile extension.

"Ssl Ca=ca. pem " +
"Ssl Cert=client-cert.pem" +
" Ssl Key=cl i ent - key. pem "))

Alternatively, if you set the SSL mode to Ver i f yCA, only the Ss| Ca connection option is required.

3. Open a connection. The following example opens a connection using the classic MySQL protocol,
but you can perform a similar test using X Protocol.

usi ng (MySqgl Connecti on connection = new MySql Connecti on(
"dat abase=t est; user=sslclient;" +

" Ssl Mbde=VerifyFul | " +

"Ssl Ca=ca. pem " +

"Ssl Cert=client-cert.pem" +

" Ssl Key=cl i ent - key. pem "))

{
}

connecti on. Open() ;

Errors found when processing the PEM certificates will result in an exception being thrown. For
additional information, see Command Options for Encrypted Connections.

4.6.7.2 Using PFX Certificates in Connector/NET

.NET does not provide native support the PEM format. Instead, Windows includes a certificate store
that provides platform-dependent certificates in PFX format. For the purposes of this example, use test
client certificates from the MySQL server repository (. / nysql -t est/ st d_dat a). Convert these to
PFX format first. This format is also known as PKCS#12.

290

https://dev.mysql.com/doc/refman/8.0/en/access-control.html
https://dev.mysql.com/doc/refman/8.0/en/access-control.html
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#encrypted-connection-options

Tutorial: Configuring SSL with Connector/NET

To complete the steps in this tutorial for PFX certificates, you must have Open SSL installed. This can
be downloaded for Microsoft Windows at no charge from Shining Light Productions.

Creating a Certificate File to Use with the .NET Client

1. From the directory server -repository-root/nysql -test/std dat a, issue the following
command.

openssl pkcsl2 -export -in client-cert.pem-inkey client-key.pem-certfile cacert.pem-out client. pf

2. When asked for an export password, enter the password “pass”. The file cl i ent . pf x will be
generated. This file is used in the remainder of the tutorial.

Connecting to the Server Using a File-Based Certificate

1. Usetheclient. pf x file that you created in the previous step to authenticate the client. The
following example demonstrates how to connect using the Ssl Mode, Certifi cat eFil e, and
Certificat ePassword connection string options.

usi ng (MySqgl Connecti on connection = new MySgl Connect i on(
"dat abase=t est; user=sslclient;" +
"CertificateFile=H\\git\\nmysql-trunk\\nysql-test\\std_data\\client.pfx;" +
“CertificatePassword=pass;" +
" Ssl Mbde=Required "))

{
}

connecti on. Open();

The path to the certificate file needs to be changed to reflect your individual installation. When using
PFX format certificates, the Ss| Mode connection option validates certificates for all SSL mode
values, except Di sabl ed or None (deprecated in Connector/NET 8.0.29).

Connecting to the Server Using a Store-Based Certificate

1. The first step is to import the PFX file, cl i ent . pf X, into the Personal Store. Double-click the file in
Windows explorer. This launches the Certificate Import Wizard.

2. Follow the steps dictated by the wizard, and when prompted for the password for the PFX file, enter
“pass”.

3. Click Finish to close the wizard and import the certificate into the personal store.
Examining Certificates in the Personal Store
1. Start the Microsoft Management Console by entering nmt. exe at a command prompt.

2. Select Add/Remove snhap-in from the File menu. Click Add. Select Certificates from the list of
available snap-ins.

3. Inthe dialog, click Add and then select the My user account option. This option is used for
personal certificates.

4. Click Finish.
5. Click OK to close the Add/Remove Snap-in dialog.

6. You now have Certificates — Current User displayed in the left panel of the Microsoft Management
Console. Expand the Certificates - Current User tree item and select Personal, Certificates. The
right panel displays a certificate issued to MySQL that was previously imported. Double-click the
certificate to display its details.

7. After you have imported the certificate to the Personal Store, you can use a more succinct
connection string to connect to the database, as illustrated by the following code:

291

http://www.slproweb.com/products/Win32OpenSSL.html

Tutorial: Using MySqlScript

usi ng (MySqgl Connecti on connection = new MySql Connecti on(
"dat abase=t est ; user=sslclient;" +
"Certificate Store Location=CurrentUser;" +
" Ssl Mode=Requi red"))

{
}

connecti on. Open() ;

Certificate Thumbprint Parameter

If you have a large number of certificates in your store, and many have the same Issuer, this can be a
source of confusion and result in the wrong certificate being used. To alleviate this situation, there is an
optional Certificate Thumbprint parameter that can additionally be specified as part of the connection
string. As mentioned before, you can double-click a certificate in the Microsoft Management Console to
display the certificate's details. When the Certificate dialog is displayed click the Details tab and scroll
down to see the thumbprint. The thumbprint will typically be a number such as #47 94 36 00 9a 40
f3 01 7a 14 5¢c f8 47 9e 76 94 d7 aa de f 0. Thisthumbprint can be used in the connection
string, as the following code illustrates:

usi ng (MySqgl Connecti on connection = new MySql Connecti on(
"dat abase=t est; user=sslclient;" +
"Certificate Store Location=CurrentUser;" +
"Certificate Thunmbprint=479436009a40f 3017al145cf 8479e7694d7aadef 0; " +
"SSL Mode=Required"))

{
}

connecti on. Open();

Spaces in the thumbprint parameter are optional and the value is not case-sensitive.

4.6.8 Tutorial: Using MySqlScript

This tutorial teaches you how to use the MySql Scri pt class. This class enables you to execute a
series of statements. Depending on the circumstances, this can be more convenient than using the
My Sql Command approach.

Further details of the MySql Scri pt class can be found in the reference documentation supplied with
MySQL Connector/NET.

To run the example programs in this tutorial, set up a simple test database and table using the nysql
Command-Line Client or MySQL Workbench. Commands for the nysql Command-Line Client are
given here:

CREATE DATABASE Test DB;

USE Test DB;

CREATE TABLE TestTable (id I NT NOT NULL PRI MARY KEY
AUTO_| NCREMENT, nane VARCHAR(100));

The main method of the MySql Scri pt class is the Execut e method. This method causes the script
(sequence of statements) assigned to the Query property of the MySqlScript object to be executed.
The Query property can be set through the MySql Scri pt constructor or by using the Query property.
Execut e returns the number of statements executed.

The MySql Scri pt object will execute the specified script on the connection set using the Connection
property. Again, this property can be set directly or through the MySql Scri pt constructor. The
following code snippets illustrate this:

string sgql = "SELECT * FROM Test Tabl e";

M/Sql Scri pt script = new MySql Scri pt (conn, sql);
MySql Scri pt script
script. Query = sql;
scri pt. Connecti on = conn;

new MySgl Scri pt();

292

Tutorial: Using MySqlScript

SCI’I pt. Execute();

The MySqlScript class has several events associated with it. There are:

1. Error - generated if an error occurs.

2. ScriptCompleted - generated when the script successfully completes execution.
3. StatementExecuted - generated after each statement is executed.

It is possible to assign event handlers to each of these events. These user-provided routines are called
back when the connected event occurs. The following code shows how the event handlers are set up.

script. Error += new MySgl Scri pt Error Event Handl er (scri pt _Error);
script. Scri pt Conpl et ed += new Event Handl er (scri pt _Scri pt Conpl et ed) ;
scri pt. St at ement Execut ed += new MySqgl St at enent Execut edEvent Handl er (scri pt _St at ement Execut ed) ;

In VisualStudio, you can save typing by using tab completion to fill out stub routines. Start by typing, for
example, “script.Error +=". Then press TAB, and then press TAB again. The assignment is completed,
and a stub event handler created. A complete working example is shown below:

usi ng System

usi ng System Col | ecti ons. Generi c;
usi ng System Linq;

usi ng System Text;

usi ng System Dat a;

usi ng MySql . Dat a;
using MySql . Data. MySgl d i ent ;

namespace MySgl Scri pt Test

cl ass Program

{
static void Main(string[] args)
{
string connStr = "server =l ocal host; user =r oot ; dat abase=Test DB; port =3306; passwor d=******"_
My Sgl Connecti on conn = new MySql Connecti on(connStr);
try
{
Consol e. Wi teLi ne("Connecting to MySQL...");
conn. Qpen();
string sql = "INSERT | NTO Test Tabl e(nanme) VALUES (' Superman');" +
"I NSERT | NTO Test Tabl e(nanme) VALUES (' Batman');" +
"I NSERT | NTO Test Tabl e(nane) VALUES (' Wl verine');" +
"I NSERT | NTO Test Tabl e(nanme) VALUES (' Storm);";
MySql Scri pt script = new MySgl Scri pt(conn, sql);
script. Error += new MySgl Scri pt Error Event Handl er (scri pt _Error);
script. Scri pt Conpl et ed += new Event Handl er (scri pt _Scri pt Conpl et ed) ;
scri pt. St at ement Execut ed += new MySqgl St at enent Execut edEvent Handl er (scri pt _St at ement Exec
int count = script.Execute();
Consol e. WitelLine("Executed " + count + " statenment(s).");
Console. WiteLine("Delimter: " + script.Delimter);
catch (Exception ex)
{
Consol e. WitelLine(ex. ToString());
}
conn. Cl ose();
Consol e. Wi teLi ne("Done.");
}

static void script_Statement Execut ed(obj ect sender, MySgl Scri pt Event Args ar gs)

293

Tutorial: Using MySqlScript

{
}

Consol e. WitelLine("script_Statenent Executed");

static void script_ScriptConpl et ed(obj ect sender, EventArgs e)

/1l EventArgs e will be EventArgs. Enmpty for this method
Consol e. WiteLine("script_ScriptConpleted!");

}
static void script_Error(Qoject sender, M/Sgl Scri pt Error Event Args ar gs)
{
Consol e. WiteLine("script_Error: " + args. Exception.ToString());
}

}

Inthe script_Scri pt Conpl et ed event handler, the Event Ar gs parameter e will be
Event Ar gs. Enpt y. In the case of the Scri pt Conpl et ed event there is no additional data to be
obtained, which is why the event object is Event Ar gs. Enpt y.

Using Delimiters with MySqlScript

Depending on the nature of the script, you may need control of the delimiter used to separate the
statements that will make up a script. The most common example of this is where you have a multi-
statement stored routine as part of your script. In this case if the default delimiter of “;” is used you will
get an error when you attempt to execute the script. For example, consider the following stored routine:

CREATE PROCEDURE test_routine()

BEG N
SELECT nanme FROM Test Tabl e ORDER BY nane;
SELECT COUNT(nanme) FROM Test Tabl e;

END

This routine actually needs to be executed on the MySQL Server as a single statement. However, with
the default delimiter of “;", the MySql Scri pt class would interpret the above as two statements, the
first being:

CREATE PROCEDURE test_routine()
BEG N
SELECT nane FROM Test Tabl e ORDER BY nane;

Executing this as a statement would generate an error. To solve this problem MySql Scri pt supports
the ability to set a different delimiter. This is achieved through the Delimiter property. For example, you
could set the delimiter to “??”, in which case the above stored routine would no longer generate an
error when executed. Multiple statements can be delimited in the script, so for example, you could have
a three statement script such as:

string sql = "DROP PROCEDURE | F EXI STS test_routine??" +
" CREATE PROCEDURE test _routine() " +
"BEG N " +

"SELECT nane FROM Test Tabl e ORDER BY nane;" +
"SELECT COUNT(nane) FROM Test Tabl e;" +
"END??" +

"CALL test_routine()";

You can change the delimiter back at any point by setting the Delimiter property. The following code
shows a complete working example:

usi ng System

usi ng System Col | ecti ons. Generi c;
usi ng System Linq;

usi ng System Text;

usi ng MySql . Dat a;
using MySql . Data. MySgl d i ent ;

namespace Consol eApplication8

294

Connector/NET for Entity Framework

{
cl ass Program
{
static void Main(string[] args)
{
string connStr = "server =l ocal host; user =r oot ; dat abase=Test DB; port =3306; passwor d=******"
M/Sql Connecti on conn = new MySql Connecti on(connStr);
try
{
Consol e. Wi teLi ne("Connecting to MySQL...");
conn. Qpen();
string sql = "DROP PROCEDURE | F EXI STS test_routine??" +
" CREATE PROCEDURE test_routine() " +
"BEG N " +
"SELECT name FROM Test Tabl e ORDER BY nane; " +
" SELECT COUNT(nane) FROM Test Table;" +
"END??" +
"CALL test_routine()";
MySql Scri pt script = new MySgl Scri pt (conn);
script. Query = sql;
script.Delimter = "?2?";
int count = script.Execute();
Consol e. WitelLi ne("Executed " + count + " statement(s)");
script.Delimter = ";";
Console. WiteLine("Delimter: " + script.Delimter);
Consol e. WiteLine("Query: " + script.Qery);
}
catch (Exception ex)
{
Consol e. WitelLine(ex. ToString());
}
conn. Cl ose();
Consol e. Wi telLi ne("Done.");
}
}
}

4.7 Connector/NET for Entity Framework

Entity Framework is the name given to a set of technologies that support the development of data-
oriented software applications. MySQL Connector/NET supports Entity Framework 6.0 (EF6 or EF
6.4) and Entity Framework Core (EF Core), which is the most recent framework available to .NET

developers who work with MySQL data using .NET objects.

The following table identifies each Entity Framework release and shows which Connector/NET series
supports the release. Backward compatibility of each feature set is determined by the framework rather
than by Connector/NET.

Table 4.2 Entity Framework Support by Connector/NET Version

Framework Type Connector/NET Support

EF Core » EF Core 8.0: Full support with 8.3.0 and later on platforms that
support .NET 8.

* EF Core 7.0: Full support with 8.1.0 and later on platforms that
support .NET 7.

» EF Core 7.0: Full support with 8.0.33 and later on platforms that
support .NET 7.

* EF Core 6.0: Full support with 8.0.28 and later on platforms that
support .NET 6.

295

Entity Framework 6 Support

Framework Type Connector/NET Support

EF6 | EF 6.4 » EF 6.4: Full cross-platform support in 8.0.22 and later.

» EF6: Full support on Windows only in 8.0.11 and later.

4.7.1 Entity Framework 6 Support

MySQL Connector/NET integrates support for Entity Framework 6 (EF6), which now includes support
for cross-platform application deployment with the EF 6.4 version. This chapter describes how to
configure and use the EF6 features that are implemented in Connector/NET.

In this section:
* Minimum Requirements for EF6 on Windows Only

» Minimum Requirements for EF 6.4 with Cross-Platform Support

Configuration

EF6 Features

Code First Features
» Example for Using EF6
Minimum Requirements for EF6 on Windows Only
» Connector/NET 6.10 or 8.0.11
« MySQL Server 5.6
 Entity Framework 6 assemblies
* .NET Framework 4.6.2
Minimum Requirements for EF 6.4 with Cross-Platform Support
» Connector/NET 8.0.22
* MySQL Server 5.6
» Entity Framework 6.4 assemblies

* .NET Standard 2.1 (.NET Core SDK 3.1 and Visual Studio 2019 version 16.5)

Configuration
Note

The MySQL Connector/NET 8.0 release series has a naming scheme for

EF6 assemblies and NuGet packages that differs from the scheme used with
previous release series, such as 6.9 and 6.10. To configure Connector/NET 6.9
or 6.10 for use with EF6, substitute the assembly and package names in this
section with the following:

¢ Assembly: MySql . Dat a. Entity. EF6
¢ NuGet package: MySql . Dat a. Entity

For more information about the MySql . Dat a. Ent i t y NuGet package and
its uses, see https://www.nuget.org/packages/MySql.Data.Entity/.

To configure Connector/NET support for EF6:

296

https://www.nuget.org/packages/MySql.Data.Entity/

Entity Framework 6 Support

1. Edit the configuration sections in the app. conf i g file to add the connection string and the
Connector/NET provider.

<connectionStri ngs>
<add nanme="M/Context" provi der Name="M/Sql . Data. MySql Cl i ent"
connectionString="server =l ocal host; port =3306; dat abase=mycont ext ; ui d=r 00t ; passwor g=********"
</ connectionStri ngs>
<enti t yFr amewor k>
<def aul t Connecti onFactory type="System Data. Entity.|nfrastructure. Sgl Connecti onFactory, EntityFr
<provi der s>
<provi der invariantName="M/Sql.Data. MySgl Cl i ent"
type="M/Sql . Data. MySql O i ent. MySql Provi der Servi ces, MySql . Dat a. Enti t yFr amewor k"/ >
<provi der invariantName="System Data. Sql Cl i ent"
type="System Data. Entity. Sql Server. Sql Provi der Servi ces, EntityFramework. Sql Server"/>
</ provi der s>
</ entityFramewor k>

2. Apply the assembly reference using one of the following techniques:

* NuGet package. Install the NuGet package to add this reference automatically to the
app. confi gorweb. confi g file during the installation. For example, to install the package for
Connector/NET 8.0.22, use one of the following installation options:

e Command Line Interface (CLI)

dot net add package MySql . Data. EntityFramework -Version 8.0.22

« Package Manager Console (PMC)

I nstal | - Package MySql . Dat a. Enti t yFranewor k -Version 8.0. 22

* Visual Studio with NuGet Package Manager. For this option, select nuget . or g
as the package source, search for mysql . dat a, and install a stable version of
MySql . Dat a. Ent i t yFr amewor k.

* MySQL Connector/NET MSI file. Install MySQL Connector/NET and then add a reference
for the MySql . Dat a. Ent i t yFr anmewor k assembly to your project. Depending on the .NET
Framework version used, the assembly is taken from the v4. 0, v4. 5, or v4. 8 folder.

¢ MySQL Connector/NET source code. Build Connector/NET from source and then insert the
following data provider information into the app. confi g or web. confi g file:

<syst em dat a>
<DbPr ovi der Fact ori es>
<renove invariant="M/Sql . Data. MySgl dient" />
<add nanme="M/SQL Data Provider" invariant="M/Sql.Data. MySgl Client" description=".Net Franewol
type="M/Sql . Data. MySql C i ent. MySql d i ent Factory, M/Sql . Data, Version=8.0.22.0, Culture=
</ DbProvi der Fact ori es>
</ syst em dat a>

Important

Always update the version number to match the one in the
MySql . Dat a. dl | assembly.

3. Setthe new DbConfi gur at i on class for MySQL. This step is optional but highly recommended,
because it adds all the dependency resolvers for MySQL classes. This can be done in three ways:

¢ Adding the DbConf i gurati onTypeAtt ri but e on the context class:

[DoConf i gur ati onType(typeof (MySql EFConfi guration))]

¢ Calling DbConf i gur ati on. Set Confi gurati on(new MySql EFConfi gurati on()) atthe
application start up.

e Setthe DbConf i gur at i on type in the configuration file:

297

Entity Framework 6 Support

<entityFramewor k codeConfigurati onType="M/Sqgl . Data. Entity. M/Sgl EFConfi gurati on, MySqgl.Data. EntityFrarm

It is also possible to create a custom DbConf i gur at i on class and add the dependency resolvers
needed.

EF6 Features

Following are the new features in Entity Framework 6 implemented in Connector/NET:

» Cross-platform support in Connector/NET 8.0.22 implements EF 6.4 as the initial provider version to

include Linux and macOS compatibility with .NET Standard 2.1 from Microsoft.

Async Query and Save adds support for the task-based asynchronous patterns that have been
available since .NET 4.5. The new asynchronous methods supported by Connector/NET are:

e Execut eNonQuer yAsync
* Execut eScal ar Async
e PrepareAsync

Connection Resiliency / Retry Logic enables automatic recovery from transient connection failures.
To use this feature, add to the OnCr eat eMbdel method:

Set Execut i onSt rat egy(MySql Provi der | nvari ant Nanme. Provi der Name, () => new MySgl ExecutionStrategy());

Code-Based Configuration gives you the option of performing configuration in code, instead of
performing it in a configuration file, as it has been done traditionally.

Dependency Resolution introduces support for the Service Locator. Some pieces of functionality
that can be replaced with custom implementations have been factored out. To add a dependency
resolver, use:

AddDependencyResol ver (new MySqgl DependencyResol ver ());

The following resolvers can be added:

e DbProviderFactory -> MySgl i ent Factory

e | DbConnecti onFactory -> MySqgl Connecti onFactory

e MgrationSql Generator -> MySql M grationSgl Gener at or
e DbProvi der Servi ces -> MySql Provi der Servi ces

e | Providerlnvariant Nane -> MySql Provi der | nvari ant Nane

| DbProvi der Fact or yResol ver -> MySql Provi der Fact or yResol ver

e | Mani f est TokenResol ver -> MySql Mani f est TokenResol ver

| DbMbdel CacheKey -> MySql Model CacheKeyFact ory
e | DbExecutionStrategy -> MySql Executi onStrat egy

Interception/SQL logging provides low-level building blocks for interception of Entity Framework
operations with simple SQL logging built on top:

myCont ext . Dat abase. Log = del egate(string nmessage) { Console. Wite(nmessage); };

DbContext can now be created with a DbConnection that is already opened, which enables
scenarios where it would be helpful if the connection could be open when creating the context

298

Entity Framework 6 Support

(such as sharing a connection between components when you cannot guarantee the state of the
connection)

[DbConfi gurati onType(typeof (M/Sql EFConfi guration))]
cl ass Jour neyCont ext : DbCont ext

publ i c DbSet <MyPl ace> My/Pl aces { get; set; }

publ i ¢ Jour neyCont ext ()
base()

{
}

publ i ¢ Jour neyCont ext (DbConnecti on exi sti ngConnection, bool contextOmsConnecti on)
base(exi sti ngConnecti on, context OmsConnecti on)

{

}
}

usi ng (MySql Connection conn = new MySql Connecti on("<connectionString>"))
conn. Open() ;
using (var context = new JourneyContext (conn, false))
{

o
}

» Improved Transaction Support provides support for a transaction external to the framework as
well as improved ways of creating a transaction within the Entity Framewaork. Starting with Entity
Framework 6, Dat abase. Execut eSqgl Conmand() will wrap by default the command in a
transaction if one was not already present. There are overloads of this method that allow users to
override this behavior if wished. Execution of stored procedures included in the model through APIs
such as Obj ect Cont ext . Execut eFuncti on() does the same. It is also possible to pass an
existing transaction to the context.

» DbSet.AddRange/RemoveRange provides an optimized way to add or remove multiple entities from
a set.

Code First Features

Following are new Code First features supported by Connector/NET:
» Code First Mapping to Insert/Update/Delete Stored Procedures supported:

nmodel Bui | der. Entity<EntityType>().MapToSt or edProcedures();

» Idempotent migrations scripts allow you to generate an SQL script that can upgrade a database
at any version up to the latest version. To do so, run the Updat e- Dat abase - Script -
SourceM gration: $lnitial Dat abase command in Package Manager Console.

» Configurable Migrations History Table allows you to customize the definition of the migrations history
table.

Example for Using EF6

The following C# code example represents the structure of an Entity Framework 6 model.

using MySql . Data. Entity;
usi ng System Dat a. Conmon;
using System Data. Entity;

299

Entity Framework 6 Support

namespace EF6

{
/| Code-Based Configurati on and Dependency resol ution
[DbConfi gurati onType(typeof (MySql EFConfi gurati on))]
public class Parking : DbContext

{
public DbSet<Car> Cars { get; set; }
publ i c Parking()
base()
{
}

/'l Constructor to use on a DbConnection that is already opened
publ i ¢ Par ki ng(DbConnecti on exi stingConnection, bool contextOamsConnecti on)
base(exi sti ngConnecti on, context OmsConnecti on)

{
}
protected override voi d OnMdel Creati ng(DbMbdel Bui | der nodel Bui | der)
{ base. OnModel Cr eat i ng(nodel Bui | der) ;
nmodel Bui | der. Entity<Car>().MapToSt or edPr ocedures();
}

}

public class Car

{ public int Carld { get; set; }
public string Mddel { get; set; }
public int Year { get; set; }

public string Manufacturer { get; set; }
}
}

The C# code example that follows shows how to use the entities from the previous model in an
application that stores the data within a MySQL table.

using MySql . Data. MySgl d i ent ;
usi ng System
usi ng System Col | ecti ons. Generi c;

namespace EF6

{
cl ass Exanpl e
{
public static void Execut eExanpl e()
{

string connectionString = "server=| ocal host; port =3305; dat abase=par ki ng; ui d=r oot ";
usi ng (MySqgl Connecti on connection = new MySgl Connecti on(connectionString))

/] Create database if not exists
usi ng (Parking contextDB = new Par ki ng(connection, false))

{
cont ext DB. Dat abase. Cr eat el f Not Exi st s() ;

}

connecti on. Open();
MySgl Transacti on transacti on = connecti on. Begi nTransacti on();

try

/'l DbConnection that is already opened
usi ng (Parking context = new Parking(connection, false))

{

300

Entity Framework Core Support

/'l Interception/SQL | oggi ng

cont ext . Dat abase. Log = (string nmessage) => { Consol e. WiteLi ne(nmessage); };

/] Passing an existing transaction to the context
cont ext . Dat abase. UseTr ansacti on(transacti on);

/| DbSet.AddRange
Li st<Car> cars = new Li st<Car>()

Manuf act ur er
Manuf act ur er
Manuf act ur er
Manuf act ur er

cars. Add(new Car
cars. Add(new Car
cars. Add(new Car
cars. Add(new Car

~—— e —

cont ext . Car s. AddRange(cars) ;

cont ext . SaveChanges() ;

}

transaction. Commit();

}

catch

{

transacti on. Rol | back();
t hr ow,

4.7.2 Entity Framework Core Support

MySQL Connector/NET integrates support for Entity Framework Core (EF Core). The requirements

"N ssan", Mdel = "370Z", Year = 2012 });
"Ford", Mbdel = "Mistang", Year = 2013 });
"Chevrolet", Mdel = "Camaro", Year = 2012 });
"Dodge", Mddel = "Charger", Year = 2013 });

and configuration of EF Core depend on the version of Connector/NET installed and the features that
you require. Use the table that follows to evaluate the minimum requirements.

Table 4.3 Connector/NET Versions and Entity Framework Core Support

Connector/NET EF Core 8.0 EF Core 7.0 EF Core 6.0

8.3.0 .NET 8, .NET 7, .NET 6 .NET 7, .NET 6 .NET 6

8.2.0 .NET 8 preview .NET 7 .NET 6

8.1.0 Not supported .NET 7 .NET 6

8.0.33 Not supported .NET 7 .NET 6

8.0.28 Not supported Not supported .NET 6

8.0.23 10 8.0.27 Not supported Not supported EF Core 6.0 previev

In this section:

» General Requirements for EF Core Support
» Configuration with MySQL

 Limitations

e Maximum String Length

General Requirements for EF Core Support

» Connector/NET 8.3 (or later)

» Server version: MySQL 8.3, MySQL 8.2, MySQL 8.1, MySQL 8.0, or MySQL 5.7

301

Entity Framework Core Support

 Entity Framework Core packages (replace n with a valid number to complete the full version of the
package):

MySql . Ent it yFramewor kCor e 8.0.n+MySQL8.3.n (Connector/NET 8.3.0 and later)
MySql . Ent it yFranmewor kCor e 7.0.n+MySQL8.3.n (Connector/NET 8.3.0 and later)

MySql . Ent it yFr amewor kCor e 6.0.n+MySQL8.3.n (Connector/NET 8.3.0 and later)

« An implementation of .NET Standard or .NET Framework that is supported by Connector/NET (see
Table 4.3, “Connector/NET Versions and Entity Framework Core Support”)

* .NET | .NET Core SDK

.NET 8.0 for all supported platforms: https://dotnet.microsoft.com/es-es/download/dotnet/8.0
.NET 7.0 for all supported platforms: https://dotnet.microsoft.com/download/dotnet/7.0

.NET 6.0 for all supported platforms: https://dotnet.microsoft.com/download/dotnet/6.0

.NET Core for Microsoft Windows: https://www.microsoft.com/net/core#windowscmd

.NET Core for Linux: https://www.microsoft.com/net/core#linuxredhat

.NET Core for macOS: https://www.microsoft.com/net/core#fmacos

Docker: https://www.microsoft.com/net/core#dockercmd

» Optional: Microsoft Visual Studio 2017, 2019, 2022, or Code

Note

For the minimum version of Visual Studio to use with Connector/NET, see
Table 4.1, “Connector/NET Requirements for Related Products”.

Configuration with MySQL

To use Entity Framework Core with a MySQL database, do the following:

1.

Limitations

Install the NuGet package.

When you install either the MySql . Ent i t yFr anewor kCor e or

MySql . Dat a. Ent i t yFr amewor kCor e package, all of the related packages required to run your
application are installed for you. For instructions on adding a NuGet package, see the relevant
Microsoft documentation.

In the class that derives from the DbCont ext class, override the OnConf i gur i ng method to set
the MySQL data provider with UseMy SQL. The following example shows how to set the provider
using a generic connection string in C#.

protected override void OnConfi guri ng(DbCont ext Opti onsBui | der opti onsBui |l der)
{

#warni ng To protect potentially sensitive information in your connection string,
you should nove it out of source code. See http://go.m crosoft.com fw ink/?Li nkl d=723263
for guidance on storing connection strings.

opti onsBui | der. UseMySQL(" ser ver =l ocal host ; dat abase=l i brary; user =user ; passwor d=passwor d") ;

}

The Connector/NET implementation of EF Core has the following limitations:

* Memory-Optimized Tables is not supported.

302

https://www.nuget.org/packages/MySql.EntityFrameworkCore/
https://www.nuget.org/packages/MySql.EntityFrameworkCore/
https://www.nuget.org/packages/MySql.EntityFrameworkCore/
https://dotnet.microsoft.com/platform/dotnet-standard#versions
https://dotnet.microsoft.com/es-es/download/dotnet/8.0
https://dotnet.microsoft.com/download/dotnet/7.0
https://dotnet.microsoft.com/download/dotnet/6.0
https://www.microsoft.com/net/core#windowscmd
https://www.microsoft.com/net/core#linuxredhat
https://www.microsoft.com/net/core#macos
https://www.microsoft.com/net/core#dockercmd
https://docs.microsoft.com/en-us/nuget/quickstart/use-a-package#add-the-newtonsoftjson-nuget-package

Entity Framework Core Support

Maximum String Length

The following table shows the maximum length of string types supported by the Connector/NET
implementation of EF Core. Length values are in bytes for nonbinary and binary string types,
depending on the character set used.

Table 4.4 Maximum Length of strings used with Entity Framework Core

Data Type Maximum Length .NET Type
CHAR 255 string

Bl NARY 255 byt e[]
VARCHAR, VARBI NARY 65,535 string, byte[]
TI NYBLOB, TI NYTEXT 255 byt e[]

BLOB, TEXT 65,535 byt e[]

MEDI UVBLOB, MEDI UMTEXT 16,777,215 byt e[]
LONGBLOB, LONGTEXT 4,294,967,295 byt e[]

ENUM 65,535 string

SET 65,535 string

For additional information about the storage requirements of the string types, see String Type Storage
Requirements.

4.7.2.1 Creating a Database with Code First in EF Core

The Code First approach enables you to define an entity model in code, create a database from the
model, and then add data to the database. MySQL Connector/NET is compatible with multiple versions
of Entity Framework Core. For specific compatibility information, see Table 4.3, “Connector/NET
Versions and Entity Framework Core Support”.

The following example shows the process of creating a database from existing code. Although this
example uses the C# language, you can use any .NET language and run the resulting application on
Windows, macQS, or Linux.

1. Create a console application for this example.

a. Initialize a valid .NET Core project and console application using the .NET Core command-line
interface (CLI) and then switch to the newly created folder (mysql ef cor e).

dot net new consol e —o nysql ef core

cd nysql ef core

b. Addthe MySql . Ent it yFr amewor kCor e package to the application by using the dotnet CLI or
the Package Manager Console in Visual Studio.

dotnet CLI

Enter the following command to add the MySQL EF Core 7.0 package for use with Connector/
NET 8.0.33 and later.

dot net add package MySgl . EntityFranmeworkCore --version 7.0.2

Package Manager Console

Enter the following command to add the MySQL EF Core 7.0 package for use with Connector/
NET 8.0.33 and later.

Instal | - Package MySql . EntityFranewor kCore -Version 7.0.2

303

https://dev.mysql.com/doc/refman/8.0/en/storage-requirements.html#data-types-storage-reqs-strings
https://dev.mysql.com/doc/refman/8.0/en/storage-requirements.html#data-types-storage-reqs-strings

Entity Framework Core Support

c. Restore dependencies and project-specific tools that are specified in the project file as follows:
dotnet restore
2. Create the model and run the application.

The model in this example is to be used by the console application. It consists of two entities
related to a book library that are configured in the Li br ar yCont ext class (or database context).

a. Create a new file named Li br ar yModel . cs and then add the following Book and Publ i sher
classes to the nysql ef cor e namespace.

nanespace nysql ef core

{
public cl ass Book
{
public string | SBN { get; set; }
public string Title { get; set; }
public string Author { get; set; }
public string Language { get; set; }
public int Pages { get; set; }
public virtual Publisher Publisher { get; set; }
}
public class Publisher
{
public int ID{ get; set; }
public string Nane { get; set; }
public virtual |Collection<Book> Books { get; set; }
}

}

b. Create a new file named Li br ar yCont ext . cs and add the code that follows. Replace the
generic connection string with one that is appropriate for your MySQL server configuration.

Note

The MySQL. Ent i t yFr amewor kCor e. Ext ensi ons namespace
applies to Connector/NET 8.0.23 and later. Earlier connector versions
require the MySQL. Dat a. Ent i t yFr amewor kCor e. Ext ensi ons
namespace.

using M crosoft. EntityFranmewor kCor e;
using MySQL. Enti t yFr amewor kCor e. Ext ensi ons;

nanmespace nysql ef core
public class LibraryContext : DbContext
publ i c DbSet <Book> Book { get; set; }
publ i c DbSet <Publ i sher> Publisher { get; set; }

protected override void OnConfi guri ng(DbCont ext Opti onsBui | der opti onsBuil der)

{
optionsBui | der. UseMySQL("ser ver =| ocal host ; dat abase=l i brary; user =user; passwor d=passwor d") ;
}
protected override voi d OnModdel Creati ng(Mdel Bui |l der nodel Bui | der)
{

base. OnModel Cr eat i ng(nodel Bui | der) ;
nodel Bui | der. Enti ty<Publisher>(entity =>
entity. HasKey(e => e.ID);

entity. Property(e => e.Nane).|sRequired();
1)

304

Entity Framework Core Support

}
}
}

The Li br ar yCont ex class contains the entities to use and it enables the configuration of
specific attributes of the model, such as Key, required columns, references, and so on.

Insert the following code into the existing Pr ogr am cs file, replacing the default C# code.

nodel Bui | der. Enti t y<Book>(entity =>

entity. HasKey(e => e. | SBN);

entity.Property(e => e.Title).lsRequired();

entity. HasOne(d => d. Publ i sher)
.WthMany(p => p. Books);

});

using M crosoft. EntityFramewor kCor e;
usi ng System
usi ng System Text;

nanmespace nysql ef core

{

cl ass Program

{

static void Main(string[] args)

{

}

InsertData();
PrintData();

private static void |InsertData()

{

}

usi ng(var context = new LibraryContext())

}

/'l Creates the database if not exists

cont ext . Dat abase. Ensur eCreat ed() ;

/1 Adds a publi sher
var publisher = new Publisher

{

b
cont ext . Publ i sher. Add(publ i sher);

Nane = "Mari ner Books"

/1 Adds sone books
cont ext . Book. Add(new Book

{
I SBN = "978-0544003415",

Title = "The Lord of the R ngs",

Author = "J.R R Tol ki en",
Language = "English",
Pages = 1216,
Publ i sher = publ i sher

1)

cont ext . Book. Add(new Book

{
| SBN = "978-0547247762" ,
Title = "The Seal ed Letter",

Aut hor = "Emma Donoghue",
Language = "English",
Pages = 416,

Publ i sher = publ i sher
1)

/| Saves changes
cont ext . SaveChanges() ;

private static void PrintData()

{

305

Entity Framework Core Support

/'l Gets and prints all books in database
using (var context = new LibraryContext())

{

var books = context. Book
.Include(p => p. Publisher);
foreach(var book in books)

{

var data = new StringBuilder();

dat a. AppendLi ne($" | SBN: {book. | SBN\}");

dat a. AppendLi ne($"Title: {book.Title}");

dat a. AppendLi ne($" Publ i sher: {book. Publisher. Nanme}");
Consol e. Wi telLi ne(data. ToString());

d. Use the following CLI commands to restore the dependencies and then run the application.
dotnet restore

dot net run

The output from running the application is represented by the following example:
| SBN: 978- 0544003415

Title: The Lord of the Rings

Publ i sher: Mariner Books

| SBN: 978- 0547247762

Title: The Seal ed Letter
Publ i sher: Mariner Books

4.7.2.2 Scaffolding an Existing Database in EF Core

Scaffolding a database produces an Entity Framework model from an existing database. The resulting
entities are created and mapped to the tables in the specified database. For an overview of the
requirements to use EF Core with MySQL, see Table 4.3, “Connector/NET Versions and Entity
Framework Core Support”).

NuGet packages have the ability to select the best target for a project, which means that NuGet installs
the libraries related to that specific framework version.

There are two different ways to scaffold an existing database:
» Scaffolding a Database Using .NET Core CLI
» Scaffolding a Database Using Package Manager Console in Visual Studio

This section shows how to scaffold the saki | a database using both approaches. Additional
scaffolding techniques are:

» Scaffolding a Database by Filtering Tables
» Scaffolding with Multiple Schemas
Requirements

For the components needed to reproduce each scaffolding approach, see General Requirements for
EF Core Support. With the Package Manager Console approach, determine which version of Visual
Studio is recommended for the version of .NET or .NET Core in use (see Table 4.1, “Connector/NET
Requirements for Related Products”).

To download saki | a database, see https://dev.mysql.com/doc/sakila/en/.

306

https://dev.mysql.com/doc/sakila/en/

Entity Framework Core Support

Note

When upgrading ASP.NET Core applications to a newer framework, be sure
to use the appropriate EF Core version (see https://docs.microsoft.com/en-us/
aspnet/core/migration/30-to-31?view=aspnetcore-3.1).

Scaffolding a Database Using .NET Core CLI

1.

Initialize a valid .NET Core project and console application using the .NET Core command-line
interface (CLI) and then change to the newly created folder (saki | aConsol e).

dot net new consol e —o saki | aConsol e

cd saki | aConsol e

Add the MySQL NuGet package for EF Core using the CLI. For example, use the following
command to add the MySQL EF Core 7.0 package for use with Connector/NET 8.0.33 and later.

dot net add package MySql . EntityFramewor kCore --version 7.0.2

Add the following M cr osof t. Enti t yFramewor kCor e. Desi gn Nuget package:

dot net add package M crosoft. EntityFrameworkCore. Tool s

Restore dependencies and project-specific tools that are specified in the project file as follows:
dotnet restore

Create the Entity Framework Core model by executing the following command. The connection
string for this example must include dat abase=saki | a. For information about using connection
strings, see Section 4.4.1, “Creating a Connector/NET Connection String”.

Note

If you are using a connector version earlier than Connector/
NET 8.0.23, replace MySql . Ent i t yFr amewor kCor e with
MySql . Dat a. Enti t yFr amewor kCor e.

dot net ef dbcontext scaffold "connection-string" MSqgl.EntityFrameworkCore -0 sakila -f

To validate that the model has been created, open the new saki | a folder. You should see files
corresponding to all tables mapped to entities. In addition, look for the saki | aCont ext . cs file,
which contains the DbCont ext for this database.

Scaffolding a Database Using Package Manager Console in Visual Studio

1.

2.

Open Visual Studio and create a new Console App (.NET Core) for C#.

Add the MySQL NuGet package for EF Core using the Package Manager Console. For example,
use the following command to add the MySQL EF Core 7.0 package for use the Connector/NET
8.0.33 and later.

I nstal | - Package MySql . Enti t yFranewor kCore -Version 7.0. 2

Install the following NuGet package by selecting either Package Manager Console (or Manage
NuGet Packages for Solution and then NuGet Package Manager) from the Tools menu:
M crosoft. EntityFrameworkCore. Tool s.

Open Package Manager Console and enter the following command at the prompt to create the
entities and DbCont ext for the saki | a database. The connection string for this example must
include dat abase=saki | a. For information about using connection strings, see Section 4.4.1,
“Creating a Connector/NET Connection String”.

307

https://docs.microsoft.com/en-us/aspnet/core/migration/30-to-31?view=aspnetcore-3.1
https://docs.microsoft.com/en-us/aspnet/core/migration/30-to-31?view=aspnetcore-3.1

Entity Framework Core Support

Note

If you are using a connector version earlier than Connector/
NET 8.0.23, replace MySql . Ent i t yFr amewor kCor e with
MySql . Dat a. Ent i t yFr anmewor kCor e.

Scaf f ol d- DbCont ext "connection-string" MySql.EntityFraneworkCore -QutputDir sakila -f

Visual Studio creates a new saki | a folder inside the project, which contains all the tables mapped
to entities and the saki | aCont ext . cs file.

Scaffolding a Database by Filtering Tables

It is possible to specify the exact tables in a schema to use when scaffolding database and to omit
the rest. The command-line examples that follow show the parameters needed for filtering tables. The
connection string for this example must include dat abase=saki | a.

If you are using a connector version earlier than Connector/NET 8.0.23, replace
MySql . Ent it yFranmewor kCor e with MySql . Dat a. Ent i t yFr anmewor kCor e.

.NET Core CLI:

dot net ef dbcontext scaffold "connection-string" MySqgl.EntityFrameworkCore -0 sakila -t actor -t film-t fi

Package Manager Console in Visual Studio:

Scaf f ol d- DbCont ext "connection-string” M/Sql.EntityFrameworkCore -QutputDir Sakila -Tables actor,filmlangt
Scaffolding with Multiple Schemas

When scaffolding a database, you can use more than one schema or database. Note that the account
used to connect to the MySQL server must have access to each schema to be included within the
context.

The following command-line examples show how to incorporate the saki | a and wor | d schemas
within a single context. If you are using a connector version earlier than Connector/NET 8.0.23, replace
MySql . Enti t yFr amewor kCor e with MySql . Dat a. Enti t yFr anewor kCor e.

.NET Core CLI:

dot net ef dbcontext scaffold "connection-string"” M/Sql.EntityFrameworkCore -0 sakila --schema sakila --sche

Package Manager Console in Visual Studio:

Scaf f ol d- DbCont ext "connection-string” M/Sql.EntityFrameworkCore -QutputDir Sakila -Schemas sakila,world -f
4.7.2.3 Configuring Character Sets and Collations in EF Core

This section describes how to change the character set, collation, or both at the entity and entity-
property level in an Entity Framework (EF) Core model. Modifications made to the model affect the
tables and columns generated from your code.

There are two distinct approaches available for configuring character sets and collations in code-

first scenarios. Data annotation enables you to apply attributes directly to your EF Core model.
Alternatively, you can override the On\Mbdel Cr eat i ng method on your derived DbCont ext class
and use the code-first fluent API to configure specific characteristics of the model. An example of each
approach follows.

For more information about supported character sets and collations, see Character Sets and Collations
in MySQL.

308

https://dev.mysql.com/doc/refman/8.0/en/charset-mysql.html
https://dev.mysql.com/doc/refman/8.0/en/charset-mysql.html

Entity Framework Core Support

Using Data Annotation

Before you can annotate an EF Core model with character set and collation attributes, add a reference
to the following namespace in the file that contains your entity model.

Note

The MySQL. Ent i t yFr amewor kCor e. Dat aAnnot at i ons namespace applies
to Connector/NET 8.0.23 and later. Earlier connector versions require the
MySQL. Dat a. Ent i t yFr anewor kCor e. Dat aAnnot at i ons namespace.

usi ng MySql . Enti t yFr amewor kCor e. Dat aAnnot at i ons;

Add one or more [MySgl Char set] attributes to store data using a variety of character sets and one
or more [MySql Col | ati on] attributes to perform comparisons according to a variety of collations.
In the following example, the Conpl exKey class represents an entity (or table) and Key1, Key?2, and
Col | ati onCol unm represent entity properties (or columns).

[MySgl Charset ("utf8")]
public class Conpl exKey

{
[MySgl Charset ("l atinl")

public string Keyl { get; set; }

[MySgl Charset ("l atinl")]
public string Key2 { get; set; }

[MySqgl Col I ation("l ati nl_spani sh_ci")]
public string CollationColum { get; set; }

}
Using the Code-First Fluent API
Add the following directive to reference the methods related to character set and collation configuration.
Note

The MySQL. Ent i t yFr amewor kCor e. Ext ensi ons namespace applies
to Connector/NET 8.0.23 and later. Earlier connector versions require the
MySQL. Dat a. Ent i t yFramewor kCor e. Ext ensi ons namespace.

usi ng MySQL. Enti t yFr amewor kCor e. Ext ensi ons;

When using the fluent API approach, the EF Core model remains unchanged. Fluent API overrides any
rule set by an attribute.

public class Conpl exKey

{
public string Keyl { get; set; }

public string Key2 { get; set; }

public string CollationColum { get; set; }
}

In this example, the entity and various entity properties are reconfigured, including the conventional
mappings to character sets and collations. This approach uses the For MySQLHas Char set and
For M\ySQ_LHasCol | at i on methods.

public class M/Context : DbContext

{
publ i ¢ DbSet <Conpl exKey> Conpl exKeys { get; set; }

protected override voi d OnModel Creati ng(Model Bui | der nodel Bui | der)
{
nodel Bui | der. Enti t y<Conpl exKey>(e =>

e. HasKey(p => new { p.Keyl, p.Key2 });

309

Connector/NET API Reference

e. For MySQLHasCol | ati on("ascii_bin"); // defining collation at Entity |evel

e. Property(p => p. Keyl). For ySQ.HasCharset ("l atinl"); // defining charset in a property

e. Property(p => p. Col | ati onCol utmFA) . For MySQ_LHasCol | ati on("utf8_bin"); // defining collation in a prc

b
}

}

4.8 Connector/NET API Reference

This chapter provides a high-level reference to the ADO.NET and .NET Core components that are
implemented in the most recent version of Connector/NET. For a complete API listing, visit MySQL
Documentation to locate the Connector/NET 8.0 API reference guide that is generated from embedded
documentation.

4.8.1 MySql.Data.Common.DnsClient

Enumerations

Enumeration Description

OPCode DNS Record OpCode. A four bit field that specifies
kind of query in this message. This value is set

by the originator of a query and copied into the
response.

4.8.2 MySql.Data.MySqlClient Namespace

Classes

Class Description

Aut hent i cati onPl ugi nConfi gur at i onEl engRetrieves the authentication plugin configuration
from the configuration file.

BaseConmandl nt er cept or Provides a means of enhancing or replacing SQL
commands through the connection string rather
than recompiling.

BaseTabl eCache Provides a base class used for the table cache.

Char act er Set Specifies a character set.

Generi cConfigurati onEl enent Col | ecti onqRetrieves an element collection from the
configuration file.

I nt er cept or Confi gur ati onEl ement Class used in the configuration file to get
configuration details for interceptors.

MySql Attribute Represents a query attribute to a
MySglCommand.

MySql AttributeColl ection Represents a collection of query attributes
relevant to a MySglCommand.

My Sql BaseConnecti onStringBui | der Abstract class that provides common functionality
for connection options that apply for all protocols.

MySql Bul kLoader Load many rows into the database.

MySqgl d i ent Fact ory Represents the DBPr ovi der Fact ory

implementation for MySq|IClient.

MySql C i ent Per m ssi on Derived from the .NET DBDataPermission
class. For usage information, see Section 4.5.7,
“Working with Partial Trust / Medium Trust”.

MySql Cl i ent Permi ssi onAttribute Associates a security action with a custom
security attribute.

310

https://dev.mysql.com/doc/
https://dev.mysql.com/doc/
http://msdn.microsoft.com/en-us/library/system.data.common.dbdatapermission.aspx

MySql.Data.MySqIClient Namespace

Class

Description

My Sql Comrand

Represents an SQL statement to execute
against a MySQL database. This class cannot be
inherited.

My Sql CormandBui | der

Automatically generates single-table commands
used to reconcile changes made to a data set
with the associated MySQL database. This class
cannot be inherited.

MySql Confi guration

Defines a configuration section that contains the
information specific to MySQL.

MySqgl Connecti on

Represents an open connection to a MySQL
Server database. This class cannot be inherited.

MySqgl Connecti onStri ngBui | der

Defines all of the connection string options that
can be used.

My Sql Dat aAdapt er

Represents a set of data commands and a
database connection that are used to fill a data set
and update a MySQL database. This class cannot
be inherited.

My Sql Dat aReader

Provides a means of reading a forward-only
stream of rows from a MySQL database. This
class cannot be inherited.

MySql Error

Collection of error codes that can be returned by
the server

MySql Excepti on

The exception that is thrown when MySQL returns
an error. This class cannot be inherited.

My Sql Hel per

Helper class that makes it easier to work with the
provider.

MySql | nf oMessageEvent Ar gs

Provides data for the | nf oMessage event. This
class cannot be inherited.

My Sql Par anet er

Represents a parameter to a

MySql . Dat a. MySql C i ent . MySql Comrand,
and optionally, its mapping to columns in a
dataset. This class cannot be inherited.

MySql Par anet er Col | ecti on

Represents a collection of parameters relevant to
aM/Sql . Data. MySql C i ent. MySql Conmand
as well as their respective mappings to columns in
a dataset. This class cannot be inherited.

My Sql RowUpdat edEvent Ar gs

Provides data for the RowUpdat ed event. This
class cannot be inherited.

My Sql RowUpdat i ngEvent Ar gs

Provides data for the RowUpdat i ng event. This
class cannot be inherited.

MySql SchemaCol | ecti on

Contains information about a schema.

My Sqgl SchemaRow

Represents a row within a schema.

MySql Scri pt

Provides a class capable of executing an SQL
script containing multiple SQL statements
including CREATE PROCEDURE statements that
require changing the delimiter.

MySql Scri pt Error Event Ar gs

Provides an error event argument used in
MySqlScript.

MySql Scri pt Event Ar gs

Provides an event argument used in MySqlScript.

311

MySql.Data.MySqIClient Namespace

Class

Description

MySql Securi t yPerm ssi on

Creates permission sets.

MySql Tr ace

Logs events in a defined listener.

MySql Tr ansacti on

Represents an SQL transaction to be made in a
MySQL database. This class cannot be inherited.

Repl i cati onConfi gurati onEl ement

Defines a replication configuration element in the
configuration file.

Repl i cati onServer Confi gurati onEl enent

Defines a replication server in the configuration
file.

Repl i cati onServer G oupConfi gurati onEl €

Defines a replication server group in the
configuration file

SchenmaCol umm

Represents a column object within a schema.

Delegates

Delegate

Description

Fi doActi onCal | back

Represents the method to handle the
Fi doAct i onRequest ed event of a
My Sqgl Connect i on.

MySql | nf oMessageEvent Handl er

Represents the method to handle the
I nf oMessage event of a MySgl Connect i on.

My Sql RowUpdat edEvent Handl er

Represents the method to handle the
RowUpdat edevent of a MySqgl Dat aAdapt er.

My Sql RowUpdat i ngEvent Handl er

Represents the method to handle the
RowUpdat i ngevent of a MySql Dat aAdapt er .

MySql Scri pt Err or Event Handl er

Represents the method to handle an error in
MySqlScript.

MySql St at ement Execut edEvent Handl er

Represents the method to be called after the
execution of a statement in MySqlScript.

Enumerations

Enumeration

Description

Cl oseNot i fication

The warnings that cause a connection to close.

Conpr essi onAl gorit hns

Defines the compression algorithms that can be
used.

Conpr essi onType

Defines the type of compression used when data
is exchanged between client and server.

Ker ber osAut hivbde

Defines the different modes that can be used for
Kerberos authentication.

LockCont enti on

Defines waiting options that may be used with row
locking options.

MySql Aut hent i cati onMode

Specifies the authentication mechanism that
should be used.

MySql Bul kLoader Confl i ct Opti on

Defines the action to perform when a conflict is
found.

MySql Bul kLoader Priority

Defines the load priority.

MySql CertificateStorelLocation

Defines the certificate store location.

MySql Connect i onPr ot ocol

Specifies the type of connection to use.

312

MySql.Data.MySqlClient.Authentication Namespace

Enumeration Description
MySql DbType Specifies the MySQL data type
of a field or property for use in a
MySql . Dat a. MySqgl Cl i ent. MySql Par anet er .
MySql Dri ver Type Specifies the connection types that are supported.
MySql Er r or Code Provides a reference to error codes returned by
MySQL.
My SQLCGui dFor nmat Specifies the stored type for a MySQL GUID data
type.
MySqgl Ssl Mode Provides the SSL options for a connection.
MySql Tr aceEvent Type Defines the log event type in MySqlTrace.
UsageAdvi sor War ni ngFl ags Defines the usage advisor warning type.

4.8.3 MySql.Data.MySqlClient.Authentication Namespace

Classes

Class Description

MySqgl Aut henti cati onPl ugi n Abstract class used to define an authentication
plugin.

MySql C ear Passwor dPl ugi n Allows connections to a user account set with the
nysqgl _cl ear passwor d authentication plugin.

MySql Nat i vePasswor dPl ugi n Implements the nysql _nati ve_password
authentication plugin.

My Sql PenReader Provides functionality to read, decode, and
convert PEM files into objects supported in .NET.

4.8.4 MySql.Data.MySqlClient.Interceptors Namespace

Classes
Class Description
BaseExcepti onl nt er ceptor Represents the base class for all user-defined
exception interceptors.

4.8.5 MySql.Data.MySqlClient.Replication Namespace

The MySql . Dat a. MySqgl Cl i ent. Repl i cati on hamespace contains members for replication and
load-balancing components.

Classes
Class Description
Repl i cati onRoundRobi nSer ver G oup Class that implements round-robin load balancing.
Repl i cati onServer Represents a server in the replication
environment.
Repl i cati onServer G oup Base class used to implement load-balancing
features.

4.8.6 MySql.Data.Types Namespace

The MySql . Dat a. Types namespace contains members for converting MySQL types.

313

MySql.Data.EntityFramework Namespace

Classes

Class

Description

My Sql Conver si onExcepti on

Represents exceptions returned during the
conversion of MySQL types.

Structures

Structure

Description

MySql Dat eTi me

Defines operations that apply to My Sql Dat eTi ne
objects.

My Sql Deci nal

Defines operations that apply to MySql Deci nal
objects.

MySql Geonetry

Defines operations that apply to MySql Geonetry
objects.

4.8.7 MySql.Data.EntityFramework Namespace

Classes

Class

Description

Backof f Al gorithm

Represents the base class for backoff algorithms.

Backof f Al gori t hmErr 1040

Backoff algorithm customized for the MySQL error
code 1040 - Too many connections.

Backof f Al gori t hnErr 1205

Backoff algorithm customized for the MySQL
error code 1205 - Lock wait timeout exceeded; try
restarting transaction.

Backof f Al gori t hnErr1213

Backoff algorithm customized for MySQL error
code 1213 - Deadlock found when trying to get
lock; try restarting transaction.

Backof f Al gorithmErr1614

Backoff algorithm for the MySQL error code 1614 -
Transaction branch was rolled back: deadlock was
detected.

Backof f Al gori t hmErr 2006

Backoff algorithm customized for MySQL error
code 2006 - MySQL server has gone away.

Backof f Al gori t hnErr2013

Backoff algorithm customized for MySQL error
code 2013 - Lost connection to MySQL server
during query.

Backof f Al gori t hniNdb

Backoff algorithm customized for MySQL Cluster
(NDB) errors.

MySql Connect i onFact ory

Used for creating connections in Code First 4.3.

MySql DependencyResol ver

Class used to resolve implementation of services.

MySql EFConfi gurati on

Class used to define the MySQL services used in
Entity Framework.

MySqgl Execut i onStr at egy

Provided an execution strategy tailored for
handling MySQL server transient errors.

MySql Hi st or yCont ext

Class used by code first migrations to read and
write migration history from the database.

MySql Logger

Provides the logger class for use with Entity
Framework.

314

Microsoft.EntityFrameworkCore Namespace

Class Description

MySql Mani f est TokenResol ver Represents a service for getting a provider
manifest token given a connection.

MySql M gr ati onCodeGener at or Class used to customized code generation to
avoid the dbo. prefix added on table names.

MySql M gr ati onSql Gener at or Implements the MySQL SQL generator for EF 4.3
data migrations.

MySql Mbdel CacheKey Represents a key value that uniquely identifies an
Entity Framework model that has been loaded into
memory.

MySql Pr ovi der Fact or yResol ver Represents a service for obtaining the correct

MySQL DbPr ovi der Fact ory from a connection.

MySql Provi der | nvari ant Nanme Defines the MySQL provider name.

Enumerations

Enumeration Description

OpType Represents a set of database operations.

4.8.8 Microsoft.EntityFrameworkCore Namespace

Enables access to .NET Core command-line interface (CLI) tools.

Classes
Class Description
My SQ.DbCont ext Opt i onsExt ensi ons Represents the context-option extensions
implemented for MySQL.

4.8.9 MySql.EntityFrameworkCore Namespace
Namespaces in this section:
» MySql.EntityFrameworkCore.DataAnnotations Namespace
* MySQL.EntityFrameworkCore.Diagnostics Namespace
» MySql.EntityFrameworkCore.Extensions Namespace
* MySql.EntityFrameworkCore.Infrastructure Namespace
» MySql.EntityFrameworkCore.Infrastructure.Internal Namespace
* MySql.EntityFrameworkCore.Metadata Namespace
* MySql.EntityFrameworkCore.Migrations.Operations Namespace

* MySql.EntityFrameworkCore.Query Namespace

MySql.EntityFrameworkCore.DataAnnotations Namespace

Classes
Class Description
MySql Charset Attri bute Establishes the character set of an entity property.
MySql Col | ati onAttri bute Sets the collation in an entity property.

315

MySql.EntityFrameworkCore Namespace

MySQL.EntityFrameworkCore.Diagnostics Namespace

Classes

Class

Description

MySQLEvent 1 d

Event IDs for MySQL events that correspond to
messages logged to an | Logger and events
sentto a Di agnost i cSour ce. The IDs are also
used with War ni ngsConf i gur ati onBui | der
to configure the behavior of warnings.

MySql.EntityFrameworkCore.Extensions Namespace

Classes

Class

Description

My SQ.Dat abaseFacadeExt ensi ons

MySQL specific extension methods for
Dat abase() .

MySQLDbFunct i onsExt ensi ons

Provides CLR methods that get translated to
database functions when used in LINQ to Entities
gueries. The methods on this class are accessed
via Functions().

MySQLENnt i t yTypeExt ensi ons

MySQL specific extension methods for entity
types.

MySql | ndexBui | der Ext ensi ons

Inheritance

My SQLI ndexExt ensi ons

Extension methods for | | ndex for SQL Server-
specific metadata.

MySQLKeyBuUi | der Ext ensi ons

Inheritance

My SQLKeyExt ensi ons

Extension methods for | Key for MySQL-specific
metadata.

MySQLM gr at i onBui | der Ext ensi ons

MySQL specific extension methods for
M grati onBui | der.

My SQ_Mbdel Bui | der Ext ensi ons

Inheritance

My SQLPr opert yBui | der Ext ensi ons

Represents the implementation of MySQL
property-builder extensions used in Fluent API.

My SQLPr oper t yExt ensi ons

Extension methods for | Property for MySQL
Server-specific metadata.

MySQLSer vi ceCol | ecti onExt ensi ons

MySQL extension class for
| Servi ceCol | ecti on.

Enumerations

Enumeration

Description

My SQLMat chSear chMbde

Performs a search against a text collection.

MySql.EntityFrameworkCore.Infrastructure Namespace

Classes

Class

Description

My SQL.DbCont ext Opt i onsBui | der

Represents the
Rel ati onal DbCont ext Opt i onsBui | der type
implemented for MySQL.

316

MySqgl.Web Namespace

Delegates

Enumerations

Delegate

Description

MySQLSchemaNaneTr ansl at or

Translates the specified schema and object to an
output object name whenever a schema is being
used.

Enumeration

Description

My Sql SchenaBehavi or

Represents the behavior of the schema.

MySql.EntityFrameworkCore.Infrastructure.Internal Namespace

Classes

Class

Description

My SQLOpt i onsExt ensi on

Represents the
Rel ati onal Opti onsExt ensi on type
implemented for MySQL.

Interfaces

Interface

Description

| MySQLOpt i ons

Represents options to set on the provider.

MySql.EntityFrameworkCore.Metadata Namespace

Enumerations

Enumeration

Description

MySQ.Val ueCener at i onSt r at egy

An internal enumeration that supports the Entity
Framework Core infrastructure.

MySqgl.EntityFrameworkCore.Migrations.Operations Namespace

Classes

Class

Description

My SQLDr opPr i mar yKeyAndRecr eat eFor ei gnK

Aymigrati@n operation for dropping a primary key
and recreating foreign keys.

My SQLDr opUni queConst r ai nt AndRecr eat eFg

Aainigr&iigrs Qperagiondor dropping a unique
constraint and recreating foreign keys.

MySql.EntityFrameworkCore.Query Namespace

Classes

Class

Description

MySQLIsonStri ng

Represents a string that contains valid JSON data.
To mark a string as containing JSON data, just
cast the string to MySQLJsonSt ri ng.

4.8.10 MySqgl.Web Namespace

317

MySqgl.Web Namespace

The MySql . W\eb namespace includes a set of subordinate namespaces that represent the features
managed by various MySQL providers and available for use within ASP.NET applications.

Namespaces in this section:

* MySqgl.Web.Common Namespace

» MySqgl.Web.Personalization Namespace
e MySqgl.Web.Profile Namespace

* MySql.Web.Security Namespace

* MySql.Web.SessionState Namespace

* MySqgl.Web.SiteMap Namespace
MySql.Web.Common Namespace

Classes

Class

Description

SchemaManager

Manages schema-related operations.

MySql.Web.Personalization Namespace

Classes

Class

Description

MySql Per sonal i zat i onProvi der

Implements a personalization provider enabling
the use of web parts at ASP.NET websites.

MySql.Web.Profile Namespace

Classes

Class

Description

MySQLPr of i | eProvi der

Implements a profile provider for the MySQL
database.

MySqgl.Web.Security Namespace

Classes

Class

Description

My SQLMenber shi pProvi der

Manages storage of membership information for
an ASP.NET application in a MySQL database.

My SQ_Rol ePr ovi der

Manages storage of role membership information
for an ASP.NET application in a MySQL database.

MySql Si npl eMenber shi pPr ovi der

Provides support for website membership tasks,
such as creating accounts, deleting accounts, and
managing passwords.

MySql Si npl eRol ePr ovi der

Provides basic role-management functionality.

My Sql WebSecurity

Provides security and authentication features
for ASP.NET Web Pages applications, including

318

Connector/NET Support

Class Description

the ability to create user accounts, log users in

related tasks.

and out, reset or change passwords, and perform

MySqgl.Web.SessionState Namespace

Classes

Class Description

MySql Sessi onSt at eStore Enables ASP.NET applications to store and
manage session state information in a MySQL
database. Expired session data is periodically
deleted from the database.

MySql.Web.SiteMap Namespace

Classes
Class Description
MySql Si t eMapPr ovi der Implements a site-map provider for the MySQL
database.

4.9 Connector/NET Support

The developers of MySQL Connector/NET greatly value the input of our users in the software
development process. If you find Connector/NET lacking some feature important to you, or if you
discover a bug and need to file a bug report, please use the instructions in How to Report Bugs or
Problems.

4.9.1 Connector/NET Community Support

» Community support for MySQL Connector/NET can be found through the forums at http://
forums.mysql.com.

 Paid support is available from Oracle. Additional information is available at http://dev.mysqgl.com/
support/.

4.9.2 How to Report Connector/NET Problems or Bugs

If you encounter difficulties or problems with MySQL Connector/NET, contact the Connector/NET
community, as explained in Section 4.9.1, “Connector/NET Community Support”.

First try to execute the same SQL statements and commands from the nysql client program. This
helps you determine whether the error is in Connector/NET or MySQL.

If reporting a problem, ideally include the following information with the email:
» Operating system and version.

* Connector/NET version.

MySQL server version.
» Copies of error messages or other unexpected output.

» Simple reproducible sample.

319

https://dev.mysql.com/doc/refman/8.0/en/bug-reports.html
https://dev.mysql.com/doc/refman/8.0/en/bug-reports.html
http://forums.mysql.com
http://forums.mysql.com
http://dev.mysql.com/support/
http://dev.mysql.com/support/

How to Report Connector/NET Problems or Bugs

Remember that the more information you can supply to us, the more likely it is that we can fix the
problem.

If you believe the problem to be a bug, then you must report the bug through http://bugs.mysql.com/.

320

http://bugs.mysql.com/

Chapter 5 MySQL Connector/ODBC Developer Guide

Table of Contents

5.1 Introduction to MySQL Connector/ODBCuiiiiiiiiieiiii et 322
5.2 CONNECLOI/ODBEC VEISIONSvuuiiiiiiiet ettt e ettt e e et e et e e et e e e et e e e e et e e e eaaan s 323
5.3 General Information About ODBC and Connector/ODBCcoviiiiiieiiiiineicii e 324
5.3.1 Connector/ODBC ArChItECIUIEcooueiiiiiii e 324
5.3.2 ODBC DIVEI IMBNAGETSuueiiiii ettt e et e ettt e e e et e e e e et e e e aeta e e eaeneaaeees 326
5.4 Connector/ODBC INSLAIALIONocieiiiiiiii e e 327
5.4.1 Installing Connector/ODBC 0N WINAOWSiiiiiiiieiiiie et 328
5.4.2 Installing Connector/ODBC on Unix-like SYStEMScoviiiiiiiiiiiiic e 330
5.4.3 Installing Connector/ODBC 0N MACOSuuiiiiiiiieeiii e 332
5.4.4 Building Connector/ODBC from a Source Distribution on Windowsccccoeeevunnnnn. 333
5.4.5 Building Connector/ODBC from a Source Distribution on Unixcccceiveiviinnneiinnnnnn. 335
5.4.6 Building Connector/ODBC from a Source Distribution on macOScccceeveevennnnnnn. 337
5.4.7 Installing Connector/ODBC from the Development Source Treeccoovveveviieeeeiinneees 337
5.5 Configuring CoNNECLOIODBCccuuuiiiiiiieee et e et eeeaaa s 338
5.5.1 Overview of Connector/ODBC Data Source NAmMEeScc.uiieiiiiiiieiiiiiiieeeeiiieeeeiiaeees 338
5.5.2 Connector/ODBC CoNnNEection Parametersocoeuuiieiiiiiieiiii e 338
5.5.3 Configuring a Connector/ODBC DSN 0N WINAOWSccoeiuuiiiiiiiiiieeeiiineeeiiie e 347
5.5.4 Configuring a Connector/ODBC DSN 0N MAaCOSiviiiiiiiieiii e e e 351
5.5.5 Configuring a Connector/fODBC DSN 0N UNIXuuuiiiiiiiiiiiiiiiieecei e 353
5.5.6 Connecting Without a Predefined DSNoooiiiiiiiiiii e 354
5.5.7 ODBC CONNECHION POOING ..uuiiiiiiiieeiiii e 355
5.5.8 OpenTelemetry Tracing SUPPOITccveuunieiiiiie et 355
5.5.9 AUthentiCation OPLIONSiiiiiiieiiii e e e et e e et eeees 356
5.5.10 Getting an ODBC Trace Filecociiuiiiiiiiiii e 356
5.6 ConNector/ODBC EXAMPIESooieiiiiieii et 359
5.6.1 Basic Connector/ODBC ApPIICAtION StEPSuuiiiiiiiiiiiiiie e 359
5.6.2 Step-by-step Guide to Connecting to a MySQL Database through Connector/ODBC 360
5.6.3 Connector/ODBC and Third-Party ODBC TOOISoiiiiiiiiiiiiiiiiieeiiiii e 361
5.6.4 Using Connector/ODBC wWith MIiCrOSOft ACCESS ...uivvvuiiiiiiii e e e e 362
5.6.5 Using Connector/ODBC with Microsoft Word or EXCelcccovviiiiiiiiiiiiiniiiiieeeeeenn, 371
5.6.6 Using Connector/ODBC with Crystal REPOITScoviuuniiiiiiiiieeiiiiieeeii e 373
5.6.7 Connector/ODBC ProgrammMiNngueeeeuueeeeiieeeeii e eeii e et e e et eeeain e e eaen s 378
5.7 ConNectOr/ODBC REEIENCEcoiiiiieiiiii e 385
5.7.1 Connector/ODBC API REEIENCEcoeuiiiiiii e 385
5.7.2 ConNector/ODBEC Data TYPES ..cuuuuieieiiiiieiiii e et e et e et e et e e et e e et eeeeae s 388
5.7.3 Connector/ODBC ErrOr COUESuiiiiiiieiiii ettt e et e et e b 390
5.8 Connector/ODBC NOES AN TIPS .vvuuiiiriiieiiiii ettt e et e et e et e e et e e et eeaaaan s 391
5.8.1 Connector/ODBC General FUNCLONANIYoooiiviiiiiiiiiieecii e 391
5.8.2 Connector/ODBC Application-SPpecifiC TIPS .. .ccuvuiiiiiiiieiiiiie e 393
5.8.3 Connector/ODBC and the Application Both Use OpenSSLcooovvviiiiiiiiiinieiiiineeeenn, 397
5.8.4 Connector/ODBC Errors and Resolutions (FAQ)ooiieuiiiiiiiiiiieeiiine e 397
5.9 CoNNECLOI/ODBC SUPPOIT . .cetiieeiitiie ettt e et e e et e e e et e e e et e e e e et e e e eete s 402
5.9.1 Connector/ODBC COMMUNILY SUPPOITeiiiiieeieiiiee ettt e e e e 402
5.9.2 How to Report Connector/ODBC Problems Or BUQSooeuviiiiiiiiiieiiii e 402

MySQL Connector/ODBC is the driver that enables ODBC applications to communicate with MySQL
servers.

For notes detailing the changes in each release of Connector/ODBC, see MySQL Connector/ODBC
Release Notes.

For legal information, see the Legal Notices.

321

https://dev.mysql.com/doc/relnotes/connector-odbc/en/
https://dev.mysql.com/doc/relnotes/connector-odbc/en/

Introduction to MySQL Connector/ODBC

For help with using MySQL, please visit the MySQL Forums, where you can discuss your issues with
other MySQL users.

Licensing information. This product may include third-party software, used under license. If

you are using a Commercial release of MySQL Connector/ODBC, see this document for licensing
information, including licensing information relating to third-party software that may be included in
this Commercial release. If you are using a Community release of MySQL Connector/ODBC, see this
document for licensing information, including licensing information relating to third-party software that
may be included in this Community release.

5.1 Introduction to MySQL Connector/ODBC

The MySQL Connector/ODBC is the name for the family of MySQL ODBC drivers (previously called
MyODBC drivers) that provide access to a MySQL database using the industry standard Open
Database Connectivity (ODBC) API. This reference covers Connector/ODBC 8.3, which includes the
functionality of the Unicode driver and the ANSI driver.

MySQL Connector/ODBC provides both driver-manager based and native interfaces to the MySQL
database, with full support for MySQL functionality, including stored procedures, transactions and full
Unicode compliance.

For more information on the ODBC API standard and how to use it, refer to http://
support.microsoft.com/kb/110093.

The application development section of the ODBC API reference assumes a good working knowledge
of C, general DBMS, and a familiarity with MySQL. For more information about MySQL functionality
and its syntax, refer to https://dev.mysql.com/doc/.

Typically, you need to install Connector/ODBC only on Windows machines. For Unix and macOS,
you can use the native MySQL network or named pipes to communicate with your MySQL database.
You may need Connector/ODBC for Unix or macOS if you have an application that requires an ODBC
interface to communicate with the database. Applications that require ODBC to communicate with
MySQL include ColdFusion, Microsoft Office, and Filemaker Pro.

For notes detailing the changes in each release of Connector/ODBC, see MySQL Connector/ODBC
Release Notes.

Key Connector/ODBC topics include:

* Installing Connector/ODBC: Section 5.4, “Connector/ODBC Installation”.
» The configuration options: Section 5.5.2, “Connector/ODBC Connection Parameters”.

» An example that connects to a MySQL database from a Windows host: Section 5.6.2, “Step-by-step
Guide to Connecting to a MySQL Database through Connector/ODBC”.

* An example that uses Microsoft Access as an interface to a MySQL database: Section 5.6.4, “Using
Connector/ODBC with Microsoft Access”.

» General tips and notes, including how to obtain the last auto-increment ID: Section 5.8.1, “Connector/
ODBC General Functionality”.

» Application-specific usage tips and notes: Section 5.8.2, “Connector/ODBC Application-Specific
Tips”.

* A FAQ (Frequently Asked Questions) list: Section 5.8.4, “Connector/ODBC Errors and Resolutions
(FAQ)".

» Additional Connector/ODBC support options: Section 5.9, “Connector/ODBC Support”.

322

http://forums.mysql.com
https://downloads.mysql.com/docs/licenses/connector-odbc-8.3-com-en.pdf
https://downloads.mysql.com/docs/licenses/connector-odbc-8.3-gpl-en.pdf
https://downloads.mysql.com/docs/licenses/connector-odbc-8.3-gpl-en.pdf
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_transaction
http://support.microsoft.com/kb/110093
http://support.microsoft.com/kb/110093
https://dev.mysql.com/doc/
https://dev.mysql.com/doc/relnotes/connector-odbc/en/
https://dev.mysql.com/doc/relnotes/connector-odbc/en/

Connector/ODBC Versions

5.2 Connector/ODBC Versions

Information about each Connector/ODBC version; for release notes, see the Connector/ODBC release
notes.

» Connector/ODBC 8.x: 8.1.0 is the first GA release version that supersedes the 8.0 series. MySQL
connector releases use the latest Innovation release number. For example, when MySQL Server
released versions 5.7.43, 8.0.34, and 8.1.0, this connector released connector version (8.1.0) that
connects to all three MySQL Server versions.

This is the first series without 32-bit support, which ended for all MySQL products.

» Connector/ODBC 8.0: added MySQL Server 8.0 support, including caching_sha2_password and the
related GET_SERVER_PUBLIC_KEY connection attribute.

Note

As of 8.0.35, 32-bit Connector/ODBC builds exist for Windows. The 8.0 series
no longer includes new functionality but it does contain bug fixes. You're
encouraged to use the latest Connector/ODBC version and not the 8.0 series
if you do not need 32-bit builds.

» Connector/ODBC 5.3: functions with MySQL Server versions between 4.1 and 5.7. It does not
work with 4.0 or earlier releases, and does not support all MySQL 8 features. It conforms to the
ODBC 3.8 specification and contains key ODBC 3.8 features including self-identification as a ODBC
3.8 driver, streaming of output parameters (supported for binary types only), and support of the
SQL_ATTR_RESET_CONNECTION connection attribute (for the Unicode driver only). Connector/
ODBC 5.3 also introduces a GTK+-based setup library, providing GUI DSN setup dialog on some
Unix-based systems. The library is currently included in the Oracle Linux 6 and Debian 6 binary
packages. Other new features in the 5.3 series include file DSN and bookmark support.

Connector/ODBC 5.3.11 added caching_sha2_password support by adding the
GET_SERVER_PUBLIC_KEY connection attribute.

» Connector/ODBC 5.2: upgrades the ANSI driver of Connector/ODBC 3.51 to the 5.x code base.
It also includes new features, such as enabling server-side prepared statements by default. At
installation time, you can choose the Unicode driver for the broadest compatibility with data sources
using various character sets, or the ANSI driver for optimal performance with a more limited range of
character sets. It works with MySQL versions 4.1 to 5.7.

» Connector/ODBC 5.1: is a partial rewrite of the of the 3.51 code base, and is designed to work with
MySQL versions 4.1 to 5.7.

Connector/ODBC 5.1: also includes the following changes and improvements over the 3.51 release:
« Improved support on Windows 64-bit platforms.

< Full Unicode support at the driver level. This includes support for the SQL_WCHAR data type, and
support for Unicode login, password and DSN configurations. For more information, see Microsoft
Knowledgebase Article #716246.

» Support for the SQL_NUVERI C_STRUCT data type, which provides easier access to the precise
definition of numeric values. For more information, see Microsoft Knowledgebase Article #714556

« Native Windows setup library. This replaces the Qt library based interface for configuring DSN
information within the ODBC Data Sources application.

< Support for the ODBC descriptor, which improves the handling and metadata of columns and
parameter data. For more information, see Microsoft Knowledgebase Article #716339.

323

https://dev.mysql.com/doc/relnotes/connector-odbc/en/
https://dev.mysql.com/doc/relnotes/connector-odbc/en/
https://dev.mysql.com/doc/refman/8.0/en/caching-sha2-pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.0/en/caching-sha2-pluggable-authentication.html
http://msdn2.microsoft.com/en-us/library/ms716246.aspx
http://msdn2.microsoft.com/en-us/library/ms716246.aspx
http://msdn2.microsoft.com/en-us/library/ms714556.aspx
http://msdn2.microsoft.com/en-us/library/ms716339.aspx

General Information About ODBC and Connector/ODBC

» Connector/ODBC 3.51, also known as the MySQL ODBC 3.51 driver, is a 32-bit ODBC driver.
Connector/ODBC 3.51 has support for ODBC 3.5x specification level 1 (complete core API + level 2
features) to continue to provide all functionality of ODBC for accessing MySQL.

The manual for versions of Connector/ODBC older than 5.3 can be located in the corresponding binary
or source distribution.

Note

Versions of Connector/ODBC earlier than the 3.51 revision were not fully
compliant with the ODBC specification.

Note

From this section onward, the primary focus of this guide is the Connector/
ODBC 5.3 driver.

Note

Version numbers for MySQL products are formatted as X.X.X. However,
Windows tools (Control Panel, properties display) may show the version
numbers as XX.XX.XX. For example, the official MySQL formatted version
number 5.0.9 may be displayed by Windows tools as 5.00.09. The two versions
are the same; only the number display formats are different.

5.3 General Information About ODBC and Connector/ODBC

ODBC (Open Database Connectivity) provides a way for client programs to access a wide range of
databases or data sources. ODBC is a standardized API that enables connections to SQL database
servers. It was developed according to the specifications of the SQL Access Group and defines a

set of function calls, error codes, and data types that can be used to develop database-independent
applications. ODBC usually is used when database independence or simultaneous access to different
data sources is required.

For more information about ODBC, refer to http://support.microsoft.com/kb/110093.

Open Database Connectivity (ODBC) is a widely accepted application-programming interface (API) for
database access. It is based on the Call-Level Interface (CLI) specifications from X/Open and ISO/IEC
for database APIs and uses Structured Query Language (SQL) as its database access language.

A survey of ODBC functions supported by Connector/ODBC is given at Section 5.7.1, “Connector/
ODBC API Reference”. For general information about ODBC, see http://support.microsoft.com/
kb/110093.

5.3.1 Connector/ODBC Architecture

The Connector/ODBC architecture is based on five components, as shown in the following diagram:

324

http://support.microsoft.com/kb/110093
http://support.microsoft.com/kb/110093
http://support.microsoft.com/kb/110093

Connector/ODBC Architecture

Figure 5.1 Connector/ODBC Architecture Components

Application

b

Driver Manager

I

DSN
Configuration

k. ¥ L

Gonnector/ODBC

MySQL Server

The Application uses the ODBC API to access the data from the MySQL server. The ODBC APl in
turn communicates with the Driver Manager. The Application communicates with the Driver Manager
using the standard ODBC calls. The Application does not care where the data is stored, how it is
stored, or even how the system is configured to access the data. It needs to know only the Data
Source Name (DSN).

» Application:

A number of tasks are common to all applications, no matter how they use ODBC. These tasks are:
« Selecting the MySQL server and connecting to it.

« Submitting SQL statements for execution.

* Retrieving results (if any).

* Processing errors.

« Committing or rolling back the transaction enclosing the SQL statement.

» Disconnecting from the MySQL server.

Because most data access work is done with SQL, the primary tasks for applications that use ODBC
are submitting SQL statements and retrieving any results generated by those statements.

» Driver manager:

The Driver Manager is a library that manages communication between application and driver or
drivers. It performs the following tasks:

« Resolves Data Source Names (DSN). The DSN is a configuration string that identifies a given
database driver, database, database host and optionally authentication information that enables an
ODBC application to connect to a database using a standardized reference.

Because the database connectivity information is identified by the DSN, any ODBC-compliant
application can connect to the data source using the same DSN reference. This eliminates the

325

https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_commit
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_rollback
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_transaction

ODBC Driver Managers

need to separately configure each application that needs access to a given database; instead you
instruct the application to use a pre-configured DSN.

< Loading and unloading of the driver required to access a specific database as defined within the
DSN. For example, if you have configured a DSN that connects to a MySQL database then the
driver manager will load the Connector/ODBC driver to enable the ODBC API to communicate with
the MySQL host.

* Processes ODBC function calls or passes them to the driver for processing.

Connector/ODBC Driver:

The Connector/ODBC driver is a library that implements the functions supported by the ODBC API.
It processes ODBC function calls, submits SQL requests to MySQL server, and returns results
back to the application. If necessary, the driver modifies an application's request so that the request
conforms to syntax supported by MySQL.

DSN Configuration:

The ODBC configuration file stores the driver and database information required to connect to
the server. It is used by the Driver Manager to determine which driver to be loaded according to
the definition in the DSN. The driver uses this to read connection parameters based on the DSN
specified. For more information, Section 5.5, “Configuring Connector/ODBC".

MySQL Server:

The MySQL database where the information is stored. The database is used as the source of the
data (during queries) and the destination for data (during inserts and updates).

5.3.2 ODBC Driver Managers

An ODBC Driver Manager is a library that manages communication between the ODBC-aware
application and any drivers. Its main functionality includes:

» Resolving Data Source Names (DSN).
* Driver loading and unloading.

» Processing ODBC function calls or passing them to the driver.

Most ODBC Driver Manager implementations also include an administration application that makes
the configuration of DSN and drivers easier. Examples and information on ODBC Driver Managers for
different operating systems are listed below:

» Windows: Microsoft Windows ODBC Driver Manager (odbc32. dl |). Itis included in the Windows

operating system. See http://support.microsoft.com/kb/110093 for more information.

macOS: ODBC Administrator is a GUI application for macOS. It provides a simplified configuration
mechanism for the iODBC Driver Manager. You can configure DSN and driver information either
through ODBC Administrator or through the iODBC configuration files. This also means that

you can test ODBC Administrator configurations using the i odbct est command. See http://
support.apple.com/kb/DL895 for more information.

e Unix:

e uni xODBC Driver Manager for Unix (I i bodbc. so). See http://www.unixodbc.org, for more
information.

« | ODBC Driver Manager for Unix (I i bi odbc. so). See http://www.iodbc.org, for more information.

326

http://support.microsoft.com/kb/110093
http://support.apple.com/kb/DL895
http://support.apple.com/kb/DL895
http://www.unixodbc.org
http://www.iodbc.org

Connector/ODBC Installation

5.4 Connector/ODBC Installation

This section explains where to download Connector/ODBC, and how to run the installer, copy the files
manually, or build from source.

Where to Get Connector/ODBC

You can get a copy of the latest version of Connector/ODBC binaries and sources from our website at
https://dev.mysqgl.com/downloads//connector/odbc/.

Choosing Binary or Source Installation Method
You can install the Connector/ODBC drivers using two different methods:

e The binary installation is the easiest and most straightforward method of installation. You receive
all the necessary libraries and other files pre-built, with an installer program or batch script to perform
all necessary copying and configuration.

* The source installation method is intended for platforms where a binary installation package is
not available, or in situations where you want to customize or modify the installation process or
Connector/ODBC drivers before installation.

If a binary distribution is not available for a particular platform, and you build the driver from the
original source code.

Connector/ODBC binary distributions include an | NFO_BI N file that describes the environment and
configuration options used to build the distribution. If you installed Connector/ODBC from a binary
distribution and experience build-related issues on a platform, it may help to check the settings
that were used to build the distribution on that platform. Binary and source distributions include an

I NFO_SRCfile that provides information about the product version and the source repository from
which the distribution was produced. This information was added in Connector/ODBC 8.0.14.

Supported Platforms

Connector/ODBC can be used on all major platforms supported by MySQL according to https://
www.mysgl.com/en/support/supportedplatforms/database.html. This includes Windows, most Unix-like
operation systems, and macOS.

Note

On all non-Windows platforms except macOS, the driver is built against

uni xODBC and is expecting a 2-byte SQLWCHAR, not 4 bytes as i ODBC is using.
For this reason, the binaries are only compatible with uni x ODBC; recompile
the driver against i ODBC to use them together. For further information, see
Section 5.3.2, “ODBC Driver Managers”.

For further instructions, consult the documentation corresponding to the platform where you are
installing and whether you are running a binary installer or building from source:

Platform Binary Installer Build from Source
Windows Installation Instructions Build Instructions
Unix/Linux Installation Instructions Build Instructions
macOS Installation Instructions

Choosing Unicode or ANSI Driver

Connector/ODBC offers the flexibility to handle data using any character set through its Unicode-
enabled driver, or the maximum raw speed for a more limited range of character sets through its
ANSI driver. Both kinds of drivers are provided in the same download package, and are both installed

327

https://dev.mysql.com/downloads//connector/odbc/
https://www.mysql.com/en/support/supportedplatforms/database.html
https://www.mysql.com/en/support/supportedplatforms/database.html

Prerequisites

onto your systems by the installation program or script that comes with the download package. Users
who install Connector/ODBC and register it to the ODBC manager manually can choose to install
and register either one or both of the drivers; the different drivers are identified by a w (for “wide
characters”) for the Unicode driver and a for the ANSI driver at the end of the library names. For
example, myodbc8w. dI | versus myodbc8a. dl |, orl i bmyodbc8w. so versus | i bnyodbc8a. so.

Note

Related: The previously described file names contain an "8", such as
nmyodbc8a. dl | , which means they are for Connector/ODBC 8.x. File names
with a "5", such as nyodbc5a. dl | , are for Connector/ODBC 5.x.

Prerequisites

The ODBC driver is linked against the MySQL Server client library, so it inherits its dependencies for its
shared libraries. For example, the MySQL Server client library depends on C++ runtime libraries.

5.4.1 Installing Connector/ODBC on Windows

Before installing the Connector/ODBC drivers on Windows:

» Make sure your Microsoft Data Access Components (MDAC) are up to date. You can obtain the
latest version from the Microsoft Data Access and Storage website.

» Make sure the Visual C++ Redistributable for Visual Studio is installed.
e Connector/ODBC 8.0.14 or higher: VC++ Runtime 2015 or VC++ Runtime 2017
¢ Connector/ODBC 8.0.11 to 8.0.13: VC++ Runtime 2015
» Connector/ODBC 5.3: VC++ Runtime 2013

Use the version of the package that matches the system type of your Connector/ODBC driver: use
the 64-bit version (marked by “x64" in the package's title and filename) if you are running a 64-bit
driver, and use the 32-bit version (marked by “x86” in the package's title and filename) if you are
running a 32-bit driver.

* OpenSSL is a required dependency. The MSI package bundles OpenSSL libraries used by
Connector/ODBC while the Zip Archive does not and requires that you install OpenSSL on the
system.

There are different distribution types to use when installing for Windows. The software that is installed
is identical in each case, only the installation method is different.

* MSI: The Windows MSI Installer Package wizard installs Connector/ODBC. Download it from https://
dev.mysqgl.com/downloads/connector/odbc/. Configure ODBC connections using Section 5.5,
“Configuring Connector/ODBC” after the installation.

» Zip Archive: Contains DLL files that must be manually installed. See Section 5.4.1.1, “Installing the
Windows Connector/ODBC Driver Using the Zipped DLL Package” for additional details.

» Connector/ODBC 8.0 and below: MySQL Installer: The general MySQL Installer application
for Windows can install, upgrade, configure, and manage most MySQL 8.0 products, including
Connector/ODBC 8.0 and its prerequisites. Download it from http://dev.mysql.com/downloads/
windows/installer/ and see the MySQL Installer documentation for additional details. This is not a
Connector/ODBC specific installer.

5.4.1.1 Installing the Windows Connector/ODBC Driver Using the Zipped DLL Package

If you have downloaded the zipped DLL package:

1. Unzip the installation files to the location you want it installed.

328

https://www.microsoft.com/en-in/download/details.aspx?id=21995
https://dev.mysql.com/downloads/connector/odbc/
https://dev.mysql.com/downloads/connector/odbc/
http://dev.mysql.com/downloads/windows/installer/
http://dev.mysql.com/downloads/windows/installer/
https://dev.mysql.com/doc/refman/8.0/en/mysql-installer.html

Installing Connector/ODBC on Windows

2. Run the included batch file to perform an installation from the current directory and registers the
ODBC driver.

3. Alternatively to the batch file, install the individual files required for Connector/ODBC operation
manually.

4. Optionally install debug related files that are bundled in a different Zip file.
To install using the batch file:

1. Unzip the Connector/ODBC zipped Connector/ODBC package to the desired installation directory.
For example, to C: \ Program Fi | es\ MySQL\ Connect or CDBC 8. 3\.

Note

Multiple Zip files are available: 32-bit and 64-bit, and (as of 8.0.31) a
separate Debug Zip file that includes PDB files and unit tests.

2. Open a command prompt (with Admin privileges) and change the location to that directory.

3. Runlinstall. bat toregister the Connector/ODBC driver with the Windows ODBC manager for
both the ANSI and Unicode versions. Output is similar to:

cd C \Program Fi | es\ MySQ.\ Connect or ODBC 8. 3\

I nstall. bat

Regi steri ng Uni code dri ver

Checking if "MySQL ODBC 8.3 Unicode Driver" is not already registered
Regi stering “"MySQ. ODBC 8.3 Uni code Driver"

Success: Usage count is 1

Regi stering ANSI dri ver

Checking if "MySQL ODBC 8.3 ANSI Driver" is not already registered
Regi stering “"MySQ. ODBC 8.3 ANSI Driver"

Success: Usage count is 1

Note

I nstal | . bat assumes the default naming scheme but optionally accepts
a custom name as the first parameter. For example, "Install.bat Fun" yields
"Fun Unicode" and "Fun ANSI" as the driver names.

Optionally use nyodbc-i nstal | er. exe to list the registered drivers, for example:

cd C\Program Fil es\ MySQ.\ Connect or ODBC 8. 3\ bi n
myodbc-installer -d -1

SQ. Server

MySQL ODBC 8.3 Uni code Driver

MySQ. ODBC 8.3 ANSI Driver

Note

Changing or adding a new DSN (data source name) may be accomplished
using either the GUI, or from the command-line using myodbc-
i nstal |l er. exe.

Using | nst al | . bat is optional, directly using myodbc-i nst al | er . exe is an alternative option to
register drivers. For example:

For Uni code-enabl ed driver:

myodbc-installer -a -d -n "MySQL ODBC 8.3 Unicode Driver" -t "DRl VER=nyodbc8w. dl | ; SETUP=nyodbc8S.dl|"

For ANSI driver:
myodbc-installer -a -d -n "MySQL ODBC 8.3 ANSI Driver" -t "DRI VER=nmyodbc8a. dl | ; SETUP=myodbc8S. dl | "

5.4.1.2 Installing the Windows Connector/ODBC Debug Packages

The associated Debug files are bundled in its own Zip file, including two | i b/ directories:

329

Installing Connector/ODBC on Unix-like Systems

e |i b/ : PDB files to use with regular builds; they are built in RelwithDeblInfo mode.

» Debug/ |1 b/ : Debug builds built in Debug mode; includes driver, PDB files, and unit tests in t est /
subdirectory.

Note
The separate debug Zip file was added in v8.0.31.
Add Debug Functionality to Regular Build

Download the debug zip and copy its | i b/ contents to your driver installation directory; this adds the
PDB files generated in the RelWithDeblnfo build.

Note

Regular builds are built with RelWithDeblInfo so not all debugging information is
available. For example, some variables might be optimized out.

Replace Regular Build with Debug Build

Manually copy Debug/ | i b/ files from the Zip package into the driver installation directory to replace
the DLL and PDB files inside. No new driver registration is required.

Install an Independent Debug Build

This requires copying the pl ugi n/ directory and dependency libraries (I i b*. dl |) from the regular
driver build, and optionally copying additional authentication plugins (fi do2. dl | , | i bsasl . dl |, and
sas| SCRAM dI |) depending on the plugins you use.

Register with the myodbc- i nst al | er command line tool from the regular driver bi n/ sub-directory.

5.4.2 Installing Connector/ODBC on Unix-like Systems

There are three methods available for installing Connector/ODBC on a Unix-like system from a binary
distribution. For most Unix environments, you will use the tarball distribution. For Linux systems, RPM
distributions are available, through the MySQL Yum repository (for some platforms) or direct download.

Prerequisites
* unixODBC 2.2.12 or later
* OpenSSL
e C++ runtime libraries (libstdc++)
Note

Connector/ODBC provides generic Linux packages for Intel architecture (both
32 and 64 bits). As of Connector/ODBC 8.0.32, generic Linux packages for
ARM architecture (64 bit) are also available.

5.4.2.1 Installing Connector/ODBC Using the MySQL Yum Repository

The MySQL Yum repository for Oracle Linux, Red Hat Enterprise Linux, CentOS, and Fedora provides
Connector/ODBC RPM packages using the MySQL Yum repository. You must have the MySQL Yum
repository on your system's repository list (see Adding the MySQL Yum Repository for details). Make
sure your Yum repository setup is up-to-date by running:

$> su root
$> yum updat e nysql - conmuni ty-rel ease

330

https://dev.mysql.com/downloads/repo/yum/
https://dev.mysql.com/downloads/repo/yum/
https://dev.mysql.com/doc/refman/8.0/en/linux-installation-yum-repo.html#yum-repo-setup

Installing Connector/ODBC on Unix-like Systems

You can then install Connector/ODBC by the following command:

$> yuminstall nysql-connect or-odbc

See Installing Additional MySQL Products and Components with Yum for more details.
5.4.2.2 Installing Connector/ODBC from a Binary Tarball Distribution

To install the driver from a tarball distribution (. t ar . gz file), download the latest version of the driver
for your operating system and follow these steps, substituting the appropriate file and directory names
based on the package you download (some of the steps below might require superuser privileges):

1. Extract the archive:

$> gunzi p nysql - connect or - odbc- 8. 3. 0-i 686- pc- i nux.tar. gz
$> tar xvf nysql - connector-odbc-8. 3. 0-i 686-pc-1|inux.tar

2. The extra directory contains two subdirectories, | i b and bi n. Copy their contents to the proper
locations on your system (we use / usr/ | ocal / binand/usr/ | ocal /i b in this example;
replace them with the destinations of your choice):

$> cp bin/* /usr/local/bin
$> cp lib/* /usr/local/lib

The last command copies both the Connector/ODBC ANSI and the Unicode drivers from | i b into
[usr/1ocal/lib;if youdo not need both, you can just copy the one you want. See Choosing
Unicode or ANSI Driver for details.

3. Finally, register the driver version of your choice (the ANSI version, the Unicode version, or
both) with your system's ODBC manager (for example, iODBC or unixodbc) using the myodbc-
i nst al | er tool that was included in the package under the bi n subdirectory (and is now under
the / usr/ 1 ocal / bi n directory, if the last step was followed); for example, this registers the
Unicode driver with the ODBC manager:

/| Registers the Unicode driver:

$> nyodbc-installer -a -d -n "MySQL ODBC 8.3 Unicode Driver" -t "Driver=/usr/local/lib/libmodbc8w.
/] Registers the ANSI driver

$> myodbc-installer -a -d -n "M/SQL ODBC 8.3 ANSI Driver" -t "Driver=/usr/local/lib/libmodbc8a.so"

4. Verify that the driver is installed and registered using the ODBC manager, or the myodbc-
i nstal | er utility:

$> nyodbc-installer -d -1I

Next, see Section 5.5.5, “Configuring a Connector/ODBC DSN on Unix” on how to configure a DSN for
Connector/ODBC.

5.4.2.3 Installing Connector/ODBC from a DEB Distribution

Connector/ODBC Debian packages (.deb files) are available (as of v8.0.20) for Debian or Debian-like
Linux systems from the Connector/ODBC downloads page. The two package types are:

e nysql - connect or - odbc: This driver package installs MySQL ODBC driver libraries and the
installer tool. It installs these files:

${Li bDi r}/ odbc/|i bnmyodbc8a. so
${Li bDi r}/ odbc/ | i bmyodbc8w. so
${Bi nDi r}/ myodbc-instal | er
${DocDi r}/ nysql - connect or - odbc/ *

Prerequisites: it depends on the unixODBC libraries (libodbc, libodbcinst).

It installs and registers both the Unicode (MySQL ODBC 8.3 Unicode Driver) and ANSI (MySQL
ODBC 8.3 ANSI Driver) drivers.

331

https://dev.mysql.com/doc/refman/8.0/en/linux-installation-yum-repo.html#yum-install-components
https://dev.mysql.com/downloads/connector/odbc/

Installing Connector/ODBC on macOS

This driver package does not conflict with the official Debian package libmyodbc. It is possible to
install/uninstall/use both packages independently.

* nysql - connect or - odbc- set up: This setup package provides the GUI configuration widget
library. It installs these files:

${Li bDi r}/odbc/ | i bmyodbc8S. so
${DocDi r}/ nysql - connect or - odbc- set up/ *

The installation process registers the setup library for ODBC drivers with the ODBC manager.

The ${LibDir}, ${BinDir}, ${DocDir} locations used above should be the standard locations where
DEB packages install libraries/executables/documentation. The library location contains architecture
component, and here are example locations:

lusr/1ib/x86_64-1inux-gnu/odbc/|ibnyodbc8a. so
lusr/1ib/x86_64-1inux-gnu/odbc/|ibnyodbc8w. so
lusr/1ib/x86_64-1inux-gnu/odbc/libnyodbc8S. so
[usr/ bi n/ myodbc-installer

[usr/ shar e/ doc/ nysql - connect or - odbc/ *

[usr/ shar e/ doc/ nysql - connect or - odbc- set up/ *

5.4.2.4 Installing Connector/ODBC from an RPM Distribution

To install or upgrade Connector/ODBC from an RPM distribution on Linux, simply download the RPM
distribution of the latest version of Connector/ODBC and follow the instructions below. Use su r oot to
become r oot , then install the RPM file.

If you are installing for the first time:

$> su root
$> rpm -ivh nysqgl - connect or - odbc-8. 3. 0. 686. rpm

If the driver exists, upgrade it like this:

$> su root
$> rpm - Uvh nysqgl - connect or - odbc-8. 3. 0. i 686. rpm

If there is any dependency error for MySQL client library, | i brrysqgl cl i ent, simply ignore it by
supplying the - - nodeps option, and then make sure the MySQL client shared library is in the path or
set through LD LI BRARY PATH.

This installs the driver libraries and related documentsto/ usr/ | ocal /i b and/ usr/ shar e/ doc/
My ODBC, respectively. See Section 5.5.5, “Configuring a Connector/ODBC DSN on Unix” for the post-
installation configuration steps.

To uninstall the driver, become r oot and execute an r pmcommand:

$> su root
$> rpm -e nysql - connect or - odbc

5.4.3 Installing Connector/ODBC on macOS

macOS is based on the FreeBSD operating system, and you can normally use the MySQL network
port for connecting to MySQL servers on other hosts. Installing the Connector/ODBC driver lets you
connect to MySQL databases on any platform through the ODBC interface. If your application requires
an ODBC interface, install the Connector/ODBC driver.

On macOS, the ODBC Administrator, based on the i ODBC manager, provides easy administration
of ODBC drivers and configuration, allowing the updates of the underlying i ODBC configuration files
through a GUI tool. The tool is included in macOS v10.5 and earlier; users of later versions of macOS

332

Building Connector/ODBC from a Source Distribution on Windows

need to download it from http://www.iodbc.org/dataspace/doc/iodbc/wiki/iodbcWiki/Downloads and
install it manually.

Prerequisites
+ iODBC

* OpenSSL is a required dependency. The macOS installation binaries bundle OpenSSL, while the
compressed tar archives do not and require that you install OpenSSL on your system before the
installation process.

e C++ runtime libraries (libc++)

There are two ways to install Connector/ODBC on macOS. You can use either the package provided in
a compressed tar archive that you manually install, or use a compressed disk image (. dnp) file, which
includes an installer.

To install using the compressed tar archive (some of the steps below might require superuser
privileges):

1. Download the compressed tar archive.
2. Extract the archive:
$> tar xvzf nysql-connector-odbc-x.y.z-mcos10. z- x86- (32| 64)bit.tar.gz

3. The directory created contains two subdirectories, | i b and bi n. Copy these to a suitable location
suchas/usr/ | ocal:

$> cp bin/* /usr/local/bin
$> cp lib/* /usr/local/lib

4. Finally, register the driver with iODBC using the nyodbc-i nst al | er tool that was included in the
package:

$> myodbc-installer -a -d -n "M/SQ. ODBC 8.3 Driver" -t "Driver=/usr/local/lib/libmodbc8w. so"
To install using the a compressed disk image (. dng) file:
Important

iODBC 3.52.12 or later must be installed on the macOS system before you can
install Connector/ODBC using a compressed disk image. See Section 5.4.3,
“Installing Connector/ODBC on macOS” [332].

1. Download the disk image.
2. Double click the disk image to open it. You see the Connector/ODBC installer inside.

3. Double click the Connector/ODBC installer, and you will be guided through the rest of the
installation process. You need superuser privileges to finish the installation.

To verify the installed drivers, either use the ODBC Administrator application or the myodbc-
i nstal | er utility:

$> nyodbc-installer -d -I
5.4.4 Building Connector/ODBC from a Source Distribution on Windows
You only need to build Connector/ODBC from source on Windows to modify the source or installation

location. If you are unsure whether to install from source, please use the binary installation detailed in
Section 5.4.1, “Installing Connector/ODBC on Windows”.

333

http://www.iodbc.org/dataspace/doc/iodbc/wiki/iodbcWiki/Downloads

Building Connector/ODBC from a Source Distribution on Windows

Building Connector/ODBC from source on Windows requires a number of different tools and packages:

* MDAC, Microsoft Data Access SDK from https://www.microsoft.com/en-in/download/details.aspx?
id=21995.

» A suitable C++ compiler, such as Microsoft Visual C++ or the C++ compiler included with Microsoft
Visual Studio 2015 or later. Compiling Connector/ODBC 5.3 can use VS 2013.

* CMake.

e The MySQL client library and include files from MySQL 8.0 or higher for Connector/ODBC 8.3, or
MySQL 5.7 for Connector/ODBC 5.3. This is required because Connector/ODBC uses calls and
structures that do not exist in older versions of the library. To get the client library and include files,
visit https://dev.mysqgl.com/downloads/.

Build Steps

Set the environment variables for the Visual Studio toolchain. Visual Studio includes a batch file to set
these for you, and installs a Start menu shortcut that opens a command prompt with these variables
set.

Set MYSQL_DI Rto the MySQL server installation path, while using the short-style file names. For
example:

C\> set MYSQ._DI R=C: \ PROGRA~1\ MySQL\ MYSQLS~1. 0

Build Connector/ODBC using the cmake command-line tool by executing the following from the source
root directory (in a command prompt window):

C\> cnmake -G "Visual Studio 12 2013"

This produces a project file that you can open with Visual Studio, or build from the command line with
either of the following commands:

C:\> devenv. com MySQ._Connect or _ODBC. sl n /build Rel ease

While building Connector/ODBC from source, dynamic linking with the MySQL client library is selected
by default—that is, the MYSQLCLI ENT_STATI C_LI NKI NG cnake option is FALSE by default (however,
the binary distributions of Connector/ODBC from Oracle are linked statically to the client library). If you
want to link statically to the MySQL client library, set the MYSQLCLI ENT_STATI C_LI NKI NG option
to TRUE, and use the MYSQLCLI ENT_LI B_NAME option to supply the client library's name for static
linking:
C\> cnmake -G "Visual Studio 12 2013" -DMYSQLCLI ENT_STATI C LI NKI NG BOOL=TRUE \

DMYSQLCLI ENT_LI B_NAVE=cl ient |ib_nane_w t h_ext ensi on

Also use the MYSQLCLI ENT_LI B_NAME option to link dynamically to a MySQL client library other than
i brmysgl . dl I . cnake looks for the client library under the location specified by the MYSQL_LI B_DI R
option; if the option is not specified, cnake looks under the default locations inside the folder specified
by the MYSQL_ DI R option.

Since Connector/ODBC 8.0.11, use BUNDLE_DEPENDENCI ES to install external library runtime
dependencies, such as OpenSSL, together with the connector. For dependencies inherited from the
MySQL client library, this only works if these dependencies are bundled with the client library itself.

I NFO_SRC: this file provides information about the product version and the source repository from
which the distribution was produced. Was added in Connector/ODBC 8.0.14.

Optionally link Connector/ODBC statically (equivalent to the /MT compiler option in Visual
Studio) or dynamically (equivalent to the /MD compiler option in Visual Studio) to the Visual C
++ runtime. The default option is to link dynamically; if you want to link statically, set the option
STATI C_NMBVCRT: BOOL=TRUE, that is:

334

https://www.microsoft.com/en-in/download/details.aspx?id=21995
https://www.microsoft.com/en-in/download/details.aspx?id=21995
https://dev.mysql.com/downloads/

Building Connector/ODBC from a Source Distribution on Unix

C\> cmake -G "Visual Studio 12 2013" - DSTATI C_MSVCRT: BOOL=TRUE

The STATI C_MSVCRT option and the MYSQLCLI ENT_STATI C_LI NKI NG option are independent

of each other; that is, you can link Connector/ODBC dynamically to the Visual C++ runtime while
linking statically to the MySQL client library, and vice versa. However, if you link Connector/ODBC
dynamically to the Visual C++ runtime, you also need to link to a MySQL client library that is itself
linked dynamically to the Visual C++ runtime; and similarly, linking Connector/ODBC statically to the
Visual C++ runtime requires linking to a MySQL client library that is itself linked statically to the Visual
C++ runtime.

To compile a debug build, set the cnake build type so that the correct versions of the MySQL
client libraries are used; also, because the MySQL C client library built by Oracle is not built with
the debug options, when linking to it while building Connector/ODBC in debug mode, use the

W TH_NODEFAULTLI B option to tell cnake to ignore the default non-debug C++ runtime:

C\> cmake -G "Visual Studio 14 2015" -DW TH DEBUG=1 - DW TH _NODEFAULTLI B=Ii bcnt

Create the debug build then with this command:

C.\> devenv. com MySQ._Connect or _ODBC. sl n /build Debug
Upon completion, the executables are in the bi n/ and | i b/ subdirectories.

See Section 5.4.1.1, “Installing the Windows Connector/ODBC Driver Using the Zipped DLL Package”
on how to complete the installation by copying the binary files to the right locations and registering
Connector/ODBC with the ODBC manager.

5.4.5 Building Connector/ODBC from a Source Distribution on Unix

You need the following tools to build MySQL from source on Unix:

» A working ANSI C++ compiler. GCC 4.2.1 or later, Sun Studio 12.1 or later, and many current
vendor-supplied compilers are known to work.

* CMake.

* MySQL client libraries and include files. To get the client libraries and include files, visit https://
dev.mysqgl.com/downloads/.

» A compatible ODBC manager must be installed. Connector/ODBC is known to work with the i ODBC
and uni xODBC managers. See Section 5.3.2, “ODBC Driver Managers” for more information.

« If you are using a character set that is not compiled into the MySQL client library, install the MySQL
character definitions from the char set s directory into SHAREDI R (by default, / usr/ | ocal /
nysql / shar e/ mysql / char set s). These should be in place if you have installed the MySQL
server on the same machine. See Character Sets, Collations, Unicode for more information on
character set support.

Once you have all the required files, unpack the source files to a separate directory, then run cnake
with the following command:

$> cmake -G "Uni x Makefil es"”

Typical cmake Parameters and Options

You might need to help cneke find the MySQL headers and libraries by setting the environment
variables MYSQL_| NCLUDE DI R, M\ySQL_LI B DI R, and MYySQL_DI Rto the appropriate locations; for
example:

$> export MYSQL_I NCLUDE DI R=/usr/| ocal / nysql /i ncl ude
$> export MYSQL_LIB_DIR=/usr/|ocal /mysql/lib

335

https://dev.mysql.com/downloads/
https://dev.mysql.com/downloads/
https://dev.mysql.com/doc/refman/8.0/en/charset.html

Building Connector/ODBC from a Source Distribution on Unix

$> export MYSQL_DI R=/usr/ | ocal / nysq
When you run cnmeke, you might add options to the command line. Here are some examples:

» - DODBC | NCLUDES=di r _name: Use when the ODBC include directory is not found within the
system $PATH.

» -DODBC LI B_DI R=di r _nane: Use when the ODBC library directory is not found within the system
$PATH.

e - DW TH_UNI XODBC=1: Enables unixODBC support. i ODBC is the default ODBC library used when
building Connector/ODBC from source on Linux platforms. Alternatively, uni x ODBC may be used by
setting this option to “1”.

e - DMYSQLCLI ENT_STATI C LI NKI NG=bool ean: Link statically to the MySQL client
library. Dynamic linking with the MySQL client library is selected by default—that is, the
MYSQLCLI ENT_STATI C_LI NKI NGcrake option is FALSE by default (however, the binary
distributions of Connector/ODBC from Oracle are linked statically to the client library). If you want to
link statically to the MySQL client library, set the option to TRUE. See also the description for the -
DMYSQLCLI ENT_LI B NAME=cl i ent _|ib_name_wi t h_ext ensi on option.

» - DBUNDLE_DEPENDENCI ES=bool ean: Enable to install external library runtime dependencies,
such as OpenSSL, together with the connector. For dependencies inherited from the MySQL client
library, this only works if these dependencies are bundled with the client library itself. Option added in
v8.0.11.

e -DMYSQLCLI ENT_LI B NAME=client |ib nane_w th_extensi on: Location of the MySQL
client library. See the description for MYSQLCLI ENT_STATI C_LI NKI NG. To link statically to the
MySQL client library, use this option to supply the client library's name for static linking. Also use this
option If you want to link dynamically to a MySQL client library other than | i bnysqgl cl i ent . so.
crmake looks for the client library under the location specified by the environment variable
MYSQL_LI B_DI R; if the variable is not specified, cnmake looks under the default locations inside the
folder specified by the environment variable M\YSQL_DI R.

* - DMYSQL_CONFI G EXECUTABLE=/ pat h/t o/ mysql _confi g: Specifies location of the
utility mysql_config, which is used to fetch values of the variables M\YSQL_| NCLUDE DI R,
MYSQL_LI B DI R, MYSQL_LI NK_FLAGS, and MYSQL_ CXXFLAGS. Values fetched by mysql_config
are overridden by values provided directly to crreke as parameters.

e - DMYSQL_EXTRA LI BRARI ES=dependenci es: When linking the MySQL client library
statically (-DMYSQLCLIENT_STATIC_LINKING=0ON) and when setting MYSQL_LIB_DIR and
MYSQL_INCLUDE_DIR (so that the mysqgl _confi g is not used to detect settings), use this to
define a list of dependencies required by the client library.

o -DMYSQL_LI NK_FLAGS=MySQL link flags
o - DMYSQL_CXXFLAGS=MySQ. C++ |inkage fl ags

o - DMYSQL_CXX_ LI NKAGE=1: Enables C++ linkage to MySQL client library. By default,
MYSQL_CXX_ LI NKAGE is enabled for MySQL 5.6.4 or later. For MySQL 5.6.3 and earlier, this option
must be set explicitly to 1.

Build Steps for Unix

To build the driver libraries, execute neke:

$> nmake

If any errors occur, correct them and continue with the build process. If you are not able to finish the
build, see Section 5.9.1, “Connector/ODBC Community Support”.

336

https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html#option_cmake_odbc_includes
https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html#option_cmake_odbc_lib_dir
https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html#option_cmake_with_unixodbc
https://dev.mysql.com/doc/refman/8.0/en/mysql-config.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-config.html

Building Connector/ODBC from a Source Distribution on macOS

Installing Driver Libraries

To install the driver libraries, execute the following command:

$> make install
For more information on build process, refer to the BUI LD file that comes with the source distribution.
Testing Connector/ODBC on Unix

Some tests for Connector/ODBC are provided in the distribution with the libraries that you built. To run
the tests:

1. Make sure you have an odbc. i ni file in place, by which you can configure your DSN entries.
A sample odbc. i ni file is generated by the build process under the t est folder. Set the
environment variable ODBCI NI to the location of your odbc. i ni file.

2. Setup atest DSN in your odbc. i ni file (see Section 5.5.5, “Configuring a Connector/ODBC DSN
on Unix” for details). A sample DSN entry, which you can use for your tests, can be found in the
sample odbc. i ni file.

3. Set the environment variable TEST_DSN to the name of your test DSN.

4. Set the environment variable TEST Ul D and perhaps also TEST PASSWORD to the user name
and password for the tests, if needed. By default, the tests use “root” as the user and do not enter
a password; if you want the tests to use another user name or password, set TEST Ul D and
TEST_PASSWORD accordingly.

5. Make sure that your MySQL server is running.

6. Run the following command:

$> make test

5.4.6 Building Connector/ODBC from a Source Distribution on macOS

To build Connector/ODBC from source on macOS, follow the same instructions given for Section 5.4.5,
“Building Connector/ODBC from a Source Distribution on Unix”. Notice that i ODBC is the default ODBC
library used when building Connector/ODBC on macOS from source. Alternatively, uni xCDBC may be
used by setting the option - DW TH_UNI XCDBC=1.

5.4.7 Installing Connector/ODBC from the Development Source Tree

Caution

This section is only for users who are interested in helping us test our new code.
To just get MySQL Connector/ODBC up and running on your system, use a
standard release distribution.

The Connector/ODBC code repository uses Git. To check out the latest source code, visit GitHub:
https://github.com/mysqgl/mysgl-connector-odbc To clone the Git repository to your machine, use this
command

$> git clone https://github.com nysqgl/nysql - connect or - odbc. gi t

You should now have a copy of the entire Connector/ODBC source tree in the directory nmysql -
connect or - odbc. To build and then install the driver libraries from this source tree on Unix or Linux,
use the same steps outlined in Section 5.4.5, “Building Connector/ODBC from a Source Distribution on
Unix”.

On Windows, make use of Windows Makefiles W N- Makef i | e and W N- Makef i | e_debug in
building the driver. For more information, see Section 5.4.4, “Building Connector/ODBC from a Source
Distribution on Windows”.

337

https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html#option_cmake_with_unixodbc
https://github.com/mysql/mysql-connector-odbc

Configuring Connector/ODBC

After the initial checkout operation to get the source tree, run gi t pul | periodically to update your
source according to the latest version.

5.5 Configuring Connector/ODBC

Before you connect to a MySQL database using the Connector/ODBC driver, you configure an ODBC
Data Source Name (DSN). The DSN associates the various configuration parameters required to
communicate with a database to a specific name. You use the DSN in an application to communicate
with the database, rather than specifying individual parameters within the application itself. DSN
information can be user-specific, system-specific, or provided in a special file. ODBC data source
names are configured in different ways, depending on your platform and ODBC driver.

5.5.1 Overview of Connector/ODBC Data Source Names

A Data Source Name associates the configuration parameters for communicating with a specific
database. Generally, a DSN consists of the following parameters:

* Name

* Host Name

» Database Name
* Login

» Password

In addition, different ODBC drivers, including Connector/ODBC, may accept additional driver-specific
options and parameters.

There are three types of DSN:

» A System DSN is a global DSN definition that is available to any user and application on a particular
system. A System DSN can normally only be configured by a systems administrator, or by a user
who has specific permissions that let them create System DSNSs.

» A User DSN is specific to an individual user, and can be used to store database connectivity
information that the user regularly uses.

» A File DSN uses a simple file to define the DSN configuration. File DSNs can be shared between
users and machines and are therefore more practical when installing or deploying DSN information
as part of an application across many machines.

DSN information is stored in different locations depending on your platform and environment.

5.5.2 Connector/ODBC Connection Parameters

You can specify the parameters in the following tables for Connector/ODBC when configuring a DSN:
» Table 5.1, “Connector/ODBC DSN Configuration Options”
» Table 5.3, “Connector/ODBC Option Parameters”

Users on Windows can use the ODBC Dat a Source Adm ni strat or to set these parameters;
see Section 5.5.3, “Configuring a Connector/ODBC DSN on Windows” on how to do that, and

see Table 5.1, “Connector/ODBC DSN Configuration Options” for information on the options and
the fields and check boxes they corrrespond to on the graphical user interface of the ODBC Dat a
Sour ce Adm ni strator.On Unix and macOS, use the parameter name and value as the
keyword/value pair in the DSN configuration. Alternatively, you can set these parameters within the
I nConnect i onStri ng argument in the SQLDr i ver Connect () call.

338

Connector/ODBC Connection Parameters

Table 5.1 Connector/ODBC DSN Configuration Options

the file containing

Parameter| GUI Option Default Value Comment

user User ODBC The user name used to connect to MySQL.

uid User ODBC Synonymous with user . Added in 3.51.16.

server TCP/IP Server | ocal host The host name of the MySQL server. Can define mi

MULTI _HOST is enabled.
dat abase |Database - The default database.
option |- 0 Options that specify how Connector/ODBC works. S

“Connector/ODBC Option Parameters” and Table 5

Connector/ODBC Option Values for Different Confic
port Port 3306 The TCP/IP port to use if ser ver is not| ocal host
i ni tstnt |Initial Statement - Initial statement. A statement to execute when conr

version 3.51 the parameter is called st nt . The driv

statement being executed only at the time of the init
passwor d|Password - The password for the user account on server . pw
passwor d1Password - For Multi-Factor Authentication (MFA); passwor d1
passwor d2, passwor d. There'as also the pwdl, pwd2, and pwc
passwor d3 added in 8.0.28.
socket - - The Unix socket file or Windows named pipe to con
socket if server issetto | ocal host
ssl-ca |SSL Certificate - Alias of SSLCA as an eventual replacement; added
SSLCA SSL Certificate - The path to a file with a list of trust SSL CAs.

An ssl - ca alias was added in 8.0.29, which is pref
ssl - SSL CA Path - Alias of SSLCAPATH as an eventual replacement;
capath
SSLCAPATIFBSL CA Path - The path to a directory that contains trusted SSL C/

format.

An ssl - capat h alias was added in 8.0.29, which i

SSLCAPATH.
ssl - cert |SSL Certificate - Alias of SSLCERT as an eventual replacement; adc
SSLCERT |SSL Certificate - The name of the SSL certificate file to use for estab

connection.

Anssl - cert alias was added in 8.0.29, which is p
ssl - SSL Cipher - Alias of SSLCIPHER as an eventual replacement; &
ci pher
SSLCI PHERSSL Cipher - The list of permissible ciphers for SSL encryption. T

same format as the openssl ci pher s command.

An ssl - ci pher alias was added in 8.0.29, which i

SSLCI PHER.
ssl - key |SSL Key - Alias of SSLKEY as an eventual replacement; adde
SSLKEY |SSL Key - The name of the SSL key file to use for establishing

An ssl - key alias was added in 8.0.29, which is pre
ssl -crl |The path name of - Added in 8.0.31

339

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_socket

Connector/ODBC Connection Parameters

Parameter| GUI Option Default Value Comment
certificate revocation
lists in PEM format.

ssl - The path of the - Added in 8.0.31

crl pat h |directory that contains
certificate revocation
list files in PEM
format.

rsakey |RSA Public Key - The full-path name of the PEM file that contains the RS,

using the SHA256 authentication plugin of MySQL. Add
ssl veri f yVerify SSL 0 If set to 1, the SSL certificate will be verified when used
connection. If not set, then the default behavior is to ign
verification.
Note
The option is deprecated since Conn
5.3.7. It is preferable to use the SSL!I
parameter instead.

aut hent i clkéerbanes SSPI Acceptable values are "SSPI" (default) or "GSSAPI". Fo

ker ber os{implementation details, see Kerberos Pluggable Authentication. The SS

node supported by Windows, whereas GSSAPI is supported |
and other operating systems. Added in Connector/ODB:!

OPENTEL EMOpBNTelemetry PREFERRED Acceptable values are PREFERRED (default) or DISAB
implementation functionality details, see Section 5.5.8, “OpenTelemetry

Added in Connector/ODBC 8.1.0.

MULTI _HOBWhether to enable 0 Enable new connections to try multiple hosts until a
multiple host successful connection is established. A list of hosts is
functionality defined with SERVER in the connection string. For exam

SERVER=address1[:portl],address2[:port2];MULTI_HC
added in 8.0.19.

ENABLE DN&hefér to use DNS |0 If set to 1, enables DNS+SRV usage in the DSN; the ho
+SRV usage in the is passed for SRV lookup without a port and with a full
DSN lookup name. Example usage: DRIVER={MySQL ODBC

Driver};SERVER=_mysq|l._tcp.foo.abc.com;ENABLE_D
-- option added in Connector/ODBC 8.0.19.

char set |Character Set - The character set to use for the connection. Added in 3.

executing SET NAMES is not allowed as of v5.1.
readt i megut - The timeout in seconds for attempts to read from the se
uses this timeout value and there are retries if necessar
effective timeout value is three times the option value. Y
value so that a lost connection can be detected earlier tl
IPCl ose Wait_ Tineout value of 10 minutes. This of
for TCP/IP connections, and only for Windows prior to N
Corresponds to the MYSQL_OPT_READ_TI MEQUT optiol
Client Library. Added in 3.51.27.

writetimpout - The timeout in seconds for attempts to write to the serve
uses this timeout value and there are net _retry_coul
necessary, so the total effective timeout value is net _r
times the option value. This option works only for TCP/II
and only for Windows prior to MySQL 5.1.12. Correspor
MYSQL_OPT_WRI TE_TI MEQUT option of the MySQL Cli
in 3.51.27.

340

https://dev.mysql.com/doc/refman/8.0/en/kerberos-pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.0/en/set-names.html

Connector/ODBC Connection Parameters

Parameter| GUI Option Default Value Comment
i nt er act i imgeractive Client 0 If setto 1, the CLI ENT_I NTERACTI VE connection ¢
connect() is enabled. Added in 5.1.7.
OCl _ CONF| Gradlé.Elound ~/ . oci/configon |Used by the authentication_oci_client plugin for the
Infastructure Linux and macOS, Infrastructure (OCI) to support ephemeral key pairs

configuration file path

and %HOVEDRI VE
YHOVEPATHY
\.oci\configon
Windows.

tokens. The default profile is DEFAULT and can be
OCl _CONFI G_PROFI LE. Option added in Connectc

OCl _CONFI

Cratikordund
Infastructure
configuration profile
name

DEFAULT

Defaults to DEFAULT, optionally specify a specific
OCl _CONFI G _FI LE. Option added in Connector/Ol

prefetch

Prefetch from server
by _rows at a time

0

When set to a non-zero value N, causes all queries
return N rows at a time rather than the entire result
against very large tables where it is not practical to |
set at once. You can scroll through the result set, N

This option works only with forward-only cursors. It
option parameter MULTI _STATEMENTS is set. It car
with the option parameter NO_CACHE. Its behavior il
undefined: the prefetching might or might not occur.

no_ssps

In Connector/ODBC 5.2 and after, by default, serve
statements are used. When this option is set to a nc
statements are emulated on the client side, which is
in 5.1 and 3.51. Added in 5.2.0.

can_hand]

€amHanulel Expired

Password

0

Indicates that the application can deal with an expir
is signalled by an SQL state of 08004 (“Server reje
and a native error code ER_ MUST CHANGE PASSW
The connection is “sandboxed”, and can do nothing
SET PASSWORD statement. To establish a connectit
application must either use the i ni t st nt connectit
password at the start, or issue a SET PASSWORD st
after connecting. Once the expired password is rese
the connection are lifted. See ALTER USER Staterr
password expiration for MySQL server accounts. Ac

ENABLE_C

EnadiexQledtteikd N
Authentication

Set to 1 to enable cleartext authentication. Added ir

ENABLE_L

EWableENIDAB DATA
operations

0

A connection string, DSN, and GUI option. Set ENA
to enable LOAD DATA operations. This toggles the
MYSQL_OPT_LOCAL_INFILE mysqgl_options() opti
string overrides the DSN value if both are set. Adde

LOAD_DAT

‘Resifiet LOAR DATA
operations

A connection string, DSN, and GUI option. Set LOA
to a specific directory, such as LOAD_DATA_LOCA
tmp, to restrict uploading files to a specific path. Thi
MYSQL_OPT_LOAD_DATA_LOCAL_DIR mysql_o
connection string overrides the DSN value if both ar
no effect if ENABLE_LOCAL_INFILE=1. Added in 8

GET_SERVI

{BePSBheC Fiblic Key

0

When connecting to accounts that use cachi ng_s|
authentication over non-secure connection (TLS dis
ODBC requests the RSA public key required to perf
from the server. The option is ignored if the authent
for the connection is different from cachi ng_sha2

341

https://dev.mysql.com/doc/c-api/8.2/en/mysql-real-connect.html
https://dev.mysql.com/doc/c-api/8.2/en/mysql-real-connect.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html

Connector/ODBC Connection Parameters

Parameter

GUI Option

Default Value

Comment

corresponds to the MYSQL_OPT_GET_SERVER PUBLI C
nysqgl _options() C API function. The value is a bool

The option is added in Connector/ODBC versions 8.0.1:
requires Connector/ODBC built using OpenSSL-based |
If MySQL client library used by Connector/ODBC was b
is the case for GPL distributions of Connector/ODBC 5.
not function and is ignored

NO TLS 1]

| Disable TLS 1.0

This option was removed in v8.0.28. It disallowed the us
connection encryption. All versions of TLS are allowed t
this option exluded version 1.0 from being used. Added
support was deprecated in v8.0.26 before removal in v8

NO TLS 1]

|Disable TLS 1.1

This option was removed in v8.0.28. It disallowed the us
connection encryption. All versions of TLS are allowed t
this option exluded version 1.1 from being used. Added
support was deprecated in v8.0.26 before removal in v8

NO TLS 1,

|Risable TLS 1.2

Disallows the use of TLS 1.2 for connection encryption.
are allowed by default, and this option exludes version
Added in 5.3.7.

NO TLS 1]

| Bisable TLS 1.3

Disallows the use of TLS 1.3 for connection encryption.
are allowed by default, and this option exludes version !
Added in 8.0.26.

tls-
Ver si ons

Define the allowed
TLS protocol versions

TLSv1.2,TLSv1.3 (set
by libmysgiclient)

Accepts TLSv1.2 and/or TLSv1.3; while other values ge
has no effect if ssl-mode=DISABLED, and overrides (dis
NO_TLS_X_Y connection options such as NO_TLS_1

SSL_ENFO

HERforce SSL

0

Enforce the requirement to use SSL for connections to ¢
See Table 5.2, “Combined Effects of SSL_ENFORCE a
DISABLE_SSL_DEFAULT ". Added in 5.3.6.

Note

This option is deprecated since Conr
5.3.7 and removed in 8.0.13. It is pre
the SSLMODE option parameter inste,

DI SABLE_

HSisablerdefatilt SSL

0

Disable the default requirement to use SSL for connecti
When set to “0” [default], Connector/ODBC tries to conr
first, and falls back to unencrypted connection if it is not
establish an SSL connection. When set to “1,” Connecti
attempted, and unencrypted connection is used, unless
also setto “1.” See Table 5.2, “Combined Effects of SSI
DISABLE_SSL_DEFAULT ". Added in 5.3.6.

Note

The option is deprecated since Conn
5.3.7 and removed in 8.0.13. Use the
option parameter instead.

ssl - node

SSL Mode

Alias of SSLMODE as an eventual replacement; added

SSLMODE

SSL Mode

Sets the SSL mode of the server connection. The optior
of the following values: DI SABLED, PREFERRED, REQUI
or VERI FY_| DENTI TY. See description for the - - ss| -
MySQL 8.0 Reference Manual for the meaning of each |

An ssl - node alias was added in 8.0.29, which is prefe

342

https://dev.mysql.com/doc/c-api/8.2/en/mysql-options.html
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-mode
https://dev.mysql.com/doc/refman/8.0/en/

Connector/ODBC Connection Parameters

Parameter

GUI Option

Default Value

Comment

If SSLMODE is not explicitly set, use of the SSLCA or
implies SSLMODE=VERI FY_CA.

Added in 5.3.7. This option overrides the deprecate
SSL__ENFORCE options.

Note

The SSL configuration parameters can also be automatically loaded from a
ny.ini orny.cnf file. See Using Option Files.

Table 5.2 Combined Effects of SSL_ENFORCE and DISABLE_SSL_DEFAULT

DI SABLE_SSL_DEFAULT =
0

DI SABLE_SSL_DEFAULT =
1

SSL_ENFORCE = 0 (Default) Connection with Connection with SSL is not
SSL is attempted first; if attempted; use unencrypted
not possible, fall back to connection.
unencrypted connection.

SSL_ENFORCE = 1 Connect with SSL; throw an |Connect with SSL; throw an

error if an SSL connection
cannot be established.

error if an SSL connection
cannot be established.

DI SABLE _SSL_DEFAULT=1
is overridden.

The behavior of Connector/ODBC can be also modified by using special option parameters listed in
Table 5.3, “Connector/ODBC Option Parameters”, specified in the connection string or through the GUI
dialog box. All of the connection parameters also have their own numeric constant values, which can
be added up as a combined value for the opt i on parameter for specifying those options. However, the
numerical opt i on value in the connection string can only enable, but not disable parameters enabled
on the DSN, which can only be overridden by specifying the option parameters using their text names
in the connection string.

Note

While the combined numerical value for the opt i on parameter can be easily
constructed by addition of the options' constant values, decomposing the value
to verify if particular options are enabled can be difficult. We recommend using
the options' parameter names instead in the connection string, because they are
self-explanatory.

Table 5.3 Connector/ODBC Option Parameters

Parameter Name GUI Option Constant Value |Descriptior
FOUND_ROWS Return matched rows instead |2 The client ¢
of affected rows the true valt

MySQL rett

have MySQ

Bl G_PACKETS Allow big result set 8 Do not set ¢
parameters

binding will

NO_PROWVPT Don't prompt when 16 Do not pron
connecting like to prom

DYNAM C_CURSOR Enable Dynamic Cursors 32 Enable or d
NO_SCHENA Disables support for ODBC |64 Ignore use «
schemas catal 0g. s

343

https://dev.mysql.com/doc/refman/8.0/en/option-files.html

Connector/ODBC Connection Parameters

Parameter Name

GUI Option

Constant Value

Description

also the related
option was remt
8.0.13 but serve
and was reintro
8.0.26. This opt

Connector/ODB
see Section 5.8
Schema Suppol
NO_DEFAULT_ CURSOR Disable driver-provided 128 Force use of OL
cursor support (experimental).
NO _LOCALE Don't use setlocale() 256 Disable the use
(experimental).
PAD SPACE Pad CHAR to full length with {512 Pad CHAR colur
space
FULL_COLUMN_NAMES Include table name in 1024 SQLDescr i bec
SQLDescribeCol() column names.
COVPRESSED PROTO Use compression 2048 Use the compre
| GNORE_SPACE Ignore space after function 4096 Tell server to igl
names and before “(" (
makes all functi
NAVED Pl PE Named Pipe 8192 Connect with ne
running on NT.
NO_BI G NT Treat BIGINT columns as INT [{16384 Change Bl G N
columns (some applicatic
NO_CATALOG Disable catalog support 32768 Forces results fi
as SQLTabl es,
driver to report t
See also the rel
usage details, s
Catalog and Scl
USE_MYCNF Read options from ny. cnf 65536 Read paramete
[odbc] groups
SAFE Enable safe options 131072 Add some extra
NO_TRANSACTI ONS Disable transaction support 262144 Disable transac
LOG QUERY Log queries to % TEMP% 524288 Enable query lo
\myodbc.sql t np/ myodbc. ¢
mode.)
NO_CACHE Don't cache results of 1048576 Do not cache th
forward-only cursors the driver, inste:
(nysql _use_r
for forward-only
important in dee
do not want the
set.
FORWARD CURSOR Force use of forward-only 2097152 Force the use o

cursors

cases of applice
dynamic cursor
to use noncach
the forward-only

https://dev.mysql.com/doc/refman/8.0/en/char.html
https://dev.mysql.com/doc/refman/8.0/en/integer-types.html
https://dev.mysql.com/doc/refman/8.0/en/integer-types.html
https://dev.mysql.com/doc/refman/8.0/en/integer-types.html
https://dev.mysql.com/doc/c-api/8.2/en/mysql-use-result.html

Connector/ODBC Connection Parameters

Parameter Name

GUI Option

Constant Value

Descriptior

AUTO_RECONNECT

Enable automatic reconnect

4194304

Enables aut
not use this
an auto-rec
transaction

reconnectec
same settin
connection.
functionality
8.3.0. This «
Connector/(
SQL_Succ
error stating

AUTO |'S_NULL

Enable
SQL_AUTO_IS NULL

8388608

When AUTC
does not ch
sql _auto_
get the MyS
behavior.

When AUTC
driver chan
SQL_AUTO
SO you get t
default beh:

Thus, omitti
option and f

Seel S NU

ZERO DATE_TO M N

Return SQL_NULL_DATA for
zero date

16777216

Translates :
minimum dé
XXXX-01-C
some stater
returned ani
incompatibl

M N_DATE_TO ZERO

Bind minimal date as zero
date

33554432

Translates t
(XXXX-01-
supported b
resolves an
not work be
minimum O
Added in 3.

NO_DATE_OVERFLOW

Ignore data overflow error

0

Continue wi
return error
server will i
result is the
in5.3.8.

MULTI _STATEMENTS

Allow multiple statements

67108864

Enables suj
of 8.0.24, pi
statements
of paramete
the SQLPre
Multiple stal
through the

345

https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_transaction
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_sql_auto_is_null
https://dev.mysql.com/doc/refman/8.0/en/comparison-operators.html#operator_is-null

Connector/ODBC Connection Parameters

Parameter Name

GUI Option

Constant Value

Description

COLUMN_SI ZE_S32 Limit column size to signed 134217728 Limits the colun
32-bit range to prevent probl
in applications t
option is autom:
with ADO applic
NO_BI NARY_RESULT Always handle binary function | 268435456 When set, this c
results as character data columns with ar
3.51.26.
DFLT_BI G NT_BI ND_STR Bind BIGINT parameters as |536870912 Causes Bl G NI
strings strings. Microso
a string on linke
correctly, but bo
is used automat
Microsoft Acces
NO I _S Don't use 1073741824 Tells catalog fur
INFORMATION_SCHEMA | NFORMATI ON
for metadata algorithms. The
speed for inform
deprecated in 8
ignored) in 8.0.:
CB_FI DO_GLOBAL Registers a global 20480 User-defined co
callback function for the ODBC WebAutt
authentication_webauthn the last registert
connection in connections r
use with connec
ODBC driver; us
might lead to un
usage: SQLSet |
CB_FI DO GLCE
SQ_I'S PO NI
CB_FI DO_CONNECTI ON Registers a per-connection 20481 User-defined co

callback function for the
authentication_webauthn
connection

WebAuthn and |
is registered for
with connection:
driver; using wit
to undefined bel

Table 5.4, “Recommended Connector/ODBC Option Values for Different Configurations” shows some
recommended parameter settings and their corresponding opt i on values for various configurations:

Table 5.4 Recommended Connector/ODBC Option Values for Different Configurations

C fetido N
Settatgs

ief ROWS=1;
ccess,

sual

as

iE(MtD_ROWSzl;DYNAMIC_CU RSOR=1;
ccess

(with
npraved
ELETE

o>

O 5

Leries)

o)

346

https://dev.mysql.com/doc/refman/8.2/en/webauthn-pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.2/en/webauthn-pluggable-authentication.html

Configuring a Connector/ODBC DSN on Windows

@)

@i N
Seltatgs
MiOQRARIN 79 E_S32=1;
Se]l
Server

L PRESSED PROTO=1;
tables
with
tqo

many
rQws

Sy 8SPACE=1;FLAG_SAFE=1,;
PowerBuilder

Ques24Q8HERY=1;

2ration
g

mode)
(BIABCHE=1;FORWARD_CURSOR=1;

LD

cache
results
ApRissiiem e H=N
that | Applicable

"SELECT
*

FROM ...

query,
but
read
only

small
number

()

rQws
from
the
result

5.5.3 Configuring a Connector/ODBC DSN on Windows

To add or configure a Connector/ODBC 5.x or 8.x DSN on Windows, use either the ODBC Dat a
Sour ce Admi ni strator GUI, orthe command-line tool nyodbc-i nst al | er. exe that comes with
Connector/ODBC.

347

Configuring a Connector/ODBC DSN on Windows

5.5.3.1 Configuring a Connector/ODBC DSN on Windows with the ODBC Data Source
Administrator GUI

The ODBC Dat a Source Admi ni strat or on Windows lets you create DSNs, check driver
installation, and configure ODBC functions such as tracing (used for debugging) and connection
pooling. The following are steps for creating and configuring a DSN with the CDBC Dat a Sour ce
Adm ni strator:

1.

Open the ODBC Dat a Source Admi ni strator.

Different editions and versions of Windows store the ODBC Dat a Sour ce Admi ni strat or in
different locations. For instructions on opening the ODBC Dat a Sour ce Admi ni strat or, see
the documentation for you Windows version; these instructions from Microsoft cover some popuar
Windows platforms. You should see a window similar to the following when you open the CDBC
Dat a Source Admi nistrator:

Figure 5.2 ODBC Dat a Sour ce Admi ni strator Dialog

2 ODBC Data Source Administrator

UserDSN Sysiem DSM | File DSN | Divers | Tracng | Connection Pooling | About

User Daia Sources:
Mame Dieiver Add.
Excel Files Microgoft Excel Driver s, *xlax, " xam, " sisb)

MS Access Database Microsoll Access Deiver " mdb, * accdb) Remave

Configure

— An ODBC User data source sicres information about how to connect o the
indicated data provider. A Uiser data source i only visible 1o you, and can
1 only be used on the cument machine |

1 OK Cancel Heldp

= ————— 7|

To create a System DSN (which will be available to all users), select the System DSN tab. To
create a User DSN, which will be available only to the current user, click the Add... button to open
the "Create New Data Source" dialog.

From the "Create New Data Source" dialog, select the MySQL ODBC 5.x ANSI or Unicode Driver,
then click Finish to open its connection parameters dialog.

Figure 5.3 Create New Data Source Dialog: Choosing a MySQL ODBC Driver

Select a driver for which pou want to zet up a data zource.

Mame Yersion -

MpSOL ODBC 8.0 ANS! Driver 8001700

pSGL ODBC 8.0 Unicode Driver EEAURRENI

ODBC Driver 17 for SOL Server 2014.120.2000.0¢
S0L Mative Client 2005.90.5000.00 | -
SOL Server £.01.7601.17514 |
S0L Server Mative Client 10.0 2007.100.5500.01
S0L Server Mative Client 11.0 2011.110.3000.00 —

< T 3

< Back Finizh l[Cancel

348

https://docs.microsoft.com/en-us/sql/database-engine/configure-windows/open-the-odbc-data-source-administrator

Configuring a Connector/ODBC DSN on Windows

4. You now need to configure the specific fields for the DSN you are creating through the
Connecti on Paranet ers dialog.

Figure 5.4 Dat a Sour ce Confi gurati on Connection Parameters Dialog

MySQL Connector/ODBC Data Source Configuration ﬁ

[= I
Connector/ODBC

Connection Parameters

Data Source Name: |

Description:
@) TCP/IP Server: Port: 3306 |
Named Pipe:
User:
Password:
Database: -
|
|
Details == Cancel Help |

In the Data Source Name box, enter the name of the data source to access. It can be any valid
name that you choose.

Tip

To identify whether a DSN was created using the 32-bit or the 64-bit
driver, include the driver being used within the DSN identifier. This will
help you to identify the right DSN to use with applications such as Excel
that are only compatible with the 32-bit driver. For example, you might
add Usi ng32bi t CODBC to the DSN identifier for the 32-bit interface and
Usi ng64bi t CODBC for those using the 64-bit Connector/ODBC driver.

5. Inthe Description box, enter some text to help identify the connection.

6. Inthe Server field, enter the name of the MySQL server host to access. By default, it is
| ocal host .

7. Inthe User field, enter the user name to use for this connection.
8. Inthe Password field, enter the corresponding password for this connection.

9. The Database pop-up should be automatically populated with the list of databases that the user
has permissions to access.

10. To communicate over a different TCP/IP port than the default (3306), change the value of the Port.
11. Click OK to save the DSN.

To verify the connection using the parameters you have entered, click the Test button. If the
connection can be made successfully, you will be notified with a Connecti on Successf ul dialog;
otherwise, you will be notified with a Connecti on Fai | ed dialog.

You can configure a number of options for a specific DSN by clicking the Details button.

349

Configuring a Connector/ODBC DSN on Windows

Figure 5.5 Connector/ODBC Connect Options Dialog

MySQL Connector/ODE!

N,
My -
Connector/ODBC

Connection Parameters

Data Source Mame:
Description:

@ TCR/IP Server: Port; 3306
MNarmed Pipe:
User:
Password:

Database:

Connection | Metadata | CursorsiResults | Debug | 5L | Misc |

[allow big result sets [T can Handle: Expired Passwiord
[Use compression ["|Enable Cleartext Authentication
[T Enable automatic reconnect [7] Disable default S5L
[Don't prompt when connecting [~ Get Server Public Key
[allows rultiple staterments
[T Interactive Client
Character Set:
Initial Statement:
Plugin Cirectory: E]

Authentication

o |

Toggling the Details button opens (or closes) an additional tabbed display where you set additional
options that include the following:

» Connections, Metadata, and Cursors/Results enable you to select the additional flags for the DSN
connection. For more information on these flags, see Section 5.5.2, “Connector/ODBC Connection
Parameters”.

Note

For the Unicode version of Connector/ODBC, due to its native Unicode
support, you do not need to specify the initial character set to be used

with your connection. However, for the ANSI version, if you want to use

a multibyte character set such as UTF-16 or UTF-32 initially, specify it in
Character Set box; however, that is hot necessary for using UTF-8 or UTF-8-
MB4 initially, because they do not contain \ 0 bytes in any characters, and
therefore the ANSI driver will not truncate the strings by accident when finding
\ O bytes.

350

Configuring a Connector/ODBC DSN on macOS

» Debug lets you turn on ODBC debugging to record the queries you execute through the DSN to the
nyodbc. sql file. For more information, see Section 5.5.10, “Getting an ODBC Trace File”.

» SSL configures the additional options required for using the Secure Sockets Layer (SSL) when
communicating with MySQL server.

Figure 5.6 Connector/ODBC Connect Options Dialog: SSL Options

C.mrectm|r"1&tadata Cursors/Results | Debug | 551 | Misc

S5L Key
S5L Certificate
SSL Certificate Authority
S5L CA Path
S5L Opher
251 Mode -

RSA Public Key
Disable TLS Version 1
Disable TLS Version 1.1
Disabla TLS Varsion 1.2

Detals << | | ok Cancel Help

You must also enable and configure SSL on the MySQL server with suitable certificates to
communicate using it using SSL.

5.5.3.2 Configuring a Connector/ODBC DSN on Windows, Using the Command Line
Use nyodbc-i nst al | er. exe when configuring Connector/ODBC from the command-line.
Execute myodbc-i nst al | er. exe without arguments to view a list of available options.
5.5.3.3 Troubleshooting ODBC Connection Problems

This section answers Connector/ODBC connection-related questions.

» While configuring a Connector/ODBC DSN, a Coul d Not Load Transl ator or Setup
Li brary error occurs

For more information, refer to MS KnowledgeBase Article(Q260558). Also, make sure you have the
latest valid ct | 3d32. dI | in your system directory.

e The Connector/ODBC .dIl (Windows) and .so (Linux) file names depend on several factors:

Connector/ODBC Version: A digit in the file name indicates the major Connector/ODBC version
number. For example, a file named myodbc8w.dll is for Connector/ODBC 8.x whereas myodbc5w.dll
is for Connector/ODBC 5.x.

Driver Type: The Unicode driver adds the letter "w" to file names to indicate that wide characters are
supported. For example, myodbc8w.dll is for the Unicode driver. The ANSI driver adds the letter "a"
instead of a "w", like myodbc8a.dll.

GUI Setup module: The GUI setup module files add the letter "S" to file names.

» Enabling Debug Mode: typically debug mode is not enabled as it decreases performance. The
driver must be compiled with debug mode enabled.

5.5.4 Configuring a Connector/ODBC DSN on macOS

To configure a DSN on macOS, you can either use the command-line utility (myodbc-i nstal | er),
edit the odbc. i ni file within the Li br ar y/ ODBC directory of the user, or use the ODBC Administrator
GULI.

351

http://support.microsoft.com/default.aspx?scid=kb;EN-US;q260558

Configuring a Connector/ODBC DSN on macOS

Note

The ODBC Administrator is included in OS X v10.5 and earlier; users of later
versions of OS X and macOS need to download and install it manually.

To create a DSN using the nyodbc-i nst al | er utility, you only need to specify the DSN type and the
DSN connection string. For example:

$> nyodbc-installer -a -s -t"DSN=nydb; DRI VER=MySQL ODBC 8. 3 Dri ver; SERVER=nysql ; USER=user nanme; PASSWORD=pas:
To use ODBC Administrator:

Warning

¢ For correct operation of ODBC Administrator, ensure that the / Li brary/
ODBC/ odbc. i ni file used to set up ODBC connectivity and DSNs are
writable by the adni n group. If this file is not writable by this group, then the
ODBC Administrator may fail, or may appear to work but not generate the
correct entry.

¢ There are known issues with the macOS ODBC Administrator and Connector/
ODBC that may prevent you from creating a DSN using this method. In that
case, use the command line or edit the odbc. i ni file directly. Existing DSNs
or those that you created using the myodbc- i nst al | er tool can still be
checked and edited using ODBC Administrator.

1. Open the ODBC Administrator from the Ut i | i t i es folder in the Appl i cat i ons folder.

Figure 5.7 ODBC Admi ni st r at or Dialog

0o ODBC Administrator

User DSN | System DSN | Drivers Tracing Connection Pooling About

Name Description Driver £ Add 3

An ODBC System data source stores information about how to connect to the indicated data
provider. A System data source is visible to all users and processes on this machine.

{ Revert) (Apply }

il
i '1 Click the lock to prevent further changes.

2. From the CDBC Adni ni strat or dialog, choose either the User DSN or System DSN tab and
click Add.

3. Select the Connector/ODBC driver and click OK.

4. You will be presented with the Dat a Sour ce Namne (DSN) dialog. Enter the Dat a Sour ce Nane
and an optional Descr i pti on for the DSN.

352

Configuring a Connector/ODBC DSN on Unix

Figure 5.8 ODBC Admi ni strator Data Source Nane Dialog

O 6 ODBC Administrator

- Data Source Name (DSN): |

4 Description: —
MName P |
myot Keyword WValue |
|
|
| [Add) Remove | Cancel | (OK)
|
A
| An ODBC User data source stores information about how to connect to the indicated
| data provider. A User data source is visible only to you.
Revert | Apply)

1
| .f IH Click the lock to prevent further changes.
I A

5. Click Add to add a new keyword/value pair to the panel. Configure at least four pairs to specify
the server, user nane, passwor d and dat abase connection parameters. See Section 5.5.2,
“Connector/ODBC Connection Parameters”.

6. Click OK to add the DSN to the list of configured data source names.
A completed DSN configuration may look like this:

Figure 5.9 ODBC Adni ni strat or Sanpl e DSN Dialog

Data Source Name (DSN): WorldSample

Description: Connection to sample World database

| Keyword Walue

server mysql

user sakila

password Sample

database test_world

._." Add 'J,.- Remave ._." Cancel 'J,.- (oK)

A

You can configure other ODBC options in your DSN by adding further keyword/value pairs and setting

the corresponding values. See Section 5.5.2, “Connector/ODBC Connection Parameters”.

5.5.5 Configuring a Connector/ODBC DSN on Unix

On Uni x, you configure DSN entries directly in the odbc. i ni file. Here is a typical odbc. i ni file that

configures myodbc8w (Unicode) and myodbc8a (ANSI) as DSN names for Connector/ODBC 8.3:

odbc.ini configuration for Connector/CODBC 8.3 driver

353

Connecting Without a Predefined DSN

[ODBC Dat a Sour ces]

myodbc8w
myodbc8a

[myodbc8wj
Driver
Descri pti on
SERVER
PORT

USER
Passwor d
Dat abase
OPTI ON
SOCKET

[myodbc8a]
Driver
Descri pti on
SERVER
PORT

USER
Passwor d
Dat abase
OPTI ON
SOCKET

Refer to the Section 5.5.2, “Connector/ODBC Connection Parameters”, for the list of connection

MyODBC 8.3 UNI CODE Driver DSN
M/ODBC 8.3 ANSI Driver DSN

lusr/local/lib/libmodbc8w. so

Connect or/ ODBC 8.3 UNI CODE Dri ver DSN
| ocal host

r oot

t est

3

lusr/local/lib/libmodbc8a. so
Connector/ ODBC 8.3 ANSI Driver DSN
| ocal host

root

test
3

parameters that can be supplied.

Note
If you are using uni x ODBC, you can use the following tools to set up the DSN:

» ODBCConf i g GUI tool (HOWTO: ODBCConfig)

e odbci nst

In some cases when using uni x ODBC, you might get this error:

Dat a source nane not found and no default driver specified

If this happens, make sure the CDBCI NI and CDBCSYSI NI environment variables are pointing to
the right odbc. i ni file. For example, if your odbc. i ni file is located in/ usr /| ocal / et c, set the

environment variables like this:

export ODBCI Nl =/usr/| ocal / etc/ odbc. i ni
export ODBCSYSI NI =/usr/|ocal /etc

5.5.6 Connecting Without a Predefined DSN

You can connect to the MySQL server using SQLDr i ver Connect , by specifying the DRI VER name
field. Here are the connection strings for Connector/ODBC using DSN-less connections:

For Connector/ODBC 8.3:

ConnectionString = "DRI VER={ MySQL ODBC 8.3 Driver};\

Substitute “MySQL ODBC 8.3 Driver” with the name by which you have registered your Connector/
ODBC driver with the ODBC driver manager, if it is different. If your programming language converts
backslash followed by whitespace to a space, it is preferable to specify the connection string as a
single long string, or to use a concatenation of multiple strings that does not add spaces in between.
For example:

SERVER=I ocal host ; \
DATABASE=t est ; \
USER=venu; \
PASSWORD=venu; \
OPTI ON=3; "

ConnectionString = "DRl VER={ \ySQ. ODBC 8.3 Driver};"

" SERVER=I| ocal host ;"
" DATABASE=t est ; "

354

http://www.unixodbc.org/config.html

ODBC Connection Pooling

"USER=venu; "
" PASSWORD=venu; "
"OPTI ON=3; "

Note. On macOS, you might need to specify the full path to the Connector/ODBC driver library.

Refer to Section 5.5.2, “Connector/ODBC Connection Parameters” for the list of connection parameters
that can be supplied.

5.5.7 ODBC Connection Pooling

Connection pooling enables the ODBC driver to re-use existing connections to a given database from
a pool of connections, instead of opening a new connection each time the database is accessed. By
enabling connection pooling you can improve the overall performance of your application by lowering
the time taken to open a connection to a database in the connection pool.

For more information about connection pooling: http://support.microsoft.com/default.aspx?scid=kb;EN-
US;q169470.

5.5.8 OpenTelemetry Tracing Support

For applications on Linux systems that use OpenTelemetry (OTel) instrumentation, the connector
adds query and connection spans to the trace generated by application code and forwards the current
OpenTelemetry context to the server. OpenTelemetry tracing was introduced in the Connector/ODBC
8.1.0 release.

Note

OTel context forwarding works only with MySQL Enterprise Edition, a
commercial product. To learn more about commercial products, see https://
www.mysgl.com/products/.

Enabling and Disabling Tracing

By default, the connector forwards the context only when an instrumented application installs the
required OpenTelemetry SDK libraries and configures the trace exporter to send trace data to some
destination. If the application code does not use instrumentation, then the legacy connector does not
use it either.

Connector/ODBC supports a connection property option, OPENTELENMETRY, which has these values:

» PREFERRED: Default. Use instrumentation in the connection if the required OpenTelemetry
instrumentation is available. Otherwise, permit the connection to operate without any OpenTelemetry
instrumentation.

» DI SABLED: The connector does not create OpenTelemetry spans or forward the OpenTelemetry
context to the server.

Setting to boolean f al se behaves the same as DI SABLED.

When you build code that links to Connector/ODBC and uses OTel instrumentation, the additional
spans generated by the connector appear in the traces generated by your code. Spans generated
by the connector are sent to the same destination (trace exporter) where other spans generated by
the user code are sent as configured by user code. It is not possible to send spans generated by the
connector to any other destination.

This implementation is distinct from the implementation provided through the MySQL client library (or
the related t el enet ry_cl i ent client-side plugin).

Limitation

OTel instrumentation in the ODBC driver only functions if the application is built with the - r dynani ¢
compiler option so that symbols defined in user code are externally visible. Without this, the OTel

355

http://support.microsoft.com/default.aspx?scid=kb;EN-US;q169470
http://support.microsoft.com/default.aspx?scid=kb;EN-US;q169470
https://www.mysql.com/products/
https://www.mysql.com/products/

Authentication Options

context is not forwarded to the server (as the driver has no way of getting the current OTel context) and
the spans generated by the ODBC driver will be not sent to the destination specified in the application
(they will be discarded).

5.5.9 Authentication Options

Connector/ODBC supports different authentication methods, including:
» Standard authentication using a MySQL username and password, such as caching_sha2_password.

» The Kerberos authentication protocol for passwordless authentication. For more information about
Kerberos authentication, see Kerberos Pluggable Authentication.

Support added in Connector/ODBC 8.0.26 for Linux clients, and 8.0.27 for Windows clients.

» Multi-Factor Authentication (MFA) by utilizing the PASSWORDL (alias of PASSWORD), PASSWORD2, and
PASSWORD3 connection options. In addition there are PWD1, PWD2, and PWD3 aliases.

Support added in Connector/ODBC 8.0.28.

» FIDO-based authentication is supported and Connector/ODBC supports the FIDO-based
WebAuthn Pluggable Authentication plugin. See the general WebAuthn Pluggable Authentication
documentation for installation requirements and implementation details.

Note

Support for the authentication_webauthn plugin was added in Connector/
ODBC 8.2.0. Support for the authentication_fido plugin was added in 8.0.29,
deprecated in 8.2.0, and removed in 8.4.0.

A callback usage example:

/1 SQL_DRI VER_CONNECT_ATTR BASE is not defined in all driver nanagers.
/] Therefore use a customconstant until it becomes a standard.

#def i ne MYSQL_DRI VER _CONNECT_ATTR_BASE 0x00004000

/1 Custom constants used for call back

#def i ne CB_FI DO GLOBAL MYSQL_DRI VER CONNECT_ATTR BASE + 0x00001000
#defi ne CB_FI DO_CONNECTI ON MYSQL_DRI VER_CONNECT_ATTR BASE + 0x00001001
/] Usage exanpl e

/1 Call back function inside code:

voi d user_cal | back(const char* nsg)

// Do sonething ...

}

SQLHENV henv = nul | ptr;

SQLAI | ocHandl e(SQL_HANDLE _ENV, nullptr, &henv);

/] Set the ODBC version to 3.80 otherw se the custom constants don't work
SQLSet EnvAttr (henv, SQL_ATTR ODBC_VERSI ON,

(SQLPO NTER) SQL_OV_0DBC3_80, 0);

SQLHDBC hdbc = nul I ptr;

SQLAI | ocHandl e(SQ._HANDLE DBC, henv, &hdbc);

// CB_FIDO X is either CB FI DO GLOBAL or CB_FI DO_CONNECTI ON

SQLSet Connect Attr (hdbc, CB_FIDO X, &user_callback, SQ._|IS PO NTER);
SQLDri ver Connect (hdbc, hwnd, conn_str,);

5.5.10 Getting an ODBC Trace File

If you encounter difficulties or problems with Connector/ODBC, start by making a log file from the CDBC
Manager and Connector/ODBC. This is called tracing, and is enabled through the ODBC Manager.
The procedure for this differs for Windows, macOS and Unix.

5.5.10.1 Enabling ODBC Tracing on Windows

To enable the trace option on Windows:

356

https://dev.mysql.com/doc/refman/8.0/en/caching-sha2-pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.0/en/kerberos-pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.2/en/webauthn-pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.2/en/webauthn-pluggable-authentication.html

Getting an ODBC Trace File

1. The Traci ng tab of the ODBC Data Source Administrator dialog box lets you configure the way
ODBC function calls are traced.

Figure 5.10 ODBC Data Source Administrator Tracing Dialog

&1 ODBC Data Source Administraton

User DSN] System DSN] File DSNI Drivers 11acing | Connection F'ooling] Ahout]

‘when to trace

‘ Start Tracing Now | Start Yisual Studio Analyzer ‘

[Machine-\Wide tracing for all user identities

Log File Path Custom Trace DLL
CADOCUME ~TAMENLOCALS =14 Te |C:\WI MO0 S apstem 32y odbotrac,

Browse. . Select DLL. ..

ODBC tracing allows you to create logs of the calls to DDBC drivers for
uze by support personnel or to aid you in debugging vour applications.
Yizual studio tracing enables Microzoft Vizual studio tracing for ODBLC.

QK | Caticel | Apply | Help |

2. When you activate tracing from the Tr aci ng tab, the Dri ver Manager logs all ODBC function
calls for all subsequently run applications.

3. ODBC function calls from applications running before tracing is activated are not logged. ODBC
function calls are recorded in a log file you specify.

4. Tracing ceases only after you click St op Traci ng Now. Remember that while tracing is on, the

log file continues to increase in size and that tracing affects the performance of all your ODBC
applications.

5.5.10.2 Enabling ODBC Tracing on macOS

To enable the trace option on macOS, use the Tr aci ng tab within ODBC Administrator .
1. Open the ODBC Administrator.

2. Selectthe Tr aci ng tab.

357

Getting an ODBC Trace File

Figure 5.11 ODBC Administrator Tracing Dialog

ene ODBC Administrator

' User DSN System DSN Drivers | Tracing | Connection Pooling About

__ Enable Tracing

Log File: .__\' Choose... "._.

Custom Trace Library: '._: Choose... l,-'

ODEBC tracing allows you to create logs of the calls to ODBC drivers for use by support personnel
or to aid you in debugging your applications.

(Apply)

| [ﬁ] Click the lock to make changes.

1

3. Select the Enabl e Traci ng check box.

4. Enter the location to save the Tracing log. To append information to an existing log file, click the
Choose... button.

5.5.10.3 Enabling ODBC Tracing on Unix

To enable the trace option on OS X 10.2 (or earlier) or Unix, add the t r ace option to the ODBC
configuration:

1. On Unix, explicitly set the Tr ace option in the CDBC. | NI file.

Set the tracing ON or OFF by using Tr aceFi | e and Tr ace parameters in odbc. i ni as shown

below:
TraceFile = /tnp/odbc.trace
Trace =1

Tr aceFi | e specifies the name and full path of the trace file and Tr ace is set to ON or OFF. You
can also use 1 or YES for ONand 0 or NOfor OFF. If you are using ODBCConf i g from uni x ODBC,
then follow the instructions for tracing uni x ODBC calls at HOWTO-ODBCConfig.

5.5.10.4 Enabling a Connector/ODBC Log
To generate a Connector/ODBC log, do the following:

1. Within Windows, enable the Trace Connect or/ ODBC option flag in the Connector/ODBC
connect/configure screen. The log is written to file C. \ myodbc. | og. If the trace option is not
remembered when you are going back to the above screen, it means that you are not using the
nyodbcd. dl | driver, see Section 5.5.3.3, “Troubleshooting ODBC Connection Problems”.

On macOS, Unix, or if you are using a DSN-less connection, either supply OPTI ON=4 in the
connection string, or set the corresponding keyword/value pair in the DSN.

2. Start your application and try to get it to fail. Then check the Connector/ODBC trace file to find out
what could be wrong.

358

http://www.unixodbc.org/config.html

Connector/ODBC Examples

If you need help determining what is wrong, see Section 5.9.1, “Connector/ODBC Community Support”.

5.6 Connector/ODBC Examples

Once you have configured a DSN to provide access to a database, how you access and use that
connection is dependent on the application or programming language. As ODBC is a standardized
interface, any application or language that supports ODBC can use the DSN and connect to the
configured database.

5.6.1 Basic Connector/ODBC Application Steps

Interacting with a MySQL server from an applications using the Connector/ODBC typically involves the
following operations:

» Configure the Connector/ODBC DSN.

* Connect to MySQL server.

This might include: allocate environment handle, set ODBC version, allocate connection handle,
connect to MySQL Server, and set optional connection attributes.

* |nitialization statements.

This might include: allocate statement handle and set optional statement attributes.

e Execute SQL statements.

This might include: prepare the SQL statement and execute the SQL statement, or execute it directly
without prepare.

» Retrieve results, depending on the statement type.

For SELECT / SHOW / Catalog API the results might include: get number of columns, get column
information, fetch rows, and get the data to buffers. For Delete / Update / Insert the results might
include the number of rows affected.

» Perform transactions; perform commit or rollback.
» Disconnect from the server.
This might include: disconnect the connection and free the connection and environment handles.

Most applications use some variation of these steps. The basic application steps are also shown in the
following diagram:

359

https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_transaction

Step-by-step Guide to Connecting to a MySQL Database through Connector/ODBC

Figure 5.12 Connector/ODBC Programming Flowchart

Step 1: Establish a Connection

* Allocate Environment Handle

* Set ODBC Version

* Allocate Connection Handle

* Connect to MySQL Server

» Set Optional Connection Attributes

L

Step 2: Initialize the Statement
* Allocate Statement Handle
* Set Optional Statement Attributes

v

Step 3: Execute SQL Statement

* Prepare the SQL statement

* Execute the SQL statement or
execute it directly without prepare

Y

tatement Type?

[T~]

SELECT / SHOW / Catalog API DELETE / UPDATE / INSERT Other
Step 4: Fetch Results Step 4: Fetch Resuits
* Get Number of Columns » Get Number of rows affected
* Get Column information

* Fetch Rows
* Get the data to buffers

)

Step 5: Transaction
* Perform commit or rollback

v

Step 6: Disconnect

* Discannect the connection
* Free Connection Handle

* Free Environment Handle

5.6.2 Step-by-step Guide to Connecting to a MySQL Database through
Connector/ODBC

A typical situation where you would install Connector/ODBC is to access a database on a Linux or Unix
host from a Windows machine.

As an example of the process required to set up access between two machines, the steps below take
you through the basic steps. These instructions assume that you connect to system ALPHA from
system BETA with a user name and password of nyuser and nypasswor d.

On system ALPHA (the MySQL server) follow these steps:
1. Start the MySQL server.

2. Use GRANT to set up an account with a user name of myuser that can connect from system BETA
using a password of nyuser to the database t est :

GRANT ALL ON test.* to 'nyuser' @BETA | DENTIFIED BY ' nypassword' ;
For more information about MySQL privileges, refer to Access Control and Account Management.

On system BETA (the Connector/ODBC client), follow these steps:

360

https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/access-control.html

Connector/ODBC and Third-Party ODBC Tools

1. Configure a Connector/ODBC DSN using parameters that match the server, database and
authentication information that you have just configured on system ALPHA.

Parameter |Value Comment

DSN remote_test A name to identify the connection.

SERVER ALPHA The address of the remote server.

DATABASE |test The name of the default database.

USER myuser The user name configured for access to this database.
PASSWORD |mypassword The password for nyuser .

2. Using an ODBC-capable application, such as Microsoft Office, connect to the MySQL server using
the DSN you have just created. If the connection fails, use tracing to examine the connection
process. See Section 5.5.10, “Getting an ODBC Trace File”, for more information.

5.6.3 Connector/ODBC and Third-Party ODBC Tools

Once you have configured your Connector/ODBC DSN, you can access your MySQL database through
any application that supports the ODBC interface, including programming languages and third-party
applications. This section contains guides and help on using Connector/ODBC with various ODBC-
compatible tools and applications, including Microsoft Word, Microsoft Excel and Adobe/Macromedia

ColdFusion.

Connector/ODBC has been tested with the following applications:

Publisher Application Notes
Adobe ColdFusion Formerly Macromedia ColdFusion
Borland C++ Builder

Builder 4

Delphi

Business Objects

Crystal Reports

Claris

Filemaker Pro

Corel

Paradox

Computer Associates

Visual Objects

‘Also known as CAVO

AllFusion ERwin Data
Modeler

Gupta Team Developer Previously known as Centura Team Developer;
Gupta SQL/Windows
Gensym G2-ODBC Bridge
Inline iHTML
Lotus Notes Versions 4.5 and 4.6
Microsoft Access
Excel

Visio Enterprise

Visual C++

Visual Basic

ODBC.NET

Using C#, Visual Basic, C++

FoxPro

Visual Interdev

361

Using Connector/ODBC with Microsoft Access

Publisher Application Notes
OpenOffice.org OpenOffice.org

Perl DBD::ODBC

Pervasive Software DataJunction

Sambar Technologies

Sambar Server

SPSS SPSS

SoftVelocity Clarion

SQLExpress SQLExpress for Xbase+
+

Sun StarOffice

SunSystems Vision

Sybase PowerBuilder

PowerDesigner

theKompany.com

Data Architect

5.6.4 Using Connector/ODBC with Microsoft Access

You can use a MySQL database with Microsoft Access using Connector/ODBC. The MySQL database
can be used as an import source, an export source, or as a linked table for direct use within an Access
application, so you can use Access as the front-end interface to a MySQL database.

5.6.4.1 Exporting Access Data to MySQL

Important

Make sure that the information that you are exporting to the MySQL table is
valid for the corresponding MySQL data types. Values that are valid within
Access but are outside of the supported ranges of the MySQL data types may

trigger an “overflow” error during the export.

To export a table of data from an Access database to MySQL, follow these instructions:

1. With an Access database opened, the navigation plane on the right should display, among other
things, all the tables in the database that are available for export (if that is not the case, adjust the
navigation plane's display settings). Right click on the table you want to export, and in the menu

that appears, choose Export , ODBC Database.

362

Using Connector/ODBC with Microsoft Access

Figure 5.13 Access: Export ODBC Database Menu Selected

Table Tools pets : Database-

Database Tools Fields Table Q) Tell me what

=
File Home Create External Data
S ==z =z Lol = Text File
» BsEr BBy -, -
A [XML File
Saved Linked Table Excel Access ODBC —
Imports Manager Database - More ~

Import & Link

All Access Objects & « EES

Search... p
Tables S
j Cats m
Forms Open
Bl Formi e Design View
Import 4
Export 4

=l Rename
Hide in this Group
Delete

(x} Cut

Bs Copy

= Table Properties

==z

5m G5 58 68 &1

>

Saved Excel Text XML PDF Email |

Exports File File or XPS |
Export

CatlD = CatName ~ OwnerlD ~ B

—_I &

L]
fa
LaE]
fa

3

#

A

o+

gi|

& s1gl &

5@

0 Sandy
1 Cookie
2 Charlie
0

[I A S

Excel
SharePaoint List
Word RTF File
PDF or XP5
Access

Text File

XML File

ODBC Database
HTML Document
dBASE File
Word Merge

2. The Export dialog box appears. Enter the desired name for the table after its import into the

MySQL server, and click OK.

Figure 5.14 Entering Name For Table To Be Exported

rE}:por‘t @Iﬂ‘

Export Cats to:
Cats
in ODBC Database

[o][conca |

3. The Select Data Source dialog box appears; it lists the defined data sources for any ODBC drivers
installed on your computer. Click either the File Data Source or Machine Data Source tab, and
then double-click the Connector/ODBC DSN to which you want to export your table. To define
a new DSN for Connector/ODBC instead, click New and follow the instructions in Section 5.5.3,

363

Using Connector/ODBC with Microsoft Access

“Configuring a Connector/ODBC DSN on Windows”; double click the new DSN after it has been
created.

Figure 5.15 Selecting An ODBC Database

. ==

Select Data Source

File Data Source | Machine Data Source |

Data Source Name Type Description
Excel Files User
MS Access Database User

MySQL5.7 System

A Machine Data Source is specific to this machine, and cannot be shared. "User" data
sources are specific to a user on this machine. "System" data sources can be used by
all users on this machine, or by a system-wide service.

0K l l Cancel] ’ Help

If the ODBC data source that you selected requires you to log in, enter your login ID and password
(additional information might also be required), and then click OK.

4. A dialog box appears with a success message if the export is successful. In the dialog box, you can
choose to save the export steps for easy repetitions in the future.

Figure 5.16 Save Export Success Message

Export - ODBC Database

Save Export Steps

successfully exported "Cats’.
Do you want to save these export steps? This will allow you to quicky repeat the operation without using the wizard.

__| Save export steps

Note

If you see the following error message instead when you try to export to

the Connector/ODBC DSN, it means you did not choose the Database to
connect to when you defined or logged in to the DSN. Reconfigure the DSN
and specify the Database to connect to (see Section 5.5.3, “Configuring

364

Using Connector/ODBC with Microsoft Access

a Connector/ODBC DSN on Windows” for details), or choose a Database
when you log in to the DSN .

Figure 5.17 Error Message Dialog: Database Not Selected
Microsoft Access E

ODEBC-—call failed.

— [MySQLI[ODBC 5.3(w) Driver][mysqld-57.12-log]No database selected (#1045)

5.6.4.2 Importing MySQL Data to Access

To import tables from MySQL to Access, follow these instructions:
1. Open the Access database into which that you want to import MySQL data.

2. On the External Data tab, choose ODBC Database.

Figure 5.18 External Data: ODBC Database

o - pets : Database- C\
File Home Create External Data Database Tools ':.;:' Tell me what you
™] el 5 FHrecriie B [THL TH
) W 7 e oine O S| Sisl
Saved Linked Table Excel Access| ODBC = Saved Excel Text XML
Imports Manager Database " »More~ Eyports File File
Import & Link Ex
All Access Objects @ «
Segrch... p
Tables b3
j Cats
Forms 2
-=| Forml

3. Inthe Get External Dat a dialog box that appears, choose Import the source data into a new
table in the current database and click OK.

Figure 5.19 Get External Data: ODBC Database

Get External Data - ODBC Database 7 % |

Select the source and destination of the data <

specify how and where you want to store the data in the current database.

@ Import the source data into a new table in the current database,
If the specified object does not exist, Access will create it. If the specified object already exists, Access will append a number to the name of
the imported object. Changes made to source objects (including data in tables) will not be reflected in the current database.

" Link to the data source by creating a linked table.
access will create a table that will maintain a link to the source data.

365

Using Connector/ODBC with Microsoft Access

4. The Select Data Source dialog box appears. It lists the defined data sources for any ODBC drivers
installed on your computer. Click either the File Data Source or Machine Data Source tab, and
then double-click the Connector/ODBC DSN from which you want to import your table. To define
a new DSN for Connector/ODBC instead, click New and follow the instructions in Section 5.5.3,
“Configuring a Connector/ODBC DSN on Windows”; double click the new DSN after it has been
created.

Figure 5.20 Select Data Source Dialog: Selecting an ODBC Database

Select Data Source ﬁ
File Data Source | Machine Data Source |
Data Source Name Type Description
Excel Files User
MS Access Database User
MySQL5.7 System
MNew..
A Machine Data Source is specific to this machine, and cannot be shared. "User" data
sources are specific to a user on this machine. "System" data sources can be used by
all users on this machine, or by a system-wide service.
0K l l Cancel] ’ Help

If the ODBC data source that you selected requires you to log in, enter your login ID and password
(additional information might also be required), and then click OK.

5. Microsoft Access connects to the MySQL server and displays the list of tables (objects) that you
can import. Select the tables you want to import from this Import Objects dialog (or click Select All),
and then click OK.

Figure 5.21 Import Objects Dialog: Selecting Tables To Import

Import Objects

Tables

Cancel

Select All

Deselect All

0D |

Notes

« If no tables show up for you to select, it might be because you did not
choose the Database to connect to when you defined or logged in to the

366

Using Connector/ODBC with Microsoft Access

DSN. Reconfigure the DSN and specify the Database to connect to (see
Section 5.5.3, “Configuring a Connector/ODBC DSN on Windows” for
details), or choose a Database when you log in to the DSN .

« If your Access database already has a table with the same name as the
one you are importing, Access will append a number to the name of the
imported table.

6. A dialog box appears with a success message if the import is successful. In the dialog box, you can
choose to save the import steps for easy repetitions in the future.

Figure 5.22 Get External Data: Save Import Steps Dialog

| Get External Data - ODBC Database =)
Save Import Steps

&l abjects were imported successfully.

Do you want to save these import steps? This will allow you to quickly repeat the eperation without using the wizard.

5.6.4.3 Using Microsoft Access as a Front-end to MySQL

You can use Microsoft Access as a front end to MySQL by linking tables within your Microsoft Access
database to tables that exist within your MySQL database. When a query is requested on a table within
Access, ODBC is used to execute the queries on the MySQL database.

To create a linked table:
1. Open the Access database that you want to link to MySQL.

2. On the External Data tab, choose ODBC Database.

Figure 5.23 External Data: ODBC Database

o - pets : Database- C\
File Home Create External Data Database Tools Q Tell me what you
m=z] P gl] | e [Text File ==z] F .
) Il SPIRET S sl sie)
Saved Linked Table Excel Access| ODBC — Saved Excel Text XML
Imports Manager Database "+ More - Eyports File File
Import & Link B Ex
All Access Objects @ «
Search... p
Tables a
'j Cats
Forms b3
-= Formil

3. Inthe Get External Dat a dialog box that appears, choose Link to the data source by
creating a linked table and click OK.

367

Using Connector/ODBC with Microsoft Access

Figure 5.24 Get External Data: Link To ODBC Database Option Chosen

=5
B

Get External Data - ODBC Database

Select the source and destination of the data

Specify how and where you want to store the data in the current database.

(1 Import the source data into a new table in the current database.
If the specified object does not exist, Access will create it, If the specified object already exists, Access will append a number ta the name of
the imported object. Changes made to source objects (including data in tables) will not be reflected in the current database.

(@ Link to the data source by creating a linked table.
access will create a table that will maintain a link to the source data.

4. The Select Data Source dialog box appears; it lists the defined data sources for any ODBC drivers
installed on your computer. Click either the File Data Source or Machine Data Source tab, and
then double-click the Connector/ODBC DSN you want to link your table to. To define a new DSN
for Connector/ODBC instead, click New and follow the instructions in Section 5.5.3, “Configuring a
Connector/ODBC DSN on Windows”; double click the new DSN after it has been created.

Figure 5.25 Selecting An ODBC Database

Select Data Source ﬁ
File Data Source | Machine Data Source |

7

Data Source Name Type Description
Excel Files User
MS Access Database User

MySQL 5.7 System

A Machine Data Source is specific to this machine, and cannot be shared. "User" data
sources are specific to a user on this machine. "System" data sources can be used by
all users on this machine, or by a system-wide service.

oK || cancel || Hep

If the ODBC data source that you selected requires you to log in, enter your login ID and password
(additional information might also be required), and then click OK.

368

Using Connector/ODBC with Microsoft Access

5. Microsoft Access connects to the MySQL server and displays the list of tables that you can link to.
Choose the tables you want to link to (or click Select All), and then click OK.

Figure 5.26 Link Tables Dialog: Selecting Tables to Link

B3

Link Tables L

Tables

Linking... ol

cats

Press Ctrl-Break to stop. Cancel

Select All

Deselect All

["] save password

Notes

« If no tables show up for you to select, it might be because you did not
choose the Database to connect to when you defined or logged in to the
DSN. Reconfigure the DSN and specify the Database to connect to (see
Section 5.5.3, “Configuring a Connector/ODBC DSN on Windows” for
details), or choose a Database when you log in to the DSN.

« If your database on Access already has a table with the same name as
the one you are linking to, Access will append a number to the name of
the new linked table.

6. If Microsoft Access is unable to determine the unique record identifier for a table automatically, it
will ask you to choose a column (or a combination of columns) to be used to uniquely identify each
row from the source table. Select the column[s] to use and click OK.

Figure 5.27 Linking Microsoft Access Tables To MySQL Tables, Choosing Unique Record
Identifier

Select Unique Record Identifier

Fields in table 'cats2":

CatlD
CatName
OwnerID
Birthday

To ensure data integrity and to update records, you must
choose a field or fields that uniquely identify each record.
Select up to ten fields.

oK l l Cancel

369

Using Connector/ODBC with Microsoft Access

Once the process has been completed, you can build interfaces and queries to the linked tables just as

you would for any Access database.

Use the following procedure to view links or to refresh them when the structures of the linked tables

have changed.
To view or refresh links:
1. Open the database that contains links to MySQL tables.
2. On the External Data tab, choose Linked Table Manager.
Figure 5.28 External Data: Linked Table Manager
Table Tools

Create External Data Database Tools Fields Table

Home

==z (— P | mem] CEETextFile B2 e
» | 22| O B (&% FuLrile | F ol sl
Saved Linked Table Excel Access ODBC Saved Excel Text XN
Imports| Manager Database "2 More~ Eyports File Fil
Import & Link B
: - Cats ts2
All Access Objects @ « || = et [T @tz
<earch ,O CatlD = | CatName ~
Tables b Sandy
— 1 Cookie
cats 2 Charlie
*@ cats2 3 Vivian
Forms ¥

3. The Linked Table Manager appears. Select the check box for the tables whose links you want to
refresh. Click OK to refresh the links.

Figure 5.29 External Data: Linked Table Manager Dialog

=2 Linked Table Manager
Select the linked tables to be updated:

K

FARY" Jcats2 (DSN=MySQL 5.7:DATABASE=pets:)

Cancel

Select All

Deselect All

Export To Excel

&

|| Always prompt for new location

.

If the ODBC data source requires you to log in, enter your login ID and password (additional
information might also be required), and then click OK.

Microsoft Access confirms a successful refresh or, if the tables are not found, returns an error
message, in which case you should update the links with the steps below.

370

Using Connector/ODBC with Microsoft Word or Excel

To change the path for a set of linked tables (for pictures of the GUI dialog boxes involved, see the
instructions above for linking tables and refreshing links) :

1. Open the database that contains the linked tables.
2. On the External Data tab, choose Linked Table Manager.

3. Inthe Linked Table Manager that appears, select the Always Prompt For A New Location check
box.

4. Select the check box for the tables whose links you want to change, and then click OK.

5. The Select Data Source dialog box appears. Select the new DSN and database with it.

5.6.5 Using Connector/ODBC with Microsoft Word or Excel

You can use Microsoft Word and Microsoft Excel to access information from a MySQL database using
Connector/ODBC. Within Microsoft Word, this facility is most useful when importing data for mailmerge,
or for tables and data to be included in reports. Within Microsoft Excel, you can execute queries on
your MySQL server and import the data directly into an Excel Worksheet, presenting the data as a
series of rows and columns.

With both applications, data is accessed and imported into the application using Microsoft Query, which
lets you execute a query though an ODBC source. You use Microsoft Query to build the SQL statement
to be executed, selecting the tables, fields, selection criteria and sort order. For example, to insert
information from a table in the World test database into an Excel spreadsheet, using the DSN samples
shown in Section 5.5, “Configuring Connector/ODBC”:

1. Create a new Worksheet.

2. From the Dat a menu, choose | nport Ext ernal Dat a, and then select New Dat abase

Query.

3. Microsoft Query will start. First, you need to choose the data source, by selecting an existing Data
Source Name.

Figure 5.30 Microsoft Query Wizard: Choose Data Source Dialog

Databases] Queries] OLAP Cubes] ok

&

<Mew Data Source:
dBASE Files®

Ercel Files®

M5 Access Databasze® Browse...

Cancel

Options...

PP

@ v Use the Query Wizard to create/edit queries

4. Within the Query W zar d, choose the columns to import. The list of tables available to the user
configured through the DSN is shown on the left, the columns that will be added to your query are
shown on the right. The columns you choose are equivalent to those in the first section of a SELECT
query. Click Next to continue.

371

https://dev.mysql.com/doc/refman/8.0/en/select.html

Using Connector/ODBC with Microsoft Word or Excel

Figure 5.31 Microsoft Query Wizard: Choose Columns

Query Wizard - Choose Columns

What columnz of data do you want to include in wour querny?

Available tables and calumns: Coluriniz in paur query:

¥

|]
+ County J J
<

+ CountyLanguage

Preview of data in selected column:

@ | Optians... | | | Cancel |

5. You can filter rows from the query (the equivalent of a WHERE clause) using the Fi | t er Dat a
dialog. Click Next to continue.

Figure 5.32 Microsoft Query Wizard: Filter Data

Query Wizard - Filter Data

X

Filter the data to specify which rows to include in your guery.
If pou don't weant to filter the data, click Mest.

Column to filker; Only include rows where:
- e
CountryCode | j | J
Diztrict
Population O O
| =i =
i i
| =i =l
i i

@ < Back | MHext » | Cancel |

6. Select an (optional) sort order for the data. This is equivalent to using a ORDER BY clause in your
SQL query. You can select up to three fields for sorting the information returned by the query. Click
Next to continue.

Figure 5.33 Microsoft Query Wizard: Sort Order

Query Wizard - Sort Order. El

Specify how you want your data sorted.
If you don't want to zort the data, click Mest.

Sort by =
Name -1 Ascending
Hame
" Descending
Then by
| = -
~

| = =

@ < Back | Mext » | Cancel |

372

Using Connector/ODBC with Crystal Reports

7. Select the destination for your query. You can select to return the data Microsoft Excel, where you
can choose a worksheet and cell where the data will be inserted; you can continue to view the
query and results within Microsoft Query, where you can edit the SQL query and further filter and
sort the information returned; or you can create an OLAP Cube from the query, which can then be
used directly within Microsoft Excel. Click Finish.

Figure 5.34 Microsoft Query Wizard: Selecting A Destination

QueryWizard -Fimish &

“What would you like to do nest?

* Retun D ata to Microzoft Office Excel Save Query...

7 View data o edit queny in Microzaft Quen

" Create an OLAP Cube from this query

< Back | Finish | Cancel |

The same process can be used to import data into a Word document, where the data will be inserted
as a table. This can be used for mail merge purposes (where the field data is read from a Word table),
or where you want to include data and reports within a report or other document.

5.6.6 Using Connector/ODBC with Crystal Reports

Crystal Reports can use an ODBC DSN to connect to a database from which you to extract data and
information for reporting purposes.

Note

There is a known issue with certain versions of Crystal Reports where the
application is unable to open and browse tables and fields through an ODBC
connection. Before using Crystal Reports with MySQL, please ensure that you
have update to the latest version, including any outstanding service packs
and hotfixes. For more information on this issue, see the Business) Objects
Knowledgebase for more information.

For example, to create a simple crosstab report within Crystal Reports Xl, follow these steps:

1. Create a DSN using the Dat a Sour ces (ODBC) tool. You can either specify a complete
database, including user name and password, or you can build a basic DSN and use Crystal
Reports to set the user name and password.

For the purposes of this example, a DSN that provides a connection to an instance of the MySQL
Sakila sample database has been created.

2. Open Crystal Reports and create a new project, or an open an existing reporting project into which
you want to insert data from your MySQL data source.

3. Start the Cross-Tab Report Wizard, either by clicking the option on the Start Page. Expand the
Create New Connection folder, then expand the ODBC (RDO) folder to obtain a list of ODBC data
sources.

You will be asked to select a data source.

373

http://support.crystaldecisions.com/library/kbase/new_articles/c2013269.asp
http://support.crystaldecisions.com/library/kbase/new_articles/c2013269.asp

Using Connector/ODBC with Crystal Reports

Figure 5.35 Cross-Tab Report Creation Wizard

B Cross-Tab Report Creation Wizand @

Data ml
Choose the data you want to report on.

Available Data Sources: Selected Tables:
EREE Current Conrec
+- [Favorites
+- [Histary
+- [Create New Connection
+-[_] Repository

[Mest > l [Firizh][Cahcel] [Help]

4. When you first expand the ODBC (RDO) folder you will be presented the Data Source Selection
screen. From here you can select either a pre-configured DSN, open a file-based DSN or enter and
manual connection string. For this example, the pre-configured Sakila DSN will be used.

If the DSN contains a user name/password combination, or you want to use different authentication

credentials, click Next to enter the user name and password that you want to use. Otherwise, click
Finish to continue the data source selection wizard.

Figure 5.36 ODBC (RDO) Data Source Selection Wizard

Data Source Selection
Chooze a data source from the list or open a file dzn from the browse
buttar
Select Data Source: @
Data Source Mame: dBASE Files
Eucel Files
M5 Access Database
MySLLTest
Sakila
Test Wwoarld
#hreme Sample Databasze 11
Find File DSH: @]
Enter Connection String: Y
Mest » l [Finizh] [Cancel] [Help

374

Using Connector/ODBC with Crystal Reports

5. You will be returned the Cross-Tab Report Creation Wizard. You now need to select the database
and tables that you want to include in your report. For our example, we will expand the selected
Sakila database. Click the ci t y table and use the > button to add the table to the report. Then
repeat the action with the count r y table. Alternatively you can select multiple tables and add them
to the report.

Finally, you can select the parent Sakila resource and add of the tables to the report.

Once you have selected the tables you want to include, click Next to continue.

Figure 5.37 Cross-Tab Report Creation Wizard with Example ODBC (RDO) Data

B Cross-Tab Report Creation Wizard

Data [l
Chooze the data pou want to report on,

Available D ata Sources: Selected T ables:
FIME Fxchange 5 f e Tracking Log ~ = &3 Sakila
+-[_]E xchange Message Tracking Log city
+-[_]Legacy Exchange country
+- [Mailbox Admin
—.((]0DEC [RDO)

43 Make New Connection
= 3 Sakila
4 &dd Command
= [o=]l zakila o

achar -
actar_info
addrezs
categary
city
cauntry
custamer
custarner_lizt
filrr -

I Mest > l [Firizh][Cancel] [Help]

6. Crystal Reports will now read the table definitions and automatically identify the links between the
tables. The identification of links between tables enables Crystal Reports to automatically lookup
and summarize information based on all the tables in the database according to your query. If

375

Using Connector/ODBC with Crystal Reports

Crystal Reports is unable to perform the linking itself, you can manually create the links between
fields in the tables you have selected.

Click Next to continue the process.

Figure 5.38 Cross-Tab Report Creation Wizard: Table Links

E Cross-Tab Re port Creation Wizard §|

Link %

Likk. together the tables you added to the report.

I Auta-Arrange]
Auto-Link
[city _id [country_id
city counkry (%) By Name
> countey_id last_update O By Key
last_updat
e
[Clear Links]

Index Legend...

[< Back ” Mest »][Finizh]’ Cancel][Help]

7. You can now select the columns and rows that to include within the Cross-Tab report. Drag and
drop or use the > buttons to add fields to each area of the report. In the example shown, we will

376

Using Connector/ODBC with Crystal Reports

report on cities, organized by country, incorporating a count of the number of cities within each
country. If you want to browse the data, select a field and click the Browse Data... button.

Click Next to create a graph of the results. Since we are not creating a graph from this data, click

Finish to generate the report.

Figure 5.39 Cross-Tab Report Creation Wizard: Cross-Tab Selection Dialog

B Cross-Tab Report Creation Wizard @

=2

Cross-Tab
Add rows, columng and summarized figlds to the crozs-tab fram the available fields.

Available Fields: Crogs-Tab
= city

E= country_id
= |ast_update
- cauntry
= country_id
= country
= |ast_update Rows: ¥

E countm countiy

Browse Data...] [Fird Field...

Columnns:

= ity id
= iy

Summary Fields:

E Count of city. country_id

= city.city

Count w

¢<Back || Newt> | [Finsh

] ’ Cancel] [Help

377

Connector/ODBC Programming

8. The finished report will be shown, a sample of the output from the Sakila sample database is shown
below.

Figure 5.40 Cross-Tab Report Creation Wizard: Final Report

Total
Total B00
Afghanistan Total 1
Kabul 1
Algeria Total 3
Batna 1
Bchar 1
Skikda 1
American Total 1
Samoa
Tafuna 1
Angola Total 2
Benguela 1
Namibe 1
Anguilla Total 1
South Hill 1
Argentina Total 13
Almirante Brow 1

Once the ODBC connection has been opened within Crystal Reports, you can browse and add any
fields within the available tables into your reports.

5.6.7 Connector/ODBC Programming

With a suitable ODBC Manager and the Connector/ODBC driver installed, any programming language
or environment that can support ODBC can connect to a MySQL database through Connector/ODBC.

This includes, but is not limited to, Microsoft support languages (including Visual Basic, C# and
interfaces such as ODBC.NET), Perl (through the DBI module, and the DBD::ODBC driver).

5.6.7.1 Using Connector/ODBC with Visual Basic Using ADO, DAO and RDO

This section contains simple examples of the use of Connector/ODBC with ADO, DAO and RDO.

ADO: rs. addNew, rs. del et e, and r s. updat e

The following ADO (ActiveX Data Objects) example creates a table ny _ado and demonstrates the use
ofrs. addNew, rs. del et e, and rs. updat e.

Private Sub nyodbc_ado_C i ck()

Di m conn As ADODB. Connecti on

Dimrs As ADODB. Recor dset

Dimfld As ADODB. Fi el d

Dimsqgl As String

'connect to MySQL server using Connector/ CDBC
Set conn = New ADODB. Connecti on

conn. ConnectionString = "DRI VER={ WSQ. ODBC 3.51 Driver};"_
& " SERVER=I| ocal host ;" _

& " DATABASE=t est ;" _

& " Ul D=venu; PAD=venu; OPTI ON=3"

conn. Qpen

'create table

378

Connector/ODBC Programming

conn. Execut e "DROP TABLE | F EXI STS ny_ado"

conn. Execut e " CREATE TABLE ny_ado(id int not null primary key, name varchar(20)," _

& "txt text, dt date, tmtine, ts tinestanp)"
"direct insert

conn. Execute "I NSERT | NTO ny_ado(i d, nane, t xt)
conn. Execute "I NSERT | NTO ny_ado(i d, nane, t xt)
conn. Execute "I NSERT | NTO ny_ado(i d, nane, t xt)
Set rs = New ADCDB. Recor dset

rs. CursorLocati on = adUseSer ver

‘fetch the initial table ..

rs. Open "SELECT * FROM ny_ado", conn

Debug. Print rs. RecordCount

rs. MoveFi rst

Debug. Print String(50, "-") & "Initial ny_ado
For Each fld In rs.Fields

Debug. Print fld. Name,

Next

Debug. Pri nt

Do Until rs.EOF

For Each fld In rs.Fields

Debug. Print fld. Val ue,

Next

rs. MoveNext

Debug. Pri nt

Loop

rs.d ose

‘rs insert

val ues(1, 100, ' venu')"
val ues(2, 200, ' MySQL') "
val ues(3, 300, ' Delete')"

Result Set " & String(50,

rs. Open "select * fromny_ado", conn, adOpenDynanic, adLockOptim stic

rs. AddNew

rs!'iID =8

rs! Nane = " Mandy"

rsltxt = "lnsert row'

rs. Updat e

rs. d ose

'rs update

rs. Open "SELECT * FROM ny_ado"
rs! Nanme = "update"

rs!txt = "updated-row'

rs. Updat e

rs. d ose

'rs update second tine..

rs. Open "SELECT * FROM ny_ado"
rs! Nanme = "update"

rs!txt = "updated-second-tinme"
rs. Updat e

rs.d ose

‘rs delete

rs. Open "SELECT * FROM ny_ado"
rs. MoveNext

rs. MoveNext

rs.Delete

rs.d ose

‘fetch the updated table ..
rs. Open "SELECT * FROM ny_ado", conn
Debug. Print rs. RecordCount

rs. MoveFi rst

Debug. Print String(50, "-") & "Updated ny_ado
For Each fld In rs.Fields
Debug. Print fld. Name,

Next

Debug. Pri nt

Do Until rs.EOF

For Each fld In rs.Fields
Debug. Print fld. Val ue,

Next

rs. MoveNext

Debug. Pri nt

Loop

rs. d ose

conn. Cl ose

End Sub

Result Set " & String(50,

2L0h)

2L0h)

379

Connector/ODBC Programming

DAO: rs. addNew, r s. updat e, and Scrolling

The following DAO (Data Access Objects) example creates a table ny_dao and demonstrates the use
of rs. addNew, r s. updat e, and result set scrolling.

Private Sub nyodbc_dao_d i ck()

Dimws As Wrkspace

Di m conn As Connecti on

Di m quer yDef As quer yDef

Dimstr As String

'connect to MySQ using MySQ ODBC 3.51 Driver

Set ws = DBEngi ne. Cr eat eWor kspace("", "venu", "venu", dbUseODBC)
str = "odbc; DRI VER={ M/SQL ODBC 3.51 Driver};"_

& " SERVER=I| ocal host ;" _

& " DATABASE=t est ;" _

& " Ul D=venu; PWD=venu; OPTl ON=3"

Set conn = ws. OpenConnection(“test", dbDriverNoPronpt, False, str)
'Create table ny_dao

Set queryDef = conn. CreateQueryDef("", "drop table if exists ny_dao")
quer yDef . Execut e
Set queryDef = conn. CreateQueryDef ("", "create table ny_dao(ld | NT AUTO | NCREMENT PRI MARY KEY,

& "Ts TI MESTAMP(14) NOT NULL, Nane varchar(20), 1d2 INT)")
quer yDef . Execut e

"Insert new records using rs.addNew
Set rs = conn. OpenRecordset (" ny_dao")
Dimi As |Integer

For i = 10 To 15

rs. AddNew

rs!Name = "insert record" & i

rstid2 =i

rs. Updat e

Next i

rs.d ose

'rs update..

Set rs = conn. OpenRecordset (" ny_dao")
rs. Edit

rs! Nane = "updat ed-string"

rs. Updat e

rs.d ose

'fetch the table back...

Set rs = conn. OpenRecordset (" nmy_dao", dbOpenDynani c)
str = "Resul ts:"

rs. MoveFi r st

While Not rs. EOF

str =" " &rslld &" , " &rs!Name & ", " &rslTs & ", " &rs!ld2

Debug. Print "DATA:" & str

rs. MoveNext

Wend

'rs Scrolling

rs. MoveFi rst

str =" FIRST RON " & rs!ld &" , " &rs!Nane & ", " &rs!Ts & ", " &rs!ld2

Debug. Print str

rs. Movelast

str =" LAST RON " & rs!lId &" , " &rs!Nane & ", " &rs!Ts &", " &rs!ld2
Debug. Print str

rs. MovePr evi ous

str =" LAST-1 RON " & rs!ld &" , " &rs!Nane & ", " &rs!Ts & ", " &rs!ld2
Debug. Print str

"free all resources

rs. d ose

quer yDef . Cl ose

conn. Cl ose

ws. Cl ose

End Sub

RDO: rs. addNewand r s. updat e

The following RDO (Remote Data Objects) example creates a table ny_r do and demonstrates the use
of rs. addNewand r s. updat e.

Dimrs As rdoResultset

380

Connector/ODBC Programming

Dimcn As New rdoConnecti on
Dimcl As rdoCol um

Dim SQL As String

'cn. Connect = "DSN-=test;"

cn. Connect = "DRI VER={ MySQL ODBC 3.51 Driver};"_

& " SERVER=I| ocal host ;" _

& " DATABASE=test ;" _

& " Ul D=venu; PAD=venu; OPTI ON=3"

cn. CursorDriver = rdUseGdbc

cn. Est abl i shConnecti on rdDri ver Pr onpt
‘drop table ny_rdo

SQL = "drop table if exists my_rdo"
cn. Execute SQ., rdExecDirect

‘create table nmy_rdo

SQL = "create table ny_rdo(id int, nane varchar(20))"

cn. Execute SQ., rdExecDirect
"insert - direct

SQL = "insert into nmy_rdo val ues (100, "'venu')"

cn. Execute SQ., rdExecDirect

SQL = "insert into nmy_rdo val ues (200,' MySQL")"

cn. Execute SQ., rdExecDirect

‘rs insert

SQL = "select * from nmy_rdo"

Set rs = cn. OpenResul tset (SQL, rdQpenStati c,
rs. AddNew

rslid = 300

rs! Nane = "Insert1"

rs. Updat e

rs. d ose

‘rs insert

SQL = "select * from nmy_rdo"

Set rs = cn. OpenResul tset (SQL, rdQpenStati c,
rs. AddNew

rslid = 400

rs! Nane = "Insert 2"

rs. Updat e

rs.d ose

'rs update

SQL = "select * from nmy_rdo"

Set rs = cn. OpenResul tset (SQL, rdQpenStati c,
rs. Edit

rslid = 999

rs! Nane = "updat ed"

rs. Updat e

rs. d ose

'fetch back. ..

SQL = "select * from nmy_rdo"

Set rs = cn. OpenResul tset (SQL, rdQpenStati c,
Do Until rs.EOF

For Each cl In rs.rdoCol ums

Debug. Print cl . Val ue,

Next

rs. MoveNext

Debug. Pri nt

Loop

Debug. Print "Row count ="; rs. RowCount

'cl ose

rs.d ose

cn. d ose

End Sub

5.6.7.2 Using Connector/ODBC with .NET

This section contains simple examples that demonstrate the use of Connector/ODBC drivers with

ODBC.NET.

r dConcur RowVer ,

r dConcur RowVer ,

r dConcur RowVer ,

r dConcur RowVer ,

Using Connector/ODBC with ODBC.NET and C# (C sharp)

The following sample creates a table my_odbc_net and demonstrates its use in C#.

| **

rdExecDi rect)

rdExecDi rect)

rdExecDi rect)

rdExecDi rect)

381

Connector/ODBC Programming

* @anpl e . mycon. cs

* @ur pose : Denmo sanpl e for ODBC. NET usi ng Connect or/ CDBC
*

**/

/* build command

*

* csc /t:exe

ks / out : mycon. exe mycon. cs
* /r:Mcrosoft. Data. Gdbc. dl |
&

usi ng Consol e = System Consol €;
using M crosoft. Data. Cdbc;
namespace nyodbc3

{

class mycon

{
static void Main(string[] args)
{
try
{
/] Connection string for Connector/ODBC 3.51
string MyConString = "DRI VER={ \ySQL ODBC 3.51 Driver};" +
" SERVER=| ocal host ;" +
" DATABASE=t est ; " +
"U D=venu; " +
" PASSWORD=venu; " +
" OPTI ON=3";
/| Connect to MySQL usi ng Connect or/ ODBC
OdbcConnecti on MyConnecti on = new QdbcConnecti on(MyConStri ng);
MyConnect i on. Open() ;
Consol e. WiteLine("\n !l success, connected successfully !!!\n");
/1 Di splay connection infornation
Consol e. Wi teLi ne("Connection Information:");
Consol e. WitelLine("\tConnection String:" +
MyConnect i on. Connecti onString);
Consol e. WitelLine("\tConnection Timeout:" +
MyConnect i on. Connect i onTi meout) ;
Consol e. Wi telLi ne("\tDat abase: " +
MyConnect i on. Dat abase) ;
Consol e. WitelLi ne("\tDataSource:" +
MyConnect i on. Dat aSour ce) ;
Consol e. WiteLine("\tDriver:" +
MyConnecti on. Dri ver);
Consol e. WiteLine("\tServerVersion:" +
MyConnect i on. Ser ver Ver si on) ;
//Create a sanple table
OdbcConmmand MyCommand =
new OdbcCommand(" DROP TABLE | F EXI STS ny_odbc_net ",
MyConnecti on) ;
My Comrand. Execut eNonQuer y() ;
MyComrand. CommandText =

" CREATE TABLE ny_odbc_net(id int, name varchar(20), idb bigint)";

My Comrand. Execut eNonQuer y() ;
/1 nsert
MyComrand. CommandText =
"I NSERT | NTO ny_odbc_net VALUES(10,'venu', 300)";
Consol e. WiteLine("I NSERT, Total rows affected:" +
My Comrand. Execut eNonQuery()); ;
/1 nsert
MyComrand. CommandText =
"1 NSERT | NTO ny_odbc_net VALUES(20, ' nysql', 400)";
Consol e. WiteLine("I NSERT, Total rows affected:" +
My Comrand. Execut eNonQuery());
/1 nsert
MyComrand. CommandText =
"1 NSERT | NTO ny_odbc_net VALUES(20, ' nysql', 500)";
Consol e. WitelLine("I NSERT, Total rows affected:" +
My Comrand. Execut eNonQuery());
/| Updat e
MyComrand. CommandText =
"UPDATE ny_odbc_net SET id=999 WHERE i d=20";
Consol e. WitelLine("Update, Total rows affected:" +

382

Connector/ODBC Programming

My Comrand. Execut eNonQuery());
/] COUNT(*)
MyComrand. CommandText =

"SELECT COUNT(*) as TRows FROM ny_odbc_net";

Consol e. WitelLine("Total Rows:" +

MyComrand. Execut eScal ar ()) ;
/[Fet ch
MyComrand. ConmandText = "SELECT * FROM ny_odbc_net";
OdbcDat aReader MyDat aReader ;
MyDat aReader = MyConmand. Execut eReader () ;
whi | e (MyDat aReader . Read())

{
i f(string. Conpare(MyConnection. Driver, "myodbc3.dl ") == 0) {
/] Supported only by Connector/CDBC 3. 51
Consol e. WitelLine("Data:" + MyDataReader. GetlInt32(0) + " " +
MyDat aReader . Get String(1) + " " +
MyDat aReader . Get | nt 64(2));
}
el se {
/1Bl G NTs not supported by Connector/ CDBC
Consol e. WitelLine("Data:" + MyDataReader. GetlInt32(0) + " " +
MyDat aReader . Get String(1) + " " +
MyDat aReader . Get | nt 32(2));
}

//Close all resources
MyDat aReader . C ose() ;
MyConnect i on. d ose() ;

catch (COdbcExcepti on MyGdbcException) //Catch any ODBC exception ..

{
for (int i=0; i < MyGdbcException. Errors. Count; i ++)
{
Console. Wite("ERROR #" + i + "\n" +
"Message: " +
MyOdbcException. Errors[i]. Message + "\n" +
"Native: " +
MyOdbcException. Errors[i].NativeError. ToString() + "\n"
"Source: " +
MyOdbcException. Errors[i]. Source + "\n" +
"SQL: M+
MyCOdbcException. Errors[i].SQ.State + "\n");
}
}

}
}
}

Using Connector/ODBC with ODBC.NET and Visual Basic

The following sample creates a table my _vb_net and demonstrates the use in VB.

@anpl e : myvb. vb
@ur pose : Denpo sanpl e for ODBC. NET usi ng Connect or/ CDBC

bui | d command

vbc /target:exe
[out : nyvb. exe
/r:Mcrosoft. Data. Gdbc. dl |
[r:Systemdl |
/r:System Dat a. dl |

I nports M crosoft. Data. Qdbc

I mports System

Modul e nyvb

Sub Mai n()
Try

' Connect or/ ODBC 3. 51 connection string
Dim MyConString As String = "DRI VER=-{ WSQ. ODBC 3.51 Driver};" &
" SERVER=I| ocal host ;" & _

383

Connector/ODBC Programming

" DATABASE=test; " &

"U D=venu;" & _

" PASSWORD=venu; " &

" OPTI ON=3; "

' Connection

Di m MyConnecti on As New OdbcConnecti on(MyConStri ng)
MyConnect i on. Open()

Consol e. WitelLi ne("Connection State::" & MyConnection. State. ToStri ng)
' Drop

Consol e. Wi telLi ne("Dropping table")

Di m MyConmand As New GdbcConmand()

MyComrand. Connecti on = MyConnecti on

MyComrand. ConmandText = "DROP TABLE | F EXI STS ny_vb_net"

My Commrand. Execut eNonQuer y()

‘Create

Consol e. WiteLine("Creating....")

MyComrand. ConmandText = " CREATE TABLE ny_vb_net (id int, nane varchar(30))"
My Comrand. Execut eNonQuer y()

"I nsert

MyComrand. CommandText = "I NSERT | NTO nmy_vb_net VALUES(10,'venu')"

Consol e. WiteLine("I NSERT, Total rows affected:" &
My Comrand. Execut eNonQuery())
"I nsert
MyComrand. ConmandText = "I NSERT | NTO my_vb_net VALUES(20, ' nysql')"
Consol e. WiteLine("I NSERT, Total rows affected:" &
My Comrand. Execut eNonQuery())
"I nsert
MyComrand. CommandText = "I NSERT | NTO my_vb_net VALUES(20, ' nysql')"
Consol e. WiteLine("I NSERT, Total rows affected:" &
My Comrand. Execut eNonQuery())
"I nsert
MyComrand. ConmandText = "I NSERT | NTO nmy_vb_net (i d) VALUES(30)"
Consol e. WiteLine("I NSERT, Total rows affected:" & _

My Comrand. Execut eNonQuery())

' Updat e

MyComrand. CommandText = "UPDATE ny_vb_net SET id=999 WHERE i d=20"
Consol e. WitelLine("Update, Total rows affected:" & _

My Comrand. Execut eNonQuery())

" COUNT(*)

MyComrand. CommandText = "SELECT COUNT(*) as TRows FROM ny_vb_net"
Consol e. WiteLine("Total Rows:" & MyConmand. Execut eScal ar())

' Sel ect

Consol e. WitelLine("Sel ect * FROM nmy_vb_net")

MyComrand. ConmandText = "SELECT * FROM ny_vb_net"

Di m MyDat aReader As GdbcDat aReader
MyDat aReader = MyConmand. Execut eReader
Wi | e MyDat aReader . Read
| f MyDat aReader ("nane") |s DBNul | . Val ue Then

Console. WiteLine("id =" & _
CStr(MyDat aReader ("id")) & " name =" & _
" NULL")

El se
Console. WiteLine("id =" & _
CStr(MyDat aReader ("id")) & " name =" & _
CSt r (MyDat aReader (" name")))

End | f

End Wil e

' Catch ODBC Excepti on

Cat ch MyQdbcException As GdbcExcepti on
Dimi As |nteger
Consol e. Wit eLi ne(MyOdbcExcepti on. ToStri ng)
' Catch program excepti on

Catch MyException As Exception
Consol e. Wit eLi ne(MyExcepti on. ToSt ri ng)

End Try

End Sub

384

Connector/ODBC Reference

5.7 Connector/ODBC Reference

This section provides reference material for the Connector/ODBC API, showing supported functions
and methods, supported MySQL column types and the corresponding native type in Connector/ODBC,
and the error codes returned by Connector/ODBC when a fault occurs.

5.7.1 Connector/ODBC API Reference

This section summarizes ODBC routines, categorized by functionality.

For the complete ODBC API reference, please refer to the ODBC Programmer's Reference at http://
msdn.microsoft.com/en-us/library/ms714177.aspx.

An application can call SQLCet | nf o function to obtain conformance information about Connector/
ODBC. To obtain information about support for a specific function in the driver, an application can call

SQLCGet Functi ons.

Note

For backward compatibility, the Connector/ODBC driver supports all deprecated
functions.

The following tables list Connector/ODBC API calls grouped by task:

Table 5.5 ODBC API Calls for Connecting to a Data Source

Function Name Connector/Standard |Purpose
ODBC
Supports?

SQLAI | ocHandl e Yes ISO 92 Obtains an environment, connection, statement, or
descriptor handle.

SQL.Connect Yes ISO 92 Connects to a specific driver by data source
name, user ID, and password.

SQLDri ver Connect Yes ODBC Connects to a specific driver by connection string
or requests that the Driver Manager and driver
display connection dialog boxes for the user.

SQLAI | ocEnv Yes Deprecated| Obtains an environment handle allocated from
driver.

SQLAI | ocConnect Yes Deprecated| Obtains a connection handle

Table 5.6 ODBC API Calls for Obtaining Information about a Driver and Data Source

Function Name Connector/Standard |Purpose
ODBC
Supports?
SQLDat aSour ces No ISO 92 Returns the list of available data sources, handled
by the Driver Manager
SQ.Drivers No oDBC Returns the list of installed drivers and their
attributes, handles by Driver Manager
SQLGet I nfo Yes ISO 92 Returns information about a specific driver and
data source.
SQLGet Functi ons Yes ISO 92 Returns supported driver functions.
SQLGet Typel nfo Yes ISO 92 Returns information about supported data types.

385

http://msdn.microsoft.com/en-us/library/ms714177.aspx
http://msdn.microsoft.com/en-us/library/ms714177.aspx

Connector/ODBC API Reference

Table 5.7 ODBC API Calls for Setting and Retrieving Driver Attributes

Function Name Connector/Standard |Purpose

ODBC

Supports?
SQLSet Connect At tr Yes ISO 92 Sets a connection attribute.
SQLGet Connect At tr Yes ISO 92 Returns the value of a connection attribute.
SQLSet Connect Opti on|Yes Deprecated| Sets a connection option
SQLGet Connect Opti on|Yes Deprecated| Returns the value of a connection option
SQLSet EnvAttr Yes ISO 92 Sets an environment attribute.
SQLGet EnvAttr Yes ISO 92 Returns the value of an environment attribute.
SQ.Set Stnt Attr Yes ISO 92 Sets a statement attribute.
SQLGet Stnt Attr Yes ISO 92 Returns the value of a statement attribute.
SQLSet St nt Opt i on Yes Deprecated| Sets a statement option
SQLCet St nt Opt i on Yes Deprecated| Returns the value of a statement option

Table 5.8 ODBC API Calls for Prepari

ng SQL Requests

Function Name Connector/ Standard |Purpose
ODBC
Supports?
SQLAI' | ocSt nt Yes Deprecated| Allocates a statement handle
SQLPrepare Yes ISO 92 Prepares an SQL statement for later execution.
SQLBi ndPar anet er Yes ODBC Assigns storage for a parameter in an SQL
statement. Connector/ODBC 5.2 adds
support for “out” and “inout” parameters,
through the SQL_ PARAM OUTPUT or
SQL_PARAM | NPUT_OUTPUT type specifiers.
(“Out” and “inout” parameters are not supported
for LONGTEXT and LONGBLOB columns.)
SQLGet Cur sor Nane Yes ISO 92 Returns the cursor name associated with a
statement handle.
SQLSet Cur sor Nane Yes ISO 92 Specifies a cursor name.
SQLSet Scrol | Opti ons |Yes OoDBC Sets options that control cursor behavior.

Table 5.9 ODBC API Calls for Submit

ting Requests

Function Name Connector/Standard |Purpose
ODBC
Supports?
SQLExecut e Yes ISO 92 Executes a prepared statement.
SQLExecDi rect Yes ISO 92 Executes a statement
SQLNat i veSql Yes OoDBC Returns the text of an SQL statement as
translated by the driver.
SQLDescri bePar am No OoDBC Returns the description for a specific parameter in
a statement. Not supported by Connector/ODBC
—the returned results should not be trusted.
SQLNunPar ans Yes ISO 92 Returns the number of parameters in a statement.
SQLPar anDat a Yes ISO 92 Used in conjunction with SQLPut Dat a to supply

parameter data at execution time. (Useful for long
data values.)

386

Connector/ODBC API Reference

Function Name Connector/ Standard |Purpose
ODBC
Supports?
SQLPut Dat a Yes ISO 92 Sends part or all of a data value for a parameter.

(Useful for long data values.)

Table 5.10 ODBC API Calls for Retrieving Results and Information about Results

Function Name Connector/ Standard |Purpose
ODBC
Supports?

SQLRowCount Yes ISO 92 Returns the number of rows affected by an insert,
update, or delete request.

SQLNunResul t Col s Yes ISO 92 Returns the number of columns in the result set.

SQLDescri beCol Yes ISO 92 Describes a column in the result set.

SQLCol Attribute Yes ISO 92 Describes attributes of a column in the result set.

SQLCol Attri butes Yes Deprecated| Describes attributes of a column in the result set.

SQLFet ch Yes ISO 92 Returns multiple result rows.

SQLFet chScrol | Yes ISO 92 Returns scrollable result rows.

SQLExt endedFet ch Yes Deprecated| Returns scrollable result rows.

SQLSet Pos Yes oDBC Positions a cursor within a fetched block of data
and enables an application to refresh data in the
rowset or to update or delete data in the result set.

SQLBul kOperations |Yes OoDBC Performs bulk insertions and bulk bookmark

operations, including update, delete, and fetch by
bookmark.

Table 5.11 ODBC API Calls for Retrieving Error or Diagnostic Information

Function Name Connector/ Standard |Purpose
ODBC
Supports?
SQLErr or Yes Deprecated| Returns additional error or status information
SQLGet Di agFi el d Yes ISO 92 Returns additional diagnostic information (a single
field of the diagnostic data structure).
SQLCet Di agRec Yes ISO 92 Returns additional diagnostic information (multiple

fields of the diagnostic data structure).

Table 5.12 ODBC API Calls for Obtaining Information about the Data Source's System Tables

(Catalog Functions) Item

Function Name Connector/ Standard |Purpose
ODBC
Supports?
SQLCol umPrivil eges|Yes OoDBC Returns a list of columns and associated
privileges for one or more tables.
SQLCol ums Yes X/Open Returns the list of column names in specified
tables.
SQLFor ei gnKeys Yes ODBC Returns a list of column names that make up

foreign keys, if they exist for a specified table.

387

Connector/ODBC Data Types

Function Name Connector/ Standard |Purpose
ODBC
Supports?
SQLPri mar yKeys Yes OoDBC Returns the list of column names that make up the
primary key for a table.
SQLSpeci al Col uims |Yes X/Open Returns information about the optimal set
of columns that uniquely identifies a row in
a specified table, or the columns that are
automatically updated when any value in the row
is updated by a transaction.
SQLStatistics Yes ISO 92 Returns statistics about a single table and the list
of indexes associated with the table.
SQLTabl ePrivil eges |Yes ODBC Returns a list of tables and the privileges
associated with each table.
SQL.Tabl es Yes X/Open Returns the list of table names stored in a specific

data source.

Table 5.13 ODBC API Calls for Performing Transactions
Function Name Connector/Standard |Purpose
ODBC
Supports?
SQLTransact Yes Deprecated| Commits or rolls back a transaction
SQLEndTr an Yes ISO 92 Commits or rolls back a transaction.

Table 5.14 ODBC API Calls for Terminating a Statement

Function Name Connector/Standard |Purpose
ODBC
Supports?

SQLFr eeSt nt Yes ISO 92 Ends statement processing, discards pending
results, and, optionally, frees all resources
associated with the statement handle.

SQLA oseCur sor Yes ISO 92 Closes a cursor that has been opened on a
statement handle.

SQLCancel Yes ISO 92 Cancels an SQL statement.

Table 5.15 ODBC API Calls for Terminating a Connection

Function Name Connector/ Standard |Purpose

ODBC
Supports?

SQLDi sconnect Yes ISO 92 Closes the connection.

SQLFr eeHandl e Yes ISO 92 Releases an environment, connection, statement,
or descriptor handle.

SQLFr eeConnect Yes Deprecated| Releases connection handle.

SQLFr eeEnv Yes Deprecated| Releases an environment handle.

5.7.2 Connector/ODBC Data Types

The following table illustrates how Connector/ODBC maps the server data types to default SQL and C

data types.

https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_commit
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_rollback
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_transaction

Connector/ODBC Data Types

Table 5.16 How Connector/ODBC Maps MySQL Data Types to SQL and C Data Types

Native Value SQL Type C Type

bi gi nt unsi gned SQL_BI G NT SQL_C UBI G NT
bi gi nt SQL_BI A NT SQL_C SBI G NT
bi t SQ_BIT SQL_CBIT

bi t SQL_CHAR SQL_C CHAR

bl ob SQL_LONGVARBI NARY SQL_C BI NARY
bool SQL_CHAR SQL_C CHAR
char SQL_CHAR SQL_C CHAR
date SQL_DATE SQL_C DATE
datetine SQL_TI MESTAWP SQ._C TI MESTAMP
deci mal SQL_DECI MAL SQL_C CHAR
doubl e precision SQL_DOUBLE SQL_C DOUBLE
doubl e SQL_FLOAT SQL_C DOUBLE
enum SQL_VARCHAR SQ._C CHAR

fl oat SQL_REAL SQL_C FLOAT

i nt unsigned SQL_| NTEGER SQL_C ULONG

i nt SQ__I NTEGER SQL_C SLONG

i nt eger unsi gned SQL_| NTEGER SQL_C ULONG

i nt eger SQL_| NTEGER SQL_C SLONG

| ong varbinary SQL_LONGVARBI NARY SQL_C BI NARY
| ong varchar SQ._LONGVARCHAR SQ._C CHAR

| ongbl ob SQL_LONGVARBI NARY SQL_C BI NARY
| ongt ext SQL_LONGVARCHAR SQL_C CHAR
medi unbl ob SQL_LONGVARBI NARY SQL_C BI NARY
medi uni nt unsi gned SQL_| NTEGER SQL_C ULONG
medi um nt SQL_| NTEGER SQL_C SLONG
nmedi unt ext SQL_LONGVARCHAR SQL_C CHAR
numeri c SQL_NUMERI C SQL_C CHAR
real SQL_FLOAT SQL_C DOUBLE
set SQL_VARCHAR SQ._C CHAR
smal i nt unsi gned SQL_SNMALLI NT SQL_C_USHORT
smal |int SQL_SNMALLI NT SQL_C_SSHORT
t ext SQ._LONGVARCHAR SQ._C CHAR
tinme SQL_TI ME SQ_C TIME
timestanp SQL_TI MESTAWP SQL_C TI MESTAMWP
tinybl ob SQL_LONGVARBI NARY SQL_C BI NARY
tinyint unsigned SQL_TI NYI NT SQL_C_UTI NYI NT
tinyint SQL_TI NYI NT SQL_C STI NYI NT
tinytext SQL_LONGVARCHAR SQL_C CHAR
var char SQL_ VARCHAR SQL_C CHAR
year SQL_SMALLI NT SQ._C _SHORT

389

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_timestamp

Connector/ODBC Error Codes

5.7.3 Connector/ODBC Error Codes

The following tables lists the error codes returned by Connector/ODBC apart from the server errors.

Table 5.17 Special Error Codes Returned by Connector/ODBC

Native |SQLSTATE?2 |SQLSTATE 3 |Error Message

Code

500 01000 01000 General warning

501 01004 01004 String data, right truncated

502 01S02 01S02 Option value changed

503 01s03 01s03 No rows updated/deleted

504 01s04 01s04 More than one row updated/deleted

505 01S06 01S06 Attempt to fetch before the result set returned the first row
set

506 07001 07002 SQLBI ndPar anet er not used for all parameters

507 07005 07005 Prepared statement not a cursor-specification

508 07009 07009 Invalid descriptor index

509 08002 08002 Connection name in use

510 08003 08003 Connection does not exist

511 24000 24000 Invalid cursor state

512 25000 25000 Invalid transaction state

513 25501 25501 Transaction state unknown

514 34000 34000 Invalid cursor name

515 S1000 HYO000 General driver defined error

516 S1001 HYO001 Memory allocation error

517 S1002 HY002 Invalid column number

518 S1003 HYO003 Invalid application buffer type

519 S1004 HY004 Invalid SQL data type

520 S1009 HYO009 Invalid use of null pointer

521 S1010 HYO010 Function sequence error

522 S1011 HY011 Attribute can not be set now

523 S1012 HYO012 Invalid transaction operation code

524 S1013 HY013 Memory management error

525 S1015 HY015 No cursor name available

526 S1024 HY024 Invalid attribute value

527 S1090 HY090 Invalid string or buffer length

528 S1091 HY091 Invalid descriptor field identifier

529 S1092 HYQ092 Invalid attribute/option identifier

530 S1093 HY093 Invalid parameter number

531 S1095 HY095 Function type out of range

532 S1106 HY106 Fetch type out of range

533 S1117 HY117 Row value out of range

534 S1109 HY109 Invalid cursor position

535 S1C00 HYCO00 Optional feature not implemented

390

Connector/ODBC Notes and Tips

Native |SQLSTATE 2 |SQLSTATE 3 |Error Message

Code

0 21S01 21S01 Column count does not match value count
0 23000 23000 Integrity constraint violation

0 42000 42000 Syntax error or access violation

0 42502 42502 Base table or view not found

0 42512 42512 Index not found

0 42S21 42521 Column already exists

0 42522 42522 Column not found

0 08s01 08s01 Communication link failure

5.8 Connector/ODBC Notes and Tips

Here are some common notes and tips for using Connector/ODBC within different environments,
applications and tools. The notes provided here are based on the experiences of Connector/ODBC

developers and users.

5.8.1 Connector/ODBC General Functionality

This section provides help with common queries and areas of functionality in MySQL and how to use
them with Connector/ODBC.

5.8.1.1 Obtaining Auto-Increment Values

Obtaining the value of column that uses AUTO_| NCREMENT after an | NSERT statement can be
achieved in a number of different ways. To obtain the value immediately after an | NSERT, use a

SELECT query with the LAST_| NSERT_| D() function.

For example, using Connector/ODBC you would execute two separate statements, the | NSERT

statement and the SELECT query to obtain the auto-increment value.

I NSERT I NTO tbhl (auto,text) VALUES(NULL,'text');

SELECT LAST_| NSERT | DY) ;

If you do not require the value within your application, but do require the value as part of another

| NSERT, the entire process can be handled by executing the following statements:

I NSERT I NTO tbhl (auto,text) VALUES(NULL,'text');
I NSERT INTO thl 2 (id,text) VALUES(LAST INSERT_ ID(),'text');

Certain ODBC applications (including Delphi and Access) may have trouble obtaining the auto-

increment value using the previous examples. In this case, try the following statement as an alternative:

SELECT * FROM tbl WHERE auto IS NULL;

This alternative method requires that sql _auto_i s _nul | variable is not set to 0. See Server System

Variables.

See also Obtaining the Unique ID for the Last Inserted Row.

5.8.1.2 Dynamic Cursor Support

Support for the dynami ¢ cur sor is provided in Connector/ODBC 3.51, but dynamic cursors are not
enabled by default. You can enable this function within Windows by selecting the Enabl e Dynamni c
Cur sor check box within the ODBC Data Source Administrator.

On other platforms, you can enable the dynamic cursor by adding 32 to the OPTI ON value when

creating the DSN.

391

https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_last-insert-id
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_sql_auto_is_null
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html
https://dev.mysql.com/doc/c-api/8.2/en/getting-unique-id.html

Connector/ODBC General Functionality

5.8.1.3 Configuring Catalog and Schema Support

Many relational databases reference CATALOG and SCHEMA in ways that do not directly
correspond to what MySQL refers to as a database. It is neither a CATALOG nor a SCHEMA.
Generally, catalogs are collections of schemas, so the fully qualified name would look like

cat al og. schena. t abl e. col umm. Historically with MySQL ODBC Driver, CATALOG and
DATABASE were two names used for the same thing. At the same time SCHEMA was often used as
a synonym for a MySQL Database. This would suggest that CATALOG equals a SCHEMA, which is
incorrect, but in the MySQL Server context they would be the same thing.

In ODBC hoth schemas and catalogs can be used when referring to database objects such as tables.
The expectation on how to interpret these schema and catalog notions differs between developers,

which is why both the NO_CATALOG and NO_SCHEMA options exist: to cover all these expectations
and allow one to disable interpreting ODBC function parameters as CATALOG or SCHEMA explicitly.

The Connector/ODBC driver does not allow using catalog and schema functionality at the same time
because it would cause unsupported naming. However, some software such as MS SQL Server might
try do so through the linked server objects. This is why Connector/ODBC 8.0.26 added a NO_SCHEMA
option to MySQL ODBC Driver to report schemas as not supported, which is already done for catalogs
with the NO_CATALOG option. Using NO_SCHEMA causes the driver to report schema operations
unsupported through SQLGetInfo() call. As a result the client software will not attempt to access tables
as catalog.schema.table, but instead as catalog.table.

Table 5.18 Connector/ODBC NO_CATALOG and NO_SCHEMA combinations

NO_CATALOGCHHD&ACcription and notes
true true Driver does not support catalogs nor schemas.

false |true Catalogs are supported and interpreted as MySQL database names, specifying
schema triggers an error.

true fal se |Schemas are supported and interpreted as MySQL database names, specifying
catalog triggers an error.

false |false |Both catalogs and schemas are supported but it is an error if both are specified
at the same time. If only catalog or only schema is specified, it is interpreted as a
MySQL database name.

5.8.1.4 Connector/ODBC Performance

The Connector/ODBC driver has been optimized to provide very fast performance. If you experience
problems with the performance of Connector/ODBC, or notice a large amount of disk activity for simple
queries, there are a number of aspects to check:

» Ensure that ODBC Tr aci ng is not enabled. With tracing enabled, a lot of information is recorded in
the tracing file by the ODBC Manager. You can check, and disable, tracing within Windows using the
Tracing panel of the ODBC Data Source Administrator. Within macOS, check the Tracing panel of
ODBC Administrator. See Section 5.5.10, “Getting an ODBC Trace File”".

» Make sure you are using the standard version of the driver, and not the debug version. The debug
version includes additional checks and reporting measures.

» Disable the Connector/ODBC driver trace and query logs. These options are enabled for each DSN,
so make sure to examine only the DSN that you are using in your application. Within Windows, you
can disable the Connector/ODBC and query logs by modifying the DSN configuration. Within macOS
and Unix, ensure that the driver trace (option value 4) and query logging (option value 524288) are
not enabled.

5.8.1.5 Setting ODBC Query Timeout in Windows

For more information on how to set the query timeout on Microsoft Windows when executing
gueries through an ODBC connection, read the Microsoft knowledgebase document at https://

392

https://docs.microsoft.com/en-us/office/client-developer/access/desktop-database-reference/database-querytimeout-property-dao

Connector/ODBC Application-Specific Tips

docs.microsoft.com/en-us/office/client-developer/access/desktop-database-reference/database-
querytimeout-property-dao.

5.8.2 Connector/ODBC Application-Specific Tips

Most programs should work with Connector/ODBC, but for each of those listed here, there are specific
notes and tips to improve or enhance the way you work with Connector/ODBC and these applications.

With all applications, ensure that you are using the latest Connector/ODBC drivers, ODBC Manager
and any supporting libraries and interfaces used by your application. For example, on Windows, using
the latest version of Microsoft Data Access Components (MDAC) will improve the compatibility with
ODBC in general, and with the Connector/ODBC driver.

5.8.2.1 Using Connector/ODBC with Microsoft Applications

The majority of Microsoft applications have been tested with Connector/ODBC, including Microsoft
Office, Microsoft Access and the various programming languages supported within ASP and Microsoft
Visual Studio.

Microsoft Access

To improve the integration between Microsoft Access and MySQL through Connector/ODBC:

For all versions of Access, enable the Connector/ODBC Ret ur n nmat chi ng r ows option. For
Access 2.0, also enable the Si mul at e CDBC 1. 0 option.

Include a TI MESTAMP column in all tables that you want to be able to update. For maximum
portability, do not use a length specification in the column declaration (which is unsupported within
MySQL in versions earlier than 4.1).

Include a primary key in each MySQL table you want to use with Access. If not, new or updated rows
may show up as #DELETED#.

Use only DOUBLE float fields. Access fails when comparing with single-precision floats. The symptom
usually is that new or updated rows may show up as #DELETED# or that you cannot find or update
rows.

If you are using Connector/ODBC to link to a table that has a Bl G NT column, the results are
displayed as #DELETED#. The work around solution is:

* Have one more dummy column with TI MESTAMP as the data type.

e Selectthe Change Bl G NT col unms t o | NT option in the connection dialog in ODBC DSN
Administrator.

* Delete the table link from Access and re-create it.

Old records may still display as #DELETED#, but newly added/updated records are displayed
properly.

If you still get the error Anot her user has changed your dat a after adding a TI VESTAVP
column, the following trick may help you:

Do not use at abl e data sheet view. Instead, create a form with the fields you want, and use that
f or mdata sheet view. Set the Def aul t Val ue property for the TI MESTAMP column to NOW() .
Consider hiding the TI MESTAMP column from view so your users are not confused.

In some cases, Access may generate SQL statements that MySQL cannot understand. You can fix
this by selecting " Quer y| SQLSpeci fi c| Pass- Thr ough” from the Access menu.

On Windows NT, Access reports BLOB columns as OLE OBJECTS. If you want to have VEMO
columns instead, change BLOB columns to TEXT with ALTER TABLE.

393

https://docs.microsoft.com/en-us/office/client-developer/access/desktop-database-reference/database-querytimeout-property-dao
https://docs.microsoft.com/en-us/office/client-developer/access/desktop-database-reference/database-querytimeout-property-dao
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_primary_key
https://dev.mysql.com/doc/refman/8.0/en/floating-point-types.html
https://dev.mysql.com/doc/refman/8.0/en/integer-types.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_now
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html

Connector/ODBC Application-Specific Tips

» Access cannot always handle the MySQL DATE column properly. If you have a problem with these,
change the columns to DATETI ME.

« If you have in Access a column defined as BYTE, Access tries to export this as TI NYI NT instead of
TI NYI NT UNSI GNED. This gives you problems if you have values larger than 127 in the column.

* If you have very large (long) tables in Access, it might take a very long time to open them. Or you
might run low on virtual memory and eventually get an CDBC Query Fai | ed error and the table
cannot open. To deal with this, select the following options:

* Return Matching Rows (2)
¢ Allow BIG Results (8).
These add up to a value of 10 (OPTI ON=10).
Some external articles and tips that may be useful when using Access, ODBC and Connector/ODBC:
* Read How to Trap ODBC Login Error Messages in Access
» Optimizing Access ODBC Applications
¢ Optimizing for Client/Server Performance
 Tips for Converting Applications to Using ODBCDirect
 Tips for Optimizing Queries on Attached SQL Tables
Microsoft Excel and Column Types

If you have problems importing data into Microsoft Excel, particularly numeric, date, and time values,
this is probably because of a bug in Excel, where the column type of the source data is used to
determine the data type when that data is inserted into a cell within the worksheet. The result is that
Excel incorrectly identifies the content and this affects both the display format and the data when it is
used within calculations.

To address this issue, use the CONCAT() function in your queries. The use of CONCAT() forces Excel
to treat the value as a string, which Excel will then parse and usually correctly identify the embedded
information.

However, even with this option, some data may be incorrectly formatted, even though the source data
remains unchanged. Use the For mat Cel | s option within Excel to change the format of the displayed
information.

Microsoft Visual Basic
To be able to update a table, you must define a primary key for the table.

Visual Basic with ADO cannot handle big integers. This means that some queries like SHOW
PROCESSLI ST do not work properly. The fix is to use OPTI ON=16384 in the ODBC connect string or to
select the Change BI G NT col unms to | NT option in the Connector/ODBC connect screen. You
may also want to select the Ret urn nat chi ng r ows option.

Microsoft Visual InterDev

If you have a Bl G NT in your result, you may get the error [M crosoft] [ODBC Dri ver NManager]
Driver does not support this paraneter. Try selecting the Change Bl G NT columms to
I NT option in the Connector/ODBC connect screen.

Visual Objects

Selectthe Don't optim ze col unm w dt hs option.

394

https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/integer-types.html
http://support.microsoft.com/support/kb/articles/Q124/9/01.asp?LN=EN-US&SD=gn&FR=0%3CP%3E
http://support.microsoft.com/default.aspx?scid=kb;en-us;128808
http://support.microsoft.com/default.aspx?scid=kb;en-us;164481
http://support.microsoft.com/default.aspx?scid=kb;EN-US;q99321
https://dev.mysql.com/doc/refman/8.0/en/string-functions.html#function_concat
https://dev.mysql.com/doc/refman/8.0/en/string-functions.html#function_concat
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_primary_key
https://dev.mysql.com/doc/refman/8.0/en/show-processlist.html
https://dev.mysql.com/doc/refman/8.0/en/show-processlist.html
https://dev.mysql.com/doc/refman/8.0/en/integer-types.html

Connector/ODBC Application-Specific Tips

Microsoft ADO

When you are coding with the ADO API and Connector/ODBC, you need to pay attention to

some default properties that aren't supported by the MySQL server. For example, using the

Cur sorLocati on Property asadUseSer ver returns a result of —1 for the Recor dCount
Property. To have the right value, you need to set this property to adUseC i ent , as shown in the
VB code here:

Di m nyconn As New ADODB. Connect i on
Dimnyrs As New Recor dset
DimnySQL As String

Di m nyrows As Long

nmyconn. Cpen " DSN=MyODBCsanpl e"
nySQ = "SELECT * from user"

nmyrs. Source = mySQL
Set nyrs. ActiveConnecti on = nmyconn
nyrs. CursorLocati on = adUseCl i ent

nmyrs. Open

nyrows = nyrs. Recor dCount
nyrs. Cl ose

nmyconn. Cl ose

Another workaround is to use a SELECT COUNT(*) statement for a similar query to get the correct row
count.

To find the number of rows affected by a specific SQL statement in ADO, use the Recor dsAf f ect ed
property in the ADO execute method. For more information on the usage of execute method, refer to
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/ado270/htm/mdmthcnnexecute.asp.

For information, see ActiveX Data Objects(ADO) Frequently Asked Questions.
Using Connector/ODBC with Active Server Pages (ASP)
Select the Ret urn mat chi ng r ows option in the DSN.

For more information about how to access MySQL through ASP using Connector/ODBC, refer to the
following articles:

» Using MyODBC To Access Your MySQL Database Via ASP
» ASP and MySQL at DWAM.NT

A Frequently Asked Questions list for ASP can be found at http://support.microsoft.com/default.aspx?
scid=/Support/ActiveServer/fag/data/adofaq.asp.

Using Connector/ODBC with Visual Basic (ADO, DAO and RDO) and ASP
Some articles that may help with Visual Basic and ASP:
* MySQL BLOB columns and Visual Basic 6 by Mike Hillyer (<m ke@penw n. or g>).

» How to map Visual basic data type to MySQL types by Mike Hillyer (<m ke@penw n. or g>).
5.8.2.2 Using Connector/ODBC with Borland Applications

With all Borland applications where the Borland Database Engine (BDE) is used, follow these steps to
improve compatibility:

» Update to BDE 3.2 or newer.
* Enable the Don't optim ze col um w dt hs option in the DSN.

» Enabled the Ret urn nmat chi ng r ows option in the DSN.

395

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/ado270/htm/mdmthcnnexecute.asp
http://support.microsoft.com/default.aspx?scid=kb;EN-US;q183606
http://www.devarticles.com/c/a/ASP/Using-MyODBC-To-Access-Your-MySQL-Database-Via-ASP/
http://www.dwam.net/mysql/asp_myodbc.asp
http://support.microsoft.com/default.aspx?scid=/Support/ActiveServer/faq/data/adofaq.asp
http://support.microsoft.com/default.aspx?scid=/Support/ActiveServer/faq/data/adofaq.asp
http://dev.mysql.com/tech-resources/articles/vb-blob-handling.html
http://dev.mysql.com/tech-resources/articles/visual-basic-datatypes.html

Connector/ODBC Application-Specific Tips

Using Connector/ODBC with Borland Builder 4

When you start a query, you can use the Act i ve property or the Open method.

The Act i ve property starts by automatically issuing a SELECT * FROM . .. query. That may affect
performance for large tables.

Using Connector/ODBC with Delphi

Also, here is some potentially useful Delphi code that sets up both an ODBC entry and a BDE entry for
Connector/ODBC. The BDE entry requires a BDE Alias Editor that is free at a Delphi Super Page near
you. (Thanks to Bryan Brunton <br yan@ | esher f ab. con® for this):

f Reg: = TRegi stry. Create;

f Reg. OpenKey(' \ Sof t war e\ ODBC\ CDBC. | NI \ Docunent sFab', True);
fReg. WiteString(' Database', 'Docunents');

fReg. WiteString('Description', ' ");

fReg. WiteString('Driver', 'C \WNNT\ SystenB82\ nyodbc.dl|");
fReg. WiteString('Flag', '1');

fReg. WiteString(' Password', '');

fReg. WiteString(' Port', ' ');

fReg. WiteString(' Server', 'xmark');

fReg. WiteString(' User', 'w nuser');

f Reg. OpenKey(' \ Sof t war e\ CDBC\ CDBC. | NI \ ODBC Dat a Sources', True);
fReg. WiteString(' DocunentsFab', ' M/SQ');

f Reg. G oseKey;

f Reg. Fr ee;

Menol. Li nes. Add(' DATABASE NAME=');

Menol. Li nes. Add(' USER NAME=") ;

Menol. Li nes. Add(' ODBC DSN=Docunent sFab') ;

Menol. Li nes. Add(' OPEN MODE=READ/ W\RI TE') ;

Menol. Li nes. Add(' BATCH COUNT=200');

Menol. Li nes. Add(' LANGDRI VER=") ;

Menol. Li nes. Add(' MAX ROAS=-1");

Menol. Li nes. Add(' SCHEMA CACHE DI R=');

Menol. Li nes. Add(' SCHEMA CACHE Sl ZE=8');

Menol. Li nes. Add(' SCHEMA CACHE TI ME=-1');

Menol. Li nes. Add(' SQLPASSTHRU MODE=SHARED AUTCCOMM T');
Menol. Li nes. Add(' SQLQRYMODE=") ;

Menol. Li nes. Add(' ENABLE SCHEMA CACHE=FALSE');

Menol. Li nes. Add(' ENABLE BCD=FALSE') ;

Menol. Li nes. Add(' ROASET SI ZE=20');

Menol. Li nes. Add(' BLOBS TO CACHE=64');

Menol. Li nes. Add(' BLOB S| ZE=32');

Al i asEdi t or. Add(' Docunent sFab' , ' MySQ.' , Menp1l. Li nes) ;

Using Connector/ODBC with C++ Builder

Tested with BDE 3.0. The only known problem is that when the table schema changes, query fields
are not updated. BDE, however, does not seem to recognize primary keys, only the index named
PRI MARY, although this has not been a problem.

5.8.2.3 Using Connector/ODBC with ColdFusion

The following information is taken from the ColdFusion documentation:

Use the following information to configure ColdFusion Server for Linux to use the uni x ODBC driver
with Connector/ODBC for MySQL data sources. You can download Connector/ODBC at https://
dev.mysqgl.com/downloads/Connector/ODBC/.

ColdFusion version 4.5.1 lets you use the ColdFusion Administrator to add the MySQL data source.
However, the driver is not included with ColdFusion version 4.5.1. Before the MySQL driver appears
in the ODBC data sources drop-down list, build and copy the Connector/ODBC driver to / opt /

col dfusion/Ilib/libnyodbc. so.

The Contrib directory contains the program nydsn- xxx. zi p which lets you build and remove the DSN
registry file for the Connector/ODBC driver on ColdFusion applications.

396

https://dev.mysql.com/downloads/Connector/ODBC/
https://dev.mysql.com/downloads/Connector/ODBC/

Connector/ODBC and the Application Both Use OpenSSL

For more information and guides on using ColdFusion and Connector/ODBC, see the following external
sites:

» Troubleshooting Data Sources and Database Connectivity for Unix Platforms.
5.8.2.4 Using Connector/ODBC with OpenOffice.org

Open Office (http://www.openoffice.org) How-to: MySQL + OpenOffice. How-to: OpenOffice +
MyODBC + unixODBC.

5.8.2.5 Using Connector/ODBC with Pervasive Software DataJunction

You have to change it to output VARCHAR rather than ENUM as it exports the latter in a manner that
causes MySQL problems.

5.8.2.6 Using Connector/ODBC with SunSystems Vision

Select the Ret ur n mat chi ng r ows option.

5.8.3 Connector/ODBC and the Application Both Use OpenSSL

If Connector/ODBC is connecting securely with the MySQL server and the application using the
connection makes calls itself to an OpenSSL library, the application might then fail, as two copies of the
OpenSSL library will then be in use.

Note

Connector/ODBC 8.0 and higher link to OpenSSL dynamically while earlier
Connector/ODBC versions link to OpenSSL statically. This solves problems
related to using two OpenSSL copies from the same application.

Note

The TLSv1.0 and TLSv1.1 connection protocols were deprecated in Connector/
ODBC 8.0.26 and removed in version 8.0.28.

Note
See also the tls-versions connection option.

To prevent the issue, in your application, do not allow OpenSSL initialization in one thread

and the opening of an Connector/ODBC connection in another thread (which also initializes
openSSL) to happen simultaneously. For example, use a mutex to ensure synchronization between
SQLDri ver Connect () or SQLConnect () calls and openSSL initialization. In addition to that,
implement the following if possible:

» Use a build of Connector/ODBC that links (statically or dynamically) to a version of the
['i brysgl cli ent library that is in turn dynamically linked to the same OpenSSL library that the
application calls.

» When creating a build of Connector/ODBC that links (statically or dynamically) to a version of the
I'i brysgl cli ent library that is in turn statically linked to an OpenSSL library, do NOT export
OpenSSL symbols in your build. That prevents incorrect resolution of application symbols; however,
that does not prevent other issues that come with running two copies of OpenSSL code within a
single application.

5.8.4 Connector/ODBC Errors and Resolutions (FAQ)

The following section details some common errors and their suggested fix or alternative solution. If you
are still experiencing problems, use the Connector/ODBC mailing list; see Section 5.9.1, “Connector/
ODBC Community Support”.

397

http://www.macromedia.com/v1/handlers/index.cfm?ID=11328&Method=Full&PageCall=/support/index.cfm
http://www.openoffice.org
http://wiki.services.openoffice.org/wiki/Connect_MySQL_and_Base
http://www.unixodbc.org/doc/OOoMySQL.pdf
http://www.unixodbc.org/doc/OOoMySQL.pdf
https://dev.mysql.com/doc/refman/8.0/en/char.html
https://dev.mysql.com/doc/refman/8.0/en/enum.html

Connector/ODBC Errors and Resolutions (FAQ)

Many problems can be resolved by upgrading your Connector/ODBC drivers to the latest available
release. On Windows, make sure that you have the latest versions of the Microsoft Data Access
Components (MDAC) installed.

64-Bit Windows and ODBC Data Source Administrator

I have installed Connector/ODBC on Windows XP x64 Edition or Windows Server 2003 R2 x64. The
installation completed successfully, but the Connector/ODBC driver does not appear in ODBC Dat a
Sour ce Adni ni strator.

This is not a bug, but is related to the way Windows x64 editions operate with the ODBC driver. On
Windows x64 editions, the Connector/ODBC driver is installed in the %8y st enmRoot % SysWON64
folder. However, the default ODBC Dat a Source Admi ni strat or that is available through

the Adm ni strative Tool s or Control Panel in Windows x64 Editions is located in the
%syst enmRoot % syst enB2 folder, and only searches this folder for ODBC drivers.

On Windows x64 editions, use the ODBC administration tool located at %Sy st enRoot %
\ SysWOW64\ odbcad32. exe, this will correctly locate the installed Connector/ODBC drivers and
enable you to create a Connector/ODBC DSN.

This issue was originally reported as Bug #20301.

Error 10061 (Cannot connect to server)

When connecting or using the Test button in ODBC Dat a Sour ce Admi ni strat or | get error 10061
(Cannot connect to server)

This error can be raised by a number of different issues, including server problems, network problems,
and firewall and port blocking problems. For more information, see Can't connect to [local] MySQL
server.

"Transactions are not enabled" Error

The following error is reported when using transactions: Tr ansacti ons are not enabl ed

This error indicates that you are trying to use transactions with a MySQL table that does not support
transactions. Transactions are supported within MySQL when using the | nnoDB database engine,
which is the default storage engine in MySQL 5.5 and higher. In versions of MySQL before MySQL 5.1,
you may also use the BDB engine.

Check the following before continuing:

 Verify that your MySQL server supports a transactional database engine. Use SHOW ENG NES to
obtain a list of the available engine types.

 Verify that the tables you are updating use a transactional database engine.

» Ensure that you have not enabled the di sabl e transacti ons option in your DSN.

#DELETED# Records Reported by Access

Access reports records as #DELETED# when inserting or updating records in linked tables.
If the inserted or updated records are shown as #DELETED# in Access, then:

« If you are using Access 2000, get and install the newest (version 2.6 or higher) Microsoft MDAC
(M crosoft Data Access Conponents) from https://www.microsoft.com/en-in/download/
details.aspx?id=21995. This fixes a bug in Access that when you export data to MySQL, the table
and column names aren't specified.

398

https://dev.mysql.com/doc/refman/8.0/en/can-not-connect-to-server.html
https://dev.mysql.com/doc/refman/8.0/en/can-not-connect-to-server.html
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_transaction
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/show-engines.html
https://www.microsoft.com/en-in/download/details.aspx?id=21995
https://www.microsoft.com/en-in/download/details.aspx?id=21995

Connector/ODBC Errors and Resolutions (FAQ)

Also, get and apply the Microsoft Jet 4.0 Service Pack 5 (SP5), which can be found at http://
support.microsoft.com/default.aspx?scid=kb;EN-US;q239114. This fixes some cases where columns
are marked as #DELETED# in Access.

 For all versions of Access, enable the Connector/ODBC Ret ur n nat chi ng r ows option. For
Access 2.0, also enable the Si nul at e ODBC 1. 0 option.

 Include a TI MESTAMP in all tables that you want to be able to update.
* Include a primary key in the table. If not, new or updated rows may show up as #DELETED#.

» Use only DOUBLE float fields. Access fails when comparing with single-precision floats. The symptom
usually is that new or updated rows may show up as #DELETED# or that you cannot find or update
rows.

« If you are using Connector/ODBC to link to a table that has a BI Gl NT column, the results are
displayed as #DELETED. The work around solution is:

¢ Have one more dummy column with TI MESTAMP as the data type.

« Selectthe Change Bl G NT col unms to | NT option in the connection dialog in ODBC DSN
Administrator.

* Delete the table link from Access and re-create it.

Old records still display as #DELETED#, but newly added/updated records are displayed properly.

Write Conflicts or Row Location Errors
How do | handle Write Conflicts or Row Location errors?

If you see the following errors, select the Ret ur n Mat chi ng Rows option in the DSN configuration
dialog, or specify OPTI ON=2, as the connection parameter:

Wite Conflict. Another user has changed your data.
Row cannot be | ocated for updating. Sone val ues may have been changed
since it was |ast read.

Importing from Access 97
Exporting data from Access 97 to MySQL reports a Synt ax Error.

This error is specific to Access 97 and versions of Connector/ODBC earlier than 3.51.02. Update to the
latest version of the Connector/ODBC driver to resolve this problem.

Importing from Microsoft DTS
Exporting data from Microsoft DTS to MySQL reports a Synt ax Error.

This error occurs only with MySQL tables using the TEXT or VARCHAR data types. You can fix this error
by upgrading your Connector/ODBC driver to version 3.51.02 or higher.

SQL_NO_DATA Exception from ODBC.NET

Using ODBC.NET with Connector/ODBC, while fetching empty string (0 length), it starts giving the
SQL_NO _DATA exception.

You can get the patch that addresses this problem from http://support.microsoft.com/default.aspx?
scid=kb;EN-US;q319243.

Error with SELECT COUNT(*)

Using SELECT COUNT(*) FROM t bl _nane within Visual Basic and ASP returns an error.

399

http://support.microsoft.com/default.aspx?scid=kb;EN-US;q239114
http://support.microsoft.com/default.aspx?scid=kb;EN-US;q239114
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_primary_key
https://dev.mysql.com/doc/refman/8.0/en/floating-point-types.html
https://dev.mysql.com/doc/refman/8.0/en/integer-types.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/char.html
http://support.microsoft.com/default.aspx?scid=kb;EN-US;q319243
http://support.microsoft.com/default.aspx?scid=kb;EN-US;q319243

Connector/ODBC Errors and Resolutions (FAQ)

This error occurs because the COUNT(*) expression is returning a Bl G NT, and ADO cannot make
sense of a number this big. Select the Change Bl G NT col unms t o | NT option (option value
16384).

Multiple-Step Operation Error

Using the AppendChunk() or Get Chunk() ADO methods, the Mul ti pl e-step operation
generated errors. Check each status val ue erroris returned.

The Get Chunk() and AppendChunk() methods from ADO do not work as expected when the cursor
location is specified as adUseSer ver . On the other hand, you can overcome this error by using
adUsed i ent.

A simple example can be found from http://www.dwam.net/iishelp/ado/docs/adomth02_4.htm

Modified Record Error

Access returns Anot her user had nodified the record that you have nodi fi ed while
editing records on a Linked Table.

In most cases, this can be solved by doing one of the following things:
» Add a primary key for the table if one doesn't exist.
» Add a timestamp column if one doesn't exist.

* Only use double-precision float fields. Some programs may fail when they compare single-precision
floats.

If these strategies do not help, start by making a log file from the ODBC manager (the log you get when
requesting logs from ODBCADMIN) and a Connector/ODBC log to help you figure out why things go
wrong. For instructions, see Section 5.5.10, “Getting an ODBC Trace File”.

Direct Application Linking Under Unix or Linux

When linking an application directly to the Connector/ODBC library under Unix or Linux, the application
crashes.

Connector/ODBC under Unix or Linux is not compatible with direct application linking. To connect to an
ODBC source, use a driver manager, such as i ODBC or uni x ODBC.

Microsoft Office and DATE or TIMESTAMP Columns

Applications in the Microsoft Office suite cannot update tables that have DATE or TI MESTANMP columns.

This is a known issue with Connector/ODBC. Ensure that the field has a default value (rather than
NULL) and that the default value is nonzero (that is, something other than 0000- 00- 00 00: 00: 00).

INFORMATION_SCHEMA Database

When connecting Connector/ODBC 5.x to a MySQL 4.x server, the error 1044 Access deni ed for
user 'xxx' @% to database 'information_schena' isreturned.

Connector/ODBC 5.x is designed to work with MySQL 5.0 or later, taking advantage of the
| NFORVATI ON_SCHENA database to determine data definition information. Support for MySQL 4.1 is
planned for the final release.

S1TOO Error

When calling SQLTabl es, the error S1TOO is returned, but | cannot find this in the list of error numbers
for Connector/ODBC.

400

https://dev.mysql.com/doc/refman/8.0/en/aggregate-functions.html#function_count
https://dev.mysql.com/doc/refman/8.0/en/integer-types.html
http://www.dwam.net/iishelp/ado/docs/adomth02_4.htm
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_primary_key
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html

Connector/ODBC Errors and Resolutions (FAQ)

The S1TO0O error indicates that a general timeout has occurred within the ODBC system and is not a
MySQL error. Typically it indicates that the connection you are using is stale, the server is too busy to
accept your request or that the server has gone away.

"Table does not exist" Error in Access 2000

When linking to tables in Access 2000 and generating links to tables programmatically, rather than
through the table designer interface, you may get errors about tables not existing.

There is a known issue with a specific version of the nsj et 40. dl | that exhibits this issue. The version
affected is 4.0.9025.0. Reverting to an older version will enable you to create the links. If you have
recently updated your version, check your W NDOWS directory for the older version of the file and copy it
to the drivers directory.

Batched Statements

When | try to use batched statements, the execution of the batched statements fails.

Batched statement support was added in 3.51.18. Support for batched statements is not enabled by
default. Enable option FLAG MJLTI _STATEMENTS, value 67108864, or select the Allow multiple
statements flag within a GUI configuration. Batched statements using prepared statements is not
supported in MySQL.

Packet Errors with ADODB and Excel

When connecting to a MySQL server using ADODB and Excel, occasionally the application fails to
communicate with the server and the error Got an error readi ng conmuni cati on packets
appeatrs in the error log.

This error may be related to Keyboard Logger 1.1 from PanteraSoft.com, which is known to interfere
with the network communication between MySQL Connector/ODBC and MySQL.

Outer Join Error

When using some applications to access a MySQL server using Connector/ODBC and outer joins, an
error is reported regarding the Outer Join Escape Sequence.

This is a known issue with MySQL Connector/ODBC which is not correctly parsing the "Outer Join
Escape Sequence", as per the specs at Microsoft ODBC Specs. Currently, Connector/ODBC will return
a value > 0 when asked for SQL_QJ_CAPABI LI Tl ES even though no parsing takes place in the driver
to handle the outer join escape sequence.

Hebrew/CJK Characters

| can correctly store extended characters in the database (Hebrew/CJK) using Connector/ODBC 5.1,
but when | retrieve the data, the text is not formatted correctly and | get garbled characters.

When using ASP and UTF8 characters, add the following to your ASP files to ensure that the data
returned is correctly encoded:

Response. CodePage = 65001
Response. Char Set = "utf-8"

Duplicate Entry in Installed Programs List

| have a duplicate MySQL Connector/ODBC entry within my Installed Programs list, but | cannot
delete one of them.

This problem can occur when you upgrade an existing Connector/ODBC installation, rather than
removing and then installing the updated version.

401

http://msdn2.microsoft.com/en-us/library/ms710299.aspx

Connector/ODBC Support

Warning

To fix the problem, use any working uninstallers to remove existing installations;
then may have to edit the contents of the registry. Make sure you have a
backup of your registry information before attempting any editing of the registry
contents.

Values Truncated to 255 Characters

When submitting queries with parameter binding using UPDATE, my field values are being truncated to
255 characters.

Ensure that the FLAG_BI G_PACKETS option is set for your connection. This removes the 255 character
limitation on bound parameters.

Disabling Data-At-Execution

Is it possible to disable data-at-execution using a flag?

If you do not want to use data-at-execution, remove the corresponding calls. For example:

SQ.LEN yl en = SQ._LEN DATA AT_EXEC(10);
SQ.Bi ndCol (hstnt, 2, SQL_C Bl NARY, buf, 10, &ylen);

Would become:

SQLBi ndCol (hstnt, 2, SQL_C BI NARY, buf, 10, NULL);
This example also replaced &ylen with NULL in the call to SQLBi ndCol () .

For further information, refer to the MSDN documentation for SQLBi ndCol ().

NULLABLE Attribute for AUTO_INCREMENT Columns

When you call SQLCol utms() for a table column that is AUTO | NCREMVENT, the NULLABLE column of
the result set is always SQL_NULLABLE (1).

This is because MySQL reports the DEFAULT value for such a column as NULL. It means, if you insert
a NULL value into the column, you will get the next integer value for the table's aut o_i ncr enent
counter.

5.9 Connector/ODBC Support

There are many different places where you can get support for using Connector/ODBC. Always try
the Connector/ODBC Mailing List or Connector/ODBC Forum. See Section 5.9.1, “Connector/ODBC
Community Support”, for help before reporting a specific bug or issue to MySQL.

5.9.1 Connector/ODBC Community Support

Community support from experienced users is also available through the ODBC Forum. You may also
find help from other users in the other MySQL Forums, located at http://forums.mysql.com.

5.9.2 How to Report Connector/ODBC Problems or Bugs

If you encounter difficulties or problems with Connector/ODBC, start by making a log file from the
ODBC Manager (the log you get when requesting logs from OCDBC ADM N) and Connector/ODBC. The
procedure for doing this is described in Section 5.5.10, “Getting an ODBC Trace File”.

Check the Connector/ODBC trace file to find out what could be wrong. Determine what statements
were issued by searching for the string >mysql _real query inthe myodbc. | og file.

402

https://dev.mysql.com/doc/refman/8.0/en/update.html
http://msdn.microsoft.com/en-us/library/ms711010(VS.85).aspx
https://forums.mysql.com/list.php?37
http://forums.mysql.com

How to Report Connector/ODBC Problems or Bugs

Also, try issuing the statements from the nysql client program or from admdeno. This helps you
determine whether the error is in Connector/ODBC or MySQL.

Ideally, include the following information with your bug report:

» Operating system and version

+ Connector/ODBC version

» ODBC Driver Manager type and version

* MySQL server version

» ODBC trace from Driver Manager

» Connector/ODBC log file from Connector/ODBC driver

» Simple reproducible sample

The more information you supply, the more likely it is that we can fix the problem.

If you are unable to find out what is wrong, the last option is to create an archive int ar or zi p format
that contains a Connector/ODBC trace file, the ODBC log file, and a READVE file that explains the
problem. Initiate a bug report for our bugs database at http://bugs.mysql.com/, then click the Files tab in
the bug report for instructions on uploading the archive to the bugs database. Only MySQL engineers
have access to the files you upload, and we are very discreet with the data.

If you can create a program that also demonstrates the problem, please include it in the archive as
well.

If the program works with another SQL server, include an ODBC log file where you perform exactly the
same SQL statements so that we can compare the results between the two systems.

Remember that the more information you can supply to us, the more likely it is that we can fix the
problem.

403

http://bugs.mysql.com/

404

Chapter 6 MySQL Connector/Python Developer Guide

Table of Contents

6.1 Introduction to MySQL ConNECtOr/PYtNONc..uiiiiieiice e e 406
6.2 Guidelines for PYthOn DEVEIOPEIScvvuiiiieee et e e e et e e e e e e eens 406
(SIS @fo] 0 [=Tox (0] 7424 Y71 4 Lo T I £=T £ o o = 408
6.4 Connector/Python INStAllationcoouiiiiiii e e e e e e e e e aes 410
6.4.1 Obtaining ConNECIONPYINONuiiiii e e e e aes 410
6.4.2 Installing Connector/Python from a Binary Distributioncccoooviiviiiiiiii i 410
6.4.3 Installing Connector/Python from a Source Distributioncccoooiiiiiiiiiniine 412
6.4.4 Verifying Your Connector/Python Installationccccoeiiiiiiiiinin e, 413
6.5 Connector/Python Coding EXAMPIEScveeiii i e e e e e eens 414
6.5.1 Connecting to MySQL Using Connector/PYthonc..cveviiiiiiiiiii v 414
6.5.2 Creating Tables Using Connector/PYthONcoouiiiiiiiiiiiice e 416
6.5.3 Inserting Data Using ConNector/PYthONc..iiviiiiiiiiiei e e e 419
6.5.4 Querying Data Using Connector/PYthonccouiiiiiiiiiiiee e 420
6.6 CoNNECLOr/PYtNON TULOMIAISuiiiiicii i e e e e e e e e e e e e e et e e e aaneees 420
6.6.1 Tutorial: Raise Employee's Salary Using a Buffered Cursorcccoeevvviviiievinnennnnn. 421
6.7 Connector/Python Connection EstabliShmentcoooiiiiiiiiiii e 421
6.7.1 Connector/Python ConNection ArQUMENEScoveuuieiiiieriieeee e e e e e e e e eee e eeanaeees 421
6.7.2 Connector/Python Option-File SUPPOIocvueiiiii e e e 429
6.8 ConNNECtor/Python Other TOPICSuuiieieieiiieiiiee e e e e e e e e e e e e e e et e e e et e e aaeeeenns 430
(SRS M @do]] a=Tod (o] 7/ 21 o] o T I To o 1o PN 430
6.8.2 OPENTEIEMELIY SUPPOI .. ietieei et e e e e e e e e e e e et e et e e et e e et s e et e eenaeeeen 431
6.8.3 ASYNChronoUS CONNECHIVITY ..uuiieiiii e e e e e e e e e e e e e e e eaaees 434
6.8.4 Connector/Python Connection POOINGocvuuiiiiiiiiicc e 442
6.8.5 Connector/Python Django Back ENcc.oeiiiiiiiiiiiiii e e e 444
6.9 Connector/Python APl REEIENCEcccvuiiii i e e e e 445
6.9.1 Mysql.CONNECIOr MOAUIEc.uuiiiiei e e e e e e e e 445
6.9.2 connection.MySQLCONNECLION ClASSccuuiiiiiiiiiii i e e 446
6.9.3 pooling.MySQLCoNNECLONPOOI CIASSccuuiviiiiiii i 458
6.9.4 pooling.PooledMySQLCONNECLION CIASScvvvuiiiiieiiieeii e e e e 459
6.9.5 CUrSOr.MYSQLCUISOI CIASS .vuuiiruiiitieiiii et ettt et e e e e s e e e e et e e e e e e e et s e eanneeaneees 460
6.9.6 Subclasses CUrSOr.MYSQLCUISOIuuiiiieii i eiee et e et e e e e e e e e e e e e eaaaeanees 469
6.9.7 constants.ClientFIag Classoveieiiiiiii e e e e 472
6.9.8 cONStaNtS. FIeldTYPE CIASS ...ccvuiiiiiicii e e e e e 473
6.9.9 constants.SQLMOUE ClASScivuiiiiiiiiiiei e e e 473
6.9.10 constants.CharacterSet ClIassoveviiiiiiiiiiii e 473
6.9.11 constants.RefreShOPION CIASSc..uiiiiuiiiii e 473
6.9.12 Errors and EXCEPLIONS ...ccuuuiiitieei et e e e e e e e e e r e e e et e et e e e eans 474

MySQL Connector/Python is a self-contained Python driver for communicating with MySQL servers.

For notes detailing the changes in each release of Connector/Python, see MySQL Connector/Python
Release Notes.

For legal information, see the Legal Notices.

For help with using MySQL, please visit the MySQL Forums, where you can discuss your issues with
other MySQL users.

Licensing information. This product may include third-party software, used under license. If

you are using a Commercial release of MySQL Connector/Python, see this document for licensing
information, including licensing information relating to third-party software that may be included in this
Commercial release. If you are using a Community release of MySQL Connector/Python, see this

405

https://dev.mysql.com/doc/relnotes/connector-python/en/
https://dev.mysql.com/doc/relnotes/connector-python/en/
http://forums.mysql.com
https://downloads.mysql.com/docs/licenses/connector-python-8.3-com-en.pdf
https://downloads.mysql.com/docs/licenses/connector-python-8.3-gpl-en.pdf

Introduction to MySQL Connector/Python

document for licensing information, including licensing information relating to third-party software that
may be included in this Community release.

6.1 Introduction to MySQL Connector/Python

MySQL Connector/Python enables Python programs to access MySQL databases, using an API that is
compliant with the Python Database API Specification v2.0 (PEP 249).

For notes detailing the changes in each release of Connector/Python, see MySQL Connector/Python
Release Notes.

MySQL Connector/Python includes support for:

Almost all features provided by MySQL Server version 5.7 and higher.

Connector/Python supports X DevAPI. For X DevAPI specific documentation, see X DevAPI| User
Guide.

Note

X DeVvAPI support was separated into its own package (nysql x-
connect or - pyt hon) in Connector/Python 8.3.0. For related information,
see Section 6.4, “Connector/Python Installation”.

Converting parameter values back and forth between Python and MySQL data types, for example
Python dat et i me and MySQL DATETI ME. You can turn automatic conversion on for convenience,
or off for optimal performance.

All MySQL extensions to standard SQL syntax.

Protocol compression, which enables compressing the data stream between the client and server.
Connections using TCP/IP sockets and on Unix using Unix sockets.

Secure TCP/IP connections using SSL.

Self-contained driver. Connector/Python does not require the MySQL client library or any Python
modules outside the standard library.

For information about which versions of Python can be used with different versions of MySQL
Connector/Python, see Section 6.3, “Connector/Python Versions”.

Note

Connector/Python does not support the old MySQL Server authentication
methods, which means that MySQL versions prior to 4.1 will not work.

6.2 Guidelines for Python Developers

The following guidelines cover aspects of developing MySQL applications that might not be
immediately obvious to developers coming from a Python background:

For security, do not hardcode the values needed to connect and log into the database in your
main script. Python has the convention of a conf i g. py module, where you can keep such values
separate from the rest of your code.

Python scripts often build up and tear down large data structures in memory, up to the limits of
available RAM. Because MySQL often deals with data sets that are many times larger than available
memory, techniques that optimize storage space and disk I/O are especially important. For example,
in MySQL tables, you typically use numeric IDs rather than string-based dictionary keys, so that the
key values are compact and have a predictable length. This is especially important for columns that
make up the primary key for an | nnoDB table, because those column values are duplicated within
each secondary index.

406

https://downloads.mysql.com/docs/licenses/connector-python-8.3-gpl-en.pdf
http://www.python.org/dev/peps/pep-0249/
https://dev.mysql.com/doc/relnotes/connector-python/en/
https://dev.mysql.com/doc/relnotes/connector-python/en/
https://dev.mysql.com/doc/x-devapi-userguide/en/
https://dev.mysql.com/doc/x-devapi-userguide/en/
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_primary_key
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_secondary_index

Guidelines for Python Developers

« Any application that accepts input must expect to handle bad data.

The bad data might be accidental, such as out-of-range values or misformatted strings. The
application can use server-side checks such as unique constraints and NOT NULL constraints, to
keep the bad data from ever reaching the database. On the client side, use techniques such as
exception handlers to report any problems and take corrective action.

The bad data might also be deliberate, representing an “SQL injection” attack. For example, input
values might contain quotation marks, semicolons, %and _ wildcard characters and other characters
significant in SQL statements. Validate input values to make sure they have only the expected
characters. Escape any special characters that could change the intended behavior when substituted
into an SQL statement. Never concatenate a user input value into an SQL statement without doing
validation and escaping first. Even when accepting input generated by some other program, expect
that the other program could also have been compromised and be sending you incorrect or malicious
data.

» Because the result sets from SQL queries can be very large, use the appropriate method to retrieve
items from the result set as you loop through them. fetchone() retrieves a single item, when you
know the result set contains a single row. fetchall() retrieves all the items, when you know the
result set contains a limited number of rows that can fit comfortably into memory. fetchmany() is the
general-purpose method when you cannot predict the size of the result set: you keep calling it and
looping through the returned items, until there are no more results to process.

» Since Python already has convenient modules such as pi ckl e and cPi ckl e to read and write
data structures on disk, data that you choose to store in MySQL instead is likely to have special
characteristics:

e Too large to all fitin memory at one time. You use SELECT statements to query only the precise
items you need, and aggregate functions to perform calculations across multiple items. You
configure the i nnodb_buf f er _pool _si ze option within the MySQL server to dedicate a certain
amount of RAM for caching table and index data.

« Too complex to be represented by a single data structure. You divide the data between
different SQL tables. You can recombine data from multiple tables by using a join query. You
make sure that related data is kept in sync between different tables by setting up foreign key
relationships.

e Updated frequently, perhaps by multiple users simultaneously. The updates might only affect
a small portion of the data, making it wasteful to write the whole structure each time. You use the
SQL | NSERT, UPDATE, and DELETE statements to update different items concurrently, writing only
the changed values to disk. You use | nnoDB tables and transactions to keep write operations from
conflicting with each other, and to return consistent query results even as the underlying data is
being updated.

» Using MySQL best practices for performance can help your application to scale without requiring
major rewrites and architectural changes. See Optimization for best practices for MySQL
performance. It offers guidelines and tips for SQL tuning, database design, and server configuration.

» You can avoid reinventing the wheel by learning the MySQL SQL statements for common
operations: operators to use in queries, techniques for bulk loading data, and so on. Some
statements and clauses are extensions to the basic ones defined by the SQL standard. See Data
Manipulation Statements, Data Definition Statements, and SELECT Statement for the main classes
of statements.

* Issuing SQL statements from Python typically involves declaring very long, possibly multi-line string
literals. Because string literals within the SQL statements could be enclosed by single quotation,
double quotation marks, or contain either of those characters, for simplicity you can use Python's
triple-quoting mechanism to enclose the entire statement. For example:

"'"'It doesn't matter if this string contains 'single'
or "doubl e" quotes, as long as there aren't 3 in a

407

https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_unique_constraint
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_not_null_constraint
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/aggregate-functions.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html#sysvar_innodb_buffer_pool_size
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_join
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_foreign_key
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/delete.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_transaction
https://dev.mysql.com/doc/refman/8.0/en/optimization.html
https://dev.mysql.com/doc/refman/8.0/en/sql-data-manipulation-statements.html
https://dev.mysql.com/doc/refman/8.0/en/sql-data-manipulation-statements.html
https://dev.mysql.com/doc/refman/8.0/en/sql-data-definition-statements.html
https://dev.mysql.com/doc/refman/8.0/en/select.html

Connector/Python Versions

row ' "'’

You can use either of the ' or " characters for triple-quoting multi-line string literals.

Many of the secrets to a fast, scalable MySQL application involve using the right syntax at the very
start of your setup procedure, in the CREATE TABLE statements. For example, Oracle recommends
the ENG NE=I NNODB clause for most tables, and makes | nnoDB the default storage engine in
MySQL 5.5 and up. Using | nnoDB tables enables transactional behavior that helps scalability of
read-write workloads and offers automatic crash recovery. Another recommendation is to declare

a numeric primary key for each table, which offers the fastest way to look up values and can act

as a pointer to associated values in other tables (a foreign key). Also within the CREATE TABLE
statement, using the most compact column data types that meet your application requirements helps
performance and scalability because that enables the database server to move less data back and
forth between memory and disk.

6.3 Connector/Python Versions

This section describes both version releases, such as 8.0.34, along with notes specific to the two
implementations (C Extension and Pure Python).

Connector/Python Releases

The following table summarizes the available Connector/Python versions. For series that have reached
General Availability (GA) status, development releases in the series prior to the GA version are no
longer supported.

Note

MySQL Connectors and other MySQL client tools and applications now
synchronize the first digit of their version number with the (highest) MySQL
server version they support. For example, MySQL Connector/Python 8.0.12
would be designed to support all features of MySQL server version 8 (or lower).
This change makes it easy and intuitive to decide which client version to use for
which server version.

Connector/Python 8.0.4 is the first release to use the new numbering. It is the
successor to Connector/Python 2.2.3.

Table 6.1 Connector/Python Version Reference

Connector/Python |MySQL Server Python Versions |Connector Status
Version Versions
8.x Innovation 8.3,8.2,8.1,8.0, [3.12(8.2.0+), 3.11, |General Availability
5.7,5.6 3.10,3.9,3.8
8.0 8.0,5.7,5.6,5.5 3.11, 3.10, 3.9, 3.8, | General Availability
3.7, (3.6 before
8.0.29), (2.7 and
3.5 before 8.0.24)
2.2 (continues as |5.7,5.6,5.5 35,3427 Developer
8.0) Milestone, No
releases
21 5.7,5.6,55 3.5,34,27,26 General Availability
2.0 5.7,5.6,5.5 3.5,34,27,26 GA, final release
on 2016-10-26
1.2 5.7,5.6,5.5(5.1, [3.4,3.3,3.2,3.1, |GA, final release
5.0, 4.1) 2.7,2.6 on 2014-08-22

408

https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_crash_recovery
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_primary_key
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_foreign_key
https://dev.mysql.com/doc/refman/8.0/en/create-table.html

Connector/Python Implementations

Note

MySQL server and Python versions within parentheses are known to work with
Connector/Python, but are not officially supported. Bugs might not get fixed for
those versions.

Note

Connector/Python does not support the old MySQL Server authentication
methods, which means that MySQL versions prior to 4.1 will not work.

Note

On macOS x86_64 ARM: Python 3.7 is not supported with the c-ext
implementation; note this is a non-default version of Python on macOS.

Connector/Python Implementations

Connector/Python implements the MySQL client/server protocol two ways:

» As pure Python; an implementation written in Python. Its dependencies are the Python Standard
Library and Python Protobuf >=4.21.1,<=4.21.12.

Note

EL7 and Ubuntu 16.04 do not provide Python Protobuf 3+ making the pure
Python version unavailable on those platforms; use the C Extension variant
there instead. You may have to --force the installation but may not use
use_pure=True.

» As a C Extension that interfaces with the MySQL C client library. This implementation of the protocol
is dependent on the client library, but can use the library provided by MySQL Server packages (see
MySQL C API Implementations).

Neither implementation of the client/server protocol has any third-party dependencies. However, if you
need SSL support, verify that your Python installation has been compiled using the OpenSSL libraries.

TLS Support

By default, EL8 and Debian 10 supports TLSv1.2 and later when the policy
level is set to DEFAULT. To support TLSv1 and TLSv1.1, the policy needs to be
changed to LEGACY. This means that a default EL8/DEB10 setup cannot make
connections with TLSv1 and TLSv1.1 using the C-extension. Other platforms
may change their default behavior in the future.

The TLSv1.0 and TLSv1.1 connection protocols are deprecated as of
Connector/Python 8.0.26 and support for them was removed in Connector/
Python 8.0.28.

Note
Support for distutils was removed in Connector/Python 8.0.32.
Python terminology regarding distributions:

» Built Distribution: A package created in the native packaging format intended for a given platform. It
contains both sources and platform-independent bytecode. Connector/Python binary distributions are
built distributions.

» Source Distribution: A distribution that contains only source files and is generally platform
independent.

409

https://dev.mysql.com/doc/c-api/8.2/en/c-api-implementations.html
http://www.openssl.org/

Connector/Python Installation

6.4 Connector/Python Installation

Connector/Python runs on any platform where Python is installed. Python comes preinstalled on most
Unix and Unix-like systems, such as Linux, macOS, and FreeBSD. On Microsoft Windows, a Python
installer is available at the Python Download website or via the Microsoft app store. If necessary,
download and install Python for Windows before attempting to install Connector/Python.

Note
Connector/Python requires pyt hon in the system's PATH.

Installing Connector/Python with pip

Using pip is the recommended way to install Connector/Python and it functions on all standard
systems, including Windows, and installing the Python language also installs pip.

Installation

$> pip install nysqgl-connector-python

Upgr ade

$> pip install mysqgl-connector-python --upgrade
Optional, installs the X DevAPl interface

$> pip install mysqgl x- connect or - pyt hon

6.4.1 Obtaining Connector/Python

Although using pip to obtain and install Connector/Python is recommended, there are alternatives.
Packages are available at the Connector/Python download site. For some packaging formats, there
are different packages for different versions of Python; choose the one appropriate for the version of
Python installed on your system.

Note

The X DevAPI interface was separated into its own package (nysql x-
connect or - pyt hon) in Connector/Python 8.3.0. Previously, the classic
MySQL protocol package (nysqgl - connect or - pyt hon) installed interfaces to
both X and classic protocols.

6.4.2 Installing Connector/Python from a Binary Distribution

Connector/Python installers in native package formats are available for most Unix-based systems, but
not for macOS or Windows.

Note

Prior to Connector/Python 8.0.22, the C extension and pure Python
implementations were installed using two separate binary distributions; except
they were always combined for Windows and macOS. The C extension
implementation had “cext” in the package name.

Binary distributions that provide the C Extension link to an already installed C client library provided
by a MySQL Server installation. For those distributions that are not statically linked, you must install
MySQL Server if it is not already present on your system. To obtain it, visit the MySQL download site.

Installing Connector/Python with pip

Use pi p to install Connector/Python on most any operating system:

$> pip install nysqgl-connector-python
Installing Connector/Python on Microsoft Windows

Use pip; installing Python on Windows also makes pip available from the command line (cnd. exe).

410

http://python.org/download/
https://pip.pypa.io/en/latest/installation/
https://dev.mysql.com/downloads/connector/python/
https://dev.mysql.com/downloads/

Installing Connector/Python from a Binary Distribution

Note
MSI installer packages were available before Connector/Python 8.1.0.

Installing Connector/Python on Linux Using the MySQL Yum Repository

For EL7 or EL8-based platforms and Fedora, you can install Connector/Python using the MySQL Yum
repository (see Installing Additional MySQL Products and Components with Yum). You must have

the MySQL Yum repository on your system's repository list (for details, see Adding the MySQL Yum
Repository). To make sure that your Yum repository is up-to-date, use this command:

$> sudo yum updat e nysql - conmuni ty-rel ease

Prerequisites

* On EL7, EL8, and SUSE: A pyt hon3- pr ot obuf RPM package is not available for Python 3.8 on
these platforms, so the dependency is not part of the RPM specification; instead it must be manually
installed with the likes of pi p i nstal | protobuf. This is required as of v8.0.29.

» Although optional, the nysql - conmruni ty- cl i ent - pl ugi ns package is required to use newer
authentication methods, such as cachi ng_sha2_ passwor d that's the default authentication

method as of MySQL 8.0.
$> sudo yuminstall nysql-community-client-plugins
Then install Connector/Python as follows:
$> sudo yuminstall nysqgl-connector-python
Installing Connector/Python on Linux Using an RPM Package

Connector/Python Linux RPM packages (. r pmfiles) are available from the Connector/Python
download site (see Section 6.4.1, “Obtaining Connector/Python”).

To install a Connector/Python RPM package (denoted here as PACKACE. r pn), use this command:
$> rpm -i PACKAGE. r pm
Prerequisites

* On EL7, EL8, and SUSE: A pyt hon3- pr ot obuf RPM package is not available for Python 3.8 on
these platforms, so the dependency is not part of the RPM specification; instead it must be manually
installed with the likes of pi p i nstal | protobuf. Thisis required as of v8.0.29.

» Although optional, the nysql - conmruni ty- cl i ent - pl ugi ns package is required to use newer
authentication methods, such as cachi ng_sha2_ passwor d that's the default authentication
method as of MySQL 8.0.

Note

Prior to Connector/Python 8.0.22, the C extension implementation was a
separate RPM package that contained “cext” in the name.

RPM provides a feature to verify the integrity and authenticity of packages before installing them. To
learn more, see Verifying Package Integrity Using MD5 Checksums or GnuPG.

Installing Connector/Python on Linux Using a Debian Package

Connector/Python Debian packages (. deb files) are available for Debian or Debian-like Linux systems
from the Connector/Python download site (see Section 6.4.1, “Obtaining Connector/Python”).

411

https://dev.mysql.com/doc/refman/8.0/en/linux-installation-yum-repo.html#yum-install-components
https://dev.mysql.com/doc/refman/8.0/en/linux-installation-yum-repo.html#yum-repo-setup
https://dev.mysql.com/doc/refman/8.0/en/linux-installation-yum-repo.html#yum-repo-setup
https://dev.mysql.com/doc/refman/8.0/en/verifying-package-integrity.html

Installing Connector/Python from a Source Distribution

Prerequisite. Although optional, the nysql - conmuni t y- cl i ent - pl ugi ns package is required
to use newer authentication methods, such as cachi ng_sha2 passwor d that's the default
authentication method as of MySQL 8.0.

To install a Connector/Python Debian package (denoted here as PACKAGE. deb), use this command:

$> dpkg -i PACKAGE. deb
Note

Prior to Connector/Python 8.0.22, the C extension implementation was a
separate DEB package that contained “cext” in the name.

Installing Connector/Python on macOS

Use pip; installing Python on macOS also makes pip available.

Note
DMG installer packages were available before Connector/Python 8.1.0.

6.4.3 Installing Connector/Python from a Source Distribution

Connector/Python source distributions are platform independent and can be used on any platform.
Source distributions are packaged in two formats:

e Zip archive format (. zi p file)
» Compressedt ar archive format (. t ar. gz file)

Either packaging format can be used on any platform, but Zip archives are more commonly used on
Windows systems and t ar archives on Unix and Unix-like systems.

Prerequisites for Compiling Connector/Python with the C Extension

As of Connector/Python 2.1.1, source distributions include the C Extension that interfaces with the
MySQL C client library. You can build the distribution with or without support for this extension. To build
Connector/Python with support for the C Extension, you must satisfy the following prerequisites.

Note

Python 2.7 support was removed in Connector/Python 8.0.24, and Python 3.7
support was removed in Connector/Python 8.1.0.

e Linux: A C/C++ compiler, such as gcc

Windows: Current version of Visual Studio

» Protobuf C++ (version >= 4.21.1,<=4.21.12) for the C extension and/or Python's protobuf package for

the pure Python implementation
» Python development files

* MySQL Server installed, including development files to compile the optional C Extension that
interfaces with the MySQL C client library

You must install MySQL Server if it is not already present on your system. To obtain it, visit the MySQL
download site.

For certain platforms, MySQL development files are provided in separate packages. This is true for
RPM and Debian packages, for example.

412

https://dev.mysql.com/downloads/
https://dev.mysql.com/downloads/

Verifying Your Connector/Python Installation

Installing Connector/Python from Source on Microsoft Windows

A Connector/Python Zip archive (. zi p file) is available from the Connector/Python download site (see
Section 6.4.1, “Obtaining Connector/Python”).

To install Connector/Python from a Zip archive, download the latest version and follow these steps:

1. Unpack the Zip archive in the intended installation directory (for example, C. \ nysql - connect or
\) using W nZi p or another tool that can read . zi p files.

2. Start a console window and change location to the folder where you unpacked the Zip archive:

$> cd C:\nysql - connect or\

3. Inside the Connector/Python folder, perform the installation using this command:

$> python setup. py install

To include the C Extension (available as of Connector/Python 2.1.1), use this command instead:

$> python setup.py install --wth-mysql-capi="path_nanme"
The argument to - - wi t h- mysql - capi is the path to the installation directory of MySQL Server.

To see all options and commands supported by set up. py, use this command:

$> python setup.py --help

Installing Connector/Python from Source on Unix and Unix-Like Systems

For Unix and Unix-like systems such as Linux, Solaris, macOS, and FreeBSD, a Connector/Python
t ar archive (. t ar . gz file) is available from the Connector/Python download site (see Section 6.4.1,
“Obtaining Connector/Python”).

To install Connector/Python from a t ar archive, download the latest version (denoted here as VER),
and execute these commands:

$> tar xzf nysql -connector-python-VER tar. gz

$> cd nysql - connect or - pyt hon- VER

$> sudo python setup.py install \

--W t h- prot obuf -i ncl ude-di r=/dir/to/ protobuf/include \
--with-protobuf-lib-dir=/dir/to/protobuf/lib \

--W t h- prot oc=/ pat h/ t o/ pr ot oc/ bi nary

To include the C Extension (available as of Connector/Python 2.1.1) that interfaces with the MySQL C
client library, also add the - - wi t h- mysql - capi such as:
$> sudo python setup.py install \
--W t h- prot obuf -i ncl ude-di r=/dir/tol/ protobuf/include \
--with-protobuf-lib-dir=/dir/to/protobuf/lib \
--wi t h-protoc=/pat h/to/ protoc/binary \
--w th-nmysql - capi =" pat h_nane

The argumentto - - wi t h- mysql - capi is the path to the installation directory of MySQL Server, or the
path to the mysqgl _confi g command.

To see all options and commands supported by set up. py, use this command:
$> python setup. py --help
6.4.4 Verifying Your Connector/Python Installation

On Windows, the default Connector/Python installation location is C. \ Pyt honX. Y\ Li b\ si t e-
packages\, where X. Y is the Python version you used to install the connector.

413

Connector/Python Coding Examples

On Unix-like systems, the default Connector/Python installation location is / pr ef i x/ pyt honX. Y/
si t e- packages/, where pr ef i x is the location where Python is installed and X. Y is the Python
version. See How installation works in the Python manual.

The C Extension is installed as _nmysql connect or. so inthe si t e- packages directory, not in the
nmysql / connect or directory.

Depending on your platform, the installation path might differ from the default. If you are not sure
where Connector/Python is installed, do the following to determine its location. The output here shows
installation locations as might be seen on macOS:

$> pyt hon

>>> fromdistutils.sysconfig inport get_python_lib
>>> print get_python_lib() # Python v2.x
/ Li brary/ Pyt hon/ 2. 7/ si t e- packages

>>> print(get_python_lib()) # Python v3.x

/ Li brary/ Framewor ks/ Pyt hon. f r amewor k/ Ver si ons/ 3. 1/ 1 i b/ pyt hon3. 1/ si t e- packages

To test that your Connector/Python installation is working and able to connect to MySQL Server, you
can run a very simple program where you supply the login credentials and host information required for
the connection. For an example, see Section 6.5.1, “Connecting to MySQL Using Connector/Python”.

6.5 Connector/Python Coding Examples

These coding examples illustrate how to develop Python applications and scripts which connect to
MySQL Server using MySQL Connector/Python.

6.5.1 Connecting to MySQL Using Connector/Python

The connect () constructor creates a connection to the MySQL server and returns a
My SQLConnect i on object.

The following example shows how to connect to the MySQL server:

i mport nysqgl . connect or

cnx = mysqgl . connector. connect (user='scott', password='password'
host='127.0.0. 1"
dat abase=' enpl oyees')

cnx. cl ose()

Section 6.7.1, “Connector/Python Connection Arguments” describes the permitted connection
arguments.

It is also possible to create connection objects using the connection.MySQLConnection() class:

from nmysqgl . connector inport (connection)

chx = connecti on. MySQLConnect i on(user="scott', password="password'
host =' 127. 0. 0. 1’
dat abase=' enpl oyees')

cnx. cl ose()

Both forms (either using the connect () constructor or the class directly) are valid and functionally
equal, but using connect () is preferred and used by most examples in this manual.

To handle connection errors, use the t r y statement and catch all errors using the errors.Error
exception:

i nport nysqgl . connect or
from nysql . connector inport errorcode
try:
cnx = nysql . connect or. connect (user="scott",
dat abase=' enpl oy"')
except nysgl.connector.Error as err
if err.errno == errorcode. ER_ ACCESS DEN ED ERROR:

414

http://docs.python.org/install/index.html#how-installation-works

Connecting to MySQL Using Connector/Python

print("Something is wong with your user nane or password")
elif err.errno == errorcode. ER BAD DB _ERROR:
print (" Dat abase does not exist")
el se
print(err)
el se
cnx. cl ose()

Defining connection arguments in a dictionary and using the ** operator is another option:

i mport mysql . connect or
config = {
‘user': 'scott',
' password': ' password'
"host': '127.0.0.1'
' dat abase': ' enpl oyees’
‘rai se_on_warni ngs': True
}
cnx = mysql . connector. connect (**confi g)
cnx. cl ose()

Defining Logger options, a reconnection routine, and defined as a connection method named
connect_to_mysql:

[
i mport | ogging
import tinme
i mport mysql . connect or
Set up | ogger
| ogger = | oggi ng. get Logger (__nane__)
| ogger . set Level (| oggi ng. | NFO
formatter = | ogging. Formatter ("% asctinme)s - % nanme)s - %I evel nane)s - % nessage)s"”)
Log to consol e
handl er = | oggi ng. St reanHandl er ()
handl er. set Formatter (formatter)
| ogger . addHandl er (handl er)
Also log to a file
file_handl er = | ogging.Fil eHandl er("cpy-errors.|og")
file_handl er.setFormatter(formatter)
| ogger . addHandl! er (fi | e_handl er)
def connect_to_nysql (config, attenpts=3, del ay=2)
attenpt = 1
| npl enent a reconnection routine
while attenpt < attenpts + 1
try:
return mnysql . connector. connect (**confi g)
except (nysql.connector.Error, |CError) as err
if (attenpts is attenpt)
Attenpts to reconnect failed; returning None
| ogger.info("Failed to connect, exiting w thout a connection: %", err)
return None
| ogger . i nf o(
"Connection failed: %. Retrying (%/%)...",
err,
at t enpt ,
attenpts-1
)
progressive reconnect del ay
tinme.sleep(delay ** attenpt)
attenpt += 1
return None

Connecting and using the Sakila database using the above routine, assuming it's defined in a file

named myconnecti on. py:

[

from myconnection inport connect_to_mnysq

config = {
"host": "127.0.0.1",
"user": "user",

415

Creating Tables Using Connector/Python

"password": "pass",
"dat abase": "sakila",
}
cnx = connect _to_nysql (config, attenpts=3)
if cnx and cnx.is_connected()
with cnx.cursor() as cursor
result = cursor.execute("SELECT * FROM actor LIMT 5")
rows = cursor.fetchall ()
for rows in rows:
print (rows)
cnx. cl ose()
el se
print("Could not connect")

Using the Connector/Python Python or C Extension

Connector/Python offers two implementations: a pure Python interface and a C extension that uses the
MySQL C client library (see The Connector/Python C Extension). This can be configured at runtime
using the use_pur e connection argument. It defaults to Fal se as of MySQL 8, meaning the C
extension is used. If the C extension is not available on the system then use_pur e defaults to Tr ue.
Setting use_pur e=Fal se causes the connection to use the C Extension if your Connector/Python
installation includes it, while use_pur e=Tr ue to Fal se means the Python implementation is used if
available.

Note
The use_pur e option and C extension were added in Connector/Python 2.1.1.

The following example shows how to set use_pur e to False.

i nport nysqgl . connect or

cnx = mysql . connector. connect (user="scott', password='password'
host =' 127. 0. 0. 1'
dat abase="' enpl oyees'
use_pur e=Fal se)

cnx. cl ose()

It is also possible to use the C Extension directly by importing the _nysql _connect or module rather
than the nysql . connect or module. For more information, see The _mysqgl_connector C Extension
Module.

6.5.2 Creating Tables Using Connector/Python

All DDL (Data Definition Language) statements are executed using a handle structure known as a
cursor. The following examples show how to create the tables of the Employee Sample Database. You
need them for the other examples.

In a MySQL server, tables are very long-lived objects, and are often accessed by multiple applications
written in different languages. You might typically work with tables that are already set up, rather

than creating them within your own application. Avoid setting up and dropping tables over and over
again, as that is an expensive operation. The exception is temporary tables, which can be created and
dropped quickly within an application.

from__future__ inport print_function
i nport nysql . connect or

from nysql . connector inport errorcode
DB_NAME = ' enpl oyees

TABLES = {}

TABLES[' enpl oyees'] = (

" CREATE TABLE " enpl oyees™ ("

" “enp_no int(11) NOT NULL AUTO | NCREMENT, "
“birth_date’ date NOT NULL,"
“first_nanme’ varchar(14) NOT NULL,'
“last_nane’ varchar (16) NOT NULL, "
“gender’ enun('M,"'F') NOT NULL,"

416

https://dev.mysql.com/doc/connector-python/en/connector-python-cext.html
https://dev.mysql.com/doc/connector-python/en/connector-python-cext-module.html
https://dev.mysql.com/doc/connector-python/en/connector-python-cext-module.html
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_ddl
http://dev.mysql.com/doc/employee/en/index.html
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_temporary_table

Creating Tables Using Connector/Python

“hire_date’ date NOT NULL,"
PRI MARY KEY (" enp_no’)"
") ENG NE=I nnoDB")
TABLES[' departnents'] = (
" CREATE TABLE "departnents” ("
“dept _no" char(4) NOT NULL,"
“dept _nane’ varchar (40) NOT NULL, "
PRI MARY KEY (dept_no'), UN QUE KEY "dept_nane" (dept_nane’)"
") ENG NE=I nnoDB")
TABLES[' sal aries'] = (
" CREATE TABLE “sal aries™ ("
“enp_no’ int(11) NOT NULL,"
“salary’ int(11) NOT NULL,"
“fromdate’ date NOT NULL,"
“to_date’ date NOT NULL,"
PRI MARY KEY (enp_no , fromdate'), KEY “enp_no (enp_no’),"
CONSTRAI NT “sal aries_ibfk_1° FOREIGN KEY (“enp_no’) "
REFERENCES " enpl oyees™ (enp_no) ON DELETE CASCADE"
") ENG NE=I nnoDB")
TABLES[' dept _enp'] = (
" CREATE TABLE “dept _enmp’ ("
" “enp_no int(11) NOT NULL,"
“dept _no" char(4) NOT NULL,"
“fromdate’ date NOT NULL,"
“to_date’ date NOT NULL,"
PRI MARY KEY (enp_no , "dept_no'), KEY “enp_no (enp_no),"
KEY “dept_no" (dept_no’),"
CONSTRAI NT “dept _enp_i bf k_1" FOREI GN KEY (" enp_no)
REFERENCES " enpl oyees™ (enp_no) ON DELETE CASCADE, "
CONSTRAI NT " dept _enp_i bf k_2° FORElI GN KEY (dept_no")
REFERENCES " departnents’ (dept_no) ON DELETE CASCADE"
") ENG NE=I nnoDB")
TABLES[' dept _manager'] = (
CREATE TABLE " dept _manager ™ ("
“enp_no’ int(11) NOT NULL,"
“dept _no’ char(4) NOT NULL,"
“fromdate’ date NOT NULL,"
‘to_date’ date NOT NULL,"
PRI MARY KEY (enp_no , "dept_no’),"
KEY “enp_no’ (enp_no’),"
KEY “dept_no" (dept_no’),"
CONSTRAI NT " dept _manager _i bf k_1" FORElI GN KEY (enp_no)
REFERENCES " enpl oyees™ (enp_no’) ON DELETE CASCADE, "
CONSTRAI NT " dept _manager _i bf k_2° FORElI GN KEY (dept_no")
REFERENCES " departnents’ (dept_no) ON DELETE CASCADE"
") ENG NE=I nnoDB")
TABLES['titles'] = (
"CREATE TABLE “titles ("
“enp_no’ int(11) NOT NULL,"
“title wvarchar(50) NOT NULL,"
“fromdate’ date NOT NULL,"
‘to_date’ date DEFAULT NULL, "
PRI MARY KEY (“enp_no , ‘title , fromdate'), KEY “enp_no (enp_no’),"
CONSTRAINT “titles ibfk 1° FOREI GN KEY (' enp_no’)"
REFERENCES " enpl oyees™ (enp_no) ON DELETE CASCADE"
") ENG NE=I nnoDB")

The preceding code shows how we are storing the CREATE statements in a Python dictionary called
TABLES. We also define the database in a global variable called DB_NANE, which enables you to easily
use a different schema.

cnx = mysql . connector. connect (user="'scott")
cursor = cnx.cursor()

A single MySQL server can manage multiple databases. Typically, you specify the database to switch
to when connecting to the MySQL server. This example does not connect to the database upon
connection, so that it can make sure the database exists, and create it if not:

def create_database(cursor)
try:
cur sor. execut e(

417

https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_database

Creating Tables Using Connector/Python

" CREATE DATABASE {} DEFAULT CHARACTER SET 'utf8'".fornmat (DB_NAME))
except nysql.connector.Error as err
print("Failed creating database: {}".format(err))
exit(1)
try:
cursor. execute("USE {}".fornat (DB_NAME))
except nysql.connector.Error as err
print (" Database {} does not exists.".format(DB_NAME))
if err.errno == errorcode. ER_ BAD DB _ERROR:
creat e_dat abase(cursor)
print (" Database {} created successfully.".format(DB_NAME))
cnx. dat abase = DB_NAME
el se
print(err)
exit(1)

We first try to change to a particular database using the dat abase property of the connection object
cnx. If there is an error, we examine the error number to check if the database does not exist. If so, we
call the cr eat e_dat abase function to create it for us.

On any other error, the application exits and displays the error message.

After we successfully create or change to the target database, we create the tables by iterating over the
items of the TABLES dictionary:

for table_name in TABLES
tabl e_description = TABLES[t abl e_nane]
try:
print("Creating table {}: ".format(tabl e_nane), end="")
cursor. execut e(tabl e_descri pti on)
except nysql.connector.Error as err
if err.errno == errorcode. ER TABLE _EXI STS_ERROR:
print("already exists.")
el se
print(err.nsg)
el se
print("OK")
cursor. cl ose()
cnx. cl ose()

To handle the error when the table already exists, we notify the user that it was already there. Other
errors are printed, but we continue creating tables. (The example shows how to handle the “table
already exists” condition for illustration purposes. In a real application, we would typically avoid the
error condition entirely by using the | F NOT EXI STS clause of the CREATE TABLE statement.)

The output would be something like this:

Dat abase enpl oyees does not exists

Dat abase enpl oyees created successfully.
Creating tabl e enpl oyees: XK

Creating table departnents: already exists
Creating table salaries: already exists
Creating table dept_enp: K

Creating tabl e dept _nmanager: K

Creating table titles: K

To populate the employees tables, use the dump files of the Employee Sample Database. Note that
you only need the data dump files that you will find in an archive named like enpl oyees_db- dunp-
files-1.0.5.tar.bz2. After downloading the dump files, execute the following commands, adding
connection options to the nysql commands if necessary:

$> tar xzf enpl oyees_db-dump-files-1.0.5.tar.bz2
$> cd enpl oyees_db

$> nmysqgl enpl oyees < | oad_enpl oyees. dunp

$> nmysqgl enpl oyees < |load_titles.dunp

$> nmysqgl enpl oyees < | oad_depart nents. dunp

$> nmysqgl enpl oyees < | oad_sal ari es. dunp

$> nysqgl enpl oyees < | oad_dept _enp. dunp

418

https://dev.mysql.com/doc/refman/8.0/en/create-table.html
http://dev.mysql.com/doc/employee/en/index.html

Inserting Data Using Connector/Python

$> nysql enpl oyees < | oad_dept _nanager . dunp
6.5.3 Inserting Data Using Connector/Python

Inserting or updating data is also done using the handler structure known as a cursor. When you use a
transactional storage engine such as | nnoDB (the default in MySQL 5.5 and higher), you must commit
the data after a sequence of | NSERT, DELETE, and UPDATE statements.

This example shows how to insert new data. The second | NSERT depends on the value of the newly
created primary key of the first. The example also demonstrates how to use extended formats. The
task is to add a new employee starting to work tomorrow with a salary set to 50000.

Note

The following example uses tables created in the example Section 6.5.2,
“Creating Tables Using Connector/Python”. The AUTO | NCREMVENT column
option for the primary key of the enpl oyees table is important to ensure
reliable, easily searchable data.

from_ future__ inport print_function
fromdatetinme inport date, datetine, tinedelta
i mport nysqgl . connect or
cnx = mysql . connector. connect (user="'scott', database='enpl oyees')
cursor = cnx.cursor()
tonorrow = datetime.now).date() + tinedelta(days=1)
add_enpl oyee = ("1 NSERT | NTO enpl oyees "
"(first_nanme, |ast_nane, hire_date, gender, birth _date) "
"VALUES (%, %, %, %, %)")
add_salary = ("INSERT | NTO sal aries "
"(enp_no, salary, fromdate, to_date) "
"VALUES (% enp_no)s, %salary)s, %fromdate)s, %to_date)s)")
dat a_enpl oyee = (' Geert', 'Vanderkelen', tonorrow, 'M, date(1977, 6, 14))
I nsert new enpl oyee
cur sor. execut e(add_enpl oyee, data_enpl oyee)
enp_no = cursor.lastrowid
Insert salary information
data_salary = {
'enp_no': enp_nho
"sal ary': 50000
"fromdate': tonorrow,
'to_date': date(9999, 1, 1)
}
cursor. execute(add_sal ary, data_sal ary)
Make sure data is committed to the database
cnx. commt ()
cursor. cl ose()
cnx. cl ose()

We first open a connection to the MySQL server and store the connection object in the variable cnx.
We then create a new cursor, by default a MySQLCursor object, using the connection's cur sor ()
method.

We could calculate tomorrow by calling a database function, but for clarity we do it in Python using the
dat et i ne module.

Both | NSERT statements are stored in the variables called add_enpl oyee and add_sal ary. Note
that the second | NSERT statement uses extended Python format codes.

The information of the new employee is stored in the tuple dat a_enpl oyee. The query to insert
the new employee is executed and we retrieve the newly inserted value for the enp_no column (an
AUTO_| NCREMENT column) using the | ast r owi d property of the cursor object.

Next, we insert the new salary for the new employee, using the enp_no variable in the dictionary
holding the data. This dictionary is passed to the execut e() method of the cursor object if an error
occurred.

419

https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_commit
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/delete.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_primary_key

Querying Data Using Connector/Python

Since by default Connector/Python turns autocommit off, and MySQL 5.5 and higher uses transactional
| nnoDB tables by default, it is necessary to commit your changes using the connection's conmi t ()
method. You could also roll back using the r ol | back() method.

6.5.4 Querying Data Using Connector/Python

The following example shows how to query data using a cursor created using the connection's
cur sor () method. The data returned is formatted and printed on the console.

The task is to select all employees hired in the year 1999 and print their names and hire dates to the
console.

import datetine
i mport nysql . connect or
cnx = mysql . connect or. connect (user='scott', database='enpl oyees')
cursor = cnx.cursor()
query = ("SELECT first_nane, |ast_nanme, hire_date FROM enpl oyees "
"WHERE hire_date BETWEEN % AND 9%s")
hire_start = datetine.date(1999, 1, 1)
hire_end = datetine.date(1999, 12, 31)
cursor. execute(query, (hire_start, hire_end))
for (first_nane, |last_name, hire_date) in cursor
print("{}, {} was hired on {:% % %}".format(
| ast _nane, first_name, hire_date))
cursor.cl ose()
cnx. cl ose()

We first open a connection to the MySQL server and store the connection object in the variable cnx.
We then create a new cursor, by default a MySQLCursor object, using the connection's cur sor ()
method.

In the preceding example, we store the SELECT statement in the variable quer y. Note that we are
using unquoted %s-markers where dates should have been. Connector/Python converts hi re_start
and hi r e_end from Python types to a data type that MySQL understands and adds the required
guotes. In this case, it replaces the first % with ' 1999- 01- 01' , and the second with ' 1999- 12- 31" .

We then execute the operation stored in the quer y variable using the execut e() method. The data
used to replace the %s-markers in the query is passed as atuple: (hire _start, hire_end).

After executing the query, the MySQL server is ready to send the data. The result set could be

zero rows, one row, or 100 million rows. Depending on the expected volume, you can use different
techniques to process this result set. In this example, we use the cur sor object as an iterator. The first
column in the row is stored in the variable f i r st _nane, the second in | ast _nane, and the third in

hi re_date.

We print the result, formatting the output using Python's built-in f or nat () function. Note that
hi r e_dat e was converted automatically by Connector/Python to a Python dat et i ne. dat e object.
This means that we can easily format the date in a more human-readable form.

The output should be something like this:

Wlharm LiMn was hired on 16 Dec 1999

W el onsky, Lalit was hired on 16 Dec 1999
Kanbl e, Dannz was hired on 18 Dec 1999
DuBour di eux, Zhongwei was hired on 19 Dec 1999
Fuji sawa, Rosita was hired on 20 Dec 1999

6.6 Connector/Python Tutorials

These tutorials illustrate how to develop Python applications and scripts that connect to a MySQL
database server using MySQL Connector/Python.

420

https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_autocommit
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_rollback
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_query

Tutorial: Raise Employee's Salary Using a Buffered Cursor

6.6.1 Tutorial: Raise Employee's Salary Using a Buffered Cursor

The following example script gives a long-overdue 15% raise effective tomorrow to all employees who
joined in the year 2000 and are still with the company.

To iterate through the selected employees, we use buffered cursors. (A buffered cursor

fetches and buffers the rows of a result set after executing a query; see Section 6.9.6.1,
“cursor.MySQLCursorBuffered Class”.) This way, it is unnecessary to fetch the rows in a new variables.
Instead, the cursor can be used as an iterator.

Note
This script is an example; there are other ways of doing this simple task.

from __future__ inport print_function
from deci mal inport Deci mal
fromdatetime inport datetine, date, tinedelta
i mport mnysql . connect or
Connect with the MySQ. Server
cnx = nysql . connector. connect (user="scott', database='enpl oyees')
Cet two buffered cursors
cur A = cnx. cursor (buf f er ed=Tr ue)
cur B = cnx. cursor (buf f er ed=Tr ue)
Query to get enployees who joined in a period defined by two dates
query = (
"SELECT s.enp_no, salary, fromdate, to_date FROM enpl oyees AS e "
"LEFT JO N salaries AS s USING (enmp_no) "
"WHERE to_date = DATE(' 9999-01-01')"
"AND e. hire_date BETWEEN DATE(%s) AND DATE(%)")
UPDATE and | NSERT statenents for the old and new sal ary
update_ol d_salary = (
"UPDATE sal aries SET to_date = % "
"WHERE enp_no = % AND from date = 9%")
insert_new salary = (
"I NSERT | NTO sal aries (enmp_no, fromdate, to_date, salary) "
"VALUES (%, %, %, %)")
Sel ect the enpl oyees getting a raise
cur A. execut e(query, (date(2000, 1, 1), date(2000, 12, 31)))
lterate through the result of curA
for (enp_no, salary, fromdate, to_date) in curA
Update the old and insert the new sal ary
new_sal ary = int(round(salary * Decinal ('1.15")))
cur B. execut e(updat e_ol d_sal ary, (tonorrow, enp_no, fromdate))
cur B. execut e(i nsert_new_sal ary,
(enmp_no, tonorrow, date(9999, 1, 1,), new salary))
Commit the changes
cnx. commt ()
cnx. cl ose()

6.7 Connector/Python Connection Establishment

Connector/Python provides a connect () call used to establish connections to the MySQL server. The
following sections describe the permitted arguments for connect () and describe how to use option
files that supply additional arguments.

6.7.1 Connector/Python Connection Arguments

A connection with the MySQL server can be established using either the
nysgl . connect or. connect () function or the nysql . connect or. M\ySQ.Connecti on() class:

cnx
cnx

nmysql . connect or. connect (user='j oe', database="test')
My/SQLConnect i on(user='joe', database='test')

The following table describes the arguments that can be used to initiate a connection. An asterisk (*)
following an argument indicates a synonymous argument name, available only for compatibility with
other Python MySQL drivers. Oracle recommends not to use these alternative names.

421

Connector/Python Connection Arguments

Table 6.2 Connection Arguments for Connector/Python

Argument Name Default Description

user (user nane?*) The user name used to authenticate with the MySQL
server.

passwor d (passwd*) The password to authenticate the user with the MySQL
server.

passwor dl, passwor d2, For Multi-Factor Authentication (MFA); passwor d1 is

and passwor d3 an alias for passwor d. Added in 8.0.28.

dat abase (db*) The database name to use when connecting with the
MySQL server.

host 127.0.0.1 The host name or IP address of the MySQL server.

uni x_socket The location of the Unix socket file.

port 3306 The TCP/IP port of the MySQL server. Must be an

integer.

conn_attrs

Standard

per formance_schena. sessi on_connect _attrs
values are sent; use conn_at t r s to optionally set
additional custom connection attributes as defined by a
dictionary such as config['conn_attrs'] = {"foo": "bar"}.

The c-ext and pure python implementations differ.
The c-ext implementation depends on the mysqiclient
library so its standard conn_attrs values originate from
it. For example, '_client_name"' is 'libmysql' with c-ext
but 'mysql-connector-python' with pure python. C-ext
adds these additional attributes: '_connector_version',

_connector_license', '_connector_name', and
' source_host'.

This option was added in 8.0.17, as was the default
session_connect_attrs behavior.

i nit_conmand

Command (SQL query) executed immediately after the
connection is established as part of the initialization
process. Added in 8.0.32.

aut h_pl ugin

Authentication plugin to use. Added in 1.2.1.

fido_call back

Deprecated as of 8.2.0 and removed in 8.4.0; instead
use webaut hn_cal | back.

An callable defined by the optional f i do_cal | back
option is executed when it's ready for user interaction
with the hardware FIDO device. This option can be a
callable object or a string path that the connector can
import in runtime and execute. It does not block and is
only used to notify the user of the need for interaction
with the hardware FIDO device.

This functionality was only available in the C extension.
A NotSupportedError was raised when using the pure
Python implementation.

webaut hn_cal | back

An callable defined by the optional

webaut hn_cal | back option is executed when
it's ready for user interaction with the hardware
WebAuthn device. This option can be a callable

422

Connector/Python Connection Arguments

Argument Name

Default

Description

object or a string path that the connector can

import in runtime and execute. It does not block

and is only used to notify the user of the need for
interaction with the hardware FIDO device. Enable the
aut henti cati on_webaut hn_cl i ent auth_plugin in
the connection configuration to use.

This option was added in 8.2.0, and it deprecated the
fido_cal | back option that was removed in version
8.4.0.

use_uni code

True

Whether to use Unicode.

char set

ut f 8nb4

Which MySQL character set to use.

col lation

ut f 8mb4_gen
(is

ut f 8_gener a
in 2.x

aNhichavlySQL collation to use. The 8.x default values
are generated from the latest MySQL Server 8.0
|detaults.

aut oconmmi t Fal se Whether to autocommit transactions.

tinme_zone Setthe t i ne_zone session variable at connection
time.

sql _node Set the sgl _node session variable at connection time.

get _war ni ngs Fal se Whether to fetch warnings.

rai se_on_war ni ngs Fal se Whether to raise an exception on warnings.

connecti on_ti meout Timeout for the TCP and Unix socket connections.

(connect _ti nmeout *)

client _flags MySQL client flags.

buf f ered Fal se Whether cursor objects fetch the results immediately
after executing queries.

raw Fal se Whether MySQL results are returned as is, rather than
converted to Python types.

consume_results False Whether to automatically read result sets.

tls_versions ['TLSv1.2", TLS versions to support; allowed versions are TLSv1.2

"TLSv1.3"] and TLSv1.3. Versions TLSv1 and TLSv1.1 were

removed in Connector/Python 8.0.28.

ssl _ca File containing the SSL certificate authority.

ssl _cert File containing the SSL certificate file.

ssl _di sabl ed Fal se Tr ue disables SSL/TLS usage. The TLSv1 and
TLSv1.1 connection protocols are deprecated as
of Connector/Python 8.0.26 and removed as of
Connector/Python 8.0.28.

ssl _key File containing the SSL key.

ssl _verify_cert Fal se When set to Tr ue, checks the server certificate against
the certificate file specified by the ssl| _ca option. Any
mismatch causes a Val ueEr r or exception.

ssl _verify_ identity Fal se When set to Tr ue, additionally perform host name

identity verification by checking the host name that
the client uses for connecting to the server against the
identity in the certificate that the server sends to the

client. Option added in Connector/Python 8.0.14.

423

https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_autocommit

Connector/Python Connection Arguments

Argument Name

Default

Description

force_i pv6

Fal se

When set to Tr ue, uses IPv6 when an address
resolves to both IPv4 and IPv6. By default, IPv4 is used
in such cases.

kerberos_aut h_node

SSPI

Windows-only, for choosing between

SSPI and GSSAPI at runtime for the

aut henti cation_kerberos_cl i ent authentication
plugin on Windows. Option added in Connector/Python
8.0.32.

oci _config file

Optionally define a specific path to the

aut henti cati on_oci server-side authentication
configuration file. The profile name can be configured
with oci _config_profile.

The default file path on Linux and macOS is ~/ . oci /
confi g, and %OVEDRI VEY4HOVEPATH% . oci
\ conf i g on Windows.

oci _config_profile

" DEFAULT"

Used to specify a profile to use from the OCI
configuration file that contains the generated ephemeral
key pair and security token. The OCI configuration file
location can be defined by oci _confi g fil e. Option
oci _config_profil e was added in Connector/
Python 8.0.33.

dsn

Not supported (raises Not Support edErr or when
used).

pool _nane

Connection pool name. The pool name is restricted to
alphanumeric characters and the special characters . ,
_,*,$, and #. The pool name must be no more than
pool i ng. CNX_POOL_NMAXNAMESI ZE characters long
(default 64).

pool _size

Connection pool size. The pool size must
be greater than 0 and less than or equal to
pool i ng. CNX_POCL_MAXSI ZE (default 32).

pool reset _session

True

Whether to reset session variables when connection is
returned to pool.

conpress

Fal se

Whether to use compressed client/server protocol.

converter_cl ass

Converter class to use.

converter _str_fallback

Fal se

Enable the conversion to str of value types not
supported by the Connector/Python converter class or
by a custom converter class.

failover

Server failover sequence.

option_files

Which option files to read. Added in 2.0.0.

option_groups ["client", |Which groups to read from option files. Added in 2.0.0.
' connect or _jpython']

allow local infile True Whether to enable LOAD DATA LOCAL | NFI LE.

Added in 2.0.0.

use_pure Fal se as Whether to use pure Python or C Extension. If
of 8.0.11, use_pur e=Fal se and the C Extension is not
and Tr ue available, then Connector/Python will automatically
in earlier fall back to the pure Python implementation. Can
versions. be set with mysqgl.connector.connect() but not
If only one MySQLConnection.connect(). Added in 2.1.1.

424

https://dev.mysql.com/doc/refman/8.0/en/load-data.html

Connector/Python Connection Arguments

Argument Name Default Description

implementation
(C or Python)
is available,
then then

the default
value is set

to enable

the available
implementation.

krb_service_principal |The"@realm" |Must be a string in the form "primary/instance@realm"
defaults to the |such as "ldap/ldapauth@MYSQL.COM" where

default realm, |"@realm" is optional. Added in 8.0.23.

as configured
in the

kr b5. conf
file.

MySQL Authentication Options
Authentication with MySQL typically uses a user nane and passwor d.

When the dat abase argument is given, the current database is set to the given value. To change
the current database later, execute a USE SQL statement or set the dat abase property of the
MySQLConnect i on instance.

By default, Connector/Python tries to connect to a MySQL server running on the local host using TCP/
IP. The host argument defaults to IP address 127.0.0.1 and port to 3306. Unix sockets are supported
by setting uni x_socket . Named pipes on the Windows platform are not supported.

Connector/Python supports authentication plugins available as of MySQL 5.6. This includes

nysql _cl ear _passwor d and sha256_passwor d, both of which require an SSL connection. The
sha256_passwor d plugin does not work over a non-SSL connection because Connector/Python does
not support RSA encryption.

The connect () method supports an aut h_pl ugi n argument that can be used to force use of a
particular plugin. For example, if the server is configured to use sha256_passwor d by default and you
want to connect to an account that authenticates using nysql nati ve_passwor d, either connect
using SSL or specify aut h_pl ugi n="' nysql _native password".

Note

MySQL Connector/Python does not support the old, less-secure password
protocols of MySQL versions prior to 4.1.

Connector/Python supports the Kerberos authentication protocol for passwordless authentication.
Linux clients are supported as of Connector/Python 8.0.26, and Windows support was added in
Connector/Python 8.0.27 with the C extension implementation, and in Connector/Python 8.0.29 with
the pure Python implementation. For Windows, the related ker ber os_aut h_node connection option
was added in 8.0.32 to configure the mode as either SSPI (default) or GSSAPI (via the pure Python
implementation, or the C extension implementation as of 8.4.0). While Windows supports both modes,
Linux only supports GSSAPI.

The following example assumes LDAP Pluggable Authentication is set up to utilize GSSAPI/Kerberos
SASL authentication:

i nport nysql . connector as cpy

i mport | o0gging

| oggi ng. basi cConfi g(| evel =l oggi ng. DEBUG)

SERVI CE_NAME = "| dap”

LDAP_SERVER | P = "server_ip or hostname" # e.g., w nexanpleOl

425

https://dev.mysql.com/doc/refman/8.0/en/kerberos-pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.0/en/ldap-pluggable-authentication.html

Connector/Python Connection Arguments

config = {
"host": "127.0.0.1",
"port": 3306,
"user": "nyuser @xanpl e. cont',
"password": "s3cret",

"use_pure": True,
"krb_service_principal": f"{SERVI CE_NAVE}/ {LDAP_SERVER | P}"
}

wi th cpy.connect (**config) as cnx:
with cnx.cursor() as cur:
cur . execut e(" SELECT @@er si on")
res = cur.fetchone()
print(res[0])

Connector/Python supports Multi-Factor Authentication (MFA) as of v8.0.28 by utilizing the passwor d1
(alias of passwor d), passwor d2, and passwor d3 connection options.

Connector/Python supports WebAuthn Pluggable Authentication as of Connector/Python 8.2.0, which
is supported in MySQL Enterprise Edition. Optionally use the Connector/Python webauthn_callback
connection option to notify users that they need to touch the hardware device. This functionality is
present in the C implementation (which uses libmysgiclient) but the pure Python implementation
requires the FIDO2 dependency that is not provided with the MySQL connector and is assumed to
already be present in your environment. It can be independently installed using:

$> pip install fido2

Previously, the now removed (as of version 8.4.0) aut hent i cati on_fi do MySQL Server plugin was
supported using the fido_callback option that was available in the C extension implementation.

Character Encoding

By default, strings coming from MySQL are returned as Python Unicode literals. To change this
behavior, set use_uni code to Fal se. You can change the character setting for the client connection
through the char set argument. To change the character set after connecting to MySQL, set the

char set property of the My SQLConnect i on instance. This technique is preferred over using the SET
NANMES SQL statement directly. Similar to the char set property, you can set the col | at i on for the
current MySQL session.

Transactions

The aut oconmi t value defaults to Fal se, so transactions are not automatically committed. Call

the conmi t () method of the MySQLConnect i on instance within your application after doing a set
of related insert, update, and delete operations. For data consistency and high throughput for write
operations, it is best to leave the aut oconmi t configuration option turned off when using | nnoDB or
other transactional tables.

Time Zones

The time zone can be set per connection using the t i me_zone argument. This is useful, for example,
if the MySQL server is set to UTC and Tl MESTANMP values should be returned by MySQL converted to
the PST time zone.

SQL Modes

MySQL supports so-called SQL Modes. which change the behavior of the server globally or per
connection. For example, to have warnings raised as errors, set sql _node to TRADI Tl ONAL. For
more information, see Server SQL Modes.

Troubleshooting and Error Handling

Warnings generated by queries are fetched automatically when get _war ni ngs is setto Tr ue. You
can also immediately raise an exception by setting r ai se_on_war ni ngs to Tr ue. Consider using the
MySQL sql_mode setting for turning warnings into errors.

426

https://dev.mysql.com/doc/refman/8.2/en/webauthn-pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.0/en/sql-mode.html
https://dev.mysql.com/doc/refman/8.0/en/sql-mode.html

Connector/Python Connection Arguments

To set a timeout value for connections, use connecti on_ti nmeout .

Enabling and Disabling Features Using Client Flags

MySQL uses client flags to enable or disable features. Using the cl i ent _f | ags argument, you have
control of what is set. To find out what flags are available, use the following:

from nmysqgl . connect or. constants inport dientFlag
print "\n'.join(ClientFlag.get_full_info())

Ifclient _fl ags is not specified (that is, it is zero), defaults are used for MySQL 4.1 and higher. If
you specify an integer greater than 0, make sure all flags are set properly. A better way to set and
unset flags individually is to use a list. For example, to set FOUND_ROWS, but disable the default
LONG_FLAG

flags = [dientFl ag. FOUND_ROA5, -dientFl ag. LONG FLAG
nysql . connect or. connect (client_fl ags=fl ags)

Result Set Handling

By default, MySQL Connector/Python does not buffer or prefetch results. This means that after a query
is executed, your program is responsible for fetching the data. This avoids excessive memory use
when queries return large result sets. If you know that the result set is small enough to handle all at
once, you can fetch the results immediately by setting buf f er ed to Tr ue. It is also possible to set this
per cursor (see Section 6.9.2.6, “MySQLConnection.cursor() Method”).

Results generated by queries normally are not read until the client program fetches them. To
automatically consume and discard result sets, set the consune_r esul t s option to Tr ue. The result
is that all results are read, which for large result sets can be slow. (In this case, it might be preferable to
close and reopen the connection.)

Type Conversions

By default, MySQL types in result sets are converted automatically to Python types. For example, a
DATETI ME column value becomes a datetime.datetime object. To disable conversion, set the r aw
option to Tr ue. You might do this to get better performance or perform different types of conversion
yourself.

Connecting through SSL

Using SSL connections is possible when your Python installation supports SSL, that is, when

it is compiled against the OpenSSL libraries. When you provide the ssl _ca, ssl _key and

ssl _cert options, the connection switches to SSL, and the cl i ent _f | ags option includes the

Cl i ent Fl ag. SSL value automatically. You can use this in combination with the conpr essed option
setto True.

As of Connector/Python 2.2.2, if the MySQL server supports SSL connections, Connector/Python
attempts to establish a secure (encrypted) connection by default, falling back to an unencrypted
connection otherwise.

From Connector/Python 1.2.1 through Connector/Python 2.2.1, it is possible to establish an SSL
connection using only the ssl _ca opion. The ssl _key and ssl _cert arguments are optional.
However, when either is given, both must be given oran At t r i but eEr r or is raised.

Note (Exanple is valid for Python v2 and v3)
from__future__ inport print_function
i nport sys
#sys. path.insert(0, 'python{0Q}/"'.format(sys.version_info[0]))
i nport nysqgl . connect or
from nysql . connector. constants inport dientFlag
config = {
"user': 'ssluser',

427

https://dev.mysql.com/doc/c-api/8.2/en/mysql-real-connect.html
http://docs.python.org/library/datetime.html#datetime.datetime
http://docs.python.org/library/ssl.html

Connector/Python Connection Arguments

' password': 'password',
"host': '127.0.0.1',
‘client_flags': [dientFlag. SSL],
'ssl _ca': '/opt/nysql/ssl/ca.pen,
"ssl _cert': '/opt/nysqgl/ssl/client-cert. pem,
"ssl _key': '/opt/nysqgl/ssl/client-key.pemn,
}
cnx = mysql . connect or. connect (**confi g)
cur = cnx. cursor (buf fered=True)
cur . execut e(" SHOW STATUS LI KE ' Ssl _ci pher' ")
print(cur.fetchone())
cur.cl ose()
cnx. cl ose()

Connection Pooling

With either the pool _nane or pool _si ze argument present, Connector/Python creates the new
pool. If the pool _nane argument is not given, the connect () call automatically generates the name,
composed from whichever of the host , port, user, and dat abase connection arguments are given,
in that order. If the pool _si ze argument is not given, the default size is 5 connections.

The pool _reset _sessi on permits control over whether session variables are reset when the
connection is returned to the pool. The default is to reset them.

For additional information about connection pooling, see Section 6.8.4, “Connector/Python Connection
Pooling”.

Protocol Compression

The boolean conpr ess argument indicates whether to use the compressed client/server protocol
(default Fal se). This provides an easier alternative to setting the Cl i ent Fl ag. COVPRESS flag. This
argument is available as of Connector/Python 1.1.2.

Converter Class

The converter cl ass argument takes a class and sets it when configuring the
connection. An At t ri but eEr r or is raised if the custom converter class is not a subclass of
conver si on. MySQLConvert er Base.

Server Failover

The connect () method accepts af ai | over argument that provides information to use for server
failover in the event of connection failures. The argument value is a tuple or list of dictionaries (tuple
is preferred because it is nonmutable). Each dictionary contains connection arguments for a given
server in the failover sequence. Permitted dictionary values are: user, passwor d, host, port,

uni x_socket, dat abase, pool _nane, pool _si ze. This failover option was added in Connector/
Python 1.2.1.

Option File Support

As of Connector/Python 2.0.0, option files are supported using two options for connect () :

« option_files:Which option files to read. The value can be a file path name (a string) or a
sequence of path name strings. By default, Connector/Python reads no option files, so this argument
must be given explicitly to cause option files to be read. Files are read in the order specified.

» option_groups: Which groups to read from option files, if option files are read. The value can
be an option group name (a string) or a sequence of group name strings. If this argument is not
given, the default valueis [' client', 'connector_python'] toreadthe[client] and
[connect or _pyt hon] groups.

For more information, see Section 6.7.2, “Connector/Python Option-File Support”.

428

Connector/Python Option-File Support

LOAD DATA LOCAL INFILE

Prior to Connector/Python 2.0.0, to enable use of LOAD DATA LOCAL | NFI LE, clients had to explicitly
setthe Cl i ent FI ag. LOCAL_FI LES flag. As of 2.0.0, this flag is enabled by default. To disable it, the
al ow_| ocal _i nfil e connection option can be set to Fal se at connect time (the default is Tr ue).

Compatibitility with Other Connection Interfaces

passwd, db and connect _t i meout are valid for compatibility with other MySQL interfaces
and are respectively the same as passwor d, dat abase and connecti on_ti neout. The
latter take precedence. Data source name syntax or dsn is not used; if specified, it raises a
Not Support edEr r or exception.

Client/Server Protocol Implementation

Connector/Python can use a pure Python interface to MySQL, or a C Extension that uses the MySQL
C client library. The use_pur e mysgl.connector.connect() connection argument determines which. The
default changed in Connector/Python 8 from Tr ue (use the pure Python implementation) to Fal se.
Setting use_pur e changes the implementation used.

The use_pur e argument is available as of Connector/Python 2.1.1. For more information about the C
extension, see The Connector/Python C Extension.

6.7.2 Connector/Python Option-File Support

As of version 2.0.0, Connector/Python has the capability of reading options from option files. (For
general information about option files in MySQL, see Using Option Files.) Two arguments for the
connect () call control use of option files in Connector/Python programs:

« option_files:Which option files to read. The value can be a file path name (a string) or a
sequence of path name strings. By default, Connector/Python reads no option files, so this argument
must be given explicitly to cause option files to be read. Files are read in the order specified.

e option_groups: Which groups to read from option files, if option files are read. The value can
be an option group name (a string) or a sequence of group name strings. If this argument is not
given, the default valueis[' cl ient', 'connector_ python'],toreadthe[client] and
[connect or _pyt hon] groups.

Connector/Python also supports the ! i ncl ude and ! i ncl udedi r inclusion directives within option
files. These directives work the same way as for other MySQL programs (see Using Option Files).

This example specifies a single option file as a string:

cnx = nysql . connector. connect (option_files='/etc/ nysqgl/connectors.cnf')

This example specifies multiple option files as a sequence of strings:

nysqgl _option_files = [
'/ etc/ nysql / connectors. cnf’
' ./ devel opnent . cnf"’

]

cnx = nysql . connector. connect (option_fil es=nysqgl _option_files)

Connector/Python reads no option files by default, for backward compatibility with versions older than
2.0.0. This differs from standard MySQL clients such as nysql or nysql dunp, which do read option
files by default. To find out which option files the standard clients read on your system, invoke one of
them with its - - hel p option and examine the output. For example:

$> nysql --help

Default options are read fromthe following files in the given order
/etc/ny.cnf /etc/nysql/ny.cnf /usr/local/nysql/etc/my.cnf ~/.ny.cnf

429

https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/connector-python/en/connector-python-cext.html
https://dev.mysql.com/doc/refman/8.0/en/option-files.html
https://dev.mysql.com/doc/refman/8.0/en/option-files.html

Connector/Python Other Topics

If you specify the opti on_fi | es connection argument to read option files, Connector/Python reads
the[client] and[connector pyt hon] option groups by default. To specify explicitly which
groups to read, use the opti on_gr oups connection argument. The following example causes only the
[connect or _pyt hon] group to be read:

cnx = mysql.connector.connect (option_fil es='"/etc/ mysqgl/connectors.cnf'
opti on_groups=' connect or _pyt hon')

Other connection arguments specified in the connect () call take precedence over options read from
option files. Suppose that / et ¢/ nysql / connect or s. conf contains these lines:

[client]
dat abase=cpyapp

The following connect () call includes no dat abase connection argument. The resulting connection
uses cpyapp, the database specified in the option file:

cnx = mysql . connect or. connect (option_fil es='/etc/nysqgl/connectors.cnf')

By contrast, the following connect () call specifies a default database different from the one found in
the option file. The resulting connection uses cpyapp_dev as the default database, not cpyapp:

cnx2 = nmysqgl . connector. connect (option_files="/etc/nysql/connectors.cnf'
dat abase=' cpyapp_dev')

Connector/Python raises a Val ueEr r or if an option file cannot be read, or has already been read.
This includes files read by inclusion directives.

For the [connect or _pyt hon] group, only options supported by Connector/Python are accepted.
Unrecognized options cause a Val ueEr r or to be raised.

For other option groups, Connector/Python ignores unrecognized options.
It is not an error for a named option group not to exist.

Connector/Python treats option values in option files as strings and evaluates them using eval () . This
enables specification of option values more complex than simple scalars.

6.8 Connector/Python Other Topics

This section describes additional Connection/Python features:
» Connection pooling: Section 6.8.4, “Connector/Python Connection Pooling”

» Django back end for MySQL: Section 6.8.5, “Connector/Python Django Back End”

6.8.1 Connector/Python Logging

By default, logging functionality follows the default Python logging behavior. If logging functionality is
not configured, only events with a severity level of WARNING and greater are printed to sys.stderr. For
related information, see Python's Configuring Logging for a Library documentation.

Outputting additional levels requires configuration. For example, to output debug events to sys.stderr
set logging.DEBUG and add the logging.StreamHandler handler. Additional handles can also be
added, such as logging.FileHandler. This example sets both:

d assic Protocol Exanple

i mport | ogging

i nport nysqgl . connect or

| ogger = | oggi ng. get Logger (" nysql . connector")

| ogger . set Level (| oggi ng. DEBUG)

formatter = | ogging. Formatter ("% asctine)s - %nane)s - %I evel nane)s- % nessage)s")
stream handl er = | oggi ng. St reantandl er ()

stream handl er. set Formatter (formatter)

| ogger . addHandl er (st ream handl er)

430

https://docs.python.org/3/howto/logging.html#configuring-logging-for-a-library

OpenTelemetry Support

file_handl er = | ogging. Fil eHandl er ("cpy.|o0g")
file_handl er.setFormatter(formatter)

| ogger . addHand! er (fi | e_handl er)

XDevAPl Protocol Exanple

i mport | ogging

i mport mysql x

| ogger = | oggi ng. get Logger (" mysqgl x")

| ogger . set Level (| oggi ng. DEBUG)

formatter = | oggi ng. Formatter ("% asctine)s - % nanme)s - %I evel nane)s- % nessage)s")
stream handl er = | oggi ng. St reanHandl er ()
stream handl er. set Formatter (formatter)

| ogger . addHandl er (st ream handl er)

file_handl er = | ogging. Fil eHandl er ("cpy.|o0g")
file_handl er.setFormatter(formatter)

| ogger . addHandl er (fi | e_handl er)

6.8.2 OpenTelemetry Support

MySQL Server added OpenTelemetry support in MySQL Enterprise Edition version 8.1.0, which is a
commercial product. OpenTelemetry tracing support was added in Connector/Python 8.1.0.

Introduction to OpenTelemetry

OpenTelemetry is an observability framework and toolkit designed to create and manage telemetry
data such as traces, metrics, and logs. Visit What is OpenTelemetry? for an explanation of what
OpenTelemetry offers.

Connector/Python only supports tracing, so this guide does not include information about metric and
log signals.

Instrumentation

For instrumenting an application, Connector/Python utilizes the official OpenTelemetry SDK to initialize
OpenTelemetry, and the official OpenTelemetry API to instrument the application's code. This emits
telemetry from the application and from utilized libraries that include instrumentation.

To enable OpenTelemetry support, first install the official OpenTelemetry APl and SDK packages:

pip install opentel enetry-api
pip install opentel emetry-sdk

Then, an application can be instrumented as demonstrated by this generic example:

from opentel enetry inport trace
from opentel enetry. sdk.trace i nmport Tracer Provi der
from opentel enetry. sdk. trace. export inmport BatchSpanProcessor
from opentel enetry. sdk. trace. export inport Consol eSpanExporter
provi der = Tracer Provi der ()
processor = Bat chSpanProcessor (Consol eSpanExporter())
provi der. add_span_pr ocessor (processor)
trace.set_tracer_provider(provider)
tracer = trace.get_tracer(__nanme_)
with tracer.start_as_current _span("app"):
my_app()

To better understand and get started using OpenTelemetry tracing for Python, see the official
OpenTelemetry Python Instrumentation guide.

MySQL Connector/Python

Connector/Python includes a MySQL instrumentor to instrument MySQL connections. This
instrumentor provides an API and usage similar to OpenTelemetry's own MySQL package named
opentelemetry-instrumentation-mysql.

An exception is raised if a system does not support OpenTelemetry when attempting to use the
instrumentor.

431

https://www.mysql.com/products/enterprise/
https://opentelemetry.io/docs/what-is-opentelemetry/
https://opentelemetry.io/docs/instrumentation/python/manual/
https://github.com/open-telemetry/opentelemetry-python-contrib/tree/main/instrumentation/opentelemetry-instrumentation-mysql

OpenTelemetry Support

Note

Connector/Python also includes an optional bundled version of the
OpenTelemetry SDK/API; and its limitations and usage are documented
separately. This guide assumes the system's OpenTelemetry SDK/API are
installed and used instead of the bundled version.

An example that utilizes the system's OpenTelemetry SDK/API and implements tracing with MySQL
Connector/Python:

i mport os

i nport nysqgl . connect or

An instrumentor that cones w th nysql - connect or- pyt hon

from nmysqgl . connect or. opentel emetry. i nstrunentation inport (
M/SQLI nstrunent or as Oracl eMySQLI nst runent or,

)

Loading SDK from the system

from opentel enetry inport trace

from opentel enetry. sdk.trace i nport Tracer Provi der

from opentel enetry. sdk. trace. export inport BatchSpanProcessor

from opentel enetry. sdk. trace. export inport Consol eSpanExporter

provi der = Tracer Provi der ()

processor = Bat chSpanProcessor (Consol eSpanExporter())

provi der. add_span_pr ocessor (processor)

trace.set_tracer_provider(provider)

tracer = trace.get_tracer(__nanme_)

config = {
"host": "127.0.0.1",
"user": "root",

"password": os.environ.get("password"),
"use_pure": True,
"port": 3306,
"dat abase": "test",
}
dobal instrunmentation: all connection objects returned by
nysql . connector. connect will be instrunented.
Oracl eMySQLI nstrument or (). i nstrument ()
with tracer.start_as_current_span("client_app"):
wi th nmysqgl . connector.connect (**config) as cnx:
with cnx.cursor() as cur:
cur. execut e(" SELECT @@er si on")
_ = cur.fetchall ()

Morphology of the Emitted Traces

A trace generated by the Connector/Python instrumentor contains one connection span, and zero or
more query spans as described in the rest of this section.

Connection Span

» Time from connection initialization to the moment the connection ends. The span is named
connecti on.

« If the application does not provide a span, the connection span generated is a ROOT span,
originating in the connector.

« If the application does provide a span, the query span generated is a CHILD span, originating in the
connector.

Query Span

» Time from when an SQL statement is requested (on the connector side) to the moment the
connector finishes processing the server's reply to this statement.

» A query span is created for each query request sent to the server. If the application does not provide
a span, the query span generated is a ROOT span, originating in the connector.

432

OpenTelemetry Support

« If the application does provide a span, the query span generated is a CHILD span, originating in the
connector.

» The query span is linked to the existing connection span of the connection the query was executed.
* Query attributes with prepared statements is supported as of MySQL Enterprise Edition 8.3.0.
Context Propagation

By default, the trace context of the span in progress (if any) is propagated to the MySQL server.

Propagation has no effect when the MySQL server either disabled or does not support OpenTelemetry
(the trace context is ignored by the server), however, when connecting to a server with OpenTelemetry
enabled and configured, the server processes the propagated traces and creates parent-child
relationships between the spans from the connector and those from the server. In other words, this
provides trace continuity.

Note

Context propagation with prepared statements is supported as of MySQL
Enterprise Edition 8.3.0.

» The trace context is propagated for statements with query attributes defined in the MySQL client/
server protocol, such as COM_QUERY.

The trace context is not propagated for statements without query attributes defined in the MySQL
client/server protocol, statements such as COM_PING.

» Trace context propagation is done via query attributes where a new attribute named "traceparent" is
defined. Its value is based on the current span context. For details on how this value is computed,
read the traceparent header W3C specification.

If the "traceparent" query attribute is manually set for a query, then it is not be overwritten by the
connector; it's assumed that it provides OTel context intended to forward to the server.

Disabling Trace Context Propagation

The boolean connection property named ot el _cont ext _propagati onis Tr ue by default. Setting it
to Fal se disables context propagation.

Since ot el _cont ext _propagat i on is a connection property that can be changed after a connection
is established (a connection object is created), setting such property to Fal se does not have an effect
over the spans generated during the connection phase. In other words, spans generated during the
connection phase are always propagated since ot el _cont ext _propagati onis Tr ue by default.

This implementation is distinct from the implementation provided through the MySQL client library (or
therelated t el enetry_cl i ent client-side plugin).

Bundled OpenTelemetry Support

If unable to install opent el enet ry- api and opent el enet r y- sdk system packages on a system,
then you may instead use the OpenTelemetry SDK/API libraries bundled with MySQL Connector/
Python. This section describes the differences and limitations when using this bundled version.

Note

Using the system OpenTelemetry SDK/API is recommended as it gives access
to the latest OpenTelemetry version, and the bundled versions lack exporter
support.

Enabling the bundled OpenTelemetry installation requires a different installation workflow. Compare the
following:

A standard (non-bundled) full installation:

433

https://www.w3.org/TR/trace-context/#traceparent-header
https://opentelemetry.io/docs/instrumentation/python/exporters/

Asynchronous Connectivity

pip install opentel emetry-ap
pip install opentel enetry-sdk
pip install nysql-connector-python

The alternative to instead have Connector/Python utilize the bundled OpenTelemetry SDK/API
libraries:

pip install nysql-connector-python[opentel enetry]

The [opentelemetry] syntax tells the installation driver to include the corresponding dependencies to
utilize the bundled installation.

Alternative versions of the bundled installation version:

Alternatively, install from source code
(assuming you are in the root source code fol der)
pip install ".[opentel enetry]"

When calling OpenTelemetry, the connector tries to load the corresponding modules from the system
(the Python environment from which the program is being executed); if the load fails (modules not
found) it falls back to the bundled installation. An exception is raised if neither installation dependencies
are available.

Example code that directly utilizes the bundled installation, note the mysql.opentelemetry.sdk.* prefix
as opposed to opentelemetry.sdk.* demonstrated earlier:

i mport nysql . connect or
from nysql . connect or. opentel enetry. i nstrunentation inport (
M/SQLI nst rument or as O acl eMySQLI nst runent or,

)

from nysql . opentel enetry inport trace

from nysql . opentel enetry. sdk. trace inport TracerProvider

from nysql . opent el enetry. sdk. trace. export inport BatchSpanProcessor
from nysql . opentel enetry. sdk. trace. export inport Consol eSpanExporter

Potential issues to consider:

» Mixing the bundled and the system installations: consider the application code example utilizing the
bundled installation, if otel happens to be available in the system and the application tries to run
the example it will likely fail because the module mysqgl.connector.opentelemetry.instrumentation
is loading otel SDK and API resources from the system installation (higher precedence), while the
application is loading resources from the bundled installation.

e Trying to load an exporter from the bundled installation: the bundled installation includes the bare
minimum otel modules to carry out instrumentation and print the traces to the console, however, it
does not include an exporter. If you want to export traces, install otel in the system and utilize the
system installation.

6.8.3 Asynchronous Connectivity

Installing Connector/Python also installs the nmysql . connect or . ai o package that integrates asyncio
with the connector to allow integrating asynchronous MySQL interactions with an application.

Here are code examples that integrate nysql . connect or . ai o functionality:

Basic Usage:

from nmysqgl . connector. ai o i nport connect

Connect to a MySQL server and get a cursor

cnx = await connect (user="myuser", password="mypass")
cur = await cnx.cursor()

Execute a non-bl ocki ng query

await cur. execut e(" SELECT version()")

Retrieve the results of the query asynchronously
results = await cur.fetchall ()

print(results)

Cl ose cursor and connection

434

https://docs.python.org/3/library/asyncio.html

Asynchronous Connectivity

await cur.cl ose()
await cnx. cl ose()

Usage with context managers:

from nysqgl . connector. ai o i nport connect
Connect to a MySQL server and get a cursor
async wWith await connect (user="myuser", password="nypass") as cnx
async with await cnx.cursor() as cur
Execute a non-bl ocki ng query
awai t cur.execute("SELECT version()")
Retrieve the results of the query asynchronously
results = await cur.fetchall ()
print(results)

Running Multiple Tasks Asynchronously

This example showcases how to run tasks asynchronously and the usage of to_thread, which is the
backbone to asynchronously run blocking functions:

Note

The synchronous version of this example implements coroutines instead of
following a common synchronous approach; this to explicitly demonstrate that
only awaiting coroutines does not make the code run asynchronously. Functions
included in the asyncio API must be used to achieve asynchronicity.

i mport asynci o

i mport os

import tinme

from nmysqgl . connector. ai o i nport connect

d obal variable which will help to format the job sequence out put.

DI SCLAIMER: this is an exanpl e for showcasi ng/ demo purposes
you shoul d avoi d gl obal variabl es usage for production code
gl obal i ndent
indent = 0
MySQL Connection arguments
config = {
"host": "127.0.0.1",
"user": "root",
"password": os.environ.get("MPASS', ":("),
"use_pure": True
"port": 3306
}
async def job_sleep(n):
"""Take a nap for n seconds
This job represents any generic task - it may be or not an | O task

| ncrenment indent
gl obal i ndent
of fset = "\t" * indent
i ndent += 1
Emul ati ng a generic job/task
print (f"{of fset}START_SLEEP")
await asynci o. sl eep(n)
print(f"{of fset}END SLEEP")
return f"I slept for {n} seconds"
async def job_nysql():
"""Connect to a MySQL Server and do sone operations
Run queries, run procedures, insert data, etc

| ncrenment indent

gl obal i ndent

of fset = "\t" * indent

indent += 1

MySQL operations

print (f"{of fset}START _MySQ._OPS")

async wWith await connect(**config) as cnx
async wWith await cnx.cursor() as cur

await cur. execut e(" SELECT @@er si on")

435

Asynchronous Connectivity

res = await cur.fetchone()
time.sleep(l) # for simulating that the fetch isn't inmediate
print(f"{of fset}END MYSQL_OPS")
return server version
return res
async def job_io()
"""Emul ate an | O operation
“to_thread” allows to run a blocking function asynchronously.
Ref er ences
[asyncio.to_thread]: https://docs. python.org/3/1ibrary/asynci o-task. htm #asynci o.to_t hread
Emul ating a native bl ocking | O procedure
def io():
""" Bl ocking | O operation
time. sl eep(5)
| ncrement indent
gl obal i ndent
of fset = "\t" * indent
i ndent += 1
Showcasi ng how a native bl ocking | O procedure can be awaited
print(f"{of fset}START | O")
await asyncio.to_thread(io)
print(f"{of fset}END | O")
return "I aman | O operation”
async def mai n_asynchronous()
""" Runni ng tasks asynchronously.
Ref er ences
[asynci o. gather]: https://docs. python.org/3/I1ibrary/asynci o-task. ht m #asynci o. gat her

print("-------------------- ASYNCHRONQUS - ----------mmmmmo oo - ")
reset indent
gl obal i ndent
indent = 0
clock = tine.tine()
~asyncio.gather()" allows to run awaitabl e objects
in the aws sequence asynchronously.\
If all awaitables are conpl eted successfully,
the result is an aggregate list of returned val ues
aws = (job_io(), job_nysqgl (), job_sleep(4))
returned_val s = await asynci o. gat her (*aws)
print(f"El apsed tine: {tine.tine() - clock:0.2f}")
The order of result values corresponds to the
order of awaitables in aws.
print(returned_vals, end="\n" * 2)
Exanpl e expected out put
oo ASYNCHRONQUS - ----------mmmmmo oo -
START_I O
START_MYSQL_OPS
START_SLEEP
END_MYSQL_OPS
END_SLEEP
END_| O
El apsed tine: 5.01
#['l aman IO operation', ('8.3.0-comercial',), 'I slept for 4 seconds']
async def mai n_non_asynchronous()
""" Runni ng tasks non-asynchronously
print("------------------- NON- ASYNCHRONQUS - - - -------------m-- ")
reset indent
gl obal i ndent
indent = 0
clock = tinme.tine()
Sequence of awaitabl e objects
aws = (job_io(), job_nysqgl (), job_sleep(4))
The line below this docstring is the short version of:
corol, coro2, coro3 = *aws
resl = await corol
res2 = await coro2
res3 = await coro3
returned_vals = [resl, res2, res3]
NOTE: Sinply awaiting a coro does not nake the code run asynchronously!
returned_vals = [await coro for coro in aws] # this will run synchronously
print(f"El apsed tine: {tine.tine() - clock:0.2f}")

HH O H R

436

Asynchronous Connectivity

print(returned_vals, end="\n")
Exanpl e expected out put
——————————————————— NON- ASYNCHRONQUS - - - -------------o--
START_| O
END_| O
START_MYSQL_OPS
END_MYSQL_OPS
START_SLEEP
END_SLEEP
El apsed time: 10.07
['l aman IO operation', ('8.3.0-comercial',), '|I slept for 4 seconds']
if _name__ =="__main__":
“asyncio.run() " allows to execute a coroutine (‘coro’) and return the result.
You cannot run a coro without it.
Ref erences:
[asynci o.run]: https://docs. python.org/ 3/1i brary/asynci o-runner. htm #asynci o. run
assert asynci o.run(mai n_asynchronous()) == asynci o. run(mai n_non_asynchronous())

HH O HHH R HHHR

It shows these three jobs running asynchronously:

» j ob_i o: Emulate an I/O operation; with to_thread to allow running a blocking function
asynchronously.

Starts first, and takes five seconds to complete so is the last job to finish.

» job_nysql : Connects to a MySQL server to perform operations such as queries and stored
procedures.

Starts second, and takes one second to complete so is the first job to finish.
* j ob_sl eep: Sleeps for n seconds to represent a generic task.
Starts last, and takes four seconds to complete so is the second job to finish.
Note

A lock/mutex wasn't added to the i ndent variable because multithreading isn't
used; instead the unique active thread executes all of the jobs. Asynchronous
execution is about completing other jobs while waiting for the result of an 1/0
operation.

Asynchronous MySQL Queries
This is a similar example that uses MySQL queries instead of generic jobs.
Note

While cursors are not utilized in the these examples, the principles and workflow
could apply to cursors by letting every connection object create a cursor to
operate from.

Synchronous code to create and populate hundreds of tables:

i nport os
import tinme
fromtyping inport TYPE CHECKING Callable, List, Tuple
from nysql . connector inport connect
i f TYPE_CHECKI NG

from nysql . connector. abstracts inport (

MySQLConnect i onAbstract ,
)

MySQL Connection argunents

config = {
"host": "127.0.0.1",
“user": "root",
"password": os.environ. get (" MYPASS", ":("),
"use_pure": True,
"port": 3306,

437

Asynchronous Connectivity

}

exec_sequence = []
def create_tabl e(
exec_seq: List[str], table_nanes: List[str], cnx: "M/SQ.ConnectionAbstract", i:
) -> None:
"""Creates a table.
if i >= len(tabl e_nanes):
return Fal se
exec_seq. append(f"start_{i}")
stmt = f"""
CREATE TABLE | F NOT EXI STS {table_nanes[i]} (
dish_id INT(11) UNSI GNED AUTO_ | NCREMENT UNI QUE KEY,
cat egory TEXT,
di sh_name TEXT,
price FLOAT,
servi ngs | NT,
order_tinme TIME

cnx. cnd_query(f"DROP TABLE | F EXI STS {tabl e_nanes[i]}")
cnx. crmd_query(stnt)
exec_seq. append(f"end_{i}")
return True
def drop_tabl e(
exec_seq: List[str], table_nanes: List[str], cnx: "M/SQ.ConnectionAbstract", i:
) -> None:
"""Drops a table.
if i >= len(tabl e_nanes):
return Fal se
exec_seq. append(f"start_{i}")
cnx. cnd_query(f"DROP TABLE | F EXI STS {tabl e_nanes[i]}")
exec_seq. append(f"end_{i}")
return True
def mai n(
kernel : Callable[[List[str], List[str], "MySQConnectionAbstract", int], None],
tabl e_nanmes: List[str],
) -> Tuple[List, List]:
exec_seq = []
dat abase_nanme = " TABLE_CREATOR'
wi th connect (**config) as cnx:
Create/ Setup dat abase
cnx. cnd_quer y(f" CREATE DATABASE | F NOT EXI STS {dat abase_nane}")
cnx. cnd_query(f"USE {dat abase_nane}")
Execute Kernel: Create or Delete tables
for i in range(len(table_nanes)):
kernel (exec_seq, table_nanes, cnx, i)
Show t abl es
cnx. cnd_query(" SHOW t abl es")
show_t abl es = cnx. get _rows()[0]
Return execution sequence and table nanmes retrieved with “SHOWt abl es; .
return exec_seq, show_tabl es
if _name__ =="__main__":
with numtabl es=511 -> El apsed tinme ~ 25.86
clock = tinme.tine()
print_exec_seq = Fal se
num tables = 511
tabl e_nanmes = [f"table_sync_{n}" for n in range(numtables)]

print("-------------------- SYNC CREATOR ------------mmmmmm - ")
exec_seq, show_tables = main(kernel =create_tabl e, table_nanmes=tabl e_nanes)
assert | en(show_tabl es) == num tabl es

if print_exec_seq:
print (exec_seq)

print("-------------------- SYNC DROPPER ----------ommmoo o ")
exec_seq, show_tables = main(kernel =drop_table, table_nanes=tabl e_nanes)
assert |en(show_ tables) == 0

if print_exec_seq:
print (exec_seq)
print(f"El apsed tine: {tine.tinme() - clock:0.2f}")
Expected output with numtables = 11:
oo SYNC CREATOR -------------mmmmm -

"start_0",

int

int

438

Asynchronous Connectivity

"end_0",
"start_1",
"end_1",
"start_2",
"end_2",
"start_3",
"end_3",
"start_4",
"end_4",
"start_5",
"end_5",
"start_6",
"end_6",
"start_7",
"end_7",
"start_8",
"end_8",
"start_9",
"end_9",
"start_10",
"end_10",

"start_0",
"end_0",
"start_1",
"end_1",
"start_2",
"end_2",
"start_3",
"end_3",
"start_4",
"end_4",
"start_5",
"end_5",
"start_6",
"end_6",
"start_7",
"end_7",
"start_8",
"end_8",
"start_9",
"end_9",
"start_10",
"end_10",

HHEFHFFHFFFEHFFEHFFHFFEHFFFFRFEFREHFSRHFFRFFRFEFEFEFEFEF R

]

That script creates and deletes {num_tables} tables, and is fully sequential in that it creates and deletes

table_{i} before moving to table {i+1}.

An asynchronous code example for the same task:

i mport asynci o
i mport os
inmport tinme
fromtyping inport TYPE CHECKI NG Call able, List,
from nmysqgl . connector. ai o i nport connect
i f TYPE_CHECKI NG
from nmysqgl . connect or. ai 0. abstracts inmport (
MySQLConnect i onAbst ract ,

)
MySQL Connection argunents
config = {
“host": "127.0.0.1",
“user": "root",
"password": os.environ.get("MPASS', ":("),
"use_pure": True,
"port": 3306,

}

exec_sequence = []
async def create_tabl e(

Tupl e

439

Asynchronous Connectivity

)

exec_seq: List[str], table_nanmes: List[str], cnx: "MySQ.ConnectionAbstract", i: int

-> None:

"""Creates a table.
if i >= len(tabl e_nanes):
return Fal se
exec_seq. append(f"start_{i}")
stmt = f"""
CREATE TABLE | F NOT EXI STS {table_nanes[i]} (
dish_id INT(11) UNSI GNED AUTO_ | NCREMENT UNI QUE KEY,
cat egory TEXT,
di sh_name TEXT,
price FLOAT,
servi ngs | NT,
order_tinme TIME

await cnx.cnd_query(f"DROP TABLE | F EXI STS {tabl e_nanes[i]}")
await cnx.cnd_query(stnt)

exec_seq. append(f"end_{i}")

return True

async def drop_tabl e(

)

exec_seq: List[str], table_nanmes: List[str], cnx: "MySQ.ConnectionAbstract", i: int

-> None:

"""Drops a table.
if i >= len(tabl e_nanes):

return Fal se
exec_seq. append(f"start _{i}")
await cnx.cnd_query(f"DROP TABLE | F EXI STS {tabl e_nanmes[i]}")
exec_seq. append(f"end_{i}")
return True

async def mai n_async(

)

kernel : Callable[[List[str], List[str], "My/SQConnectionAbstract", int], None],
tabl e_nanmes: List[str],
num j obs: int = 2,

-> Tupl e[List, List]:

"""The asynchronous tables creator...
Ref er ence:

[as_conpl eted]: https://docs. python.org/3/1ibrary/asynci o-task. ht m #asynci 0. as_conpl et ed

exec_seq = []
dat abase_nanme = " TABLE_CREATOR'
Create/ Setup dat abase

No asynchronous execution is done here.

NOTE: observe usage W TH cont ext manager .

async wWith await connect(**config) as cnx:
await cnx.cnd_query(f" CREATE DATABASE | F NOT EXI STS {dat abase_nane}")
await cnx.cnmd_query(f"USE {dat abase_nane}")

confi g["dat abase"] = dat abase_nane

Open connections

“as_conpleted” allows to run awaitable objects in the "aws™ iterable asynchronously.
NOTE: observe usage W THOUT cont ext nanager.
aws = [connect(**config) for _ in range(numj obs)]
cnxs: List["M/SQ.ConnectionAbstract"] = [
await coro for coro in asyncio.as_conpl et ed(aws)

]

Execute Kernel: Create or Delete tables

N tabl es nust be created/deleted and we can run up to ~numjobs® jobs asynchronously,
therefore we execute jobs in batches of size numjobs'.

returned_values, i = [True], O
whil e any(returned_values): # Keep running until i >= |len(table_nanes) for all jobs
Prepare coros: map connections/cursors and table-nane IDs to jobs.
aws = [
kernel (exec_seq, table_nanes, cnx, i + idx) for idx, cnx in enunerate(cnxs)

]

When i >= |l en(tabl e_names) coro sinply returns Fal se, el se True.
returned_values = [await coro for coro in asyncio.as_conpl eted(aws)]
Update tabl e-name | D of fset based on the nunber of jobs
i += num j obs

Cl ose cursors

440

Asynchronous Connectivity

“as_conpleted” allows to run awaitable objects in the "aws™ iterable asynchronously.

for coro in asyncio.as_conpl eted([cnx.close() for cnx in cnxs]):
awai t coro
Load tabl e nanes

No asynchronous execution is done here.
async with await connect(**config) as cnx:
Show t abl es
await cnx.cnd_query("SHON t abl es")
show tables = (await cnx.get_rows())[0]
Return execution sequence and table nanmes retrieved with “SHOWt abl es; .
return exec_seq, show_tabl es
name__ == "__main__":
“asyncio.run() " allows to execute a coroutine (‘coro’) and return the result.
You cannot run a coro W thout it.
Ref er ences:

with numtabl es=511 and num j obs=3 -> El apsed tinme ~ 19.09

with numtabl es=511 and num jobs=12 -> El apsed time ~ 13.15

clock = tine.tine()

print_exec_seq = Fal se

num tables = 511

num j obs = 12

tabl e_names = [f"table_async_{n}" for n in range(numtabl es)]
print("-------------------- ASYNC CREATOR -------------------- ")

exec_seq, show_tables = asyncio.run(

mai n_async(kernel =create_tabl e, tabl e_nanmes=t abl e_nanmes, num j obs=num j obs)

:ﬂ::ﬂ::ht:ﬂ::ﬂ::ht|

assert | en(show_tabl es) == num tabl es
if print_exec_seq:
print (exec_seq)
print("-------------------- ASYNC DROPPER -------------nnmmonn ")
exec_seq, show_tables = asyncio.run(
mai n_async(kernel =drop_t abl e, tabl e_nanes=tabl e_nanes, num j obs=num j obs)
)
assert |en(show_tables) ==
if print_exec_seq:
print (exec_seq)
print(f"El apsed tine: {tine.tine() - clock:0.2f}")
Expected output with numtables = 11 and numjobs = 3:
———————————————————— ASYNC CREATOR --------------------

"start_2",
"start_1",
"start_0",
"end_2",
"end_0",
"end_1",
"start_5",
"start_3",
"start_4",
"end_3",
"end_5",
"end_4",
"start_8",
"start_7",
"start_6",
"end_7",
"end_8",
"end_6",
"start_10",
"start_9",
"end_9",
"end_10",

"start_1",
"start_2",
"start_0",

HHFHFFHEFHFEHFEHFHEHFHHFH TR

[asynci o.run]: https://docs. python.org/3/1i brary/asynci o-runner. htm #asynci o. run

441

Connector/Python Connection Pooling

"end_1",
"end_2",
"end_0",
"start_3",
"start_5",
"start_4",
"end_4",
"end_5",
"end_3",
"start_6",
"start_8",
"start_7",
"end_7",
"end_6",
"end_8",
"start_10",
"start_9",
"end_9",
"end_10",

HHHHHHH R

]

This output shows how the job flow isn't sequential in that up to {num_jobs} can be executed
asynchronously. The jobs are run following a batch-like approach of {num_jobs} and waits until all
terminate before launching the next batch, and the loop ends once no tables remain to create.

Performance comparison for these examples: the asynchronous implementation is about 26% faster
when using 3 jobs, and 49% faster using 12 jobs. Note that increasing the number of jobs does add
job management overhead which at some point evaporates the initial speed-up. The optimal number of
jobs is problem-dependent, and is a value determined with experience.

As demonstrated, the asynchronous version requires more code to function than the non-asynchronous
variant. Is it worth the effort? It depends on the goal as asynchronous code better optimizes
performance, such as CPU usage, whereas writing standard synchronous code is simpler.

For additional information about the asyncio module, see the official Asynchronous I/O Python
Documentation.

6.8.4 Connector/Python Connection Pooling

Simple connection pooling is supported that has these characteristics:
* The nmysgl . connect or . pool i ng module implements pooling.

» A pool opens a number of connections and handles thread safety when providing connections to
requesters.

» The size of a connection pool is configurable at pool creation time. It cannot be resized thereafter.

» A connection pool can be named at pool creation time. If no name is given, one is generated using
the connection parameters.

» The connection pool name can be retrieved from the connection pool or connections obtained from it.

* Itis possible to have multiple connection pools. This enables applications to support pools of
connections to different MySQL servers, for example.

» For each connection request, the pool provides the next available connection. No round-robin or
other scheduling algorithm is used. If a pool is exhausted, a Pool Er r or is raised.

« Itis possible to reconfigure the connection parameters used by a pool. These apply to connections
obtained from the pool thereafter. Reconfiguring individual connections obtained from the pool by
calling the connection conf i g() method is not supported.

Applications that can benefit from connection-pooling capability include:

442

https://docs.python.org/3/library/asyncio.html#module-asyncio
https://docs.python.org/3/library/asyncio.html#module-asyncio

Connector/Python Connection Pooling

« Middleware that maintains multiple connections to multiple MySQL servers and requires connections
to be readily available.

» websites that can have more “permanent” connections open to the MySQL server.
A connection pool can be created implicitly or explicitly.

To create a connection pool implicitly: Open a connection and specify one or more pool-related
arguments (pool _nane, pool _si ze). For example:

dbconfig = {
"dat abase": "test"
"user": "j oe"
}
cnx = mysql . connect or. connect (pool _nane
pool _si ze
**dbconfi g)

" nypool *,
3,

The pool name is restricted to alphanumeric characters and the special characters ., ,*, $, and #.
The pool name must be no more than pool i ng. CNX_POOL_MAXNANMESI ZE characters long (default
64).

The pool size must be greater than 0 and less than or equal to pool i ng. CNX_POOL_MAXSI ZE
(default 32).

With either the pool _nane or pool _si ze argument present, Connector/Python creates the new
pool. If the pool _name argument is not given, the connect () call automatically generates the name,
composed from whichever of the host , port, user, and dat abase connection arguments are given,
in that order. If the pool _si ze argument is not given, the default size is 5 connections.

Subsequent calls to connect () that name the same connection pool return connections from the
existing pool. Any pool _si ze or connection parameter arguments are ignored, so the following
connect () calls are equivalent to the original connect () call shown earlier:

cnhx = mysql . connect or. connect (pool _nanme = "nypool ", pool _size = 3)
chx = mysql . connect or. connect (pool _name = "nypool ", **dbconfi g)
chx = mysqgl . connector. connect (pool _nanme = "nypool ")

Pooled connections obtained by calling connect () with a pool-related argument have a class

of Pool edMySQLConnect i on (see Section 6.9.4, “pooling.PooledMySQLConnection Class”).

Pool edMySQLConnect i on pooled connection objects are similar to My SQLConnect i on unpooled
connection objects, with these differences:

» To release a pooled connection obtained from a connection pool, invoke its cl ose() method, just
as for any unpooled connection. However, for a pooled connection, cl ose() does not actually close
the connection but returns it to the pool and makes it available for subsequent connection requests.

» A pooled connection cannot be reconfigured using its conf i g() method. Connection changes must
be done through the pool object itself, as described shortly.

« A pooled connection has a pool _nane property that returns the pool name.

To create a connection pool explicitly: Create a MySQLConnect i onPool object (see Section 6.9.3,
“pooling.MySQLConnectionPool Class”):

dbconfig = {
"dat abase": "test"
"user": "j oe"
}
cnxpool = nysql.connector. pool i ng. MySQ.Connect i onPool (pool _nane = "nypool "
pool _size = 3

**dbconfi g)

To request a connection from the pool, use its get _connecti on() method:

443

Connector/Python Django Back End

cnx1
cnx2

chxpool . get _connecti on()
chxpool . get _connecti on()

When you create a connection pool explicitly, it is possible to use the pool object's set _confi g()
method to reconfigure the pool connection parameters:

dbconfig = {
"dat abase": "performance_schema",
"user": "adm n",
"password": "password"

}

cnxpool . set _config(**dbconfi g)

Connections requested from the pool after the configuration change use the new parameters.
Connections obtained before the change remain unaffected, but when they are closed (returned to
the pool) are reopened with the new parameters before being returned by the pool for subsequent
connection requests.

6.8.5 Connector/Python Django Back End

Connector/Python includes a nysql . connect or . dj ango module that provides a Django back end
for MySQL. This back end supports new features found as of MySQL 5.6 such as fractional seconds
support for temporal data types.

Django Configuration

Django uses a configuration file named set t i ngs. py that contains a variable called DATABASES (see
https://docs.djangoproject.com/en/1.5/ref/settings/#std:setting-DATABASES). To configure Django to
use Connector/Python as the MySQL back end, the example found in the Django manual can be used
as a basis:

DATABASES = {
"default': {
"NAME' : 'user_data’
"ENG NE' : ' nysql . connect or. dj ango’
"HOST' @ ' 127.0.0.1'
' PORT' : 3306,
"USER : ' nysql _user’
' PASSWORD' : ' password',
"OPTIONS' : {
"autoconmmt': True
'use_oure': True
"init_command': "SET foo='bar';"

h
}

It is possible to add more connection arguments using OPTI ONS.
Support for MySQL Features

Django can launch the MySQL client application nysql . When the Connector/Python back end does
this, it arranges for the sql _node system variable to be set to TRADI Tl ONAL at startup.

Some MySQL features are enabled depending on the server version. For example, support for
fractional seconds precision is enabled when connecting to a server from MySQL 5.6.4 or higher.
Django's Dat eTi neFi el d is stored in a MySQL column defined as DATETI ME(6) , and Ti neFi el d is
stored as Tl VE(6) . For more information about fractional seconds support, see Fractional Seconds in
Time Values.

Using a custom class for data type conversation is supported as a subclass of
mysql.connector.django.base.DjangoMySQLConverter. This support was added in Connector/Python
8.0.29.

444

https://docs.djangoproject.com/en/1.5/ref/settings/#std:setting-DATABASES
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_sql_mode
https://dev.mysql.com/doc/refman/8.0/en/fractional-seconds.html
https://dev.mysql.com/doc/refman/8.0/en/fractional-seconds.html

Connector/Python APl Reference

6.9 Connector/Python API Reference

This chapter contains the public API reference for Connector/Python. Examples should be considered
working for Python 2.7, and Python 3.1 and greater. They might also work for older versions (such as
Python 2.4) unless they use features introduced in newer Python versions. For example, exception
handling using the as keyword was introduced in Python 2.6 and will not work in Python 2.4.

Note
Python 2.7 support was removed in Connector/Python 8.0.24.

The following overview shows the mysql . connect or package with its modules. Currently, only the
most useful modules, classes, and methods for end users are documented.

nmysql . connect or

errorcode
errors
connecti on
constants
conver si on
cursor
dbapi
| ocal es

eng

client_error

pr ot oco
utils

6.9.1 mysqgl.connector Module
The nmysql . connect or module provides top-level methods and properties.
6.9.1.1 mysqgl.connector.connect() Method

This method sets up a connection, establishing a session with the MySQL server. If no arguments are
given, it uses the already configured or default values. For a complete list of possible arguments, see
Section 6.7.1, “Connector/Python Connection Arguments”.

A connection with the MySQL server can be established using either the
nysgl . connect or. connect () method or the mysqgl . connect or. MySQLConnect i on() class:

cnx
cnx

nmysql . connect or. connect (user="'j oe', database="test')
MySQLConnect i on(user='joe', database='test')

For descriptions of connection methods and properties, see Section 6.9.2,
“connection.MySQLConnection Class”.

6.9.1.2 mysql.connector.apilevel Property

This property is a string that indicates the supported DB API level.

>>> mysql . connect or. api | eve
]

6.9.1.3 mysql.connector.paramstyle Property
This property is a string that indicates the Connector/Python default parameter style.

>>> nysql . connect or. paranstyl e
' pyformat"’

445

connection.MySQLConnection Class

6.9.1.4 mysqgl.connector.threadsafety Property

This property is an integer that indicates the supported level of thread safety provided by Connector/
Python.

>>> nysql . connector.threadsafety
1

6.9.1.5 mysql.connector.__version__ Property

This property indicates the Connector/Python version as a string. It is available as of Connector/Python
1.1.0.

>>> nysql . connector.__version__
'1.1.0

6.9.1.6 mysgl.connector.__version_info__ Property

This property indicates the Connector/Python version as an array of version components. It is available
as of Connector/Python 1.1.0.

>>> nysql . connector.__version_info__
(1, 1, 0, 'a', 0)

6.9.2 connection.MySQLConnection Class

The MySQLConnect i on class is used to open and manage a connection to a MySQL server. It also
used to send commands and SQL statements and read the results.

6.9.2.1 connection.MySQLConnection() Constructor

Syntax:

cnx = MySQ.Connecti on(**kwar gs)

The MySQ.Connect i on constructor initializes the attributes and when at least one argument is
passed, it tries to connect to the MySQL server.

For a complete list of arguments, see Section 6.7.1, “Connector/Python Connection Arguments”.
6.9.2.2 MySQLConnection.close() Method

Syntax:

cnx. cl ose()

cl ose() is asynonym for di sconnect (). See Section 6.9.2.20, “MySQLConnection.disconnect()
Method”.

For a connection obtained from a connection pool, cl ose() does not actually close it but returns it to

the pool and makes it available for subsequent connection requests. See Section 6.8.4, “Connector/
Python Connection Pooling”.

6.9.2.3 MySQLConnection.commit() Method

446

connection.MySQLConnection Class

This method sends a COVM T statement to the MySQL server, committing the current transaction.
Since by default Connector/Python does not autocommit, it is important to call this method after every
transaction that modifies data for tables that use transactional storage engines.

>>> cursor. execute(" | NSERT | NTO enpl oyees (first_nanme) VALUES (%), (%)", ('Jane', 'Mary'))
>>> cnx. commit ()

To roll back instead and discard modifications, see the rollback() method.

6.9.2.4 MySQLConnection.config() Method
Syntax:
cnx. confi g(**kwar gs)

Configures a MySQLConnect i on instance after it has been instantiated. For a complete list of possible
arguments, see Section 6.7.1, “Connector/Python Connection Arguments”.

Arguments:
» kwar gs: Connection arguments.
You could use the conf i g() method to change (for example) the user name, then call r econnect () .

Example:

cnx = nysql.connector. connect (user="'joe', database="test')
Connected as 'joe'

cnx. config(user='jane')

cnx. reconnect ()

Now connected as 'jane'

For a connection obtained from a connection pool, conf i g() raises an exception. See Section 6.8.4,
“Connector/Python Connection Pooling”.

6.9.2.5 MySQLConnection.connect() Method
Syntax:
MySQLConnect i on. connect (**kwar gs)

This method sets up a connection, establishing a session with the MySQL server. If no arguments are
given, it uses the already configured or default values. For a complete list of possible arguments, see
Section 6.7.1, “Connector/Python Connection Arguments”.

Arguments:
* kwar gs: Connection arguments.

Example:

cnx = MySQLConnection(user='joe', database='test')

For a connection obtained from a conection pool, the connection object class is
Pool edMySQLConnect i on. A pooled connection differs from an unpooled connection as described in
Section 6.8.4, “Connector/Python Connection Pooling”.

6.9.2.6 MySQLConnection.cursor() Method

Syntax:

447

connection.MySQLConnection Class

cursor = cnx.cursor([arg=val ue[, arg=value]...])

This method returns a My SQLCur sor () object, or a subclass of it depending on the passed
arguments. The returned object is a cur sor . Cur sor Base instance. For more information about
cursor objects, see Section 6.9.5, “cursor.MySQLCursor Class”, and Section 6.9.6, “Subclasses
cursor.MySQLCursor”.

Arguments may be passed to the cur sor () method to control what type of cursor to create:

» If buf f er ed is Tr ue, the cursor fetches all rows from the server after an operation is executed. This
is useful when queries return small result sets. buf f er ed can be used alone, or in combination with
the di cti onary or naned_t upl e argument.

buf f er ed can also be passed to connect () to set the default buffering mode for all cursors
created from the connection object. See Section 6.7.1, “Connector/Python Connection Arguments”.

For information about the implications of buffering, see Section 6.9.6.1,
“cursor.MySQLCursorBuffered Class”.

» Ifrawis Tr ue, the cursor skips the conversion from MySQL data types to Python types when
fetching rows. A raw cursor is usually used to get better performance or when you want to do the
conversion yourself.

r awcan also be passed to connect () to set the default raw mode for all cursors created from the
connection object. See Section 6.7.1, “Connector/Python Connection Arguments”.

o Ifdi ctionary is Tr ue, the cursor returns rows as dictionaries. This argument is available as of
Connector/Python 2.0.0.

» If named_t upl e is Tr ue, the cursor returns rows as named tuples. This argument is available as of
Connector/Python 2.0.0.

» If preparedis Tr ue, the cursor is used for executing prepared statements. This argument is
available as of Connector/Python 1.1.2. The C extension supports this as of Connector/Python
8.0.17.

» The cursor_cl ass argument can be used to pass a class to use for instantiating a new cursor. It
must be a subclass of cur sor. Cur sor Base.

The returned object depends on the combination of the arguments. Examples:

« If not buffered and not raw: My SQLCur sor

If buffered and not raw: My SQLCur sor Buf f er ed

If not buffered and raw: My SQLCur sor Raw

If buffered and raw: My SQLCur sor Buf f er edRaw

6.9.2.7 MySQLConnection.cmd_change_user() Method

Changes the user using user nane and passwor d. It also causes the specified dat abase to become
the default (current) database. It is also possible to change the character set using the char set
argument.

Syntax:

cnx. cnd_change_user (usernanme='"', password='', database=""', charset=33)

Returns a dictionary containing the OK packet information.

6.9.2.8 MySQLConnection.cmd_debug() Method

448

connection.MySQLConnection Class

Instructs the server to write debugging information to the error log. The connected user must have the
SUPER privilege.

Returns a dictionary containing the OK packet information.
6.9.2.9 MySQLConnection.cmd_init_db() Method

Syntax:

cnx. cnd_i ni t _db(db_nane)

This method makes specified database the default (current) database. In subsequent queries, this
database is the default for table references that include no explicit database qualifier.

Returns a dictionary containing the OK packet information.
6.9.2.10 MySQLConnection.cmd_ping() Method
Checks whether the connection to the server is working.
This method is not to be used directly. Use ping() or is_connected() instead.
Returns a dictionary containing the OK packet information.
6.9.2.11 MySQLConnection.cmd_process_info() Method

This method raises the NotSupportedError exception. Instead, use the SHOW PROCESSLI| ST statement
or query the tables found in the database | NFORVATI ON_SCHENA.

Deprecation
This MySQL Server functionality is deprecated.
6.9.2.12 MySQLConnection.cmd_process_kill() Method

Syntax:

cnx. cnd_process_ki || (nysql _pi d)
Deprecation
This MySQL Server functionality is deprecated.

Asks the server to kill the thread specified by mysql _pi d. Although still available, it is better to use the
Kl LL SQL statement.

Returns a dictionary containing the OK packet information.

The following two lines have the same effect:

>>> cnx. cnd_process_kill (123)
>>> cnx.cnd_query(' KILL 123")

6.9.2.13 MySQLConnection.cmd_query() Method

Syntax:

chnx. cnd_quer y(st at ement)

This method sends the given st at enent to the MySQL server and returns a result. To send multiple
statements, use the cmd_query_iter() method instead.

449

https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_super

connection.MySQLConnection Class

The returned dictionary contains information depending on what kind of query was executed. If the
query is a SELECT statement, the result contains information about columns. Other statements return a
dictionary containing OK or EOF packet information.

Errors received from the MySQL server are raised as exceptions. An | nt er f aceEr r or is raised when
multiple results are found.

Returns a dictionary.
6.9.2.14 MySQLConnection.cmd_query_iter() Method

Syntax:

cnx.cnd_query_iter(statenment)

Similar to the cmd_query() method, but returns a generator object to iterate through results.
Use cnd_query iter () when sending multiple statements, and separate the statements with
semicolons.

The following example shows how to iterate through the results after sending multiple statements:

statement = ' SELECT 1; INSERT INTO t1 VALUES (); SELECT 2'
for result in cnx.cnd_query_iter(statenent):
if '"colums' in result:
colums = resul t[' colums']
rows = cnx.get_rows()
el se:
do sonething useful with I NSERT result

Returns a generator object.
6.9.2.15 MySQLConnection.cmd_quit() Method

This method sends a QUI T command to the MySQL server, closing the current connection. Since there
is no response from the MySQL server, the packet that was sent is returned.

6.9.2.16 MySQLConnection.cmd_refresh() Method

Syntax:

cnx. cnd_refresh(options)
Deprecation
This MySQL Server functionality is deprecated.

This method flushes tables or caches, or resets replication server information. The connected user
must have the RELOAD privilege.

The opt i ons argument should be a bitmask value constructed using constants from the
const ants. Ref reshQpti on class.

For a list of options, see Section 6.9.11, “constants.RefreshOption Class”.

Example:

>>> from nysqgl . connector inport RefreshQOption
>>> refresh = RefreshOption. LOG | RefreshOpti on. THREADS
>>> cnx. cmd_refresh(refresh)

6.9.2.17 MySQLConnection.cmd_reset_connection() Method

450

https://dev.mysql.com/doc/refman/8.0/en/select.html

connection.MySQLConnection Class

Syntax:

cnx. cnd_r eset _connection()

Resets the connection by sending a COM_RESET_CONNECTI ON command to the server to clear the
session state.

This method permits the session state to be cleared without reauthenticating. For MySQL servers older
than 5.7.3 (when COVl RESET_CONNECTI ON was introduced), the r eset _sessi on() method can be
used instead. That method resets the session state by reauthenticating, which is more expensive.

This method was added in Connector/Python 1.2.1.
6.9.2.18 MySQLConnection.cmd_shutdown() Method
Deprecation
I This MySQL Server functionality is deprecated.
Asks the database server to shut down. The connected user must have the SHUTDOWN privilege.
Returns a dictionary containing the OK packet information.
6.9.2.19 MySQLConnection.cmd_statistics() Method

Returns a dictionary containing information about the MySQL server including uptime in seconds and
the number of running threads, questions, reloads, and open tables.

6.9.2.20 MySQLConnection.disconnect() Method
This method tries to send a QUI T command and close the socket. It raises no exceptions.
MySQLConnect i on. cl ose() is a synonymous method name and more commonly used.
To shut down the connection without sending a QUI T command first, use shut down() .
6.9.2.21 MySQLConnection.get_row() Method
This method retrieves the next row of a query result set, returning a tuple.
The tuple returned by get _r ow() consists of:
* The row as a tuple containing byte objects, or None when no more rows are available.

» EOF packet information as a dictionary containing st at us_f | ag and war ni ng_count , or None
when the row returned is not the last row.

The get _row() method is used by MySQLCursor to fetch rows.
6.9.2.22 MySQLConnection.get_rows() Method

Syntax:

chx. get _rows(count =None)

This method retrieves all or remaining rows of a query result set, returning a tuple containing the rows
as sequences and the EOF packet information. The count argument can be used to obtain a given
number of rows. If count is not specified or is None, all rows are retrieved.

The tuple returned by get _r ows() consists of:

451

connection.MySQLConnection Class

A list of tuples containing the row data as byte objects, or an empty list when no rows are available.
» EOF packet information as a dictionary containing st at us_f | ag and war ni ng_count .

An | nterfaceError israised when all rows have been retrieved.

MySQLCursor uses the get _r ows() method to fetch rows.

Returns a tuple.
6.9.2.23 MySQLConnection.get_server_info() Method

This method returns the MySQL server information verbatim as a string, for example ' 5. 6. 11-1 og"
or None when not connected.

6.9.2.24 MySQLConnection.get_server_version() Method
This method returns the MySQL server version as a tuple, or None when not connected.
6.9.2.25 MySQLConnection.is_connected() Method

Reports whether the connection to MySQL Server is available.

This method checks whether the connection to MySQL is available using the ping() method, but unlike
ping(),is_connected() returns Tr ue when the connection is available, Fal se otherwise.

6.9.2.26 MySQLConnection.isset_client_flag() Method

Syntax:

cnx.isset_client_flag(flag)

This method returns Tr ue if the client flag was set, Fal se otherwise.
6.9.2.27 MySQLConnection.ping() Method

Syntax:

cnx. pi ng(reconnect =Fal se, attenpts=1, del ay=0)

Check whether the connection to the MySQL server is still available.

When r econnect is setto Tr ue, one or more at t enpt s are made to try to reconnect to the MySQL
server, and these options are forwarded to the reconnect()>method. Use the del ay argument
(seconds) if you want to wait between each retry.

When the connection is not available, an | nt er f aceErr or is raised. Use the is_connected() method
to check the connection without raising an error.

Raises | nt er f aceEr r or on errors.
6.9.2.28 MySQLConnection.reconnect() Method
Syntax:
cnx. reconnect (attenpts=1, del ay=0)
Attempt to reconnect to the MySQL server.

The argument at t enpt s specifies the number of times a reconnect is tried. The del ay argument is
the number of seconds to wait between each retry.

452

connection.MySQLConnection Class

You might set the number of attempts higher and use a longer delay when you expect the MySQL
server to be down for maintenance, or when you expect the network to be temporarily unavailable.

6.9.2.29 MySQLConnection.reset_session() Method
Syntax:
chx. reset _session(user_vari abl es = None, session_variabl es = None)

Resets the connection by reauthenticating to clear the session state. user _vari abl es, if given, is a
dictionary of user variable names and values. sessi on_var i abl es, if given, is a dictionary of system
variable names and values. The method sets each variable to the given value.

Example:

user_variables = {'varl': '"1', 'var2': '10'}
session_variables = {'wait_tineout': 100000, 'sql_node': ' TRAD TlI ONAL'}
sel f. cnx. reset _sessi on(user_vari abl es, session_vari abl es)

This method resets the session state by reauthenticating. For MySQL servers 5.7 or higher, the
cnd_reset_connection() method is a more lightweight alternative.

This method was added in Connector/Python 1.2.1.
6.9.2.30 MySQLConnection.rollback() Method

This method sends a ROLLBACK statement to the MySQL server, undoing all data changes from the
current transaction. By default, Connector/Python does not autocommit, so it is possible to cancel
transactions when using transactional storage engines such as | nnoDB.

>>> cursor.execute(" 1 NSERT | NTO enpl oyees (first_nanme) VALUES (%), (%)", ('Jane', 'Mary'))
>>> cnx. rol | back()

To commit modifications, see the commit() method.
6.9.2.31 MySQLConnection.set_charset_collation() Method

Syntax:

cnx. set _charset _col | ati on(charset =None, col | ati on=None)

This method sets the character set and collation to be used for the current connection. The char set
argument can be either the name of a character set, or the numerical equivalent as defined in
const ant s. Char act er Set .

When col | ati on is None, the default collation for the character set is used.

In the following example, we set the character setto | at i n1 and the collation to
[atinl_swedi sh_ci (the default collation for: | at i n1):

>>> cnx = nysgl.connector. connect (user='scott"')
>>> cnx. set _charset _collation('latinl')

Specify a given collation as follows:

>>> cnx = nysql.connector.connect (user='scott"')
>>> cnx.set_charset_collation('latinl', 'latinl_general_ci')

6.9.2.32 MySQLConnection.set_client_flags() Method

453

https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_commit

connection.MySQLConnection Class

Syntax:

cnx.set_client_flags(flags)

This method sets the client flags to use when connecting to the MySQL server, and returns the new
value as an integer. The f | ags argument can be either an integer or a sequence of valid client flag
values (see Section 6.9.7, “constants.ClientFlag Class”).

If f | ags is a sequence, each item in the sequence sets the flag when the value is positive or unsets it
when negative. For example, to unset LONG FLAG and set the FOUND ROWS flags:

>>> from nysql . connector.constants inport ClientFlag
>>> cnx.set_client_flags([CientFlag. FOUND ROA5, -ClientFlag. LONG FLAQG)
>>> cnx. reconnect ()

Note

Client flags are only set or used when connecting to the MySQL server. It is
therefore necessary to reconnect after making changes.

6.9.2.33 MySQLConnection.shutdown() Method

This method closes the socket. It raises no exceptions.

Unlike di sconnect (), shut down() closes the client connection without attempting to send a QUI T
command to the server first. Thus, it will not block if the connection is disrupted for some reason such
as network failure.

shut down() was added in Connector/Python 2.0.1.

6.9.2.34 MySQLConnection.start_transaction() Method

This method starts a transaction. It accepts arguments indicating whether to use a consistent snapshot,
which transaction isolation level to use, and the transaction access mode:

cnx. start_transacti on(consi st ent _snapshot =bool ,
i sol ation_I evel =l evel ,
readonl y=access_node)

The default consi st ent _snapshot value is Fal se. If the value is Tr ue, Connector/Python sends
W TH CONSI STENT SNAPSHOT with the statement. MySQL ignores this for isolation levels for which
that option does not apply.

The defaulti sol ati on_| evel value is None, and permitted values are ' READ UNCOWM TTED' ,
' READ COW TTED ,' REPEATABLE READ , and' SERI ALI ZABLE' . Ifthei sol ati on_| evel
value is None, no isolation level is sent, so the default level applies.

The r eadonl y argument can be Tr ue to start the transaction in READ ONLY mode or Fal se to start

it in READ WRI TE mode. If r eadonl y is omitted, the server's default access mode is used. For details
about transaction access mode, see the description for the START TRANSACTI ON statement at START
TRANSACTION, COMMIT, and ROLLBACK Statements. If the server is older than MySQL 5.6.5, it
does not support setting the access mode and Connector/Python raises a Val ueErr or .

Invoking st art _transacti on() raises a Progranm ngErr or if invoked while a transaction is
currently in progress. This differs from executing a START TRANSACTI ON SQL statement while a
transaction is in progress; the statement implicitly commits the current transaction.

To determine whether a transaction is active for the connection, use the in_transaction property.

start _transaction() was added in MySQL Connector/Python 1.1.0. The r eadonl y argument
was added in Connector/Python 1.1.5.

454

https://dev.mysql.com/doc/refman/8.0/en/commit.html
https://dev.mysql.com/doc/refman/8.0/en/commit.html
https://dev.mysql.com/doc/refman/8.0/en/commit.html

connection.MySQLConnection Class

6.9.2.35 MySQLConnection.autocommit Property

This property can be assigned a value of Tr ue or Fal se to enable or disable the autocommit feature
of MySQL. The property can be invoked to retrieve the current autocommit setting.

Note

Autocommit is disabled by default when connecting through Connector/Python.
This can be enabled using the aut oconmi t connection parameter.

When the autocommit is turned off, you must commit transactions when using transactional storage
engines such as | nnoDB or NDBCl ust er.

>>> cnx. aut oconmmi t

Fal se

>>> cnx. autoconmt = True
>>> cnx. aut oconmmi t

Tr ue

6.9.2.36 MySQLConnection.unread_results Property

Indicates whether there is an unread result. It is set to Fal se if there is not an unread result, otherwise
Tr ue. This is used by cursors to check whether another cursor still needs to retrieve its result set.

Do not set the value of this property, as only the connector should change the value. In other words,
treat this as a read-only property.

6.9.2.37 MySQLConnection.can_consume_results Property
This property indicates the value of the consunme_r esul t s connection parameter that controls
whether result sets produced by queries are automatically read and discarded. See Section 6.7.1,
“Connector/Python Connection Arguments”.
This method was added in Connector/Python 2.1.1.

6.9.2.38 MySQLConnection.charset Property

This property returns a string indicating which character set is used for the connection, whether or not it
is connected.

6.9.2.39 MySQLConnection.collation Property

This property returns a string indicating which collation is used for the connection, whether or not it is
connected.

6.9.2.40 MySQLConnection.connection_id Property

This property returns the integer connection ID (thread ID or session ID) for the current connection or
None when not connected.

6.9.2.41 MySQLConnection.database Property

This property sets the current (default) database by executing a USE statement. The property can also
be used to retrieve the current database name.

"test'
" nysql

>>> cnx. dat abase
>>> cnx. dat abase
>>> cnx. dat abase

u' mysql

455

connection.MySQLConnection Class

Returns a string.

6.9.2.42 MySQLConnection.get_warnings Property

This property can be assigned a value of Tr ue or Fal se to enable or disable whether warnings should
be fetched automatically. The default is Fal se (default). The property can be invoked to retrieve the
current warnings setting.

Fetching warnings automatically can be useful when debugging queries. Cursors make warnings
available through the method MySQLCursor.fetchwarnings().

>>> cnx. get _warni ngs = True

>>> cursor. execute(' SELECT "a"+1")

>>> cursor.fetchall ()

[(1.0,)]

>>> cursor. fetchwarni ngs()

[(u" Warning', 1292, u"Truncated incorrect DOUBLE value: 'a'")]

Returns Tr ue or Fal se.

6.9.2.43 MySQLConnection.in_transaction Property

This property returns Tr ue or Fal se to indicate whether a transaction is active for the connection. The
value is Tr ue regardless of whether you start a transaction using the st art _t ransacti on() API
call or by directly executing an SQL statement such as START TRANSACTI ON or BEG N.

>>> cnx. start_transaction()
>>> cnx.in_transaction
True

>>> cnx. commit ()

>>> cnx.in_transaction

Fal se

i n_transacti on was added in MySQL Connector/Python 1.1.0.

6.9.2.44 MySQLConnection.raise_on_warnings Property

This property can be assigned a value of Tr ue or Fal se to enable or disable whether warnings should
raise exceptions. The default is Fal se (default). The property can be invoked to retrieve the current
exceptions setting.

Setting r ai se_on_war ni ngs also sets get _war ni ngs because warnings need to be fetched so they
can be raised as exceptions.

Note

You might always want to set the SQL mode if you would like to have the
MySQL server directly report warnings as errors (see Section 6.9.2.47,
“MySQLConnection.sql_mode Property”). It is also good to use transactional
engines so transactions can be rolled back when catching the exception.

Result sets needs to be fetched completely before any exception can be raised. The following example
shows the execution of a query that produces a warning:

>>> cnx.rai se_on_warni ngs = True
>>> cursor. execute(' SELECT "a"+1")
>>> cursor.fetchall ()

456

https://dev.mysql.com/doc/refman/8.0/en/commit.html
https://dev.mysql.com/doc/refman/8.0/en/commit.html

connection.MySQLConnection Class

mysql . connector.errors. DataError: 1292: Truncated incorrect DOUBLE val ue: 'a

Returns Tr ue or Fal se.
6.9.2.45 MySQLConnection.server_host Property
This read-only property returns the host name or IP address used for connecting to the MySQL server.
Returns a string.
6.9.2.46 MySQLConnection.server_port Property
This read-only property returns the TCP/IP port used for connecting to the MySQL server.

Returns an integer.
6.9.2.47 MySQLConnection.sql_mode Property

This property is used to retrieve and set the SQL Modes for the current connection. The value should
be a list of different modes separated by comma (*,"), or a sequence of modes, preferably using the
const ant s. SQLMode class.

To unset all modes, pass an empty string or an empty sequence.

>>> cnx. sql _npbde = ' TRADI TI ONAL, NO_ENG NE_SUBSTI TUTI ON

>>> cnx. sql _node. split(',")

[u' STRICT_TRANS_TABLES', u' STRICT_ALL_TABLES', u' NO ZERO | N _DATE'
u' NO_ZERO DATE', u' ERROR_FOR DI VI SI ON_BY_ZERO , u' TRADI Tl ONAL'

u' NO_AUTO _CREATE_USER , u' NO_ENG NE_SUBSTI TUTI ON]

>>> from nmysql . connect or. constants inport SQLMdbde

>>> cnx. sql _nbde = [SQLMbde. NO_ZERO DATE, SQ.Mode. REAL_AS FLQOAT]
>>> cnx. sql _node

u' REAL_AS_FLOAT, NO_ZERO DATE
Returns a string.
6.9.2.48 MySQLConnection.time_zone Property

This property is used to set or retrieve the time zone session variable for the current connection.

>>> cnx.time_zone = '+00: 00

>>> cursor = cnx.cursor()

>>> cursor. execute(' SELECT NON)') ; cursor.fetchone()
(datetinme.datetine(2012, 6, 15, 11, 24, 36),)

>>> cnx.tinme_zone = '-09: 00

>>> cursor. execute(' SELECT NON)') ; cursor.fetchone()
(datetine.dateti ne(2012, 6, 15, 2, 24, 44),)

>>> cnx.tine_zone

u' -09: 00

Returns a string.
6.9.2.49 MySQLConnection.unix_socket Property

This read-only property returns the Unix socket file for connecting to the MySQL server.

Returns a string.

6.9.2.50 MySQLConnection.user Property

457

pooling.MySQLConnectionPool Class

This read-only property returns the user name used for connecting to the MySQL server.

Returns a string.

6.9.3 pooling.MySQLConnectionPool Class

This class provides for the instantiation and management of connection pools.

6.9.3.1 pooling.MySQLConnectionPool Constructor

Syntax:

MySQLConnect i onPool (pool _nane=None,
pool _si ze=5,
pool _reset _sessi on=Tr ue,
** kwar gs)

This constructor instantiates an object that manages a connection pool.
Arguments:

* pool _nane: The pool name. If this argument is not given, Connector/Python automatically
generates the name, composed from whichever of the host , port, user, and dat abase
connection arguments are given in kwar gs, in that order.

It is not an error for multiple pools to have the same name. An application that must distinguish pools
by their pool _nane property should create each pool with a distinct name.

» pool _si ze: The pool size. If this argument is not given, the default is 5.

» pool reset_sessi on: Whether to reset session variables when the connection is returned to the
pool. This argument was added in Connector/Python 1.1.5. Before 1.1.5, session variables are not
reset.

» kwar gs: Optional additional connection arguments, as described in Section 6.7.1, “Connector/
Python Connection Arguments”.

Example:
dbconfig = {
"dat abase": "test",
"user": "j oe",
}
cnxpool = nysql . connector. pool i ng. My'SQ.Connect i onPool (pool _nane = "nypool ",
pool _size = 3,

**dbconfi g)

6.9.3.2 MySQLConnectionPool.add_connection() Method

Syntax:

cnxpool . add_connecti on(cnx = None)

This method adds a new or existing My SQLConnect i on to the pool, or raises a Pool Err or if the pool
is full.

Arguments:

e cnx: The MySQLConnect i on object to be added to the pool. If this argument is missing, the pool
creates a new connection and adds it.

Example:

cnxpool . add_connecti on() # add new connection to pool

458

pooling.PooledMySQLConnection Class

cnxpool . add_connecti on(cnx) # add exi sting connection to poo

6.9.3.3 MySQLConnectionPool.get_connection() Method
Syntax:
chxpool . get _connecti on()

This method returns a connection from the pool, or raises a Pool Er r or if no connections are
available.

Example:

cnx = cnxpool . get _connection()

6.9.3.4 MySQLConnectionPool.set_config() Method
Syntax:
cnxpool . set _confi g(**kwar gs)

This method sets the configuration parameters for connections in the pool. Connections requested
from the pool after the configuration change use the new parameters. Connections obtained before the
change remain unaffected, but when they are closed (returned to the pool) are reopened with the new
parameters before being returned by the pool for subsequent connection requests.

Arguments:

+ kwar gs: Connection arguments.

Example:

dbconfig = {
"dat abase": "performance_schema"
"user": "adm n",
"password": "password"

}

cnxpool . set _config(**dbconfi g)

6.9.3.5 MySQLConnectionPool.pool_name Property
Syntax:
cnxpool . pool _nane
This property returns the connection pool hame.

Example:

nane = cnxpool . pool _nane

6.9.4 pooling.PooledMySQLConnection Class

This class is used by MySQLConnect i onPool to return a pooled connection instance. It is also the
class used for connections obtained with calls to the connect () method that name a connection pool
(see Section 6.8.4, “Connector/Python Connection Pooling”).

Pool edMySQLConnect i on pooled connection objects are similar to My SQLConnect i on unpooled
connection objects, with these differences:

» To release a pooled connection obtained from a connection pool, invoke its cl ose() method, just
as for any unpooled connection. However, for a pooled connection, cl ose() does not actually close
the connection but returns it to the pool and makes it available for subsequent connection requests.

459

cursor.MySQLCursor Class

» A pooled connection cannot be reconfigured using its conf i g() method. Connection changes must
be done through the pool object itself, as described by Section 6.8.4, “Connector/Python Connection
Pooling”.

» A pooled connection has a pool _nane property that returns the pool name.
6.9.4.1 pooling.PooledMySQLConnection Constructor

Syntax:

Pool edMySQLConnect i on(cnxpool , cnx)

This constructor takes connection pool and connection arguments and returns a pooled connection. It
is used by the MySQLConnect i onPool class.

Arguments:
e cnxpool : AMySQ.Connect i onPool instance.
e cnx: AM/SQLConnect i on instance.

Example:

pcnx = nysqgl . connect or. pool i ng. Pool edMySQ.Connect i on(cnxpool, cnx)

6.9.4.2 PooledMySQLConnection.close() Method
Syntax:
cnx. cl ose()
Returns a pooled connection to its connection pool.

For a pooled connection, cl ose() does not actually close it but returns it to the pool and makes it
available for subsequent connection requests.

If the pool configuration parameters are changed, a returned connection is closed and reopened with
the new configuration before being returned from the pool again in response to a connection request.

6.9.4.3 PooledMySQLConnection.config() Method

For pooled connections, the conf i g() method raises a Pool Er r or exception. Configuration for
pooled connections should be done using the pool object.

6.9.4.4 PooledMySQLConnection.pool_name Property
Syntax:
cnx. pool _nane
This property returns the name of the connection pool to which the connection belongs.

Example:

cnx = cnxpool . get _connection()
nane = cnx. pool _nane

6.9.5 cursor.MySQLCursor Class

The MySQLCur sor class instantiates objects that can execute operations such as SQL statements.
Cursor objects interact with the MySQL server using a MySQLConnect i on object.

To create a cursor, use the cur sor () method of a connection object:

460

cursor.MySQLCursor Class

i mport nysql . connect or
cnhx = mysql . connect or. connect (dat abase="wor| d')
cursor = cnx.cursor()

Several related classes inherit from My SQLCur sor . To create a cursor of one of these types, pass the
appropriate arguments to cur sor () :

* MySQLCur sor Buf f er ed creates a buffered cursor. See Section 6.9.6.1,
“cursor.MySQLCursorBuffered Class”.

cursor = cnx. cursor (buffered=True)

« MySQLCur sor Raw creates a raw cursor. See Section 6.9.6.2, “cursor.MySQLCursorRaw Class”.

cursor = cnx.cursor (raw=True)

* MySQ.Cur sor Buf f er edRaw creates a buffered raw cursor. See Section 6.9.6.3,
“cursor.MySQLCursorBufferedRaw Class”.

cursor = cnx.cursor(raw=True, buffered=True)

 MySQLCur sor Di ct creates a cursor that returns rows as dictionaries. See Section 6.9.6.4,
“cursor.MySQLCursorDict Class”.

cursor = cnx. cursor(dictionary=True)

« MySQLCur sor Buf f eredDi ct creates a buffered cursor that returns rows as dictionaries. See
Section 6.9.6.5, “cursor.MySQLCursorBufferedDict Class”.

cursor = cnx.cursor(dictionary=True, buffered=True)

* MySQ.Cur sor NanedTupl e creates a cursor that returns rows as named tuples. See
Section 6.9.6.6, “cursor.MySQLCursorNamedTuple Class”.

cursor = cnx. cursor (naned_t upl e=Tr ue)

* MySQLCur sor Buf f er edNanedTupl e creates a buffered cursor that returns rows as named tuples.
See Section 6.9.6.7, “cursor.MySQLCursorBufferedNamedTuple Class”.

cursor = cnx.cursor (nanmed_t upl e=True, buffered=True)

* MySQLCur sor Pr epar ed creates a cursor for executing prepared statements. See Section 6.9.6.8,
“cursor.MySQLCursorPrepared Class”.

cursor = cnx. cursor (prepared=True)

6.9.5.1 cursor.MySQLCursor Constructor

In most cases, the MySQLConnect i on cur sor () method is used to instantiate a My SQLCur sor
object:

i mport nysql . connect or
cnx = mysql . connect or. connect (dat abase="wor| d')
cursor = cnx.cursor()

It is also possible to instantiate a cursor by passing a My SQ_.Connect i on object to My SQLCur sor :

i mport mysql . connect or

from nmysql . connect or. cursor inmport MySQLCursor
cnx = mysql . connect or. connect (dat abase="wor| d')
cursor = MySQLCur sor (cnx)

The connection argument is optional. If omitted, the cursor is created but its execut e() method raises
an exception.

6.9.5.2 MySQLCursor.add_attribute() Method

461

cursor.MySQLCursor Class

Syntax:

cursor.add_attri bute(name, val ue)
Adds a new named query attribute to the list, as part of MySQL server's Query Attributes functionality.

nane: The name must be a string, but no other validation checks are made; attributes are sent as is to
the server and errors, if any, will be detected and reported by the server.

val ue: a value converted to the MySQL Binary Protocol, similar to how prepared statement
parameters are converted. An error is reported if the conversion fails.

Query attributes must be enabled on the server, and are disabled by default. A warning is logged when
setting query attributes server connection that does not support them. See also Prerequisites for Using
Query Attributes for enabling the query_attributes MySQL server component.

Example query attribute usage:

Each invocation of “add_attribute’ nethod will add a new query attri bute:
cur.add_attribute("foo", 2)
cur . execut e("SELECT first_nane, |ast_name FROM clients")
The query above sent attibute "foo" with val ue 2.
cur.add_attribute(*("bar", "3"))
cur . execut e("SELECT * FROM products WHERE price < ?", 10)
The query above sent attibutes ("foo", 2) and ("bar", "3").
my_attributes = [("page_nanme", "root"), ("previous_page", "login")]
for attribute_tuple in my_attributes:
cur.add_attribute(*attribute_tuple)
cur . execut e(" SELECT * FROM of fers WHERE publish = ?", 0)
The query above sent 4 attibutes.
To check the current query attributes:
print(cur.get_attributes())
prints:
[("foo", 2), ("bar", "3"), ("page_nane", "root"), ("previous_page", "login")]
Query attributes are not cleared until the cursor is closed or
of the clear_attributes() method is invoked:

cur.clear_attributes()
print(cur.get_attributes())

prints:

[1
cur . execut e("SELECT first_nane, |ast_name FROM clients")
The query above did not send any attibute.

This method was added in Connector/Python 8.0.26.

6.9.5.3 MySQLCursor.clear_attributes() Method

Syntax:

cursor.clear_attributes()

Clear the list of query attributes on the connector's side, as set by Section 6.9.5.2,
“MySQLCursor.add_attribute() Method".

This method was added in Connector/Python 8.0.26.

6.9.5.4 MySQLCursor.get_attributes() Method

Syntax:

cursor.get _attributes()

Return a list of existing query attributes, as set by Section 6.9.5.2, “MySQLCursor.add_attribute()
Method”.

This method was added in Connector/Python 8.0.26.

462

https://dev.mysql.com/doc/refman/8.0/en/query-attributes.html
https://dev.mysql.com/doc/refman/8.0/en/query-attributes.html#query-attributes-prerequisites
https://dev.mysql.com/doc/refman/8.0/en/query-attributes.html#query-attributes-prerequisites

cursor.MySQLCursor Class

6.9.5.5 MySQLCursor.callproc() Method

Syntax:

result _args = cursor.call proc(proc_nane, args=())

This method calls the stored procedure named by the pr oc_nane argument. The ar gs sequence

of parameters must contain one entry for each argument that the procedure expects. cal | proc()
returns a modified copy of the input sequence. Input parameters are left untouched. Output and input/
output parameters may be replaced with new values.

Result sets produced by the stored procedure are automatically fetched and stored as
MySQLCursorBuffered instances. For more information about using these result sets, see
stored_results().

Suppose that a stored procedure takes two parameters, multiplies the values, and returns the product:

CREATE PROCEDURE nmul tiply(I N pFacl INT, I N pFac2 I NT, OUT pProd | NT)
BEG N

SET pProd : = pFacl * pFac2
END;

The following example shows how to execute the nul t i pl y() procedure:

>>> args = (5, 6, 0) # 0 is to hold value of the OUT paraneter pProd
>>> cursor.callproc(' multiply', args)
("5, '6', 30L)

Connector/Python 1.2.1 and up permits parameter types to be specified. To do this, specify a
parameter as a two-item tuple consisting of the parameter value and type. Suppose that a procedure
spl() has this definition:
CREATE PROCEDURE spl(| N pStr1 VARCHAR(20), | N pStr2 VARCHAR(20),

QUT pConCat VARCHAR(100))
BEG N

SET pConCat := CONCAT(pStrl, pStr2)
END;

To execute this procedure from Connector/Python, specifying a type for the OUT parameter, do this:
args = ('ham, 'eggs', (0, 'CHAR))

result_args = cursor.callproc('spl', args)
print(result_args[2])

6.9.5.6 MySQLCursor.close() Method

Syntax:

cursor.cl ose()

Use cl ose() when you are done using a cursor. This method closes the cursor, resets all results, and
ensures that the cursor object has no reference to its original connection object.

6.9.5.7 MySQLCursor.execute() Method

Syntax:

cur sor. execut e(operati on, parans=None, multi =Fal se)
iterator = cursor.execute(operation, paranms=None, nulti=True)

This method executes the given database oper at i on (query or command). The parameters found
in the tuple or dictionary par ans are bound to the variables in the operation. Specify variables using
% or % nane) s parameter style (that is, using f or mat or pyf or mat style). execut e() returns an
iterator if mul ti is Tr ue.

463

cursor.MySQLCursor Class

Note

In Python, a tuple containing a single value must include a comma. For
example, (‘abc’) is evaluated as a scalar while (‘abc',) is evaluated as a tuple.

This example inserts information about a new employee, then selects the data for that person. The
statements are executed as separate execut e() operations:

insert_stm = (
"I NSERT | NTO enpl oyees (enp_no, first_nane, |ast_nane, hire_date) "
"VALUES (%, %, %, %)"
)
data = (2, 'Jane', 'Doe', datetine.date(2012, 3, 23))
cursor.execute(insert_stnt, data)
sel ect _stnt = "SELECT * FROM enpl oyees WHERE enp_no = % enp_no)s"
cursor.execute(select_stnt, { "enmp_no': 2 })

The data values are converted as necessary from Python objects to something MySQL understands. In
the preceding example, the dat et i ne. dat e() instance is converted to ' 2012- 03- 23" .

Ifmul ti is setto True, execut e() is able to execute multiple statements specified in the

oper at i on string. It returns an iterator that enables processing the result of each statement. However,
using parameters does not work well in this case, and it is usually a good idea to execute each
statement on its own.

The following example selects and inserts data in a single execut e() operation and displays the
result of each statement:

operation = ' SELECT 1; INSERT INTO t1 VALUES (); SELECT 2'
for result in cursor.execute(operation, nulti=True):
if result.wth_rows:
print("Rows produced by statement '{}':".format(
result.statenent))
print(result.fetchall())
el se:
print("Nunmber of rows affected by statement '{}': {}".format(
result.statenment, result.rowcount))

If the connection is configured to fetch warnings, warnings generated by the operation are available
through the MySQLCursor.fetchwarnings() method.

6.9.5.8 MySQLCursor.executemany() Method

Syntax:

cur sor. execut emany(operati on, seq_of _parans)

This method prepares a database oper at i on (query or command) and executes it against all
parameter sequences or mappings found in the sequence seq_of par ans.

Note

In Python, a tuple containing a single value must include a comma. For
example, (‘abc’) is evaluated as a scalar while (‘abc',) is evaluated as a tuple.

In most cases, the execut emany() method iterates through the sequence of parameters, each time
passing the current parameters to the execut e() method.

An optimization is applied for inserts: The data values given by the parameter sequences are batched
using multiple-row syntax. The following example inserts three records:

data = [
(' Jane', date(2005, 2, 12)),
(' Joe', date(2006, 5, 23)),
(" John', date(2010, 10, 3)),

464

cursor.MySQLCursor Class

]
stnt = "I NSERT | NTO enpl oyees (first_name, hire_date) VALUES (%, %)"

cursor. execut emany(stnt, data)

For the preceding example, the | NSERT statement sent to MySQL is:

I NSERT | NTO enpl oyees (first_nane, hire_date)
VALUES (' Jane', '2005-02-12'), ('Joe', '2006-05-23'), ('John', '2010-10-03")

With the execut emany () method, it is not possible to specify multiple statements to execute in the
oper at i on argument. Doing so raises an | nt er nal Err or exception. Consider using execut e()
with mul t i =Tr ue instead.

6.9.5.9 MySQLCursor.fetchall() Method

Syntax:

rows = cursor.fetchall ()

The method fetches all (or all remaining) rows of a query result set and returns a list of tuples. If no
more rows are available, it returns an empty list.

The following example shows how to retrieve the first two rows of a result set, and then retrieve any
remaining rows:

>>> cursor. execut e(" SELECT * FROM enpl oyees ORDER BY enp_no")

>>> head_rows = cursor.fetchmany(size=2)
>>> remai ni ng_rows = cursor.fetchall ()

You must fetch all rows for the current query before executing new statements using the same
connection.

6.9.5.10 MySQLCursor.fetchmany() Method
Syntax:
rows = cursor.fetchmany(size=1)

This method fetches the next set of rows of a query result and returns a list of tuples. If no more rows
are available, it returns an empty list.

The number of rows returned can be specified using the si ze argument, which defaults to one. Fewer
rows are returned if fewer rows are available than specified.

You must fetch all rows for the current query before executing new statements using the same
connection.

6.9.5.11 MySQLCursor.fetchone() Method

Syntax:

row = cursor. fetchone()

This method retrieves the next row of a query result set and returns a single sequence, or None if
no more rows are available. By default, the returned tuple consists of data returned by the MySQL
server, converted to Python objects. If the cursor is a raw cursor, no such conversion occurs; see
Section 6.9.6.2, “cursor.MySQLCursorRaw Class”.

The f et chone() method is used by fetchall() and fetchmany(). It is also used when a cursor is used
as an iterator.

The following example shows two equivalent ways to process a query result. The first uses
fet chone() inawhi | e loop, the second uses the cursor as an iterator:

465

https://dev.mysql.com/doc/refman/8.0/en/insert.html

cursor.MySQLCursor Class

Using a while | oop
cursor. execut e(" SELECT * FROM enpl oyees")
row = cursor. fetchone()
while row is not None

print (row)

row = cursor. fetchone()
Using the cursor as iterator
cursor. execut e(" SELECT * FROM enpl oyees")
for rowin cursor

print (row)

You must fetch all rows for the current query before executing new statements using the same
connection.

6.9.5.12 MySQLCursor.fetchwarnings() Method

Syntax:

tupl es = cursor. fetchwarni ngs()

This method returns a list of tuples containing warnings generated by the previously executed
operation. To set whether to fetch warnings, use the connection's get _war ni ngs property.

The following example shows a SELECT statement that generates a warning:

>>> cnx. get _warni ngs = True

>>> cursor. execut e(" SELECT 'a' +1")

>>> cursor.fetchall ()

[(1.0,)]

>>> cursor. fetchwarni ngs()

[(u" Warning', 1292, u"Truncated incorrect DOUBLE value: 'a'")]

When warnings are generated, it is possible to raise errors instead, using the connection's
rai se_on_war ni ngs property.

6.9.5.13 MySQLCursor.stored_results() Method

Syntax:

iterator = cursor.stored_results()

This method returns a list iterator object that can be used to process result sets produced by a stored
procedure executed using the callproc() method. The result sets remain available until you use the
cursor to execute another operation or call another stored procedure.

The following example executes a stored procedure that produces two result sets, then uses
stored_resul ts() toretrieve them:

>>> cursor.call proc(' myproc')

0

>>> for result in cursor.stored results()
print result.fetchall ()

[(1)]
[(2)]

6.9.5.14 MySQLCursor.column_names Property

Syntax:

sequence = cursor. col um_nanes
This read-only property returns the column names of a result set as sequence of Unicode strings.

The following example shows how to create a dictionary from a tuple containing data with keys using
col utm_nanes:

466

https://dev.mysql.com/doc/refman/8.0/en/select.html

cursor.MySQLCursor Class

cursor. execut e(" SELECT | ast _nane, first_name, hire_date "
"FROM enpl oyees WHERE enp_no = %", (123,))

row = di ct(zip(cursor.colum_nanes, cursor.fetchone()))

print("{last_nanme}, {first_nane}: {hire_date}".format(row))

Alternatively, as of Connector/Python 2.0.0, you can fetch rows as dictionaries directly; see
Section 6.9.6.4, “cursor.MySQLCursorDict Class”.

6.9.5.15 MySQLCursor.description Property

Syntax:

tupl es = cursor.description

This read-only property returns a list of tuples describing the columns in a result set. Each tuple in the
list contains values as follows:

(col um_nane
type,

None

None

None

None

nul | _ok,

col um_f | ags)

The following example shows how to interpret descri pti on tuples:

i nport nysqgl . connect or
from nysql . connector inport FieldType

cursor. execut e("SELECT enp_no, |ast_nane, hire_date "
"FROM enpl oyees WHERE enp_no = %", (123,))
for i in range(len(cursor.description))
print("Colum {}:".format(i+1))
desc = cursor.description[i]
print(" colum_nanme = {}".format(desc[0]))
print(" type = {} ({})".format(desc[1], FieldType.get_info(desc[1])))
print(" null_ok = {}".format(desc[6]))
print(" colum_flags = {}".format(desc[7]))

The output looks like this:

Col um 1:
col utmm_nane = enp_no
type = 3 (LONG

null _ok = 0
col um_fl ags = 20483
Col um 2:
col um_nane = | ast_nane
type = 253 (VAR STRI NG
null _ok = 0
colum_fl ags = 4097
Col um 3:
col um_nane = hire_date
type = 10 (DATE)
null _ok = 0
colum_fl ags = 4225

The col utm_f | ags value is an instance of the const ant s. Fi el dFl ag class. To see how to
interpret it, do this:

>>> from nysql . connector inport FieldFlag
>>> Fj el dFl ag. desc

6.9.5.16 MySQLCursor.lastrowid Property

Syntax:

467

cursor.MySQLCursor Class

id = cursor.lastrow d

This read-only property returns the value generated for an AUTO | NCREVENT column by the previous
| NSERT or UPDATE statement or None when there is no such value available. For example, if you
perform an | NSERT into a table that contains an AUTO | NCREMENT column, | ast r owi d returns the
AUTO_| NCREMENT value for the new row. For an example, see Section 6.5.3, “Inserting Data Using
Connector/Python”.

The | ast r owi d property is like the mysql i nsert id() C API function; see mysql_insert_id().

6.9.5.17 MySQLCursor.rowcount Property

Syntax:

count = cursor.rowcount

This read-only property returns the number of rows returned for SELECT statements, or the number of
rows affected by DML statements such as | NSERT or UPDATE. For an example, see Section 6.9.5.7,
“MySQLCursor.execute() Method”.

For nonbuffered cursors, the row count cannot be known before the rows have been fetched. In this
case, the number of rows is -1 immediately after query execution and is incremented as rows are
fetched.

The r owcount property is like the mysql _af f ect ed_r ows() C API function; see
mysql_affected_rows().

6.9.5.18 MySQLCursor.statement Property

Syntax:

str = cursor. statenment

This read-only property returns the last executed statement as a string. The st at enment property can
be useful for debugging and displaying what was sent to the MySQL server.

The string can contain multiple statements if a multiple-statement string was executed. This occurs for
execut e() with mul ti =Tr ue. In this case, the st at enent property contains the entire statement
string and the execut e() call returns an iterator that can be used to process results from the
individual statements. The st at enrent property for this iterator shows statement strings for the
individual statements.

6.9.5.19 MySQLCursor.with_rows Property

Syntax:

bool ean = cursor.wi th_rows

This read-only property returns Tr ue or Fal se to indicate whether the most recently executed
operation could have produced rows.

The wi t h_r ows property is useful when it is necessary to determine whether a statement produces
a result set and you need to fetch rows. The following example retrieves the rows returned by the
SELECT statements, but reports only the affected-rows value for the UPDATE statement:

i nport nysqgl . connect or
cnx = nysql.connector. connect (user="scott', database='test')
cursor = cnx.cursor()
operation = 'SELECT 1; UPDATE t1 SET cl1 = 2; SELECT 2
for result in cursor.execute(operation, nmulti=True):

if result.wth_rows:

result.fetchall ()
el se

468

https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/c-api/8.2/en/mysql-insert-id.html
https://dev.mysql.com/doc/c-api/8.2/en/mysql-insert-id.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/c-api/8.2/en/mysql-affected-rows.html
https://dev.mysql.com/doc/c-api/8.2/en/mysql-affected-rows.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/update.html

Subclasses cursor.MySQLCursor

print ("Number of affected rows: {}".format(result.rowount))

6.9.6 Subclasses cursor.MySQLCursor

The cursor classes described in the following sections inherit from the My SQLCur sor class, which is
described in Section 6.9.5, “cursor.MySQLCursor Class”.

6.9.6.1 cursor.MySQLCursorBuffered Class
The MySQLCur sor Buf f er ed class inherits from MySQLCur sor .

After executing a query, a My SQLCur sor Buf f er ed cursor fetches the entire result set from the server
and buffers the rows.

For queries executed using a buffered cursor, row-fetching methods such as f et chone() return rows
from the set of buffered rows. For nonbuffered cursors, rows are not fetched from the server until a
row-fetching method is called. In this case, you must be sure to fetch all rows of the result set before
executing any other statements on the same connection, or an | nt er nal Er r or (Unread result found)
exception will be raised.

My SQLCur sor Buf f er ed can be useful in situations where multiple queries, with small result sets,
need to be combined or computed with each other.

To create a buffered cursor, use the buf f er ed argument when calling a connection's cur sor ()
method. Alternatively, to make all cursors created from the connection buffered by default, use the
buf f er ed connection argument.

Example:

i mport nysql . connect or

cnx = mysqgl . connect or. connect ()

Only this particular cursor will buffer results

cursor = cnx. cursor (buffered=True)

All cursors created fromcnx2 will be buffered by default
cnx2 = nysqgl . connect or. connect (buf f er ed=Tr ue)

For a practical use case, see Section 6.6.1, “Tutorial: Raise Employee's Salary Using a Buffered
Cursor”.

6.9.6.2 cursor.MySQLCursorRaw Class
The MySQLCur sor Raw class inherits from My SQLCur sor .

A MySQLCur sor Raw cursor skips the conversion from MySQL data types to Python types when
fetching rows. A raw cursor is usually used to get better performance or when you want to do the
conversion yourself.

To create a raw cursor, use the r aw argument when calling a connection's cur sor () method.
Alternatively, to make all cursors created from the connection raw by default, use the r aw connection
argument.

Example:

i nport nysql . connect or

chx = mysqgl . connect or. connect ()

Only this particular cursor will be raw

cursor = cnx.cursor (raw=True)

All cursors created fromcnx2 will be raw by default
chx2 = nysqgl . connect or. connect (raw=Tr ue)

6.9.6.3 cursor.MySQLCursorBufferedRaw Class

The My SQLCur sor Buf f er edRaw class inherits from My SQLCur sor .

469

Subclasses cursor.MySQLCursor

A MySQLCur sor Buf f er edRaw cursor is like a MySQLCur sor Raw cursor, but is buffered: After
executing a query, it fetches the entire result set from the server and buffers the rows. For information
about the implications of buffering, see Section 6.9.6.1, “cursor.MySQLCursorBuffered Class”.

To create a buffered raw cursor, use the r awand buf f er ed arguments when calling a connection's
cur sor () method. Alternatively, to make all cursors created from the connection raw and buffered by
default, use the r awand buf f er ed connection arguments.

Example:

i mport nysql . connect or

cnx = nysql . connector. connect ()

Only this particular cursor will be raw and buffered

cursor = cnx.cursor(raw=True, buffered=True)

All cursors created fromcnx2 will be raw and buffered by default
cnx2 = nysql . connector. connect (raw=True, buffered=True)

6.9.6.4 cursor.MySQLCursorDict Class

The MySQLCur sor Di ct class inherits from My SQLCur sor . This class is available as of Connector/
Python 2.0.0.

A MySQLCur sor Di ct cursor returns each row as a dictionary. The keys for each dictionary object are
the column names of the MySQL result.

Example:

cnx = nysql.connector. connect (dat abase="wor | d")
cursor = cnx.cursor(dictionary=True)
cursor. execut e("SELECT * FROM country WHERE Continent = 'Europe'")
print("Countries in Europe:")
for rowin cursor:
print("* {Nane}".format (Nanme=row ' Nane']

The preceding code produces output like this:

Countries in Europe:
* Al bani a

* Andorra

* Austria

* Bel gi um

* Bul garia

It may be convenient to pass the dictionary to f or mat () as follows:

cursor. execut e("SELECT Nane, Popul ati on FROM country WHERE Continent = 'Europe'")
print("Countries in Europe with population:")
for rowin cursor:

print("* {Nane}: {Population}".format(**row))

6.9.6.5 cursor.MySQLCursorBufferedDict Class

The MySQLCur sor Buf f er edDi ct class inherits from My SQLCur sor . This class is available as of
Connector/Python 2.0.0.

A MySQLCur sor Buf f eredDi ct cursor is like a MySQLCur sor Di ct cursor, but is buffered: After
executing a query, it fetches the entire result set from the server and buffers the rows. For information
about the implications of buffering, see Section 6.9.6.1, “cursor.MySQLCursorBuffered Class”.

To get a buffered cursor that returns dictionaries, add the buf f er ed argument when instantiating a
new dictionary cursor:

cursor = cnx.cursor(dictionary=True, buffered=True)

6.9.6.6 cursor.MySQLCursorNamedTuple Class

470

Subclasses cursor.MySQLCursor

The MySQLCur sor NamedTupl e class inherits from MySQLCur sor . This class is available as of
Connector/Python 2.0.0.

A MySQLCur sor NanedTupl e cursor returns each row as a named tuple. The attributes for each
named-tuple object are the column names of the MySQL result.

Example:

chx = mysql . connect or. connect (dat abase="wor| d')
cursor = cnx. cursor (naned_t upl e=Tr ue)
cursor. execut e(" SELECT * FROM country WHERE Continent = 'Europe'")
print("Countries in Europe with population:")
for rowin cursor
print("* {Nane}: {Population}".format(
Name=r ow. Nane,
Popul at i on=r ow. Popul at i on

)
6.9.6.7 cursor.MySQLCursorBufferedNamedTuple Class

The MySQLCur sor Buf f er edNanedTupl e class inherits from My SQLCur sor . This class is available
as of Connector/Python 2.0.0.

A MySQLCur sor Buf f er edNanedTupl e cursor is like a My SQLCur sor NanedTupl e cursor, but is
buffered: After executing a query, it fetches the entire result set from the server and buffers the rows.
For information about the implications of buffering, see Section 6.9.6.1, “cursor.MySQLCursorBuffered
Class”.

To get a buffered cursor that returns named tuples, add the buf f er ed argument when instantiating a
new named-tuple cursor:

cursor = cnx. cursor (naned_t upl e=True, buffered=True)

6.9.6.8 cursor.MySQLCursorPrepared Class
The My SQLCur sor Pr epar ed class inherits from My SQLCur sor .
Note

This class is available as of Connector/Python 1.1.0. The C extension supports
it as of Connector/Python 8.0.17.

In MySQL, there are two ways to execute a prepared statement:
» Use the PREPARE and EXECUTE statements.

» Use the binary client/server protocol to send and receive data. To repeatedly execute the same
statement with different data for different executions, this is more efficient than using PREPARE and
EXECUTE. For information about the binary protocol, see C API Prepared Statement Interface.

In Connector/Python, there are two ways to create a cursor that enables execution of prepared
statements using the binary protocol. In both cases, the cur sor () method of the connection object
returns a My SQLCur sor Pr epar ed object:

* The simpler syntax uses a pr epar ed=Tr ue argument to the cur sor () method. This syntax is
available as of Connector/Python 1.1.2.

i nport nysql . connect or
cnx = mysql . connect or. connect (dat abase="' enpl oyees')
cursor = cnx. cursor (prepared=True)

 Alternatively, create an instance of the MySQLCur sor Pr epar ed class using the cur sor _cl ass
argument to the cur sor () method. This syntax is available as of Connector/Python 1.1.0.

471

https://dev.mysql.com/doc/refman/8.0/en/prepare.html
https://dev.mysql.com/doc/refman/8.0/en/execute.html
https://dev.mysql.com/doc/refman/8.0/en/prepare.html
https://dev.mysql.com/doc/refman/8.0/en/execute.html
https://dev.mysql.com/doc/c-api/8.2/en/c-api-prepared-statement-interface.html

constants.ClientFlag Class

i nport nysql . connect or

from mysqgl . connect or. cursor inmport MySQLCursor Prepared
cnx = mysql . connect or. connect (dat abase="' enpl oyees")
cursor = cnx. cursor (cursor_cl ass=MySQ.Cur sor Pr epar ed)

A cursor instantiated from the My SQLCur sor Pr epar ed class works like this:

» The first time you pass a statement to the cursor's execut e() method, it prepares the statement.
For subsequent invocations of execut e(), the preparation phase is skipped if the statement is the
same.

» The execut e() method takes an optional second argument containing a list of data values to
associate with parameter markers in the statement. If the list argument is present, there must be one
value per parameter marker.

Example:

cursor = cnx. cursor (prepared=True)

stmt = "SELECT ful |l nane FROM enpl oyees WHERE id = %" # (1)
cursor. execute(stnt, (5,)) # (2)
... fetch data ...
cursor. execute(stnt, (10,)) # (3)
... fetch data ...

1. The % within the statement is a parameter marker. Do not put quote marks around parameter
markers.

2. For the first call to the execut e() method, the cursor prepares the statement. If data is given in
the same call, it also executes the statement and you should fetch the data.

3. For subsequent execut e() calls that pass the same SQL statement, the cursor skips the
preparation phase.

Prepared statements executed with My SQLCur sor Pr epar ed can use the f or mat (%) or gnar k (?)
parameterization style. This differs from nonprepared statements executed with My SQLCur sor , which
can use the f or mat or pyf or nat parameterization style.

To use multiple prepared statements simultaneously, instantiate multiple cursors from the
My SQLCur sor Pr epar ed class.

The MySQL client/server protocol has an option to send prepared statement parameters via the
COM _STMTI_SEND LONG DATA command. To use this from Connector/Python scripts, send the
parameter in question using the | OBase interface. Example:

fromio inport |OBase

cur = cnx. cursor (prepared=True)
cur.execute("SELECT (%)", (io.ByteslQ bytes("A", "latinl")),))

6.9.7 constants.ClientFlag Class

This class provides constants defining MySQL client flags that can be used when the connection
is established to configure the session. The Cl i ent Fl ag class is available when importing
nysql . connect or.

>>> jnport nysqgl.connect or
>>> nysqgl . connector. d i ent Fl ag. FOUND_ROWS
2

See Section 6.9.2.32, “MySQLConnection.set_client_flags() Method” and the connection argument
client_flag.

472

constants.FieldType Class

The C i ent Fl ag class cannot be instantiated.

6.9.8 constants.FieldType Class

This class provides all supported MySQL field or data types. They can be useful when dealing with raw
data or defining your own converters. The field type is stored with every cursor in the description for
each column.

The following example shows how to print the name of the data type for each column in a result set.
from__future__ inmport print_function
i mport nysql . connect or
from nysql . connector inport FieldType
cnx = mysqgl . connector. connect (user='scott', database='test')
cursor = cnx.cursor()
cur sor. execut e(

"SELECT DATE(NON)) AS “c1°, TIME(NOW)) AS “c2°, "

"NOW) AS "c3", '"a string' AS 'c4’, 42 AS 'c5 ")
rows = cursor.fetchall ()
for desc in cursor.description

col name = desc[0]

coltype = desc[1]

print("Colum {} has type {}".format(

col nane, Fiel dType. get _i nfo(col type)))

cursor.cl ose()
cnx. cl ose()

The Fi el dType class cannot be instantiated.

6.9.9 constants.SQLMode Class

This class provides all known MySQL Server SQL Modes. It is mostly used when setting the SQL
modes at connection time using the connection's sql _node property. See Section 6.9.2.47,
“MySQLConnection.sgl_mode Property”.

The SQLMode class cannot be instantiated.

6.9.10 constants.CharacterSet Class

This class provides all known MySQL characters sets and their default collations. For examples, see
Section 6.9.2.31, “MySQLConnection.set_charset_collation() Method”.

The Char act er Set class cannot be instantiated.

6.9.11 constants.RefreshOption Class
This class performs various flush operations.
* RefreshQOpti on. GRANT
Refresh the grant tables, like FLUSH PRI VI LEGES.
* RefreshOption. LOG
Flush the logs, like FLUSH LOGS.
* RefreshOpti on. TABLES
Flush the table cache, like FLUSH TABLES.
 RefreshOption. HOSTS

Flush the host cache, like FLUSH HOSTS.

473

https://dev.mysql.com/doc/refman/8.0/en/sql-mode.html
https://dev.mysql.com/doc/refman/8.0/en/flush.html#flush-privileges
https://dev.mysql.com/doc/refman/8.0/en/flush.html#flush-logs
https://dev.mysql.com/doc/refman/8.0/en/flush.html#flush-tables
https://dev.mysql.com/doc/refman/8.0/en/flush.html#flush-hosts

Errors and Exceptions

* RefreshOption. STATUS

Reset status variables, like FLUSH STATUS.
* RefreshOpti on. THREADS

Flush the thread cache.
* RefreshOpti on. REPLI CA

On a replica replication server, reset the source server information and restart the replica, like RESET
SLAVE. This constant was named "RefreshOption.SLAVE" before v8.0.23.

6.9.12 Errors and Exceptions

The nmysql . connect or . err or s module defines exception classes for errors and warnings raised
by MySQL Connector/Python. Most classes defined in this module are available when you import
nysql . connect or.

The exception classes defined in this module mostly follow the Python Database API Specification v2.0
(PEP 249). For some MySQL client or server errors it is not always clear which exception to raise. It is
good to discuss whether an error should be reclassified by opening a bug report.

MySQL Server errors are mapped with Python exception based on their SQLSTATE value (see Server
Error Message Reference). The following table shows the SQLSTATE classes and the exception
Connector/Python raises. It is, however, possible to redefine which exception is raised for each server
error. The default exception is Dat abaseErr or.

Table 6.3 Mapping of Server Errors to Python Exceptions

SQLSTATE Class Connector/Python Exception
02 Dat aErr or

02 Dat aErr or

07 Dat abaseErr or

08 Operati onal Error
0A Not Support edEr r or
21 Dat aErr or

22 Dat aEr r or

23 IntegrityError
24 Pr ogr ammi ngErr or
25 Pr ogr amm ngErr or
26 Pr ogr ammi ngError
27 Pr ogr ammi ngError
28 Pr ogr ammi ngErr or
2A Pr ogr amm ngError
2B Dat abaseErr or

2C Pr ogr ammi ngError
2D Dat abaseErr or

2E Dat abaseErr or

33 Dat abaseErr or

34 Pr ogr ammi ngError
35 Pr ogr ammi ngErr or

474

https://dev.mysql.com/doc/refman/8.0/en/flush.html#flush-status
https://dev.mysql.com/doc/refman/8.0/en/reset-slave.html
https://dev.mysql.com/doc/refman/8.0/en/reset-slave.html
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html

Errors and Exceptions

SQLSTATE Class Connector/Python Exception
37 Pr ogr amm ngErr or
3C Pr ogr anmmi ngError
3D Pr ogr anmmi ngError
3F Pr ogr ammi ngErr or
40 I nternal Error

42 Pr ogr anmmi ngError
44 I nternal Error

Hz Oper ational Error
XA IntegrityError
0K Qper ational Error
HY Dat abaseErr or

6.9.12.1 errorcode Module

This module contains both MySQL server and client error codes defined as module attributes with the
error number as value. Using error codes instead of error numbers could make reading the source
code a bit easier.

>>> from nysql . connector inport errorcode
>>> errorcode. ER BAD TABLE ERROR
1051

For more information about MySQL errors, see Error Messages and Common Problems.
6.9.12.2 errors.Error Exception

This exception is the base class for all other exceptions in the er r or s module. It can be used to catch
all errors in a single except statement.

The following example shows how we could catch syntax errors:

i nport nysqgl . connect or

try:
cnx = nysql . connector. connect (user="'scott', database='enpl oyees')
cursor = cnx.cursor()
cursor. execut e("SELECT * FORM enpl oyees") # Syntax error in query
cnx. cl ose()

except nysql.connector.Error as err:
print ("Sonet hi ng went wong: {}".format(err))

Initializing the exception supports a few optional arguments, namely nsg, er r no, val ues and

sql st at e. All of them are optional and default to None. errors. Error is internally used by
Connector/Python to raise MySQL client and server errors and should not be used by your application
to raise exceptions.

The following examples show the result when using no arguments or a combination of the arguments:

>>> from nysql . connector.errors inmport Error

>>> str(Error())

" Unknown error'

>>> str(Error("Cops! There was an error."))

' Cops! There was an error.'

>>> str(Error(errno=2006))

'2006: MySQ. server has gone away'

>>> str(Error(errno=2002, val ues=('/tnp/nysql.sock', 2)))

"2002: Can't connect to |local MySQL server through socket '/tnp/nysqgl.sock' (2)"

475

https://dev.mysql.com/doc/refman/8.0/en/error-handling.html

Errors and Exceptions

>>> str(Error(errno=1146, sql state='42S02', nsg="Table 'test.spam doesn't exist"))
"1146 (42S02): Table 'test.spaml doesn't exist”

The example which uses error number 1146 is used when Connector/Python receives an error packet
from the MySQL Server. The information is parsed and passed to the Er r or exception as shown.

Each exception subclassing from Er r or can be initialized using the previously mentioned arguments.
Additionally, each instance has the attributes er r no, nsg and sql st at e which can be used in your
code.

The following example shows how to handle errors when dropping a table which does not exist (when
the DROP TABLE statement does not include a | F EXI STS clause):

i mport nysqgl . connect or
from nysql . connector inport errorcode
cnx = nysql . connector. connect (user="scott', database='test')
cursor = cnx.cursor()
try:
cursor. execut e(" DROP TABLE spani')
except nysql.connector.Error as err
if err.errno == errorcode. ER BAD TABLE ERROR:
print("Creating table spani)
el se
raise

Prior to Connector/Python 1.1.1, the original message passed to errors. Error () is not saved in
such a way that it could be retrieved. Instead, the Er r or . nsg attribute was formatted with the error
number and SQLSTATE value. As of 1.1.1, only the original message is saved in the Err or . nsg
attribute. The formatted value together with the error number and SQLSTATE value can be obtained by
printing or getting the string representation of the error object. Example:

try:
conn = nysgl . connector. connect (dat abase = "baddb")
except nysql.connector.Error as e
print “"Error code:", e.errno # error nunber
print "SQ.STATE val ue:", e.sqlstate # SQLSTATE val ue
print "Error nessage:", e.nsg # error message
print "Error:", e # errno, sqglstate, nsg val ues
s = str(e)
print "Error:", s # errno, sqglstate, nsg val ues

errors. Error is asubclass of the Python St andar dEr r or .
6.9.12.3 errors.DataError Exception
This exception is raised when there were problems with the data. Examples are a column set to NULL
that cannot be NULL, out-of-range values for a column, division by zero, column count does not match
value count, and so on.
errors. Dat aError is asubclass of error s. Dat abaseError.
6.9.12.4 errors.DatabaseError Exception
This exception is the default for any MySQL error which does not fit the other exceptions.
errors. Dat abaseError is asubclass oferrors. Error.

6.9.12.5 errors.IntegrityError Exception

This exception is raised when the relational integrity of the data is affected. For example, a duplicate
key was inserted or a foreign key constraint would fail.

The following example shows a duplicate key error raised as IntegrityError:

476

https://dev.mysql.com/doc/refman/8.0/en/drop-table.html

Errors and Exceptions

cursor. execut e("CREATE TABLE t1 (id int, PRIMARY KEY (id))")
try:
cursor.execute("INSERT INTOt1 (id) VALUES (1)")
cursor.execute("INSERT INTOt1 (id) VALUES (1)")
except nysql.connector.IntegrityError as err:
print("Error: {}".format(err))

errors.IntegrityError isasubclass of errors. Dat abaseError.
6.9.12.6 errors.InterfaceError Exception

This exception is raised for errors originating from Connector/Python itself, not related to the MySQL
server.

errors. | nterfaceError isasubclassoferrors. Error.
6.9.12.7 errors.InternalError Exception

This exception is raised when the MySQL server encounters an internal error, for example, when a
deadlock occurred.

errors. I nternal Error isasubclass of errors. Dat abaseError.

6.9.12.8 errors.NotSupportedError Exception
This exception is raised when some feature was used that is not supported by the version of MySQL
that returned the error. It is also raised when using functions or statements that are not supported by
stored routines.
errors. Not Support edError is asubclass of errors. Dat abaseError.

6.9.12.9 errors.OperationalError Exception

This exception is raised for errors which are related to MySQL's operations. For example: too
many connections; a host name could not be resolved; bad handshake; server is shutting down,
communication errors.

errors. Operational Error isasubclass of errors. Dat abaseError.
6.9.12.10 errors.PoolError Exception

This exception is raised for connection pool errors. err or s. Pool Err or is a subclass of
errors.Error.

6.9.12.11 errors.ProgrammingError Exception

This exception is raised on programming errors, for example when you have a syntax error in your SQL
or a table was not found.

The following example shows how to handle syntax errors:

try:
cursor. execute("CREATE DESK t1 (id int, PRI MARY KEY (id))")
except nysql.connector. Progranm ngError as err:
if err.errno == errorcode. ER_SYNTAX_ ERROR:
print("Check your syntax!")
el se:
print("Error: {}".format(err))

errors. Progranm ngError isasubclass of errors. Dat abaseError.

6.9.12.12 errors.Warning Exception

477

Errors and Exceptions

This exception is used for reporting important warnings, however, Connector/Python does not use it. It
is included to be compliant with the Python Database Specification v2.0 (PEP-249).

Consider using either more strict Server SQL Modes or the raise_on_warnings connection argument to
make Connector/Python raise errors when your queries produce warnings.

errors. War ni ng is a subclass of the Python St andar dEr r or .

6.9.12.13 errors.custom_error_exception() Function

Syntax:

errors. custom error_exception(error=None, excepti on=None)
This method defines custom exceptions for MySQL server errors and returns current customizations.

If error is a MySQL Server error number, you must also pass the except i on class. The err or
argument can be a dictionary, in which case the key is the server error number, and value the class of
the exception to be raised.

To reset the customizations, supply an empty dictionary.

i mport nysql . connect or
from nysqgl . connector inport errorcode
Server error 1028 shoul d rai se a DatabaseError
nmysql . connect or. cust om error_excepti on(1028, nysql . connect or. Dat abaseError)
O using a dictionary:
nmysql . connect or. cust om error_exception({
1028: nysql . connect or . Dat abaseErr or
1029: nysql . connect or. Qper ati onal Error
i)
To reset, pass an enpty dictionary:
nmysql . connect or. cust om error_exception({})

478

https://dev.mysql.com/doc/refman/8.0/en/sql-mode.html

Chapter 7 MySQL and PHP

Table of Contents

7.1 Introduction to the MySQL PHP AP ... e 479
This chapter describes the PHP extensions and interfaces that can be used with MySQL.

For legal information, see the Legal Notices.

For help with using MySQL, please visit the MySQL Forums, where you can discuss your issues with
other MySQL users.

7.1 Introduction to the MySQL PHP API

PHP is a server-side, HTML-embedded scripting language that may be used to create dynamic Web
pages. It is available for most operating systems and Web servers, and can access most common
databases, including MySQL. PHP may be run as a separate program or compiled as a module for use
with a Web server.

PHP provides several different MySQL API extensions:
Note

The PHP documentation assumes PHP 7 and higher is used; functionality
specific to PHP 5 and below is not documented.

* MySQLi: Stands for “MySQL, Improved”; this extension is available as of PHP 5.0.0. It is intended
for use with MySQL 4.1.1 and later. This extension fully supports the authentication protocol used
in MySQL 5.0, as well as the Prepared Statements and Multiple Statements APIs. In addition, this
extension provides an advanced, object-oriented programming interface.

« PDO_MySQL: Not its own API, but instead it's a MySQL driver for the PHP database abstraction
layer PDO (PHP Data Objects). The PDO MySQL driver sits in the layer below PDO itself, and
provides MySQL-specific functionality. This extension is available as of PHP 5.1.0.

* MySQL_XDevAPI: This extension uses MySQL's X DevAPI and is available as a PECL extension
named mysql_xdevapi. For general concepts and X DevAPI usage details, see X DevAPI| User
Guide.

Note

This documentation, and other publications, sometimes uses the term

Connect or / PHP. This term refers to the full set of MySQL related functionality
in PHP, which includes the APIs that are described in the preceding discussion,
along with the mysqglInd core library and all of its plugins.

The PHP distribution and documentation are available from the PHP website.

479

http://forums.mysql.com
https://www.php.net/manual/en/book.mysqli.php
https://www.php.net/manual/en/ref.pdo-mysql.php
https://www.php.net/manual/en/book.mysql-xdevapi.php
https://pecl.php.net/package/mysql_xdevapi
https://dev.mysql.com/doc/x-devapi-userguide/en/
https://dev.mysql.com/doc/x-devapi-userguide/en/
https://www.php.net/manual/en/book.mysqlnd.php
https://www.php.net/

480

	Connectors and APIs
	Table of Contents
	Preface and Legal Notices
	Chapter 1 Introduction
	Chapter 2 MySQL Connector/C++ Developer Guide
	2.1 Introduction to Connector/C++
	2.2 Obtaining Connector/C++
	2.3 Installing Connector/C++ from a Binary Distribution
	2.4 Installing Connector/C++ from Source
	2.4.1 Source Installation System Prerequisites
	2.4.2 Obtaining and Unpacking a Connector/C++ Source Distribution
	2.4.3 Installing Connector/C++ from Source
	2.4.4 Connector/C++ Source-Configuration Options

	2.5 Building Connector/C++ Applications
	2.5.1 Building Connector/C++ Applications: General Considerations
	2.5.2 Building Connector/C++ Applications: Platform-Specific Considerations
	2.5.2.1 Windows Notes
	2.5.2.2 macOS Notes
	2.5.2.3 Generic Linux Notes

	2.5.3 Authentication Support
	2.5.4 OpenTelemetry Tracing Support

	2.6 Connector/C++ Known Issues
	2.7 Connector/C++ Support

	Chapter 3 MySQL Connector/J Developer Guide
	3.1 Overview of MySQL Connector/J
	3.2 Compatibility with MySQL and Java Versions
	3.3 Connector/J Installation
	3.3.1 Installing Connector/J from a Binary Distribution
	3.3.2 Installing Connector/J Using Maven
	3.3.3 Installing from Source
	3.3.4 Upgrading from an Older Version
	3.3.4.1 Upgrading to MySQL Connector/J 8.0
	Running on the Java 8 Platform
	Changes in Connection Properties
	Changes in the Connector/J API
	Changes for Build Properties
	Change for Test Properties
	Changes for Exceptions
	Other Changes

	3.3.5 Testing Connector/J

	3.4 Connector/J Examples
	3.5 Connector/J Reference
	3.5.1 Driver/Datasource Class Name
	3.5.2 Connection URL Syntax
	3.5.3 Configuration Properties
	3.5.3.1 Authentication
	3.5.3.2 Connection
	3.5.3.3 Session
	3.5.3.4 Networking
	3.5.3.5 Security
	3.5.3.6 Statements
	3.5.3.7 Prepared Statements
	3.5.3.8 Result Sets
	3.5.3.9 Metadata
	3.5.3.10 BLOB/CLOB processing
	3.5.3.11 Datetime types processing
	3.5.3.12 High Availability and Clustering
	3.5.3.13 Performance Extensions
	3.5.3.14 Debugging/Profiling
	3.5.3.15 Exceptions/Warnings
	3.5.3.16 Tunes for integration with other products
	3.5.3.17 JDBC compliance
	3.5.3.18 X Protocol and X DevAPI

	3.5.4 JDBC API Implementation Notes
	3.5.5 Java, JDBC, and MySQL Types
	3.5.6 Handling of Date-Time Values
	3.5.6.1 Preserving Time Instants
	3.5.6.2 Fractional Seconds
	3.5.6.3 Handling of YEAR Values

	3.5.7 Using Character Sets and Unicode
	3.5.8 Using Query Attributes
	3.5.9 Connecting Securely Using SSL
	3.5.9.1 Setting up Server Authentication
	3.5.9.2 Setting up Client Authentication
	3.5.9.3 Setting up 2-Way Authentication
	3.5.9.4 JSSE in FIPS Mode
	3.5.9.5 Debugging an SSL Connection

	3.5.10 Connecting Using Unix Domain Sockets
	3.5.11 Connecting Using Named Pipes
	3.5.12 Connecting Using Various Authentication Methods
	3.5.12.1 Connecting Using PAM Authentication
	3.5.12.2 Connecting Using Kerberos
	3.5.12.3 Connecting Using Multifactor Authentication
	3.5.12.4 Connecting Using Fast Identity Online (FIDO) Authentication

	3.5.13 Using Source/Replica Replication with ReplicationConnection
	3.5.14 Support for DNS SRV Records
	3.5.15 Client Session State Tracker
	3.5.16 Mapping MySQL Error Numbers to JDBC SQLState Codes

	3.6 JDBC Concepts
	3.6.1 Connecting to MySQL Using the JDBC DriverManager Interface
	3.6.2 Using JDBC Statement Objects to Execute SQL
	3.6.3 Using JDBC CallableStatements to Execute Stored Procedures
	3.6.4 Retrieving AUTO_INCREMENT Column Values through JDBC

	3.7 Connection Pooling with Connector/J
	3.8 Multi-Host Connections
	3.8.1 Configuring Server Failover for Connections Using JDBC
	3.8.2 Configuring Server Failover for Connections Using X DevAPI
	3.8.3 Configuring Load Balancing with Connector/J
	3.8.4 Configuring Source/Replica Replication with Connector/J
	3.8.5 Advanced Load-balancing and Failover Configuration

	3.9 Using the X DevAPI with Connector/J: Special Topics
	3.9.1 Connection Compression Using X DevAPI
	3.9.2 Schema Validation

	3.10 Using the Connector/J Interceptor Classes
	3.11 Using Logging Frameworks with SLF4J
	3.12 Using Connector/J with Tomcat
	3.13 Using Connector/J with Spring
	3.13.1 Using JdbcTemplate
	3.13.2 Transactional JDBC Access
	3.13.3 Connection Pooling with Spring

	3.14 Troubleshooting Connector/J Applications
	3.15 Known Issues and Limitations
	3.16 Connector/J Support
	3.16.1 Connector/J Community Support
	3.16.2 How to Report Connector/J Bugs or Problems

	Chapter 4 MySQL Connector/NET Developer Guide
	4.1 Introduction to MySQL Connector/NET
	4.2 Connector/NET Versions
	4.3 Connector/NET Installation
	4.3.1 Installing Connector/NET on Windows
	4.3.1.1 Installing Connector/NET Using the Standalone Installer
	4.3.1.2 Installing Connector/NET Using NuGet

	4.3.2 Installing Connector/NET on Unix with Mono
	4.3.3 Installing Connector/NET from Source

	4.4 Connector/NET Connections
	4.4.1 Creating a Connector/NET Connection String
	4.4.2 Managing a Connection Pool in Connector/NET
	4.4.3 Handling Connection Errors
	4.4.4 Connector/NET Authentication
	4.4.5 Connector/NET Connection Options Reference

	4.5 Connector/NET Programming
	4.5.1 Using GetSchema on a Connection
	4.5.2 Using MySqlCommand
	4.5.3 Using Connector/NET with Table Caching
	4.5.4 Preparing Statements in Connector/NET
	4.5.5 Creating and Calling Stored Procedures
	4.5.6 Handling BLOB Data With Connector/NET
	4.5.6.1 Preparing the MySQL Server
	4.5.6.2 Writing a File to the Database
	4.5.6.3 Reading a BLOB from the Database to a File on Disk

	4.5.7 Working with Partial Trust / Medium Trust
	4.5.7.1 Evolution of Partial Trust Support Across Connector/NET Versions
	4.5.7.2 Configuring Partial Trust with Connector/NET Library Installed in GAC
	4.5.7.3 Configuring Partial Trust with Connector/NET Library Not Installed in GAC

	4.5.8 Writing a Custom Authentication Plugin
	4.5.9 Using the Connector/NET Interceptor Classes
	4.5.10 Handling Date and Time Information in Connector/NET
	4.5.10.1 Fractional Seconds
	4.5.10.2 Problems when Using Invalid Dates
	4.5.10.3 Restricting Invalid Dates
	4.5.10.4 Handling Invalid Dates
	4.5.10.5 Handling NULL Dates

	4.5.11 Using the MySqlBulkLoader Class
	4.5.12 Connector/NET Tracing
	4.5.12.1 Enabling OpenTelemetry Tracing
	4.5.12.2 Using the Connector/NET Trace Source Object
	Viewing MySQL Trace Information
	Building Custom Listeners

	4.5.13 Using Connector/NET with Crystal Reports
	4.5.13.1 Creating a Data Source
	4.5.13.2 Creating the Report
	4.5.13.3 Displaying the Report

	4.5.14 Asynchronous Methods
	4.5.15 Binary and Nonbinary Issues
	4.5.16 Character Set Considerations for Connector/NET

	4.6 Connector/NET Tutorials
	4.6.1 Tutorial: An Introduction to Connector/NET Programming
	4.6.1.1 The MySqlConnection Object
	4.6.1.2 The MySqlCommand Object
	4.6.1.3 Working with Decoupled Data
	4.6.1.4 Working with Parameters
	4.6.1.5 Working with Stored Procedures

	4.6.2 ASP.NET Provider Model and Tutorials
	4.6.2.1 Tutorial: Connector/NET ASP.NET Membership and Role Provider
	4.6.2.2 Tutorial: Connector/NET ASP.NET Profile Provider
	4.6.2.3 Tutorial: Web Parts Personalization Provider
	4.6.2.4 Tutorial: Simple Membership Web Provider

	4.6.3 Tutorial: Using an Entity Framework Entity as a Windows Forms Data Source
	4.6.4 Tutorial: Data Binding in ASP.NET Using LINQ on Entities
	4.6.5 Tutorial: Generating MySQL DDL from an Entity Framework Model
	4.6.6 Tutorial: Basic CRUD Operations with Connector/NET
	4.6.7 Tutorial: Configuring SSL with Connector/NET
	4.6.7.1 Using PEM Certificates in Connector/NET
	4.6.7.2 Using PFX Certificates in Connector/NET

	4.6.8 Tutorial: Using MySqlScript

	4.7 Connector/NET for Entity Framework
	4.7.1 Entity Framework 6 Support
	4.7.2 Entity Framework Core Support
	4.7.2.1 Creating a Database with Code First in EF Core
	4.7.2.2 Scaffolding an Existing Database in EF Core
	4.7.2.3 Configuring Character Sets and Collations in EF Core

	4.8 Connector/NET API Reference
	4.8.1 MySql.Data.Common.DnsClient
	4.8.2 MySql.Data.MySqlClient Namespace
	4.8.3 MySql.Data.MySqlClient.Authentication Namespace
	4.8.4 MySql.Data.MySqlClient.Interceptors Namespace
	4.8.5 MySql.Data.MySqlClient.Replication Namespace
	4.8.6 MySql.Data.Types Namespace
	4.8.7 MySql.Data.EntityFramework Namespace
	4.8.8 Microsoft.EntityFrameworkCore Namespace
	4.8.9 MySql.EntityFrameworkCore Namespace
	4.8.10 MySql.Web Namespace

	4.9 Connector/NET Support
	4.9.1 Connector/NET Community Support
	4.9.2 How to Report Connector/NET Problems or Bugs

	Chapter 5 MySQL Connector/ODBC Developer Guide
	5.1 Introduction to MySQL Connector/ODBC
	5.2 Connector/ODBC Versions
	5.3 General Information About ODBC and Connector/ODBC
	5.3.1 Connector/ODBC Architecture
	5.3.2 ODBC Driver Managers

	5.4 Connector/ODBC Installation
	5.4.1 Installing Connector/ODBC on Windows
	5.4.1.1 Installing the Windows Connector/ODBC Driver Using the Zipped DLL Package
	5.4.1.2 Installing the Windows Connector/ODBC Debug Packages

	5.4.2 Installing Connector/ODBC on Unix-like Systems
	5.4.2.1 Installing Connector/ODBC Using the MySQL Yum Repository
	5.4.2.2 Installing Connector/ODBC from a Binary Tarball Distribution
	5.4.2.3 Installing Connector/ODBC from a DEB Distribution
	5.4.2.4 Installing Connector/ODBC from an RPM Distribution

	5.4.3 Installing Connector/ODBC on macOS
	5.4.4 Building Connector/ODBC from a Source Distribution on Windows
	5.4.5 Building Connector/ODBC from a Source Distribution on Unix
	5.4.6 Building Connector/ODBC from a Source Distribution on macOS
	5.4.7 Installing Connector/ODBC from the Development Source Tree

	5.5 Configuring Connector/ODBC
	5.5.1 Overview of Connector/ODBC Data Source Names
	5.5.2 Connector/ODBC Connection Parameters
	5.5.3 Configuring a Connector/ODBC DSN on Windows
	5.5.3.1 Configuring a Connector/ODBC DSN on Windows with the ODBC Data Source Administrator GUI
	5.5.3.2 Configuring a Connector/ODBC DSN on Windows, Using the Command Line
	5.5.3.3 Troubleshooting ODBC Connection Problems

	5.5.4 Configuring a Connector/ODBC DSN on macOS
	5.5.5 Configuring a Connector/ODBC DSN on Unix
	5.5.6 Connecting Without a Predefined DSN
	5.5.7 ODBC Connection Pooling
	5.5.8 OpenTelemetry Tracing Support
	5.5.9 Authentication Options
	5.5.10 Getting an ODBC Trace File
	5.5.10.1 Enabling ODBC Tracing on Windows
	5.5.10.2 Enabling ODBC Tracing on macOS
	5.5.10.3 Enabling ODBC Tracing on Unix
	5.5.10.4 Enabling a Connector/ODBC Log

	5.6 Connector/ODBC Examples
	5.6.1 Basic Connector/ODBC Application Steps
	5.6.2 Step-by-step Guide to Connecting to a MySQL Database through Connector/ODBC
	5.6.3 Connector/ODBC and Third-Party ODBC Tools
	5.6.4 Using Connector/ODBC with Microsoft Access
	5.6.4.1 Exporting Access Data to MySQL
	5.6.4.2 Importing MySQL Data to Access
	5.6.4.3 Using Microsoft Access as a Front-end to MySQL

	5.6.5 Using Connector/ODBC with Microsoft Word or Excel
	5.6.6 Using Connector/ODBC with Crystal Reports
	5.6.7 Connector/ODBC Programming
	5.6.7.1 Using Connector/ODBC with Visual Basic Using ADO, DAO and RDO
	ADO: rs.addNew, rs.delete, and rs.update
	DAO: rs.addNew, rs.update, and Scrolling
	RDO: rs.addNew and rs.update

	5.6.7.2 Using Connector/ODBC with .NET
	Using Connector/ODBC with ODBC.NET and C# (C sharp)
	Using Connector/ODBC with ODBC.NET and Visual Basic

	5.7 Connector/ODBC Reference
	5.7.1 Connector/ODBC API Reference
	5.7.2 Connector/ODBC Data Types
	5.7.3 Connector/ODBC Error Codes

	5.8 Connector/ODBC Notes and Tips
	5.8.1 Connector/ODBC General Functionality
	5.8.1.1 Obtaining Auto-Increment Values
	5.8.1.2 Dynamic Cursor Support
	5.8.1.3 Configuring Catalog and Schema Support
	5.8.1.4 Connector/ODBC Performance
	5.8.1.5 Setting ODBC Query Timeout in Windows

	5.8.2 Connector/ODBC Application-Specific Tips
	5.8.2.1 Using Connector/ODBC with Microsoft Applications
	Microsoft Access
	Microsoft Excel and Column Types
	Microsoft Visual Basic
	Microsoft Visual InterDev
	Visual Objects
	Microsoft ADO
	Using Connector/ODBC with Active Server Pages (ASP)
	Using Connector/ODBC with Visual Basic (ADO, DAO and RDO) and ASP

	5.8.2.2 Using Connector/ODBC with Borland Applications
	Using Connector/ODBC with Borland Builder 4
	Using Connector/ODBC with Delphi
	Using Connector/ODBC with C++ Builder

	5.8.2.3 Using Connector/ODBC with ColdFusion
	5.8.2.4 Using Connector/ODBC with OpenOffice.org
	5.8.2.5 Using Connector/ODBC with Pervasive Software DataJunction
	5.8.2.6 Using Connector/ODBC with SunSystems Vision

	5.8.3 Connector/ODBC and the Application Both Use OpenSSL
	5.8.4 Connector/ODBC Errors and Resolutions (FAQ)

	5.9 Connector/ODBC Support
	5.9.1 Connector/ODBC Community Support
	5.9.2 How to Report Connector/ODBC Problems or Bugs

	Chapter 6 MySQL Connector/Python Developer Guide
	6.1 Introduction to MySQL Connector/Python
	6.2 Guidelines for Python Developers
	6.3 Connector/Python Versions
	6.4 Connector/Python Installation
	6.4.1 Obtaining Connector/Python
	6.4.2 Installing Connector/Python from a Binary Distribution
	6.4.3 Installing Connector/Python from a Source Distribution
	6.4.4 Verifying Your Connector/Python Installation

	6.5 Connector/Python Coding Examples
	6.5.1 Connecting to MySQL Using Connector/Python
	6.5.2 Creating Tables Using Connector/Python
	6.5.3 Inserting Data Using Connector/Python
	6.5.4 Querying Data Using Connector/Python

	6.6 Connector/Python Tutorials
	6.6.1 Tutorial: Raise Employee's Salary Using a Buffered Cursor

	6.7 Connector/Python Connection Establishment
	6.7.1 Connector/Python Connection Arguments
	6.7.2 Connector/Python Option-File Support

	6.8 Connector/Python Other Topics
	6.8.1 Connector/Python Logging
	6.8.2 OpenTelemetry Support
	6.8.3 Asynchronous Connectivity
	6.8.4 Connector/Python Connection Pooling
	6.8.5 Connector/Python Django Back End

	6.9 Connector/Python API Reference
	6.9.1 mysql.connector Module
	6.9.1.1 mysql.connector.connect() Method
	6.9.1.2 mysql.connector.apilevel Property
	6.9.1.3 mysql.connector.paramstyle Property
	6.9.1.4 mysql.connector.threadsafety Property
	6.9.1.5 mysql.connector.__version__ Property
	6.9.1.6 mysql.connector.__version_info__ Property

	6.9.2 connection.MySQLConnection Class
	6.9.2.1 connection.MySQLConnection() Constructor
	6.9.2.2 MySQLConnection.close() Method
	6.9.2.3 MySQLConnection.commit() Method
	6.9.2.4 MySQLConnection.config() Method
	6.9.2.5 MySQLConnection.connect() Method
	6.9.2.6 MySQLConnection.cursor() Method
	6.9.2.7 MySQLConnection.cmd_change_user() Method
	6.9.2.8 MySQLConnection.cmd_debug() Method
	6.9.2.9 MySQLConnection.cmd_init_db() Method
	6.9.2.10 MySQLConnection.cmd_ping() Method
	6.9.2.11 MySQLConnection.cmd_process_info() Method
	6.9.2.12 MySQLConnection.cmd_process_kill() Method
	6.9.2.13 MySQLConnection.cmd_query() Method
	6.9.2.14 MySQLConnection.cmd_query_iter() Method
	6.9.2.15 MySQLConnection.cmd_quit() Method
	6.9.2.16 MySQLConnection.cmd_refresh() Method
	6.9.2.17 MySQLConnection.cmd_reset_connection() Method
	6.9.2.18 MySQLConnection.cmd_shutdown() Method
	6.9.2.19 MySQLConnection.cmd_statistics() Method
	6.9.2.20 MySQLConnection.disconnect() Method
	6.9.2.21 MySQLConnection.get_row() Method
	6.9.2.22 MySQLConnection.get_rows() Method
	6.9.2.23 MySQLConnection.get_server_info() Method
	6.9.2.24 MySQLConnection.get_server_version() Method
	6.9.2.25 MySQLConnection.is_connected() Method
	6.9.2.26 MySQLConnection.isset_client_flag() Method
	6.9.2.27 MySQLConnection.ping() Method
	6.9.2.28 MySQLConnection.reconnect() Method
	6.9.2.29 MySQLConnection.reset_session() Method
	6.9.2.30 MySQLConnection.rollback() Method
	6.9.2.31 MySQLConnection.set_charset_collation() Method
	6.9.2.32 MySQLConnection.set_client_flags() Method
	6.9.2.33 MySQLConnection.shutdown() Method
	6.9.2.34 MySQLConnection.start_transaction() Method
	6.9.2.35 MySQLConnection.autocommit Property
	6.9.2.36 MySQLConnection.unread_results Property
	6.9.2.37 MySQLConnection.can_consume_results Property
	6.9.2.38 MySQLConnection.charset Property
	6.9.2.39 MySQLConnection.collation Property
	6.9.2.40 MySQLConnection.connection_id Property
	6.9.2.41 MySQLConnection.database Property
	6.9.2.42 MySQLConnection.get_warnings Property
	6.9.2.43 MySQLConnection.in_transaction Property
	6.9.2.44 MySQLConnection.raise_on_warnings Property
	6.9.2.45 MySQLConnection.server_host Property
	6.9.2.46 MySQLConnection.server_port Property
	6.9.2.47 MySQLConnection.sql_mode Property
	6.9.2.48 MySQLConnection.time_zone Property
	6.9.2.49 MySQLConnection.unix_socket Property
	6.9.2.50 MySQLConnection.user Property

	6.9.3 pooling.MySQLConnectionPool Class
	6.9.3.1 pooling.MySQLConnectionPool Constructor
	6.9.3.2 MySQLConnectionPool.add_connection() Method
	6.9.3.3 MySQLConnectionPool.get_connection() Method
	6.9.3.4 MySQLConnectionPool.set_config() Method
	6.9.3.5 MySQLConnectionPool.pool_name Property

	6.9.4 pooling.PooledMySQLConnection Class
	6.9.4.1 pooling.PooledMySQLConnection Constructor
	6.9.4.2 PooledMySQLConnection.close() Method
	6.9.4.3 PooledMySQLConnection.config() Method
	6.9.4.4 PooledMySQLConnection.pool_name Property

	6.9.5 cursor.MySQLCursor Class
	6.9.5.1 cursor.MySQLCursor Constructor
	6.9.5.2 MySQLCursor.add_attribute() Method
	6.9.5.3 MySQLCursor.clear_attributes() Method
	6.9.5.4 MySQLCursor.get_attributes() Method
	6.9.5.5 MySQLCursor.callproc() Method
	6.9.5.6 MySQLCursor.close() Method
	6.9.5.7 MySQLCursor.execute() Method
	6.9.5.8 MySQLCursor.executemany() Method
	6.9.5.9 MySQLCursor.fetchall() Method
	6.9.5.10 MySQLCursor.fetchmany() Method
	6.9.5.11 MySQLCursor.fetchone() Method
	6.9.5.12 MySQLCursor.fetchwarnings() Method
	6.9.5.13 MySQLCursor.stored_results() Method
	6.9.5.14 MySQLCursor.column_names Property
	6.9.5.15 MySQLCursor.description Property
	6.9.5.16 MySQLCursor.lastrowid Property
	6.9.5.17 MySQLCursor.rowcount Property
	6.9.5.18 MySQLCursor.statement Property
	6.9.5.19 MySQLCursor.with_rows Property

	6.9.6 Subclasses cursor.MySQLCursor
	6.9.6.1 cursor.MySQLCursorBuffered Class
	6.9.6.2 cursor.MySQLCursorRaw Class
	6.9.6.3 cursor.MySQLCursorBufferedRaw Class
	6.9.6.4 cursor.MySQLCursorDict Class
	6.9.6.5 cursor.MySQLCursorBufferedDict Class
	6.9.6.6 cursor.MySQLCursorNamedTuple Class
	6.9.6.7 cursor.MySQLCursorBufferedNamedTuple Class
	6.9.6.8 cursor.MySQLCursorPrepared Class

	6.9.7 constants.ClientFlag Class
	6.9.8 constants.FieldType Class
	6.9.9 constants.SQLMode Class
	6.9.10 constants.CharacterSet Class
	6.9.11 constants.RefreshOption Class
	6.9.12 Errors and Exceptions
	6.9.12.1 errorcode Module
	6.9.12.2 errors.Error Exception
	6.9.12.3 errors.DataError Exception
	6.9.12.4 errors.DatabaseError Exception
	6.9.12.5 errors.IntegrityError Exception
	6.9.12.6 errors.InterfaceError Exception
	6.9.12.7 errors.InternalError Exception
	6.9.12.8 errors.NotSupportedError Exception
	6.9.12.9 errors.OperationalError Exception
	6.9.12.10 errors.PoolError Exception
	6.9.12.11 errors.ProgrammingError Exception
	6.9.12.12 errors.Warning Exception
	6.9.12.13 errors.custom_error_exception() Function

	Chapter 7 MySQL and PHP
	7.1 Introduction to the MySQL PHP API

