
Connectors and APIs

Abstract

This manual describes the Connectors and APIs that can be used with MySQL.

For legal information, see the Legal Notices.

For help with using MySQL, please visit the MySQL Forums, where you can discuss your issues with other
MySQL users.

Document generated on: 2024-03-08 (revision: 78025)

http://forums.mysql.com

Table of Contents
Preface and Legal Notices ... vii
1 Introduction ... 1
2 MySQL Connector/C++ Developer Guide .. 3

2.1 Introduction to Connector/C++ ... 3
2.2 Obtaining Connector/C++ .. 6
2.3 Installing Connector/C++ from a Binary Distribution .. 6
2.4 Installing Connector/C++ from Source .. 9

2.4.1 Source Installation System Prerequisites ... 9
2.4.2 Obtaining and Unpacking a Connector/C++ Source Distribution 10
2.4.3 Installing Connector/C++ from Source ... 11
2.4.4 Connector/C++ Source-Configuration Options .. 14

2.5 Building Connector/C++ Applications .. 20
2.5.1 Building Connector/C++ Applications: General Considerations 20
2.5.2 Building Connector/C++ Applications: Platform-Specific Considerations 28
2.5.3 Authentication Support .. 33
2.5.4 OpenTelemetry Tracing Support ... 38

2.6 Connector/C++ Known Issues ... 38
2.7 Connector/C++ Support ... 39

3 MySQL Connector/J Developer Guide .. 41
3.1 Overview of MySQL Connector/J ... 42
3.2 Compatibility with MySQL and Java Versions ... 42
3.3 Connector/J Installation ... 43

3.3.1 Installing Connector/J from a Binary Distribution .. 43
3.3.2 Installing Connector/J Using Maven .. 45
3.3.3 Installing from Source ... 45
3.3.4 Upgrading from an Older Version .. 47
3.3.5 Testing Connector/J ... 52

3.4 Connector/J Examples .. 53
3.5 Connector/J Reference .. 54

3.5.1 Driver/Datasource Class Name ... 54
3.5.2 Connection URL Syntax ... 54
3.5.3 Configuration Properties ... 58
3.5.4 JDBC API Implementation Notes ... 102
3.5.5 Java, JDBC, and MySQL Types .. 105
3.5.6 Handling of Date-Time Values .. 107
3.5.7 Using Character Sets and Unicode ... 113
3.5.8 Using Query Attributes .. 115
3.5.9 Connecting Securely Using SSL .. 117
3.5.10 Connecting Using Unix Domain Sockets .. 122
3.5.11 Connecting Using Named Pipes .. 123
3.5.12 Connecting Using Various Authentication Methods ... 124
3.5.13 Using Source/Replica Replication with ReplicationConnection 126
3.5.14 Support for DNS SRV Records ... 126
3.5.15 Client Session State Tracker ... 127
3.5.16 Mapping MySQL Error Numbers to JDBC SQLState Codes 128

3.6 JDBC Concepts .. 134
3.6.1 Connecting to MySQL Using the JDBC DriverManager Interface 134
3.6.2 Using JDBC Statement Objects to Execute SQL ... 136
3.6.3 Using JDBC CallableStatements to Execute Stored Procedures 137
3.6.4 Retrieving AUTO_INCREMENT Column Values through JDBC 139

3.7 Connection Pooling with Connector/J ... 142
3.8 Multi-Host Connections .. 145

3.8.1 Configuring Server Failover for Connections Using JDBC 145
3.8.2 Configuring Server Failover for Connections Using X DevAPI 148
3.8.3 Configuring Load Balancing with Connector/J .. 148

iii

Connectors and APIs

3.8.4 Configuring Source/Replica Replication with Connector/J 151
3.8.5 Advanced Load-balancing and Failover Configuration ... 154

3.9 Using the X DevAPI with Connector/J: Special Topics ... 156
3.9.1 Connection Compression Using X DevAPI ... 156
3.9.2 Schema Validation .. 157

3.10 Using the Connector/J Interceptor Classes ... 159
3.11 Using Logging Frameworks with SLF4J .. 159
3.12 Using Connector/J with Tomcat .. 161
3.13 Using Connector/J with Spring ... 162

3.13.1 Using JdbcTemplate .. 164
3.13.2 Transactional JDBC Access .. 165
3.13.3 Connection Pooling with Spring ... 166

3.14 Troubleshooting Connector/J Applications ... 167
3.15 Known Issues and Limitations .. 173
3.16 Connector/J Support .. 173

3.16.1 Connector/J Community Support ... 173
3.16.2 How to Report Connector/J Bugs or Problems ... 173

4 MySQL Connector/NET Developer Guide .. 177
4.1 Introduction to MySQL Connector/NET ... 178
4.2 Connector/NET Versions ... 179
4.3 Connector/NET Installation .. 181

4.3.1 Installing Connector/NET on Windows ... 181
4.3.2 Installing Connector/NET on Unix with Mono ... 183
4.3.3 Installing Connector/NET from Source ... 184

4.4 Connector/NET Connections .. 185
4.4.1 Creating a Connector/NET Connection String .. 186
4.4.2 Managing a Connection Pool in Connector/NET ... 188
4.4.3 Handling Connection Errors .. 189
4.4.4 Connector/NET Authentication .. 190
4.4.5 Connector/NET Connection Options Reference .. 195

4.5 Connector/NET Programming .. 211
4.5.1 Using GetSchema on a Connection ... 212
4.5.2 Using MySqlCommand ... 213
4.5.3 Using Connector/NET with Table Caching ... 216
4.5.4 Preparing Statements in Connector/NET .. 217
4.5.5 Creating and Calling Stored Procedures .. 218
4.5.6 Handling BLOB Data With Connector/NET ... 221
4.5.7 Working with Partial Trust / Medium Trust .. 224
4.5.8 Writing a Custom Authentication Plugin ... 227
4.5.9 Using the Connector/NET Interceptor Classes ... 230
4.5.10 Handling Date and Time Information in Connector/NET 232
4.5.11 Using the MySqlBulkLoader Class ... 233
4.5.12 Connector/NET Tracing ... 235
4.5.13 Using Connector/NET with Crystal Reports .. 240
4.5.14 Asynchronous Methods ... 244
4.5.15 Binary and Nonbinary Issues .. 250
4.5.16 Character Set Considerations for Connector/NET ... 251

4.6 Connector/NET Tutorials ... 251
4.6.1 Tutorial: An Introduction to Connector/NET Programming 251
4.6.2 ASP.NET Provider Model and Tutorials ... 260
4.6.3 Tutorial: Using an Entity Framework Entity as a Windows Forms Data Source 275
4.6.4 Tutorial: Data Binding in ASP.NET Using LINQ on Entities 282
4.6.5 Tutorial: Generating MySQL DDL from an Entity Framework Model 285
4.6.6 Tutorial: Basic CRUD Operations with Connector/NET .. 286
4.6.7 Tutorial: Configuring SSL with Connector/NET ... 289
4.6.8 Tutorial: Using MySqlScript ... 292

4.7 Connector/NET for Entity Framework ... 295
4.7.1 Entity Framework 6 Support .. 296

iv

Connectors and APIs

4.7.2 Entity Framework Core Support .. 301
4.8 Connector/NET API Reference .. 310

4.8.1 MySql.Data.Common.DnsClient ... 310
4.8.2 MySql.Data.MySqlClient Namespace ... 310
4.8.3 MySql.Data.MySqlClient.Authentication Namespace ... 313
4.8.4 MySql.Data.MySqlClient.Interceptors Namespace ... 313
4.8.5 MySql.Data.MySqlClient.Replication Namespace .. 313
4.8.6 MySql.Data.Types Namespace .. 313
4.8.7 MySql.Data.EntityFramework Namespace .. 314
4.8.8 Microsoft.EntityFrameworkCore Namespace .. 315
4.8.9 MySql.EntityFrameworkCore Namespace .. 315
4.8.10 MySql.Web Namespace .. 317

4.9 Connector/NET Support ... 319
4.9.1 Connector/NET Community Support .. 319
4.9.2 How to Report Connector/NET Problems or Bugs .. 319

5 MySQL Connector/ODBC Developer Guide ... 321
5.1 Introduction to MySQL Connector/ODBC .. 322
5.2 Connector/ODBC Versions .. 323
5.3 General Information About ODBC and Connector/ODBC ... 324

5.3.1 Connector/ODBC Architecture ... 324
5.3.2 ODBC Driver Managers .. 326

5.4 Connector/ODBC Installation ... 327
5.4.1 Installing Connector/ODBC on Windows .. 328
5.4.2 Installing Connector/ODBC on Unix-like Systems ... 330
5.4.3 Installing Connector/ODBC on macOS .. 332
5.4.4 Building Connector/ODBC from a Source Distribution on Windows 333
5.4.5 Building Connector/ODBC from a Source Distribution on Unix 335
5.4.6 Building Connector/ODBC from a Source Distribution on macOS 337
5.4.7 Installing Connector/ODBC from the Development Source Tree 337

5.5 Configuring Connector/ODBC .. 338
5.5.1 Overview of Connector/ODBC Data Source Names .. 338
5.5.2 Connector/ODBC Connection Parameters .. 338
5.5.3 Configuring a Connector/ODBC DSN on Windows ... 347
5.5.4 Configuring a Connector/ODBC DSN on macOS .. 351
5.5.5 Configuring a Connector/ODBC DSN on Unix .. 353
5.5.6 Connecting Without a Predefined DSN .. 354
5.5.7 ODBC Connection Pooling .. 355
5.5.8 OpenTelemetry Tracing Support .. 355
5.5.9 Authentication Options .. 356
5.5.10 Getting an ODBC Trace File ... 356

5.6 Connector/ODBC Examples ... 359
5.6.1 Basic Connector/ODBC Application Steps .. 359
5.6.2 Step-by-step Guide to Connecting to a MySQL Database through Connector/
ODBC ... 360
5.6.3 Connector/ODBC and Third-Party ODBC Tools .. 361
5.6.4 Using Connector/ODBC with Microsoft Access ... 362
5.6.5 Using Connector/ODBC with Microsoft Word or Excel .. 371
5.6.6 Using Connector/ODBC with Crystal Reports ... 373
5.6.7 Connector/ODBC Programming ... 378

5.7 Connector/ODBC Reference .. 385
5.7.1 Connector/ODBC API Reference ... 385
5.7.2 Connector/ODBC Data Types ... 388
5.7.3 Connector/ODBC Error Codes .. 390

5.8 Connector/ODBC Notes and Tips .. 391
5.8.1 Connector/ODBC General Functionality ... 391
5.8.2 Connector/ODBC Application-Specific Tips .. 393
5.8.3 Connector/ODBC and the Application Both Use OpenSSL 397
5.8.4 Connector/ODBC Errors and Resolutions (FAQ) .. 397

v

Connectors and APIs

5.9 Connector/ODBC Support .. 402
5.9.1 Connector/ODBC Community Support ... 402
5.9.2 How to Report Connector/ODBC Problems or Bugs ... 402

6 MySQL Connector/Python Developer Guide .. 405
6.1 Introduction to MySQL Connector/Python ... 406
6.2 Guidelines for Python Developers .. 406
6.3 Connector/Python Versions .. 408
6.4 Connector/Python Installation ... 410

6.4.1 Obtaining Connector/Python .. 410
6.4.2 Installing Connector/Python from a Binary Distribution .. 410
6.4.3 Installing Connector/Python from a Source Distribution 412
6.4.4 Verifying Your Connector/Python Installation .. 413

6.5 Connector/Python Coding Examples .. 414
6.5.1 Connecting to MySQL Using Connector/Python ... 414
6.5.2 Creating Tables Using Connector/Python ... 416
6.5.3 Inserting Data Using Connector/Python ... 419
6.5.4 Querying Data Using Connector/Python ... 420

6.6 Connector/Python Tutorials .. 420
6.6.1 Tutorial: Raise Employee's Salary Using a Buffered Cursor 421

6.7 Connector/Python Connection Establishment .. 421
6.7.1 Connector/Python Connection Arguments .. 421
6.7.2 Connector/Python Option-File Support ... 429

6.8 Connector/Python Other Topics ... 430
6.8.1 Connector/Python Logging .. 430
6.8.2 OpenTelemetry Support .. 431
6.8.3 Asynchronous Connectivity ... 434
6.8.4 Connector/Python Connection Pooling ... 442
6.8.5 Connector/Python Django Back End .. 444

6.9 Connector/Python API Reference ... 445
6.9.1 mysql.connector Module ... 445
6.9.2 connection.MySQLConnection Class ... 446
6.9.3 pooling.MySQLConnectionPool Class .. 458
6.9.4 pooling.PooledMySQLConnection Class .. 459
6.9.5 cursor.MySQLCursor Class ... 460
6.9.6 Subclasses cursor.MySQLCursor .. 469
6.9.7 constants.ClientFlag Class .. 472
6.9.8 constants.FieldType Class .. 473
6.9.9 constants.SQLMode Class .. 473
6.9.10 constants.CharacterSet Class .. 473
6.9.11 constants.RefreshOption Class .. 473
6.9.12 Errors and Exceptions .. 474

7 MySQL and PHP ... 479
7.1 Introduction to the MySQL PHP API .. 479

vi

Preface and Legal Notices
This manual describes the Connectors and APIs that can be used with MySQL.

Legal Notices
Copyright © 1997, 2024, Oracle and/or its affiliates.

License Restrictions

This software and related documentation are provided under a license agreement containing
restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly
permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,
broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any
form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless
required by law for interoperability, is prohibited.

Warranty Disclaimer

The information contained herein is subject to change without notice and is not warranted to be error-
free. If you find any errors, please report them to us in writing.

Restricted Rights Notice

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or
related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the
U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications
of such programs) and Oracle computer documentation or other Oracle data delivered to or accessed
by U.S. Government end users are "commercial computer software," "commercial computer software
documentation," or "limited rights data" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, the use, reproduction, duplication, release, display,
disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle programs
(including any operating system, integrated software, any programs embedded, installed, or activated
on delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/
or iii) other Oracle data, is subject to the rights and limitations specified in the license contained in
the applicable contract. The terms governing the U.S. Government's use of Oracle cloud services
are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

Hazardous Applications Notice

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Trademark Notice

Oracle, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other
names may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC
trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. AMD, Epyc, and the AMD logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

vii

Documentation Accessibility

Third-Party Content, Products, and Services Disclaimer

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible
for and expressly disclaim all warranties of any kind with respect to third-party content, products,
and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to
your access to or use of third-party content, products, or services, except as set forth in an applicable
agreement between you and Oracle.

Use of This Documentation

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the
following terms:

You may create a printed copy of this documentation solely for your own personal use. Conversion
to other formats is allowed as long as the actual content is not altered or edited in any way. You shall
not publish or distribute this documentation in any form or on any media, except if you distribute the
documentation in a manner similar to how Oracle disseminates it (that is, electronically for download
on a Web site with the software) or on a CD-ROM or similar medium, provided however that the
documentation is disseminated together with the software on the same medium. Any other use, such
as any dissemination of printed copies or use of this documentation, in whole or in part, in another
publication, requires the prior written consent from an authorized representative of Oracle. Oracle and/
or its affiliates reserve any and all rights to this documentation not expressly granted above.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program
website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support for Accessibility

Oracle customers that have purchased support have access to electronic support through My Oracle
Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/
topic/lookup?ctx=acc&id=trs if you are hearing impaired.

viii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Chapter 1 Introduction
MySQL Connectors provide connectivity to the MySQL server for client programs. APIs provide
low-level access to MySQL resources using either the classic MySQL protocol or X Protocol. Both
Connectors and the APIs enable you to connect and execute MySQL statements from another
language or environment, including ODBC, Java (JDBC), C++, Python, Node.js, PHP, Perl, Ruby, and
C.

MySQL Connectors

Oracle develops a number of connectors:

• Connector/C++ enables C++ applications to connect to MySQL.

• Connector/J provides driver support for connecting to MySQL from Java applications using the
standard Java Database Connectivity (JDBC) API.

• Connector/NET enables developers to create .NET applications that connect to MySQL. Connector/
NET implements a fully functional ADO.NET interface and provides support for use with ADO.NET
aware tools. Applications that use Connector/NET can be written in any supported .NET language.

• Connector/ODBC provides driver support for connecting to MySQL using the Open Database
Connectivity (ODBC) API. Support is available for ODBC connectivity from Windows, Unix, and
macOS platforms.

• Connector/Python provides driver support for connecting to MySQL from Python applications using
an API that is compliant with the Python DB API version 2.0. No additional Python modules or
MySQL client libraries are required.

• Connector/Node.js provides an asynchronous API for connecting to MySQL from Node.js
applications using X Protocol. Connector/Node.js supports managing database sessions and
schemas, working with MySQL Document Store collections and using raw SQL statements.

The MySQL C API

For direct access to using MySQL natively within a C application, the C API provides low-level access
to the MySQL client/server protocol through the libmysqlclient client library. This is the primary
method used to connect to an instance of the MySQL server, and is used both by MySQL command-
line clients and many of the MySQL Connectors and third-party APIs detailed here.

libmysqlclient is included in MySQL distributions distributions.

See also MySQL C API Implementations.

To access MySQL from a C application, or to build an interface to MySQL for a language not supported
by the Connectors or APIs in this chapter, the C API is where to start. A number of programmer's
utilities are available to help with the process; see Program Development Utilities.

Third-Party MySQL APIs

The remaining APIs described in this chapter provide an interface to MySQL from specific application
languages. These third-party solutions are not developed or supported by Oracle. Basic information on
their usage and abilities is provided here for reference purposes only.

All the third-party language APIs are developed using one of two methods, using libmysqlclient or
by implementing a native driver. The two solutions offer different benefits:

• Using libmysqlclient offers complete compatibility with MySQL because it uses the same
libraries as the MySQL client applications. However, the feature set is limited to the implementation

1

https://dev.mysql.com/doc/connector-cpp/8.3/en/
https://dev.mysql.com/doc/connector-j/8.0/en/
http://www.python.org/dev/peps/pep-0249/
https://dev.mysql.com/doc/c-api/8.2/en/
https://dev.mysql.com/doc/c-api/8.2/en/c-api-implementations.html
https://dev.mysql.com/doc/c-api/8.2/en/
https://dev.mysql.com/doc/refman/8.0/en/programs-development.html

Third-Party MySQL APIs

and interfaces exposed through libmysqlclient and the performance may be lower as data is
copied between the native language, and the MySQL API components.

• Native drivers are an implementation of the MySQL network protocol entirely within the host
language or environment. Native drivers are fast, as there is less copying of data between
components, and they can offer advanced functionality not available through the standard MySQL
API. Native drivers are also easier for end users to build and deploy because no copy of the MySQL
client libraries is needed to build the native driver components.

MySQL APIs and Interfaces lists many of the libraries and interfaces available for MySQL.

2

https://dev.mysql.com/doc/refman/8.0/en/connectors-apis.html#connectors-apis-summary

Chapter 2 MySQL Connector/C++ Developer Guide

Table of Contents
2.1 Introduction to Connector/C++ ... 3
2.2 Obtaining Connector/C++ .. 6
2.3 Installing Connector/C++ from a Binary Distribution .. 6
2.4 Installing Connector/C++ from Source .. 9

2.4.1 Source Installation System Prerequisites ... 9
2.4.2 Obtaining and Unpacking a Connector/C++ Source Distribution 10
2.4.3 Installing Connector/C++ from Source ... 11
2.4.4 Connector/C++ Source-Configuration Options .. 14

2.5 Building Connector/C++ Applications .. 20
2.5.1 Building Connector/C++ Applications: General Considerations 20
2.5.2 Building Connector/C++ Applications: Platform-Specific Considerations 28
2.5.3 Authentication Support ... 33
2.5.4 OpenTelemetry Tracing Support ... 38

2.6 Connector/C++ Known Issues ... 38
2.7 Connector/C++ Support ... 39

MySQL Connector/C++ is the C++ interface for communicating with MySQL servers.

For notes detailing the changes in each release of Connector/C++, see MySQL Connector/C++
Release Notes.

For legal information, see the Legal Notices.

For help with using MySQL, please visit the MySQL Forums, where you can discuss your issues with
other MySQL users.

Licensing information. This product may include third-party software, used under license. If you
are using a Commercial release of MySQL Connector/C++, see this document for licensing information,
including licensing information relating to third-party software that may be included in this Commercial
release. If you are using a Community release of MySQL Connector/C++, see this document for
licensing information, including licensing information relating to third-party software that may be
included in this Community release.

2.1 Introduction to Connector/C++

MySQL Connector/C++ 8.3 is a MySQL database connector for C++ applications that connect to
MySQL servers. Connector/C++ can be used to access MySQL servers that implement a document
store, or in a traditional way using SQL statements. The preferred development environment
for Connector/C++ 8.3 is to enable development of C++ applications using X DevAPI, or plain
C applications using X DevAPI for C, but Connector/C++ 8.3 also enables development of C++
applications that use the legacy JDBC-based API from Connector/C++ 1.1.

Connector/C++ applications that use X DevAPI or X DevAPI for C require a MySQL server that has X
Plugin enabled. Connector/C++ applications that use the legacy JDBC-based API neither require nor
support X Plugin.

For more detailed requirements about required MySQL versions for Connector/C++ applications, see
Platform Support and Prerequisites.

For notes detailing the changes in each release of Connector/C++, see MySQL Connector/C++
Release Notes.

3

https://dev.mysql.com/doc/relnotes/connector-cpp/en/
https://dev.mysql.com/doc/relnotes/connector-cpp/en/
http://forums.mysql.com
https://downloads.mysql.com/docs/licenses/connector-cpp-8.3-com-en.pdf
https://downloads.mysql.com/docs/licenses/connector-cpp-8.3-gpl-en.pdf
https://dev.mysql.com/doc/refman/8.0/en/document-store.html
https://dev.mysql.com/doc/refman/8.0/en/document-store.html
https://dev.mysql.com/doc/refman/8.0/en/x-plugin.html
https://dev.mysql.com/doc/refman/8.0/en/x-plugin.html
https://dev.mysql.com/doc/relnotes/connector-cpp/en/
https://dev.mysql.com/doc/relnotes/connector-cpp/en/

Connector/C++ Benefits

• Connector/C++ Benefits

• X DevAPI and X DevAPI for C

• Legacy JDBC API and JDBC Compatibility

• Platform Support and Prerequisites

Connector/C++ Benefits

MySQL Connector/C++ offers the following benefits for C++ users compared to the MySQL C API
provided by the MySQL client library:

• Convenience of pure C++.

• Support for these application programming interfaces:

• X DevAPI

• X DevAPI for C

• Legacy JDBC 4.0-based API

• Support for the object-oriented programming paradigm.

• Reduced development time.

• Licensed under the GPL with the FLOSS License Exception.

• Available under a commercial license upon request.

X DevAPI and X DevAPI for C

Connector/C++ implements X DevAPI, which enables connecting to MySQL servers that implement a
document store with X Plugin. X DevAPI also enables applications to execute SQL statements.

Connector/C++ also implements a similar interface called X DevAPI for C for use by applications
written in plain C.

For general information about X DevAPI, see X DevAPI User Guide. For reference information specific
to the Connector/C++ implementation of X DevAPI and X DevAPI for C, see MySQL Connector/C++ X
DevAPI Reference in the X DevAPI section of MySQL Documentation.

Legacy JDBC API and JDBC Compatibility

Connector/C++ implements the JDBC 4.0 API, if built to include the legacy JDBC connector:

• Connector/C++ binary distributions include the JDBC connector.

• If you build Connector/C++ from source, the JDBC connector is not built by default, but can be
included by enabling the WITH_JDBC CMake option. See Section 2.4, “Installing Connector/C++ from
Source”.

The Connector/C++ JDBC API is compatible with the JDBC 4.0 API. Connector/C++ does
not implement the entire JDBC 4.0 API, but does feature these classes: Connection,
DatabaseMetaData, Driver, PreparedStatement, ResultSet, ResultSetMetaData,
Savepoint, Statement.

The JDBC 4.0 API defines approximately 450 methods for the classes just mentioned. Connector/C++
implements approximately 80% of these.

4

https://dev.mysql.com/doc/refman/8.0/en/document-store.html
https://dev.mysql.com/doc/refman/8.0/en/x-plugin.html
https://dev.mysql.com/doc/x-devapi-userguide/en/
https://dev.mysql.com/doc/

Platform Support and Prerequisites

Note

The legacy JDBC connector in Connector/C++ 8.3 is based on the connector
provided by Connector/C++ 1.1. For more information about using the JDBC
API in Connector/C++ 8.3, see MySQL Connector/C++ 1.1 Developer Guide.

Platform Support and Prerequisites

To see which platforms are supported, visit the Connector/C++ downloads page.

On Windows platforms, Commercial and Community Connector/C++ distributions require the Visual
C++ Redistributable for Visual Studio. The Redistributable is available at the Visual Studio Download
Center; install it before installing Connector/C++. The acceptable Redistributable versions depend on
your Connector/C++ version:

• Connector/C++ 8.0.19 and higher: VC++ Redistributable 2017 or higher.

• Connector/C++ 8.0.14 to 8.0.18: VC++ Redistributable 2015 or higher.

The following requirements apply to building and running Connector/C++ applications, and to building
Connector/C++ itself if you build it from source:

• To run Connector/C++ applications, the MySQL server requirements depend on the API the
application uses:

• Connector/C++ applications that use X DevAPI or X DevAPI for C require a server from MySQL
8.3 (8.3.0), 8.2 (8.2.0), 8.1 (8.1.0), MySQL 8.0 (8.0.11 or later), or MySQL 5.7 (5.7.12 or later),
with X Plugin enabled. For MySQL 8.0 and later, X Plugin is enabled by default. For MySQL 5.7, X
Plugin must be enabled explicitly. (Some X Protocol features may not work with MySQL 5.7.)

• Applications that use the JDBC API can use a server from MySQL 5.6 or higher. X Plugin is
neither required nor supported.

• To build Connector/C++ applications:

• The MySQL version does not apply.

• On Windows, Microsoft Visual Studio is required. The acceptable MSVC versions depend on your
Connector/C++ version and the type of linking you use:

• Connector/C++ 8.0.20 and higher: Same as Connector/C++ 8.0.19, with the addition that binary
distributions are also compatible with MSVC 2017 using the static X DevAPI connector library.
This means that binary distributions are fully compatible with MSVC 2019, and fully compatible
with MSVC 2017 with the exception of the static legacy (JDBC) connector library.

• Connector/C++ 8.0.19: Connector/C++ binary distributions are compatible with projects built
using MSVC 2019 (using either dynamic or static connector libraries) or MSVC 2017 (using
dynamic connector libraries).

• Connector/C++ 8.0.14 to 8.0.18: MSVC 2017 or 2015.

• Connector/C++ prior to 8.0.14: MSVC 2015.

• To build Connector/C++ from source:

• The MySQL C API client library may be required:

• For Connector/C++ built without the JDBC connector (which is the default), the client library is
not needed.

• To build Connector/C++ with the JDBC connector, configure Connector/C++ with the
WITH_JDBC CMake option enabled. In this case, the JDBC connector requires a client library

5

https://dev.mysql.com/doc/connector-cpp/1.1/en/
https://dev.mysql.com/downloads/connector/cpp/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://dev.mysql.com/doc/refman/8.0/en/x-plugin.html

Obtaining Connector/C++

from MySQL 8.3 (8.3.0), 8.2 (8.2.0), 8.1 (8.1.0), MySQL 8.0 (8.0.11 or later), or MySQL 5.7
(5.7.9 or later).

• On Windows, Microsoft Visual Studio is required. The acceptable MSVC versions depend on your
Connector/C++ version:

• Connector/C++ 8.0.19 and higher: MSVC 2019 or 2017.

• Connector/C++ 8.0.14 to 8.0.18: MSVC 2017 or 2015.

• Connector/C++ prior to 8.0.14: MSVC 2015.

2.2 Obtaining Connector/C++
Connector/C++ binary and source distributions are available, in platform-specific packaging formats.
To obtain a distribution, visit the Connector/C++ downloads page. It is also possible to clone the
Connector/C++ Git source repository.

• Connector/C++ binary distributions are available for Microsoft Windows, and for Unix and Unix-like
platforms. See Section 2.3, “Installing Connector/C++ from a Binary Distribution”.

• Connector/C++ source distributions are available as compressed tar files or Zip archives and can
be used on any supported platform. See Section 2.4, “Installing Connector/C++ from Source”.

• The Connector/C++ source code repository uses Git and is available at GitHub. See Section 2.4,
“Installing Connector/C++ from Source”.

2.3 Installing Connector/C++ from a Binary Distribution
To obtain a Connector/C++ binary distribution, visit the Connector/C++ downloads page.

For some platforms, Connector/C++ binary distributions are available in platform-specific packaging
formats. Binary distributions are also available in more generic format, in the form of compressed tar
files or Zip archives.

Note

Generic Linux packages do not contain Connector/C++ static libraries. If you
intend to link your application to a static library, consider installing a package
that is specific to the platform on which you build your final application.

For descriptions here that refer to documentation files, those files have names such as
CONTRIBUTING.md, README.md, README.txt, README, LICENSE.txt, LICENSE, INFO_BIN,
and INFO_SRC. (Prior to Connector/C++ 8.0.14, the information file is BUILDINFO.txt rather than
INFO_BIN and INFO_SRC.)

• Installation on Windows

• Installation on Linux

• Installation on macOS

• Installation on Solaris

• Installation Using a tar or Zip Package

Installation on Windows

Important

On Windows platforms, Commercial and Community Connector/C++
distributions require the Visual C++ Redistributable for Visual Studio.

6

https://dev.mysql.com/downloads/connector/cpp/
https://dev.mysql.com/downloads/connector/cpp/

Installation on Windows

The Redistributable is available at the Visual Studio Download Center;
install it before installing Connector/C++. For information about which VC
++ Redistributable versions are acceptable, see Platform Support and
Prerequisites.

These methods of installing binary distributions are available on Windows:

• Windows MSI Installer. As of Connector/C++ 8.0.12, an MSI Installer is available for Windows.
To use the MSI Installer (.msi file), launch it and follow the prompts in the screens it presents. The
MSI Installer can install components for these connectors:

• The connector for X DevAPI (including X DevAPI for C).

• The connector for the legacy JDBC API.

For each connector, there are two components:

• The DLL component includes the connector DLLs and libraries to satisfy runtime dependencies.
The DLL component is required to run Connector/C++ application binaries that use the connector.

• The Developer component includes header files, static libraries, and import libraries for DLLs. The
Developer component is required to build from source Connector/C++ applications that use the
connector.

The MSI Installer requires administrative privileges. It begins by presenting a welcome screen that
enables you to continue the installation or cancel it. If you continue the installation, the MSI Installer
overview screen enables you to select the type of installation to perform:

• The Complete installation installs the DLL and Developer components for both connectors.

• The Typical installation installs the DLL component for both connectors.

• The Custom installation enables you to specify the installation location and select which
components to install. The DLL and Developer components for the X DevAPI connector are
preselected, but you can override the selection. The Developer component for a connector cannot
be selected without also selecting the connector DLL component.

The MSI Installer performs these actions:

• It checks whether the required Visual C++ Redistributable for Visual Studio is present. If not,
the installer asks you to install it and exits with an error. For information about which VC++
Redistributable versions are acceptable, see Platform Support and Prerequisites.

• It installs documentation files.

To install Connector/C++ from the command line in batch mode, use a command similar to:

msiexec.exe /i packages\mysql-connector-cpp-commercial-8.X.X-winx64.msi /qn /lvx*
msi_install.log ALLUSERS=1 INSTALLDIR=C:\tmp\c-cpp-unpacked INSTALLLEVEL=4

To uninstall Connector/C++ from the command line in batch mode, use a command similar to:

msiexec.exe /x packages\mysql-connector-cpp-commercial-8.X.X-winx64.msi /qn /lvx*
msi_uninstall.log

• Zip archive package without installer. To install from a Zip archive package (.zip file), see
Installation Using a tar or Zip Package.

In addition to the standard Zip archive packages, packages are available that were built in debug
mode. However, applications should use the same build mode as Connector/C++. If you install
Connector/C++ packages built in debug mode, build applications in debug mode. If you install
Connector/C++ packages built in release mode, build applications in release mode.

7

https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/

Installation on Linux

Installation on Linux

These methods of installing binary distributions are available on Linux:

• RPM package. RPM packages are available for Linux (as of Connector/C++ 8.0.12). The
packages are distinguished by their base names (the full names include the Connector/C++ version
and suffixes):

• mysql-connector-c++: This package provides the shared connector library implementing X
DevAPI and X DevAPI for C.

• mysql-connector-c++-jdbc: This package provides the shared legacy connector library
implementing the JDBC API.

• mysql-connector-c++-devel: This package installs development files required for building
applications that use Connector/C++ libraries provided by the other packages, and static connector
libraries. This package depends on the shared libraries provided by the other packages. It cannot
be installed by itself without the other two packages.

• Debian package. Debian packages are available for Linux (as of Connector/C++ 8.0.14). The
packages are distinguished by their base names (the full names include the Connector/C++ version
and suffixes):

• libmysqlcppconn8-1: This package provides the shared connector library implementing X
DevAPI and X DevAPI for C.

• libmysqlcppconn7: This package provides the shared legacy connector library implementing
the JDBC API.

• libmysqlcppconn-dev: This package installs development files required for building
applications that use Connector/C++ libraries provided by the other packages, and static connector
libraries. This package depends on the shared libraries provided by the other packages. It cannot
be installed by itself without the other two packages.

• Compressed tar file. To install from a compressed tar file (.tar.gz file), see Installation Using
a tar or Zip Package.

Installation on macOS

These methods of installing binary distributions are available on macOS:

• DMG package. DMG (disk image) packages for macOS are available as of Connector/C++
8.0.12. A DMG package provides shared and static connector libraries implementing X DevAPI and
X DevAPI for C, and the legacy connector library implementing the JDBC API. The package also
includes OpenSSL libraries, public header files, and documentation files.

• Compressed tar file. To install from a compressed tar file (.tar.gz file), see Installation Using
a tar or Zip Package.

Installation on Solaris

These methods of installing binary distributions are available on Solaris:

• Compressed tar file. To install from a compressed tar file (.tar.gz file), see Installation Using
a tar or Zip Package.

Installation Using a tar or Zip Package

Connector/C++ binary distributions are available for several platforms, packaged in the form of
compressed tar files or Zip archives, denoted here as PACKAGE.tar.gz or PACKAGE.zip.

8

Installing Connector/C++ from Source

Note

Generic Linux packages do not contain Connector/C++ static libraries.

To unpack a compressed tar file, use this command in the intended installation directory:

tar zxvf PACKAGE.tar.gz

To install from a Zip archive package (.zip file), use WinZip or another tool that can read .zip files
to unpack the file into the location of your choosing.

2.4 Installing Connector/C++ from Source

This chapter describes how to install Connector/C++ using a source distribution or a copy of the Git
source repository.

2.4.1 Source Installation System Prerequisites

To install Connector/C++ from source, the following system requirements must be satisfied:

• Build Tools

• MySQL Client Library

• Boost C++ Libraries

• SSL Support

Build Tools

You must have the cross-platform build tool CMake (3.0 or higher).

You must have a C++ compiler that supports C++17 (as of Connector/C++ 8.0.33).

MySQL Client Library

To build Connector/C++ from source, the MySQL C API client library may be required:

• Building the JDBC connector requires a client library from MySQL 8.3 (8.3.0), 8.2 (8.2.0), 8.1 (8.1.0),
MySQL 8.0 (8.0.11 or later), or MySQL 5.7 (5.7.9 or later). This occurs when Connector/C++ is
configured with the WITH_JDBC CMake option enabled to include the JDBC connector.

• For Connector/C++ built without the JDBC connector, the client library is not needed.

Typically, the MySQL client library is installed when MySQL is installed. However, check your operating
system documentation for other installation options.

To specify where to find the client library, set the MYSQL_DIR CMake option appropriately at
configuration time as necessary (see Section 2.4.4, “Connector/C++ Source-Configuration Options”).

Boost C++ Libraries

To compile Connector/C++ the Boost C++ libraries are needed only if you build the legacy JDBC API
or if the version of the C++ standard library on your system does not implement the UTF8 converter
(codecvt_utf8).

If the Boost C++ libraries are needed, Boost 1.59.0 or newer must be installed. To obtain Boost and its
installation instructions, visit the official Boost site.

After Boost is installed, use the WITH_BOOST CMake option to indicate where the Boost files are
located (see Section 2.4.4, “Connector/C++ Source-Configuration Options”):

9

http://www.boost.org

Obtaining and Unpacking a Connector/C++ Source Distribution

cmake [other_options] -DWITH_BOOST=/usr/local/boost_1_59_0

Adjust the path as necessary to match your installation.

SSL Support

Use the WITH_SSL CMake option to specify which SSL library to use when compiling Connector/C++.
OpenSSL 1.0.x or higher is required. Your other options are:

• As of Connector/C++ 8.0.18, it is possible to compile against OpenSSL 1.1.

• As of Connector/C++ 8.0.30, it is possible to compile against OpenSSL 3.0.

For more information about WITH_SSL and SSL libraries, see Section 2.4.4, “Connector/C++ Source-
Configuration Options”.

2.4.2 Obtaining and Unpacking a Connector/C++ Source Distribution

To obtain a Connector/C++ source distribution, visit the Connector/C++ downloads page. Alternatively,
clone the Connector/C++ Git source repository.

A Connector/C++ source distribution is packaged as a compressed tar file or Zip archive, denoted
here as PACKAGE.tar.gz or PACKAGE.zip. A source distribution in tar file or Zip archive format can
be used on any supported platform.

The distribution when unpacked includes an INFO_SRC file that provides information about the product
version and the source repository from which the distribution was produced. The distribution also
includes other documentation files such as those listed in Section 2.3, “Installing Connector/C++ from a
Binary Distribution”.

To unpack a compressed tar file, use this command in the intended installation directory:

tar zxvf PACKAGE.tar.gz

After unpacking the distribution, build it using the appropriate instructions for your platform later in this
chapter.

To install from a Zip archive package (.zip file), use WinZip or another tool that can read .zip files
to unpack the file into the location of your choosing. After unpacking the distribution, build it using the
appropriate instructions for your platform later in this chapter.

To clone the Connector/C++ code from the source code repository located on GitHub at https://
github.com/mysql/mysql-connector-cpp, use this command:

git clone https://github.com/mysql/mysql-connector-cpp.git

That command should create a mysql-connector-cpp directory containing a copy of the entire
Connector/C++ source tree.

The git clone command sets the sources to the master branch, which is the branch that contains
the latest sources. Released code is in the 8.0 branche (the 8.0 branch contains the same sources
as the master branch). If necessary, use git checkout in the source directory to select the desired
branch. For example, to build Connector/C++ 8.0:

cd mysql-connector-cpp
git checkout 8.0

After cloning the repository, build it using the appropriate instructions for your platform later in this
chapter.

After the initial checkout operation to get the source tree, run git pull periodically to update your
source to the latest version.

10

https://dev.mysql.com/downloads/connector/cpp/
https://github.com/mysql/mysql-connector-cpp
https://github.com/mysql/mysql-connector-cpp

Installing Connector/C++ from Source

2.4.3 Installing Connector/C++ from Source

To install Connector/C++ from source, verify that your system satisfies the requirements outlined in
Section 2.4.1, “Source Installation System Prerequisites”.

• Configuring Connector/C++

• Specifying External Dependencies

• Building Connector/C++

• Installing Connector/C++

• Verifying Connector/C++ Functionality

Configuring Connector/C++

Use CMake to configure and build Connector/C++. Only out-of-source-builds are supported, so create a
directory to use for the build and change location into it. Then configure the build using this command,
where concpp_source is the directory containing the Connector/C++ source code:

cmake concpp_source

It may be necessary to specify other options on the configuration command. Some examples:

• By default, these installation locations are used:

• /usr/local/mysql/connector-c++-8.0 (Unix and Unix-like systems)

• User_home/MySQL/"MySQL Connector C++ 8.0" (Windows)

To specify the installation location explicitly, use the CMAKE_INSTALL_PREFIX option:

-DCMAKE_INSTALL_PREFIX=path_name

• On Windows, you can use the -G and -A options to select a particular generator:

• -G "Visual Studio 16" -A x64 (64-bit builds)

• -G "Visual Studio 16" -A Win32 (32-bit builds)

Consult the CMake manual or check cmake --help to find out which generators are supported by
your CMake version. (However, it may be that your version of CMake supports more generators than
can actually be used to build Connector/C++.)

• If the Boost C++ libraries are needed, use the WITH_BOOST option to specify their location:

-DWITH_BOOST=path_name

• By default, the build creates dynamic (shared) libraries. To build static libraries, enable the
BUILD_STATIC option:

-DBUILD_STATIC=ON

• By default, the legacy JDBC connector is not built. To include the JDBC connector in the build,
enable the WITH_JDBC option:

-DWITH_JDBC=ON

Note

If you configure and build the test programs later, use the same CMake
options to configure them as the ones you use to configure Connector/C++

11

Installing Connector/C++ from Source

(-G, WITH_BOOST, BUILD_STATIC, and so forth). Exceptions: Path name
arguments will differ, and you need not specify CMAKE_INSTALL_PREFIX.

For information about CMake configuration options, see Section 2.4.4, “Connector/C++ Source-
Configuration Options”.

Specifying External Dependencies

Use CMake options to configure and build Connector/C++ with external sources that you can substitute
for the required third-party dependencies currently bundled with the connector. If the dependency is an
external library, then the library is linked dynamically to the connector. In contrast, bundled third-party
libraries used by connector are linked statically to it.

Note

Using an external third-party library that cannot be linked to the connector
dynamically causes the build to fail, even when the static library is available.

The supported options are:

• WITH_BOOST

• WITH_LZ4

• WITH_MYSQL

• WITH_PROTOBUF

• WITH_SSL

• WITH_ZLIB

• WITH_ZSTD

For example, to use an external installation of Protobuf, instead of building it from bundled sources,
specify the WITH_PROTOBUF option and provide the path name to the location where CMake can find
the alternative dependency.

Note

If an external dependency cannot be found (or is unusable), then the build fails.
No attempt is made to locate the bundled source.

cmake [other_options] -DWITH_PROTOBUF=path_name_to_protobuf_install

To configure the standard system-wide location for an external dependency, use the literal value
system rather than providing a path name. For example:

-DWITH_SSL=system

For information about CMake configuration options, see Section 2.4.4, “Connector/C++ Source-
Configuration Options”.

External dependencies make it possible to use shared third-party libraries that are linked dynamically
to the connector. This can be an advantage because, for example, you cannot use the connector static
library with an application that also links to a Protobuf library.

When running an application that is linked to the connector dynamic library, the third-party libraries
on which the connector depends should be correctly found if they are placed in the file system next to
the connector library. The application should also work when the libraries are installed at the standard
system-wide locations. This assumes that the external third-party dependency version is expected by
Connector/C++.

12

Installing Connector/C++ from Source

Except for Windows, it should be possible to run an application linked to the connector dynamic library
when the connector library and the third-party libraries are placed in a nonstandard location, provided
that these locations were stored as runtime paths when building the application (gcc -rpath option).

For Windows, an application that is linked to the connector shared library can be run only if the
connector library and the libraries are stored either:

• In the Windows system folder

• In the same folder as the application

• In a folder listed in the PATH environment variable

If the application is linked to the connector static library, it remains true that the required libraries must
be found in one of the preceding locations.

Building Connector/C++

After configuring the Connector/C++ distribution, build it using this command:

cmake --build . --config build_type

The --config option is optional. It specifies the build configuration to use, such as Release or
Debug. If you omit --config, the default is Debug.

Important

If you specify the --config option on the preceding command, specify the
same --config option for later steps, such as the steps that install Connector/
C++ or that build test programs.

If the build is successful, it creates the connector libraries in the build directory. (For Windows, look
for the libraries in a subdirectory with the same name as the build_type value specified for the --
config option.)

• If you build dynamic libraries, they have these names:

• libmysqlcppconn8.so.1 (Unix)

• libmysqlcppconn8.3.dylib (macOS)

• mysqlcppconn8-1-vs14.dll (Windows)

• If you build static libraries, they have these names:

• libmysqlcppconn8-static.a (Unix, macOS)

• mysqlcppconn8-static.lib (Windows)

If you enabled the WITH_JDBC option to include the legacy JDBC connector in the build, the following
additional library files are created.

• If you build legacy dynamic libraries, they have these names:

• libmysqlcppconn.so.7 (Unix)

• libmysqlcppconn.7.dylib (macOS)

• mysqlcppconn-7-vs14.dll (Windows)

• If you build legacy static libraries, they have these names:

• libmysqlcppconn-static.a (Unix, macOS)

13

Connector/C++ Source-Configuration Options

• mysqlcppconn-static.lib (Windows)

Installing Connector/C++

To install Connector/C++, use this command:

cmake --build . --target install --config build_type

Verifying Connector/C++ Functionality

To verify connector functionality, build and run one or more of the test programs included in the
testapp directory of the source distribution. Create a directory to use and change location into it. Then
issue the following commands:

cmake [other_options] -DWITH_CONCPP=concpp_install concpp_source/testapp
cmake --build . --config=build_type

WITH_CONCPP is an option used only to configure the test application. other_options consists
of the options that you used to configure Connector/C++ itself (-G, WITH_BOOST, BUILD_STATIC,
and so forth). concpp_source is the directory containing the Connector/C++ source code, and
concpp_install is the directory where Connector/C++ is installed:

The preceding commands should create the devapi_test and xapi_test programs in the run
directory of the build location. If you enable WITH_JDBC when configuring the test programs, the build
also creates the jdbc_test program.

Before running test programs, ensure that a MySQL server instance is running with X Plugin enabled.
The easiest way to arrange this is to use the mysql-test-run.pl script from the MySQL distribution.
For MySQL 8.0, X Plugin is enabled by default, so invoke this command in the mysql-test directory
of that distribution:

perl mysql-test-run.pl --start-and-exit

For MySQL 5.7, X Plugin must be enabled explicitly, so add an option to do that:

perl mysql-test-run.pl --start-and-exit --mysqld=--plugin-load=mysqlx

The command should start a test server instance with X Plugin enabled and listening on port 13009
instead of its standard port (33060).

Now you can run one of the test programs. They accept a connection-string argument, so if the server
was started as just described, you can run them like this:

run/devapi_test mysqlx://root@127.0.0.1:13009
run/xapi_test mysqlx://root@127.0.0.1:13009

The connection string assumes availability of a root user account without any password and the
programs assume that there is a test schema available (assumptions that hold for a server started
using mysql-test-run.pl).

To test jdbc_test, you need a MySQL server, but X Plugin is not required. Also, the connection
options must be in the form specified by the JDBC API. Pass the user name as the second argument.
For example:

run/jdbc_test tcp://127.0.0.1:13009 root

2.4.4 Connector/C++ Source-Configuration Options

Connector/C++ recognizes the CMake options described in this section.

14

Connector/C++ Source-Configuration Options

Table 2.1 Connector/C++ Source-Configuration Option Reference

Formats Description Default

BUILD_STATIC Whether to build a static librarty OFF

BUNDLE_DEPENDENCIES Whether to bundle external
dependency libraries with the
connector

OFF

CMAKE_BUILD_TYPE Type of build to produce Debug

CMAKE_INSTALL_DOCDIR Documentation installation
directory

CMAKE_INSTALL_INCLUDEDIR Header file installation directory

CMAKE_INSTALL_LIBDIR Library installation directory

CMAKE_INSTALL_PREFIX Installation base directory /usr/local

MAINTAINER_MODE For internal use only OFF

MYSQLCLIENT_STATIC_BINDINGWhether to link to the shared
MySQL client library

ON

MYSQLCLIENT_STATIC_LINKINGWhether to statically link to the
MySQL client library

OFF

MYSQL_CONFIG_EXECUTABLE Path to the mysql_config
program

${MYSQL_DIR}/bin/
mysql_config

MYSQL_DIR MySQL Server installation
directory

STATIC_MSVCRT Use the static runtime library

WITH_BOOST The Boost source directory system

WITH_DOC Whether to generate Doxygen
documentation

OFF

WITH_JDBC Whether to build legacy JDBC
library

OFF

WITH_LZ4 The LZ4 source directory

WITH_MYSQL The MySQL Server source
directory

system

WITH_PROTOBUF The Protobuf source directory

WITH_SSL The SSL source directory system

WITH_ZLIB The ZLIB source directory

WITH_ZSTD The ZSTD source directory

• -DBUILD_STATIC=bool

By default, dynamic (shared) libraries are built. If this option is enabled, static libraries are built
instead.

• -DBUNDLE_DEPENDENCIES=bool

This is an internal option used for creating Connector/C++ distribution packages.

• -DCMAKE_BUILD_TYPE=type

The type of build to produce:

• Debug: Disable optimizations and generate debugging information. This is the default.

• Release: Enable optimizations.

15

Connector/C++ Source-Configuration Options

• RelWithDebInfo: Enable optimizations and generate debugging information.

• -DCMAKE_INSTALL_DOCDIR=dir_name

The documentation installation directory, relative to CMAKE_INSTALL_PREFIX. If not specified, the
default is to install in CMAKE_INSTALL_PREFIX.

This option requires that WITH_DOC be enabled.

This option was added in Connector/C++ 8.0.14.

• -DCMAKE_INSTALL_INCLUDEDIR=dir_name

The header file installation directory, relative to CMAKE_INSTALL_PREFIX. If not specified, the
default is include.

This option was added in Connector/C++ 8.0.14.

• -DCMAKE_INSTALL_LIBDIR=dir_name

The library installation directory, relative to CMAKE_INSTALL_PREFIX. If not specified, the default is
lib64 or lib.

This option was added in Connector/C++ 8.0.14.

• -DCMAKE_INSTALL_PREFIX=dir_name

The installation base directory (where to install Connector/C++).

• -DMAINTAINER_MODE=bool

This is an internal option used for creating Connector/C++ distribution packages. It was added in
Connector/C++ 8.0.12.

• -DMYSQLCLIENT_STATIC_BINDING=bool

Whether to link to the shared MySQL client library. This option is used only if
MYSQLCLIENT_STATIC_LINKING is disabled to enable dynamic linking of the MySQL client
library. In that case, if MYSQLCLIENT_STATIC_BINDING is enabled (the default), Connector/C++ is
linked to the shared MySQL client library. Otherwise, the shared MySQL client library is loaded and
mapped at runtime.

This option applies only if you are building the legacy JDBC connector (that is, only if WITH_JDBC is
enabled). It was added in Connector/C++ 8.0.16.

• -DMYSQLCLIENT_STATIC_LINKING=bool

Whether to link statically to the MySQL client library. The default depends on the legacy JDBC
connector that you are building:

• From Connector/C++ 8.0.33, the default is OFF (use dynamic linking to the client library). Enabling
this option disables dynamic linking to the client library.

• For Connector/C++ 8.0.16 to 8.0.32, the default is ON (use static linking to the client library).
Disabling this option enables dynamic linking to the client library. CMake verifies that the current
compiler and standard libraries can build without errors at configuration time.

This option applies only if you are building the legacy JDBC connector (that is, only if WITH_JDBC is
enabled). It was added in Connector/C++ 8.0.16.

16

Connector/C++ Source-Configuration Options

• -DMYSQL_CONFIG_EXECUTABLE=file_name

The path to the mysql_config program.

On non-Windows systems, CMake checks to see whether MYSQL_CONFIG_EXECUTABLE is set. If
not, CMake tries to locate mysql_config in the default locations.

This option applies only if you are building the legacy JDBC connector (that is, only if WITH_JDBC is
enabled).

• -DMYSQL_DIR=dir_name

The directory where MySQL is installed.

This option applies only if you are building the legacy JDBC connector (that is, only if WITH_JDBC is
enabled).

• -DSTATIC_MSVCRT=bool

(Windows only) Use the static runtime library (the /MT* compiler option). This option might be
necessary if code that uses Connector/C++ also uses the static runtime library.

• -DWITH_BOOST={system|path_name}

This option specifies which BOOST header file to use when compiling Connector/C++ with an
external dependency. The option value to use:

• system: Use the system BOOST header file.

• path_name is the path name to the file to use.

For consistency with CMake conventions, BOOST_DIR or BOOST_ROOT_DIR can be used instead
of WITH_BOOST to indicate the base location of the dependency. As an alternative that implies the
WITH_BOOST option (without specifying it), use BOOST_INCLUDE_DIR to provide the header file
location instead of deriving it from the BOOST_ROOT_DIR value.

This option applies only if you are building the legacy JDBC connector (that is, only if WITH_JDBC is
enabled).

• -DWITH_DOC=bool

Whether to enable generating the Doxygen documentation. As of Connector/C++ 8.0.16, enabling
this option also causes the Doxygen documentation to be built by the all target.

• -DWITH_JDBC=bool

Whether to build the legacy JDBC connector. This option is disabled by default. If it is enabled,
Connector/C++ 8.0 applications can use the legacy JDBC API, just like Connector/C++ 1.1
applications.

17

Connector/C++ Source-Configuration Options

• -DWITH_LZ4={system|path_name}

This option specifies which LZ4 installation to use when compiling Connector/C++ with an external
dependency. The option value to use:

• system: Use the system LZ4 location.

• path_name is the path name to the installation location to use.

For consistency with CMake conventions, LZ4_DIR or LZ4_ROOT_DIR can be used instead of
WITH_LZ4 to indicate the base location of the dependency.

To imply the WITH_LZ4 option but with more fine-grained specification of installation directories,
use LZ4_INCLUDE_DIR or LZ4_LIB_DIR to indicate the header file (or library) location instead
of deriving it from the LZ4_ROOT_DIR value. To specify a list of external libraries to link to, use
LZ4_LIBRARY instead of the WITH_LZ4 option.

If you specify both LZ4_LIBRARY and LZ4_LIB_DIR, then LZ4_LIB_DIR is used as an additional
prefix when finding the library file and LZ4_LIBRARY should be relative to that prefix. On Windows,
LZ4_LIBRARY should point at the import library of the DLL.

• -DWITH_MYSQL={system|path_name}

The location where the MySQL sources are installed. The client library is linked statically when you
specify this option unless you also request MYSQLCLIENT_STATIC_LINKING=OFF. The option
value to use:

• system: Use the system MYSQL location.

• path_name is the path name to the installation location to use.

This option applies only if you are building the legacy JDBC connector (that is, only if WITH_JDBC is
enabled).

For consistency with CMake conventions, MYSQL_DIR or MYSQL_ROOT_DIR can be used instead of
WITH_MYSQL to indicate the base location of the dependency.

To imply the WITH_MYSQL option but with more fine-grained specification of installation directories,
use MYSQL_INCLUDE_DIR or MYSQL_LIB_DIR to indicate the header file (or library) location
instead of deriving it from the MYSQL_ROOT_DIR value. To specify a list of external libraries to link to,
use MYSQL_LIBRARY instead of the WITH_MYSQL option.

If you specify both MYSQL_LIBRARY and MYSQL_LIB_DIR, then MYSQL_LIB_DIR is used as an
additional prefix when finding the library file and MYSQL_LIBRARY should be relative to that prefix.
On Windows, MYSQL_LIBRARY should point at the import library of the DLL.

• -DWITH_PROTOBUF={system|path_name}

This option specifies which Protobuf installation to use when compiling Connector/C++ with an
external dependency. Although the library in Connector/C++ binary packages still links in Protobuf

18

Connector/C++ Source-Configuration Options

statically, using this option makes it possible to build from external sources a variant that links in
Protobuf dynamically.

The option value to use:

• system: Use the system Protobuf location.

• path_name is the path name to the installation location to use.

For consistency with CMake conventions, PROTOBUF_DIR or PROTOBUF_ROOT_DIR can be used
instead of WITH_PROTOBUF to indicate the base location of the dependency.

To imply the WITH_PROTOBUF option but with more fine-grained specification of installation
directories, use PROTOBUF_INCLUDE_DIR or PROTOBUF_LIB_DIR to indicate the header file (or
library) location instead of deriving it from the PROTOBUF_ROOT_DIR value. To specify a list of
external libraries to link to, use PROTOBUF_LIBRARY instead of the WITH_PROTOBUF option.

If you specify both PROTOBUF_LIBRARY and PROTOBUF_LIB_DIR, then PROTOBUF_LIB_DIR is
used as an additional prefix when finding the library file and PROTOBUF_LIBRARY should be relative
to that prefix. On Windows, PROTOBUF_LIBRARY should point at the import library of the DLL.

Similarly, specifying PROTOBUF_BIN_DIR makes it possible to locate the binaries required to use the
dependency and find the compiler.

• -DWITH_SSL={system|path_name}

This option specifies which SSL library to use when compiling Connector/C++. The option value to
use:

• system: Use the system OpenSSL library.

• path_name is the path name to the SSL installation to use. It should be the path to the installed
OpenSSL library, and must point to a directory containing a lib subdirectory with OpenSSL
libraries that are already built. Specifying a path name for the OpenSSL installation can be
preferable to using system because it can prevent CMake from detecting and using an older or
incorrect OpenSSL version installed on the system.

For consistency with CMake conventions, SSL_DIR or SSL_ROOT_DIR (OPENSSL_ROOT_DIR) can
be used instead of WITH_SSL to indicate the base location of the dependency.

To imply the WITH_SSL option but with more fine-grained specification of installation directories,
use OPENSSL_INCLUDE_DIR or OPENSSL_LIB_DIR to indicate the header file (or library) location
instead of deriving it from the SSL_ROOT_DIR value. To specify a list of external libraries to link to,
use SSL_LIBRARY instead of the WITH_SSL option.

If you specify both SSL_LIBRARY and OPENSSL_LIB_DIR, then OPENSSL_LIB_DIR is used as an
additional prefix when finding the library file and SSL_LIBRARY should be relative to that prefix. On
Windows, SSL_LIBRARY should point at the import library of the DLL.

19

Building Connector/C++ Applications

• -DWITH_ZLIB={system|path_name}

This option specifies which ZLIB installation to use when compiling Connector/C++ with an external
dependency. The option value to use:

• system: Use the system ZLIB location.

• path_name is the path name to the installation location to use.

For consistency with CMake conventions, ZLIB_DIR or ZLIB_ROOT_DIR can be used instead of
WITH_ZLIB to indicate the base location of the dependency.

To imply the WITH_ZLIB option but with more fine-grained specification of installation directories,
use ZLIB_INCLUDE_DIR or ZLIB_LIB_DIR to indicate the header file (or library) location instead
of deriving it from the ZLIB_ROOT_DIR value. To specify a list of external libraries to link to, use
ZLIB_LIBRARY instead of the WITH_ZLIB option.

If you specify both ZLIB_LIBRARY and ZLIB_LIB_DIR, then ZLIB_LIB_DIR is used as an
additional prefix when finding the library file and ZLIB_LIBRARY should be relative to that prefix. On
Windows, ZLIB_LIBRARY should point at the import library of the DLL,

• -DWITH_ZSTD={system|path_name}

This option specifies which ZSTD installation to use when compiling Connector/C++ with an external
dependency. The option value to use:

• system: Use the system ZSTD location.

• path_name is the path name to the installation location to use.

For consistency with CMake conventions, ZSTD_DIR or ZSTD_ROOT_DIR can be used instead of
WITH_ZSTD to indicate the base location of the dependency.

To imply the WITH_ZSTD option but with more fine-grained specification of installation directories,
use ZSTD_INCLUDE_DIR or ZSTD_LIB_DIR to indicate the header file (or library) location instead
of deriving it from the ZSTD_ROOT_DIR value. To specify a list of external libraries to link to, use
ZSTD_LIBRARY instead of the WITH_ZSTD option.

If you specify both ZSTD_LIBRARY and ZSTD_LIB_DIR, then ZSTD_LIB_DIR is used as an
additional prefix when finding the library file and ZSTD_LIBRARY should be relative to that prefix. On
Windows, ZSTD_LIBRARY should point at the import library of the DLL.

2.5 Building Connector/C++ Applications
This chapter provides guidance on building Connector/C++ applications:

• General considerations for building Connector/C++ applications successfully. See Section 2.5.1,
“Building Connector/C++ Applications: General Considerations”.

• Information about building Connector/C++ applications that applies to specific platforms such
as Windows, macOS, generic Linux, and Solaris. See Section 2.5.2, “Building Connector/C++
Applications: Platform-Specific Considerations”.

For discussion of the programming interfaces available to Connector/C++ applications, see Section 2.1,
“Introduction to Connector/C++”.

2.5.1 Building Connector/C++ Applications: General Considerations

This section discusses general considerations to keep in mind when building Connector/C++
applications. For information that applies to particular platforms, see the section that applies to your
platform in Section 2.5.2, “Building Connector/C++ Applications: Platform-Specific Considerations”.

20

Building Connector/C++ Applications: General Considerations

Commands shown here are as given from the command line (for example, as invoked from a
Makefile). The commands apply to any platform that supports make and command-line build tools
such as g++, cc, or clang, but may need adjustment for your build environment.

• Build Tools and Configuration Settings

• C++17 Support

• Connector/C++ Header Files

• Connector/C++ Version Macros

• Boost Header Files

• Link Libraries

• Runtime Libraries

• Using the Connector/C++ Dynamic Library

• Using the Connector/C++ Static Library

Build Tools and Configuration Settings

It is important that the tools you use to build your Connector/C++ applications are compatible with the
tools used to build Connector/C++ itself. Ideally, build your applications with the same tools that were
used to build the Connector/C++ binaries.

To avoid issues, ensure that these factors are the same for your applications and Connector/C++ itself:

• Compiler version.

• Runtime library.

• Runtime linker configuration settings.

To avoid potential crashes, the build configuration of Connector/C++ should match the build
configuration of the application using it. For example, do not use a release build of Connector/C++ with
a debug build of the client application.

To use a different compiler version, release configuration, or runtime library, first build Connector/C+
+ from source using your desired settings (see Section 2.4, “Installing Connector/C++ from Source”),
then build your applications using those same settings.

Connector/C++ binary distributions include an INFO_BIN file that describes the environment and
configuration options used to build the distribution. If you installed Connector/C++ from a binary
distribution and experience build-related issues on a platform, it may help to check the settings that
were used to build the distribution on that platform. Binary distributions also include an INFO_SRC
file that provides information about the product version and the source repository from which the
distribution was produced. (Prior to Connector/C++ 8.0.14, look for BUILDINFO.txt rather than
INFO_BIN and INFO_SRC.)

C++17 Support

X DevAPI uses C++17 language features (as of Connector/C++ 8.0.33). To compile Connector/C++
applications that use X DevAPI, enable C++17 support in the compiler using the -std=c++17 option.
This option is not needed for applications that use X DevAPI for C (which is a plain C API) or the legacy
JDBC API (which is based on plain C++), unless the application code uses C++17.

Connector/C++ Header Files

The API an application uses determines which Connector/C++ header files it should include.
The following include directives work under the assumption that the include path contains

21

Building Connector/C++ Applications: General Considerations

$MYSQL_CPPCONN_DIR/include, where $MYSQL_CPPCONN_DIR is the Connector/C++ installation
location. Pass an -I $MYSQL_CPPCONN_DIR/include option on the compiler invocation command
to ensure this.

• For applications that use X DevAPI:

#include <mysqlx/xdevapi.h>

• For applications that use X DevAPI for C:

#include <mysqlx/xapi.h>

• For applications that use the legacy JDBC API, the header files are version dependent:

• As of Connector/C++ 8.0.16, a single #include directive suffices:

#include <mysql/jdbc.h>

• Prior to Connector/C++ 8.0.16, use this set of #include directives:

#include <jdbc/mysql_driver.h>
#include <jdbc/mysql_connection.h>
#include <jdbc/cppconn/*.h>

The notation <jdbc/cppconn/*.h> means that you should include all header files from the
jdbc/cppconn directory that are needed by your application. The particular files needed depend
on the application.

• Legacy code that uses Connector/C++ 1.1 has #include directives of this form:

#include <mysql_driver.h>
#include <mysql_connection.h>
#include <cppconn/*.h>

To build such code with Connector/C++ 8.0 without modifying it, add $MYSQL_CPPCONN_DIR/
include/jdbc to the include path.

To compile code that you intend to link statically against Connector/C++, define a macro that adjusts
API declarations in the header files for usage with the static library. For details, see Using the
Connector/C++ Static Library.

Connector/C++ Version Macros

Starting with Connector/C++ 8.0.30, version-related macros are defined in public header files. The
intent of the macros is to provide a way to systematically and predictably maintain version numbering of
the Connector/C++ product. The following table describes the version-related macros.

Macro Name Description

MYSQL_CONCPP_VERSION_MAJOR Major number of the product version; currently 8.

MYSQL_CONCPP_VERSION_MINOR Minor number of the product version; currently 00.

MYSQL_CONCPP_VERSION_MICRO Micro number of the product version; initially 30.

MYSQL_CONCPP_VERSION_NUMBER Full Connector/C++ version number, which
combines the major, minor, and micro numbers.
For example, the combined version number
8000030 represents Connector/C++ 8.0.30.

Note

The version numbers maintained by these macros apply to the Connector/C
++ product only and are unrelated to API or ABI versions, which are handled
separately.

22

Building Connector/C++ Applications: General Considerations

Connector/C++ applications that use X DevAPI, X DevAPI for C, or the legacy JDBC API can
specify the MYSQL_CONCPP_VERSION_NUMBER macro to add conditional tests that determine the
inclusion or exclusion of feature dependencies, based on which Connector/C++ version introduced the
dependency. For example, it is possible to use the MYSQL_CONCPP_VERSION_NUMBER macro in the
following cases:

• When a Connector/C++ application needs a guard that checks for features introduced after the
specified version. The following example specifies version 8.0.32, which has the macro defined in
public header files. The same conditional-compilation directive also works when the macro is not
defined (with pre-8.0.30 header files), because the value is treated as 0.

#if MYSQL_CONCPP_VERSION_NUMBER > 8000032
 // use some 8.0.32+ feature
#endif

• When a Connector/C++ application requires all features introduced before the specified version.

#if MYSQL_CONCPP_VERSION_NUMBER < 8000032
 // this usage is OK; it compiles with 8.0.31 and all previous versions
#endif

• When a Connector/C++ application that uses X DevAPI also uses the CharacterSet::utf8mb3
enumeration constant or any of the new utf8mb4 collation members. If the application compiles with
the pre-8.0.30 connector, then it is possible to guard the use of these new API elements.

#if MYSQL_CONCPP_VERSION_NUMBER >= 8000030
 if (CharacterSet::utf8mb3 == cs)
#else
 if (CharacterSet::utf8 == cs)
#endif
 {
 // cs is the id of the utf8 character set
 }

• When a Connector/C++ application that uses X DevAPI needs to check the name of the utf8mb3
character set or any of its collations, and it must also be compiled with the pre-8.0.30 connector.

#if MYSQL_CONCPP_VERSION_NUMBER >= 8000030
 if ("utf8mb3" == characterSetName(cs))
#else
 if ("utf8" == characterSetName(cs))
#endif
 {
 // cs is the id of the utf8 character set
 }

Note

Alternatively, you can compare against numeric enumeration constant value,
which should work regardless of the connector version.

• When a Connector/C++ application that uses the legacy JDBC API needs to check the name of
the utf8mb3 character set or any of its collations, and it must also be compiled with the pre-8.0.30
connector.

#if MYSQL_CONCPP_VERSION_NUMBER >= 8000030
 if ("utf8mb3" == metadata->getColumnCharset(column))
#else
 if ("utf8" == metadata->getColumnCharset(column))
#endif
 {
 // column is the column index using the utf8 character set
 }

Do not use the MYSQL_CONCPP_VERSION_NUMBER macro to check against versions earlier than
Connector/C++ 8.0.30, which can produce unreliable results. For example:

23

Building Connector/C++ Applications: General Considerations

#if MYSQL_CONCPP_VERSION_NUMBER > 8000028
 // this does not compile the with 8.0.29 connector!
#endif
#if MYSQL_CONCPP_VERSION_NUMBER < 8000028
 // this compiles with the 8.0.29 connector!
#endif

Boost Header Files

The Boost header files are needed under these circumstances:

• Prior to Connector/C++ 8.0.16, on Unix and Unix-like platforms for applications that use X DevAPI
or X DevAPI for C, if you build using gcc and the version of the C++ standard library on your system
does not implement the UTF8 converter (codecvt_utf8).

• Prior to Connector/C++ 8.0.23, to compile Connector/C++ applications that use the legacy JDBC
API.

If the Boost header files are needed, Boost 1.59.0 or newer must be installed, and the location of the
headers must be added to the include path. To obtain Boost and its installation instructions, visit the
official Boost site.

Link Libraries

When running an application that uses the shared Connector/C++ library, the library and its runtime
dependencies must be found by the dynamic linker. The dynamic linker must be properly configured to
find Connector/C++ libraries and their dependencies. This includes adding -lresolv explicitly to the
compile/link command.

Building Connector/C++ using OpenSSL makes the connector library dependent on OpenSSL dynamic
libraries. In that case:

• When linking an application to Connector/C++ dynamically, this dependency is relevant only at
runtime.

• When linking an application to Connector/C++ statically, link to the OpenSSL libraries as well. On
Linux, this means adding -lssl -lcrypto explicitly to the compile/link command. On Windows,
this is handled automatically.

On Windows, link to the dynamic version of the C++ Runtime Library.

Runtime Libraries

X DevAPI for C applications need libstdc++ at runtime. Depending on your platform or build tools, a
different library may apply. For example, the library is libc++ on macOS; see Section 2.5.2.2, “macOS
Notes”.

If an application is built using dynamic link libraries, those libraries must be present not just on the build
host, but on target hosts where the application runs. The dynamic linker must be properly configured to
find those libraries and their runtime dependencies, as well as to find Connector/C++ libraries and their
runtime dependencies.

Connector/C++ libraries built by Oracle depend on the OpenSSL libraries. The latter must be installed
on the system in order to run code that links against Connector/C++ libraries. Another option is to
put the OpenSSL libraries in the same location as Connector/C++, in which case, the dynamic linker
should find them next to the connector library. See also Section 2.5.2.1, “Windows Notes”, and
Section 2.5.2.2, “macOS Notes”.

Note

The TLSv1 and TLSv1.1 connection protocols are no longer supported as of
Connector/C++ 8.0.28, making TLSv1.2 the earliest supported connection
protocol.

24

https://www.boost.org
https://www.boost.org

Building Connector/C++ Applications: General Considerations

Using the Connector/C++ Dynamic Library

The Connector/C++ dynamic library name depends on the platform. These libraries implement X
DevAPI and X DevAPI for C, where A in the library name represents the ABI version:

• libmysqlcppconn8.so.A (Unix)

• libmysqlcppconn8.A.dylib (macOS)

• mysqlcppconn8-A-vsNN.dll, with import library vsNN/mysqlcppconn8.lib (Windows)

For the legacy JDBC API, the dynamic libraries are named as follows, where B in the library name
represents the ABI version:

• libmysqlcppconn.so.B (Unix)

• libmysqlcppconn.B.dylib (macOS)

• mysqlcppconn-B-vsNN.dll, with import library vsNN/mysqlcppconn-static.lib (Windows)

On Windows, the vsNN value in library names depends on the MSVC toolchain version used to build
the libraries. (Connector/C++ libraries provided by Oracle use vs14, and they are compatible with
MSVC 2019 and 2017.) This convention enables using libraries built with different versions of MSVC on
the same system. See also Section 2.5.2.1, “Windows Notes”.

To build code that uses X DevAPI or X DevAPI for C, add -lmysqlcppconn8 to the linker options. To
build code that uses the legacy JDBC API, add -lmysqlcppconn.

You must also indicate whether to use the 64-bit or 32-bit libraries by specifying the appropriate
library directory. Use an -L linker option to specify $MYSQL_CONCPP_DIR/lib64 (64-bit libraries) or
$MYSQL_CONCPP_DIR/lib (32-bit libraries), where $MYSQL_CPPCONN_DIR is the Connector/C++
installation location. On FreeBSD, /lib64 is not used. The library name always ends with /lib.

To build a Connector/C++ application that uses X DevAPI, has sources in app.cc, and links
dynamically to the connector library, the Makefile might look like this:

MYSQL_CONCPP_DIR = Connector/C++ installation location
CPPFLAGS = -I $(MYSQL_CONCPP_DIR)/include -L $(MYSQL_CONCPP_DIR)/lib64
LDLIBS = -lmysqlcppconn8
CXXFLAGS = -std=c++17
app : app.cc

With that Makefile, the command make app generates the following compiler invocation:

g++ -std=c++17 -I .../include -L .../lib64 app.cc -lmysqlcppconn8 -o app

To build a plain C application that uses X DevAPI for C, has sources in app.c, and links dynamically to
the connector library, the Makefile might look like this:

MYSQL_CONCPP_DIR = Connector/C++ installation location
CPPFLAGS = -I $(MYSQL_CONCPP_DIR)/include -L $(MYSQL_CONCPP_DIR)/lib64
LDLIBS = -lmysqlcppconn8
app : app.c

With that Makefile, the command make app generates the following compiler invocation:

cc -I .../include -L .../lib64 app.c -lmysqlcppconn8 -o app

Note

The resulting code, even though it is compiled as plain C, depends on the C++
runtime (typically libstdc++, though this may differ depending on platform or
build tools; see Runtime Libraries).

To build a plain C++ application that uses the legacy JDBC API, has sources in app.c, and links
dynamically to the connector library, the Makefile might look like this:

25

Building Connector/C++ Applications: General Considerations

MYSQL_CONCPP_DIR = Connector/C++ installation location
CPPFLAGS = -I $(MYSQL_CONCPP_DIR)/include -L $(MYSQL_CONCPP_DIR)/lib64
LDLIBS = -lmysqlcppconn
app : app.c

The library option in this case is -lmysqlcppcon, rather than -lmysqlcppcon8 as for an X DevAPI
or X DevAPI for C application.

With that Makefile, the command make app generates the following compiler invocation:

cc -I .../include -L .../lib64 app.c -lmysqlcppconn -o app

Note

When running an application that uses the Connector/C++ dynamic library, the
library and its runtime dependencies must be found by the dynamic linker. See
Runtime Libraries.

Using the Connector/C++ Static Library

It is possible to link your application with the Connector/C++ static library. This way there is no runtime
dependency on the connector, and the resulting binary can run on systems where Connector/C++ is
not installed.

Note

Even when linking statically, the resulting code still depends on all runtime
dependencies of the Connector/C++ library. For example, if Connector/C++
is built using OpenSSL, the code has a runtime dependency on the OpenSSL
libraries. See Runtime Libraries.

The Connector/C++ static library name depends on the platform. These libraries implement X DevAPI
and X DevAPI for C:

• libmysqlcppconn8-static.a (Unix, macOS)

• vsNN/mysqlcppconn8-static.lib (Windows)

For the legacy JDBC API, the static libraries are named as follows:

• libmysqlcppconn-static.a (Unix, macOS)

• vsNN/mysqlcppconn-static.lib (Windows)

Note

Generic Linux packages do not contain any Connector/C++ static libraries.
If you intend to link your application to a static library, consider installing a
package that is specific to the platform on which you build your final application.

On Windows, the vsNN value in library names depends on the MSVC toolchain version used to build
the libraries. (Connector/C++ libraries provided by Oracle use vs14, and they are compatible with
MSVC 2019 and 2017.) This convention enables using libraries built with different versions of MSVC on
the same system. See also Section 2.5.2.1, “Windows Notes”.

To compile code that you intend to link statically against Connector/C++, define a macro that adjusts
API declarations in the header files for usage with the static library. One way to define the macro is by
passing a -D option on the compiler invocation command:

• For applications that use X DevAPI, X DevAPI for C, or (as of Connector/C++ 8.0.16) the legacy
JDBC API, define the STATIC_CONCPP macro. All that matters is that you define it; the value does
not matter. For example: -DSTATIC_CONCPP

26

Building Connector/C++ Applications: General Considerations

• Prior to Connector/C++ 8.0.16, for applications that use the legacy JDBC API, define
the CPPCONN_PUBLIC_FUNC macro as an empty string. To ensure this, define the
macro as CPPCONN_PUBLIC_FUNC=, not as CPPCONN_PUBLIC_FUNC. For example: -
DCPPCONN_PUBLIC_FUNC=

To build a Connector/C++ application that uses X DevAPI, has sources in app.cc, and links statically
to the connector library, the Makefile might look like this:

MYSQL_CONCPP_DIR = Connector/C++ installation location
CPPFLAGS = -DSTATIC_CONCPP -I $(MYSQL_CONCPP_DIR)/include
LDLIBS = $(MYSQL_CONCPP_DIR)/lib64/libmysqlcppconn8-static.a -lssl -lcrypto -lpthread
CXXFLAGS = -std=c++17
app : app.cc

With that Makefile, the command make app generates the following compiler invocation:

g++ -std=c++17 -DSTATIC_CONCPP -I .../include app.cc
 .../lib64/libmysqlcppconn8-static.a -lssl -lcrypto -lpthread -o app

Note

To avoid having the linker report unresolved symbols, the compile line must
include the OpenSSL libraries and the pthread library on which Connector/C+
+ code depends.

OpenSSL libraries are not needed if Connector/C++ is built without them, but
Connector/C++ distributions built by Oracle do depend on OpenSSL.

The exact list of libraries required by Connector/C++ library depends on the
platform. For example, on Solaris, the socket, rt, and nsl libraries might be
needed.

To build a plain C application that uses X DevAPI for C, has sources in app.c, and links statically to
the connector library, the Makefile might look like this:

MYSQL_CONCPP_DIR = Connector/C++ installation location
CPPFLAGS = -DSTATIC_CONCPP -I $(MYSQL_CONCPP_DIR)/include
LDLIBS = $(MYSQL_CONCPP_DIR)/lib64/libmysqlcppconn8-static.a -lssl -lcrypto -lpthread
app : app.c

With that Makefile, the command make app generates the following compiler invocation:

cc -DSTATIC_CONCPP -I .../include app.c
 .../lib64/libmysqlcppconn8-static.a -lssl -lcrypto -lpthread -o app

To build a plain C application that uses the legacy JDBC API, has sources in app.c, and links statically
to the connector library, the Makefile might look like this:

MYSQL_CONCPP_DIR = Connector/C++ installation location
CPPFLAGS = -DCPPCONN_PUBLIC_FUNC= -I $(MYSQL_CONCPP_DIR)/include
LDLIBS = $(MYSQL_CONCPP_DIR)/lib64/libmysqlcppconn-static.a -lssl -lcrypto -lpthread
app : app.c

The library option in this case names libmysqlcppcon-static.a, rather than libmysqlcppcon8-
static.a as for an X DevAPI or X DevAPI for C application.

With that Makefile, the command make app generates the following compiler invocation:

cc -std=c++17 --DCPPCONN_PUBLIC_FUNC= -I .../include app.c
 .../lib64/libmysqlcppconn-static.a -lssl -lcrypto -lpthread -o app

When building plain C code, it is important to take care of connector's dependency on the C++ runtime,
which is introduced by the connector library even though the code that uses it is plain C:

• One approach is to ensure that a C++ linker is used to build the final code. This approach is taken by
the Makefile shown here:

27

Building Connector/C++ Applications: Platform-Specific Considerations

MYSQL_CONCPP_DIR = Connector/C++ installation location
CPPFLAGS = -DSTATIC_CONCPP -I $(MYSQL_CONCPP_DIR)/include
LDLIBS = $(MYSQL_CONCPP_DIR)/lib64/libmysqlcppconn8-static.a -lssl -lcrypto -lpthread
LINK.o = $(LINK.cc) # use C++ linker
app : app.o

With that Makefile, the build process has two steps: first compile the application source in app.c
using a plain C compiler to produce app.o, then link the final executable (app) using the C++ linker,
which takes care of the dependency on the C++ runtime. The commands look something like this:

cc -DSTATIC_CONCPP -I .../include -c -o app.o app.c
g++ -DSTATIC_CONCPP -I .../include app.o
 .../libmysqlcppconn8-static.a -lssl -lcrypto -lpthread -o app

• Another approach is to use a plain C compiler and linker, but add the libstdc++ C++ runtime
library as an explicit option to the linker. This approach is taken by the Makefile shown here:

MYSQL_CONCPP_DIR = Connector/C++ installation location
CPPFLAGS = -DSTATIC_CONCPP -I $(MYSQL_CONCPP_DIR)/include
LDLIBS = $(MYSQL_CONCPP_DIR)/lib64/libmysqlcppconn8-static.a -lssl -lcrypto -lpthread -lstdc++
app : app.c

With that Makefile, the compiler is invoked as follows:

cc -DSTATIC_CONCPP -I .../include app.c
 .../libmysqlcppconn8-static.a -lssl -lcrypto -lpthread -lstdc++ -o app

Note

Even if the application that uses Connector/C++ is written in plain C, the final
executable depends on the C++ runtime which must be installed on the target
computer on which the application is to run.

2.5.2 Building Connector/C++ Applications: Platform-Specific
Considerations

This section discusses platform-specific considerations to keep in mind when building Connector/C++
applications. For general considerations that apply on a platform-independent basis, see Section 2.5.1,
“Building Connector/C++ Applications: General Considerations”.

2.5.2.1 Windows Notes

This section describes aspects of building Connector/C++ applications that are specific to Microsoft
Windows. For general application-building information, see Section 2.5.1, “Building Connector/C++
Applications: General Considerations”.

On Windows, applications can be built in different build configurations, which determine the type of the
C++ runtime library that is used by the final executable:

• An application can be built in 32-bit or 64-bit mode.

• An application can be built in release or debug mode.

• You can choose between the dynamic runtime library (/MD linker option) or static runtime library (/
MT linker option). Different versions of the MSVC compiler also use different versions of the runtime
library.

To build Connector/C++ applications, developers using Windows must satisfy these conditions:

• An acceptable version of Microsoft Visual Studio is required.

• Applications should use the same build configuration as that used to build Connector/C++. Build
configuration includes the build mode (release mode or debug mode) and the linker option (for
example, /MD or /MDd).

28

Building Connector/C++ Applications: Platform-Specific Considerations

• Target hosts running client applications must have an acceptable version of the Visual C++
Redistributable for Visual Studio installed.

For information about acceptable versions of Visual Studio and VC++ Redistributable, see Platform
Support and Prerequisites.

The following sections provide additional detail about several aspects of building Connector/C++
applications:

• Application Build Configuration Must Match Connector/C++

• Linking Connector/C++ to Applications

• Building Connector/C++ Applications with Microsoft Visual Studio

Application Build Configuration Must Match Connector/C++

It is important to use a compatible compiler version to build applications and Connector/C++. It is also
important to build applications using the same build configuration as that used to build Connector/C+
+. That is, applications should use the same build mode and linker option, to ensure that the connector
and the application use the same runtime library.

The following table shows the linker option appropriate for each combination of build mode and runtime
library. It also shows for each combination whether a Connector/C++ binary package is available from
Oracle. (If not, you must build Connector/C++ from source yourself.)

Table 2.2 Connector/C++ Linker Option Per Build Mode and Runtime Library

Build Mode Runtime Library Linker Option Binary Package
Available

Release Dynamic /MD Yes

Debug Dynamic /MDd Yes

Release Static /MT No (build from source)

Debug Static /MTd No (build from source)

Standard Connector/C++ binary packages available from Oracle are built in release mode. If you
install such a package, build applications in release mode to match. Oracle packages built in debug
mode are available as well. To build applications in debug mode, you must either install an Oracle-built
Connector/C++ package that was built in debug mode, or build Connector/C++ from source yourself
using debug mode.

Linking Connector/C++ to Applications

Connector/C++ binary distributions are available as 64-bit or 32-bit packages, which store libraries
under a directory named lib64 or lib, respectively. Package names and certain library file and
directory names also include vsNN. The vsNN value in these names depends on the MSVC toolchain
version used to build the libraries. This convention enables using libraries built with different versions of
MSVC on the same system.

Note

The vsNN value represents the major version of the MSVC toolchain used to
build the libraries. Currently it is vs14, which is the toolchain used by MSVC
2015 through 2019.

Connector/C++ binary packages include libraries built using the dynamic runtime library in either
release mode (/MD) or debug mode (/MDd). The Connector/C++ libraries are compatible with MSVC
2019 and 2017, and code that uses these libraries can be built with either MSVC 2019 or 2017 using
the appropriate linker option (that is, /MD for release mode or /MDd for debug mode). To build code

29

https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/

Building Connector/C++ Applications: Platform-Specific Considerations

with a different linker option (/MT or /MTd), first build Connector/C++ from source with that option (see
Section 2.4.3, “Installing Connector/C++ from Source”), then build applications using the same option.

Note

One exception for compiler version compatibility is that to build applications
using the static JDBC legacy connector, MSVC 2019 is required; 2017 does not
work.

Connector/C++ is available as a dynamic or static library to use with your application. Which library
you choose determines the library files needed, and the location of those files within a Connector/C
++ package depends on whether the package was built in release or debug mode. Library files are
located under the library directory, which, as previously mentioned, is lib64 for 64-bit packages or
lib for 32-bit packages. Denote this directory as LIB. The following table shows the directory in which
to find library files for each type of library (including import libraries, which are used in conjunction with
dynamic libraries).

Table 2.3 Connector/C++ Library File Directories

Library Type Library File Directory (Release
Build)

Library File Directory (Debug
Build)

Dynamic Library LIB LIB/debug

Import Library LIB/vs14 LIB/vs14/debug

Static Library LIB/vs14 LIB/vs14/debug

For dynamic linking, the following table indicates which dynamic and import library files to use.

Table 2.4 Connector/C++ Dynamic and Import Library Files Per Connector

Connector Dynamic Library File Import Library File

X DevAPI, X DevAPI for C mysqlcppconn8-2-vs14.dll mysqlcppconn8.lib

JDBC mysqlcppconn-7-vs14.dll mysqlcppconn.lib

For the X DevAPI or X DevAPI for C connector, use the dynamic library file named
mysqlcppconn8-2-vs14.dll, together with with the import library file named
mysqlcppconn8.lib from the import library directory. The 2 in the dynamic library name is the major
ABI version number. (This helps when using compatibility libraries with an old ABI together with new
libraries having a different ABI.) The libraries installed on your system may have a different ABI version
in their file names.

For the legacy JDBC connector, use the dynamic library file named mysqlcppconn-7-vs14.dll,
together with the import library file named mysqlcppconn.lib from the import library directory.

For static linking, the following table indicates which static library file to use.

Table 2.5 Connector/C++ Static Library File Per Connector

Connector Static Library File

X DevAPI, X DevAPI for C mysqlcppconn8-static.lib

JDBC mysqlcppconn-static.lib

For the X DevAPI or X DevAPI for C connector, use the static library file named mysqlcppconn8-
static.lib from the static library directory.

For the legacy JDBC connector, use the static library file named mysqlcppconn-static.lib from
the static library directory.

When building code that uses Connector/C++ libraries, use these guidelines for setting build options in
the project configuration:

30

Building Connector/C++ Applications: Platform-Specific Considerations

• As an additional include directory, specify $MYSQL_CPPCONN_DIR/include.

• As an additional library directory, specify the directory containing the libraries the application must
link to, as indicated in Table 2.3, “Connector/C++ Library File Directories”. For example, to specify
the import or static library directory for building in release mode, use $MYSQL_CONCPP_DIR/
lib64/vs14 (for 64-bit libraries) or $MYSQL_CONCPP_DIR/lib/vs14 (for 32-bit libraries). For
building in debug mode, change vs14 to vs14/debug.

• To use a dynamic library file (.dll extension), link your application with a .lib import library:
mysqlcppconn8.lib to the linker options, or mysqlcppconn.lib for legacy code.

• To use a static library file (.lib extension), link your application with the library: mysqlcppconn8-
static.lib, or mysqlcppconn-static.lib for legacy code.

For static linking, the application must also be linked with import libraries for the required OpenSSL
libraries. If the connector was installed from a binary package provided by Oracle, these are
present in the vs14 subdirectory under the main library directory ($MYSQL_CONCPP_DIR/lib64 or
$MYSQL_CONCPP_DIR/lib), and the corresponding OpenSSL .dll libraries are present in the main
library directory.

Note

A Windows application that uses the connector dynamic library must be able
to locate it at runtime, as well as its dependencies such as OpenSSL. The
common way of arranging this is to copy all the required DLLs to the same
location as the application executable.

Building Connector/C++ Applications with Microsoft Visual Studio

To build a Connector/C++ application with Microsoft Visual Studio, follow this procedure:

1. Start a new Visual C++ project in Visual Studio.

2. Set the required include paths.

From the main menu, select Project, Properties. This can also be accessed using the hot key
ALT + F7. Under Configuration Properties, open the tree view. Select C/C++, General in the tree
view.

In the Additional Include Directories text field:

• Add the include/ directory of Connector/C++. This directory should be located within the
Connector/C++ installation directory.

• If Boost is required to build the application, also add the Boost library root directory. (See
Section 2.5.1, “Building Connector/C++ Applications: General Considerations”.)

3. Set the library locations.

In the tree view, open Linker, General, Additional Library Directories.

In the Additional Library Directories text field, add the Connector/C++ import or static library
directory as specified in Table 2.3, “Connector/C++ Library File Directories”. Set appropriate paths
for release and debug builds.

Note

For building in debug mode, the Connector/C++ debug package must be
installed.

4. Set the connector library to use.

31

Building Connector/C++ Applications: Platform-Specific Considerations

Open Linker, Input in the Property Pages dialog.

For building with the Connector/C++ dynamic library, enter the import library name:
mysqlcppconn8.lib, or mysqlcppconn.lib for legacy applications.

For building with the Connector/C++ static library, enter the static library name: mysqlcppconn8-
static.lib, or mysqlcppconn-static.lib for legacy applications.

Note

Generic Linux packages do not contain Connector/C++ static libraries.

5. Define macros for static linking.

To compile code that is linked statically with the connector library, you must define a macro that
adjusts API declarations in the header files for usage with the static library. By default, the macro is
undefined to declare functions to be compatible with an application that calls a DLL.

In the Project, Properties tree view, under C++, Preprocessor, enter the appropriate macro into
the Preprocessor Definitions text field:

• For applications that use X DevAPI, X DevAPI for C, or (as of Connector/C++ 8.0.16) the legacy
JDBC API, define the STATIC_CONCPP macro. All that matters is that you define it; the value
does not matter. For example: -DSTATIC_CONCPP

• Prior to Connector/C++ 8.0.16, for applications that use the legacy JDBC API, define the
CPPCONN_PUBLIC_FUNC macro as an empty string. To ensure this, define the macro as
CPPCONN_PUBLIC_FUNC=, not as CPPCONN_PUBLIC_FUNC.

Notes

• Target hosts running the client application must have the Visual C++
Redistributable for Visual Studio installed. For information about which
VC++ Redistributable versions are acceptable, see Platform Support and
Prerequisites.

• If your code uses the Connector/C++ dynamic library, it must be present on
the target host where the application is run. Copy the appropriate Connector/
C++ dynamic library to the same directory as the application executable
(see Linking Connector/C++ to Applications). Alternatively, extend the PATH
environment variable using SET PATH=%PATH%;C:\path\to\cpp, or
copy the dynamic library to the Windows installation directory, typically C:
\windows.

• If your code uses the Connector/C++ static library, the required OpenSSL
libraries must be found on the target host where the application is run.
For Connector/C++ binary distributions, the OpenSSL .dll libraries are
present in the main library directory ($MYSQL_CONCPP_DIR/lib64 or
$MYSQL_CONCPP_DIR/lib). Copy them to the same location as the
application executable or to some directory listed in the system PATH.

2.5.2.2 macOS Notes

This section describes aspects of building Connector/C++ applications that are specific to macOS.
For general application-building information, see Section 2.5.1, “Building Connector/C++ Applications:
General Considerations”.

The binary distribution of Connector/C++ for macOS is compiled using the macOS native clang
compiler. For that reason, an application that uses Connector/C++ should be built with the same clang
compiler.

32

https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/

Authentication Support

The clang compiler can use two different implementations of the C++ runtime library: either the native
libc++ or the GNU libstdc++ library. It is important that an application uses the same runtime
implementation as Connector/C++ that is, the native libc++. To ensure that, the -stdlib=libc++
option should be passed to the compiler and the linker invocations.

To build a Connector/C++ application that uses X DevAPI, has sources in app.cc, and links
dynamically to the connector library, the Makefile for building on macOS might look like this:

MYSQL_CONCPP_DIR = Connector/C++ installation location
CPPFLAGS = -I $(MYSQL_CONCPP_DIR)/include -L $(MYSQL_CONCPP_DIR)/lib64
LDLIBS = -lmysqlcppconn8
CXX = clang++ -stdlib=libc++
CXXFLAGS = -std=c++17
app : app.cc

Binary packages for macOS include OpenSSL libraries that are required by code linked with the
connector. These libraries are installed in the same location as the connector libraries and should be
found there by the dynamic linker.

2.5.2.3 Generic Linux Notes

This section describes aspects of building Connector/C++ applications that are specific to Linux.
Generic Linux packages do not contain Connector/C++ static libraries. For general application-building
information, see Section 2.5.1, “Building Connector/C++ Applications: General Considerations”.

Note

Connector/C++ 8.0.32 provides generic Linux packages for ARM architecture
(64 bit). All Connector/C++ versions provide generic Linux packages for Intel
architecture (both 32 and 64 bits).

Previously, generic Linux packages were built on the EL7 platform and on that platform GCC is
configured to use an older ABI of libstdc++. Some of the symbols exported by the library include
standard library types in their names, and consequently, are not compatible with the new CXX11 ABI,
which is the default for modern GCC on most platforms (EL7 being an exception). So, unless you
build your code on EL7, and use GCC6 or later compiler, it defaults to new CXX11 ABI and looks for
Connector/C++ symbols that have new ABI names in them.

As of Connector/C++ 8.0.30, Connector/C++ uses the new CXX11 ABI. With this change, you might
encounter following problems when using Connector/C++ installed from a generic Linux package:

• An upgrade from Connector/C++ 8.0.29 (or earlier) to 8.0.30 (or later) could produce runtime errors
after the upgrade, even if the previous version of Connector/C++ ran successfully.

• It will not work with GCC5 or earlier, because the old compiler uses the old ABI and cannot link to
code that uses new the ABI.

• It will not work on EL6, EL7, or any other platform that modifies GCC settings to use
the old ABI by default. However, in this situation a workaround is to build code under -
D_GLIBCXX_USE_CXX11_ABI=1.

For a majority of platforms, including EL8, the GCC default was changed to the new ABI.

2.5.3 Authentication Support

For connections to the server made using the legacy JDBC API (that is, not made using X DevAPI or X
DevAPI for C), Connector/C++ supports different client-side authentication plugins and authentication
methods for:

• LDAP Authentication

• Kerberos Authentication

33

Authentication Support

• OCI Authentication

• Multifactor Authentication

• FIDO Authentication

• WebAuthn Authentication

LDAP Authentication

LDAP authentication enables Connector/C++ (8.0.22 and later) application programs to connect to
MySQL servers using simple LDAP authentication, or SASL LDAP authentication using the SCRAM-
SHA-1 authentication method. LDAP authentication requires use of a server from a MySQL Enterprise
Edition distribution. For more information about the LDAP authentication plugins, see LDAP Pluggable
Authentication.

Connector/C++ binary distributions include the libraries that provide the client-side LDAP authentication
plugins, as well as any dependent libraries required by the plugins.

Note

In Connector/C++ 8.0.23, a dependency on the mysql-client-plugins
package was removed. This package now is required only on hosts where
Connector/C++ applications make connections using commercial MySQL
server accounts with LDAP authentication. In that case, additional libraries
must also be installed: cyrus-sasl-scram for installations that use RPM
packages and libsasl2-modules-gssapi-mit for installations that use
Debian packages. These SASL packages provide the support required to use
the SCRAM-SHA-256 and GSSAPI/Kerberos authentication methods for LDAP.

If Connector/C++ was installed from a compressed tar file or Zip archive, the application program will
need to set the OPT_PLUGIN_DIR connection option to the appropriate directory so that the bundled
plugin library can be found. (Alternatively, copy the required plugin library to the default directory
expected by the client library.)

For example:

sql::ConnectOptionsMap connection_properties;
// To use simple LDAP authentication ...
connection_properties["userName"] = "simple_ldap_user_name";
connection_properties["password"] = "simple_ldap_password";
connection_properties[OPT_ENABLE_CLEARTEXT_PLUGIN]=true;
// To use SASL LDAP authentication using SCRAM-SHA-1 ...
connection_properties["userName"] = "sasl_ldap_user_name";
connection_properties["password"] = "sasl_ldap_scram_password";
// Needed if Connector/C++ was installed from tar file or Zip archive ...
connection_properties[OPT_PLUGIN_DIR] = "${INSTALL_DIR}/lib{64}/plugin";
auto *driver = get_driver_instance();
auto *con = driver->connect(connection_properties);
// Execute statements ...
con->close();

Kerberos Authentication

Kerberos authentication enables Connector/C++ application programs to establish connections for
accounts that use the authentication_kerberos server-side authentication plugin, provided that
the correct Kerberos tickets are available or can be obtained from Kerberos. This capability is available
on client hosts running Linux (starting with 8.0.26).

On Windows (starting with 8.0.32), the OPT_AUTHENTICATION_KERBEROS_CLIENT_MODE
connection option can be set to either SSPI (default) or GSSAPI. The option permits choosing between
SSPI and GSSAPI at runtime for the authentication_kerberos_client authentication plugin on
Windows. Connector/C++ implements GSSAPI mode through the MIT kerberos library and this mode is
compatible with the Java SE security tools (for example, klist and kinit commands) on Windows.

34

https://dev.mysql.com/doc/refman/8.0/en/ldap-pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.0/en/ldap-pluggable-authentication.html

Authentication Support

In this mode, the ticket search on Windows hosts is restricted to the MIT Kerberos cache only. If the
cache has no ticket, the connection fails even if the Windows ticket is valid

Previously, Connector/C++ supported Kerberos authentication through the Windows SSPI Kerberos
library only (starting with 8.0.27). SSPI is not capable of acquiring cached credentials that were
generated using the kinit command. In SSPI mode, the Windows single sign-on ticket is used for
authentication if the client user provides no password and the authentication method considers the
Windows ticket exclusively. If the ticket is missing or invalid, the connection fails even if the Kerberos
cache contains a valid ticket. For more information, see Commands for Windows Clients in SSPI Mode.

It is possible to connect to Kerberos-authenticated accounts without giving a user name under these
conditions:

• The user has a Kerberos principal name assigned, a MySQL Kerberos account for that principal
name exists, and the user has the required tickets.

• The default authentication method must be set to the authentication_kerberos_client client-
side authentication plugin using the OPT_DEFAULT_AUTH connection option.

It is possible to connect without giving a password, provided that the user has the required tickets in the
Kerberos cache on Linux or the MIT Kerberos cache on Windows (for example, created by kinit or a
similar command).

Note

The SSPI Kerberos library is not compatible with Java SE security
tools. To use the kinit command, the client application must set the
OPT_AUTHENTICATION_KERBEROS_CLIENT_MODE connection option to
GSSAPI.

If the required tickets are not present in the Kerberos cache (or the MIT Kerberos cache) and a
password was given, Connector/C++ obtains the tickets from Kerberos using that password. If the
required tickets are found in the cache, any password given is ignored and the connection might
succeed even if the password is incorrect.

On client hosts running Windows, you can override the default location of the MIT Kerberos
configuration file by setting the KRB5_CONFIG environment variable and the default MIT Kerberos
credential cache name with the KRB5CCNAME environment variable (for example, KRB5CCNAME=DIR:/
mydir/).

For details about using the MIT Kerberos configuration and cache, see:

• KRB5_CONFIG: https://web.mit.edu/kerberos/krb5-devel/doc/admin/conf_files/krb5_conf.html

• KRB5CCNAME: https://web.mit.edu/kerberos/krb5-1.12/doc/basic/ccache_def.html

For more information about Kerberos authentication, see Kerberos Pluggable Authentication.

OCI Authentication

OCI authentication enables Connector/C++ application programs to make connections without
passwords for accounts that use the authentication_oci server-side authentication plugin,
provided that the correct configuration entries are available to map to one unique user in a specific
Oracle Cloud Infrastructure tenancy. This supported was added in the Connector/C++ 8.0.27 release.

To ensure correct account mapping, the client-side Oracle Cloud Infrastructure configuration
must contain a fingerprint of the API key to use for authentication (fingerprint entry)
and the location of a PEM file with the private part of the API key (key_file entry).
Both entries should be specified in the [DEFAULT] profile of the configuration file. In
Connector/C++ 8.0.33, the OPT_OCI_CLIENT_CONFIG_PROFILE connection option permits
selecting a profile in the configuration file to use for authentication. By default, the value of
OPT_OCI_CLIENT_CONFIG_PROFILE is the [DEFAULT] profile.

35

https://dev.mysql.com/doc/refman/8.0/en/kerberos-pluggable-authentication.html#kerberos-usage-win-sspi-client-commands
https://web.mit.edu/kerberos/krb5-devel/doc/admin/conf_files/krb5_conf.html
https://web.mit.edu/kerberos/krb5-1.12/doc/basic/ccache_def.html
https://dev.mysql.com/doc/refman/8.0/en/kerberos-pluggable-authentication.html

Authentication Support

Unless an alternative path to the configuration file is specified with the OPT_OCI_CONFIG_FILE
connection option, the following default locations are used:

• ~/.oci/config on Linux or Posix host types

• %HOMEDRIVE%%HOMEPATH%/.oci/config on Windows host types

If the MySQL user name is not provided as a connection option, then the operating system user name
is substituted. Specifically, if the private key and correct Oracle Cloud Infrastructure configuration are
present on the client side, then a connection can be made without giving any options.

To support Oracle Cloud Infrastructure ephemeral key-based authentication, Connector/C++ 8.0.33
(and later) obtains the location of the token file from the security_token_file entry. For example:

[DEFAULT]
fingerprint=59:8a:0b[...]
key_file=~/.oci/sessions/DEFAULT/oci_api_key.pem
tenancy=ocid1.tenancy.oc1.[...]
region=us-ashburn-1
security_token_file=~/.oci/sessions/DEFAULT/token

Connector/C++ sends to the server a JSON attribute (named "token") with the value extracted from
the security_token_file field. If the target file referenced in the profile does not exist, or if the
file exceeds a specified maximum value, then Connector/C++ terminates the action and returns an
exception with the cause.

Connector/C++ sends an empty token value in the JSON payload if:

• The security-token file is empty.

• The configuration option security_token_file is found but the value in the configuration file is
empty.

In all other cases, Connector/C++ adds the content of the security-token file intact to the JSON
document.

Multifactor Authentication

Starting with Connector/C++ 8.0.28, applications can establish connections using multifactor
authentication, such that up to three passwords can be specified at connect time. The
OPT_PASSWORD1, OPT_PASSWORD2, and OPT_PASSWORD3 connection options are available for
specifying the first, second, and third multifactor authentication passwords, respectively.

OPT_PASSWORD1 is an alias for the existing OPT_PASSWORD option; if both are provided,
OPT_PASSWORD is ignored. For more information about this authentication option, see Multifactor
Authentication.

FIDO Authentication

FIDO authentication to MySQL Server supports using devices such as smart cards, security keys, and
biometric readers. This authentication method is based on the Fast Identity Online (FIDO) standard. To
ensure client applications using the legacy JBDC API are notified when a user is expected to interact
with the FIDO device, Connector/C++ 8.0.29 (and later) implements a new setCallback() method in
the MySQL_Driver class that accepts a single callback argument named Fido_Callback.

class Fido_Callback
{
public:
 Fido_Callback(std::function<void(SQLString)>);
 /**
 * Override this message to receive Fido Action Requests
 */
 virtual void FidoActionRequested(sql::SQLString msg);
};

36

https://dev.mysql.com/doc/refman/8.0/en/multifactor-authentication.html
https://dev.mysql.com/doc/refman/8.0/en/multifactor-authentication.html

Authentication Support

Any connection created by the driver can use the callback, if needed. However, if an application does
not set the callback explicitly, libmysqlclient determines the behavior by default, which involves
printing a message to standard output.

Note

On Windows, the client application must run as administrator. The
is a requirement of the fido2.dll library, which is used by the
authentication_fido plugin.

A client application has two options for obtaining a callback from the connector:

• By passing a function or lambda to Fido_Callback.

driver->setCallBack(Fido_Callback([](SQLString msg) {...}));

• By implementing the virtual method FidoActionRequested.

class MyWindow : public Fido_Callback
{
 void FidoActionRequested(sql::SQLString msg) override;
};
MyWindow window;
driver->setCallBack(window);

Setting a new callback always removes the previous callback. To disable the active callback and
restore the default behavior, pass nullptr as a function callback. Example:

driver->setCallBack(Fido_Callback(nullptr));

For more information about FIDO authentication, see FIDO Pluggable Authentication.

WebAuthn Authentication

WebAuthn authentication supports both the FIDO and FIDO2 standards. This authentication method
overcomes the limitations associated with FIDO authentication that prevented WebAuthn applications
like web browsers from authenticating to MySQL Server. To ensure client applications using the
legacy JBDC API are notified when a user is expected to interact with the FIDO/FIDO2 device,
Connector/C++ 8.2.0 (and later) adds a second callback argument named WebAuthn_Callback to
the setCallback() method in the MySQL_Driver class that was introduced for FIDO authentication.
The WebAuthn_Callback class has a callback method named ActionRequested().

class WebAuthn_Callback
{
public:
 WebAuthn_Callback(std::function<void(SQLString)>);
 /**
 * Override this message to receive WebAuthn Action Requests
 */
 virtual void ActionRequested(sql::SQLString msg);
};

Set the WebAuthn_Callback callback explicitly for authentication to accounts that use WebAuthn
authentication. If a Fido_Callback callback is registered with a driver instance, then it should be set
during authentication for accounts using both FIDO and WebAuthn authentication. It is not permitted to
register Fido_Callback after first registering WebAuthn_Callback.

Note

On Windows, the client application must run as administrator. The
is a requirement of the fido2.dll library, which is used by the
authentication_webauthn plugin.

A client application can obtain a callback from the connector, or disable the active callback, as shown
in FIDO Authentication. Substitute WebAuthn_Callback and ActionRequested() as needed.

37

https://dev.mysql.com/doc/refman/8.0/en/fido-pluggable-authentication.html

OpenTelemetry Tracing Support

For more information about WebAuthn authentication, see WebAuthn Pluggable Authentication.

2.5.4 OpenTelemetry Tracing Support

For applications that use the legacy JDBC API (that is, not X DevAPI or X DevAPI for C) on Linux
systems and use OpenTelemetry (OTel) instrumentation, the connector adds query and connection
spans to the trace generated by application code and forwards the current OpenTelemetry context to
the server. OpenTelemetry tracing was introduced in the Connector/C++ 8.1.0 release.

Note

OTel context forwarding works only with MySQL Enterprise Edition, a
commercial product. To learn more about commercial products, see https://
www.mysql.com/products/.

Enabling and Disabling Tracing

By default, the connector generates spans only when an instrumented application links with the
required OpenTelemetry SDK libraries and configures the trace exporter to send trace data to some
destination. If the application code does not use instrumentation, then the legacy connector does not
use it either.

Connector/C++ supports a connection property option, OPT_OPENTELEMETRY, which has these values:

• OTEL_DISABLED: The connector does not create OpenTelemetry spans or forward the
OpenTelemetry context to the server.

• OTEL_PREFERRED: Default. Use instrumentation in the connection if the required OpenTelemetry
instrumentation is available. Otherwise, permit the connection to operate without any OpenTelemetry
instrumentation.

The OPT_OPENTELEMETRY option also accepts a Boolean value in which false corresponds to
OTEL_DISABLED. false is the only accepted Boolean value for this option; setting it to true has no
meaning and emits an error.

For example, an application can specify OPT_OPENTELEMETRY in either form using the connect()
syntax that takes an option map argument:

connection_properties["OPT_OPENTELEMETRY"] = false;
connection_properties["OPT_OPENTELEMETRY"] = OTEL_DISABLED;

When you build code that links to Connector/C++ and uses OTel instrumentation, the additional spans
generated by the connector appear in the traces generated by your code. Spans generated by the
connector are sent to the same destination (trace exporter) where other spans generated by the user
code are sent as configured by user code. It is not possible to send spans generated by the connector
to any other destination.

This implementation is distinct from the implementation provided through the MySQL client library (or
the related telemetry_client client-side plugin).

2.6 Connector/C++ Known Issues

To report bugs, use the MySQL Bug System. See How to Report Bugs or Problems.

For notes detailing the changes in each release of Connector/C++, see MySQL Connector/C++
Release Notes.

• Generally speaking, C++ library binaries are less portable than C library binaries. Issues can be
caused by name mangling, different Standard Template Library (STL) versions, and using different
compilers and linkers for linking against the libraries than were used for building the library itself.

38

https://dev.mysql.com/doc/refman/8.2/en/webauthn-pluggable-authentication.html
https://www.mysql.com/products/
https://www.mysql.com/products/
https://dev.mysql.com/doc/refman/8.0/en/bug-reports.html
https://dev.mysql.com/doc/relnotes/connector-cpp/en/
https://dev.mysql.com/doc/relnotes/connector-cpp/en/

Connector/C++ Support

Even a small change in the compiler version can cause problems. If you obtain error messages that
you suspect are related to binary incompatibilities, build Connector/C++ from source, using the same
compiler and linker that you use to build and link your application.

Due to variations between Linux distributions, compiler versions, linker versions, and STL versions, it
is not possible to provide binaries for every possible configuration. However, Connector/C++ binary
distributions include an INFO_BIN file that describes the environment and configuration options used
to build the binary versions of the connector libraries. Binary distributions also include an INFO_SRC
file that provides information about the product version and the source repository from which the
distribution was produced. (Prior to Connector/C++ 8.0.14, look for BUILDINFO.txt rather than
INFO_BIN and INFO_SRC.)

• To avoid potential crashes, the build configuration of Connector/C++ should match the build
configuration of the application using it. For example, do not use a release build of Connector/C++
with a debug build of the client application.

2.7 Connector/C++ Support

For general discussion of Connector/C++, please use the C/C++ community forum.

To report bugs, use the MySQL Bug System. See How to Report Bugs or Problems.

For notes detailing the changes in each release of Connector/C++, see MySQL Connector/C++
Release Notes.

For Licensing questions, and to purchase MySQL Products and Services, please see http://
www.mysql.com/buy-mysql/.

39

http://forums.mysql.com/list.php?167
https://dev.mysql.com/doc/refman/8.0/en/bug-reports.html
https://dev.mysql.com/doc/relnotes/connector-cpp/en/
https://dev.mysql.com/doc/relnotes/connector-cpp/en/
http://www.mysql.com/buy-mysql/
http://www.mysql.com/buy-mysql/

40

Chapter 3 MySQL Connector/J Developer Guide

Table of Contents
3.1 Overview of MySQL Connector/J ... 42
3.2 Compatibility with MySQL and Java Versions ... 42
3.3 Connector/J Installation ... 43

3.3.1 Installing Connector/J from a Binary Distribution .. 43
3.3.2 Installing Connector/J Using Maven .. 45
3.3.3 Installing from Source ... 45
3.3.4 Upgrading from an Older Version .. 47
3.3.5 Testing Connector/J ... 52

3.4 Connector/J Examples .. 53
3.5 Connector/J Reference .. 54

3.5.1 Driver/Datasource Class Name ... 54
3.5.2 Connection URL Syntax ... 54
3.5.3 Configuration Properties ... 58
3.5.4 JDBC API Implementation Notes ... 102
3.5.5 Java, JDBC, and MySQL Types .. 105
3.5.6 Handling of Date-Time Values .. 107
3.5.7 Using Character Sets and Unicode ... 113
3.5.8 Using Query Attributes .. 115
3.5.9 Connecting Securely Using SSL .. 117
3.5.10 Connecting Using Unix Domain Sockets .. 122
3.5.11 Connecting Using Named Pipes .. 123
3.5.12 Connecting Using Various Authentication Methods ... 124
3.5.13 Using Source/Replica Replication with ReplicationConnection 126
3.5.14 Support for DNS SRV Records ... 126
3.5.15 Client Session State Tracker ... 127
3.5.16 Mapping MySQL Error Numbers to JDBC SQLState Codes 128

3.6 JDBC Concepts .. 134
3.6.1 Connecting to MySQL Using the JDBC DriverManager Interface 134
3.6.2 Using JDBC Statement Objects to Execute SQL ... 136
3.6.3 Using JDBC CallableStatements to Execute Stored Procedures 137
3.6.4 Retrieving AUTO_INCREMENT Column Values through JDBC 139

3.7 Connection Pooling with Connector/J ... 142
3.8 Multi-Host Connections .. 145

3.8.1 Configuring Server Failover for Connections Using JDBC ... 145
3.8.2 Configuring Server Failover for Connections Using X DevAPI 148
3.8.3 Configuring Load Balancing with Connector/J .. 148
3.8.4 Configuring Source/Replica Replication with Connector/J .. 151
3.8.5 Advanced Load-balancing and Failover Configuration ... 154

3.9 Using the X DevAPI with Connector/J: Special Topics ... 156
3.9.1 Connection Compression Using X DevAPI ... 156
3.9.2 Schema Validation .. 157

3.10 Using the Connector/J Interceptor Classes ... 159
3.11 Using Logging Frameworks with SLF4J .. 159
3.12 Using Connector/J with Tomcat ... 161
3.13 Using Connector/J with Spring ... 162

3.13.1 Using JdbcTemplate .. 164
3.13.2 Transactional JDBC Access .. 165
3.13.3 Connection Pooling with Spring ... 166

3.14 Troubleshooting Connector/J Applications ... 167
3.15 Known Issues and Limitations .. 173
3.16 Connector/J Support .. 173

3.16.1 Connector/J Community Support ... 173

41

Overview of MySQL Connector/J

3.16.2 How to Report Connector/J Bugs or Problems ... 173

MySQL Connector/J is a JDBC driver for communicating with MySQL servers.

For notes detailing the changes in each release of Connector/J, see MySQL Connector/J Release
Notes.

For legal information, see the Legal Notices.

For help with using MySQL, please visit the MySQL Forums, where you can discuss your issues with
other MySQL users.

Licensing information. This product may include third-party software, used under license. If you
are using a Commercial release of MySQL Connector/J, see this document for licensing information,
including licensing information relating to third-party software that may be included in this Commercial
release. If you are using a Community release of MySQL Connector/J, see this document for licensing
information, including licensing information relating to third-party software that may be included in this
Community release.

3.1 Overview of MySQL Connector/J
MySQL provides connectivity for client applications developed in the Java programming language with
MySQL Connector/J. Connector/J implements the Java Database Connectivity (JDBC) API, as well as
a number of value-adding extensions of it. It also supports the new X DevAPI.

MySQL Connector/J is a JDBC Type 4 driver, implementing the JDBC 4.2 specification. The Type 4
designation means that the driver is a pure Java implementation of the MySQL protocol and does not
rely on the MySQL client libraries. See Section 3.2, “Compatibility with MySQL and Java Versions” for
compatibility information.

Connector/J 8.0 provides ease of development features including auto-registration with the Driver
Manager, standardized validity checks, categorized SQLExceptions, support for large update
counts, support for local and offset date-time variants from the java.time package, support for
JDBC-4.x XML processing, support for per connection client information, and support for the NCHAR,
NVARCHAR and NCLOB data types. See Section 3.2, “Compatibility with MySQL and Java Versions” for
compatibility information.

For large-scale programs that use common design patterns of data access, consider using one of the
popular persistence frameworks such as Hibernate, Spring's JDBC templates or MyBatis SQL Maps to
reduce the amount of JDBC code for you to debug, tune, secure, and maintain.

Key Topics

• For installation instructions for Connector/J, see Section 3.3, “Connector/J Installation”.

• For help with connection strings, connection options, and setting up your connection through JDBC,
see Section 3.5, “Connector/J Reference”.

• For information on connection pooling, see Section 3.7, “Connection Pooling with Connector/J”.

• For information on multi-host connections, see Section 3.8, “Multi-Host Connections”.

• For information on using the X DevAPI with Connector/J, see Section 3.9, “Using the X DevAPI with
Connector/J: Special Topics”.

3.2 Compatibility with MySQL and Java Versions
Here is some compatibility information for Connector/J 8.0:

• JDBC versions: Connector/J 8.0 implements JDBC 4.2. While Connector/J 8.0 works with libraries
of higher JDBC versions, it returns a SQLFeatureNotSupportedException for any calls of
methods supported only by JDBC 4.3 and higher.

42

https://dev.mysql.com/doc/relnotes/connector-j/en/
https://dev.mysql.com/doc/relnotes/connector-j/en/
http://forums.mysql.com
https://downloads.mysql.com/docs/licenses/connector-j-8.3-com-en.pdf
https://downloads.mysql.com/docs/licenses/connector-j-8.3-gpl-en.pdf
http://www.oracle.com/technetwork/java/javase/jdbc/index.html
http://docs.oracle.com/javase/6/docs/technotes/guides/jdbc/
https://dev.mysql.com/doc/refman/8.0/en/char.html
https://dev.mysql.com/doc/refman/8.0/en/char.html
http://www.hibernate.org/
http://www.springframework.org/
http://www.mybatis.org/

Connector/J Installation

• MySQL Server versions: Connector/J 8.0 supports MySQL 5.7, 8.0, 8.1, and 8.0.

• JRE versions: Connector/J 8.0 supports JRE 8 or higher.

• JDK Required for Compilation: JDK 8.0 or higher is required for compiling Connector/J 8.0. Also, a
customized JSSE provider might be required to use some later TLS versions and cipher suites when
connecting to MySQL servers. For example, because Oracle's Java 8 releases before 8u261 were
shipped with JSSE implementations that support TLS up to version 1.2 only, you need a customized
JSSE implementation to use TLSv1.3 on those Java 8 platforms. Oracle Java 8u261 and above do
support TLSv1.3, so no customized JSSE implementation is needed.

3.3 Connector/J Installation
You can install the Connector/J package using either a binary or source distribution. While the binary
distribution provides the easiest method for installation, the source distribution lets you customize your
installation. Both types of distributions are available from the Connector/J Download page. The source
code for Connector/J is also available on GitHub at https://github.com/mysql/mysql-connector-j.

Connector/J is also available as a Maven artifact in the Central Repository. See Section 3.3.2,
“Installing Connector/J Using Maven” for details.

If you are upgrading from a previous version, read the upgrade information in Section 3.3.4, “Upgrading
from an Older Version” before continuing.

Important

Third-party Libraries: According to how you use Connector/J 8.0, you may also
need to install the following third-party libraries on your system for it to work:

• Protocol Buffers (protobuf-java) 3.21.9 is required for using X DevAPI

• Oracle Cloud Infrastructure SDK for Java (oci-java-sdk) 2.47.0 is required
to support OCI AIM authentication

• Simple Logging Facade API (slf4j-api) 2.0.3 is required for using
the logging capabilities provided by the default implementation of
org.slf4j.Logger.Slf4JLogger by Connector/J

These and other third-party libraries are required for building Connector/J from
source—see the section for more information.

3.3.1 Installing Connector/J from a Binary Distribution

Obtaining and Using the Binary Distribution Packages

Different types of binary distribution packages for Connector/J are available from the Connector/J
Download page. The following explains how to use each type of the packages to install Connector/J.

Using Platform-independent Archives: .tar.gz or .zip archives are available for installing
Connector/J on any platform. Using the appropriate graphical or command-line utility (for example, tar
for the .tar.gz archive and WinZip for the .zip archive), extract the JAR archive from the .tar.gz
or .zip archive to a suitable location.

Note

Because there are potentially long file names in the distribution, the Connector/
J archives use the GNU Tar archive format. Use GNU Tar or a compatible
application to unpack the .tar.gz variant of the distribution.

Using Packages for Software Package Management Systems on Linux Platforms: RPM and Debian
packages are available for installing Connector/J on a number of Linux distributions like Oracle Linux,

43

https://dev.mysql.com/downloads/connector/j/
https://github.com/mysql/mysql-connector-j
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/

Installing Connector/J from a Binary Distribution

Debian, Ubuntu, SUSE, and so on. Install these packages using your system's software package
management system.

On Windows Platforms: You cannot install Connector/J on Windows platforms using the MySQL
Installer for Windows. Notice that there are also no stand-alone Windows installer files (.msi) for
installing Connector/J. Use the platform-independent archives instead for installations on Windows
platforms.

Configuring the CLASSPATH

Once mysql-connector-j-version.jar has been extracted from the binary distribution package
to the right place, finish installing the driver by placing the JAR archive in your Java classpath, either by
adding its full file path to your CLASSPATH environment variable, or by directly specifying the file path
with the command line switch -cp when starting the JVM.

For example, on Linux platforms, add the Connector/J driver to your CLASSPATH using one of the
following forms, depending on your command shell:

Bourne-compatible shell (sh, ksh, bash, zsh):
$> export CLASSPATH=/path/mysql-connector-j-ver.jar:$CLASSPATH
C shell (csh, tcsh):
$> setenv CLASSPATH /path/mysql-connector-j-ver.jar:$CLASSPATH

You can also set the CLASSPATH environment variable in a profile file, either locally for a user within
the user's .profile, .login, or other login file, or globally by editing the global /etc/profile file.

For Windows platforms, you set the environment variable through the System Control Panel.

Important

Remember to also add the locations of the third-party libraries required for using
Connector/J to CLASSPATH.

Configuring Connector/J for Application Servers

To use MySQL Connector/J with an application server such as GlassFish or Tomcat, read your
vendor's documentation for information on how to configure third-party class libraries, as most
application servers ignore the CLASSPATH environment variable. For configuration examples for some
J2EE application servers, see Section 3.7, “Connection Pooling with Connector/J”, Section 3.8.3,
“Configuring Load Balancing with Connector/J”, and Section 3.8.5, “Advanced Load-balancing and
Failover Configuration”. However, the authoritative source for JDBC connection pool configuration
information is the documentation for your own application server.

If you are developing servlets or JSPs and your application server is J2EE-compliant, you can
put the driver's .jar file in the WEB-INF/lib subdirectory of your web application, as this is a
standard location for third-party class libraries in J2EE web applications. You can also use the
MysqlDataSource or MysqlConnectionPoolDataSource classes in the com.mysql.cj.jdbc
package, if your J2EE application server supports or requires them. The javax.sql.XADataSource
interface is implemented using the com.mysql.cj.jdbc.MysqlXADataSource class, which
supports XA distributed transactions. The various MysqlDataSource classes support the following
parameters (through standard set mutators):

• user

• password

• serverName

• databaseName

• port

44

https://dev.mysql.com/doc/refman/8.0/en/mysql-installer.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-installer.html

Installing Connector/J Using Maven

3.3.2 Installing Connector/J Using Maven

You can also use Maven dependencies manager to install and configure the Connector/J library in
your project. Connector/J is published in The Maven Central Repository with the following groupId and
artifactId:

• groupId: com.mysql

• artifactId: mysql-connector-j

You can link the Connector/J library to your project by adding the following dependency in your
pom.xml file:

<dependency>
 <groupId>com.mysql</groupId>
 <artifactId>mysql-connector-j</artifactId>
 <version>x.y.z</version>
</dependency>

Notice that if you use Maven to manage your project dependencies, you do not need to explicitly refer
to the library protobuf-java as it is resolved by dependency transitivity. However, if you do not want
to use the X DevAPI features, you may also want to add a dependency exclusion to avoid linking the
unneeded sub-library. For example:

<dependency>
 <groupId>com.mysql</groupId>
 <artifactId>mysql-connector-j</artifactId>
 <version>x.y.z</version>
 <exclusions>
 <exclusion>
 <groupId>com.google.protobuf</groupId>
 <artifactId>protobuf-java</artifactId>
 </exclusion>
 </exclusions>
</dependency>

Note

For Connector/J 8.0.29 and earlier, use the following Maven coordinates:

• groupId: mysql

• artifactId: mysql-connector-java

3.3.3 Installing from Source

Caution

You need to install Connector/J from source only if you want to build a
customized version of Connector/J or if you are interested in helping us
test our new code. To just get MySQL Connector/J up and running on your
system, install Connector/J using a standard binary release distribution; see
Section 3.3.1, “Installing Connector/J from a Binary Distribution” for instructions.

To install MySQL Connector/J from source, make sure that you have the following software on your
system:

Tip

It is suggested that the latest versions available for the following software
be used for compiling Connector/J; otherwise, some features might not be
available.

• A Git client, if you want to check out the sources from our GitHub repository (available from http://git-
scm.com/downloads).

45

https://search.maven.org/search?q=g:mysql%20AND%20a:mysql-connector-java
http://git-scm.com/downloads
http://git-scm.com/downloads

Installing from Source

• Apache Ant version 1.10.6 or newer (available from http://ant.apache.org/).

• JDK 1.8.x (available from https://www.oracle.com/technetwork/java/javase/downloads/jdk8-
downloads-2133151.html).

• The following third-party libraries:

• JUnit 5.9 (see installation and download information in the JUnit 5 User Guide). The following JAR
files are required:

• junit-jupiter-api-5.9.1.jar (available from, for example, https://search.maven.org/
artifact/org.junit.jupiter/junit-jupiter-api/5.9.1/jar).

• junit-jupiter-engine-5.9.1.jar (available from, for example, https://search.maven.org/
artifact/org.junit.jupiter/junit-jupiter-engine/5.9.1/jar).

• junit-platform-commons-1.9.1.jar (available from, for example, https://
search.maven.org/artifact/org.junit.platform/junit-platform-commons/1.9.1/jar).

• junit-platform-engine-1.9.1.jar (available from, for example, https://
search.maven.org/artifact/org.junit.platform/junit-platform-engine/1.9.1/jar).

• junit-platform-launcher-1.9.1.jar (available from, for example, https://
search.maven.org/artifact/org.junit.platform/junit-platform-launcher/1.9.1/jar).

• These additional JAR files, which JUnit 5 depends on:

• apiguardian-api-1.1.2.jar (available from, for example, https://search.maven.org/
artifact/org.apiguardian/apiguardian-api/1.1.2/jar).

• opentest4j-1.2.0.jar (available from, for example, https://search.maven.org/artifact/
org.opentest4j/opentest4j/1.2.0/jar).

• Javassist 3.29.2 (javassist 3.29.2-GA.jar, available from, for example, https://
search.maven.org/artifact/org.javassist/javassist/3.29.2-GA/bundle).

• Protocol Buffers Java API 3.21.9 (protobuf-java-3.21.9.jar, available from, for example,
https://search.maven.org/artifact/com.google.protobuf/protobuf-java/3.21.9/bundle).

• Simple Logging Facade API 2.0.3 or newer (slf4j-api-2.0.3.jar, available from, for
example, https://search.maven.org/artifact/org.slf4j/slf4j-api/2.0.3/jar).

• Java Hamcrest 2.2 or newer (hamcrest-2.2.jar, available from, for example, https://
search.maven.org/artifact/org.hamcrest/hamcrest/2.2/jar).

• Oracle Cloud Infrastructure SDK for Java (oci-java-sdk-common-2.47.0.jar, available
from, for example, https://search.maven.org/artifact/com.oracle.oci.sdk/oci-java-sdk-
common/2.47.0/jar).

To build MySQL Connector/J from source, follow these steps:

1. Make sure that you have JDK 1.8.x installed.

2. Obtain the sources for Connector/J by one of the following means:

• Download the platform independent distribution archive (in .tar.gz or .zip format) for
Connector/J, which contains the sources, from the Connector/J Download page. Extract contents
of the archive into a folder named, for example, mysql-connector-j.

• Download a source RPM package for Connector/J from Connector/J Download page and install
it.

46

http://ant.apache.org/
https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://junit.org/junit5/docs/current/user-guide/
https://search.maven.org/artifact/org.junit.jupiter/junit-jupiter-api/5.9.1/jar
https://search.maven.org/artifact/org.junit.jupiter/junit-jupiter-api/5.9.1/jar
https://search.maven.org/artifact/org.junit.jupiter/junit-jupiter-engine/5.9.1/jar
https://search.maven.org/artifact/org.junit.jupiter/junit-jupiter-engine/5.9.1/jar
https://search.maven.org/artifact/org.junit.platform/junit-platform-commons/1.9.1/jar
https://search.maven.org/artifact/org.junit.platform/junit-platform-commons/1.9.1/jar
https://search.maven.org/artifact/org.junit.platform/junit-platform-engine/1.9.1/jar
https://search.maven.org/artifact/org.junit.platform/junit-platform-engine/1.9.1/jar
https://search.maven.org/artifact/org.junit.platform/junit-platform-launcher/1.9.1/jar
https://search.maven.org/artifact/org.junit.platform/junit-platform-launcher/1.9.1/jar
https://search.maven.org/artifact/org.apiguardian/apiguardian-api/1.1.2/jar
https://search.maven.org/artifact/org.apiguardian/apiguardian-api/1.1.2/jar
https://search.maven.org/artifact/org.opentest4j/opentest4j/1.2.0/jar
https://search.maven.org/artifact/org.opentest4j/opentest4j/1.2.0/jar
https://search.maven.org/artifact/org.javassist/javassist/3.29.2-GA/bundle
https://search.maven.org/artifact/org.javassist/javassist/3.29.2-GA/bundle
https://search.maven.org/artifact/com.google.protobuf/protobuf-java/3.21.9/bundle
https://search.maven.org/artifact/org.slf4j/slf4j-api/2.0.3/jar
https://search.maven.org/artifact/org.hamcrest/hamcrest/2.2/jar
https://search.maven.org/artifact/org.hamcrest/hamcrest/2.2/jar
https://search.maven.org/artifact/com.oracle.oci.sdk/oci-java-sdk-common/2.47.0/jar
https://search.maven.org/artifact/com.oracle.oci.sdk/oci-java-sdk-common/2.47.0/jar
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/

Upgrading from an Older Version

• Check out the code from the source code repository for MySQL Connector/J located on GitHub at
https://github.com/mysql/mysql-connector-j. The latest release of the Connector/J 8.0 series is on
the release/8.0 branch; use the following command to check it out:

$> git clone --branch release/8.0 https://github.com/mysql/mysql-connector-j.git

Under the current directory, the command creates a mysql-connector-j subdirectory , which
contains the code you want.

3. Place all the required third-party libraries in a the directory called lib at the root of the source
tree (that is, in mysql-connector-j/lib, if you have followed the steps above), or put them
elsewhere and supply the location to Ant later (see Step 5 below).

4. Change your current working directory to the mysql-connector-j directory created in step 2
above.

5. In the directory, create a file named build.properties to indicate to Ant the location of the
root directory for your JDK 1.8.x installation with the property com.mysql.cj.build.jdk, as
well as the location for the extra libraries, if they are not in mysql-connector-j/lib, with the
property com.mysql.cj.extra.libs. Here is a sample file with those properties set (replace the
“path_to_*” parts with the appropriate file paths):

com.mysql.cj.build.jdk=path_to_jdk_1.8
com.mysql.cj.extra.libs=path_to_folder_for_extra_libraries

Alternatively, you can set the values of those properties through the Ant -D options.

Note

Going from Connector/J 5.1 to 8.0 and beyond, a number of Ant properties
for building Connector/J have been renamed or removed; see Changes for
Build Properties for details.

6. Issue the following command to compile the driver and create a .jar file for Connector/J:

$> ant build

This creates a build directory in the current directory, where all the build output goes. A directory
is created under the build directory, whose name includes the version number of the release you
are building. That directory contains the sources, the compiled .class files, and a .jar file for
deployment.

For information on all the build targets, including those that create a fully packaged distribution,
issue the following command:

$> ant -projecthelp

7. Install the newly created .jar file for the JDBC driver as you would install a binary .jar file you
download from MySQL by following the instructions given in Configuring the CLASSPATH or
Configuring Connector/J for Application Servers.

3.3.4 Upgrading from an Older Version

This section has information for users who are upgrading from one version of Connector/J to another,
or to a new version of the MySQL server that supports a more recent level of JDBC. A newer version of
Connector/J might include changes to support new features, improve existing functionality, or comply
with new standards.

Depending on the platform and the way you used to install Connector/J, upgrading can be performed
by one of the following methods:

47

https://github.com/mysql/mysql-connector-j

Upgrading from an Older Version

• Downloading a new platform-independent archive (.tar, .tar.gz, .zip, etc.) and overwriting with
it your original installation created by an older archive.

• Updating the version of the Connector/J dependency in your Maven .pom file.

• Using the upgrade command of your Linux distro's package management system.

• Using the MySQL Installer for Windows, which can also perform automatic updates for Connector/J

See Section 3.3, “Connector/J Installation” for details on the installation and upgrade methods. You
should also pay attention to any important changes in the new version like changes in 3rd-party
dependencies, incompatibilities, etc.

3.3.4.1 Upgrading to MySQL Connector/J 8.0

Upgrading an application developed for Connector/J 5.1 to use Connector/J 8.0 and beyond might
require certain changes to your code or the environment in which it runs. Here are some changes for
Connector/J going from 5.1 to 8.0 and beyond, for which adjustments might be required:

Running on the Java 8 Platform

Connector/J 8.0 and beyond is created specifically to run on the Java 8 platform. While Java 8 is
known to be strongly compatible with earlier Java versions, incompatibilities do exist, and code
designed to work on Java 7 might need to be adjusted before being run on Java 8. Developers should
refer to the incompatibility information provided by Oracle.

Changes in Connection Properties

A complete list of Connector/J 8.0 connection properties are available in Section 3.5.3, “Configuration
Properties”. The following are connection properties that have been changed (removed, added, have
their names changed, or have their default values changed) going from Connector/J 5.1 to 8.0 and
beyond.

Properties that have been removed (do not use them during connection):

• useDynamicCharsetInfo

• useBlobToStoreUTF8OutsideBMP , utf8OutsideBmpExcludedColumnNamePattern, and
utf8OutsideBmpIncludedColumnNamePattern: MySQL 5.6 and later supports the utf8mb4
character set, which is the character set that should be used by Connector/J applications for
supporting characters beyond the Basic Multilingual Plane (BMP) of Unicode Version 3.

• useJvmCharsetConverters: JVM character set conversion is now used in all cases

• The following date and time properties:

• dynamicCalendars

• noTzConversionForTimeType

• noTzConversionForDateType

• cacheDefaultTimezone

• useFastIntParsing

• useFastDateParsing

• useJDBCCompliantTimezoneShift

• useLegacyDatetimeCode

48

https://dev.mysql.com/doc/refman/8.0/en/mysql-installer.html
http://www.oracle.com/technetwork/java/javase/8-compatibility-guide-2156366.html#A999198

Upgrading from an Older Version

• useSSPSCompatibleTimezoneShift

• useTimezone

• useGmtMillisForDatetimes

• dumpMetadataOnColumnNotFound

• relaxAutoCommit

• strictFloatingPoint

• runningCTS13

• retainStatementAfterResultSetClose

• nullNamePatternMatchesAll (removed since release 8.0.9)

Properties that have been added:

• mysqlx.useAsyncProtocol (deprecated since release 8.0.22)

Property that has its name changed:

• com.mysql.jdbc.faultInjection.serverCharsetIndex changed to
com.mysql.cj.testsuite.faultInjection.serverCharsetIndex

• loadBalanceEnableJMX to ha.enableJMX

• replicationEnableJMX to ha.enableJMX

Properties that have their default values changed:

• nullCatalogMeansCurrent is now false by default

Changes in the Connector/J API

This section describes some of the more important changes to the Connector/J API going from version
5.1 to 8.0 and beyond. You might need to adjust your API calls accordingly:

• The name of the class that implements java.sql.Driver in MySQL Connector/J has changed
from com.mysql.jdbc.Driver to com.mysql.cj.jdbc.Driver. The old class name has been
deprecated.

• The names of these commonly-used classes and interfaces have also been changed:

• ExceptionInterceptor: from com.mysql.jdbc.ExceptionInterceptor to
com.mysql.cj.exceptions.ExceptionInterceptor

• StatementInterceptor: from com.mysql.jdbc.StatementInterceptorV2 to
com.mysql.cj.interceptors.QueryInterceptor

• ConnectionLifecycleInterceptor: from com.mysql.jdbc.ConnectionLifecycleInterceptor
to com.mysql.cj.jdbc.interceptors.ConnectionLifecycleInterceptor

• AuthenticationPlugin: from com.mysql.jdbc.AuthenticationPlugin to
com.mysql.cj.protocol.AuthenticationPlugin

• BalanceStrategy: from com.mysql.jdbc.BalanceStrategy to
com.mysql.cj.jdbc.ha.BalanceStrategy

• MysqlDataSource: from com.mysql.jdbc.jdbc2.optional.MysqlDataSource to
com.mysql.cj.jdbc.MysqlDataSource

49

Upgrading from an Older Version

• MysqlDataSourceFactory: from
com.mysql.jdbc.jdbc2.optional.MysqlDataSourceFactory to
com.mysql.cj.jdbc.MysqlDataSourceFactory

• MysqlConnectionPoolDataSource: from
com.mysql.jdbc.jdbc2.optional.MysqlConnectionPoolDataSource to
com.mysql.cj.jdbc.MysqlConnectionPoolDataSource

• MysqlXADataSource: from com.mysql.jdbc.jdbc2.optional.MysqlXADataSource to
com.mysql.cj.jdbc.MysqlXADataSource

• MysqlXid: from com.mysql.jdbc.jdbc2.optional.MysqlXid to
com.mysql.cj.jdbc.MysqlXid

Changes for Build Properties

A number of Ant properties for building Connector/J from source have been renamed; see Table 3.1,
“Changes with the Build Properties from Connector/J 5.1 to 8.0 and Beyond”

Table 3.1 Changes with the Build Properties from Connector/J 5.1 to 8.0 and Beyond

Old name New name

com.mysql.jdbc.extra.libs com.mysql.cj.extra.libs

com.mysql.jdbc.jdk com.mysql.cj.build.jdk

debug.enable com.mysql.cj.build.addDebugInfo

com.mysql.jdbc.noCleanBetweenCompiles com.mysql.cj.build.noCleanBetweenCompiles

com.mysql.jdbc.commercialBuild com.mysql.cj.build.commercial

com.mysql.jdbc.filterLicense com.mysql.cj.build.filterLicense

com.mysql.jdbc.noCryptoBuild com.mysql.cj.build.noCrypto

com.mysql.jdbc.noSources com.mysql.cj.build.noSources

com.mysql.jdbc.noMavenSources com.mysql.cj.build.noMavenSources

major_version com.mysql.cj.build.driver.version.major

minor_version com.mysql.cj.build.driver.version.minor

subminor_version com.mysql.cj.build.driver.version.subminor

version_status com.mysql.cj.build.driver.version.status

extra.version com.mysql.cj.build.driver.version.extra

snapshot.version com.mysql.cj.build.driver.version.snapshot

version com.mysql.cj.build.driver.version

full.version com.mysql.cj.build.driver.version.full

prodDisplayName com.mysql.cj.build.driver.displayName

prodName com.mysql.cj.build.driver.name

fullProdName com.mysql.cj.build.driver.fullName

buildDir com.mysql.cj.build.dir

buildDriverDir com.mysql.cj.build.dir.driver

mavenUploadDir com.mysql.cj.build.dir.maven

distDir com.mysql.cj.dist.dir

toPackage com.mysql.cj.dist.dir.prepare

packageDest com.mysql.cj.dist.dir.package

com.mysql.jdbc.docs.sourceDir com.mysql.cj.dist.dir.prebuilt.docs

50

Upgrading from an Older Version

Change for Test Properties

A number of Ant properties for testing Connector/J have been renamed or removed; see Table 3.2,
“Changes with the Test Properties from Connector/J 5.1 to 8.0 and Beyond”

Table 3.2 Changes with the Test Properties from Connector/J 5.1 to 8.0 and Beyond

Old name New name

buildTestDir com.mysql.cj.testsuite.build.dir

junit.results com.mysql.cj.testsuite.junit.results

com.mysql.jdbc.testsuite.jvm com.mysql.cj.testsuite.jvm

test com.mysql.cj.testsuite.test.class

methods com.mysql.cj.testsuite.test.methods

com.mysql.jdbc.testsuite.url com.mysql.cj.testsuite.url

com.mysql.jdbc.testsuite.admin-url com.mysql.cj.testsuite.url.admin

com.mysql.jdbc.testsuite.ClusterUrl com.mysql.cj.testsuite.url.cluster

com.mysql.jdbc.testsuite.url.sha256defaultcom.mysql.cj.testsuite.url.openssl

com.mysql.jdbc.testsuite.cantGrant com.mysql.cj.testsuite.cantGrant

com.mysql.jdbc.testsuite.no-multi-
hosts-tests

com.mysql.cj.testsuite.disable.multihost.tests

com.mysql.jdbc.test.ds.host com.mysql.cj.testsuite.ds.host

com.mysql.jdbc.test.ds.port com.mysql.cj.testsuite.ds.port

com.mysql.jdbc.test.ds.db com.mysql.cj.testsuite.ds.db

com.mysql.jdbc.test.ds.user com.mysql.cj.testsuite.ds.user

com.mysql.jdbc.test.ds.password com.mysql.cj.testsuite.ds.password

com.mysql.jdbc.test.tabletype com.mysql.cj.testsuite.loadstoreperf.tabletype

com.mysql.jdbc.testsuite.loadstoreperf.useBigResultscom.mysql.cj.testsuite.loadstoreperf.useBigResults

com.mysql.jdbc.testsuite.MiniAdminTest.runShutdowncom.mysql.cj.testsuite.miniAdminTest.runShutdown

com.mysql.jdbc.testsuite.noDebugOutputcom.mysql.cj.testsuite.noDebugOutput

com.mysql.jdbc.testsuite.retainArtifactscom.mysql.cj.testsuite.retainArtifacts

com.mysql.jdbc.testsuite.runLongTests com.mysql.cj.testsuite.runLongTests

com.mysql.jdbc.test.ServerController.basedircom.mysql.cj.testsuite.serverController.basedir

com.mysql.jdbc.ReplicationConnection.isSlavecom.mysql.cj.testsuite.replicationConnection.isReplica

com.mysql.jdbc.test.isLocalHostnameReplacementRemoved

com.mysql.jdbc.testsuite.driver Removed

com.mysql.jdbc.testsuite.url.default Removed. No longer needed, as multi-JVM tests
have been removed from the test suite.

Changes for Exceptions

Some exceptions have been removed from Connector/J going from version 5.1 to 8.0 and beyond.
Applications that used to catch the removed exceptions should now catch the corresponding
exceptions listed in Table 3.3 below.

Note

Some of these Connector/J 5.1 exceptions are duplicated in the
com.mysql.jdbc.exception.jdbc4 package; that is indicated by “[jdbc4.]” in their
names in Table 3.3.

51

Testing Connector/J

Table 3.3 Changes for Exceptions from Connector/J 5.1 to 8.0 and Beyond

Removed Exception in Connector/J 5.1 Exception to Catch in Connector/J 8.0 and Beyond

com.mysql.jdbc.exceptions.jdbc4.CommunicationsException com.mysql.cj.jdbc.exceptions.CommunicationsException

com.mysql.jdbc.exceptions.[jdbc4.]MySQLDataException java.sql.SQLDataException

com.mysql.jdbc.exceptions.[jdbc4.]MySQLIntegrityConstraintViolationException java.sql.SQLIntegrityConstraintViolationException

com.mysql.jdbc.exceptions.[jdbc4.]MySQLInvalidAuthorizationSpecException java.sql.SQLInvalidAuthorizationSpecException

com.mysql.jdbc.exceptions.[jdbc4.]MySQLNonTransientConnectionException java.sql.SQLNonTransientConnectionException

com.mysql.jdbc.exceptions.[jdbc4.]MySQLNonTransientException java.sql.SQLNonTransientException

com.mysql.jdbc.exceptions.[jdbc4.]MySQLQueryInterruptedException com.mysql.cj.jdbc.exceptions.MySQLQueryInterruptedException

com.mysql.jdbc.exceptions.MySQLStatementCancelledException com.mysql.cj.jdbc.exceptions.MySQLStatementCancelledException

com.mysql.jdbc.exceptions.[jdbc4.]MySQLSyntaxErrorException java.sql.SQLSyntaxErrorException

com.mysql.jdbc.exceptions.[jdbc4.]MySQLTimeoutException java.sql.SQLTimeoutException

com.mysql.jdbc.exceptions.[jdbc4.]MySQLTransactionRollbackException java.sql.SQLTransactionRollbackException

com.mysql.jdbc.exceptions.[jdbc4.]MySQLTransientConnectionException java.sql.SQLTransientConnectionException

com.mysql.jdbc.exceptions.[jdbc4.]MySQLTransientException java.sql.SQLTransientException

com.mysql.jdbc.exceptions.[jdbc4.]MySQLIntegrityConstraintViolationException java.sql.SQLIntegrityConstraintViolationException

Other Changes

Here are other changes with Connector/J 8.0 and beyond:

• Removed ReplicationDriver. Instead of using a separate driver, you can now obtain a
connection for a replication setup just by using the jdbc:mysql:replication:// scheme.

• See Section 3.3, “Connector/J Installation” for third-party libraries required for Connector/J 8.0 to
work.

• For Connector/J 8.0.22 and earlierr: Connector/J 8.0 always performs time offset adjustments on
date-time values, and the adjustments require one of the following to be true:

• The MySQL server is configured with a canonical time zone that is recognizable by Java (for
example, Europe/Paris, Etc/GMT-5, UTC, etc.)

• The server's time zone is overridden by setting the Connector/J connection property
serverTimezone (for example, serverTimezone=Europe/Paris).

Note

The Connector/J's behavior in this respect has changed since release
8.0.23. See Section 3.5.6.1, “Preserving Time Instants” for details.
serverTimezone is now an alias for the connection property
connectionTimeZone, which has replaced serverTimezone.

3.3.5 Testing Connector/J

The Connector/J source code repository or packages that are shipped with source code include an
extensive test suite, containing test cases that can be executed independently. The test cases are
divided into the following categories:

• Unit tests: They are methods located in packages aligning with the classes that they test.

• Functional tests: Classes from the package testsuite.simple. Include test code for the main
features of Connector/J.

52

Connector/J Examples

• Performance tests: Classes from the package testsuite.perf. Include test code to make
measurements for the performance of Connector/J.

• Regression tests: Classes from the package testsuite.regression. Includes code for testing
bug and regression fixes.

• X DevAPI and X Protocol tests: Classes from the package testsuite.x for testing X DevAPI and
X Protocol functionality.

The bundled Ant build file contains targets like test, which can facilitate the process of running the
Connector/J tests; see the target descriptions in the build file for details. To run the tests, in addition
to fulfilling the requirements described in Section 3.3.3, “Installing from Source”, you must also set the
following properties in the build.properties file or through the Ant -D options:

• com.mysql.cj.testsuite.jvm: the JVM to be used for the tests. If the property is not set, the
JVM supplied with com.mysql.cj.build.jdk will be used.

• com.mysql.cj.testsuite.url: it specifies the JDBC URL for connection to a MySQL test
server; see Section 3.5.2, “Connection URL Syntax”.

• com.mysql.cj.testsuite.url.openssl: (for release 8.0.26 and earlier only) it specifies
the JDBC URL for connection to a MySQL test server compiled with OpenSSL; see Section 3.5.2,
“Connection URL Syntax”.

• com.mysql.cj.testsuite.mysqlx.url: it specifies the X DevAPI URL for connection to a
MySQL test server; see Section 3.5.2, “Connection URL Syntax”.

• com.mysql.cj.testsuite.mysqlx.url.openssl: (for release 8.0.26 and earlier only) it
specifies the X DevAPI URL for connection to a MySQL test server compiled with OpenSSL; see
Section 3.5.2, “Connection URL Syntax”.

After setting these parameters, run the tests with Ant in the following ways:

• Building the test target with ant test runs all test cases by default on a single server
instance. If you want to run a particular test case, put the test's fully qualified class names in the
com.mysql.cj.testsuite.test.class variable; for example:

shell > ant -Dcom.mysql.cj.testsuite.test.class=testsuite.simple.StringUtilsTest test

You can also run individual tests in a test case by specifying the names of the corresponding
methods in the com.mysql.cj.testsuite.test.methods variable, separating multiple methods
by commas; for example:

shell > ant -Dcom.mysql.cj.testsuite.test.class=testsuite.simple.StringUtilsTest \
-Dcom.mysql.cj.testsuite.test.methods=testIndexOfIgnoreCase,testGetBytes test

While the test results are partially reported by the console, complete reports in HTML and XML formats
are provided. View the HTML report by opening buildtest/junit/report/index.html. XML
version of the reports are located in the folder buildtest/junit.

Note

Going from Connector/J 5.1 to 8.0 and beyond, a number of Ant properties
for testing Connector/J have been renamed or removed; see Change for Test
Properties for details.

3.4 Connector/J Examples
Examples of using Connector/J are located throughout this document. This section provides a
summary and links to these examples.

• Example 3.4, “Connector/J: Obtaining a connection from the DriverManager”

53

Connector/J Reference

• Example 3.5, “Connector/J: Using java.sql.Statement to execute a SELECT query”

• Example 3.6, “Connector/J: Calling Stored Procedures”

• Example 3.7, “Connector/J: Using Connection.prepareCall()”

• Example 3.8, “Connector/J: Registering output parameters”

• Example 3.9, “Connector/J: Setting CallableStatement input parameters”

• Example 3.10, “Connector/J: Retrieving results and output parameter values”

• Example 3.11, “Connector/J: Retrieving AUTO_INCREMENT column values using
Statement.getGeneratedKeys()”

• Example 3.12, “Connector/J: Retrieving AUTO_INCREMENT column values using SELECT
LAST_INSERT_ID()”

• Example 3.13, “Connector/J: Retrieving AUTO_INCREMENT column values in Updatable
ResultSets”

• Example 3.14, “Connector/J: Using a connection pool with a J2EE application server”

• Example 3.15, “Connector/J: Example of transaction with retry logic”

3.5 Connector/J Reference
This section of the manual contains reference material for MySQL Connector/J.

3.5.1 Driver/Datasource Class Name

The name of the class that implements java.sql.Driver in MySQL Connector/J is
com.mysql.cj.jdbc.Driver.

3.5.2 Connection URL Syntax

This section explains the syntax of the URLs for connecting to MySQL.

This is the generic format of the connection URL:

protocol//[hosts][/database][?properties]

The URL consists of the following parts:

Important

Any reserved characters for URLs (for example, /, :, @, (,), [,], &, #, =, ?,
and space) that appear in any part of the connection URL must be percent
encoded.

protocol

There are the possible protocols for a connection:

• jdbc:mysql: is for ordinary and basic JDBC failover connections.

• jdbc:mysql:loadbalance: is for load-balancing JDBC connections. See Section 3.8.3,
“Configuring Load Balancing with Connector/J” for details.

• jdbc:mysql:replication: is for JDBC replication connections. See Section 3.8.4, “Configuring
Source/Replica Replication with Connector/J” for details.

• mysqlx: is for X DevAPI connections.

54

Connection URL Syntax

• jdbc:mysql+srv: is for ordinary and basic failover JDBC connections that make use of DNS SRV
records.

• jdbc:mysql+srv:loadbalance: is for load-balancing JDBC connections that make use of DNS
SRV records.

• jdbc:mysql+srv:replication: is for replication JDBC connections that make use of DNS SRV
records.

• mysqlx+srv: is for X DevAPI connections that make use of DNS SRV records.

hosts

Depending on the situation, the hosts part may consist simply of a host name, or it can be a complex
structure consisting of various elements like multiple host names, port numbers, host-specific
properties, and user credentials.

• Single host:

• Single-host connections without adding host-specific properties:

• The hosts part is written in the format of host:port. This is an example of a simple single-host
connection URL:

jdbc:mysql://host1:33060/sakila

• host can be an IPv4 or an IPv6 host name string, and in the latter case it must be put inside
square brackets, for example “[1000:2000::abcd].” When host is not specified, the default value
of localhost is used.

• port is a standard port number, i.e., an integer between 1 and 65535. The default port number
for an ordinary MySQL connection is 3306, and it is 33060 for a connection using the X Protocol.
If port is not specified, the corresponding default is used.

• Single-host connections adding host-specific properties:

• In this case, the host is defined as a succession of key=value pairs. Keys are used to identify
the host, the port, as well as any host-specific properties. There are two alternate formats for
specifying keys:

• The “address-equals” form:

address=(host=host_or_ip)(port=port)(key1=value1)(key2=value2)...(keyN=valueN)

Here is a sample URL using the“address-equals” form :

jdbc:mysql://address=(host=myhost)(port=1111)(key1=value1)/db

• The “key-value” form:

(host=host,port=port,key1=value1,key2=value2,...,keyN=valueN)

Here is a sample URL using the “key-value” form :

jdbc:mysql://(host=myhost,port=1111,key1=value1)/db

• The host and the port are identified by the keys host and port. The descriptions of the format
and default values of host and port in Single host without host-specific properties [55]
above also apply here.

• Other keys that can be added include user, password, protocol, and so on. They override
the global values set in the properties part of the URL. Limit the overrides to user, password,

55

Connection URL Syntax

network timeouts, and statement and metadata cache sizes; the effects of other per-host
overrides are not defined.

• Different protocols may require different keys. For example, the mysqlx: scheme uses two
special keys, address and priority. address is a host:port pair and priority an
integer. For example:

mysqlx://(address=host:1111,priority=1,key1=value1)/db

• key is case-sensitive. Two keys differing in case only are considered conflicting, and there are
no guarantees on which one will be used.

• Multiple hosts

There are two formats for specifying multiple hosts:

• List hosts in a comma-separated list:

host1,host2,...,hostN

Each host can be specified in any of the three ways described in Single host [55] above. Here
are some examples:

jdbc:mysql://myhost1:1111,myhost2:2222/db
jdbc:mysql://address=(host=myhost1)(port=1111)(key1=value1),address=(host=myhost2)(port=2222)(key2=value2)/db
jdbc:mysql://(host=myhost1,port=1111,key1=value1),(host=myhost2,port=2222,key2=value2)/db
jdbc:mysql://myhost1:1111,(host=myhost2,port=2222,key2=value2)/db
mysqlx://(address=host1:1111,priority=1,key1=value1),(address=host2:2222,priority=2,key2=value2)/db

• List hosts in a comma-separated list, and then encloses the list by square brackets:

[host1,host2,...,hostN]

This is called the host sublist form, which allows sharing of the user credentials by all hosts in
the list as if they are a single host. Each host in the list can be specified in any of the three ways
described in Single host [55] above. Here are some examples:

jdbc:mysql://sandy:secret@[myhost1:1111,myhost2:2222]/db
jdbc:mysql://sandy:secret@[address=(host=myhost1)(port=1111)(key1=value1),address=(host=myhost2)(port=2222)(key2=value2)]/db
jdbc:mysql://sandy:secret@[myhost1:1111,address=(host=myhost2)(port=2222)(key2=value2)]/db

While it is not possible to write host sublists recursively, a host list may contain host sublists as its
member hosts.

56

Connection URL Syntax

• User credentials

User credentials can be set outside of the connection URL—for example, as arguments when getting
a connection from the java.sql.DriverManager (see Section 3.5.3, “Configuration Properties”
for details). When set with the connection URL, there are several ways to specify them:

• Prefix the a single host, a host sublist (see Multiple hosts [56]), or any host in a list of hosts with
the user credentials with an @:

 user:password@host_or_host_sublist

For example:

mysqlx://sandy:secret@[(address=host1:1111,priority=1,key1=value1),(address=host2:2222,priority=2,key2=value2))]/db

• Use the keys user and password to specify credentials for each host:

(user=sandy)(password=mypass)

For example:

jdbc:mysql://[(host=myhost1,port=1111,user=sandy,password=secret),(host=myhost2,port=2222,user=finn,password=secret)]/db
jdbc:mysql://address=(host=myhost1)(port=1111)(user=sandy)(password=secret),address=(host=myhost2)(port=2222)(user=finn)(password=secret)/db

In both forms, when multiple user credentials are specified, the one to the left takes precedence—
that is, going from left to right in the connection string, the first one found that is applicable to a host
is the one that is used.

Inside a host sublist, no host can have user credentials in the @ format, but individual host can have
user credentials specified in the key format.

database

The default database or catalog to open. If the database is not specified, the connection is made with
no default database. In this case, either call the setCatalog() method on the Connection instance,
or specify table names using the database name (that is, SELECT dbname.tablename.colname
FROM dbname.tablename...) in your SQL statements. Opening a connection without specifying the
database to use is, in general, only useful when building tools that work with multiple databases, such
as GUI database managers.

Note

Always use the Connection.setCatalog() method to specify the desired
database in JDBC applications, rather than the USE database statement.

properties

A succession of global properties applying to all hosts, preceded by ? and written as key=value pairs
separated by the symbol “&.” Here are some examples:

jdbc:mysql://(host=myhost1,port=1111),(host=myhost2,port=2222)/db?key1=value1&key2=value2&key3=value3

The following are true for the key-value pairs:

• key and value are just strings. Proper type conversion and validation are performed internally in
Connector/J.

• key is case-sensitive. Two keys differing in case only are considered conflicting, and it is uncertain
which one will be used.

• Any host-specific values specified with key-value pairs as explained in Single host with host-specific
properties [55] and Multiple hosts [56] above override the global values set here.

See Section 3.5.3, “Configuration Properties” for details about the configuration properties.

57

Configuration Properties

3.5.3 Configuration Properties

Configuration properties define how Connector/J will make a connection to a MySQL server. Unless
otherwise noted, properties can be set for a DataSource object or for a Connection object.

Configuration properties can be set in one of the following ways:

• Using the set*() methods on MySQL implementations of java.sql.DataSource (which is the
preferred method when using implementations of java.sql.DataSource):

• com.mysql.cj.jdbc.MysqlDataSource

• com.mysql.cj.jdbc.MysqlConnectionPoolDataSource

• As a key-value pair in the java.util.Properties instance passed to
DriverManager.getConnection() or Driver.connect()

• As a JDBC URL parameter in the URL given to java.sql.DriverManager.getConnection(),
java.sql.Driver.connect() or the MySQL implementations of the javax.sql.DataSource
setURL() method. If you specify a configuration property in the URL without providing a value for
it, nothing will be set; for example, adding useServerPrepStmts alone to the URL does not make
Connector/J use server-side prepared statements; you need to add useServerPrepStmts=true.

Note

If the mechanism you use to configure a JDBC URL is XML-based, use the
XML character literal & to separate configuration parameters, as the
ampersand is a reserved character for XML.

The properties are listed by categories in the following tables and then in the subsections that follow.
Click on a property name in the tables to see its full description in the subsections.

Table 3.4 Authentication Properties

Name Default Value Since Version

user - all versions

password - all versions

password1 - 8.0.28

password2 - 8.0.28

password3 - 8.0.28

authenticationPlugins - 5.1.19

disabledAuthenticationPlugins- 5.1.19

defaultAuthenticationPlugin mysql_native_password 5.1.19

ldapServerHostname - 8.0.23

ociConfigFile - 8.0.27

ociConfigProfile DEFAULT 8.0.33

authenticationFidoCallbackHandler- 8.0.29

authenticationWebAuthnCallbackHandler- 8.2.0

Table 3.5 Connection Properties

Name Default Value Since Version

connectionAttributes - 5.1.25

connectionLifecycleInterceptors- 5.1.4

useConfigs - 3.1.5

58

Configuration Properties

Name Default Value Since Version

clientInfoProvider com.mysql.cj.jdbc.CommentClientInfoProvider5.1.0

createDatabaseIfNotExist false 3.1.9

databaseTerm CATALOG 8.0.17

detectCustomCollations false 5.1.29

disconnectOnExpiredPasswordstrue 5.1.23

interactiveClient false 3.1.0

passwordCharacterEncoding - 5.1.7

propertiesTransform - 3.1.4

rollbackOnPooledClose true 3.0.15

useAffectedRows false 5.1.7

Table 3.6 Session Properties

Name Default Value Since Version

sessionVariables - 3.1.8

characterEncoding - 1.1g

characterSetResults - 3.0.13

connectionCollation - 3.0.13

customCharsetMapping - 8.0.26

trackSessionState false 8.0.26

Table 3.7 Networking Properties

Name Default Value Since Version

socksProxyHost - 5.1.34

socksProxyPort 1080 5.1.34

socketFactory com.mysql.cj.protocol.StandardSocketFactory3.0.3

connectTimeout 0 3.0.1

socketTimeout 0 3.0.1

dnsSrv false 8.0.19

localSocketAddress - 5.0.5

maxAllowedPacket 65535 5.1.8

socksProxyRemoteDns false 8.0.29

tcpKeepAlive true 5.0.7

tcpNoDelay true 5.0.7

tcpRcvBuf 0 5.0.7

tcpSndBuf 0 5.0.7

tcpTrafficClass 0 5.0.7

useCompression false 3.0.17

useUnbufferedInput true 3.0.11

Table 3.8 Security Properties

Name Default Value Since Version

paranoid false 3.0.1

serverRSAPublicKeyFile - 5.1.31

59

Configuration Properties

Name Default Value Since Version

allowPublicKeyRetrieval false 5.1.31

sslMode PREFERRED 8.0.13

trustCertificateKeyStoreUrl - 5.1.0

trustCertificateKeyStoreTypeJKS 5.1.0

trustCertificateKeyStorePassword- 5.1.0

fallbackToSystemTrustStore true 8.0.22

clientCertificateKeyStoreUrl- 5.1.0

clientCertificateKeyStoreTypeJKS 5.1.0

clientCertificateKeyStorePassword- 5.1.0

fallbackToSystemKeyStore true 8.0.22

tlsCiphersuites - 5.1.35

tlsVersions - 8.0.8

fipsCompliantJsse false 8.1.0

KeyManagerFactoryProvider - 8.1.0

trustManagerFactoryProvider - 8.1.0

keyStoreProvider - 8.1.0

sslContextProvider - 8.1.0

allowLoadLocalInfile false 3.0.3

allowLoadLocalInfileInPath - 8.0.22

allowMultiQueries false 3.1.1

allowUrlInLocalInfile false 3.1.4

requireSSL false 3.1.0

useSSL true 3.0.2

verifyServerCertificate false 5.1.6

Table 3.9 Statements Properties

Name Default Value Since Version

cacheDefaultTimeZone true 8.0.20

continueBatchOnError true 3.0.3

dontTrackOpenResources false 3.1.7

queryInterceptors - 8.0.7

queryTimeoutKillsConnection false 5.1.9

Table 3.10 Prepared Statements Properties

Name Default Value Since Version

allowNanAndInf false 3.1.5

autoClosePStmtStreams false 3.1.12

compensateOnDuplicateKeyUpdateCountsfalse 5.1.7

emulateUnsupportedPstmts true 3.1.7

generateSimpleParameterMetadatafalse 5.0.5

processEscapeCodesForPrepStmtstrue 3.1.12

useServerPrepStmts false 3.1.0

60

Configuration Properties

Name Default Value Since Version

useStreamLengthsInPrepStmts true 3.0.2

Table 3.11 Result Sets Properties

Name Default Value Since Version

clobberStreamingResults false 3.0.9

emptyStringsConvertToZero true 3.1.8

holdResultsOpenOverStatementClosefalse 3.1.7

jdbcCompliantTruncation true 3.1.2

maxRows -1 all versions

netTimeoutForStreamingResults600 5.1.0

padCharsWithSpace false 5.0.6

populateInsertRowWithDefaultValuesfalse 5.0.5

scrollTolerantForwardOnly false 8.0.24

strictUpdates true 3.0.4

tinyInt1isBit true 3.0.16

transformedBitIsBoolean false 3.1.9

Table 3.12 Metadata Properties

Name Default Value Since Version

getProceduresReturnsFunctionstrue 5.1.26

noAccessToProcedureBodies false 5.0.3

nullDatabaseMeansCurrent false 3.1.8

useHostsInPrivileges true 3.0.2

useInformationSchema false 5.0.0

Table 3.13 BLOB/CLOB processing Properties

Name Default Value Since Version

blobSendChunkSize 1048576 3.1.9

blobsAreStrings false 5.0.8

clobCharacterEncoding - 5.0.0

emulateLocators false 3.1.0

functionsNeverReturnBlobs false 5.0.8

locatorFetchBufferSize 1048576 3.2.1

Table 3.14 Datetime types processing Properties

Name Default Value Since Version

connectionTimeZone - 3.0.2

forceConnectionTimeZoneToSessionfalse 8.0.23

noDatetimeStringSync false 3.1.7

preserveInstants true 8.0.23

sendFractionalSeconds true 5.1.37

sendFractionalSecondsForTimetrue 8.0.23

treatMysqlDatetimeAsTimestampfalse 8.2.0

treatUtilDateAsTimestamp true 5.0.5

61

Configuration Properties

Name Default Value Since Version

yearIsDateType true 3.1.9

zeroDateTimeBehavior EXCEPTION 3.1.4

Table 3.15 High Availability and Clustering Properties

Name Default Value Since Version

autoReconnect false 1.1

autoReconnectForPools false 3.1.3

failOverReadOnly true 3.0.12

maxReconnects 3 1.1

reconnectAtTxEnd false 3.0.10

retriesAllDown 120 5.1.6

initialTimeout 2 1.1

queriesBeforeRetrySource 50 3.0.2

secondsBeforeRetrySource 30 3.0.2

allowReplicaDownConnections false 6.0.2

allowSourceDownConnections false 5.1.27

ha.enableJMX false 5.1.27

loadBalanceHostRemovalGracePeriod15000 6.0.3

readFromSourceWhenNoReplicasfalse 6.0.2

selfDestructOnPingMaxOperations0 5.1.6

selfDestructOnPingSecondsLifetime0 5.1.6

ha.loadBalanceStrategy random 5.0.6

loadBalanceAutoCommitStatementRegex- 5.1.15

loadBalanceAutoCommitStatementThreshold0 5.1.15

loadBalanceBlocklistTimeout 0 5.1.0

loadBalanceConnectionGroup - 5.1.13

loadBalanceExceptionChecker com.mysql.cj.jdbc.ha.StandardLoadBalanceExceptionChecker5.1.13

loadBalancePingTimeout 0 5.1.13

loadBalanceSQLExceptionSubclassFailover- 5.1.13

loadBalanceSQLStateFailover - 5.1.13

loadBalanceValidateConnectionOnSwapServerfalse 5.1.13

pinGlobalTxToPhysicalConnectionfalse 5.0.1

replicationConnectionGroup - 8.0.7

resourceId - 5.0.1

serverAffinityOrder - 8.0.8

Table 3.16 Performance Extensions Properties

Name Default Value Since Version

callableStmtCacheSize 100 3.1.2

metadataCacheSize 50 3.1.1

useLocalSessionState false 3.1.7

useLocalTransactionState false 5.1.7

62

Configuration Properties

Name Default Value Since Version

prepStmtCacheSize 25 3.0.10

prepStmtCacheSqlLimit 256 3.0.10

queryInfoCacheFactory com.mysql.cj.PerConnectionLRUFactory5.1.1

serverConfigCacheFactory com.mysql.cj.util.PerVmServerConfigCacheFactory5.1.1

alwaysSendSetIsolation true 3.1.7

maintainTimeStats true 3.1.9

useCursorFetch false 5.0.0

cacheCallableStmts false 3.1.2

cachePrepStmts false 3.0.10

cacheResultSetMetadata false 3.1.1

cacheServerConfiguration false 3.1.5

defaultFetchSize 0 3.1.9

dontCheckOnDuplicateKeyUpdateInSQLfalse 5.1.32

elideSetAutoCommits false 3.1.3

enableEscapeProcessing true 6.0.1

enableQueryTimeouts true 5.0.6

largeRowSizeThreshold 2048 5.1.1

readOnlyPropagatesToServer true 5.1.35

rewriteBatchedStatements false 3.1.13

useReadAheadInput true 3.1.5

Table 3.17 Debugging/Profiling Properties

Name Default Value Since Version

logger com.mysql.cj.log.StandardLogger 3.1.1

profilerEventHandler com.mysql.cj.log.LoggingProfilerEventHandler5.1.6

useNanosForElapsedTime false 5.0.7

maxQuerySizeToLog 2048 3.1.3

maxByteArrayAsHex 1024 8.0.31

profileSQL false 3.1.0

logSlowQueries false 3.1.2

slowQueryThresholdMillis 2000 3.1.2

slowQueryThresholdNanos 0 5.0.7

autoSlowLog true 5.1.4

explainSlowQueries false 3.1.2

gatherPerfMetrics false 3.1.2

reportMetricsIntervalMillis 30000 3.1.2

logXaCommands false 5.0.5

traceProtocol false 3.1.2

enablePacketDebug false 3.1.3

packetDebugBufferSize 20 3.1.3

useUsageAdvisor false 3.1.1

resultSetSizeThreshold 100 5.0.5

63

Configuration Properties

Name Default Value Since Version

autoGenerateTestcaseScript false 3.1.9

Table 3.18 Exceptions/Warnings Properties

Name Default Value Since Version

dumpQueriesOnException false 3.1.3

exceptionInterceptors - 5.1.8

ignoreNonTxTables false 3.0.9

includeInnodbStatusInDeadlockExceptionsfalse 5.0.7

includeThreadDumpInDeadlockExceptionsfalse 5.1.15

includeThreadNamesAsStatementCommentfalse 5.1.15

useOnlyServerErrorMessages true 3.0.15

Table 3.19 Tunes for integration with other products Properties

Name Default Value Since Version

overrideSupportsIntegrityEnhancementFacilityfalse 3.1.12

ultraDevHack false 2.0.3

Table 3.20 JDBC compliance Properties

Name Default Value Since Version

useColumnNamesInFindColumn false 5.1.7

pedantic false 3.0.0

useOldAliasMetadataBehavior false 5.0.4

Table 3.21 X Protocol and X DevAPI Properties

Name Default Value Since Version

xdevapi.auth PLAIN 8.0.8

xdevapi.compression PREFERRED 8.0.20

xdevapi.compression-
algorithms

zstd_stream,lz4_message,deflate_stream8.0.22

xdevapi.compression-
extensions

- 8.0.22

xdevapi.connect-timeout 10000 8.0.13

xdevapi.connection-
attributes

- 8.0.16

xdevapi.dns-srv false 8.0.19

xdevapi.fallback-to-
system-keystore

true 8.0.22

xdevapi.fallback-to-
system-truststore

true 8.0.22

xdevapi.ssl-keystore - 8.0.22

xdevapi.ssl-keystore-
password

- 8.0.22

xdevapi.ssl-keystore-type JKS 8.0.22

xdevapi.ssl-mode REQUIRED 8.0.7

xdevapi.ssl-truststore - 6.0.6

64

Configuration Properties

Name Default Value Since Version

xdevapi.ssl-truststore-
password

- 6.0.6

xdevapi.ssl-truststore-
type

JKS 6.0.6

xdevapi.tls-ciphersuites - 8.0.19

xdevapi.tls-versions - 8.0.19

3.5.3.1 Authentication

• user

The user to connect as. If none is specified, it is authentication plugin dependent what user name is
used. Built-in authentication plugins default to the session login user name.

Since Version all versions

• password

The password to use when authenticating the user.

Since Version all versions

• password1

The password to use in the first phase of a Multi-Factor Authentication workflow. It is a synonym of
the connection property 'password' and can also be set with user credentials in the connection string.

Since Version 8.0.28

• password2

The password to use in the second phase of a Multi-Factor Authentication workflow.

Since Version 8.0.28

• password3

The password to use in the third phase of a Multi-Factor Authentication workflow.

Since Version 8.0.28

• authenticationPlugins

Comma-delimited list of classes that implement the interface
'com.mysql.cj.protocol.AuthenticationPlugin'. These plugins will be loaded at connection initialization
and can be used together with their sever-side counterparts for authenticating users, unless they are
disabled in the connection property 'disabledAuthenticationPlugins'.

Since Version 5.1.19

• disabledAuthenticationPlugins

Comma-delimited list of authentication plugins client-side protocol names or classes implementing
the interface 'com.mysql.cj.protocol.AuthenticationPlugin'. The authentication plugins listed will
not be used for authenticating users and, if anyone of them is required during the authentication
exchange, the connection fails. The default authentication plugin specified in the property
'defaultAuthenticationPlugin' cannot be disabled.

65

Configuration Properties

Since Version 5.1.19

• defaultAuthenticationPlugin

The default authentication plugin client-side protocol name or a fully qualified name of a class that
implements the interface 'com.mysql.cj.protocol.AuthenticationPlugin'. The specified authentication
plugin must be either one of the built-in authentication plugins or one of the plugins listed in the
property 'authenticationPlugins'. Additionally, the default authentication plugin cannot be disabled
with the property 'disabledAuthenticationPlugins'. Neither an empty nor unknown plugin name or
class can be set for this property.

By default, Connector/J honors the server-side default authentication plugin, which is known after
receiving the initial handshake packet, and falls back to this property's default value if that plugin
cannot be used. However, when a value is explicitly provided to this property, Connector/J then
overrides the server-side default authentication plugin and always tries first the plugin specified with
this property.

Default Value mysql_native_password

Since Version 5.1.19

• ldapServerHostname

When using MySQL's LDAP pluggable authentication with GSSAPI/Kerberos authentication method,
allows setting the LDAP service principal hostname as configured in the Kerberos KDC. If this
property is not set, Connector/J takes the system property 'java.security.krb5.kdc' and extracts
the hostname (short name) from its value and uses it. If neither is set, the connection fails with an
exception.

Since Version 8.0.23

• ociConfigFile

The location of the OCI configuration file as required by the OCI SDK for Java. Default value is
"~/.oci/config" for Unix-like systems and "%HOMEDRIVE%%HOMEPATH%.oci\config" for Windows.

Since Version 8.0.27

• ociConfigProfile

The profile in the OCI configuration file specified in 'ociConfigFile', from where the configuration to
use in the 'authentication_oci_client' authentication plugin is to be read.

Default Value DEFAULT

Since Version 8.0.33

• authenticationFidoCallbackHandler

Fully-qualified class name of a class implementing the interface
'com.mysql.cj.callback.MysqlCallbackHandler'. This class will be used by the FIDO authentication
plugin to obtain the authenticator data and signature required for the FIDO authentication process.
See the documentation of 'com.mysql.cj.callback.FidoAuthenticationCallback' for more details.

Since Version 8.0.29

• authenticationWebAuthnCallbackHandler

Fully-qualified class name of a class implementing the interface
'com.mysql.cj.callback.MysqlCallbackHandler'. This class will be used by the

66

Configuration Properties

WebAuthn authentication plugin to obtain the authenticator data and signature
required for the FIDO authentication process. See the documentation of
com.mysql.cj.callback.WebAuthnAuthenticationCallback for more details.

Since Version 8.2.0

3.5.3.2 Connection

• connectionAttributes

A comma-delimited list of user-defined "key:value" pairs, in addition to standard MySQL-defined
"key:value" pairs, to be passed to MySQL Server for display as connection attributes in the
'PERFORMANCE_SCHEMA' tables 'session_account_connect_attrs' and 'session_connect_attrs'.
Example usage: "connectionAttributes=key1:value1,key2:value2" This functionality is available
for use with MySQL Server version 5.6 or later only. Earlier versions of MySQL Server do
not support connection attributes, causing this configuration option to be ignored. Setting
"connectionAttributes=none" will cause connection attribute processing to be bypassed for situations
where Connection creation/initialization speed is critical.

Since Version 5.1.25

• connectionLifecycleInterceptors

A comma-delimited list of classes that implement
'com.mysql.cj.jdbc.interceptors.ConnectionLifecycleInterceptor' that should be notified of
connection lifecycle events (creation, destruction, commit, rollback, setting the current database
and changing the autocommit mode) and potentially alter the execution of these commands.
'ConnectionLifecycleInterceptors' are stackable, more than one interceptor may be specified via the
configuration property as a comma-delimited list, with the interceptors executed in order from left to
right.

Since Version 5.1.4

• useConfigs

Load the comma-delimited list of configuration properties for specifying combinations of options
for particular scenarios. These properties are loaded before parsing the URL or applying user-
specified properties. Allowed values are "3-0-Compat", "clusterBase", "coldFusion", "fullDebug",
"maxPerformance", "maxPerformance-8-0" and "solarisMaxPerformance", and they correspond to
properties files shipped within the Connector/J jar file, under "com/mysql/cj/configurations".

Since Version 3.1.5

• clientInfoProvider

The name of a class that implements the 'com.mysql.cj.jdbc.ClientInfoProvider' interface in order to
support JDBC-4.0's 'Connection.get/setClientInfo()' methods.

Default Value com.mysql.cj.jdbc.CommentClientInfoProvider

Since Version 5.1.0

• createDatabaseIfNotExist

Creates the database given in the URL if it doesn't yet exist. Assumes the configured user has
permissions to create databases.

Default Value false

Since Version 3.1.9

67

Configuration Properties

• databaseTerm

MySQL uses the term "schema" as a synonym of the term "database," while Connector/J historically
takes the JDBC term "catalog" as synonymous to "database". This property sets for Connector/J
which of the JDBC terms "catalog" and "schema" is used in an application to refer to a database.
The property takes one of the two values "CATALOG" or "SCHEMA" and uses it to determine
(1) which Connection methods can be used to set/get the current database (e.g. 'setCatalog()'
or 'setSchema()'?), (2) which arguments can be used within the various 'DatabaseMetaData'
methods to filter results (e.g. the catalog or 'schemaPattern' argument of 'getColumns()'?), and
(3) which fields in the result sets returned by 'DatabaseMetaData' methods contain the database
identification information (i.e., the 'TABLE_CAT' or 'TABLE_SCHEM' field in the result set returned by
'getTables()'?).

If "databaseTerm=CATALOG", 'schemaPattern' for searches are ignored and calls of schema
methods (like 'setSchema()' or get 'Schema()') become no-ops, and vice versa.

Default Value CATALOG

Since Version 8.0.17

• detectCustomCollations

Should the driver detect custom charsets/collations installed on server? If this option set to "true" the
driver gets actual charsets/collations from the server each time a connection establishes. This could
slow down connection initialization significantly.

Default Value false

Since Version 5.1.29

• disconnectOnExpiredPasswords

If 'disconnectOnExpiredPasswords' is set to "false" and password is expired then server enters
sandbox mode and sends 'ERR(08001, ER_MUST_CHANGE_PASSWORD)' for all commands that
are not needed to set a new password until a new password is set.

Default Value true

Since Version 5.1.23

• interactiveClient

Set the 'CLIENT_INTERACTIVE' flag, which tells MySQL to timeout connections based on
'interactive_timeout' instead of 'wait_timeout'.

Default Value false

Since Version 3.1.0

• passwordCharacterEncoding

Instructs the server to use the default character set for the specified Java encoding during the
authentication phase. If this property is not set, Connector/J falls back to the collation name
specified in the property 'connectionCollation' or to the Java encoding specified in the property
'characterEncoding', in that order of priority. The default collation of the character set utf8mb4 is used
if none of the properties is set.

Since Version 5.1.7

68

Configuration Properties

• propertiesTransform

An implementation of 'com.mysql.cj.conf.ConnectionPropertiesTransform' that the driver will use to
modify connection string properties passed to the driver before attempting a connection.

Since Version 3.1.4

• rollbackOnPooledClose

Should the driver issue a 'rollback()' when the logical connection in a pool is closed?

Default Value true

Since Version 3.0.15

• useAffectedRows

Don't set the 'CLIENT_FOUND_ROWS' flag when connecting to the server. Note that this is not
JDBC-compliant and it will break most applications that rely on "found" rows vs. "affected rows" for
DML statements, but does cause correct update counts from "INSERT ... ON DUPLICATE KEY
UPDATE" statements to be returned by the server.

Default Value false

Since Version 5.1.7

3.5.3.3 Session

• sessionVariables

A comma or semicolon separated list of "name=value" pairs to be sent as "SET [SESSION] ..." to the
server when the driver connects.

Since Version 3.1.8

• characterEncoding

Instructs the server to set session system variables 'character_set_client' and
'character_set_connection' to the default character set supported by MySQL for the specified Java
character encoding and set 'collation_connection' to the default collation for this character set. If
neither this property nor the property 'connectionCollation' is set:

For Connector/J 8.0.25 and earlier, the driver will try to use the server's default character set;

For Connector/J 8.0.26 and later, the driver will use "utf8mb4".

Since Version 1.1g

• characterSetResults

Instructs the server to return the data encoded with the default character set for the specified Java
encoding. If not set or set to "null", the server will send data in its original character set and the driver
will decode it according to the result metadata.

Since Version 3.0.13

• connectionCollation

Instructs the server to set session system variable 'collation_connection' to the specified collation
name and set 'character_set_client' and 'character_set_connection' to a corresponding character set.
This property overrides the value of 'characterEncoding' with the default character set this collation

69

Configuration Properties

belongs to, if and only if 'characterEncoding' is not configured or is configured with a character set
that is incompatible with the collation. That means 'connectionCollation' may not always correct
a mismatch of character sets. For example, if 'connectionCollation' is set to "latin1_swedish_ci",
the corresponding character set is "latin1" for MySQL, which maps it to the Java character set
"windows-1252"; so if 'characterEncoding' is not set,"windows-1252" is the character set that will
be used; but if 'characterEncoding' has been set to, e.g. "ISO-8859-1", that is compatible with
"latin1_swedish_ci", so the character encoding setting is left unchanged; and if client is actually
using "windows-1252" (which is similar but different from "ISO-8859-1"), errors would occur for some
characters. If neither this property nor the property 'characterEncoding' is set:

For Connector/J 8.0.25 and earlier, the driver will try to use the server's default character set;

For Connector/J 8.0.26 and later, the driver will use utf8mb4's default collation.

Since Version 3.0.13

• customCharsetMapping

A comma-delimited list of custom "charset:java encoding" pairs.

In case the MySQL server is configured with custom character sets and
"detectCustomCollations=true", Connector/J needs to know which Java character
encoding to use for the data represented by these character sets. Example usage:
"customCharsetMapping=charset1:UTF-8,charset2:Cp1252".

Since Version 8.0.26

• trackSessionState

Receive server session state changes on query results. These changes are accessible via
'MysqlConnection.getServerSessionStateController()'.

Default Value false

Since Version 8.0.26

3.5.3.4 Networking

• socksProxyHost

Name or IP address of a SOCKS host to connect through.

Since Version 5.1.34

• socksProxyPort

Port of the SOCKS server.

Default Value 1080

Since Version 5.1.34

• socketFactory

The name of the class that the driver should use for creating socket connections to the server. This
class must implement the interface 'com.mysql.cj.protocol.SocketFactory' and have a public no-args
constructor.

Default Value com.mysql.cj.protocol.StandardSocketFactory

Since Version 3.0.3

70

Configuration Properties

• connectTimeout

Timeout for socket connect (in milliseconds), with 0 being no timeout.

Default Value 0

Since Version 3.0.1

• socketTimeout

Timeout, specified in milliseconds, on network socket operations. Value "0" means no timeout.

Default Value 0

Since Version 3.0.1

• dnsSrv

Should the driver use the given host name to lookup for DNS SRV records and use the resulting
list of hosts in a multi-host failover connection? Note that a single host name and no port must be
provided when this option is enabled.

Default Value false

Since Version 8.0.19

• localSocketAddress

Hostname or IP address given to explicitly configure the interface that the driver will bind the client
side of the TCP/IP connection to when connecting.

Since Version 5.0.5

• maxAllowedPacket

Maximum allowed packet size to send to server. If not set, the value of system variable
'max_allowed_packet' will be used to initialize this upon connecting. This value will not take effect
if set larger than the value of 'max_allowed_packet'. Also, due to an internal dependency with the
property 'blobSendChunkSize', this setting has a minimum value of "8203" if 'useServerPrepStmts' is
set to "true".

Default Value 65535

Since Version 5.1.8

• socksProxyRemoteDns

When using a SOCKS proxy, whether the DNS lookup for the database host should be performed
locally or through the SOCKS proxy.

Default Value false

Since Version 8.0.29

• tcpKeepAlive

If connecting using TCP/IP, should the driver set 'SO_KEEPALIVE'?

Default Value true

Since Version 5.0.7

• tcpNoDelay

71

Configuration Properties

If connecting using TCP/IP, should the driver set 'SO_TCP_NODELAY', disabling the Nagle
Algorithm?

Default Value true

Since Version 5.0.7

• tcpRcvBuf

If connecting using TCP/IP, should the driver set 'SO_RCV_BUF' to the given value? The default
value of "0", means use the platform default value for this property.

Default Value 0

Since Version 5.0.7

• tcpSndBuf

If connecting using TCP/IP, should the driver set 'SO_SND_BUF' to the given value? The default
value of "0", means use the platform default value for this property.

Default Value 0

Since Version 5.0.7

• tcpTrafficClass

If connecting using TCP/IP, should the driver set traffic class or type-of-service fields? See the
documentation for 'java.net.Socket.setTrafficClass()' for more information.

Default Value 0

Since Version 5.0.7

• useCompression

Use zlib compression when communicating with the server?

Default Value false

Since Version 3.0.17

• useUnbufferedInput

Don't use 'BufferedInputStream' for reading data from the server.

Default Value true

Since Version 3.0.11

3.5.3.5 Security

• paranoid

Take measures to prevent exposure sensitive information in error messages and clear data
structures holding sensitive data when possible?

Default Value false

Since Version 3.0.1

• serverRSAPublicKeyFile

72

Configuration Properties

File path to the server RSA public key file for 'sha256_password' authentication. If not specified, the
public key will be retrieved from the server.

Since Version 5.1.31

• allowPublicKeyRetrieval

Allows special handshake round-trip to get an RSA public key directly from server.

Default Value false

Since Version 5.1.31

• sslMode

By default, network connections are SSL encrypted; this property permits secure connections
to be turned off, or a different levels of security to be chosen. The following values are allowed:
"DISABLED" - Establish unencrypted connections; "PREFERRED" - Establish encrypted connections
if the server enabled them, otherwise fall back to unencrypted connections; "REQUIRED" - Establish
secure connections if the server enabled them, fail otherwise; "VERIFY_CA" - Like "REQUIRED"
but additionally verify the server TLS certificate against the configured Certificate Authority (CA)
certificates; "VERIFY_IDENTITY" - Like "VERIFY_CA", but additionally verify that the server
certificate matches the host to which the connection is attempted.

This property replaced the deprecated legacy properties 'useSSL', 'requireSSL', and
'verifyServerCertificate', which are still accepted but translated into a value for 'sslMode'
if 'sslMode' is not explicitly set: "useSSL=false" is translated to "sslMode=DISABLED";
{"useSSL=true", "requireSSL=false", "verifyServerCertificate=false"} is translated to
"sslMode=PREFERRED"; {"useSSL=true", "requireSSL=true", "verifyServerCertificate=false"}
is translated to "sslMode=REQUIRED"; {"useSSL=true", "verifyServerCertificate=true"}
is translated to "sslMode=VERIFY_CA". There is no equivalent legacy settings for
"sslMode=VERIFY_IDENTITY". Note that, for all server versions, the default setting of 'sslMode' is
"PREFERRED", and it is equivalent to the legacy settings of "useSSL=true", "requireSSL=false", and
"verifyServerCertificate=false", which are different from their default settings for Connector/J 8.0.12
and earlier in some situations. Applications that continue to use the legacy properties and rely on
their old default settings should be reviewed.

The legacy properties are ignored if 'sslMode' is set explicitly. If none of 'sslMode' or 'useSSL' is set
explicitly, the default setting of "sslMode=PREFERRED" applies.

Default Value PREFERRED

Since Version 8.0.13

• trustCertificateKeyStoreUrl

URL for the trusted root certificates key store.

If not specified, the property 'fallbackToSystemTrustStore' determines if system-wide trust store is
used.

Since Version 5.1.0

• trustCertificateKeyStoreType

Key store type for trusted root certificates.

Null or empty means use the default, which is "JKS". Standard key store types supported by the JVM
are "JKS" and "PKCS12", your environment may have more available depending on what security
providers are installed and available to the JVM.

73

Configuration Properties

Default Value JKS

Since Version 5.1.0

• trustCertificateKeyStorePassword

Password for the trusted root certificates key store.

Since Version 5.1.0

• fallbackToSystemTrustStore

Whether the absence of setting a value for 'trustCertificateKeyStoreUrl' falls back to
using the system-wide default trust store or one defined through the system properties
'javax.net.ssl.trustStore*'.

Default Value true

Since Version 8.0.22

• clientCertificateKeyStoreUrl

URL for the client certificate KeyStore.

If not specified, the property 'fallbackToSystemKeyStore' determines if system-wide key store is
used.

Since Version 5.1.0

• clientCertificateKeyStoreType

Key store type for client certificates.

Null or empty means use the default, which is "JKS". Standard key store types supported by the JVM
are "JKS" and "PKCS12", your environment may have more available depending on what security
providers are installed and available to the JVM.

Default Value JKS

Since Version 5.1.0

• clientCertificateKeyStorePassword

Password for the client certificates key store.

Since Version 5.1.0

• fallbackToSystemKeyStore

Whether the absence of setting a value for 'clientCertificateKeyStoreUrl' falls back to using the
system-wide key store defined through the system properties 'javax.net.ssl.keyStore*'.

Default Value true

Since Version 8.0.22

• tlsCiphersuites

When establishing secure connections, overrides the cipher suites enabled for use on the underlying
SSL sockets. This may be required when using external JSSE providers or to specify cipher suites
compatible with both MySQL server and used JVM. Prior to version 8.0.28, this property was named
'enabledSSLCipherSuites', which remains as an alias.

74

Configuration Properties

Since Version 5.1.35

• tlsVersions

List of TLS protocols to allow when establishing secure connections. Overrides the TLS protocols
enabled in the underlying SSL sockets. This can be used to restrict connections to specific TLS
versions and, by doing that, avoid TLS negotiation fallback. Allowed and default values are
"TLSv1.2" and "TLSv1.3". Prior to version 8.0.28, this property was named 'enabledTLSProtocols',
which remains as an alias.

Since Version 8.0.8

• fipsCompliantJsse

Enables Connector/J to be compatible to JSSE operating in FIPS mode. Should be set to "true" if
the JSSE is configured to operate in FIPS mode and Connector/J receives the error "FIPS mode:
only SunJSSE TrustManagers may be used" when creating secure connections. If set to "true"
then, when establishing secure connections, the driver operates as if the 'sslMode' was set to
"VERIFY_CA" or "VERIFY_IDENTITY", i.e., all secure connections require at least server certificate
validation, for which a trust store must be configured or fall back to the system-wide trust store must
be enabled.

Default Value false

Since Version 8.1.0

• KeyManagerFactoryProvider

The name of the a Java Security Provider that provides a 'javax.net.ssl.KeyManagerFactory'
implementation. If none is specified then the default one is used.

Since Version 8.1.0

• trustManagerFactoryProvider

The name of the a Java Security Provider that provides a 'javax.net.ssl.TrustManagerFactory'
implementation. If none is specified then the default one is used.

Since Version 8.1.0

• keyStoreProvider

The name of the a Java Security Provider that provides a 'java.security.KeyStore' implementation
that supports the key stores types specified with 'clientCertificateKeyStoreType' and
'trustCertificateKeyStoreType'. If none is specified then the default one is used.

Since Version 8.1.0

• sslContextProvider

The name of the a Java Security Provider that provides a 'javax.net.ssl.SSLContext' implementation.
If none is specified then the default one is used.

Since Version 8.1.0

75

Configuration Properties

• allowLoadLocalInfile

Should the driver allow use of "LOAD DATA LOCAL INFILE ..."?

Setting to "true" overrides whatever path is set in 'allowLoadLocalInfileInPath', allowing uploading
files from any location.

Default Value false

Since Version 3.0.3

• allowLoadLocalInfileInPath

Enables "LOAD DATA LOCAL INFILE ..." statements, but only allows loading files from the specified
path. Files within sub-directories are also allowed, but relative paths or symlinks that fall outside this
path are forbidden.

Since Version 8.0.22

• allowMultiQueries

Allow the use of ";" to delimit multiple queries during one statement. This option does not affect the
'addBatch()' and 'executeBatch()' methods, which rely on 'rewriteBatchStatements' instead.

Default Value false

Since Version 3.1.1

• allowUrlInLocalInfile

Should the driver allow URLs in "LOAD DATA LOCAL INFILE ..." statements?

Default Value false

Since Version 3.1.4

• requireSSL

DEPRECATED: See 'sslMode' property description for details.

For 8.0.12 and earlier: Require server support of SSL connection if "useSSL=true".

Default Value false

Since Version 3.1.0

• useSSL

DEPRECATED: See 'sslMode' property description for details.

For 8.0.12 and earlier: Use SSL when communicating with the server, default is "true" when
connecting to MySQL 5.5.45+, 5.6.26+ or 5.7.6+, otherwise default is "false".

For 8.0.13 and later: Default is "true".

Default Value true

Since Version 3.0.2
76

Configuration Properties

• verifyServerCertificate

DEPRECATED: See 'sslMode' property description for details.

For 8.0.12 and earlier: If 'useSSL' is set to "true", should the driver verify the server's
certificate? When using this feature, the key store parameters should be specified by the
'clientCertificateKeyStore*' properties, rather than system properties. Default is "false" when
connecting to MySQL 5.5.45+, 5.6.26+ or 5.7.6+ and 'useSSL' was not explicitly set to "true".
Otherwise default is "true".

For 8.0.13 and later: Default is "false".

Default Value false

Since Version 5.1.6

3.5.3.6 Statements

• cacheDefaultTimeZone

Caches client's default time zone. This results in better performance when dealing with time zone
conversions in Date and Time data types, however it won't be aware of time zone changes if they
happen at runtime.

Default Value true

Since Version 8.0.20

• continueBatchOnError

Should the driver continue processing batch commands if one statement fails. The JDBC spec allows
either way.

Default Value true

Since Version 3.0.3

• dontTrackOpenResources

The JDBC specification requires the driver to automatically track and close resources,
however if your application doesn't do a good job of explicitly calling 'close()' on statements
or result sets this can cause memory leakage. Setting this property to "true" relaxes this
constraint, and can be more memory efficient for some applications. Also the automatic
closing of the statement and current result set in 'Statement.closeOnCompletion()'
and 'Statement.getMoreResults([Statement.CLOSE_CURRENT_RESULT |
Statement.CLOSE_ALL_RESULTS])', respectively, ceases to happen. This property automatically
sets "holdResultsOpenOverStatementClose=true".

Default Value false

Since Version 3.1.7

• queryInterceptors

A comma-delimited list of classes that implement 'com.mysql.cj.interceptors.QueryInterceptor' that
intercept query executions and are able influence the results. Query iterceptors are chainable: the
results returned by the current interceptor will be passed on to the next in the chain, from left-to-right
in the order specified in this property.

Since Version 8.0.7

• queryTimeoutKillsConnection

77

Configuration Properties

If the timeout given in 'Statement.setQueryTimeout()' expires, should the driver forcibly abort the
connection instead of attempting to abort the query?

Default Value false

Since Version 5.1.9

3.5.3.7 Prepared Statements

• allowNanAndInf

Should the driver allow NaN or +/- INF values in 'PreparedStatement.setDouble()'?

Default Value false

Since Version 3.1.5

• autoClosePStmtStreams

Should the driver automatically call the method 'close()' on streams/readers passed as arguments via
'set*()' methods?

Default Value false

Since Version 3.1.12

• compensateOnDuplicateKeyUpdateCounts

Should the driver compensate for the update counts of "INSERT ... ON DUPLICATE KEY UPDATE"
statements (2 = 1, 0 = 1) when using prepared statements?

Default Value false

Since Version 5.1.7

• emulateUnsupportedPstmts

Should the driver detect prepared statements that are not supported by the server, and replace them
with client-side emulated versions?

Default Value true

Since Version 3.1.7

• generateSimpleParameterMetadata

Should the driver generate simplified parameter metadata for prepared statements when no
metadata is available either because the server couldn't support preparing the statement, or server-
side prepared statements are disabled?

Default Value false

Since Version 5.0.5

• processEscapeCodesForPrepStmts

Should the driver process escape codes in queries that are prepared? Default escape processing
behavior in non-prepared statements must be defined with the property 'enableEscapeProcessing'.

Default Value true

Since Version 3.1.12

78

Configuration Properties

• useServerPrepStmts

Use server-side prepared statements if the server supports them? The server may limit the number
of prepared statements with 'max_prepared_stmt_count' or disable them altogether. In case of
not being possible to prepare new server-side prepared statements, it depends on the value of
'emulateUnsupportedPstmts' to whether return an error or fall back to client-side emulated prepared
statements.

Default Value false

Since Version 3.1.0

• useStreamLengthsInPrepStmts

Honor stream length parameter in 'PreparedStatement/ResultSet.set*Stream()' method calls?

Default Value true

Since Version 3.0.2

3.5.3.8 Result Sets

• clobberStreamingResults

This will cause a streaming result set to be automatically closed, and any outstanding data still
streaming from the server to be discarded if another query is executed before all the data has been
read from the server.

Default Value false

Since Version 3.0.9

• emptyStringsConvertToZero

Should the driver allow conversions from empty string fields to numeric values of "0"?

Default Value true

Since Version 3.1.8

• holdResultsOpenOverStatementClose

Should the driver close result sets on 'Statement.close()' as required by the JDBC specification?

Default Value false

Since Version 3.1.7

• jdbcCompliantTruncation

Should the driver throw 'java.sql.DataTruncation' exceptions when data is truncated as is
required by the JDBC specification? This property has no effect if the server sql-mode includes
'STRICT_TRANS_TABLES'.

Default Value true

Since Version 3.1.2

• maxRows

The maximum number of rows to return. The default "0" means return all rows.

Default Value -1

79

Configuration Properties

Since Version all versions

• netTimeoutForStreamingResults

What value should the driver automatically set the server setting 'net_write_timeout' to when the
streaming result sets feature is in use? Value has unit of seconds, the value "0" means the driver will
not try and adjust this value.

Default Value 600

Since Version 5.1.0

• padCharsWithSpace

If a result set column has the CHAR type and the value does not fill the amount of characters
specified in the DDL for the column, should the driver pad the remaining characters with space (for
ANSI compliance)?

Default Value false

Since Version 5.0.6

• populateInsertRowWithDefaultValues

When using result sets that are 'CONCUR_UPDATABLE', should the driver pre-populate the insert
row with default values from the DDL for the table used in the query so those values are immediately
available for 'ResultSet' accessors? This functionality requires a call to the database for metadata
each time a result set of this type is created. If disabled, the default values will be populated by the
an internal call to 'refreshRow()' which pulls back default values and/or values changed by triggers.

Default Value false

Since Version 5.0.5

• scrollTolerantForwardOnly

Should the driver contradict the JDBC API and tolerate and support backward and absolute cursor
movement on result sets of type 'ResultSet.TYPE_FORWARD_ONLY'?

Regardless of this setting, cursor-based and row streaming result sets cannot be navigated in the
prohibited directions.

Default Value false

Since Version 8.0.24

• strictUpdates

Should the driver do strict checking, i.e. all primary keys selected, of updatable result sets?

Default Value true

Since Version 3.0.4

• tinyInt1isBit

Since the MySQL server silently converts BIT to TINYINT(1) when creating tables, should the driver
treat the datatype TINYINT(1) as the BIT type?

Default Value true

Since Version 3.0.16

80

Configuration Properties

• transformedBitIsBoolean

If the driver converts TINYINT(1) to a different type, should it use BOOLEAN instead of BIT?

Default Value false

Since Version 3.1.9

3.5.3.9 Metadata

• getProceduresReturnsFunctions

Pre-JDBC4 'DatabaseMetaData' API has only the 'getProcedures()' and 'getProcedureColumns()'
methods, so they return metadata info for both stored procedures and functions. JDBC4
was extended with the 'getFunctions()' and 'getFunctionColumns()' methods and the
expected behaviours of previous methods are not well defined. For JDBC4 and higher,
default "true" value of the option means that calls of 'DatabaseMetaData.getProcedures()'
and 'DatabaseMetaData.getProcedureColumns()' return metadata for both procedures and
functions as before, keeping backward compatibility. Setting this property to "false" decouples
Connector/J from its pre-JDBC4 behaviours for 'DatabaseMetaData.getProcedures()' and
'DatabaseMetaData.getProcedureColumns()', forcing them to return metadata for procedures only.

Default Value true

Since Version 5.1.26

• noAccessToProcedureBodies

When determining procedure parameter types for 'CallableStatement', and the connected user can't
access procedure bodies through "SHOW CREATE PROCEDURE" or SELECT on mysql.proc
should the driver instead create basic metadata, with all parameters reported as INOUT VARCHARs,
instead of throwing an exception?

Default Value false

Since Version 5.0.3

• nullDatabaseMeansCurrent

In 'DatabaseMetaData' methods that take a 'catalog' or 'schema' parameter, does the value "null"
mean to use the current database? See also the property 'databaseTerm'.

Default Value false

Since Version 3.1.8

• useHostsInPrivileges

Add '@hostname' to users in 'DatabaseMetaData.getColumn/TablePrivileges()'.

Default Value true

Since Version 3.0.2

• useInformationSchema

Should the driver use the INFORMATION_SCHEMA to derive information used by
'DatabaseMetaData'? Default is "true" when connecting to MySQL 8.0.3+, otherwise default is
"false".

Default Value false

Since Version 5.0.0

81

Configuration Properties

3.5.3.10 BLOB/CLOB processing

• blobSendChunkSize

Chunk size to use when sending BLOB/CLOBs via server-prepared statements. Note that this
value cannot exceed the value of 'maxAllowedPacket' and, if that is the case, then this value will be
corrected automatically.

Default Value 1048576

Since Version 3.1.9

• blobsAreStrings

Should the driver always treat BLOBs as Strings - specifically to work around dubious metadata
returned by the server for GROUP BY clauses?

Default Value false

Since Version 5.0.8

• clobCharacterEncoding

The character encoding to use for sending and retrieving TEXT, MEDIUMTEXT and LONGTEXT
values instead of the configured connection 'characterEncoding'.

Since Version 5.0.0

• emulateLocators

Should the driver emulate 'java.sql.Blob' with locators? With this feature enabled, the driver will delay
loading the actual Blob data until the one of the retrieval methods ('getInputStream()', 'getBytes()',
and so forth) on the blob data stream has been accessed. For this to work, you must use a column
alias with the value of the column to the actual name of the Blob. The feature also has the following
restrictions: The SELECT that created the result set must reference only one table, the table must
have a primary key; the SELECT must alias the original blob column name, specified as a string, to
an alternate name; the SELECT must cover all columns that make up the primary key.

Default Value false

Since Version 3.1.0

• functionsNeverReturnBlobs

Should the driver always treat data from functions returning BLOBs as Strings - specifically to work
around dubious metadata returned by the server for "GROUP BY" clauses?

Default Value false

Since Version 5.0.8

• locatorFetchBufferSize

If 'emulateLocators' is configured to "true", what size buffer should be used when fetching BLOB data
for 'getBinaryInputStream()'?

Default Value 1048576

Since Version 3.2.1

3.5.3.11 Datetime types processing

• connectionTimeZone

82

Configuration Properties

Configures the connection time zone which is used by Connector/J if conversion between the JVM
default and a target time zone is needed when preserving instant temporal values.

Accepts a geographic time zone name or a time zone offset from Greenwich/UTC, using a syntax
'java.time.ZoneId' is able to parse, or one of the two logical values "LOCAL" and "SERVER". Default
is "LOCAL". If set to an explicit time zone then it must be one that either the JVM or both the JVM
and MySQL support. If set to "LOCAL" then the driver assumes that the connection time zone is
the same as the JVM default time zone. If set to "SERVER" then the driver attempts to detect the
session time zone from the values configured on the MySQL server session variables 'time_zone'
or 'system_time_zone'. The time zone detection and subsequent mapping to a Java time zone may
fail due to several reasons, mostly because of time zone abbreviations being used, in which case an
explicit time zone must be set or a different time zone must be configured on the server.

This option itself does not set MySQL server session variable 'time_zone' to the given value. To do
that the 'forceConnectionTimeZoneToSession' connection option must be set to "true".

Please note that setting a value to 'connectionTimeZone' in conjunction with
"forceConnectionTimeZoneToSession=false" and "preserveInstants=false" has no effect since, in this
case, neither this option is used to change the session time zone nor used for time zone conversions
of time-based data.

Former connection option 'serverTimezone' is still valid as an alias of this one but may be deprecated
in the future.

See also 'forceConnectionTimeZoneToSession' and 'preserveInstants' for more details.

Since Version 3.0.2

• forceConnectionTimeZoneToSession

If enabled, sets the time zone value determined by 'connectionTimeZone' connection property to
the current server session 'time_zone' variable. If the time zone value is given as a geographical
time zone, then Connector/J sets this value as-is in the server session, in which case the time zone
system tables must be populated beforehand (consult the MySQL Server documentation for further
details); but, if the value is given as an offset from Greenwich/UTC in any of the supported syntaxes,
then the server session time zone is set as a numeric offset from UTC.

With that no intermediate conversion between JVM default time zone and connection time zone is
needed to store correct milliseconds value of instant Java objects such as 'java.sql.Timestamp' or
'java.time.OffsetDateTime' when stored in TIMESTAMP columns.

Note that it also affects the result of MySQL functions such as 'NOW()', 'CURTIME()' or
'CURDATE()'.

This option has no effect if used in conjunction with "connectionTimeZone=SERVER" since, in this
case, the session is already set with the required time zone.

See also 'connectionTimeZone' and 'preserveInstants' for more details.

Default Value false

Since Version 8.0.23

• noDatetimeStringSync

Don't ensure that 'ResultSet.getTimestamp().toString().equals(ResultSet.getString())'.

Default Value false

Since Version 3.1.7 83

Configuration Properties

• preserveInstants

If enabled, Connector/J does its best to preserve the instant point on the time-line for Java instant-
based objects such as 'java.sql.Timestamp' or 'java.time.OffsetDateTime' instead of their original
visual form. Otherwise, the driver always uses the JVM default time zone for rendering the values it
sends to the server and for constructing the Java objects from the fetched data.

MySQL uses implied time zone conversion for TIMESTAMP values: they are converted from the
session time zone to UTC for storage, and back from UTC to the session time zone for retrieval. So,
to store the correct correct UTC value internally, the driver converts the value from the original time
zone to the session time zone before sending to the server. On retrieval, Connector/J converts the
received value from the session time zone to the JVM default one.

When storing, the conversion is performed only if the target 'SQLType', either the explicit one or the
default one, is TIMESTAMP. When retrieving, the conversion is performed only if the source column
has the TIMESTAMP, DATETIME or character type and the target class is an instant-based one, like
'java.sql.Timestamp' or 'java.time.OffsetDateTime'.

Note that this option has no effect if used in conjunction with "connectionTimeZone=LOCAL" since,
in this case, the source and target time zones are the same. Though, in this case, it's still possible to
store a correct instant value if set together with "forceConnectionTimeZoneToSession=true".

See also 'connectionTimeZone' and 'forceConnectionTimeZoneToSession' for more details.

Default Value true

Since Version 8.0.23

• sendFractionalSeconds

If set to "false", the fractional seconds will always be truncated before sending any data to the server.
This option applies only to prepared statements, callable statements or updatable result sets.

Default Value true

Since Version 5.1.37

• sendFractionalSecondsForTime

If set to "false", the fractional seconds of 'java.sql.Time' will be ignored as required by JDBC
specification. If set to "true", its value is rendered with fractional seconds allowing to store
milliseconds into MySQL TIME column. This option applies only to prepared statements, callable
statements or updatable result sets. It has no effect if "sendFractionalSeconds=false".

Default Value true

Since Version 8.0.23

• treatMysqlDatetimeAsTimestamp

Should the driver treat the MySQL DATETIME type as TIMESTAMP in 'ResultSet.getObject()'?
Enabling this option changes the default MySQL data type to Java type mapping for DATETIME from
'java.time.LocalDateTime' to 'java.sql.Timestamp'. Given the nature of the DATETIME type and its
inability to represent instant values, it is not advisable to enable this option unless the driver is used
with a framework or API that expects exclusively objects following the default MySQL data types to
Java types mapping, which is the case of, for example, 'javax.sql.rowset.CachedRowSet'.

Default Value false

Since Version 8.2.0

• treatUtilDateAsTimestamp

84

Configuration Properties

Should the driver treat 'java.util.Date' as a TIMESTAMP in 'PreparedStatement.setObject()'?

Default Value true

Since Version 5.0.5

• yearIsDateType

Should the JDBC driver treat the MySQL type YEAR as a 'java.sql.Date', or as a SHORT?

Default Value true

Since Version 3.1.9

• zeroDateTimeBehavior

What should happen when the driver encounters DATETIME values that are composed entirely of
zeros - used by MySQL to represent invalid dates? Valid values are "EXCEPTION", "ROUND" and
"CONVERT_TO_NULL".

Default Value EXCEPTION

Since Version 3.1.4

3.5.3.12 High Availability and Clustering

• autoReconnect

Should the driver try to re-establish stale and/or dead connections? If enabled the driver will throw an
exception for queries issued on a stale or dead connection, which belong to the current transaction,
but will attempt reconnect before the next query issued on the connection in a new transaction. The
use of this feature is not recommended, because it has side effects related to session state and
data consistency when applications don't handle SQLExceptions properly, and is only designed to
be used when you are unable to configure your application to handle SQLExceptions resulting from
dead and stale connections properly. Alternatively, as a last option, investigate setting the MySQL
server variable 'wait_timeout' to a high value, rather than the default of 8 hours.

Default Value false

Since Version 1.1

• autoReconnectForPools

Use a reconnection strategy appropriate for connection pools?

Default Value false

Since Version 3.1.3

• failOverReadOnly

When failing over in 'autoReconnect' mode, should the connection be set to 'read-only'?

Default Value true

Since Version 3.0.12

• maxReconnects

Maximum number of reconnects to attempt if 'autoReconnect' is "true".

Default Value 3

85

Configuration Properties

Since Version 1.1

• reconnectAtTxEnd

If 'autoReconnect' is set to "true", should the driver attempt reconnections at the end of every
transaction?

Default Value false

Since Version 3.0.10

• retriesAllDown

When using load balancing or failover, the number of times the driver should cycle through available
hosts, attempting to connect. Between cycles, the driver will pause for 250 ms if no servers are
available.

Default Value 120

Since Version 5.1.6

• initialTimeout

If 'autoReconnect' is enabled, the initial time to wait between re-connect attempts (in seconds,
defaults to "2").

Default Value 2

Since Version 1.1

• queriesBeforeRetrySource

When using multi-host failover, the number of queries to issue before falling back to the
primary host when failed over. Whichever condition is met first, 'queriesBeforeRetrySource' or
'secondsBeforeRetrySource' will cause an attempt to be made to reconnect to the primary host.
Setting both properties to "0" disables the automatic fall back to the primary host at transaction
boundaries.

Default Value 50

Since Version 3.0.2

• secondsBeforeRetrySource

How long, in seconds, should the driver wait when failed over, before attempting to reconnect
to the primary host? Whichever condition is met first, 'queriesBeforeRetrySource' or
'secondsBeforeRetrySource' will cause an attempt to be made to reconnect to the source host.
Setting both properties to "0" disables the automatic fall back to the primary host at transaction
boundaries.

Default Value 30

Since Version 3.0.2

• allowReplicaDownConnections

By default, a replication-aware connection will fail to connect when configured replica hosts are
all unavailable at initial connection. Setting this property to "true" allows to establish the initial
connection. It won't prevent failures when switching to replicas i.e. by setting the replication

86

Configuration Properties

connection to read-only state. The property 'readFromSourceWhenNoReplicas' should be used for
this purpose.

Default Value false

Since Version 6.0.2

• allowSourceDownConnections

By default, a replication-aware connection will fail to connect when configured source hosts are
all unavailable at initial connection. Setting this property to "true" allows to establish the initial
connection, by failing over to the replica servers, in read-only state. It won't prevent subsequent
failures when switching back to the source hosts i.e. by setting the replication connection to read/
write state.

Default Value false

Since Version 5.1.27

• ha.enableJMX

Enables JMX-based management of load-balanced connection groups, including live addition/
removal of hosts from load-balancing pool. Enables JMX-based management of replication
connection groups, including live replica promotion, addition of new replicas and removal of source
or replica hosts from load-balanced source and replica connection pools.

Default Value false

Since Version 5.1.27

• loadBalanceHostRemovalGracePeriod

Sets the grace period to wait for a host being removed from a load-balanced connection, to be
released when it is currently the active host.

Default Value 15000

Since Version 6.0.3

• readFromSourceWhenNoReplicas

Replication-aware connections distribute load by using the source hosts when in read/write state and
by using the replica hosts when in read-only state. If, when setting the connection to read-only state,
none of the replica hosts are available, an 'SQLException' is thrown back. Setting this property to
"true" allows to fail over to the source hosts, while setting the connection state to read-only, when no
replica hosts are available at switch instant.

Default Value false

Since Version 6.0.2

• selfDestructOnPingMaxOperations

If set to a non-zero value, the driver will report close the connection and report failure when
'com.mysql.cj.jdbc.JdbcConnection.ping()' or 'java.sql.Connection.isValid(int)' is called if the
connection's count of commands sent to the server exceeds this value.

Default Value 0

Since Version 5.1.6 87

Configuration Properties

• selfDestructOnPingSecondsLifetime

If set to a non-zero value, the driver will close the connection and report failure when
'com.mysql.cj.jdbc.JdbcConnection.ping()' or 'java.sql.Connection.isValid(int)' is called if the
connection's lifetime exceeds this value, specified in milliseconds.

Default Value 0

Since Version 5.1.6

• ha.loadBalanceStrategy

If using a load-balanced connection to connect to SQL servers in a MySQL Cluster configuration (by
using the URL prefix "jdbc:mysql:loadbalance://"), which load balancing algorithm should the driver
use: (1) "random" - the driver will pick a random host for each request. This tends to work better than
round-robin, as the randomness will somewhat account for spreading loads where requests vary in
response time, while round-robin can sometimes lead to overloaded nodes if there are variations in
response times across the workload. (2) "bestResponseTime" - the driver will route the request to
the host that had the best response time for the previous transaction. (3) "serverAffinity" - the driver
initially attempts to enforce server affinity while still respecting and benefiting from the fault tolerance
aspects of the load-balancing implementation. The server affinity ordered list is provided using the
property 'serverAffinityOrder'. If none of the servers listed in the affinity list is responsive, the driver
then refers to the "random" strategy to proceed with choosing the next server.

Default Value random

Since Version 5.0.6

• loadBalanceAutoCommitStatementRegex

When load-balancing is enabled for auto-commit statements (via
'loadBalanceAutoCommitStatementThreshold'), the statement counter will only increment when the
SQL matches the regular expression. By default, every statement issued matches.

Since Version 5.1.15

• loadBalanceAutoCommitStatementThreshold

When auto-commit is enabled, the number of statements which should be executed before triggering
load-balancing to rebalance. Default value of "0" causes load-balanced connections to only
rebalance when exceptions are encountered, or auto-commit is disabled and transactions are
explicitly committed or rolled back.

Default Value 0

Since Version 5.1.15

• loadBalanceBlocklistTimeout

Time in milliseconds between checks of servers which are unavailable, by controlling how long a
server lives in the global blocklist.

Default Value 0

Since Version 5.1.0

• loadBalanceConnectionGroup

Logical group of load-balanced connections within a class loader, used to manage different groups
independently. If not specified, live management of load-balanced connections is disabled.

Since Version 5.1.13

88

Configuration Properties

• loadBalanceExceptionChecker

Fully-qualified class name of custom exception checker. The class must implement
'com.mysql.cj.jdbc.ha.LoadBalanceExceptionChecker' interface, and is used to inspect
'SQLException' exceptions and determine whether they should trigger fail-over to another host in a
load-balanced deployment.

Default Value com.mysql.cj.jdbc.ha.StandardLoadBalanceExceptionChecker

Since Version 5.1.13

• loadBalancePingTimeout

Time in milliseconds to wait for ping responses from each of load-balanced physical connections
when using a load-balanced connection.

Default Value 0

Since Version 5.1.13

• loadBalanceSQLExceptionSubclassFailover

Comma-delimited list of classes/interfaces used by default load-balanced exception checker to
determine whether a given 'SQLException' should trigger a failover. The comparison is done using
'Class.isInstance(SQLException)' using the 'SQLException' thrown.

Since Version 5.1.13

• loadBalanceSQLStateFailover

Comma-delimited list of 'SQLState' codes used by the default load-balanced exception checker
to determine whether a given 'SQLException' should trigger a failover. The 'SQLState' of a given
'SQLException' is evaluated to determine whether it begins with any of the values specified in the
comma-delimited list.

Since Version 5.1.13

• loadBalanceValidateConnectionOnSwapServer

Should the load-balanced connection explicitly check whether the connection is live when swapping
to a new physical connection at commit/rollback?

Default Value false

Since Version 5.1.13

• pinGlobalTxToPhysicalConnection

When using XA connections, should the driver ensure that operations on a given XID are always
routed to the same physical connection? This allows the 'XAConnection' to support "XA START ...
JOIN" after "XA END" has been called.

Default Value false

Since Version 5.0.1

• replicationConnectionGroup

Logical group of replication connections within a class loader, used to manage different groups
independently. If not specified, live management of replication connections is disabled.

Since Version 8.0.7

89

Configuration Properties

• resourceId

A globally unique name that identifies the resource that this data source or connection is connected
to, used for 'XAResource.isSameRM()' when the driver can't determine this value based on
hostnames used in the URL.

Since Version 5.0.1

• serverAffinityOrder

A comma separated list containing the host/port pairs that are to be used in load-balancing
"serverAffinity" strategy. Only the sub-set of the hosts enumerated in the main hosts section in this
URL will be used and they must be identical in case and type, i.e., can't use an IP address in one
place and the corresponding host name in the other.

Since Version 8.0.8

3.5.3.13 Performance Extensions

• callableStmtCacheSize

If 'cacheCallableStmts' is enabled, how many callable statements should be cached?

Default Value 100

Since Version 3.1.2

• metadataCacheSize

The number of queries to cache 'ResultSetMetadata' for if 'cacheResultSetMetaData' is set to "true".

Default Value 50

Since Version 3.1.1

• useLocalSessionState

Should the driver refer to the internal values of auto-commit and transaction isolation that are set by
'Connection.setAutoCommit()' and 'Connection.setTransactionIsolation()' and transaction state as
maintained by the protocol, rather than querying the database or blindly sending commands to the
database for 'commit()' or 'rollback()' method calls?

Default Value false

Since Version 3.1.7

• useLocalTransactionState

Should the driver use the in-transaction state provided by the MySQL protocol to determine if a
'commit()' or 'rollback()' should actually be sent to the database?

Default Value false

Since Version 5.1.7

• prepStmtCacheSize

If prepared statement caching is enabled, how many prepared statements should be cached?

Default Value 25

Since Version 3.0.10

90

Configuration Properties

• prepStmtCacheSqlLimit

If prepared statement caching is enabled, what's the largest SQL the driver will cache the parsing
for?

Default Value 256

Since Version 3.0.10

• queryInfoCacheFactory

Name of a class implementing 'com.mysql.cj.CacheAdapterFactory' which will be used to create
caches for the parsed representation of prepared statements. Prior to version 8.0.29, this property
was named 'parseInfoCacheFactory', which remains as an alias.

Default Value com.mysql.cj.PerConnectionLRUFactory

Since Version 5.1.1

• serverConfigCacheFactory

Name of a class implementing 'com.mysql.cj.CacheAdapterFactory', which will be used to create
caches for MySQL server configuration values.

Default Value com.mysql.cj.util.PerVmServerConfigCacheFactory

Since Version 5.1.1

• alwaysSendSetIsolation

Should the driver always communicate with the database when
'Connection.setTransactionIsolation()' is called? If set to "false", the driver will only communicate with
the database when the requested transaction isolation is different than the whichever is newer, the
last value that was set via 'Connection.setTransactionIsolation()', or the value that was read from the
server when the connection was established. Note that "useLocalSessionState=true" will force the
same behavior as "alwaysSendSetIsolation=false", regardless of how 'alwaysSendSetIsolation' is
set.

Default Value true

Since Version 3.1.7

• maintainTimeStats

Should the driver maintain various internal timers to enable idle time calculations as well as more
verbose error messages when the connection to the server fails? Setting this property to false
removes at least two calls to 'System.getCurrentTimeMillis()' per query.

Default Value true

Since Version 3.1.9

• useCursorFetch

Should the driver use cursor-based fetching to retrieve rows? If set to "true" and 'defaultFetchSize'
is set to a value higher than zero or 'setFetchSize()' with a value higher than zero is called on a
statement, then the cursor-based result set will be used. Please note that 'useServerPrepStmts' is
automatically set to "true" in this case because cursor functionality is available only for server-side
prepared statements.

Default Value false

Since Version 5.0.0

91

Configuration Properties

• cacheCallableStmts

Should the driver cache the parsing stage of CallableStatements?

Default Value false

Since Version 3.1.2

• cachePrepStmts

Should the driver cache the parsing stage of PreparedStatements of client-side prepared statements,
the "check" for suitability of server-side prepared and server-side prepared statements themselves?

Default Value false

Since Version 3.0.10

• cacheResultSetMetadata

Should the driver cache 'ResultSetMetaData' for statements and prepared statements?

Default Value false

Since Version 3.1.1

• cacheServerConfiguration

Should the driver cache the results of "SHOW VARIABLES" and "SHOW COLLATION" on a per-URL
basis?

Default Value false

Since Version 3.1.5

• defaultFetchSize

The driver will call 'setFetchSize(n)' with this value on all newly-created statements.

Default Value 0

Since Version 3.1.9

• dontCheckOnDuplicateKeyUpdateInSQL

Stops checking if every INSERT statement contains the "ON DUPLICATE KEY UPDATE" clause. As
a side effect, obtaining the statement's generated keys information will return a list where normally it
would not. Also be aware that, in this case, the list of generated keys returned may not be accurate.
The effect of this property is canceled if set simultaneously with "rewriteBatchedStatements=true".

Default Value false

Since Version 5.1.32

• elideSetAutoCommits

Should the driver only issue 'set autocommit=n' queries when the server's state doesn't match the
requested state by 'Connection.setAutoCommit(boolean)'?

Default Value false

Since Version 3.1.3

92

Configuration Properties

• enableEscapeProcessing

Sets the default escape processing behavior for Statement objects. The method
'Statement.setEscapeProcessing()' can be used to specify the escape processing behavior for an
individual statement object. Default escape processing behavior in prepared statements must be
defined with the property 'processEscapeCodesForPrepStmts'.

Default Value true

Since Version 6.0.1

• enableQueryTimeouts

When enabled, query timeouts set via 'Statement.setQueryTimeout()' use a shared 'java.util.Timer'
instance for scheduling. Even if the timeout doesn't expire before the query is processed, there will
be memory used by the 'TimerTask' for the given timeout which won't be reclaimed until the time the
timeout would have expired if it hadn't been cancelled by the driver. High-load environments might
want to consider disabling this functionality.

Default Value true

Since Version 5.0.6

• largeRowSizeThreshold

What size result set row should the JDBC driver consider large, and thus use a more memory-
efficient way of representing the row internally?

Default Value 2048

Since Version 5.1.1

• readOnlyPropagatesToServer

Should the driver issue appropriate statements to implicitly set the transaction access mode on
server side when 'Connection.setReadOnly()' is called? Setting this property to "true" enables
InnoDB read-only potential optimizations but also requires an extra roundtrip to set the right
transaction state. Even if this property is set to "false", the driver will do its best effort to prevent the
execution of database-state-changing queries.

Default Value true

Since Version 5.1.35

• rewriteBatchedStatements

Should the driver use multi-queries, regardless of the setting of 'allowMultiQueries', as well as
rewriting of prepared statements for INSERT and REPLACE queries into multi-values clause
statements when 'executeBatch()' is called?

Notice that this might allow SQL injection when using plain statements and the provided input is
not properly sanitized. Also notice that for prepared statements, if the stream length is not specified
when using 'PreparedStatement.set*Stream()', the driver would not be able to determine the
optimum number of parameters per batch and might return an error saying that the resultant packet
is too large.

'Statement.getGeneratedKeys()', for statements that are rewritten only works when the entire batch
consists of INSERT or REPLACE statements.

Be aware that when using "rewriteBatchedStatements=true" with "INSERT ... ON DUPLICATE
KEY UPDATE" for rewritten statements, the server returns only one value for all affected (or
found) rows in the batch, and it is not possible to map it correctly to the initial statements; in this

93

Configuration Properties

case the driver returns "0" as the result for each batch statement if total count was zero, and
'Statement.SUCCESS_NO_INFO' if total count was above zero.

Default Value false

Since Version 3.1.13

• useReadAheadInput

Use optimized non-blocking buffered input stream when reading from the server?

Default Value true

Since Version 3.1.5

3.5.3.14 Debugging/Profiling

• logger

The name of a class that implements 'com.mysql.cj.log.Log' that will be used to log messages to.
(default is 'com.mysql.cj.log.StandardLogger', which logs to STDERR).

Default Value com.mysql.cj.log.StandardLogger

Since Version 3.1.1

• profilerEventHandler

Name of a class that implements the interface 'com.mysql.cj.log.ProfilerEventHandler' that will be
used to handle profiling/tracing events.

Default Value com.mysql.cj.log.LoggingProfilerEventHandler

Since Version 5.1.6

• useNanosForElapsedTime

For profiling/debugging functionality that measures elapsed time, should the driver try to use
nanoseconds resolution?

Default Value false

Since Version 5.0.7

• maxQuerySizeToLog

Controls the maximum length of the part of a query that will get logged when profiling or tracing.

Default Value 2048

Since Version 3.1.3

• maxByteArrayAsHex

Maximum size for a byte array parameter in a prepared statement that is converted to a hexadecimal
literal when interpolated by 'JdbcPreparedStatement.toString()'. Any byte arrays larger than this
value are interpolated generically as "** BYTE ARRAY DATA **".

Default Value 1024

Since Version 8.0.31

• profileSQL

94

Configuration Properties

Trace queries and their execution/fetch times to the configured 'profilerEventHandler'.

Default Value false

Since Version 3.1.0

• logSlowQueries

Should queries that take longer than 'slowQueryThresholdMillis' or detected by the 'autoSlowLog'
monitoring be reported to the registered 'profilerEventHandler'?

Default Value false

Since Version 3.1.2

• slowQueryThresholdMillis

If 'logSlowQueries' is enabled, how long, in milliseconds, should a query take before it is logged as
slow?

Default Value 2000

Since Version 3.1.2

• slowQueryThresholdNanos

If 'logSlowQueries' is enabled, 'useNanosForElapsedTime' is set to "true", and this property is set to
a non-zero value, the driver will use this threshold, in nanosecond units, to determine if a query was
slow.

Default Value 0

Since Version 5.0.7

• autoSlowLog

Instead of using 'slowQueryThreshold*' to determine if a query is slow enough to be logged, maintain
statistics that allow the driver to determine queries that are outside the 99th percentile?

Default Value true

Since Version 5.1.4

• explainSlowQueries

If 'logSlowQueries' is enabled, should the driver automatically issue an 'EXPLAIN' on the server and
send the results to the configured logger at a WARN level?

Default Value false

Since Version 3.1.2

• gatherPerfMetrics

Should the driver gather performance metrics, and report them via the configured logger every
'reportMetricsIntervalMillis' milliseconds?

Default Value false

Since Version 3.1.2
95

Configuration Properties

• reportMetricsIntervalMillis

If 'gatherPerfMetrics' is enabled, how often should they be logged (in milliseconds)?

Default Value 30000

Since Version 3.1.2

• logXaCommands

Should the driver log XA commands sent by 'MysqlXaConnection' to the server, at the DEBUG level
of logging?

Default Value false

Since Version 5.0.5

• traceProtocol

Should the network protocol be logged at the TRACE level?

Default Value false

Since Version 3.1.2

• enablePacketDebug

When enabled, a ring-buffer of 'packetDebugBufferSize' packets will be kept, and dumped when
exceptions are thrown in key areas in the driver's code.

Default Value false

Since Version 3.1.3

• packetDebugBufferSize

The maximum number of packets to retain when 'enablePacketDebug' is "true".

Default Value 20

Since Version 3.1.3

• useUsageAdvisor

Should the driver issue usage warnings advising proper and efficient usage of JDBC and MySQL
Connector/J to the 'profilerEventHandler'?

Default Value false

Since Version 3.1.1

• resultSetSizeThreshold

If 'useUsageAdvisor' is "true", how many rows should a result set contain before the driver warns that
it is suspiciously large?

Default Value 100

Since Version 5.0.5

• autoGenerateTestcaseScript

Should the driver dump the SQL it is executing, including server-side prepared statements to
STDERR?

96

Configuration Properties

Default Value false

Since Version 3.1.9

3.5.3.15 Exceptions/Warnings

• dumpQueriesOnException

Should the driver dump the contents of the query sent to the server in the message for
SQLExceptions?

Default Value false

Since Version 3.1.3

• exceptionInterceptors

Comma-delimited list of classes that implement the interface
'com.mysql.cj.exceptions.ExceptionInterceptor'. These classes will be instantiated one per
'Connection' instance, and all 'SQLException' exceptions thrown by the driver will be allowed to be
intercepted by these interceptors, in a chained fashion, with the first class listed as the head of the
chain.

Since Version 5.1.8

• ignoreNonTxTables

Ignore non-transactional table warning for rollback?

Default Value false

Since Version 3.0.9

• includeInnodbStatusInDeadlockExceptions

Include the output of "SHOW ENGINE INNODB STATUS" in exception messages when deadlock
exceptions are detected?

Default Value false

Since Version 5.0.7

• includeThreadDumpInDeadlockExceptions

Include current Java thread dump in exception messages when deadlock exceptions are detected?

Default Value false

Since Version 5.1.15

• includeThreadNamesAsStatementComment

Include the name of the current thread as a comment visible in "SHOW PROCESSLIST", or in
Innodb deadlock dumps, useful in correlation with "includeInnodbStatusInDeadlockExceptions=true"
and "includeThreadDumpInDeadlockExceptions=true".

Default Value false

Since Version 5.1.15

• useOnlyServerErrorMessages

Don't prepend standard 'SQLState' error messages to error messages returned by the server.

97

Configuration Properties

Default Value true

Since Version 3.0.15

3.5.3.16 Tunes for integration with other products

• overrideSupportsIntegrityEnhancementFacility

Should the driver return "true" for 'DatabaseMetaData.supportsIntegrityEnhancementFacility()' even
if the database doesn't support it to workaround applications that require this method to return "true"
to signal support of foreign keys, even though the SQL specification states that this facility contains
much more than just foreign key support (one such application being OpenOffice)?

Default Value false

Since Version 3.1.12

• ultraDevHack

Create prepared statements for 'prepareCall()' when required, because UltraDev is broken and
issues a 'prepareCall()' for all statements?

Default Value false

Since Version 2.0.3

3.5.3.17 JDBC compliance

• useColumnNamesInFindColumn

Prior to JDBC-4.0, the JDBC specification had a bug related to what could be given as a
column name to result set methods like 'findColumn()', or getters that took a String property.
JDBC-4.0 clarified "column name" to mean the label, as given in an "AS" clause and returned by
'ResultSetMetaData.getColumnLabel()', and if no "AS" clause is specified, the column name. Setting
this property to "true" will result in a behavior that is congruent to JDBC-3.0 and earlier versions of
the JDBC specification, but which could have unexpected results. This property is preferred over
'useOldAliasMetadataBehavior' unless in need of the specific behavior that it provides with respect to
'ResultSetMetadata'.

Default Value false

Since Version 5.1.7

• pedantic

Follow the JDBC specification to the letter.

Default Value false

Since Version 3.0.0

• useOldAliasMetadataBehavior

Should the driver use the legacy behavior for "AS" clauses on columns and tables, and only return
aliases ,if any, for 'ResultSetMetaData.getColumnName()' or 'ResultSetMetaData.getTableName()'
rather than the original column/table name?

Default Value false

Since Version 5.0.498

Configuration Properties

3.5.3.18 X Protocol and X DevAPI

• xdevapi.auth

Authentication mechanism to use with the X Protocol. Allowed values are "SHA256_MEMORY",
"MYSQL41", "PLAIN", and "EXTERNAL". Value is case insensitive. If the property is not set, the
mechanism is chosen depending on the connection type: "PLAIN" is used for TLS connections and
"SHA256_MEMORY" or "MYSQL41" is used for unencrypted connections.

Default Value PLAIN

Since Version 8.0.8

• xdevapi.compression

X DevAPI-specific network traffic compression. This option accepts one of the three values:
"PREFERRED", "REQUIRED", and "DISABLED". Setting this option to "PREFERRED" or
"REQUIRED" enables compression algorithm negotiation between Connector and Server, and turns
on compression of large X Protocol packets, as long as a consensus is reached between client and
server regarding the compression algorithm to use. If a consensus cannot be reached, connection
fails if the option is set to "REQUIRED" and continues without compression if the option is set to
"PREFERRED". Setting this option as "DISABLED" skips the compression negotiation phase and
forbids the interchange of compressed messages between client and server.

Default Value PREFERRED

Since Version 8.0.20

• xdevapi.compression-algorithms

A comma-delimited list of compression algorithms, each one identified by its name and
operating mode, (e.g. "lz4_message"; consult the description for the MySQL global variable
'mysqlx_compression_algorithms' for a list of supported and enabled algorithms), that defines the
order and which algorithms will be attempted when negotiating connection compression with the
server.

The compression algorithm 'deflate_stream' is supported natively. Additional compression
algorithms require using third-party libraries and enabling them with the connection property
'xdevapi.compression-extensions'.

This option is meaningful only when network traffic compression is enabled using the connection
property 'xdevapi.compression'.

As an alternative to the default algorithm names, that contain a reference to the compression
operation mode, the aliases "zstd", "lz4", and "deflate" can be used instead of "zstd_stream",
"lz4_message", and "deflate_stream".

Default Value zstd_stream,lz4_message,deflate_stream

Since Version 8.0.22

• xdevapi.compression-extensions

A comma-delimited list of triplets, with their elements delimited by colon, that enables the support
for additional compression algorithms. Each triplet must contain: first, an algorithm name and
operating mode (e.g. "lz4_message"; consult the description for the MySQL global variable
'mysqlx_compression_algorithms' for a list of supported and enabled algorithms); second, a fully-
qualified class name of a class implementing the interface 'java.io.InputStream' that will be used
to inflate data compressed with the named algorithm; third, a fully-qualified class name of a class
implementing the interface 'java.io.OutputStream' that will be used to deflate data using the named99

Configuration Properties

algorithm. Along with this setting, the library containing implementations of the designated classes
must be available in the application's class path.

Any number of triplets defining compression algorithms and their inflater and deflater
implementations can be provided but only the ones supported and enabled on the MySQL Server
can be used.

The compression algorithm 'deflate_stream' is supported natively. Additional compression algorithms
require using third-party libraries.

This option is meaningful only when network traffic compression is enabled using the connection
property 'xdevapi.compression'.

As an alternative to the default algorithm names, that contain a reference to the compression
operation mode, the aliases "zstd", "lz4", and "deflate" can be used instead of "zstd_stream",
"lz4_message", and "deflate_stream".

Since Version 8.0.22

• xdevapi.connect-timeout

X DevAPI-specific timeout, in milliseconds, for socket connect, with "0" being no timeout. If
'xdevapi.connect-timeout' is not set explicitly and 'connectTimeout' is, 'xdevapi.connect-timeout' takes
up the value of 'connectTimeout'.

Default Value 10000

Since Version 8.0.13

• xdevapi.connection-attributes

An X DevAPI-specific comma-delimited list of user-defined "key=value" pairs, in addition to standard
X Protocol-defined "key=value" pairs, to be passed to MySQL Server for display as connection
attributes in the 'PERFORMANCE_SCHEMA' tables 'session_account_connect_attrs' and
'session_connect_attrs'. Example usage: "xdevapi.connection-attributes=key1=value1,key2=value2"
or "xdevapi.connection-attributes=[key1=value1,key2=value2]". This functionality is available for
use with MySQL Server version 8.0.16 or later only. Earlier versions of X Protocol do not support
connection attributes, causing this configuration option to be ignored. For situations where Session
creation/initialization speed is critical, setting "xdevapi.connection-attributes=false" will cause
connection attribute processing to be bypassed.

Since Version 8.0.16

• xdevapi.dns-srv

X DevAPI-specific option for instructing the driver use the given host name to lookup for DNS SRV
records and use the resulting list of hosts in a multi-host failover connection. Note that a single host
name and no port must be provided when this option is enabled.

Default Value false

Since Version 8.0.19

• xdevapi.fallback-to-system-keystore

X DevAPI-specific switch to specify whether in the absence of a set value for 'xdevapi.ssl-
keystore' (or 'clientCertificateKeyStoreUrl'), Connector/J falls back to using the system-wide key
store defined through the system properties 'javax.net.ssl.keyStore*'. If not specified, the value of
'fallbackToSystemKeyStore' is used.

Default Value true

100

Configuration Properties

Since Version 8.0.22

• xdevapi.fallback-to-system-truststore

X DevAPI-specific switch to specify whether in the absence of a set value for 'xdevapi.ssl-
truststore' (or 'trustCertificateKeyStoreUrl'), Connector/J falls back to using the system-wide default
trust store or one defined through the system properties 'javax.net.ssl.trustStore*'. If not specified,
the value of 'fallbackToSystemTrustStore' is used.

Default Value true

Since Version 8.0.22

• xdevapi.ssl-keystore

X DevAPI-specific URL for the client certificate key store. If not specified, use
'clientCertificateKeyStoreUrl' value.

Since Version 8.0.22

• xdevapi.ssl-keystore-password

X DevAPI-specific password for the client certificate key store. If not specified, use
'clientCertificateKeyStorePassword' value.

Since Version 8.0.22

• xdevapi.ssl-keystore-type

X DevAPI-specific type of the client certificate key store. If not specified, use
'clientCertificateKeyStoreType' value.

Default Value JKS

Since Version 8.0.22

• xdevapi.ssl-mode

X DevAPI-specific SSL mode setting. If not specified, use 'sslMode'. Because the "PREFERRED"
mode is not applicable to X Protocol, if 'xdevapi.ssl-mode' is not set and 'sslMode' is set to
"PREFERRED", 'xdevapi.ssl-mode' is set to "REQUIRED".

Default Value REQUIRED

Since Version 8.0.7

• xdevapi.ssl-truststore

X DevAPI-specific URL for the trusted CA certificates key store. If not specified, use
'trustCertificateKeyStoreUrl' value.

Since Version 6.0.6

• xdevapi.ssl-truststore-password

X DevAPI-specific password for the trusted CA certificates key store. If not specified, use
'trustCertificateKeyStorePassword' value.

Since Version 6.0.6

• xdevapi.ssl-truststore-type

101

JDBC API Implementation Notes

X DevAPI-specific type of the trusted CA certificates key store. If not specified, use
'trustCertificateKeyStoreType' value.

Default Value JKS

Since Version 6.0.6

• xdevapi.tls-ciphersuites

X DevAPI-specific property overriding the cipher suites enabled for use on the underlying SSL
sockets. If not specified, the value of 'enabledSSLCipherSuites' is used.

Since Version 8.0.19

• xdevapi.tls-versions

X DevAPI-specific property that takes a list of TLS protocols to allow when creating secure sessions.
Overrides the TLS protocols enabled in the underlying SSL socket. If not specified, then the value of
'tlsVersions' is used instead. Allowed and default values are "TLSv1.2" and "TLSv1.3".

Since Version 8.0.19

3.5.4 JDBC API Implementation Notes

MySQL Connector/J, as a rigorous implementation of the JDBC API, passes all of the tests in the
publicly available version of Oracle's JDBC compliance test suite. The JDBC specification is flexible
on how certain functionality should be implemented. This section gives details on an interface-by-
interface level about implementation decisions that might affect how you code applications with MySQL
Connector/J.

• BLOB

You can emulate BLOBs with locators by adding the property emulateLocators=true to your
JDBC URL. Using this method, the driver will delay loading the actual BLOB data until you retrieve
the other data and then use retrieval methods (getInputStream(), getBytes(), and so forth) on
the BLOB data stream.

You must use a column alias with the value of the column to the actual name of the BLOB, for
example:

SELECT id, 'data' as blob_data from blobtable

You must also follow these rules:

• The SELECT must reference only one table. The table must have a primary key.

• The SELECT must alias the original BLOB column name, specified as a string, to an alternate
name.

• The SELECT must cover all columns that make up the primary key.

The BLOB implementation does not allow in-place modification (they are copies, as reported
by the DatabaseMetaData.locatorsUpdateCopies() method). Because of this, use the
corresponding PreparedStatement.setBlob() or ResultSet.updateBlob() (in the case of
updatable result sets) methods to save changes back to the database.

• Connection

The isClosed() method does not ping the server to determine if it is available. In accordance with
the JDBC specification, it only returns true if closed() has been called on the connection. If you

102

http://www.oracle.com/technetwork/java/javase/jdbc/index.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_primary_key
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/select.html

JDBC API Implementation Notes

need to determine if the connection is still valid, issue a simple query, such as SELECT 1. The driver
will throw an exception if the connection is no longer valid.

• DatabaseMetaData

Foreign key information (getImportedKeys()/getExportedKeys() and
getCrossReference()) is only available from InnoDB tables. The driver uses SHOW CREATE
TABLE to retrieve this information, so if any other storage engines add support for foreign keys, the
driver would transparently support them as well.

• PreparedStatement

Two variants of prepared statements are implemented by Connector/J, the client-side and the
server-side prepared statements. Client-side prepared statements are used by default because
early MySQL versions did not support the prepared statement feature or had problems with
its implementation. Server-side prepared statements and binary-encoded result sets are used
when the server supports them. To enable usage of server-side prepared statements, set
useServerPrepStmts=true.

Be careful when using a server-side prepared statement with large parameters that
are set using setBinaryStream(), setAsciiStream(), setUnicodeStream(),
setCharacterStream(), setNCharacterStream(), setBlob(), setClob(), or
setNCLob(). To re-execute the statement with any large parameter changed to a nonlarge
parameter, call clearParameters() and set all parameters again. The reason for this is as
follows:

• During both server-side prepared statements and client-side emulation, large data is exchanged
only when PreparedStatement.execute() is called.

• Once that has been done, the stream used to read the data on the client side is closed (as per the
JDBC spec), and cannot be read from again.

• If a parameter changes from large to nonlarge, the driver must reset the server-side state of
the prepared statement to allow the parameter that is being changed to take the place of the
prior large value. This removes all of the large data that has already been sent to the server,
thus requiring the data to be re-sent, using the setBinaryStream(), setAsciiStream(),
setUnicodeStream(), setCharacterStream(), setNCharacterStream(), setBlob(),
setClob(), or setNCLob() method.

Consequently, to change the type of a parameter to a nonlarge one, you must call
clearParameters() and set all parameters of the prepared statement again before it can be re-
executed.

• ResultSet

By default, ResultSets are completely retrieved and stored in memory. In most cases this is the
most efficient way to operate and, due to the design of the MySQL network protocol, is easier to
implement. If you are working with ResultSets that have a large number of rows or large values and
cannot allocate heap space in your JVM for the memory required, you can tell the driver to stream
the results back one row at a time.

To enable this functionality, create a Statement instance in the following manner:

stmt = conn.createStatement(java.sql.ResultSet.TYPE_FORWARD_ONLY,
 java.sql.ResultSet.CONCUR_READ_ONLY);

103

https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_foreign_key
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/show-create-table.html
https://dev.mysql.com/doc/refman/8.0/en/show-create-table.html

JDBC API Implementation Notes

stmt.setFetchSize(Integer.MIN_VALUE);

The combination of a forward-only, read-only result set, with a fetch size of Integer.MIN_VALUE
serves as a signal to the driver to stream result sets row-by-row. After this, any result sets created
with the statement will be retrieved row-by-row.

There are some caveats with this approach. You must read all of the rows in the result set (or close
it) before you can issue any other queries on the connection, or an exception will be thrown.

The earliest the locks these statements hold can be released (whether they be MyISAM table-level
locks or row-level locks in some other storage engine such as InnoDB) is when the statement
completes.

If the statement is within scope of a transaction, then locks are released when the transaction
completes (which implies that the statement needs to complete first). As with most other databases,
statements are not complete until all the results pending on the statement are read or the active
result set for the statement is closed.

Therefore, if using streaming results, process them as quickly as possible if you want to maintain
concurrent access to the tables referenced by the statement producing the result set.

Another alternative is to use cursor-based streaming to retrieve a set number of rows each time.
This can be done by setting the connection property useCursorFetch to true, and then calling
setFetchSize(int) with int being the desired number of rows to be fetched each time:

conn = DriverManager.getConnection("jdbc:mysql://localhost/?useCursorFetch=true", "user", "s3cr3t");
stmt = conn.createStatement();
stmt.setFetchSize(100);
rs = stmt.executeQuery("SELECT * FROM your_table_here");

• Statement

Connector/J includes support for both Statement.cancel() and
Statement.setQueryTimeout(). Both require a separate connection to issue the KILL QUERY
statement. In the case of setQueryTimeout(), the implementation creates an additional thread to
handle the timeout functionality.

Note

Failures to cancel the statement for setQueryTimeout() may manifest
themselves as RuntimeException rather than failing silently, as there
is currently no way to unblock the thread that is executing the query being
cancelled due to timeout expiration and have it throw the exception instead.

MySQL does not support SQL cursors, and the JDBC driver does not emulate them, so
setCursorName() has no effect.

Connector/J also supplies two additional methods:

• setLocalInfileInputStream() sets an InputStream instance that will be used to
send data to the MySQL server for a LOAD DATA LOCAL INFILE statement rather than a
FileInputStream or URLInputStream that represents the path given as an argument to the
statement.

This stream will be read to completion upon execution of a LOAD DATA LOCAL INFILE
statement, and will automatically be closed by the driver, so it needs to be reset before each call

104

https://dev.mysql.com/doc/refman/8.0/en/kill.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html

Java, JDBC, and MySQL Types

to execute*() that would cause the MySQL server to request data to fulfill the request for LOAD
DATA LOCAL INFILE.

If this value is set to NULL, the driver will revert to using a FileInputStream or
URLInputStream as required.

• getLocalInfileInputStream() returns the InputStream instance that will be used to send
data in response to a LOAD DATA LOCAL INFILE statement.

This method returns NULL if no such stream has been set using
setLocalInfileInputStream().

3.5.5 Java, JDBC, and MySQL Types

MySQL Connector/J is flexible in the way it handles conversions between MySQL data types and Java
data types.

In general, any MySQL data type can be converted to a java.lang.String, and any numeric type
can be converted to any of the Java numeric types, although round-off, overflow, or loss of precision
may occur.

Connector/J issues warnings or throws DataTruncation exceptions as is required by the
JDBC specification, unless the connection was configured not to do so by using the property
jdbcCompliantTruncation and setting it to false.

The conversions that are always guaranteed to work are listed in the following table. The first column
lists one or more MySQL data types, and the second column lists one or more Java types to which the
MySQL types can be converted.

Table 3.22 Possible Conversions Between MySQL and Java Data Types

These MySQL Data Types Can always be converted to these Java types

CHAR, VARCHAR, BLOB, TEXT, ENUM, and
SET

java.lang.String,
java.io.InputStream, java.io.Reader,
java.sql.Blob, java.sql.Clob

FLOAT, REAL, DOUBLE PRECISION,
NUMERIC, DECIMAL, TINYINT, SMALLINT,
MEDIUMINT, INTEGER, BIGINT

java.lang.String, java.lang.Short,
java.lang.Integer,
java.lang.Long, java.lang.Double,
java.math.BigDecimal

DATE, TIME, DATETIME, TIMESTAMP java.lang.String, java.sql.Date,
java.sql.Timestamp

Note

Round-off, overflow or loss of precision may occur if you choose a Java numeric
data type that has less precision or capacity than the MySQL data type you are
converting to/from.

The ResultSet.getObject() method uses the type conversions between
MySQL and Java types, following the JDBC specification where appropriate.
The values returned by ResultSetMetaData.GetColumnTypeName()and
ResultSetMetaData.GetColumnClassName() are shown in the table below. For more information
on the JDBC types, see the reference on the java.sql.Types class.

Table 3.23 MySQL Types and Return Values for ResultSetMetaData.GetColumnTypeName()and
ResultSetMetaData.GetColumnClassName()

MySQL Type Name Return value of
GetColumnTypeName

Return value of GetColumnClassName

BIT(1) BIT java.lang.Boolean

105

https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
http://docs.oracle.com/javase/8/docs/api/java/sql/Types.html

Java, JDBC, and MySQL Types

MySQL Type Name Return value of
GetColumnTypeName

Return value of GetColumnClassName

BIT(> 1) BIT byte[]

TINYINT(1) SIGNED,
BOOLEAN

If
tinyInt1isBit=true
and
transformedBitIsBoolean=false:
BIT

If
tinyInt1isBit=true
and
transformedBitIsBoolean=true:
BOOLEAN

If
tinyInt1isBit=false:
TINYINT

If tinyInt1isBit=true and
transformedBitIsBoolean=false:
java.lang.Boolean

If tinyInt1isBit=true and
transformedBitIsBoolean=true:
java.lang.Boolean

If tinyInt1isBit=false:
java.lang.Integer

TINYINT(> 1)
SIGNED

TINYINT java.lang.Integer

TINYINT(any)
UNSIGNED

TINYINT UNSIGNED java.lang.Integer

SMALLINT[(M)]
[UNSIGNED]

SMALLINT
[UNSIGNED]

java.lang.Integer (regardless of whether it is
UNSIGNED or not)

MEDIUMINT[(M)]
[UNSIGNED]

MEDIUMINT
[UNSIGNED]

java.lang.Integer (regardless of whether it is
UNSIGNED or not)

INT,INTEGER[(M)] INTEGER java.lang.Integer

INT,INTEGER[(M)]
UNSIGNED

INTEGER UNSIGNED java.lang.Long

BIGINT[(M)] BIGINT java.lang.Long

BIGINT[(M)]
UNSIGNED

BIGINT UNSIGNED java.math.BigInteger

FLOAT[(M,D)] FLOAT java.lang.Float

DOUBLE[(M,B)]
[UNSIGNED]

DOUBLE java.lang.Double (regardless of whether it is
UNSIGNED or not)

DECIMAL[(M[,D])]
[UNSIGNED]

DECIMAL java.math.BigDecimal (regardless of whether
it is UNSIGNED or not)

DATE DATE java.sql.Date

DATETIME DATETIME java.time.LocalDateTime

TIMESTAMP[(M)] TIMESTAMP java.sql.Timestamp

TIME TIME java.sql.Time

YEAR[(2|4)] YEAR If yearIsDateType configuration property
is set to false, then the returned object type
is java.sql.Short. If set to true (the
default), then the returned object is of type
java.sql.Date.

CHAR(M) CHAR java.lang.String

VARCHAR(M) VARCHAR java.lang.String

BINARY(M), CHAR(M)
BINARY

BINARY byte[]

106

Handling of Date-Time Values

MySQL Type Name Return value of
GetColumnTypeName

Return value of GetColumnClassName

VARBINARY(M),
VARCHAR(M) BINARY

VARBINARY byte[]

BLOB BLOB byte[]

TINYBLOB TINYBLOB byte[]

MEDIUMBLOB MEDIUMBLOB byte[]

LONGBLOB LONGBLOB byte[]

TEXT TEXT java.lang.String

TINYTEXT TINYTEXT java.lang.String

MEDIUMTEXT MEDIUMTEXT java.lang.String

LONGTEXT LONGTEXT java.lang.String

JSON JSON java.lang.String

GEOMETRY GEOMETRY byte[]

ENUM('value1','value2',...)CHAR java.lang.String

SET('value1','value2',...)CHAR java.lang.String

3.5.6 Handling of Date-Time Values

3.5.6.1 Preserving Time Instants

Background

A time instant is a specific moment on a time-line. A time instant is said to be preserved when it always
refers to the same point in time when its value is being stored to or retrieved from a database, no
matter what time zones the database server and the clients are operating in.

TIMESTAMP is the only MySQL data type designed to store instants. To preserve time instants, the
server applies time zone conversions in incoming or outgoing time values when needed. Incoming
values are converted by server from the connection session's time zone to Coordinated Universal Time
(UTC) for storage, and outgoing values are converted from UTC to the session time zone. Starting
from MySQL 8.0.19, you can also specify a time zone offset when storing TIMESTAMP values (see
The DATE, DATETIME, and TIMESTAMP Types for details), in which case the TIMESTAMP values are
converted to the UTC from the specified offset instead of the session time zone. But, once stored, the
original offset information is no longer preserved.

The situation is less straightforward with the DATETIME data type: it does not represent an instant
and, when no time zone offset is specified, there is no time zone conversion for DATETIME values, so
they are stored and retrieved as they are. However, with a specified time zone offset, the input value
is converted to the session time zone before it is stored; the result is that, when retrieved in a different
session with a different time zone offset as the specified one, the DATETIME value becomes different
from the original input value.

Because MySQL data types other than TIMESTAMP (and the Java wrapper classes for those other
MySQL data types) do not represent true time instants; mixing up instant-representing and non-instant-
representing date-time types when storing and retrieving values might give rise to unexpected results.
For example:

• When storing java.sql.Timestamp to, for example, a DATETIME column, you might not get back
the same instant value when retrieving it into a client that is in a different time zone than the one the
client was in when storing the value.

• When storing, for example, a java.time.LocalDateTime to a TIMESTAMP column, you might
not be storing the correct UTC-based value for it, because the time zone for the value is actually
undefined.

107

https://dev.mysql.com/doc/refman/8.0/en/time-zone-support.html#time-zone-variables
https://dev.mysql.com/doc/refman/8.0/en/datetime.html

Handling of Date-Time Values

Therefore, do not pass instant date-time types (java.util.Calendar, java.util.Date,
java.time.OffsetDateTime, java.sql.Timestamp) to non-instant date-time types (for example,
java.sql.DATE, java.time.LocalDate, java.time.LocalTime, java.time.OffsetTime)
or vice versa, when working with the server.

The rest of the section discusses how to preserve time instants when working with Connector/J.

Preserving Instants with Connector/J

The scenario: Let us assume that an application is running on a certain application server and is
connecting to a MySQL server using Connector/J. Certain events take place in a connection session,
for which timestamps are generated, and the event timestamps are associated with the JVM time zone
of the application server. These timestamps are to be stored onto a MySQL Server, and are also to be
retrieved from it later.

The challenge: The timestamps' instant values need to be preserved when they are saved onto or
retrieved from the server using Connector/J. Because the MySQL Server always assumes implicitly
that a time instant value references to the connection session time zone (which is set by the session
time_zone variable) when being saved to or retrieved form the server, a time instant value is properly
preserved only in the following situations:

1. When Connector/J is running in the same time zone as the MySQL Server (i.e., the server's session
time zone is the same as the JVM's time zone), time instants are naturally preserved, and no time
zone conversion is needed. Note that in this case, time instants are really preserved only if the
server and the JVM continue to run always in the same time zone in the future.

2. When Connector/J is running in a different time zone from that of the MySQL Server (i.e., the
JVM's time zone is different from the server's session time zone), Connector/.J performs one of the
following:

a. Queries the value of the session time zone from the server, and converts the event timestamps
between the session time zone and the JVM time zone.

b. Changes the server's session time zone to that of the JVM time zone, after which no time zone
conversion will be required.

c. Changes the server session time zone to a desired time zone specified by the user, and then
converts the timestamps between the JVM time zone and the user-specified time zone.

We identify the above solutions for time instant preservation as Solution 1, 2a, 2b, and 2c. To achieve
these solutions, the following connection properties have been introduced in Connector/J since release
8.0.23:

• preserveInstants={true|false}: Whether to attempt to preserve time instant values by
adjusting timestamps.

• When it is false, no conversions are attempted; a timestamp is sent to the server as-is for
storage, and its visual presentation, not the actual time instant is preserved. When it is retrieved
from the server by Connector/J, different time zones might be associated with it, as the retrieval
might happen in different JVM time zones. For example: For example:

• Time zones: UTC for JVM, UTC+1 for server session

• Original timestamp from client (in UTC): 2020-01-01 01:00:00

• Timestamp sent to server by Connector/J: 2020-01-01 01:00:00 (no conversion)

• Timestamp values stored internally on the server: 2020-01-01 00:00:00 UTC (after internal
conversion of 2020-01-01 00:00:00 UTC+1 to UTC)

• Timestamp value retrieved later into a server section (in UTC+1): 2020-01-01 01:00:00
(after internal conversion of 2020-01-01 00:00:00 from UTC to UTC+1)

108

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_time_zone

Handling of Date-Time Values

• Timestamp values constructed by Connector/J in some other JVM time zone then before (say, in
UTC+3): 2020-01-01 01:00:00

• Comment: Time instant is not preserved

• When it is true, Connector/J attempts to preserve the time instants by performing the
conversions in a manner defined by the connection properties connectionTimeZone and
forceConnectionTimeZoneToSession.

When storing a value, the conversion is performed only if the target data type, either the explicit
one or the default one, is TIMESTAMP. When retrieving a value, the conversion is performed only if
the source column has the TIMESTAMP, DATETIME, or a character data type and the target class
is an instant-preserving one, like java.sql.Timestamp or java.time.OffsetDateTime.

• connectionTimeZone={LOCAL|SERVER|user-defined-time-zone}: Specifies how the
server's session time zone (in reference to which the timestamps are saved onto the server) is to be
determined by Connector/J. It takes on one of the following values:

• LOCAL: Connector/J assumes that the server's session time zone either (a) is the same as
the JVM time zone for Connector/J, or (b) should be set as the same as the JVM time zone
for Connector/J. Connector/J takes the situation as (a) or (b) depending on the value of the
connection property forceConnectionTimeZoneToSession.

• SERVER: Connector/J should query the session's time zone from the server, instead of making
any assumptions about it. If the session time zone actually turns out to be different from
Connector/J's JVM time zone and preserveInstants=true, Connector/J performs time zone
conversion between the session time zone and the JVM time zone.

• user-defined-time-zone: Connector/J assumes that the server's session time zone either
(a) is the same as the user-defined time zone, or (b) should be set as the user-defined time zone.
Connector/J takes the situation as (a) or (b) depending on the value of the connection property
forceConnectionTimeZoneToSession.

Note

For Connector/J 8.0.23 and later, serverTimezone is an alias
for connectionTimeZone. For Connector/J 8.0.22 and earlier,
serverTimezone was used to override the session time zone setting on the
server.

• forceConnectionTimeZoneToSession={true|false}: Controls whether the session
time_zone variable is to be set to the value specified in connectionTimeZone.

Now, here are the connection properties values to be used for achieving the Solutions defined above
for preserving time instants:

• Solution 1: Use either preserveInstants=false or connectionTimeZone=LOCAL&
forceConnectionTimeZoneToSession=false. Because it can be safely assumed that the server
session time zone is the same as Connector/J' s JVM timezone, no query of the server's session
time zone occurs, and no time zone conversion occurs. For example:

• Time zones: UTC+1 for both the JVM and the server session

• Original timestamp from client (in UTC+1): 2020-01-01 01:00:00

• Timestamp sent to server by Connector/J: 2020-01-01 01:00:00 (no conversion needed)

• Timestamp values stored internally on the server: 2020-01-01 00:00:00 UTC (after internal
conversion from UTC+1 to UTC)

109

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_time_zone

Handling of Date-Time Values

• Timestamp value retrieved later into a server time session in UTC+1 that Connector/J connects to:
2020-01-01 01:00:00 (after internal conversion from UTC to UTC+1)

• Timestamp value constructed by Connector/J in the same JVM time zone as before (UTC+1) and
returned to an application: 2020-01-01 01:00:00

• Comment: Time instant is preserved without conversion.

Note

This setting corresponds to the default behavior of Connector/J 5.1

• Solution 2a: Use preserveInstants=true&connectionTimeZone=SERVER . Connector/J then
queries the value of the session time zone from the server, and converts the event timestamps
between the session time zone and the JVM time zone. For example:

• Time zones: UTC+2 for JVM, UTC+1 for server session

• Original timestamp from client (in UTC+2): 2020-01-01 02:00:00

• Timestamp sent to server by Connector/J: 2020-01-01 01:00:00 (after conversion from UTC+2
to UTC+1)

• Timestamp value stored internally on the server: 2020-01-01 00:00:00 UTC (after internal
conversion from UTC+1 to UTC)

• Timestamp value retrieved later into a server session in UTC+1: 2020-01-01 01:00:00 (after
internal conversion from UTC to UTC+1)

• Timestamp values constructed by Connector/J in the same JVM time zone as before (UTC+2) and
returned to an application: 2020-01-01 02:00:00 (after conversion from UTC+1 to UTC+2)

• Timestamp values constructed by Connector/J in another JVM time zone (say, UTC+3) and
returned to an application: 2020-01-01 03:00:00 (after conversion from UTC+1 to UTC+3)

• Comment: Time instant is preserved.

Notes

• This setting corresponds to the default behavior of Connector/
J 8.0.22 and before and to the behavior of Connector/J 5.1 with
useLegacyDatetimeCode=false.

110

Handling of Date-Time Values

• Solution 2b: Use connectionTimeZone=LOCAL& forceConnectionTimeZoneToSession=true.
Connector/J then changes the server's session time zone to that of the JVM time zone, after which
no timezone conversions are required when storing or achieving the timestamps. For example:

• Time zones: UTC+1 for JVM, UTC+2 for server session originally, but now modified to UTC+1 by
Connector/J

• Original timestamp from client (in UTC+1): 2020-01-01 01:00:00

• Timestamp sent to server by Connector/J: 2020-01-01 01:00:00 (no conversion)

• Timestamp values stored internally on the server: 2020-01-01 00:00:00 (after internal
conversion from UTC+1 to UTC)

• Timestamp values retrieved later into a server session (in UTC+1, as set by Connector/J):
2020-01-01 01:00:00 (after internal conversion from UTC to UTC+1)

• Timestamp value constructed by Connector/J in the same JVM time zone as before (UTC+1):
2020-01-01 01:00:00 (no conversion needed)

• Timestamp values retrieved later into a server session (time zone modified to, say, UTC+3, by
Connector/J): 2020-01-01 03:00:00 (after internal conversion from UTC to UTC+3)

• Timestamp value constructed by Connector/J in the JVM time zone of UTC+3: 2020-01-01
03:00:00 (no conversion needed)

• Comment: Time instant is preserved without conversion by Connector/J, because the session time
zone is changed by Connector/J to its JVM's value.

Warnings

• • Altering the session time zone affects the results of MySQL functions
such as NOW(), CURTIME(), or CURDATE()—if you do not want those
functions to be affected, do not use this setting.

• If you use this setting on different clients in different time zones, the
clients are going to modify their connection session's time zones to
different values; if you want to keep the same visual date-time value
representation for the same time instant for all the clients and in all their
sessions, store the values to a DATETIME instead of a TIMESTAMP
column and use non-instant Java classes for them, for example,
java.time.LocalDateTime.

• Solution 2c: Use preserveInstants=true&connectionTimeZone=user-defined-time-zone&
forceConnectionTimeZoneToSession=true. Connector/J then changes the server's session time
zone to the user-defined time zone, and converts the timestamps between the user-defined time
zone and the JVM time zone. A typical use case for this setting is when the session time zone value
on the server is known to be unrecognizable by Connector/J (e.g., CST or CEST). For example:

• Time zones: UTC+2 for JVM, CET for server session originally, but now modified to user-specified
Europe/Berlin by Connector/J

• Original timestamp from client (in UTC+2): 2020-01-01 02:00:00

• Timestamp sent to server by Connector/J: 2020-01-01 01:00:00 (after conversion between
JVM time zone (UTC+2) and user-defined time zone (Europe/Berlin=UTC+1))

• Timestamp values stored internally on the server: 2020-01-01 00:00:00 (after internal
conversion from UTC+1 to UTC)

111

Handling of Date-Time Values

• Timestamp value retrieved into a server session (time zone modified to Europe/Berlin (=UTC
+1) by Connector/J): 2020-01-01 01:00:00 (after internal conversion from UTC to UTC+1)

• Timestamp value constructed by Connector/J in the same JVM time zone as before (UTC+2) and
returned to an application: 2020-01-01 02:00:00 (after conversion between user-defined time
zone (UTC+1) and JVM time zone (UTC+2)).

• Comment: Time instant is preserved with conversion and with the session time zone being
changed by Connector/J according to a user-defined value.

As an alternative to this solution, the user might want the same conversion of the timestamps
between the JVM time zone and the user-defined time zone as described above, without
actually correcting the unrecognizable time zone value on the server. To do so, use,
preserveInstants=true&connectionTimeZone=user-defined-time-zone&
forceConnectionTimeZoneToSession=false. This achieves the same result of preserving the
time instant.

Warnings

See the warnings above for Solution 2b.

3.5.6.2 Fractional Seconds

While a java.sql.TIME instance, according to the JDBC specification, is not supposed to contain
fractional seconds by design, because java.sql.TIME is a wrapper around java.util.Date, it
is possible to store fractional seconds in a java.sql.TIME instance. However, when Connector/
J inserted a java.sql.TIME into the server as a MySQL TIME value, the fractional seconds were
always truncated. To allow the fractional seconds to be sent to the server, a connection property,
sendFractionalSecondsForTime, has been introduced in release 8.0.23: when the property is
true (which is the default value), the fractional seconds for java.sql.TIME are sent to the server;
otherwise, the fractional seconds are truncated.

Also, the connection property sendFractionalSeconds has become a global control for
the sending of fractional seconds for ALL date-time types since release 8.0.23. As a result, if
sendFractionalSeconds=false, fractional seconds are not sent irrespective of the value of
sendFractionalSecondsForTime.

3.5.6.3 Handling of YEAR Values

How a value in a MySQL YEAR column is handled is controlled by the connection property
yearIsDateType:

• If yearIsDateType is true (the default), YEAR is mapped to the Java data type java.sql.Date.

• If yearIsDateType is false, YEAR is mapped to the Java data type java.sql.Short.

Connector/J follows the same rules that govern how values are inserted by a mysql client; see
explanations in The YEAR Type for details.

Connector/J handles the retrieval of zero values from a YEAR column differently than a mysql client.
Treatments of zero values depend on whether they are strings or numbers, and on the value of
yearIsDateType:

• If a string value of '0', '00', or '000' is entered into a YEAR column, when retrieved by
Connector/J:

• If yearIsDateType is true, the retrieved value is equivalent to January 1, 2000 00:00:00.000.

• If yearIsDateType is false, the retrieved value is 2000

112

https://dev.mysql.com/doc/refman/8.0/en/year.html
https://dev.mysql.com/doc/refman/8.0/en/year.html
https://dev.mysql.com/doc/refman/8.0/en/year.html
https://dev.mysql.com/doc/refman/8.0/en/year.html

Using Character Sets and Unicode

• If a numeric value of 0, 00, 000, or 0000 is entered into a YEAR column, when retrieved by
Connector/J,

• If yearIsDateType is true, the retrieved value is equivalent to January 1, 2000 00:00:00.000.

• If yearIsDateType is false, the retrieved value is 0

3.5.7 Using Character Sets and Unicode

All strings sent from the JDBC driver to the server are converted automatically from native
Java Unicode form to the connection's character encoding, including all queries sent using
Statement.execute(), Statement.executeUpdate(), and Statement.executeQuery(), as
well as all PreparedStatement and CallableStatement parameters, excluding parameters set
using the following methods:

• setBlob()

• setBytes()

• setClob()

• setNClob()

• setAsciiStream()

• setBinaryStream()

• setCharacterStream()

• setNCharacterStream()

• setUnicodeStream()

Number of Encodings Per Connection

Connector/J supports a single character encoding between the client and the server, and any number
of character encodings for data returned by the server to the client in ResultSets.

Setting the Character Encoding

For Connector/J 8.0.25 and earlier: The character encoding between the client and the server
is automatically detected upon connection (provided that the Connector/J connection properties
characterEncoding and connectionCollation are not set). The encoding on the
server is specified using the system variable character_set_server (for more information,
see Server Character Set and Collation), and the driver automatically uses the encoding.
For example, to use the 4-byte UTF-8 character set with Connector/J, configure the MySQL
server with character_set_server=utf8mb4, and leave characterEncoding and
connectionCollation out of the Connector/J connection string. Connector/J will then autodetect
the UTF-8 setting. To override the automatically detected encoding on the client side, use the
characterEncoding property in the connection URL to the server.

For Connector/J 8.0.26 and later: There are two phases during the connection initialization in which the
character encoding and collation are set.

• Pre-Authentication Phase: In this phase, the character encoding between the client and the server is
determined by the settings of the Connector/J connection properties, in the following order of priority:

• passwordCharacterEncoding

• connectionCollation

• characterEncoding

113

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_server
https://dev.mysql.com/doc/refman/8.0/en/charset-server.html
https://dev.mysql.com/doc/refman/8.0/en/charset-unicode-utf8mb4.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_server

Using Character Sets and Unicode

• Set to UTF8 (corresponds to utf8mb4 on MySQL servers), if none of the properties above is set

• Post-Authentication Phase: In this phase, the character encoding between the client and the server
for the rest of the session is determined by the settings of the Connector/J connection properties, in
the following order of priority:

• connectionCollation

• characterEncoding

• Set to UTF8 (corresponds to utf8mb4 on MySQL servers), if none of the properties above is set

This means Connector/J needs to issue a SET NAMES Statement to change the
character set and collation that were established in the pre-authentication phase
only if passwordCharacterEncoding is set, but its setting is different from
that of connectionCollation, or different from that of characterEncoding
(when connectionCollation is not set), or different from utf8mb4 (when both
connectionCollation and characterEncoding are not set).

Custom Character Sets and Collations

For Connector/J 8.0.26 and later only: To support the use of custom character sets and
collations on the server, set the Connector/J connection property detectCustomCollations
to true, and provide the mapping between the custom character sets and the Java
character encodings by supplying the customCharsetMapping connection property
with a comma-delimited list of custom_charset:java_encoding pairs (for example:
customCharsetMapping=charset1:UTF-8,charset2:Cp1252).

MySQL to Java Encoding Name Translations

Use Java-style names when specifying character encodings. The following table lists MySQL character
set names and their corresponding Java-style names:

Table 3.24 MySQL to Java Encoding Name Translations

MySQL Character Set Name Java-Style Character Encoding Name

ascii US-ASCII

big5 Big5

gbk GBK

sjis SJIS or Cp932

cp932 Cp932 or MS932

gb2312 EUC_CN

ujis EUC_JP

euckr EUC_KR

latin1 Cp1252

latin2 ISO8859_2

greek ISO8859_7

hebrew ISO8859_8

cp866 Cp866

tis620 TIS620

cp1250 Cp1250

cp1251 Cp1251

cp1257 Cp1257

114

https://dev.mysql.com/doc/refman/8.0/en/set-names.html

Using Query Attributes

MySQL Character Set Name Java-Style Character Encoding Name

macroman MacRoman

macce MacCentralEurope

For 8.0.12 and earlier: utf8

For 8.0.13 and later: utf8mb4

UTF-8

ucs2 UnicodeBig

Notes

For Connector/J 8.0.12 and earlier: In order to use the utf8mb4
character set for the connection, the server MUST be configured with
character_set_server=utf8mb4; if that is not the case, when UTF-8
is used for characterEncoding in the connection string, it will map to the
MySQL character set name utf8, which is an alias for utf8mb3.

For Connector/J 8.0.13 and later:

• When UTF-8 is used for characterEncoding in the connection string, it
maps to the MySQL character set name utf8mb4.

• If the connection option connectionCollation is also set alongside
characterEncoding and is incompatible with it, characterEncoding will
be overridden with the encoding corresponding to connectionCollation.

• Because there is no Java-style character set name for utfmb3 that you
can use with the connection option charaterEncoding, the only way
to use utf8mb3 as your connection character set is to use a utf8mb3
collation (for example, utf8_general_ci) for the connection option
connectionCollation, which forces a utf8mb3 character set to be used,
as explained in the last bullet.

Warning

Do not issue the query SET NAMES with Connector/J, as the driver will not
detect that the character set has been changed by the query, and will continue
to use the character set configured when the connection was first set up.

3.5.8 Using Query Attributes

For Connector/J 8.0.26 and later: Connector/J supports Query Attributes when it has been enabled
on the server by installing the query_attributes component (see Prerequisites for Using Query
Attributes for details).

Attributes are set for a query by using the setAttribute() method of the JdbcStatement
interface. Here is the method's signature:

JdbcStatement.setAttribute(String name, Object value)

Here is an example of using the query attributes with a JdbcStatement:

Example 3.1 Using Query Attributes with a Plain Statement

conn = DriverManager.getConnection("jdbc:mysql://localhost/test", "myuser", "password");
Statement stmt = conn.createStatement();
JdbcStatement jdbcStmt = (JdbcStatement) stmt;
jdbcStmt.executeUpdate("CREATE TABLE t11 (c1 CHAR(20), c2 CHAR(20))");
jdbcStmt.setAttribute("attr1", "cat");
jdbcStmt.setAttribute("attr2", "mat");
jdbcStmt.executeUpdate("INSERT INTO t11 (c1, c2) VALUES(\n" +
 " mysql_query_attribute_string('attr1'),\n" +
 " mysql_query_attribute_string('attr2')\n" +

115

https://dev.mysql.com/doc/refman/8.0/en/charset-unicode-utf8mb4.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_server
https://dev.mysql.com/doc/refman/8.0/en/charset-unicode-utf8.html
https://dev.mysql.com/doc/refman/8.0/en/set-names.html
https://dev.mysql.com/doc/refman/8.0/en/query-attributes.html
https://dev.mysql.com/doc/refman/8.0/en/query-attributes.html#query-attributes-prerequisites
https://dev.mysql.com/doc/refman/8.0/en/query-attributes.html#query-attributes-prerequisites

Using Query Attributes

 ");");
ResultSet rs = stmt.executeQuery("SELECT * from t11");
while(rs.next()) {
 String col1 = rs.getString(1);
 String col2 = rs.getString(2);
 System.out.println("The "+col1+" is on the "+col2);
 }

While query attributes are cleared on the server after each query, they are kept on the side
of Connector/J, so they can be resent for the next query. To clear the attributes, use the
clearAttributes() method of the JdbcStatement interface:

JdbcStatement.clearAttributes()

The following example (a continuation of the code in Example 3.1, “Using Query Attributes with a Plain
Statement”) shows how the attributes are preserved for a statement until it is cleared :

Example 3.2 Preservation of Query Attributes

/* Continuing from the code in the last example, where query attributes have
already been set and used */
rs = stmt.executeQuery("SELECT c2 FROM t11 where " +
 "c1 = mysql_query_attribute_string('attr1')");
 if (rs.next()) {
 String col1 = rs.getString(1);
 System.out.println("It is on the "+col1);
 }
 // Prints "It is on the mat"
 jdbcStmt.clearAttributes();
 rs = stmt.executeQuery("SELECT c2 FROM t11 where " +
 "c1 = mysql_query_attribute_string('attr1')");
 if (rs.next()) {
 String col1 = rs.getString(1);
 System.out.println("It is on the "+col1);
 }
 else {
 System.out.println("No results!");
 }
 // Prints "No results!" as attribute string attr1 is empty

Attributes can also be set for client-side and server-side prepared statements, using the
setAttribute() method:

Example 3.3 Using Query Attributes with a Prepared Statement

conn = DriverManager.getConnection("jdbc:mysql://localhost/test", "myuser", "password");
PreparedStatement ps = conn.prepareStatement(
 "select ?, c2 from t11 where c1 = mysql_query_attribute_string('attr1')");
ps.setString(1, "It is on a ");
JdbcStatement jdbcPs = (JdbcStatement) ps;
jdbcPs.setAttribute("attr1", "cat");
rs = ps.executeQuery();
if (rs.next()) {
 System.out.println(rs.getString(1)+" "+ rs.getString(2));
}

Not all MySQL data types are supported by the setAttribute() method; only the following MySQL
data types are supported and are directly mapped to from specific Java objects or their subclasses:

Table 3.25 Data Type Mappings for Query Attributes

MySQL Data Type Java Object

MYSQL_TYPE_STRING java.lang.String

MYSQL_TYPE_TINY java.lang.Boolean, java.lang.Byte

MYSQL_TYPE_SHORT java.lang.Short

MYSQL_TYPE_LONG java.lang.Integer

MYSQL_TYPE_LONGLONG java.lang.Long, java.math.BigInteger

116

Connecting Securely Using SSL

MySQL Data Type Java Object

MYSQL_TYPE_FLOAT java.lang.Float

MYSQL_TYPE_DOUBLE java.lang.Double, java.math.BigDecimal

MYSQL_TYPE_DATE java.sql.Date, java.time.LocalDate

MYSQL_TYPE_TIME java.sql.Time, java.time.LocalTime,
java.time.OffsetTime,
java.time.Duration

MYSQL_TYPE_DATETIME java.time.LocalDateTime

MYSQL_TYPE_TIMESTAMP java.sql.Timestamp, java.time.Instant,
java.time.OffsetDateTime,
java.time.ZonedDateTime,
java.util.Date, java.util.Calendar

When there is no direct mapping from a Java object type to any MySQL data type, the attribute
is set with a string value that comes from converting the supplied object to a String using the
.toString() method.

3.5.9 Connecting Securely Using SSL

Connector/J can encrypt all data communicated between the JDBC driver and the server (except for
the initial handshake) using SSL. There is a performance penalty for enabling connection encryption,
the severity of which depends on multiple factors including (but not limited to) the size of the query, the
amount of data returned, the server hardware, the SSL library used, the network bandwidth, and so on.

The system works through two Java keystore files: one file contains the certificate information for
the server (truststore in the examples below), and another contains the keys and certificate for
the client (keystore in the examples below). All Java keystore files are protected by the password
supplied to the keytool when you created the files. You need the file names and the associated
passwords to create an SSL connection.

For SSL support to work, you must have the following:

• A MySQL server that supports SSL, and compiled and configured to do so. For more information,
see Using Encrypted Connections and Configuring SSL Library Support.

• A signed client certificate, if using mutual (two-way) authentication.

By default, Connector/J establishes secure connections with the MySQL servers. Note that MySQL
servers 5.7, 8.0, and 8.1, when compiled with OpenSSL, can automatically generate missing SSL files
at startup and configure the SSL connection accordingly.

For 8.0.12 and earlier: As long as the server is correctly configured to use SSL, there is no need
to configure anything on the Connector/J client to use encrypted connections (the exception is
when Connector/J is connecting to very old server versions like 5.6.25 and earlier or 5.7.5 and
earlier, in which case the client must set the connection property useSSL=true in order to use
encrypted connections). The client can demand SSL to be used by setting the connection property
requireSSL=true; the connection then fails if the server is not configured to use SSL. Without
requireSSL=true, the connection just falls back to non-encrypted mode if the server is not
configured to use SSL.

For 8.0.13 and later: As long as the server is correctly configured to use SSL, there is no need
to configure anything on the Connector/J client to use encrypted connections. The client can
demand SSL to be used by setting the connection property sslMode=REQUIRED, VERIFY_CA,
or VERIFY_IDENTITY; the connection then fails if the server is not configured to use SSL. With
sslMode=PREFERRED, the connection just falls back to non-encrypted mode if the server is not
configured to use SSL. For X-Protocol connections, the connection property xdevapi.ssl-mode
specifies the SSL Mode setting, just like sslMode does for MySQL-protocol connections (except
that PREFERRED is not supported by X Protocol); if not explicitly set, xdevapi.ssl-mode takes

117

https://dev.mysql.com/doc/refman/8.0/en/encrypted-connections.html
https://dev.mysql.com/doc/refman/8.0/en/source-ssl-library-configuration.html

Connecting Securely Using SSL

up the value of sslMode (if xdevapi.ssl-mode is not set and sslMode is set to PREFERRED,
xdevapi.ssl-mode is set to REQUIRED).

For additional security, you can setup the client for a one-way (server or client) or two-way (server and
client) SSL authentication, allowing the client or the server to authenticate each other's identity.

TLS versions: The allowable versions of TLS protocol can be restricted using the connection properties
tlsVersions and, for X DevAPI connections and for release 8.0.19 and later, xdevapi.tls-
versions (when xdevapi.tls-versions is not specified, it takes up the value of tlsVersions).
If no such restrictions have been specified, Connector/J attempts to connect to the server with the
TLSv1.2 and TLSv1.3.

Notes

• Since Connector/J 8.0.28, the connection property enabledTLSProtocols
has been renamed to tlsVersions, and enabledSSLCipherSuites has
been renamed to tlsCiphersuites; the original names remain as aliases.

• For Connector/J 8.0.26 and later: TLSv1 and TLSv1.1 were deprecated in
Connector/J 8.0.26 and removed in release 8.0.28; the removed values are
considered invalid for use with connection options and session settings.
Connections can be made using the more-secure TLSv1.2 and TLSv1.3
protocols. Using TLSv1.3 requires that the server be compiled with OpenSSL
1.1.1 or higher and Connector/J be run with a JVM that supports TLSv1.3 (for
example, Oracle Java 8u261 and above).

• For Connector/J 8.0.18 and earlier when connecting to MySQL
Community Server 5.6 and 5.7 using the JDBC API: Due to
compatibility issues with MySQL Server compiled with yaSSL,
Connector/J does not enable connections with TLSv1.2 and higher
by default. When connecting to servers that restrict connections to
use those higher TLS versions, enable them explicitly by setting the
Connector/J connection property enabledTLSProtocols (e.g., set
enabledTLSProtocols=TLSv1.2,TLSv1.3).

Cipher Suites: Since release 8.0.19, the cipher suites usable by Connector/J are pre-
restricted by a properties file that can be found at src/main/resources/com/mysql/cj/
TlsSettings.properties inside the src folder on the source tree or in the platform-independent
distribution archive (in .tar.gz or .zip format) for Connector/J. The file contains four sections, listing
in each the mandatory, approved, deprecated, and unacceptable ciphers. Only suites listed in the first
three sections can be used. The last section (unacceptable) defines patterns or masks that blocklist
unsafe cipher suites. Practically, with the allowlist already given in the first three sections, the blocklist
patterns in the forth section are redundant; but they are there as an extra safeguard against unwanted
ciphers. The allowlist and blocklist of cipher suites apply to both JDBC and X DevAPI connections.

The allowable cipher suites for SSL connections can be restricted using the connection properties
tlsCiphersuites and, for X DevAPI connections and for release 8.0.19 and later, xdevapi.tls-
ciphersuites (when xdevapi.tls-ciphersuites is not specified, it takes up the value of
tlsCiphersuites). If no such restrictions have been specified, Connector/J attempts to establish
SSL connections with any allowlisted cipher suites that the server accepts.

3.5.9.1 Setting up Server Authentication

For 8.0.12 and earlier: Server authentication via server certificate verification is enabled when the
Connector/J connection properties useSSL AND verifyServerCertificate are both true.
Hostname verification is not supported—host authentication is by certificates only.

For 8.0.13 and later: Server authentication via server certificate verification is enabled when the
Connector/J connection property sslMode is set to VERIFY_CA or VERIFY_IDENTITY. If sslMode
is not set, server authentication via server certificate verification is enabled when the legacy properties
useSSL AND verifyServerCertificate are both true.

118

Connecting Securely Using SSL

Certificates signed by a trusted CA. When server authentication via server certificate verification
is enabled, if no additional configurations are made regarding server authentication, Java verifies the
server certificate using its default trusted CA certificates, usually from $JAVA_HOME/lib/security/
cacerts.

Using self-signed certificates. It is pretty common though for MySQL server certificates to be self-
signed or signed by a self-signed CA certificate; the auto-generated certificates and keys created by
the MySQL server are based on the latter—that is, the server generates all required keys and a self-
signed CA certificate that is used to sign a server and a client certificate. The server then configures
itself to use the CA certificate and the server certificate. Although the client certificate file is placed in
the same directory, it is not used by the server.

To verify the server certificate, Connector/J needs to be able to read the certificate that signed it, that
is, the server certificate that signed itself or the self-signed CA certificate. This can be accomplished
by either importing the certificate (ca.pem or any other certificate) into the Java default truststore
(although tampering the default truststore is not recommended) or by importing it into a custom Java
truststore file and configuring the Connector/J driver accordingly. Use Java's keytool (typically located
in the bin subdirectory of your JDK or JRE installation) to import the server certificates:

$> keytool -importcert -alias MySQLCACert -file ca.pem \
 -keystore truststore -storepass mypassword

Supply the proper arguments for the command options. If the truststore file does not already exist,
a new one will be created; otherwise the certificate will be added to the existing file. Interaction with
keytool looks like this:

Owner: CN=MySQL_Server_5.7.17_Auto_Generated_CA_Certificate
Issuer: CN=MySQL_Server_5.7.17_Auto_Generated_CA_Certificate
Serial number: 1
Valid from: Thu Feb 16 11:42:43 EST 2017 until: Sun Feb 14 11:42:43 EST 2027
Certificate fingerprints:
 MD5: 18:87:97:37:EA:CB:0B:5A:24:AB:27:76:45:A4:78:C1
 SHA1: 2B:0D:D9:69:2C:99:BF:1E:2A:25:4E:8D:2D:38:B8:70:66:47:FA:ED
 SHA256: C3:29:67:1B:E5:37:06:F7:A9:93:DF:C7:B3:27:5E:09:C7:FD:EE:2D:18:86:F4:9C:40:D8:26:CB:DA:95:A0:24
Signature algorithm name: SHA256withRSA
Subject Public Key Algorithm: 2048-bit RSA key
Version: 1
Trust this certificate? [no]: yes
Certificate was added to keystore

The output of the command shows all details about the imported certificate. Make sure you remember
the password you have supplied. Also, be mindful that the password will have to be written as plain text
in your Connector/J configuration file or application source code.

The next step is to configure Java or Connector/J to read the truststore you just created or modified.
This can be done by using one of the following three methods:

1. Using the Java command line arguments:

-Djavax.net.ssl.trustStore=path_to_truststore_file
-Djavax.net.ssl.trustStorePassword=mypassword

2. Setting the system properties directly in the client code:

System.setProperty("javax.net.ssl.trustStore","path_to_truststore_file");
System.setProperty("javax.net.ssl.trustStorePassword","mypassword");

3. Setting the Connector/J connection properties:

trustCertificateKeyStoreUrl=file:path_to_truststore_file
trustCertificateKeyStorePassword=mypassword

Notice that when used together, the connection properties override the values set by the other two
methods. Also, whatever values set with connection properties are used in that connection only,
while values set using the system-wide values are used for all connections (unless overridden
by the connection properties). For Connector/J 8.0.22 and later: Setting the connection property

119

Connecting Securely Using SSL

fallbackToSystemTrustStore to false prevents Connector/J from falling back to the system-
wide truststore setup you created using method (1) or (2) when method (3) is not used.

With the above setup and the server authentication enabled, all connections established are going to
be SSL-encrypted, with the server being authenticated in the SSL handshake process, and the client
can now safely trust the server it is connecting to.

For X-Protocol connections, the connection properties xdevapi.ssl-truststore,
xdevapi.ssl-truststore-type, xdevapi.ssl-truststore-password, and
xdevapi.ssl-fallbackToSystemTrustStore specify the truststore settings,
just like trustCertificateKeyStoreUrl, trustCertificateKeyStoreType,
trustCertificateKeyStorePasswordamd fallbackToSystemTrustStore do for
MySQL-protocol connections; if not explicitly set, xdevapi.ssl-truststore, xdevapi.ssl-
truststore-type, xdevapi.ssl-truststore-password, and xdevapi.ssl-
fallbackToSystemTrustStore take up the values of trustCertificateKeyStoreUrl,
trustCertificateKeyStoreType, trustCertificateKeyStorePassword, and
fallbackToSystemTrustStore respectively.

Service Identity Verification. For 8.0.13 and later: Beyond server authentication via server
certificate verification, when sslMode is set to VERIFY_IDENTITY, Connector/J also performs host
name identity verification by checking whether the host name that it uses for connecting matches the
Common Name value in the server certificate.

3.5.9.2 Setting up Client Authentication

The server may want to authenticate a client and require the client to provide an SSL certificate to it,
which it verifies against its known certificate authorities or performs additional checks on the client
identity if needed (see CREATE USER SSL/TLS Options for details). In that case, Connector/J needs
to have access to the client certificate, so it can be sent to the server while establishing new database
connections. This is done using the Java keystore files.

To allow client authentication, the client connecting to the server must have its own set of keys and
an SSL certificate. The client certificate must be signed so that the server can verify it. While you
can have the client certificates signed by official certificate authorities, it is more common to use an
intermediate, private, CA certificate to sign client certificates. Such an intermediate CA certificate may
be self-signed or signed by a trusted root CA. The requirement is that the server knows a CA certificate
that is capable of validating the client certificate.

Some MySQL server builds are able to generate SSL keys and certificates for communication
encryption, including a certificate and a private key (contained in the client-cert.pem and
client-key.pem files), which can be used by any client. This SSL certificate is already signed by the
self-signed CA certificate ca.pem, which the server may have already been configured to use.

If you do not want to use the client keys and certificate files generated by the server, you can also
generate new ones using the procedures described in Creating SSL and RSA Certificates and Keys.
Notice that, according to the setup of the server, you may have to reuse the already existing CA
certificate the server is configured to work with to sign the new client certificate, instead of creating a
new one.

Once you have the client private key and certificate files you want to use, you need to import them
into a Java keystore so that they can be used by the Java SSL library and Connector/J. The following
instructions explain how to create the keystore file:

• Convert the client key and certificate files to a PKCS #12 archive:

$> openssl pkcs12 -export -in client-cert.pem -inkey client-key.pem \
 -name "mysqlclient" -passout pass:mypassword -out client-keystore.p12

• Import the client key and certificate into a Java keystore:

$> keytool -importkeystore -srckeystore client-keystore.p12 -srcstoretype pkcs12 \
 -srcstorepass mypassword -destkeystore keystore -deststoretype JKS -deststorepass mypassword

120

https://dev.mysql.com/doc/refman/8.0/en/create-user.html#create-user-tls
https://dev.mysql.com/doc/refman/8.0/en/creating-ssl-rsa-files.html

Connecting Securely Using SSL

Supply the proper arguments for the command options. If the keystore file does not already exist,
a new one will be created; otherwise the certificate will be added to the existing file. Output by
keytool looks like this:

Entry for alias mysqlclient successfully imported.
Import command completed: 1 entries successfully imported, 0 entries failed or cancelled

Make sure you remember the password you have chosen. Also, be mindful that the password will
have to be written as plain text in your Connector/J configuration file or application source code.

After the step, you can delete the PKCS #12 archive (client-keystore.p12 in the example).

The next step is to configure Java or Connector/J so that it reads the keystore you just created or
modified. This can be done by using one of the following three methods:

1. Using the Java command line arguments:

-Djavax.net.ssl.keyStore=path_to_keystore_file
-Djavax.net.ssl.keyStorePassword=mypassword

2. Setting the system properties directly in the client code:

System.setProperty("javax.net.ssl.keyStore","path_to_keystore_file");
System.setProperty("javax.net.ssl.keyStorePassword","mypassword");

3. Through Connector/J connection properties:

clientCertificateKeyStoreUrl=file:path_to_truststore_file
clientCertificateKeyStorePassword=mypassword

Notice that when used together, the connection properties override the values set by the other two
methods. Also, whatever values set with connection properties are used in that connection only,
while values set using the system-wide values are used for all connections (unless overridden
by the connection properties). For Connector/J 8.0.22 and later: Setting the connection property
fallbackToSystemKeyStore to false prevents Connector/J from falling back to the system-wide
keystore setup you created using method (1) or (2) when method (3) is not used.

With the above setups, all connections established are going to be SSL-encrypted with the client being
authenticated in the SSL handshake process, and the server can now safely trust the client that is
requesting a connection to it.

For Connector/J 8.0.22 and later: For X-Protocol connections, the connection properties
xdevapi.ssl-keystore, xdevapi.ssl-keystore-type, xdevapi.ssl-keystore-
password, and xdevapi.ssl-fallbackToSystemKeyStore specify the keystore
settings, just like trustCertificateKeyStoreUrl, trustCertificateKeyStoreType,
trustCertificateKeyStorePassword, and fallbackToSystemTKeyStore do for MySQL-
protocol connections; if not explicitly set, xdevapi.ssl-keystore, xdevapi.ssl-keystore-
type, xdevapi.ssl-keystore-password, and xdevapi.ssl-fallbackToSystemKeyStore
take up the values of clientCertificateKeyStoreUrl, clientCertificateKeyStoreType,
clientCertificateKeyStorePassword, and fallbackToSystemKeyStore respectively.

3.5.9.3 Setting up 2-Way Authentication

Apply the steps outlined in both Section 3.5.9.1, “Setting up Server Authentication” and Section 3.5.9.2,
“Setting up Client Authentication” to set up a mutual, two-way authentication process in which the
server and the client authenticate each other before establishing a connection.

Although the typical setup described above uses the same CA certificate in both ends for mutual
authentication, it does not have to be the case. The only requirements are that the CA certificate
configured in the server must be able to validate the client certificate and the CA certificate imported
into the client truststore must be able to validate the server certificate; the two CA certificates used on
the two ends can be distinct.

121

Connecting Using Unix Domain Sockets

3.5.9.4 JSSE in FIPS Mode

When using a Java 8 to 12 JREs, if JSSE is configured to use FIPS mode, attempts to connect to a
MySQL Server may fail in some cases with a KeyManagementException, complaining that "FIPS
mode: only SunJSSE TrustManagers may be used." This happens because, in that case, a custom
TrustManager implemented by Connector/J that supports the different sslMode options is invoked
but is eventually rejected by the default implementation of SunJSSE.

The issue can be overcome by telling Connector/J not to use its custom TrustManager
implementation, but use your own security providers instead. This can be done by setting the following
connection properties:

• fipsCompliantJsse: Set to true to overcome the above-mentioned issue with FIPS mode.

Note

When set to true, Connector/J always performs server certificate validation
(even if sslMode is set to PREFERRED or REQUIRED), which means a
truststore must be configured with the connection proprieties described
below, or the fallback system-wide truststore must be enabled.

• KeyManagerFactoryProvider: The name of the a Java Security Provider that provides a
javax.net.ssl.KeyManagerFactory implementation.

• trustManagerFactoryProvider: The name of the a Java Security Provider that provides a
javax.net.ssl.TrustManagerFactory implementation.

• keyStoreProvider: The name of the a Java Security Provider that provides a
java.security.KeyStore implementation, supporting the key stores types specified with
clientCertificateKeyStoreType and trustCertificateKeyStoreType.

3.5.9.5 Debugging an SSL Connection

JSSE provides debugging information to stdout when you set the system property -
Djavax.net.debug=all. Java then tells you what keystores and truststores are being used, as well
as what is going on during the SSL handshake and certificate exchange. That will be helpful when you
are trying to debug a failed SSL connection.

3.5.10 Connecting Using Unix Domain Sockets

Connector/J does not natively support connections to MySQL Servers with Unix domain sockets.
However, there is provision for using 3rd-party libraries that supply the function via a pluggable socket
factory. Such a custom factory should implement the com.mysql.cj.protocol.SocketFactory
interface or the legacy com.mysql.jdbc.SocketFactory interface of Connector/J. Follow these
requirements when you use such a custom socket factory for Unix sockets :

• The MySQL Server must be configured with the system variable --socket (for native protocol
connections using the JDBC API) or --mysqlx-socket (for X Protocol connections using the X
DevAPI), which must contain the file path of the Unix socket file.

• The fully-qualified class name of the custom factory should be passed to Connector/J via the
connection property socketFactory. For example, with the junixsocket library, set:

socketFactory=org.newsclub.net.mysql.AFUNIXDatabaseSocketFactory

You might also need to pass other parameters to the custom factory as connection properties.
For example, for the junixsocket library, provide the file path of the socket file with the property
junixsocket.file:

junixsocket.file=path_to_socket_file

122

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_socket
https://dev.mysql.com/doc/refman/8.0/en/x-plugin-options-system-variables.html#sysvar_mysqlx_socket

Connecting Using Named Pipes

• Fore release 8.0.21 and earlier: When using the X Protocol, set the connection property
xdevapi.useAsyncProtocol=false (that is the default setting for Connector/J
8.0.12 and later). Unix socket is not supported for asynchronous socket channels. When
xdevapi.useAsyncProtocol=true, the socketFactory property is ignored (the connection
property xdevapi.useAsyncProtocol has been deprecated since release 8.0.22).

Note

For X Protocol connections, the provision to use custom socket factory for Unix
socket connefctions is only available for Connector/J 8.0.12 and later.

3.5.11 Connecting Using Named Pipes

Important

For MySQL 8.0.14 and later, 5.7.25 and later, and 5.6.43 and later, minimal
permissions on named pipes are granted to clients that use them to connect
to the server. Connector/J, however, can only use named pipes when
granted full access on them. As a workaround, the MySQL Server that
Connector/J wants to connect to must be started with the system variable
named_pipe_full_access_group, which specifies a Windows local group
containing the user by which the client application JVM (and thus Connector/J)
is being executed; see the description for named_pipe_full_access_group
for more details.

Note

Support for named pipes is not available for X Protocol connections.

Connector/J also supports access to MySQL using named pipes on Windows platforms with the
NamedPipeSocketFactory as a plugin-sockets factory. If you do not use a namedPipePath
property, the default of '\\.\pipe\MySQL' is used. If you use the NamedPipeSocketFactory,
the host name and port number values in the JDBC URL are ignored. To enable this feature, set the
socketFactory property:

socketFactory=com.mysql.cj.protocol.NamedPipeSocketFactory

Set this property, as well as the path of the named pipe, with the following connection URL:

jdbc:mysql:///test?socketFactory=com.mysql.cj.protocol.NamedPipeSocketFactory&namedPipePath=\\.\pipe\MySQL80

To create your own socket factories, follow the sample code in
com.mysql.cj.protocol.NamedPipeSocketFactory or
com.mysql.cj.protocol.StandardSocketFactory.

An alternate approach is to use the following two properties in connection URLs for establishing named
pipe connections on Windows platforms:

• (protocol=pipe) for named pipes (default value for the property is tcp).

• (path=path_to_pipe) for path of named pipes. Default value for the path is \\.\pipe\MySQL.

The “address-equals” or “key-value” form of host specification (see Single host [55] for details)
greatly simplifies the URL for a named pipe connection on Windows. For example, to use the default
named pipe of “\\.\pipe\MySQL,” just specify:

jdbc:mysql://address=(protocol=pipe)/test

To use the custom named pipe of “\\.\pipe\MySQL80” :

jdbc:mysql://address=(protocol=pipe)(path=\\.\pipe\MySQL80)/test

With (protocol=pipe), the NamedPipeSocketFactory is automatically selected.

123

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_named_pipe_full_access_group
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_named_pipe_full_access_group

Connecting Using Various Authentication Methods

Named pipes only work when connecting to a MySQL server on the same physical machine where the
JDBC driver is running. In simple performance tests, named pipe access is between 30%-50% faster
than the standard TCP/IP access. However, this varies per system, and named pipes are slower than
TCP/IP in many Windows configurations.

3.5.12 Connecting Using Various Authentication Methods

3.5.12.1 Connecting Using PAM Authentication

Java applications using Connector/J can connect to MySQL servers that use the pluggable
authentication module (PAM) authentication scheme.

For PAM authentication to work, you must have the following:

• A MySQL server that supports PAM authentication. See PAM Pluggable Authentication for more
information. Connector/J implements the same cleartext authentication method as in Client-Side
Cleartext Pluggable Authentication.

• SSL capability, as explained in Section 3.5.9, “Connecting Securely Using SSL”. Because the PAM
authentication scheme sends the original password to the server, the connection to the server must
be encrypted.

PAM authentication support is enabled by default in Connector/J 8.0, so no extra configuration is
needed.

To disable the PAM authentication feature, specify mysql_clear_password (the method) or
com.mysql.cj.protocol.a.authentication.MysqlClearPasswordPlugin (the class name)
in the comma-separated list of arguments for the disabledAuthenticationPlugins connection
option. See Section 3.5.3, “Configuration Properties” for details about that connection option.

3.5.12.2 Connecting Using Kerberos

Kerberos is a ticket-based server-client mutual authentication protocol that is supported by the MySQL
Server (commercial versions only) since release 8.0.26 .

Support for Kerberos is implemented by Connector/J (release 8.0.26 and later) using the GSS-API,
JAAS API, and JCA API; providers for each of these APIs must be available on the Java Virtual
Machine running your application that uses Kerberos authentication. Using non-default providers can
lead to unexpected results.

Kerberos Authentication Workflow

The main usage of Kerberos authentication in MySQL is to allow users to create
connections without having to specify a user name and password in the connection string.
For that to work, Connector/J must be configured with the connection property setting
defaultAuthenticationPlugin=authentication_kerberos_client and then the MySQL
user name may be extracted from the Kerberos principal associated to the locally cached Ticket-
Granting Ticket (TGT). Notice that a MySQL user name differs from a Kerberos principal in not
containing a realm part; therefore, Connector/J cuts all the characters in the principle after the “@” sign
and uses it as the MySQL user name.

If there is no TGT available in the local Kerberos cache, Connector/J uses the OS login user name as
the MySQL user name. A user name specified in the connection string always takes precedence over
names obtained by any other means for the MySQL user.

The MySQL user name is then sent to the MySQL server for validation. Non-existing users cause the
server to return an error. Existing users are allowed to proceed with the authentication process, and the
authentication mechanism that follows depends on how the MySQL user was created:

• For users created with the authentication plugin authentication_kerberos, MySQL server
sends the corresponding Kerberos realm back to Connector/J, which, in turn, uses it to construct

124

https://dev.mysql.com/doc/refman/8.0/en/pam-pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.0/en/cleartext-pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.0/en/cleartext-pluggable-authentication.html

Connecting Using Various Authentication Methods

the Kerberos principal that identifies the user on the Kerberos server. One of three things may then
happen:

• The newly constructed Kerberos principal matches the Kerberos principal associated to the locally
cached TGT; this TGT is then sent to the Kerberos server to obtain the desired MySQL Service
Ticket, and the authentication proceeds.

• The newly constructed Kerberos principal does not match the Kerberos principal associated to
the locally cached TGT, or there is no local Kerberos cache; this Kerberos principal, as well as the
password that may have been specified in the connection string (or an empty string if none was
specified), is sent to the Kerberos server to obtain first a valid TGT, and then the desired MySQL
Service Ticket; and the authentication proceeds.

• An error is thrown if Connector/J is unable to obtain the correct Kerberos configurations, unable to
communicate with the Kerberos server, or unable to perform either of the two steps above.

• For users defined with a plugin different from authentication_kerberos, the server requests
Connector/J to use another authentication method.

Client-side Kerberos configurations

In order to operate properly with the Kerberos server, Connector/J requires either a system-wide
Kerberos configuration, or these local system property settings for the JVM:

• -Djava.security.krb5.kdc=[the KDC host name]

• -Djava.security.krb5.realm=[the default Kerberos realm]

Debug Information

The process of configuring Connector/J to use Kerberos authentication is not always straightforward.
Enabling logging in the internal Java providers can help find potential problems. That can be done by
setting these system properties:

• -Dsun.security.krb5.debug=true

• -Dsun.security.jgss.debug=true

3.5.12.3 Connecting Using Multifactor Authentication

Multifactor authentication (MFA) is the use of multiple authentication factors during an authentication
process. MySQL Server supports MFA for up to three authentication factors.

Connection to MySQL Server with MFA is supported by Connector/J for release 8.0.28 and later. When
authenticating user accounts that require multiple passwords, up to three passwords can be specified
using the Connector/J connection properties password1, password2, and password3 . This is a
sample connection string that uses the three connection properties for passwords:

jdbc:mysql://localhost/db?user=johndoe&password1=password&passsword2=password&password3=password

The following apply when using the connection properties for passwords:

• password1, password2, and password3 are passwords for authentication factors 1, 2, and 3,
respectively, as described in Getting Started with Multifactor Authentication.

• If any of the authentication factors (say, factor N) does not require a password, the corresponding
password (passwordN) is ignored, even if supplied.

• Not specifying the corresponding password for an authentication factor that requires a password is
equivalent to supplying an empty password for the factor.

• password and password1 are taken as synonyms except when both are supplied, in which case
password1 overrides password.

125

https://dev.mysql.com/doc/refman/8.0/en/multifactor-authentication.html#multifactor-authentication-getting-started

Using Source/Replica Replication with ReplicationConnection

3.5.12.4 Connecting Using Fast Identity Online (FIDO) Authentication

Fast Identity Online (FIDO) authentication enables user authentication for MySQL Server using devices
such as smart cards, security keys, and biometric readers. FIDO enables passwordless authentication,
and can be used for MySQL accounts that use multifactor authentication. It is supported by MySQL
Enterprise Edition since release 8.0.27—see FIDO Pluggable Authentication for details.

Connector/J supports FIDO authentication since release 8.0.28. To use the feature, a custom
implementation of the com.mysql.cj.callback.MysqlCallbackHandler interface must be
created (see the documentation for com.mysql.cj.callback.FidoAuthenticationCallback
for details), and the full class name of the implementation must be provided to Connector/J using the
connection property authenticationFidoCallbackHandler.

3.5.13 Using Source/Replica Replication with ReplicationConnection

See Section 3.8.4, “Configuring Source/Replica Replication with Connector/J” for details on the topic.

3.5.14 Support for DNS SRV Records

Connector/J supports the use of DNS SRV records for connections since release 8.0.19. For
information about DNS SRV support in MySQL, see Connecting to the Server Using DNS SRV
Records.

When multiple MySQL instances provide the same service for your applications, DNS SRV records can
be used to provide failover, load balancing, and replication services. They eliminate the need for clients
to identify each possible host in the connection string, or for connections to be handled by an additional
software component. Here is a summary for Connector/J's support for DNS SRV records:

• These new schemas in the connection URLs enable DNS SRV record support:

• jdbc:mysql+srv: For ordinary and basic failover JDBC connections that make use of DNS SRV
records.

• jdbc:mysql+srv:loadbalance: For load-balancing JDBC connections that make use of DNS
SRV records.

• jdbc:mysql+srv:replication: For replication JDBC connections that make use of DNS SRV
records.

• mysqlx+srv: For X DevAPI connections that make use of DNS SRV records.

• Besides using the new schemas in the connection URLs, DNS SRV record support can be enabled
or disabled using the two new connection properties, dnsSrv and xdevapi.dns-srv, for JDBC
and X DevAPI connections respectively. For example, this connection URL enables DNS SRV record
support:

mysqlx://johndoe:secret@_mysql._tcp.mycompany.local/db?xdevapi.dns-srv=true

However, using the DNS SRV schema with the DNS SRV connection properties set to false results
in an error; for example:

mysqlx+srv://johndoe:secret@_mysql._tcp.mycompany.local/db?xdevapi.dns-srv=false
The connection URL causes Connector/J to throw an error

Here are some requirements and restrictions on the DNS SRV record support by Connector/J:

• Connector/J throws an exception if multiple hosts are specified in the connection URL for a DNS
SRV connection (except for a replication set up, created using jdbc:mysql+srv:replication,
which requires exactly one source and one replica server to be specified).

• Connector/J throws an exception if a port number is specified in the connection URL for a DNS SRV
connection.

126

https://dev.mysql.com/doc/refman/8.0/en/fido-pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.0/en/connecting-using-dns-srv.html
https://dev.mysql.com/doc/refman/8.0/en/connecting-using-dns-srv.html

Client Session State Tracker

• DNS SRV records are supported only for TCP/IP connections. Connector/J throws an exception if
you attempt to enable DNS SRV record support Windows named pipe connections.

DNS SRV Record Support for Load Balancing and Failover. For load-balancing and failover
connections, Connector/J uses the priority field of the DNS SRV records to decide on the priorities
for connection attempts for hosts.

DNS SRV Record Support for Connection Pooling. In an X DevAPI connection pooling setup,
Connector/J re-queries the DNS SRV records regularly and phases out gracefully any connections
whose hosts no longer appear in the records, and readmits the connections into the pool when their
hosts reappear in the records.

Looking up DNS SRV Records. It is the users' responsibility to provide a full service host name;
Connector/J does not append any prefix nor validate the host name structure. The following are
examples of valid service host name patterns:

• foo.domain.local

• _mysql._tcp.foo.domain.local

• _mysqlx._tcp.foo.domain.local

• _readonly._tcp.foo.domain.local

• _readwrite._tcp.foo.domain.local

See Connections Using DNS SRV Records in the X DevAPI User Guide for details.

3.5.15 Client Session State Tracker

For Connection/J 8.0.26 and later: Connector/J can receive information on client session state changes
tracked by the server if the tracking has been enabled on the server. The reception of the information is
enabled by setting the Connector/J connection property trackSessionState to true (default value
is false for the property).

When the function is enabled, information on session state changes received from the
server are stored inside the SessionStateChanges object, accessible through a
ServerSessionStateController and its getSessionStateChanges() method:

ServerSessionStateChanges ssc =
 MysqlConnection.getServerSessionStateController().getSessionStateChanges();

In SessionStateChanges is a list of SessoinStateChange objects, accessible by the
getSessionStateChangesList() method:

List<SessionStateChange> sscList = ssc.getSessionStateChangesList();

Each SessionStateChange has the fields type and values, accessible by the getType() and
getValues() methods. The types and their corresponding values are described below:

Table 3.26 SessionStateChange Type and Values

Type Number of Values in the value
List

Values

SESSION_TRACK_SYSTEM_VARIABLES2 The name of the changed
system variable and its new
value

SESSION_TRACK_SCHEMA 1 The new schema name

SESSION_TRACK_STATE_CHANGE1 "1" or "0"

SESSION_TRACK_GTIDS 1 List of GTIDs as reported by
server

127

https://dev.mysql.com/doc/x-devapi-userguide/en/
https://dev.mysql.com/doc/refman/8.0/en/session-state-tracking.html
https://dev.mysql.com/doc/refman/8.0/en/session-state-tracking.html

Mapping MySQL Error Numbers to JDBC SQLState Codes

Type Number of Values in the value
List

Values

SESSION_TRACK_TRANSACTION_CHARACTERISTICS1 Transaction characteristics
statement

SESSION_TRACK_TRANSACTION_STATE1 Transaction state record

Connector/J receives changes only from the most recent OK packet sent by the server. With
getSessionStateChanges(), some changes returned by the intermediate queries issued
by Connector/J could be missed. However, the session state change information can also
be received using a SessionStateChangesListener, which has to be registered with a
ServerSessionStateController using the addSessionStateChangesListener() method.
The following example implements SessionStateChangesListener in a class, which also provides
a method to print the change information:

class SSCListener implements SessionStateChangesListener {
 ServerSessionStateChanges changes = null;
 public void handleSessionStateChanges(ServerSessionStateChanges ch) {
 this.changes = ch;
 for (SessionStateChange change : ch.getSessionStateChangesList()) {
 printChange(change);
 }
 }
 private void printChange(SessionStateChange change) {
 System.out.print(change.getType() + " == > ");
 int pos = 0;
 if (change.getType() == ServerSessionStateController.SESSION_TRACK_SYSTEM_VARIABLES) {
 // There are two values with this change type, the system variable name and its new value
 System.out.print(change.getValues().get(pos++) + "=");
 }
 System.out.println(change.getValues().get(pos));
 }
 }
SessionStateChangesListener listener = new SSCListener();
MysqlConnection.getServerSessionStateController().addSessionStateChangesListener(listener);

With a registered SessionStateChangesListener, users have access to all intermediate results,
though the listener might slow down the delivery of query results. That is because the listener is
invoked immediately after the OK packet is consumed by Connector/J, before the ResultSet is
constructed.

3.5.16 Mapping MySQL Error Numbers to JDBC SQLState Codes

The table below provides a mapping of the MySQL error numbers to JDBC SQLState values.

Table 3.27 Mapping of MySQL Error Numbers to SQLStates

MySQL
Error
Number

MySQL Error Name SQL
Standard
SQLState

1022 ER_DUP_KEY 23000

1037 ER_OUTOFMEMORY HY001

1038 ER_OUT_OF_SORTMEMORY HY001

1040 ER_CON_COUNT_ERROR 08004

1042 ER_BAD_HOST_ERROR 08S01

1043 ER_HANDSHAKE_ERROR 08S01

1044 ER_DBACCESS_DENIED_ERROR 42000

1045 ER_ACCESS_DENIED_ERROR 28000

1046 ER_NO_DB_ERROR 3D000

1047 ER_UNKNOWN_COM_ERROR 08S01

128

Mapping MySQL Error Numbers to JDBC SQLState Codes

MySQL
Error
Number

MySQL Error Name SQL
Standard
SQLState

1048 ER_BAD_NULL_ERROR 23000

1049 ER_BAD_DB_ERROR 42000

1050 ER_TABLE_EXISTS_ERROR 42S01

1051 ER_BAD_TABLE_ERROR 42S02

1052 ER_NON_UNIQ_ERROR 23000

1053 ER_SERVER_SHUTDOWN 08S01

1054 ER_BAD_FIELD_ERROR 42S22

1055 ER_WRONG_FIELD_WITH_GROUP 42000

1056 ER_WRONG_GROUP_FIELD 42000

1057 ER_WRONG_SUM_SELECT 42000

1058 ER_WRONG_VALUE_COUNT 21S01

1059 ER_TOO_LONG_IDENT 42000

1060 ER_DUP_FIELDNAME 42S21

1061 ER_DUP_KEYNAME 42000

1062 ER_DUP_ENTRY 23000

1063 ER_WRONG_FIELD_SPEC 42000

1064 ER_PARSE_ERROR 42000

1065 ER_EMPTY_QUERY 42000

1066 ER_NONUNIQ_TABLE 42000

1067 ER_INVALID_DEFAULT 42000

1068 ER_MULTIPLE_PRI_KEY 42000

1069 ER_TOO_MANY_KEYS 42000

1070 ER_TOO_MANY_KEY_PARTS 42000

1071 ER_TOO_LONG_KEY 42000

1072 ER_KEY_COLUMN_DOES_NOT_EXITS 42000

1073 ER_BLOB_USED_AS_KEY 42000

1074 ER_TOO_BIG_FIELDLENGTH 42000

1075 ER_WRONG_AUTO_KEY 42000

1080 ER_FORCING_CLOSE 08S01

1081 ER_IPSOCK_ERROR 08S01

1082 ER_NO_SUCH_INDEX 42S12

1083 ER_WRONG_FIELD_TERMINATORS 42000

1084 ER_BLOBS_AND_NO_TERMINATED 42000

1090 ER_CANT_REMOVE_ALL_FIELDS 42000

1091 ER_CANT_DROP_FIELD_OR_KEY 42000

1101 ER_BLOB_CANT_HAVE_DEFAULT 42000

1102 ER_WRONG_DB_NAME 42000

1103 ER_WRONG_TABLE_NAME 42000

1104 ER_TOO_BIG_SELECT 42000

129

Mapping MySQL Error Numbers to JDBC SQLState Codes

MySQL
Error
Number

MySQL Error Name SQL
Standard
SQLState

1106 ER_UNKNOWN_PROCEDURE 42000

1107 ER_WRONG_PARAMCOUNT_TO_PROCEDURE 42000

1109 ER_UNKNOWN_TABLE 42S02

1110 ER_FIELD_SPECIFIED_TWICE 42000

1112 ER_UNSUPPORTED_EXTENSION 42000

1113 ER_TABLE_MUST_HAVE_COLUMNS 42000

1115 ER_UNKNOWN_CHARACTER_SET 42000

1118 ER_TOO_BIG_ROWSIZE 42000

1120 ER_WRONG_OUTER_JOIN 42000

1121 ER_NULL_COLUMN_IN_INDEX 42000

1131 ER_PASSWORD_ANONYMOUS_USER 42000

1132 ER_PASSWORD_NOT_ALLOWED 42000

1133 ER_PASSWORD_NO_MATCH 42000

1136 ER_WRONG_VALUE_COUNT_ON_ROW 21S01

1138 ER_INVALID_USE_OF_NULL 22004

1139 ER_REGEXP_ERROR 42000

1140 ER_MIX_OF_GROUP_FUNC_AND_FIELDS 42000

1141 ER_NONEXISTING_GRANT 42000

1142 ER_TABLEACCESS_DENIED_ERROR 42000

1143 ER_COLUMNACCESS_DENIED_ERROR 42000

1144 ER_ILLEGAL_GRANT_FOR_TABLE 42000

1145 ER_GRANT_WRONG_HOST_OR_USER 42000

1146 ER_NO_SUCH_TABLE 42S02

1147 ER_NONEXISTING_TABLE_GRANT 42000

1148 ER_NOT_ALLOWED_COMMAND 42000

1149 ER_SYNTAX_ERROR 42000

1152 ER_ABORTING_CONNECTION 08S01

1153 ER_NET_PACKET_TOO_LARGE 08S01

1154 ER_NET_READ_ERROR_FROM_PIPE 08S01

1155 ER_NET_FCNTL_ERROR 08S01

1156 ER_NET_PACKETS_OUT_OF_ORDER 08S01

1157 ER_NET_UNCOMPRESS_ERROR 08S01

1158 ER_NET_READ_ERROR 08S01

1159 ER_NET_READ_INTERRUPTED 08S01

1160 ER_NET_ERROR_ON_WRITE 08S01

1161 ER_NET_WRITE_INTERRUPTED 08S01

1162 ER_TOO_LONG_STRING 42000

1163 ER_TABLE_CANT_HANDLE_BLOB 42000

1164 ER_TABLE_CANT_HANDLE_AUTO_INCREMENT 42000

130

Mapping MySQL Error Numbers to JDBC SQLState Codes

MySQL
Error
Number

MySQL Error Name SQL
Standard
SQLState

1166 ER_WRONG_COLUMN_NAME 42000

1167 ER_WRONG_KEY_COLUMN 42000

1169 ER_DUP_UNIQUE 23000

1170 ER_BLOB_KEY_WITHOUT_LENGTH 42000

1171 ER_PRIMARY_CANT_HAVE_NULL 42000

1172 ER_TOO_MANY_ROWS 42000

1173 ER_REQUIRES_PRIMARY_KEY 42000

1176 ER_KEY_DOES_NOT_EXITS 42000

1177 ER_CHECK_NO_SUCH_TABLE 42000

1178 ER_CHECK_NOT_IMPLEMENTED 42000

1179 ER_CANT_DO_THIS_DURING_AN_TRANSACTION 25000

1184 ER_NEW_ABORTING_CONNECTION 08S01

1189 ER_SOURCE_NET_READ 08S01

1190 ER_SOURCE_NET_WRITE 08S01

1203 ER_TOO_MANY_USER_CONNECTIONS 42000

1205 ER_LOCK_WAIT_TIMEOUT 40001

1207 ER_READ_ONLY_TRANSACTION 25000

1211 ER_NO_PERMISSION_TO_CREATE_USER 42000

1213 ER_LOCK_DEADLOCK 40001

1216 ER_NO_REFERENCED_ROW 23000

1217 ER_ROW_IS_REFERENCED 23000

1218 ER_CONNECT_TO_SOURCE 08S01

1222 ER_WRONG_NUMBER_OF_COLUMNS_IN_SELECT 21000

1226 ER_USER_LIMIT_REACHED 42000

1227 ER_SPECIFIC_ACCESS_DENIED_ERROR 42000

1230 ER_NO_DEFAULT 42000

1231 ER_WRONG_VALUE_FOR_VAR 42000

1232 ER_WRONG_TYPE_FOR_VAR 42000

1234 ER_CANT_USE_OPTION_HERE 42000

1235 ER_NOT_SUPPORTED_YET 42000

1239 ER_WRONG_FK_DEF 42000

1241 ER_OPERAND_COLUMNS 21000

1242 ER_SUBQUERY_NO_1_ROW 21000

1247 ER_ILLEGAL_REFERENCE 42S22

1248 ER_DERIVED_MUST_HAVE_ALIAS 42000

1249 ER_SELECT_REDUCED 01000

1250 ER_TABLENAME_NOT_ALLOWED_HERE 42000

1251 ER_NOT_SUPPORTED_AUTH_MODE 08004

1252 ER_SPATIAL_CANT_HAVE_NULL 42000

131

Mapping MySQL Error Numbers to JDBC SQLState Codes

MySQL
Error
Number

MySQL Error Name SQL
Standard
SQLState

1253 ER_COLLATION_CHARSET_MISMATCH 42000

1261 ER_WARN_TOO_FEW_RECORDS 01000

1262 ER_WARN_TOO_MANY_RECORDS 01000

1263 ER_WARN_NULL_TO_NOTNULL 22004

1264 ER_WARN_DATA_OUT_OF_RANGE 22003

1265 ER_WARN_DATA_TRUNCATED 01000

1280 ER_WRONG_NAME_FOR_INDEX 42000

1281 ER_WRONG_NAME_FOR_CATALOG 42000

1286 ER_UNKNOWN_STORAGE_ENGINE 42000

1292 ER_TRUNCATED_WRONG_VALUE 22007

1303 ER_SP_NO_RECURSIVE_CREATE 2F003

1304 ER_SP_ALREADY_EXISTS 42000

1305 ER_SP_DOES_NOT_EXIST 42000

1308 ER_SP_LILABEL_MISMATCH 42000

1309 ER_SP_LABEL_REDEFINE 42000

1310 ER_SP_LABEL_MISMATCH 42000

1311 ER_SP_UNINIT_VAR 01000

1312 ER_SP_BADSELECT 0A000

1313 ER_SP_BADRETURN 42000

1314 ER_SP_BADSTATEMENT 0A000

1315 ER_UPDATE_LOG_DEPRECATED_IGNORED 42000

1316 ER_UPDATE_LOG_DEPRECATED_TRANSLATED 42000

1317 ER_QUERY_INTERRUPTED 70100

1318 ER_SP_WRONG_NO_OF_ARGS 42000

1319 ER_SP_COND_MISMATCH 42000

1320 ER_SP_NORETURN 42000

1321 ER_SP_NORETURNEND 2F005

1322 ER_SP_BAD_CURSOR_QUERY 42000

1323 ER_SP_BAD_CURSOR_SELECT 42000

1324 ER_SP_CURSOR_MISMATCH 42000

1325 ER_SP_CURSOR_ALREADY_OPEN 24000

1326 ER_SP_CURSOR_NOT_OPEN 24000

1327 ER_SP_UNDECLARED_VAR 42000

1329 ER_SP_FETCH_NO_DATA 02000

1330 ER_SP_DUP_PARAM 42000

1331 ER_SP_DUP_VAR 42000

1332 ER_SP_DUP_COND 42000

1333 ER_SP_DUP_CURS 42000

1335 ER_SP_SUBSELECT_NYI 0A000

132

Mapping MySQL Error Numbers to JDBC SQLState Codes

MySQL
Error
Number

MySQL Error Name SQL
Standard
SQLState

1336 ER_STMT_NOT_ALLOWED_IN_SF_OR_TRG 0A000

1337 ER_SP_VARCOND_AFTER_CURSHNDLR 42000

1338 ER_SP_CURSOR_AFTER_HANDLER 42000

1339 ER_SP_CASE_NOT_FOUND 20000

1365 ER_DIVISION_BY_ZERO 22012

1367 ER_ILLEGAL_VALUE_FOR_TYPE 22007

1370 ER_PROCACCESS_DENIED_ERROR 42000

1397 ER_XAER_NOTA XAE04

1398 ER_XAER_INVAL XAE05

1399 ER_XAER_RMFAIL XAE07

1400 ER_XAER_OUTSIDE XAE09

1401 ER_XA_RMERR XAE03

1402 ER_XA_RBROLLBACK XA100

1403 ER_NONEXISTING_PROC_GRANT 42000

1406 ER_DATA_TOO_LONG 22001

1407 ER_SP_BAD_SQLSTATE 42000

1410 ER_CANT_CREATE_USER_WITH_GRANT 42000

1413 ER_SP_DUP_HANDLER 42000

1414 ER_SP_NOT_VAR_ARG 42000

1415 ER_SP_NO_RETSET 0A000

1416 ER_CANT_CREATE_GEOMETRY_OBJECT 22003

1425 ER_TOO_BIG_SCALE 42000

1426 ER_TOO_BIG_PRECISION 42000

1427 ER_M_BIGGER_THAN_D 42000

1437 ER_TOO_LONG_BODY 42000

1439 ER_TOO_BIG_DISPLAYWIDTH 42000

1440 ER_XAER_DUPID XAE08

1441 ER_DATETIME_FUNCTION_OVERFLOW 22008

1451 ER_ROW_IS_REFERENCED_2 23000

1452 ER_NO_REFERENCED_ROW_2 23000

1453 ER_SP_BAD_VAR_SHADOW 42000

1458 ER_SP_WRONG_NAME 42000

1460 ER_SP_NO_AGGREGATE 42000

1461 ER_MAX_PREPARED_STMT_COUNT_REACHED 42000

1463 ER_NON_GROUPING_FIELD_USED 42000

1557 ER_FOREIGN_DUPLICATE_KEY 23000

1568 ER_CANT_CHANGE_TX_ISOLATION 25001

1582 ER_WRONG_PARAMCOUNT_TO_NATIVE_FCT 42000

1583 ER_WRONG_PARAMETERS_TO_NATIVE_FCT 42000

133

JDBC Concepts

MySQL
Error
Number

MySQL Error Name SQL
Standard
SQLState

1584 ER_WRONG_PARAMETERS_TO_STORED_FCT 42000

1586 ER_DUP_ENTRY_WITH_KEY_NAME 23000

1613 ER_XA_RBTIMEOUT XA106

1614 ER_XA_RBDEADLOCK XA102

1630 ER_FUNC_INEXISTENT_NAME_COLLISION 42000

1641 ER_DUP_SIGNAL_SET 42000

1642 ER_SIGNAL_WARN 01000

1643 ER_SIGNAL_NOT_FOUND 02000

1645 ER_RESIGNAL_WITHOUT_ACTIVE_HANDLER 0K000

1687 ER_SPATIAL_MUST_HAVE_GEOM_COL 42000

1690 ER_DATA_OUT_OF_RANGE 22003

1698 ER_ACCESS_DENIED_NO_PASSWORD_ERROR 28000

1701 ER_TRUNCATE_ILLEGAL_FK 42000

1758 ER_DA_INVALID_CONDITION_NUMBER 35000

1761 ER_FOREIGN_DUPLICATE_KEY_WITH_CHILD_INFO 23000

1762 ER_FOREIGN_DUPLICATE_KEY_WITHOUT_CHILD_INFO 23000

1792 ER_CANT_EXECUTE_IN_READ_ONLY_TRANSACTION 25006

1845 ER_ALTER_OPERATION_NOT_SUPPORTED 0A000

1846 ER_ALTER_OPERATION_NOT_SUPPORTED_REASON 0A000

1859 ER_DUP_UNKNOWN_IN_INDEX 23000

1873 ER_ACCESS_DENIED_CHANGE_USER_ERROR 28000

1887 ER_GET_STACKED_DA_WITHOUT_ACTIVE_HANDLER 0Z002

1903 ER_INVALID_ARGUMENT_FOR_LOGARITHM 2201E

3.6 JDBC Concepts

This section provides some general JDBC background.

3.6.1 Connecting to MySQL Using the JDBC DriverManager Interface

When you are using JDBC outside of an application server, the DriverManager class manages the
establishment of connections.

Specify to the DriverManager which JDBC drivers to try to make Connections with. The easiest way
to do this is to use Class.forName() on the class that implements the java.sql.Driver interface.
With MySQL Connector/J, the name of this class is com.mysql.cj.jdbc.Driver. With this method,
you could use an external configuration file to supply the driver class name and driver parameters to
use when connecting to a database.

The following section of Java code shows how you might register MySQL Connector/J from the
main() method of your application. If testing this code, first read the installation section at Section 3.3,
“Connector/J Installation”, to make sure you have connector installed correctly and the CLASSPATH set
up. Also, ensure that MySQL is configured to accept external TCP/IP connections.

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;

134

Connecting to MySQL Using the JDBC DriverManager Interface

// Notice, do not import com.mysql.cj.jdbc.*
// or you will have problems!
public class LoadDriver {
 public static void main(String[] args) {
 try {
 // The newInstance() call is a work around for some
 // broken Java implementations
 Class.forName("com.mysql.cj.jdbc.Driver").newInstance();
 } catch (Exception ex) {
 // handle the error
 }
 }
}

After the driver has been registered with the DriverManager, you can obtain a Connection instance
that is connected to a particular database by calling DriverManager.getConnection():

Example 3.4 Connector/J: Obtaining a connection from the DriverManager

If you have not already done so, please review the portion of Section 3.6.1, “Connecting to MySQL
Using the JDBC DriverManager Interface” above before working with the example below.

This example shows how you can obtain a Connection instance from the DriverManager. There
are a few different signatures for the getConnection() method. Consult the API documentation that
comes with your JDK for more specific information on how to use them.

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;
Connection conn = null;
...
try {
 conn =
 DriverManager.getConnection("jdbc:mysql://localhost/test?" +
 "user=minty&password=greatsqldb");
 // Do something with the Connection
 ...
} catch (SQLException ex) {
 // handle any errors
 System.out.println("SQLException: " + ex.getMessage());
 System.out.println("SQLState: " + ex.getSQLState());
 System.out.println("VendorError: " + ex.getErrorCode());
}

Once a Connection is established, it can be used to create Statement and PreparedStatement
objects, as well as retrieve metadata about the database. This is explained in the following sections.

For Connector/J 8.0.24 and later: When the user for the connection is unspecified, Connector/J's
implementations of the authentication plugins use by default the name of the OS user who runs the
application for authentication with the MySQL server (except when the Kerberos authentication plugin
is being used; see Section 3.5.12.2, “Connecting Using Kerberos” for details).

Note

A user name is considered unspecified only when the following conditions are
all met:

1. The method DriverManager.getConnection(String url, String
user, String password) is not used.

2. The connection property user is not used in, for example, the connection
URL,or elsewhere.

3. The user is not mentioned in the authority of the connection URL, as
in jdbc:mysql://localhost:3306/test, or jdbc:mysql://
@localhost:3306/test.

135

Using JDBC Statement Objects to Execute SQL

Notice if (1) or (2) is not true and an empty string is passed, the user name is an
empty string then, and is not considered unspecified.

3.6.2 Using JDBC Statement Objects to Execute SQL

Statement objects allow you to execute basic SQL queries and retrieve the results through the
ResultSet class, which is described later.

To create a Statement instance, you call the createStatement() method on the
Connection object you have retrieved using one of the DriverManager.getConnection() or
DataSource.getConnection() methods described earlier.

Once you have a Statement instance, you can execute a SELECT query by calling the
executeQuery(String) method with the SQL you want to use.

To update data in the database, use the executeUpdate(String SQL) method. This method
returns the number of rows matched by the update statement, not the number of rows that were
modified.

If you do not know ahead of time whether the SQL statement will be a SELECT or an UPDATE/INSERT,
then you can use the execute(String SQL) method. This method will return true if the SQL query
was a SELECT, or false if it was an UPDATE, INSERT, or DELETE statement. If the statement was a
SELECT query, you can retrieve the results by calling the getResultSet() method. If the statement
was an UPDATE, INSERT, or DELETE statement, you can retrieve the affected rows count by calling
getUpdateCount() on the Statement instance.

Example 3.5 Connector/J: Using java.sql.Statement to execute a SELECT query

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;
import java.sql.Statement;
import java.sql.ResultSet;
// assume that conn is an already created JDBC connection (see previous examples)
Statement stmt = null;
ResultSet rs = null;
try {
 stmt = conn.createStatement();
 rs = stmt.executeQuery("SELECT foo FROM bar");
 // or alternatively, if you don't know ahead of time that
 // the query will be a SELECT...
 if (stmt.execute("SELECT foo FROM bar")) {
 rs = stmt.getResultSet();
 }
 // Now do something with the ResultSet
}
catch (SQLException ex){
 // handle any errors
 System.out.println("SQLException: " + ex.getMessage());
 System.out.println("SQLState: " + ex.getSQLState());
 System.out.println("VendorError: " + ex.getErrorCode());
}
finally {
 // it is a good idea to release
 // resources in a finally{} block
 // in reverse-order of their creation
 // if they are no-longer needed
 if (rs != null) {
 try {
 rs.close();
 } catch (SQLException sqlEx) { } // ignore
 rs = null;
 }
 if (stmt != null) {

136

https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/delete.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/delete.html

Using JDBC CallableStatements to Execute Stored Procedures

 try {
 stmt.close();
 } catch (SQLException sqlEx) { } // ignore
 stmt = null;
 }
}

3.6.3 Using JDBC CallableStatements to Execute Stored Procedures

Connector/J fully implements the java.sql.CallableStatement interface.

For more information on MySQL stored procedures, please refer to Using Stored Routines.

Connector/J exposes stored procedure functionality through JDBC's CallableStatement interface.

The following example shows a stored procedure that returns the value of inOutParam incremented
by 1, and the string passed in using inputParam as a ResultSet:

Example 3.6 Connector/J: Calling Stored Procedures

CREATE PROCEDURE demoSp(IN inputParam VARCHAR(255), \
 INOUT inOutParam INT)
BEGIN
 DECLARE z INT;
 SET z = inOutParam + 1;
 SET inOutParam = z;
 SELECT inputParam;
 SELECT CONCAT('zyxw', inputParam);
END

To use the demoSp procedure with Connector/J, follow these steps:

1. Prepare the callable statement by using Connection.prepareCall().

Notice that you have to use JDBC escape syntax, and that the parentheses surrounding the
parameter placeholders are not optional:

Example 3.7 Connector/J: Using Connection.prepareCall()

import java.sql.CallableStatement;
...
 //
 // Prepare a call to the stored procedure 'demoSp'
 // with two parameters
 //
 // Notice the use of JDBC-escape syntax ({call ...})
 //
 CallableStatement cStmt = conn.prepareCall("{call demoSp(?, ?)}");
 cStmt.setString(1, "abcdefg");

Note

Connection.prepareCall() is an expensive method, due to
the metadata retrieval that the driver performs to support output
parameters. For performance reasons, minimize unnecessary calls to
Connection.prepareCall() by reusing CallableStatement
instances in your code.

2. Register the output parameters (if any exist)

To retrieve the values of output parameters (parameters specified as OUT or INOUT when you
created the stored procedure), JDBC requires that they be specified before statement execution
using the various registerOutputParameter() methods in the CallableStatement
interface:

137

https://dev.mysql.com/doc/refman/8.0/en/stored-routines.html

Using JDBC CallableStatements to Execute Stored Procedures

Example 3.8 Connector/J: Registering output parameters

import java.sql.Types;
...
//
// Connector/J supports both named and indexed
// output parameters. You can register output
// parameters using either method, as well
// as retrieve output parameters using either
// method, regardless of what method was
// used to register them.
//
// The following examples show how to use
// the various methods of registering
// output parameters (you should of course
// use only one registration per parameter).
//
//
// Registers the second parameter as output, and
// uses the type 'INTEGER' for values returned from
// getObject()
//
cStmt.registerOutParameter(2, Types.INTEGER);
//
// Registers the named parameter 'inOutParam', and
// uses the type 'INTEGER' for values returned from
// getObject()
//
cStmt.registerOutParameter("inOutParam", Types.INTEGER);
...

3. Set the input parameters (if any exist)

Input and in/out parameters are set as for PreparedStatement objects. However,
CallableStatement also supports setting parameters by name:

Example 3.9 Connector/J: Setting CallableStatement input parameters

...
 //
 // Set a parameter by index
 //
 cStmt.setString(1, "abcdefg");
 //
 // Alternatively, set a parameter using
 // the parameter name
 //
 cStmt.setString("inputParam", "abcdefg");
 //
 // Set the 'in/out' parameter using an index
 //
 cStmt.setInt(2, 1);
 //
 // Alternatively, set the 'in/out' parameter
 // by name
 //
 cStmt.setInt("inOutParam", 1);
...

4. Execute the CallableStatement, and retrieve any result sets or output parameters.

Although CallableStatement supports calling any of the Statement execute methods
(executeUpdate(), executeQuery() or execute()), the most flexible method to call is
execute(), as you do not need to know ahead of time if the stored procedure returns result sets:

Example 3.10 Connector/J: Retrieving results and output parameter values

...
 boolean hadResults = cStmt.execute();

138

Retrieving AUTO_INCREMENT Column Values through JDBC

 //
 // Process all returned result sets
 //
 while (hadResults) {
 ResultSet rs = cStmt.getResultSet();
 // process result set
 ...
 hadResults = cStmt.getMoreResults();
 }
 //
 // Retrieve output parameters
 //
 // Connector/J supports both index-based and
 // name-based retrieval
 //
 int outputValue = cStmt.getInt(2); // index-based
 outputValue = cStmt.getInt("inOutParam"); // name-based
...

3.6.4 Retrieving AUTO_INCREMENT Column Values through JDBC

getGeneratedKeys() is the preferred method to use if you need to retrieve AUTO_INCREMENT
keys and through JDBC; this is illustrated in the first example below. The second example shows how
you can retrieve the same value using a standard SELECT LAST_INSERT_ID() query. The final
example shows how updatable result sets can retrieve the AUTO_INCREMENT value when using the
insertRow() method.

Example 3.11 Connector/J: Retrieving AUTO_INCREMENT column values using
Statement.getGeneratedKeys()

Statement stmt = null;
ResultSet rs = null;
try {
 //
 // Create a Statement instance that we can use for
 // 'normal' result sets assuming you have a
 // Connection 'conn' to a MySQL database already
 // available
 stmt = conn.createStatement();
 //
 // Issue the DDL queries for the table for this example
 //
 stmt.executeUpdate("DROP TABLE IF EXISTS autoIncTutorial");
 stmt.executeUpdate(
 "CREATE TABLE autoIncTutorial ("
 + "priKey INT NOT NULL AUTO_INCREMENT, "
 + "dataField VARCHAR(64), PRIMARY KEY (priKey))");
 //
 // Insert one row that will generate an AUTO INCREMENT
 // key in the 'priKey' field
 //
 stmt.executeUpdate(
 "INSERT INTO autoIncTutorial (dataField) "
 + "values ('Can I Get the Auto Increment Field?')",
 Statement.RETURN_GENERATED_KEYS);
 //
 // Example of using Statement.getGeneratedKeys()
 // to retrieve the value of an auto-increment
 // value
 //
 int autoIncKeyFromApi = -1;
 rs = stmt.getGeneratedKeys();
 if (rs.next()) {
 autoIncKeyFromApi = rs.getInt(1);
 } else {
 // throw an exception from here
 }
 System.out.println("Key returned from getGeneratedKeys():"
 + autoIncKeyFromApi);

139

Retrieving AUTO_INCREMENT Column Values through JDBC

} finally {
 if (rs != null) {
 try {
 rs.close();
 } catch (SQLException ex) {
 // ignore
 }
 }
 if (stmt != null) {
 try {
 stmt.close();
 } catch (SQLException ex) {
 // ignore
 }
 }
}

Example 3.12 Connector/J: Retrieving AUTO_INCREMENT column values using SELECT
LAST_INSERT_ID()

Statement stmt = null;
ResultSet rs = null;
try {
 //
 // Create a Statement instance that we can use for
 // 'normal' result sets.
 stmt = conn.createStatement();
 //
 // Issue the DDL queries for the table for this example
 //
 stmt.executeUpdate("DROP TABLE IF EXISTS autoIncTutorial");
 stmt.executeUpdate(
 "CREATE TABLE autoIncTutorial ("
 + "priKey INT NOT NULL AUTO_INCREMENT, "
 + "dataField VARCHAR(64), PRIMARY KEY (priKey))");
 //
 // Insert one row that will generate an AUTO INCREMENT
 // key in the 'priKey' field
 //
 stmt.executeUpdate(
 "INSERT INTO autoIncTutorial (dataField) "
 + "values ('Can I Get the Auto Increment Field?')");
 //
 // Use the MySQL LAST_INSERT_ID()
 // function to do the same thing as getGeneratedKeys()
 //
 int autoIncKeyFromFunc = -1;
 rs = stmt.executeQuery("SELECT LAST_INSERT_ID()");
 if (rs.next()) {
 autoIncKeyFromFunc = rs.getInt(1);
 } else {
 // throw an exception from here
 }
 System.out.println("Key returned from " +
 "'SELECT LAST_INSERT_ID()': " +
 autoIncKeyFromFunc);
} finally {
 if (rs != null) {
 try {
 rs.close();
 } catch (SQLException ex) {
 // ignore
 }
 }
 if (stmt != null) {
 try {
 stmt.close();
 } catch (SQLException ex) {
 // ignore
 }
 }

140

Retrieving AUTO_INCREMENT Column Values through JDBC

}

Example 3.13 Connector/J: Retrieving AUTO_INCREMENT column values in Updatable
ResultSets

Statement stmt = null;
ResultSet rs = null;
try {
 //
 // Create a Statement instance that we can use for
 // 'normal' result sets as well as an 'updatable'
 // one, assuming you have a Connection 'conn' to
 // a MySQL database already available
 //
 stmt = conn.createStatement(java.sql.ResultSet.TYPE_FORWARD_ONLY,
 java.sql.ResultSet.CONCUR_UPDATABLE);
 //
 // Issue the DDL queries for the table for this example
 //
 stmt.executeUpdate("DROP TABLE IF EXISTS autoIncTutorial");
 stmt.executeUpdate(
 "CREATE TABLE autoIncTutorial ("
 + "priKey INT NOT NULL AUTO_INCREMENT, "
 + "dataField VARCHAR(64), PRIMARY KEY (priKey))");
 //
 // Example of retrieving an AUTO INCREMENT key
 // from an updatable result set
 //
 rs = stmt.executeQuery("SELECT priKey, dataField "
 + "FROM autoIncTutorial");
 rs.moveToInsertRow();
 rs.updateString("dataField", "AUTO INCREMENT here?");
 rs.insertRow();
 //
 // the driver adds rows at the end
 //
 rs.last();
 //
 // We should now be on the row we just inserted
 //
 int autoIncKeyFromRS = rs.getInt("priKey");
 System.out.println("Key returned for inserted row: "
 + autoIncKeyFromRS);
} finally {
 if (rs != null) {
 try {
 rs.close();
 } catch (SQLException ex) {
 // ignore
 }
 }
 if (stmt != null) {
 try {
 stmt.close();
 } catch (SQLException ex) {
 // ignore
 }
 }
}

Running the preceding example code should produce the following output:

Key returned from getGeneratedKeys(): 1
Key returned from SELECT LAST_INSERT_ID(): 1
Key returned for inserted row: 1

At times, it can be tricky to use the SELECT LAST_INSERT_ID() query, as that function's value
is scoped to a connection. So, if some other query happens on the same connection, the value is
overwritten. On the other hand, the getGeneratedKeys() method is scoped by the Statement
instance, so it can be used even if other queries happen on the same connection, but not on the same
Statement instance.

141

Connection Pooling with Connector/J

3.7 Connection Pooling with Connector/J
Connection pooling is a technique of creating and managing a pool of connections that are ready for
use by any thread that needs them. Connection pooling can greatly increase the performance of your
Java application, while reducing overall resource usage.

How Connection Pooling Works

Most applications only need a thread to have access to a JDBC connection when they are actively
processing a transaction, which often takes only milliseconds to complete. When not processing a
transaction, the connection sits idle. Connection pooling enables the idle connection to be used by
some other thread to do useful work.

In practice, when a thread needs to do work against a MySQL or other database with JDBC, it requests
a connection from the pool. When the thread is finished using the connection, it returns it to the pool, so
that it can be used by any other threads.

When the connection is loaned out from the pool, it is used exclusively by the thread that
requested it. From a programming point of view, it is the same as if your thread called
DriverManager.getConnection() every time it needed a JDBC connection. With connection
pooling, your thread may end up using either a new connection or an already-existing connection.

Benefits of Connection Pooling

The main benefits to connection pooling are:

• Reduced connection creation time.

Although this is not usually an issue with the quick connection setup that MySQL offers compared to
other databases, creating new JDBC connections still incurs networking and JDBC driver overhead
that will be avoided if connections are recycled.

• Simplified programming model.

When using connection pooling, each individual thread can act as though it has created its own
JDBC connection, allowing you to use straightforward JDBC programming techniques.

• Controlled resource usage.

If you create a new connection every time a thread needs one rather than using connection pooling,
your application's resource usage can be wasteful, and it could lead to unpredictable behaviors for
your application when it is under a heavy load.

Using Connection Pooling with Connector/J

The concept of connection pooling in JDBC has been standardized through the JDBC 2.0 Optional
interfaces, and all major application servers have implementations of these APIs that work with MySQL
Connector/J.

Generally, you configure a connection pool in your application server configuration files, and access it
through the Java Naming and Directory Interface (JNDI). The following code shows how you might use
a connection pool from an application deployed in a J2EE application server:

Example 3.14 Connector/J: Using a connection pool with a J2EE application server

import java.sql.Connection;
import java.sql.SQLException;
import java.sql.Statement;
import javax.naming.InitialContext;
import javax.sql.DataSource;
public class MyServletJspOrEjb {
 public void doSomething() throws Exception {
 /*

142

https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_thread
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_transaction

Using Connection Pooling with Connector/J

 * Create a JNDI Initial context to be able to
 * lookup the DataSource
 *
 * In production-level code, this should be cached as
 * an instance or static variable, as it can
 * be quite expensive to create a JNDI context.
 *
 * Note: This code only works when you are using servlets
 * or EJBs in a J2EE application server. If you are
 * using connection pooling in standalone Java code, you
 * will have to create/configure datasources using whatever
 * mechanisms your particular connection pooling library
 * provides.
 */
 InitialContext ctx = new InitialContext();
 /*
 * Lookup the DataSource, which will be backed by a pool
 * that the application server provides. DataSource instances
 * are also a good candidate for caching as an instance
 * variable, as JNDI lookups can be expensive as well.
 */
 DataSource ds =
 (DataSource)ctx.lookup("java:comp/env/jdbc/MySQLDB");
 /*
 * The following code is what would actually be in your
 * Servlet, JSP or EJB 'service' method...where you need
 * to work with a JDBC connection.
 */
 Connection conn = null;
 Statement stmt = null;
 try {
 conn = ds.getConnection();
 /*
 * Now, use normal JDBC programming to work with
 * MySQL, making sure to close each resource when you're
 * finished with it, which permits the connection pool
 * resources to be recovered as quickly as possible
 */
 stmt = conn.createStatement();
 stmt.execute("SOME SQL QUERY");
 stmt.close();
 stmt = null;
 conn.close();
 conn = null;
 } finally {
 /*
 * close any jdbc instances here that weren't
 * explicitly closed during normal code path, so
 * that we don't 'leak' resources...
 */
 if (stmt != null) {
 try {
 stmt.close();
 } catch (sqlexception sqlex) {
 // ignore, as we can't do anything about it here
 }
 stmt = null;
 }
 if (conn != null) {
 try {
 conn.close();
 } catch (sqlexception sqlex) {
 // ignore, as we can't do anything about it here
 }
 conn = null;
 }
 }
 }
}

As shown in the example above, after obtaining the JNDI InitialContext, and looking up the
DataSource, the rest of the code follows familiar JDBC conventions.

143

Sizing the Connection Pool

When using connection pooling, always make sure that connections, and anything created by them
(such as statements or result sets) are closed. This rule applies no matter what happens in your
code (exceptions, flow-of-control, and so forth). When these objects are closed, they can be re-used;
otherwise, they will be stranded, which means that the MySQL server resources they represent (such
as buffers, locks, or sockets) are tied up for some time, or in the worst case can be tied up forever.

Sizing the Connection Pool

Each connection to MySQL has overhead (memory, CPU, context switches, and so forth) on both
the client and server side. Every connection limits how many resources there are available to your
application as well as the MySQL server. Many of these resources will be used whether or not the
connection is actually doing any useful work! Connection pools can be tuned to maximize performance,
while keeping resource utilization below the point where your application will start to fail rather than just
run slower.

The optimal size for the connection pool depends on anticipated load and average database
transaction time. In practice, the optimal connection pool size can be smaller than you might expect.
If you take Oracle's Java Petstore blueprint application for example, a connection pool of 15-20
connections can serve a relatively moderate load (600 concurrent users) using MySQL and Tomcat
with acceptable response times.

To correctly size a connection pool for your application, create load test scripts with tools such as
Apache JMeter or The Grinder, and load test your application.

An easy way to determine a starting point is to configure your connection pool's maximum number
of connections to be unbounded, run a load test, and measure the largest amount of concurrently
used connections. You can then work backward from there to determine what values of minimum and
maximum pooled connections give the best performance for your particular application.

Validating Connections

MySQL Connector/J can validate the connection by executing a lightweight ping against a server. In
the case of load-balanced connections, this is performed against all active pooled internal connections
that are retained. This is beneficial to Java applications using connection pools, as the pool can
use this feature to validate connections. Depending on your connection pool and configuration, this
validation can be carried out at different times:

1. Before the pool returns a connection to the application.

2. When the application returns a connection to the pool.

3. During periodic checks of idle connections.

To use this feature, specify a validation query in your connection pool that starts with /* ping
*/. Note that the syntax must be exactly as specified. This will cause the driver send a ping to the
server and return a dummy lightweight result set. When using a ReplicationConnection or
LoadBalancedConnection, the ping will be sent across all active connections.

It is critical that the syntax be specified correctly. The syntax needs to be exact for reasons of
efficiency, as this test is done for every statement that is executed:

protected static final String PING_MARKER = "/* ping */";
...
if (sql.charAt(0) == '/') {
if (sql.startsWith(PING_MARKER)) {
doPingInstead();
...

None of the following snippets will work, because the ping syntax is sensitive to whitespace,
capitalization, and placement:

144

Multi-Host Connections

sql = "/* PING */ SELECT 1";
sql = "SELECT 1 /* ping*/";
sql = "/*ping*/ SELECT 1";
sql = " /* ping */ SELECT 1";
sql = "/*to ping or not to ping*/ SELECT 1";

All of the previous statements will issue a normal SELECT statement and will not be transformed into
the lightweight ping. Further, for load-balanced connections, the statement will be executed against
one connection in the internal pool, rather than validating each underlying physical connection. This
results in the non-active physical connections assuming a stale state, and they may die. If Connector/
J then re-balances, it might select a dead connection, resulting in an exception being passed to the
application. To help prevent this, you can use loadBalanceValidateConnectionOnSwapServer
to validate the connection before use.

If your Connector/J deployment uses a connection pool that allows you to specify a validation query,
take advantage of it, but ensure that the query starts exactly with /* ping */. This is particularly
important if you are using the load-balancing or replication-aware features of Connector/J, as it will help
keep alive connections which otherwise will go stale and die, causing problems later.

3.8 Multi-Host Connections
The following sections discuss a number of topics that involve multi-host connections, namely, server
load-balancing, failover, and replication.

Developers should know the following things about multi-host connections that are managed through
Connector/J:

• Each multi-host connection is a wrapper of the underlying physical connections.

• Each of the underlying physical connections has its own session. Sessions cannot be tracked,
shared, or copied, given the MySQL architecture.

• Every switch between physical connections means a switch between sessions.

• Within a transaction boundary, there are no switches between physical connections. Beyond a
transaction boundary, there is no guarantee that a switch does not occur.

Note

If an application reuses session-scope data (for example, variables, SSPs)
beyond a transaction boundary, failures are possible, as a switch between the
physical connections (which is also a switch between sessions) might occur.
Therefore, the application should re-prepare the session data and also restart
the last transaction in case of an exception, or it should re-prepare session
data for each new transaction if it does not want to deal with exception
handling.

3.8.1 Configuring Server Failover for Connections Using JDBC

MySQL Connector/J supports server failover. A failover happens when connection-related errors occur
for an underlying, active connection. The connection errors are, by default, propagated to the client,
which has to handle them by, for example, recreating the working objects (Statement, ResultSet,
etc.) and restarting the processes. Sometimes, the driver might eventually fall back to the original host
automatically before the client application continues to run, in which case the host switch is transparent
and the client application will not even notice it.

A connection using failover support works just like a standard connection: the client does not
experience any disruptions in the failover process. This means the client can rely on the same
connection instance even if two successive statements might be executed on two different physical
hosts. However, this does not mean the client does not have to deal with the exception that triggered
the server switch.

145

Configuring Server Failover for Connections Using JDBC

The failover is configured at the initial setup stage of the server connection by the connection URL (see
explanations for its format here):

jdbc:mysql://[primary host][:port],[secondary host 1][:port][,[secondary host 2][:port]]...[/[database]]»
[?propertyName1=propertyValue1[&propertyName2=propertyValue2]...]

The host list in the connection URL comprises of two types of hosts, the primary and the secondary.
When starting a new connection, the driver always tries to connect to the primary host first and, if
required, fails over to the secondary hosts on the list sequentially when communication problems are
experienced. Even if the initial connection to the primary host fails and the driver gets connected to a
secondary host, the primary host never loses its special status: for example, it can be configured with
an access mode distinct from those of the secondary hosts, and it can be put on a higher priority when
a host is to be picked during a failover process.

The failover support is configured by the following connection properties (their functions are explained
in the paragraphs below):

• failOverReadOnly

• secondsBeforeRetrySource

• queriesBeforeRetrySource

• retriesAllDown

• autoReconnect

• autoReconnectForPools

Configuring Connection Access Mode

As with any standard connection, the initial connection to the primary host is in read/write mode.
However, if the driver fails to establish the initial connection to the primary host and it automatically
switches to the next host on the list, the access mode now depends on the value of the property
failOverReadOnly, which is “true” by default. The same happens if the driver is initially connected
to the primary host and, because of some connection failure, it fails over to a secondary host. Every
time the connection falls back to the primary host, its access mode will be read/write, irrespective of
whether or not the primary host has been connected to before. The connection access mode can be
changed any time at runtime by calling the method Connection.setReadOnly(boolean), which
partially overrides the property failOverReadOnly. When failOverReadOnly=false and the
access mode is explicitly set to either true or false, it becomes the mode for every connection after
a host switch, no matter what host type are being connected to; but, if failOverReadOnly=true,
changing the access mode to read/write is only possible if the driver is connecting to the primary host;
however, even if the access mode cannot be changed for the current connection, the driver remembers
the client's last intention and, when falling back to the primary host, that is the mode that will be used.
For an illustration, see the following successions of events with a two-host connection.

• Sequence A, with failOverReadOnly=true:

1. Connects to primary host in read/write mode

2. Sets Connection.setReadOnly(true); primary host now in read-only mode

3. Failover event; connects to secondary host in read-only mode

4. Sets Connection.setReadOnly(false); secondary host remains in read-only mode

5. Falls back to primary host; connection now in read/write mode

• Sequence B, with failOverReadOnly=false

1. Connects to primary host in read/write mode

146

Configuring Server Failover for Connections Using JDBC

2. Sets Connection.setReadOnly(true); primary host now in read-only mode

3. Failover event; connects to secondary host in read-only mode

4. Set Connection.setReadOnly(false); connection to secondary host switches to read/write
mode

5. Falls back to primary host; connection now in read/write mode

The difference between the two scenarios is in step 4: the access mode for the secondary host in
sequence A does not change at that step, but the driver remembers and uses the set mode when
falling back to the primary host, which would be read-only otherwise; but in sequence B, the access
mode for the secondary host changes immediately.

Configuring Fallback to Primary Host

As already mentioned, the primary host is special in the failover arrangement when it comes to the
host's access mode. Additionally, the driver tries to fall back to the primary host as soon as possible by
default, even if no communication exception occurs. Two properties, secondsBeforeRetrySource
and queriesBeforeRetrySource, determine when the driver is ready to retry a reconnection to the
primary host (the Source in the property names stands for the primary host of our connection URL,
which is not necessarily a source host in a replication setup):

• secondsBeforeRetrySource determines how much time the driver waits before trying to fall back
to the primary host

• queriesBeforeRetrySource determines the number of queries that are executed
before the driver tries to fall back to the primary host. Note that for the driver, each call to
a Statement.execute*() method increments the query execution counter; therefore,
when calls are made to Statement.executeBatch() or if allowMultiQueries
or rewriteBatchStatements are enabled, the driver may not have an accurate
count of the actual number of queries executed on the server. Also, the driver calls the
Statement.execute*() methods internally in several occasions. All these mean you can only use
queriesBeforeRetrySource only as a coarse specification for when to fall back to the primary
host.

In general, an attempt to fallback to the primary host is made when at least one of the conditions
specified by the two properties is met, and the attempt always takes place at transaction
boundaries. However, if auto-commit is turned off, the check happens only when the method
Connection.commit() or Connection.rollback() is called. The automatic fallback to the
primary host can be turned off by setting simultaneously secondsBeforeRetrySource and
queriesBeforeRetrySource to “0”. Setting only one of the properties to “0” only disables one part
of the check.

Configuring Reconnection Attempts

When establishing a new connection or when a failover event occurs, the driver tries to connect
successively to the next candidate on the host list. When the end of the list has been reached, it
restarts all over again from the beginning of the list; however, the primary host is skipped over, if (a)
NOT all the secondary hosts have already been tested at least once, AND (b) the fallback conditions
defined by secondsBeforeRetrySource and queriesBeforeRetrySource are not yet fulfilled.
Each run-through of the whole host list, (which is not necessarily completed at the end of the host list)
counts as a single connection attempt. The driver tries as many connection attempts as specified by
the value of the property retriesAllDown.

Seamless Reconnection

Although not recommended, you can make the driver perform failovers without invalidating the
active Statement or ResultSet instances by setting either the parameter autoReconnect

147

Configuring Server Failover for Connections Using X DevAPI

or autoReconnectForPools to true. This allows the client to continue using the same object
instances after a failover event, without taking any exceptional measures. This, however, may lead to
unexpected results: for example, if the driver is connected to the primary host with read/write access
mode and it fails-over to a secondary host in read-only mode, further attempts to issue data-changing
queries will result in errors, and the client will not be aware of that. This limitation is particularly relevant
when using data streaming: after the failover, the ResultSet looks to be alright, but the underlying
connection may have changed already, and no backing cursor is available anymore.

Configuring Server Failover Using JDBC with DNS SRV

See Section 3.5.14, “Support for DNS SRV Records” for details.

3.8.2 Configuring Server Failover for Connections Using X DevAPI

When using the X Protocol, Connector/J supports a client-side failover feature for establishing a
Session. If multiple hosts are specified in the connection URL, when Connector/J fails to connect to a
listed host, it tries to connect to another one. This is a sample X DevAPI URL for configuring client-side
failover:

mysqlx://sandy:mypassword@[host1:33060,host2:33061]/test

With the client-side failover configured, when there is a failure to establish a connection, Connector/J
keeps attempting to connect to a host on the host list. The order in which the hosts are attempted for
connection is as follows:

• For connections with the priority property set for each host in the connection URL, hosts are
attempted according to the set priorities for the hosts, which are specified by any numbers between 0
to 100, with a larger number indicating a higher priority for connection. For example:

mysqlx://sandy:mypassword@[(address=host1:33060,priority=2),(address=host2:33061,priority=1)]/test

In this example, host1 is always attempted before host2 when new sessions are created.

Priorities should either be set for all or no hosts.

• For connections with the priority property NOT set for each host in the connection URL:

• For release 8.0.19 and later, hosts are attempted one after another in a random order.

• for release 8.0.18 and earlier, hosts are attempted one after another in the order they appear in the
connection URL—a host appearing earlier in the list will be attempted before a host appearing later
in the list.

Notice that the server failover feature for X DevAPI only allows for a failover when Connector/J is trying
to establish a connection, but not during operations after a connection has already been made.

Connection Pooling Using X DevAPI. When using connection pooling with X DevAPI,
Connector/J keeps track of any host it failed to connect to and, for a short waiting period after
the failure, avoids connecting to it during the creation or retrieval of a Session. However, if
all other hosts have already been tried, those excluded hosts will be retried without waiting.
Once all hosts have been tried and no connections can be established, Connector/J throws a
com.mysql.cj.exceptions.CJCommunicationsException and returns the message Unable
to connect to any of the target hosts.

Configuring Server Failover Using X DevAPI with DNS SRV

See Section 3.5.14, “Support for DNS SRV Records” for details.

3.8.3 Configuring Load Balancing with Connector/J

Connector/J has long provided an effective means to distribute read/write load across multiple MySQL
server instances for Cluster or source-source replication deployments. You can dynamically configure

148

Configuring Load Balancing with Connector/J

load-balanced connections, with no service outage. In-process transactions are not lost, and no
application exceptions are generated if any application is trying to use that particular server instance.

The load balancing is configured at the initial setup stage of the server connection by the following
connection URL, which has a similar format as the general JDBC URL for MySQL connection, but a
specialized scheme:

jdbc:mysql:loadbalance://[host1][:port],[host2][:port][,[host3][:port]]...[/[database]] »
[?propertyName1=propertyValue1[&propertyName2=propertyValue2]...]

There are two configuration properties associated with this functionality:

• loadBalanceConnectionGroup – This provides the ability to group connections from different
sources. This allows you to manage these JDBC sources within a single class loader in any
combination you choose. If they use the same configuration, and you want to manage them as a
logical single group, give them the same name. This is the key property for management: if you
do not define a name (string) for loadBalanceConnectionGroup, you cannot manage the
connections. All load-balanced connections sharing the same loadBalanceConnectionGroup
value, regardless of how the application creates them, will be managed together.

• ha.enableJMX – The ability to manage the connections is exposed when you define a
loadBalanceConnectionGroup; but if you want to manage this externally, enable JMX by
setting this property to true. This enables a JMX implementation, which exposes the management
and monitoring operations of a connection group. Further, start your application with the -
Dcom.sun.management.jmxremote JVM flag. You can then perform connect and perform
operations using a JMX client such as jconsole.

Once a connection has been made using the correct connection properties, a number of monitoring
properties are available:

• Current active host count.

• Current active physical connection count.

• Current active logical connection count.

• Total logical connections created.

• Total transaction count.

The following management operations can also be performed:

• Add host.

• Remove host.

The JMX interface, com.mysql.cj.jdbc.jmx.LoadBalanceConnectionGroupManagerMBean,
has the following methods:

• int getActiveHostCount(String group);

• int getTotalHostCount(String group);

• long getTotalLogicalConnectionCount(String group);

• long getActiveLogicalConnectionCount(String group);

• long getActivePhysicalConnectionCount(String group);

• long getTotalPhysicalConnectionCount(String group);

• long getTotalTransactionCount(String group);

149

Configuring Load Balancing with Connector/J

• void removeHost(String group, String host) throws SQLException;

• void stopNewConnectionsToHost(String group, String host) throws
SQLException;

• void addHost(String group, String host, boolean forExisting);

• String getActiveHostsList(String group);

• String getRegisteredConnectionGroups();

The getRegisteredConnectionGroups() method returns the names of all connection groups
defined in that class loader.

You can test this setup with the following code:

public class Test {
 private static String URL = "jdbc:mysql:loadbalance://" +
 "localhost:3306,localhost:3310/test?" +
 "loadBalanceConnectionGroup=first&ha.enableJMX=true";
 public static void main(String[] args) throws Exception {
 new Thread(new Repeater()).start();
 new Thread(new Repeater()).start();
 new Thread(new Repeater()).start();
 }
 static Connection getNewConnection() throws SQLException, ClassNotFoundException {
 Class.forName("com.mysql.cj.jdbc.Driver");
 return DriverManager.getConnection(URL, "root", "");
 }
 static void executeSimpleTransaction(Connection c, int conn, int trans){
 try {
 c.setAutoCommit(false);
 Statement s = c.createStatement();
 s.executeQuery("SELECT SLEEP(1) /* Connection: " + conn + ", transaction: " + trans + " */");
 c.commit();
 } catch (SQLException e) {
 e.printStackTrace();
 }
 }
 public static class Repeater implements Runnable {
 public void run() {
 for(int i=0; i < 100; i++){
 try {
 Connection c = getNewConnection();
 for(int j=0; j < 10; j++){
 executeSimpleTransaction(c, i, j);
 Thread.sleep(Math.round(100 * Math.random()));
 }
 c.close();
 Thread.sleep(100);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 }
 }
}

After compiling, the application can be started with the -Dcom.sun.management.jmxremote
flag, to enable remote management. jconsole can then be started. The Test main class
will be listed by jconsole. Select this and click Connect. You can then navigate to the
com.mysql.cj.jdbc.jmx.LoadBalanceConnectionGroupManager bean. At this point, you can
click on various operations and examine the returned result.

If you now had an additional instance of MySQL running on port 3309, you could ensure that
Connector/J starts using it by using the addHost(), which is exposed in jconsole. Note that these
operations can be performed dynamically without having to stop the application running.

150

Configuring Source/Replica Replication with Connector/J

For further information on the combination of load balancing and failover, see Section 3.8.5, “Advanced
Load-balancing and Failover Configuration”.

Configuring Load Balancing with DNS SRV

See Section 3.5.14, “Support for DNS SRV Records” for details.

3.8.4 Configuring Source/Replica Replication with Connector/J

This section describe a number of features of Connector/J's support for replication-aware deployments.

The replication is configured at the initial setup stage of the server connection by the connection URL,
which has a similar format as the general JDBC URL for MySQL connection, but a specialized scheme:

jdbc:mysql:replication://[source host][:port],[replica host 1][:port][,[replica host 2][:port]]...[/[database]] »
[?propertyName1=propertyValue1[&propertyName2=propertyValue2]...]

Users may specify the property allowSourceDownConnections=true to allow Connection
objects to be created even though no source hosts are reachable. Such Connection objects
report they are read-only, and isSourceConnection() returns false for them. The Connection
tests for available source hosts when Connection.setReadOnly(false) is called, throwing an
SQLException if it cannot establish a connection to a source, or switching to a source connection if the
host is available.

Users may specify the property allowReplicasDownConnections=true to allow Connection
objects to be created even though no replica hosts are reachable. A Connection then, at runtime,
tests for available replica hosts when Connection.setReadOnly(true) is called (see explanation
for the method below), throwing an SQLException if it cannot establish a connection to a replica, unless
the property readFromSourceWhenNoReplicas is set to be “true” (see below for a description of the
property).

Scaling out Read Load by Distributing Read Traffic to Replicas

Connector/J supports replication-aware connections. It can automatically send queries to a read/
write source host, or a failover or round-robin loadbalanced set of replicas based on the state of
Connection.getReadOnly().

An application signals that it wants a transaction to be read-only by calling
Connection.setReadOnly(true). The replication-aware connection will use one of
the replica connections, which are load-balanced per replica host using a round-robin
scheme. A given connection is sticky to a replica until a transaction boundary command
(a commit or rollback) is issued, or until the replica is removed from service. After calling
Connection.setReadOnly(true), if you want to allow connection to a source when no replicas
are available, set the property readFromSourceWhenNoReplicas to “true.” Notice that the source
host will be used in read-only state in those cases, as if it is a replica host. Also notice that setting
readFromSourceWhenNoReplicas=true might result in an extra load for the source host in a
transparent manner.

If you have a write transaction, or if you have a read that is time-sensitive (remember,
replication in MySQL is asynchronous), set the connection to be not read-only, by calling
Connection.setReadOnly(false) and the driver will ensure that further calls are sent to the
source MySQL server. The driver takes care of propagating the current state of autocommit, isolation
level, and catalog between all of the connections that it uses to accomplish this load balancing
functionality.

To enable this functionality, use the specialized replication scheme (
jdbc:mysql:replication://) when connecting to the server.

Here is a short example of how a replication-aware connection might be used in a standalone
application:

151

Configuring Source/Replica Replication with Connector/J

import java.sql.Connection;
import java.sql.ResultSet;
import java.util.Properties;
import java.sql.DriverManager;
public class ReplicationDemo {
 public static void main(String[] args) throws Exception {

 Properties props = new Properties();
 // We want this for failover on the replicas
 props.put("autoReconnect", "true");
 // We want to load balance between the replicas
 props.put("roundRobinLoadBalance", "true");
 props.put("user", "foo");
 props.put("password", "password");
 //
 // Looks like a normal MySQL JDBC url, with a
 // comma-separated list of hosts, the first
 // being the 'source', the rest being any number
 // of replicas that the driver will load balance against
 //
 Connection conn =
 DriverManager.getConnection("jdbc:mysql:replication://source,replica1,replica2,replica3/test",
 props);
 //
 // Perform read/write work on the source
 // by setting the read-only flag to "false"
 //
 conn.setReadOnly(false);
 conn.setAutoCommit(false);
 conn.createStatement().executeUpdate("UPDATE some_table");
 conn.commit();
 //
 // Now, do a query from a replica, the driver automatically picks one
 // from the list
 //
 conn.setReadOnly(true);
 ResultSet rs =
 conn.createStatement().executeQuery("SELECT a,b FROM alt_table");

 }
}

Consider using the Load Balancing JDBC Pool (lbpool) tool, which provides a wrapper around the
standard JDBC driver and enables you to use DB connection pools that includes checks for system
failures and uneven load distribution. For more information, see Load Balancing JDBC Driver for
MySQL (mysql-lbpool).

Support for Multiple-Source Replication Topographies

Connector/J supports multi-source replication topographies.

The connection URL for replication discussed earlier (i.e., in the format of
jdbc:mysql:replication://source,replica1,replica2,replica3/test) assumes that
the first (and only the first) host is the source host. Supporting deployments with an arbitrary number of
sources and replicas requires the "address-equals" URL syntax for multiple host connection discussed
in Section 3.5.2, “Connection URL Syntax”, with the property type=[source|replica]; for example:

jdbc:mysql:replication://address=(type=source)(host=source1host),address=(type=source)(host=source2host),address=(type=replica)(host=replica1host)/database

Connector/J uses a load-balanced connection internally for management of the source connections,
which means that ReplicationConnection, when configured to use multiple sources, exposes the
same options to balance load across source hosts as described in Section 3.8.3, “Configuring Load
Balancing with Connector/J”.

Live Reconfiguration of Replication Topography

Connector/J also supports live management of replication host (single or multi-source) topographies.
This enables users to promote replicas for Java applications without requiring an application restart.

152

http://code.google.com/p/mysql-lbpool/
http://code.google.com/p/mysql-lbpool/

Configuring Source/Replica Replication with Connector/J

The replication hosts are most effectively managed in the context of a replication connection
group. A ReplicationConnectionGroup class represents a logical grouping of connections which
can be managed together. There may be one or more such replication connection groups in a
given Java class loader (there can be an application with two different JDBC resources needing
to be managed independently). This key class exposes host management methods for replication
connections, and ReplicationConnection objects register themselves with the appropriate
ReplicationConnectionGroup if a value for the new replicationConnectionGroup property
is specified. The ReplicationConnectionGroup object tracks these connections until they are
closed, and it is used to manipulate the hosts associated with these connections.

Some important methods related to host management include:

• getSourceHosts(): Returns a collection of strings representing the hosts configured as source
hosts

• getReplicaHosts(): Returns a collection of strings representing the hosts configured as replica
hosts

• addReplicaHost(String host): Adds new host to pool of possible replica hosts for selection at
start of new read-only workload

• promoteReplicaToSource(String host): Removes the host from the pool of potential replica
hosts for future read-only processes (existing read-only process is allowed to continue to completion)
and adds the host to the pool of potential source hosts

• removeReplicaHost(String host, boolean closeGently): Removes the host (host name
match must be exact) from the list of configured replica hosts; if closeGently is false, existing
connections which have this host as currently active will be closed hardly (application should expect
exceptions)

• removeSourceHost(String host, boolean closeGently): Same as
removeReplicaHost(), but removes the host from the list of configured source hosts

Some useful management metrics include:

• getConnectionCountWithHostAsReplica(String host): Returns the number of
ReplicationConnection objects that have the given host configured as a possible replica host

• getConnectionCountWithHostAsSource(String host): Returns the number of
ReplicationConnection objects that have the given host configured as a possible source host

• getNumberOfReplicasAdded(): Returns the number of times a replica host has been
dynamically added to the group pool

• getNumberOfReplicasRemoved(): Returns the number of times a replica host has been
dynamically removed from the group pool

• getNumberOfReplicaPromotions(): Returns the number of times a replica host has been
promoted to be a source host

• getTotalConnectionCount(): Returns the number of ReplicationConnection objects which have
been registered with this group

• getActiveConnectionCount(): Returns the number of ReplicationConnection objects currently
being managed by this group

ReplicationConnectionGroupManager

com.mysql.cj.jdbc.ha.ReplicationConnectionGroupManager provides access to the
replication connection groups, together with some utility methods.

• getConnectionGroup(String groupName): Returns the ReplicationConnectionGroup
object matching the groupName provided

153

Advanced Load-balancing and Failover Configuration

The other methods in ReplicationConnectionGroupManager mirror those of
ReplicationConnectionGroup, except that the first argument is a String group name.
These methods will operate on all matching ReplicationConnectionGroups, which are
helpful for removing a server from service and have it decommissioned across all possible
ReplicationConnectionGroups.

These methods might be useful for in-JVM management of replication hosts if an application triggers
topography changes. For managing host configurations from outside the JVM, JMX can be used.

Using JMX for Managing Replication Hosts

When Connector/J is started with ha.enableJMX=true and a value set for the
property replicationConnectionGroup, a JMX MBean will be registered, allowing
manipulation of replication hosts by a JMX client. The MBean interface is defined in
com.mysql.cj.jdbc.jmx.ReplicationGroupManagerMBean, and leverages the
ReplicationConnectionGroupManager static methods:

 public abstract void addReplicaHost(String groupFilter, String host) throws SQLException;
 public abstract void removeReplicaHost(String groupFilter, String host) throws SQLException;
 public abstract void promoteReplicaToSource(String groupFilter, String host) throws SQLException;
 public abstract void removeSourceHost(String groupFilter, String host) throws SQLException;
 public abstract String getSourceHostsList(String group);
 public abstract String getReplicaHostsList(String group);
 public abstract String getRegisteredConnectionGroups();
 public abstract int getActiveSourceHostCount(String group);
 public abstract int getActiveReplicaHostCount(String group);
 public abstract int getReplicaPromotionCount(String group);
 public abstract long getTotalLogicalConnectionCount(String group);
 public abstract long getActiveLogicalConnectionCount(String group);

Configuring Source/Replica Replication with DNS SRV

See Section 3.5.14, “Support for DNS SRV Records” for details.

3.8.5 Advanced Load-balancing and Failover Configuration

Connector/J provides a useful load-balancing implementation for MySQL Cluster or multi-source
deployments, as explained in Section 3.8.3, “Configuring Load Balancing with Connector/J” and
Support for Multiple-Source Replication Topographies. This same implementation is used for balancing
load between read-only replicas for replication-aware connections.

When trying to balance workload between multiple servers, the driver has to determine when it is
safe to swap servers, doing so in the middle of a transaction, for example, could cause problems. It is
important not to lose state information. For this reason, Connector/J will only try to pick a new server
when one of the following happens:

1. At transaction boundaries (transactions are explicitly committed or rolled back).

2. A communication exception (SQL State starting with "08") is encountered.

3. When a SQLException matches conditions defined by user, using the extension points defined by
the loadBalanceSQLStateFailover, loadBalanceSQLExceptionSubclassFailover or
loadBalanceExceptionChecker properties.

The third condition revolves around three properties, which allow you to control which SQLExceptions
trigger failover:

• loadBalanceExceptionChecker - The loadBalanceExceptionChecker property
is really the key. This takes a fully-qualified class name which implements the new
com.mysql.cj.jdbc.ha.LoadBalanceExceptionChecker interface. This interface is very
simple, and you only need to implement the following method:

154

Advanced Load-balancing and Failover Configuration

public boolean shouldExceptionTriggerFailover(SQLException ex)

A SQLException is passed in, and a boolean returned. A value of true triggers a failover, false
does not.

You can use this to implement your own custom logic. An example where this might be useful is
when dealing with transient errors when using MySQL Cluster, where certain buffers may become
overloaded. The following code snippet illustrates this:

public class NdbLoadBalanceExceptionChecker
 extends StandardLoadBalanceExceptionChecker {
 public boolean shouldExceptionTriggerFailover(SQLException ex) {
 return super.shouldExceptionTriggerFailover(ex)
 || checkNdbException(ex);
 }
 private boolean checkNdbException(SQLException ex){
 // Have to parse the message since most NDB errors
 // are mapped to the same DEMC.
 return (ex.getMessage().startsWith("Lock wait timeout exceeded") ||
 (ex.getMessage().startsWith("Got temporary error")
 && ex.getMessage().endsWith("from NDB")));
 }
}

The code above extends
com.mysql.cj.jdbc.ha.StandardLoadBalanceExceptionChecker, which is the
default implementation. There are a few convenient shortcuts built into this, for those who
want to have some level of control using properties, without writing Java code. This default
implementation uses the two remaining properties: loadBalanceSQLStateFailover and
loadBalanceSQLExceptionSubclassFailover.

• loadBalanceSQLStateFailover - allows you to define a comma-delimited list of SQLState
code prefixes, against which a SQLException is compared. If the prefix matches, failover is
triggered. So, for example, the following would trigger a failover if a given SQLException starts with
"00", or is "12345":

loadBalanceSQLStateFailover=00,12345

• loadBalanceSQLExceptionSubclassFailover - can be used in conjunction with
loadBalanceSQLStateFailover or on its own. If you want certain subclasses of SQLException
to trigger failover, simply provide a comma-delimited list of fully-qualified class or interface names
to check against. For example, if you want all SQLTransientConnectionExceptions to trigger
failover, you would specify:

loadBalanceSQLExceptionSubclassFailover=java.sql.SQLTransientConnectionException

While the three failover conditions enumerated earlier suit most situations, if autocommit is enabled,
Connector/J never re-balances, and continues using the same physical connection. This can be
problematic, particularly when load-balancing is being used to distribute read-only load across multiple
replicas. However, Connector/J can be configured to re-balance after a certain number of statements
are executed, when autocommit is enabled. This functionality is dependent upon the following
properties:

• loadBalanceAutoCommitStatementThreshold – defines the number of matching statements
which will trigger the driver to potentially swap physical server connections. The default value, 0,
retains the behavior that connections with autocommit enabled are never balanced.

• loadBalanceAutoCommitStatementRegex – the regular expression against which statements
must match. The default value, blank, matches all statements. So, for example, using the following
properties will cause Connector/J to re-balance after every third statement that contains the string
“test”:

155

Using the X DevAPI with Connector/J: Special Topics

loadBalanceAutoCommitStatementThreshold=3
loadBalanceAutoCommitStatementRegex=.*test.*

loadBalanceAutoCommitStatementRegex can prove useful in a number of situations. Your
application may use temporary tables, server-side session state variables, or connection state,
where letting the driver arbitrarily swap physical connections before processing is complete could
cause data loss or other problems. This allows you to identify a trigger statement that is only
executed when it is safe to swap physical connections.

Configuring Load Balancing and Failover with DNS SRV

See Section 3.5.14, “Support for DNS SRV Records” for details.

3.9 Using the X DevAPI with Connector/J: Special Topics
Connector/J 8.0 supports the X DevAPI, through which native support by MySQL 8.0 for JSON,
NoSQL, document collection, and other features are provided to Java applications. See Using MySQL
as a Document Store, the X DevAPI User Guide, and the Connector/J X DevAPI Reference available at
Connectors and APIs for details.

Information on using the X DevAPI with Connector/J can be found in different chapters in this manual.
This chapter explores some special topics that are not covered elsewhere.

3.9.1 Connection Compression Using X DevAPI

Staring form release 8.0.20, Connector/J supports data compression for X DevAPI connections
when working with MySQL Server 8.0.19 and later. General details about this feature can be found
in Connection Compression with X Plugin. For details on how to configure connection compression
for Connector/J, see the descriptions for the connection properties xdevapi.compression,
xdevapi.compression-algorithms, and xdevapi.compression-extensions in
Section 3.5.3, “Configuration Properties”. The following is a summary of the feature:

For Connector/J 8.0.22 and later: The compression algorithms to be negotiated with the server and
the priority of negotiation can be specified using the connection property xdevapi.compression-
algorithms. It accepts a list of [algorithm-name]_[operation-mode], separated by commas
(,). If the property is not set, the default value of “zstd_stream,lz4_message,deflate_stream”
is used. The priority for negotiation follows the order the algorithms appear in the list. Setting an empty
string explicitly for the property means compression should be disabled for the connection.

Note

When specifying compression algorithms with xdevapi.compression-
algorithms, the aliases zstd, lz4, and deflate can be used in place of
zstd_stream, lz4_message, and deflate_stream, respectively.

For Connector/J 8.0.21 and earlier: Connector/J negotiates a compression algorithm following the
priority recommended by X DevAPI: trying zstd first, then LZ4, and finally Deflate.

Out of all the compression algorithms now supported by MySQL 8.0 for X DevAPI connections,
Connector/J provides out-of-the-box support for Deflate only; this is because none of the other
compression algorithms (LZ4 and zstd, for now) are natively supported by the existing JREs. To
support those algorithms, the client application must provide implementations for the corresponding
deflate and inflate operations in the form of an OutputStream and an InputStream object,
respectively. The easiest way to accomplish this is by using a third-party library such as the
Apache Commons Compress library, which supports LZ4 and zstd. The connection option
xdevapi.compression-extensions allows users to configure Connector/J to use any
compression algorithm that is supported by MySQL Server, as long as there is a Java implementation
for that algorithm. The option takes a list of triplets separated by commas (,), and each triplet in turn
contains the following elements, separated by colons (:):

156

https://dev.mysql.com/doc/refman/8.0/en/document-store.html
https://dev.mysql.com/doc/refman/8.0/en/document-store.html
https://dev.mysql.com/doc/x-devapi-userguide/en/
https://dev.mysql.com/doc/index-connectors.html
https://dev.mysql.com/doc/refman/8.0/en/x-plugin-connection-compression.html

Schema Validation

• The compression algorithm name, indicated by the identifier used by the server (see Connection
Compression with X Plugin; aliases mentioned in the Note above can be used).

• A fully-qualified name of a class implementing the interface java.io.InputStream that will be
used to inflate data compressed with the named algorithm.

• A fully-qualified name of a class implementing the interface java.io.OutputStream that will be
used to deflate data using the named algorithm.

Here is an example that sets up the support for the algorithms lz4_message and zstd_stream using
the Apache Commons Compress library:

String connStr = "jdbc:mysql://johndoe:secret@localhost:33060/mydb?"
 + "xdevapi.compression-extensions="
 + "lz4_message"+":" // LZ4 triplet
 + FramedLZ4CompressorInputStream.class.getName() + ":"
 + FramedLZ4CompressorOutputStream.class.getName() + ","
 + "zstd_stream"+":" // zstd triplet
 + ZstdCompressorInputStream.class.getName() + ":"
 + ZstdCompressorOutputStream.class.getName();
SessionFactory sessFact = new SessionFactory();
Session sess = sessFact.getSession(connStr);
Collection col = sess.getDefaultSchema().getCollection("myCollection");
// (...)
sess.close();

Note

For Connector/J 8.0.21 and earlier: The connection property
xdevapi.compression-extensions described above is named
xdevapi.compression-algorithm for Connector/J 8.0.21 and earlier,
and the elements in each triplet should be separated by commas (,) instead of
colons (:).

Negotiation for a compression algorithm is attempted by default
(xdevapi.compression=Preferred by default), unless the connection property
xdevapi.compression is set to DISABLED. The final choice of compression algorithm depends
on what algorithms are enabled on the server. By default, because compression is not required, if the
negotiation fails, the connection will not be compressed, but the client will still be able to communicate
with the server; however, if the connection property xdevapi.compression is set to REQUIRED, the
connection attempt fails with an error if no algorithm can be negotiated for successfully.

3.9.2 Schema Validation

For Connector/J 8.0.21 and later, when working with MySQL Server 8.0.19 and later: Schema
validation can be configured for a Collection, so that documents in the Collection are validated
against a schema before they can be inserted or updated. This is done by specifying a JSON Schema
during Collection creation or modification; schema validation is then performed by the server at a
document creation or update, and an error is returned if the document does not validate against the
assigned schema. For more information on JSON schema validation in MySQL, see JSON Schema
Validation Functions. This section describes how to configure schema validation for a Collection
with Connector/J.

To configure schema validation during the creation of a Collection, pass to the
createCollection() method a CreateCollectionOptions object, which has these fields:

• reuse: a boolean set by the setReuseExisting method. If it is true, when the Collection
to be created already exists within the Schema that is to contain it, Connector/J returns success
(without any attempt to apply JSON schema to the existing Collection); in the same case,
Connector/J returns an error if the parameter is set to false. If reuse is not set, it is taken to be
false.

• validation: a Validation object set by the setValidation() method. A Validation object
in turns contains these fields:

157

https://dev.mysql.com/doc/refman/8.0/en/x-plugin-connection-compression.html
https://dev.mysql.com/doc/refman/8.0/en/x-plugin-connection-compression.html
http://json-schema.org
https://dev.mysql.com/doc/refman/8.0/en/json-validation-functions.html
https://dev.mysql.com/doc/refman/8.0/en/json-validation-functions.html

Schema Validation

• level: a enumeration of the class ValidationLevel, set by the setLevel() method; it can be
one of the following two values:

• STRICT: Strict validation. Attempting to insert or modify a document that violates the validation
schema results in a server error being raised.

• OFF: No validation. Schema validation is turned off.

If level is not set, it is taken as OFF for MySQL Server 8.0.19, and STRICT for 8.0.20 and later.

• schema: A string representing a JSON Schema to be used to validate a Document in the
Collection; set by the setSchema() method.

If schema is not provided but level is set to STRICT, the Collection is validated against the
default schema {"type" : "object"}.

This is an example of how to configure schema validation at the creation of a Collection:

Collection coll = this.schema.createCollection(collName,
 new CreateCollectionOptions()
 .setReuseExisting(false)
 .setValidation(new Validation()
 .setLevel(ValidationLevel.STRICT)
 .setSchema(
 "{\"id\": \"http://json-schema.org/geo\","
 + "\"$schema\": \"http://json-schema.org/draft-06/schema#\","
 + " \"description\": \"A geographical coordinate\","
 + " \"type\": \"object\","
 + " \"properties\": {"
 + " \"latitude\": {"
 + " \"type\": \"number\""
 + " },"
 + " \"longitude\": {"
 + " \"type\": \"number\""
 + " }"
 + " },"
 + " \"required\": [\"latitude\", \"longitude\"]"
 + " }"
)));

The set fields are accessible by the corresponding getter methods.

To modify the schema validation configuration for a Collection, use the modifyCollection()
method and pass to it a ModifyCollectionOptions object, which has the same fields as
the CreateCollectionOptions object except for the reuse field, which does not exist for a
ModifyCollectionOptions object. For the Validation object of a ModifyCollectionOptions
object, users can set either its level or schema, or both. Here is an example of using the
modifyCollection() to change the schema validation configuration:

schema.modifyCollection(collName,
 new ModifyCollectionOptions()
 .setValidation(new Validation()
 .setLevel(ValidationLevel.OFF)
 .setSchema(
 "{\"id\": \"http://json-schema.org/geo\","
 + "\"$schema\": \"http://json-schema.org/draft-06/schema#\","
 + " \"description\": \"NEW geographical coordinate\","
 + " \"type\": \"object\","
 + " \"properties\": {"
 + " \"latitude\": {"
 + " \"type\": \"number\""
 + " },"
 + " \"longitude\": {"
 + " \"type\": \"number\""
 + " }"
 + " },"

158

http://json-schema.org

Using the Connector/J Interceptor Classes

 + " \"required\": [\"latitude\", \"longitude\"]"
 + " }"
)));

If the Collection contains documents that do not validate against the new JSON schema supplied
through ModifyCollectionOptions, the server will reject the schema modification with the error
ERROR 5180 (HY000) Document is not valid according to the schema assigned to
collection.

Note

createCollection() and modifyCollection() are overloaded: they can
be called without passing to them the CreateCollectionOptions or the
ModifyCollectionOptions, respectively, in which case schema validation
will not be applied to the Collection.

3.10 Using the Connector/J Interceptor Classes
An interceptor is a software design pattern that provides a transparent way to extend or modify
some aspect of a program, similar to a user exit. No recompiling is required. With Connector/J, the
interceptors are enabled and disabled by updating the connection string to refer to different sets of
interceptor classes that you instantiate.

The connection properties that control the interceptors are explained in Section 3.5.3, “Configuration
Properties”:

• connectionLifecycleInterceptors, where you specify the fully qualified names of classes
that implement the
com.mysql.cj.jdbc.interceptors.ConnectionLifecycleInterceptor interface.
In these kinds of interceptor classes, you might log events such as rollbacks, measure the time
between transaction start and end, or count events such as calls to setAutoCommit().

• exceptionInterceptors, where you specify the fully qualified names of classes that implement
the com.mysql.cj.exceptions.ExceptionInterceptor interface. In these kinds of
interceptor classes, you might add extra diagnostic information to exceptions that can have multiple
causes or indicate a problem with server settings. exceptionInterceptors classes are called
when handling an Exception thrown from Connector/J code.

• queryInterceptors, where you specify the fully qualified names of classes that implement the
com.mysql.cj.interceptors.QueryInterceptor interface. In these kinds of interceptor
classes, you might change or augment the processing done by certain kinds of statements, such
as automatically checking for queried data in a memcached server, rewriting slow queries, logging
information about statement execution, or route requests to remote servers.

3.11 Using Logging Frameworks with SLF4J
Besides its default logger com.mysql.cj.log.StandardLogger, which logs to stderr, Connector/
J supports the SLF4J logging facade, allowing end users of applications using Connector/J to plug
in logging frameworks of their own choices at deployment time. Popular logging frameworks such as
java.util.logging, logback, and log4j are supported by SLF4J. Follow these requirements to
use a logging framework with SLF4J and Connector/J:

• In the development environment:

• Install on your system slf4j-api-x.y.z.jar (available at https://www.slf4j.org/download.html)
and add it to the Java classpath.

• In the code of your application, obtain an SLF4JLogger as a Log instantiated within a
MysqlConnection Session, and then use the Log instance for your logging.

• On the deployment system:

159

https://www.slf4j.org/download.html

Using Logging Frameworks with SLF4J

• Install on your system slf4j-api-x.y.z.jar and add it to the Java classpath

• Install on your system the SLF4J binding for the logging framework of your choice and add it
to your Java classpath. SLF4J bindings are available at, for example, https://www.slf4j.org/
manual.html#swapping.

Note

Do not put more than one SLF4J binding in you Java classpath. Switch
from one logging framework to another by removing a binding and adding a
new one to the classpath.

• Install the logging framework of your choice on your system and add it to the Java classpath.

• Configure the logging framework of your choice. This often consists of setting up appenders or
handlers for log messages using a configuration file; see your logging framework's documentation
for details.

• When connecting the application to the MySQL Server, set the Connector/J connection property
logger to Slf4JLogger.

The log category name used by Connector/J with SLF4J is MySQL. See the SLF4J user manual for
more details about using SLF4J, including discussions on Maven dependency and bindings. Here is a
sample code for using SLF4J with Connector/J:

import java.sql.DriverManager;
import java.sql.Connection;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;
import com.mysql.cj.jdbc.JdbcConnection;
import com.mysql.cj.log.Log;
public class JDBCDemo {

 public static void main(String[] args) {

 Connection conn = null;
 Statement statement = null;
 ResultSet resultSet = null;
 Log logger = null;

 try {
 // Database parameters
 String url = "jdbc:mysql://myexample.com:3306/pets?logger=Slf4JLogger&explainSlowQueries=true";
 String user = "user";
 String password = "password";
 // create a connection to the database
 conn = DriverManager.getConnection(url, user, password);
 logger = ((JdbcConnection)conn).getSession().getLog();
 }
 catch (SQLException e) {
 System.err.println(e.getMessage());
 System.exit(1);
 }
 try {
 statement = conn.createStatement();
 resultSet = statement.executeQuery("SELECT * FROM pets.dogs");
 while(resultSet.next()){
 System.out.printf("%d\t%s\t%s\t %4$ty.%4$tm.%4$td \n",
 resultSet.getInt(1),
 resultSet.getString(2),
 resultSet.getString(3),
 resultSet.getDate(4));
 }
 }
 catch(SQLException e) {
 logger.logWarn("Warning: Select failed!");

160

https://www.slf4j.org/manual.html#swapping
https://www.slf4j.org/manual.html#swapping
http://www.slf4j.org/manual.html

Using Connector/J with Tomcat

 }
}
}

If you want to use, for example, Log4j 2.17.1 as your logging framework when running this program,
put these JAR files in your Java classpath:

• slf4j-api-2.0.3.jar (SLF4J API module, available at, for example, https://search.maven.org/
artifact/org.slf4j/slf4j-api/2.0.3/jar).

• log4j-api-2.17.1.jar and log4j-core-2.17.1.jar (Log4J library, available at, for
example, https://search.maven.org/artifact/org.apache.logging.log4j/log4j-api/2.17.1/jar and https://
search.maven.org/artifact/org.apache.logging.log4j/log4j-core/2.17.1/jar).

• log4j-slf4j-impl-2.17.1.jar (SLF4J's binding for Log4J 2.17.1, available at, for example,
https://search.maven.org/artifact/org.apache.logging.log4j/log4j-slf4j-impl/2.17.1/jar).

Here is output of the program when the SELECT statement failed:

[2021-09-05 12:06:19,624] WARN 0[main] - WARN MySQL - Warning: Select failed!

3.12 Using Connector/J with Tomcat

The following instructions are based on the instructions for Tomcat-5.x, available at http://
tomcat.apache.org/tomcat-5.5-doc/jndi-datasource-examples-howto.html which is current at the time
this document was written.

First, install the .jar file that comes with Connector/J in $CATALINA_HOME/common/lib so that it is
available to all applications installed in the container.

Next, configure the JNDI DataSource by adding a declaration resource to $CATALINA_HOME/conf/
server.xml in the context that defines your web application:

 <Context>
 ...
 <Resource name="jdbc/MySQLDB"
 auth="Container"
 type="javax.sql.DataSource"/>
 <ResourceParams name="jdbc/MySQLDB">
 <parameter>
 <name>factory</name>
 <value>org.apache.commons.dbcp.BasicDataSourceFactory</value>
 </parameter>
 <parameter>
 <name>maxActive</name>
 <value>10</value>
 </parameter>
 <parameter>
 <name>maxIdle</name>
 <value>5</value>
 </parameter>
 <parameter>
 <name>validationQuery</name>
 <value>SELECT 1</value>
 </parameter>
 <parameter>
 <name>testOnBorrow</name>
 <value>true</value>
 </parameter>
 <parameter>
 <name>testWhileIdle</name>
 <value>true</value>
 </parameter>
 <parameter>
 <name>timeBetweenEvictionRunsMillis</name>
 <value>10000</value>

161

https://search.maven.org/artifact/org.slf4j/slf4j-api/2.0.3/jar
https://search.maven.org/artifact/org.slf4j/slf4j-api/2.0.3/jar
https://search.maven.org/artifact/org.apache.logging.log4j/log4j-api/2.17.1/jar
https://search.maven.org/artifact/org.apache.logging.log4j/log4j-core/2.17.1/jar
https://search.maven.org/artifact/org.apache.logging.log4j/log4j-core/2.17.1/jar
https://search.maven.org/artifact/org.apache.logging.log4j/log4j-slf4j-impl/2.17.1/jar
http://tomcat.apache.org/tomcat-5.5-doc/jndi-datasource-examples-howto.html
http://tomcat.apache.org/tomcat-5.5-doc/jndi-datasource-examples-howto.html

Using Connector/J with Spring

 </parameter>
 <parameter>
 <name>minEvictableIdleTimeMillis</name>
 <value>60000</value>
 </parameter>
 <parameter>
 <name>username</name>
 <value>someuser</value>
 </parameter>
 <parameter>
 <name>password</name>
 <value>somepass</value>
 </parameter>
 <parameter>
 <name>driverClassName</name>
 <value>com.mysql.cj.jdbc.Driver</value>
 </parameter>
 <parameter>
 <name>url</name>
 <value>jdbc:mysql://localhost:3306/test</value>
 </parameter>
 </ResourceParams>
</Context>

Connector/J introduces a facility whereby, rather than use a validationQuery value of SELECT 1,
it is possible to use validationQuery with a value set to /* ping */. This sends a ping to the
server which then returns a fake result set. This is a lighter weight solution. It also has the advantage
that if using ReplicationConnection or LoadBalancedConnection type connections, the ping
will be sent across all active connections. The following XML snippet illustrates how to select this
option:

<parameter>
 <name>validationQuery</name>
 <value>/* ping */</value>
</parameter>

Note that /* ping */ has to be specified exactly.

In general, follow the installation instructions that come with your version of Tomcat, as the way you
configure datasources in Tomcat changes from time to time, and if you use the wrong syntax in your
XML file, you will most likely end up with an exception similar to the following:

Error: java.sql.SQLException: Cannot load JDBC driver class 'null ' SQL
state: null

Note that the auto-loading of drivers having the META-INF/service/java.sql.Driver
class in JDBC 4.0 and later causes an improper undeployment of the Connector/J driver in
Tomcat on Windows. Namely, the Connector/J jar remains locked. This is an initialization
problem that is not related to the driver. The possible workarounds, if viable, are as follows: use
"antiResourceLocking=true" as a Tomcat Context attribute, or remove the META-INF/ directory.

3.13 Using Connector/J with Spring

The Spring Framework is a Java-based application framework designed for assisting in application
design by providing a way to configure components. The technique used by Spring is a well known
design pattern called Dependency Injection (see Inversion of Control Containers and the Dependency
Injection pattern). This article will focus on Java-oriented access to MySQL databases with Spring 2.0.
For those wondering, there is a .NET port of Spring appropriately named Spring.NET.

Spring is not only a system for configuring components, but also includes support for aspect oriented
programming (AOP). This is one of the main benefits and the foundation for Spring's resource and
transaction management. Spring also provides utilities for integrating resource management with JDBC
and Hibernate.

162

http://www.martinfowler.com/articles/injection.html
http://www.martinfowler.com/articles/injection.html

Using Connector/J with Spring

For the examples in this section the MySQL world sample database will be used. The first task is to
set up a MySQL data source through Spring. Components within Spring use the “bean” terminology.
For example, to configure a connection to a MySQL server supporting the world sample database, you
might use:

<util:map id="dbProps">
 <entry key="db.driver" value="com.mysql.cj.jdbc.Driver"/>
 <entry key="db.jdbcurl" value="jdbc:mysql://localhost/world"/>
 <entry key="db.username" value="myuser"/>
 <entry key="db.password" value="mypass"/>
</util:map>

In the above example, we are assigning values to properties that will be used in the configuration. For
the datasource configuration:

<bean id="dataSource"
 class="org.springframework.jdbc.datasource.DriverManagerDataSource">
 <property name="driverClassName" value="${db.driver}"/>
 <property name="url" value="${db.jdbcurl}"/>
 <property name="username" value="${db.username}"/>
 <property name="password" value="${db.password}"/>
</bean>

The placeholders are used to provide values for properties of this bean. This means that we can
specify all the properties of the configuration in one place instead of entering the values for each
property on each bean. We do, however, need one more bean to pull this all together. The last bean is
responsible for actually replacing the placeholders with the property values.

<bean
 class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer">
 <property name="properties" ref="dbProps"/>
</bean>

Now that we have our MySQL data source configured and ready to go, we write some Java code to
access it. The example below will retrieve three random cities and their corresponding country using
the data source we configured with Spring.

// Create a new application context. this processes the Spring config
ApplicationContext ctx =
 new ClassPathXmlApplicationContext("ex1appContext.xml");
// Retrieve the data source from the application context
 DataSource ds = (DataSource) ctx.getBean("dataSource");
// Open a database connection using Spring's DataSourceUtils
Connection c = DataSourceUtils.getConnection(ds);
try {
 // retrieve a list of three random cities
 PreparedStatement ps = c.prepareStatement(
 "select City.Name as 'City', Country.Name as 'Country' " +
 "from City inner join Country on City.CountryCode = Country.Code " +
 "order by rand() limit 3");
 ResultSet rs = ps.executeQuery();
 while(rs.next()) {
 String city = rs.getString("City");
 String country = rs.getString("Country");
 System.out.printf("The city %s is in %s%n", city, country);
 }
} catch (SQLException ex) {
 // something has failed and we print a stack trace to analyse the error
 ex.printStackTrace();
 // ignore failure closing connection
 try { c.close(); } catch (SQLException e) { }
} finally {
 // properly release our connection

163

Using JdbcTemplate

 DataSourceUtils.releaseConnection(c, ds);
}

This is very similar to normal JDBC access to MySQL with the main difference being that we are using
DataSourceUtils instead of the DriverManager to create the connection.

While it may seem like a small difference, the implications are somewhat far reaching. Spring manages
this resource in a way similar to a container managed data source in a J2EE application server. When
a connection is opened, it can be subsequently accessed in other parts of the code if it is synchronized
with a transaction. This makes it possible to treat different parts of your application as transactional
instead of passing around a database connection.

3.13.1 Using JdbcTemplate

Spring makes extensive use of the Template method design pattern (see Template Method
Pattern). Our immediate focus will be on the JdbcTemplate and related classes, specifically
NamedParameterJdbcTemplate. The template classes handle obtaining and releasing a connection
for data access when one is needed.

The next example shows how to use NamedParameterJdbcTemplate inside of a DAO (Data Access
Object) class to retrieve a random city given a country code.

public class Ex2JdbcDao {
 /**
 * Data source reference which will be provided by Spring.
 */
 private DataSource dataSource;
 /**
 * Our query to find a random city given a country code. Notice
 * the ":country" parameter toward the end. This is called a
 * named parameter.
 */
 private String queryString = "select Name from City " +
 "where CountryCode = :country order by rand() limit 1";
 /**
 * Retrieve a random city using Spring JDBC access classes.
 */
 public String getRandomCityByCountryCode(String cntryCode) {
 // A template that permits using queries with named parameters
 NamedParameterJdbcTemplate template =
 new NamedParameterJdbcTemplate(dataSource);
 // A java.util.Map is used to provide values for the parameters
 Map params = new HashMap();
 params.put("country", cntryCode);
 // We query for an Object and specify what class we are expecting
 return (String)template.queryForObject(queryString, params, String.class);
 }
 /**
 * A JavaBean setter-style method to allow Spring to inject the data source.
 * @param dataSource
 */
 public void setDataSource(DataSource dataSource) {
 this.dataSource = dataSource;
 }
}

The focus in the above code is on the getRandomCityByCountryCode() method. We pass a
country code and use the NamedParameterJdbcTemplate to query for a city. The country code is
placed in a Map with the key "country", which is the parameter is named in the SQL query.

To access this code, you need to configure it with Spring by providing a reference to the data source.

<bean id="dao" class="code.Ex2JdbcDao">
 <property name="dataSource" ref="dataSource"/>
</bean>

164

http://en.wikipedia.org/wiki/Template_method_pattern
http://en.wikipedia.org/wiki/Template_method_pattern

Transactional JDBC Access

At this point, we can just grab a reference to the DAO from Spring and call
getRandomCityByCountryCode().

 // Create the application context
 ApplicationContext ctx =
 new ClassPathXmlApplicationContext("ex2appContext.xml");
 // Obtain a reference to our DAO
 Ex2JdbcDao dao = (Ex2JdbcDao) ctx.getBean("dao");
 String countryCode = "USA";
 // Find a few random cities in the US
 for(int i = 0; i < 4; ++i)
 System.out.printf("A random city in %s is %s%n", countryCode,
 dao.getRandomCityByCountryCode(countryCode));

This example shows how to use Spring's JDBC classes to completely abstract away the use of
traditional JDBC classes including Connection and PreparedStatement.

3.13.2 Transactional JDBC Access

Spring allows us to add transactions into our code without having to deal directly with the JDBC
classes. For that purpose, Spring provides a transaction management package that not only replaces
JDBC transaction management, but also enables declarative transaction management (configuration
instead of code).

To use transactional database access, we will need to change the storage engine of the tables in
the world database. The downloaded script explicitly creates MyISAM tables, which do not support
transactional semantics. The InnoDB storage engine does support transactions and this is what we will
be using. We can change the storage engine with the following statements.

ALTER TABLE City ENGINE=InnoDB;
ALTER TABLE Country ENGINE=InnoDB;
ALTER TABLE CountryLanguage ENGINE=InnoDB;

A good programming practice emphasized by Spring is separating interfaces and implementations.
What this means is that we can create a Java interface and only use the operations on this interface
without any internal knowledge of what the actual implementation is. We will let Spring manage the
implementation and with this it will manage the transactions for our implementation.

First you create a simple interface:

public interface Ex3Dao {
 Integer createCity(String name, String countryCode,
 String district, Integer population);
}

This interface contains one method that will create a new city record in the database and return the id
of the new record. Next you need to create an implementation of this interface.

public class Ex3DaoImpl implements Ex3Dao {
 protected DataSource dataSource;
 protected SqlUpdate updateQuery;
 protected SqlFunction idQuery;
 public Integer createCity(String name, String countryCode,
 String district, Integer population) {
 updateQuery.update(new Object[] { name, countryCode,
 district, population });
 return getLastId();
 }
 protected Integer getLastId() {
 return idQuery.run();
 }
}

You can see that we only operate on abstract query objects here and do not deal directly with the
JDBC API. Also, this is the complete implementation. All of our transaction management will be dealt
with in the configuration. To get the configuration started, we need to create the DAO.

165

Connection Pooling with Spring

<bean id="dao" class="code.Ex3DaoImpl">
 <property name="dataSource" ref="dataSource"/>
 <property name="updateQuery">...</property>
 <property name="idQuery">...</property>
</bean>

Now we need to set up the transaction configuration. The first thing we must do is create transaction
manager to manage the data source and a specification of what transaction properties are required for
the dao methods.

<bean id="transactionManager"
 class="org.springframework.jdbc.datasource.DataSourceTransactionManager">
 <property name="dataSource" ref="dataSource"/>
</bean>
<tx:advice id="txAdvice" transaction-manager="transactionManager">
 <tx:attributes>
 <tx:method name="*"/>
 </tx:attributes>
</tx:advice>

The preceding code creates a transaction manager that handles transactions for the data source
provided to it. The txAdvice uses this transaction manager and the attributes specify to create a
transaction for all methods. Finally we need to apply this advice with an AOP pointcut.

<aop:config>
 <aop:pointcut id="daoMethods"
 expression="execution(* code.Ex3Dao.*(..))"/>
 <aop:advisor advice-ref="txAdvice" pointcut-ref="daoMethods"/>
</aop:config>

This basically says that all methods called on the Ex3Dao interface will be wrapped in a transaction. To
make use of this, we only have to retrieve the dao from the application context and call a method on
the dao instance.

Ex3Dao dao = (Ex3Dao) ctx.getBean("dao");
Integer id = dao.createCity(name, countryCode, district, pop);

We can verify from this that there is no transaction management happening in our Java code and it is
all configured with Spring. This is a very powerful notion and regarded as one of the most beneficial
features of Spring.

3.13.3 Connection Pooling with Spring

In many situations, such as web applications, there will be a large number of small database
transactions. When this is the case, it usually makes sense to create a pool of database connections
available for web requests as needed. Although MySQL does not spawn an extra process when a
connection is made, there is still a small amount of overhead to create and set up the connection.
Pooling of connections also alleviates problems such as collecting large amounts of sockets in the
TIME_WAIT state.

Setting up pooling of MySQL connections with Spring is as simple as changing the data source
configuration in the application context. There are a number of configurations that we can use. The
first example is based on the Jakarta Commons DBCP library. The example below replaces the source
configuration that was based on DriverManagerDataSource with DBCP's BasicDataSource.

<bean id="dataSource" destroy-method="close"
 class="org.apache.commons.dbcp.BasicDataSource">
 <property name="driverClassName" value="${db.driver}"/>

166

http://jakarta.apache.org/commons/dbcp/

Troubleshooting Connector/J Applications

 <property name="url" value="${db.jdbcurl}"/>
 <property name="username" value="${db.username}"/>
 <property name="password" value="${db.password}"/>
 <property name="initialSize" value="3"/>
</bean>

The configuration of the two solutions is very similar. The difference is that DBCP will pool connections
to the database instead of creating a new connection every time one is requested. We have also set
a parameter here called initialSize. This tells DBCP that we want three connections in the pool
when it is created.

3.14 Troubleshooting Connector/J Applications

This section explains the symptoms and resolutions for the most commonly encountered issues with
applications using MySQL Connector/J.

Questions

• 3.14.1: When I try to connect to the database with MySQL Connector/J, I get the following
exception:

SQLException: Server configuration denies access to data source
SQLState: 08001
VendorError: 0

What is going on? I can connect just fine with the MySQL command-line client.

• 3.14.2: My application throws an SQLException 'No Suitable Driver'. Why is this happening?

• 3.14.3: I'm trying to use MySQL Connector/J in an applet or application and I get an exception
similar to:

SQLException: Cannot connect to MySQL server on host:3306.
Is there a MySQL server running on the machine/port you
are trying to connect to?
(java.security.AccessControlException)
SQLState: 08S01
VendorError: 0

• 3.14.4: I have a servlet/application that works fine for a day, and then stops working overnight

• 3.14.5: I cannot connect to the MySQL server using Connector/J, and I'm sure the connection
parameters are correct.

• 3.14.6: Updating a table that contains a primary key that is either FLOAT or compound primary key
that uses FLOAT fails to update the table and raises an exception.

• 3.14.7: I get an ER_NET_PACKET_TOO_LARGE exception, even though the binary blob size I want to
insert using JDBC is safely below the max_allowed_packet size.

• 3.14.8: What should I do if I receive error messages similar to the following: “Communications link
failure – Last packet sent to the server was X ms ago”?

• 3.14.9: Why does Connector/J not reconnect to MySQL and re-issue the statement after a
communication failure instead of throwing an Exception, even though I use the autoReconnect
connection string option?

• 3.14.10: How can I use 3-byte UTF8 with Connector/J?

• 3.14.11: How can I use 4-byte UTF8 (utf8mb4) with Connector/J?

• 3.14.12: Using useServerPrepStmts=false and certain character encodings can lead to
corruption when inserting BLOBs. How can this be avoided?

167

https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_primary_key
https://dev.mysql.com/doc/refman/8.0/en/floating-point-types.html
https://dev.mysql.com/doc/refman/8.0/en/floating-point-types.html
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_net_packet_too_large
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_max_allowed_packet

Troubleshooting Connector/J Applications

Questions and Answers

3.14.1: When I try to connect to the database with MySQL Connector/J, I get the following
exception:

SQLException: Server configuration denies access to data source
SQLState: 08001
VendorError: 0

What is going on? I can connect just fine with the MySQL command-line client.

Connector/J normally uses TCP/IP sockets to connect to MySQL (see Section 3.5.10, “Connecting
Using Unix Domain Sockets” and Section 3.5.11, “Connecting Using Named Pipes” for exceptions).
The security manager on the MySQL server uses its grant tables to determine whether a TCP/IP
connection is permitted. You must therefore add the necessary security credentials to the MySQL
server for the connection by issuing a GRANT statement to your MySQL Server. See GRANT
Statement, for more information.

Warning

Changing privileges and permissions improperly on MySQL can potentially
cause your server installation to have non-optimal security properties.

Note

Testing your connectivity with the mysql command-line client will not work
unless you add the --host flag, and use something other than localhost
for the host. The mysql command-line client will try to use Unix domain
sockets if you use the special host name localhost. If you are testing TCP/IP
connectivity to localhost, use 127.0.0.1 as the host name instead.

3.14.2: My application throws an SQLException 'No Suitable Driver'. Why is this happening?

There are three possible causes for this error:

• The Connector/J driver is not in your CLASSPATH, see Section 3.3, “Connector/J Installation”.

• The format of your connection URL is incorrect, or you are referencing the wrong JDBC driver.

• When using DriverManager, the jdbc.drivers system property has not been populated with the
location of the Connector/J driver.

3.14.3: I'm trying to use MySQL Connector/J in an applet or application and I get an exception
similar to:

SQLException: Cannot connect to MySQL server on host:3306.
Is there a MySQL server running on the machine/port you
are trying to connect to?
(java.security.AccessControlException)
SQLState: 08S01
VendorError: 0

Either you're running an Applet, your MySQL server has been installed with the skip_networking
system variable enabled, or your MySQL server has a firewall sitting in front of it.

Applets can only make network connections back to the machine that runs the web server that served
the .class files for the applet. This means that MySQL must run on the same machine (or you must
have some sort of port re-direction) for this to work. This also means that you will not be able to test
applets from your local file system, but must always deploy them to a web server.

Connector/J normally uses TCP/IP sockets to connect to MySQL (see Section 3.5.10, “Connecting
Using Unix Domain Sockets” and Section 3.5.11, “Connecting Using Named Pipes” for exceptions).
TCP/IP communication with MySQL can be affected by the skip_networking system variable
or the server firewall. If MySQL has been started with skip_networking enabled, you need to

168

https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_host
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_skip_networking
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_skip_networking
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_skip_networking

Troubleshooting Connector/J Applications

comment it out in the file /etc/mysql/my.cnf or /etc/my.cnf for TCP/IP connections to work.
(Note that your server configuration file might also exist in the data directory of your MySQL server,
or somewhere else, depending on how MySQL was compiled; binaries created by Oracle always look
for /etc/my.cnf and datadir/my.cnf; see Using Option Files for details.) If your MySQL server
has been firewalled, you will need to have the firewall configured to allow TCP/IP connections from the
host where your Java code is running to the MySQL server on the port that MySQL is listening to (by
default, 3306).

3.14.4: I have a servlet/application that works fine for a day, and then stops working overnight

MySQL closes connections after 8 hours of inactivity. You either need to use a connection pool that
handles stale connections or use the autoReconnect parameter (see Section 3.5.3, “Configuration
Properties”).

Also, catch SQLExceptions in your application and deal with them, rather than propagating them all
the way until your application exits. This is just good programming practice. MySQL Connector/J will
set the SQLState (see java.sql.SQLException.getSQLState() in your API docs) to 08S01
when it encounters network-connectivity issues during the processing of a query. Attempt to reconnect
to MySQL at this point.

The following (simplistic) example shows what code that can handle these exceptions might look like:

Example 3.15 Connector/J: Example of transaction with retry logic

public void doBusinessOp() throws SQLException {
 Connection conn = null;
 Statement stmt = null;
 ResultSet rs = null;
 //
 // How many times do you want to retry the transaction
 // (or at least _getting_ a connection)?
 //
 int retryCount = 5;
 boolean transactionCompleted = false;
 do {
 try {
 conn = getConnection(); // assume getting this from a
 // javax.sql.DataSource, or the
 // java.sql.DriverManager
 conn.setAutoCommit(false);
 //
 // Okay, at this point, the 'retry-ability' of the
 // transaction really depends on your application logic,
 // whether or not you're using autocommit (in this case
 // not), and whether you're using transactional storage
 // engines
 //
 // For this example, we'll assume that it's _not_ safe
 // to retry the entire transaction, so we set retry
 // count to 0 at this point
 //
 // If you were using exclusively transaction-safe tables,
 // or your application could recover from a connection going
 // bad in the middle of an operation, then you would not
 // touch 'retryCount' here, and just let the loop repeat
 // until retryCount == 0.
 //
 retryCount = 0;
 stmt = conn.createStatement();
 String query = "SELECT foo FROM bar ORDER BY baz";
 rs = stmt.executeQuery(query);
 while (rs.next()) {
 }
 rs.close();
 rs = null;
 stmt.close();
 stmt = null;
 conn.commit();

169

https://dev.mysql.com/doc/refman/8.0/en/option-files.html

Troubleshooting Connector/J Applications

 conn.close();
 conn = null;
 transactionCompleted = true;
 } catch (SQLException sqlEx) {
 //
 // The two SQL states that are 'retry-able' are 08S01
 // for a communications error, and 40001 for deadlock.
 //
 // Only retry if the error was due to a stale connection,
 // communications problem or deadlock
 //
 String sqlState = sqlEx.getSQLState();
 if ("08S01".equals(sqlState) || "40001".equals(sqlState)) {
 retryCount -= 1;
 } else {
 retryCount = 0;
 }
 } finally {
 if (rs != null) {
 try {
 rs.close();
 } catch (SQLException sqlEx) {
 // You'd probably want to log this...
 }
 }
 if (stmt != null) {
 try {
 stmt.close();
 } catch (SQLException sqlEx) {
 // You'd probably want to log this as well...
 }
 }
 if (conn != null) {
 try {
 //
 // If we got here, and conn is not null, the
 // transaction should be rolled back, as not
 // all work has been done
 try {
 conn.rollback();
 } finally {
 conn.close();
 }
 } catch (SQLException sqlEx) {
 //
 // If we got an exception here, something
 // pretty serious is going on, so we better
 // pass it up the stack, rather than just
 // logging it...
 throw sqlEx;
 }
 }
 }
 } while (!transactionCompleted && (retryCount > 0));
}

Note

Use of the autoReconnect option is not recommended because there is
no safe method of reconnecting to the MySQL server without risking some
corruption of the connection state or database state information. Instead, use
a connection pool, which will enable your application to connect to the MySQL
server using an available connection from the pool. The autoReconnect
facility is deprecated, and may be removed in a future release.

3.14.5: I cannot connect to the MySQL server using Connector/J, and I'm sure the connection
parameters are correct.

Make sure that the skip_networking system variable has not been enabled on your server.
Connector/J must be able to communicate with your server over TCP/IP; named sockets are not

170

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_skip_networking

Troubleshooting Connector/J Applications

supported. Also ensure that you are not filtering connections through a firewall or other network
security system. For more information, see Can't connect to [local] MySQL server.

3.14.6: Updating a table that contains a primary key that is either FLOAT or compound primary
key that uses FLOAT fails to update the table and raises an exception.

Connector/J adds conditions to the WHERE clause during an UPDATE to check the old values of the
primary key. If there is no match, then Connector/J considers this a failure condition and raises an
exception.

The problem is that rounding differences between supplied values and the values stored in the
database may mean that the values never match, and hence the update fails. The issue will affect all
queries, not just those from Connector/J.

To prevent this issue, use a primary key that does not use FLOAT. If you have to use a floating point
column in your primary key, use DOUBLE or DECIMAL types in place of FLOAT.

3.14.7: I get an ER_NET_PACKET_TOO_LARGE exception, even though the binary blob size I want
to insert using JDBC is safely below the max_allowed_packet size.

This is because the hexEscapeBlock() method in
com.mysql.cj.AbstractPreparedQuery.streamToBytes() may almost double the size of
your data.

3.14.8: What should I do if I receive error messages similar to the following: “Communications
link failure – Last packet sent to the server was X ms ago”?

Generally speaking, this error suggests that the network connection has been closed. There can be
several root causes:

• Firewalls or routers may clamp down on idle connections (the MySQL client/server protocol does not
ping).

• The MySQL Server may be closing idle connections that exceed the wait_timeout or
interactive_timeout threshold.

Although network connections can be volatile, the following can be helpful in avoiding problems:

• Ensure connections are valid when used from the connection pool. Use a query that starts with /*
ping */ to execute a lightweight ping instead of full query. Note, the syntax of the ping needs to be
exactly as specified here.

• Minimize the duration a connection object is left idle while other application logic is executed.

• Explicitly validate the connection before using it if the connection has been left idle for an extended
period of time.

• Ensure that wait_timeout and interactive_timeout are set sufficiently high.

• Ensure that tcpKeepalive is enabled.

• Ensure that any configurable firewall or router timeout settings allow for the maximum expected
connection idle time.

Note

Do not expect to be able to reuse a connection without problems if it has being
lying idle for a period. If a connection is to be reused after being idle for any
length of time, ensure that you explicitly test it before reusing it.

3.14.9: Why does Connector/J not reconnect to MySQL and re-issue the statement after a
communication failure instead of throwing an Exception, even though I use the autoReconnect
connection string option?

171

https://dev.mysql.com/doc/refman/8.0/en/can-not-connect-to-server.html
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_primary_key
https://dev.mysql.com/doc/refman/8.0/en/floating-point-types.html
https://dev.mysql.com/doc/refman/8.0/en/floating-point-types.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/floating-point-types.html
https://dev.mysql.com/doc/refman/8.0/en/floating-point-types.html
https://dev.mysql.com/doc/refman/8.0/en/fixed-point-types.html
https://dev.mysql.com/doc/refman/8.0/en/floating-point-types.html
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_net_packet_too_large
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_max_allowed_packet

Troubleshooting Connector/J Applications

There are several reasons for this. The first is transactional integrity. The MySQL Reference Manual
states that “there is no safe method of reconnecting to the MySQL server without risking some
corruption of the connection state or database state information”. Consider the following series of
statements for example:

conn.createStatement().execute(
 "UPDATE checking_account SET balance = balance - 1000.00 WHERE customer='Smith'");
conn.createStatement().execute(
 "UPDATE savings_account SET balance = balance + 1000.00 WHERE customer='Smith'");
conn.commit();

Consider the case where the connection to the server fails after the UPDATE to checking_account.
If no exception is thrown, and the application never learns about the problem, it will continue executing.
However, the server did not commit the first transaction in this case, so that will get rolled back. But
execution continues with the next transaction, and increases the savings_account balance by 1000.
The application did not receive an exception, so it continued regardless, eventually committing the
second transaction, as the commit only applies to the changes made in the new connection. Rather
than a transfer taking place, a deposit was made in this example.

Note that running with autocommit enabled does not solve this problem. When Connector/J
encounters a communication problem, there is no means to determine whether the server processed
the currently executing statement or not. The following theoretical states are equally possible:

• The server never received the statement, and therefore no related processing occurred on the
server.

• The server received the statement, executed it in full, but the response was not received by the
client.

If you are running with autocommit enabled, it is not possible to guarantee the state of data on
the server when a communication exception is encountered. The statement may have reached the
server, or it may not. All you know is that communication failed at some point, before the client received
confirmation (or data) from the server. This does not only affect autocommit statements though. If
the communication problem occurred during Connection.commit(), the question arises of whether
the transaction was committed on the server before the communication failed, or whether the server
received the commit request at all.

The second reason for the generation of exceptions is that transaction-scoped contextual data may be
vulnerable, for example:

• Temporary tables.

• User-defined variables.

• Server-side prepared statements.

These items are lost when a connection fails, and if the connection silently reconnects without
generating an exception, this could be detrimental to the correct execution of your application.

In summary, communication errors generate conditions that may well be unsafe for Connector/J to
simply ignore by silently reconnecting. It is necessary for the application to be notified. It is then for the
application developer to decide how to proceed in the event of connection errors and failures.

3.14.10: How can I use 3-byte UTF8 with Connector/J?

For 8.0.12 and earlier: To use 3-byte UTF8 with Connector/J set characterEncoding=utf8 and set
useUnicode=true in the connection string.

For 8.0.13 and later: Because there is no Java-style character set name for utfmb3 that you can use
with the connection option charaterEncoding, the only way to use utf8mb3 as your connection
character set is to use a utf8mb3 collation (for example, utf8_general_ci) for the connection

172

Known Issues and Limitations

option connectionCollation, which forces a utf8mb3 character set to be used. See Section 3.5.7,
“Using Character Sets and Unicode” for details.

3.14.11: How can I use 4-byte UTF8 (utf8mb4) with Connector/J?

To use 4-byte UTF8 with Connector/J configure the MySQL server with
character_set_server=utf8mb4. Connector/J will then use that setting, if characterEncoding
and connectionCollation have not been set in the connection string. This is equivalent to
autodetection of the character set. See Section 3.5.7, “Using Character Sets and Unicode” for
details. For 8.0.13 and later: You can use characterEncoding=UTF-8 to use utf8mb4, even if
character_set_server on the server has been set to something else.

3.14.12: Using useServerPrepStmts=false and certain character encodings can lead to
corruption when inserting BLOBs. How can this be avoided?

When using certain character encodings, such as SJIS, CP932, and BIG5, it is possible that BLOB
data contains characters that can be interpreted as control characters, for example, backslash, '\'. This
can lead to corrupted data when inserting BLOBs into the database. There are two things that need to
be done to avoid this:

1. Set the connection string option useServerPrepStmts to true.

2. Set SQL_MODE to NO_BACKSLASH_ESCAPES.

3.15 Known Issues and Limitations
The following are some known issues and limitations for MySQL Connector/J:

• When Connector/J retrieves timestamps for a daylight saving time (DST) switch day using the
getTimeStamp() method on the result set, some of the returned values might be wrong. In order
to avoid such errors, we recommend setting a connection time zone that uses a monotonic clock
by, for example, setting connectionTimeZone=UTC, and configuring other date-time connection
properties according to your needs; see Section 3.5.6, “Handling of Date-Time Values” for details.

• The functionality of the property elideSetAutoCommits has been disabled due to Bug# 66884.
Any value given for the property is ignored by Connector/J.

• MySQL Server uses a proleptic Gregorian calendar internally. However, Connector/J uses
java.sql.Date, which is non-proleptic. Therefore, when setting and retrieving dates that were
before the Julian-Gregorian cutover (October 15, 1582) using the PreparedStatement methods,
always supply explicitly a proleptic Gregorian calendar to the setDate() and getDate() methods,
in order to avoid possible errors with dates stored to and calculated by the server.

• For MySQL 8.0.14 and later, 5.7.25 and later, and 5.6.43 and later: To use Windows named pipes
for connections, the MySQL Server that Connector/J wants to connect to must be started with the
system variable named_pipe_full_access_group; see Section 3.5.11, “Connecting Using
Named Pipes” for details.

3.16 Connector/J Support

3.16.1 Connector/J Community Support

You can join the #connectors channel in the MySQL Community Slack workspace, where you can
get help directly from MySQL developers and other users.

3.16.2 How to Report Connector/J Bugs or Problems

The normal place to report bugs is http://bugs.mysql.com/, which is the address for our bugs database.
This database is public, and can be browsed and searched by anyone. If you log in to the system, you
will also be able to enter new reports.

173

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_server
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_server
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_named_pipe_full_access_group
https://mysqlcommunity.slack.com/messages/connectors
http://bugs.mysql.com/

How to Report Connector/J Bugs or Problems

If you find a sensitive security bug in MySQL Server, please let us know immediately by sending an
email message to <secalert_us@oracle.com>. Exception: Support customers should report all
problems, including security bugs, to Oracle Support at http://support.oracle.com/.

Writing a good bug report takes patience, but doing it right the first time saves time both for us and for
yourself. A good bug report, containing a full test case for the bug, makes it very likely that we will fix
sooner rather than later.

This section will help you write your report correctly so that you do not waste your time doing things
that may not help us much or at all.

If you have a repeatable bug report, please report it to the bugs database at http://bugs.mysql.com/.
Any bug that we are able to repeat has a high chance of being fixed sooner rather than later.

To report other problems, you can use one of the MySQL mailing lists.

Remember that it is possible for us to respond to a message containing too much information, but
not to one containing too little. People often omit facts because they think they know the cause of a
problem and assume that some details do not matter.

A good principle is this: If you are in doubt about stating something, state it. It is faster and less
troublesome to write a couple more lines in your report than to wait longer for the answer if we must
ask you to provide information that was missing from the initial report.

The most common errors made in bug reports are (a) not including the version number of Connector/
J or MySQL used, and (b) not fully describing the platform on which Connector/J is installed (including
the JVM version, and the platform type and version number that MySQL itself is installed on).

This is highly relevant information, and in 99 cases out of 100, the bug report is useless without it. Very
often we get questions like, “Why doesn't this work for me?” Then we find that the feature requested
was not implemented in that MySQL version, or that a bug described in a report has already been fixed
in newer MySQL versions.

Sometimes the error is platform-dependent; in such cases, it is next to impossible for us to fix anything
without knowing the operating system and the version number of the platform.

If at all possible, create a repeatable, standalone testcase that doesn't involve any third-party classes.

To streamline this process, we ship a base class for testcases with Connector/J, named
'com.mysql.cj.jdbc.util.BaseBugReport'. To create a testcase for Connector/J using this
class, create your own class that inherits from com.mysql.cj.jdbc.util.BaseBugReport and
override the methods setUp(), tearDown() and runTest().

In the setUp() method, create code that creates your tables, and populates them with any data
needed to demonstrate the bug.

In the runTest() method, create code that demonstrates the bug using the tables and data you
created in the setUp method.

In the tearDown() method, drop any tables you created in the setUp() method.

In any of the above three methods, use one of the variants of the getConnection() method to create
a JDBC connection to MySQL:

• getConnection() - Provides a connection to the JDBC URL specified in getUrl(). If a
connection already exists, that connection is returned, otherwise a new connection is created.

• getNewConnection() - Use this if you need to get a new connection for your bug report (that is,
there is more than one connection involved).

• getConnection(String url) - Returns a connection using the given URL.

174

http://support.oracle.com/
http://bugs.mysql.com/

How to Report Connector/J Bugs or Problems

• getConnection(String url, Properties props) - Returns a connection using the given
URL and properties.

If you need to use a JDBC URL that is different from 'jdbc:mysql:///test', override the method getUrl()
as well.

Use the assertTrue(boolean expression) and assertTrue(String failureMessage,
boolean expression) methods to create conditions that must be met in your testcase
demonstrating the behavior you are expecting (vs. the behavior you are observing, which is why you
are most likely filing a bug report).

Finally, create a main() method that creates a new instance of your testcase, and calls the run
method:

public static void main(String[] args) throws Exception {
 new MyBugReport().run();
 }

Once you have finished your testcase, and have verified that it demonstrates the bug you are reporting,
upload it with your bug report to http://bugs.mysql.com/.

175

http://bugs.mysql.com/

176

Chapter 4 MySQL Connector/NET Developer Guide

Table of Contents
4.1 Introduction to MySQL Connector/NET ... 178
4.2 Connector/NET Versions ... 179
4.3 Connector/NET Installation .. 181

4.3.1 Installing Connector/NET on Windows ... 181
4.3.2 Installing Connector/NET on Unix with Mono ... 183
4.3.3 Installing Connector/NET from Source ... 184

4.4 Connector/NET Connections .. 185
4.4.1 Creating a Connector/NET Connection String .. 186
4.4.2 Managing a Connection Pool in Connector/NET ... 188
4.4.3 Handling Connection Errors .. 189
4.4.4 Connector/NET Authentication .. 190
4.4.5 Connector/NET Connection Options Reference .. 195

4.5 Connector/NET Programming .. 211
4.5.1 Using GetSchema on a Connection ... 212
4.5.2 Using MySqlCommand ... 213
4.5.3 Using Connector/NET with Table Caching ... 216
4.5.4 Preparing Statements in Connector/NET ... 217
4.5.5 Creating and Calling Stored Procedures .. 218
4.5.6 Handling BLOB Data With Connector/NET .. 221
4.5.7 Working with Partial Trust / Medium Trust .. 224
4.5.8 Writing a Custom Authentication Plugin ... 227
4.5.9 Using the Connector/NET Interceptor Classes ... 230
4.5.10 Handling Date and Time Information in Connector/NET .. 232
4.5.11 Using the MySqlBulkLoader Class ... 233
4.5.12 Connector/NET Tracing ... 235
4.5.13 Using Connector/NET with Crystal Reports .. 240
4.5.14 Asynchronous Methods ... 244
4.5.15 Binary and Nonbinary Issues .. 250
4.5.16 Character Set Considerations for Connector/NET ... 251

4.6 Connector/NET Tutorials ... 251
4.6.1 Tutorial: An Introduction to Connector/NET Programming ... 251
4.6.2 ASP.NET Provider Model and Tutorials ... 260
4.6.3 Tutorial: Using an Entity Framework Entity as a Windows Forms Data Source 275
4.6.4 Tutorial: Data Binding in ASP.NET Using LINQ on Entities ... 282
4.6.5 Tutorial: Generating MySQL DDL from an Entity Framework Model 285
4.6.6 Tutorial: Basic CRUD Operations with Connector/NET ... 286
4.6.7 Tutorial: Configuring SSL with Connector/NET ... 289
4.6.8 Tutorial: Using MySqlScript ... 292

4.7 Connector/NET for Entity Framework ... 295
4.7.1 Entity Framework 6 Support .. 296
4.7.2 Entity Framework Core Support .. 301

4.8 Connector/NET API Reference .. 310
4.8.1 MySql.Data.Common.DnsClient ... 310
4.8.2 MySql.Data.MySqlClient Namespace ... 310
4.8.3 MySql.Data.MySqlClient.Authentication Namespace ... 313
4.8.4 MySql.Data.MySqlClient.Interceptors Namespace .. 313
4.8.5 MySql.Data.MySqlClient.Replication Namespace .. 313
4.8.6 MySql.Data.Types Namespace .. 313
4.8.7 MySql.Data.EntityFramework Namespace .. 314
4.8.8 Microsoft.EntityFrameworkCore Namespace .. 315
4.8.9 MySql.EntityFrameworkCore Namespace .. 315
4.8.10 MySql.Web Namespace .. 317

177

Introduction to MySQL Connector/NET

4.9 Connector/NET Support ... 319
4.9.1 Connector/NET Community Support .. 319
4.9.2 How to Report Connector/NET Problems or Bugs .. 319

MySQL Connector/NET is the connector that enables .NET applications to communicate with MySQL
servers.

For notes detailing the changes in each release of Connector/NET, see MySQL Connector/NET
Release Notes.

For legal information, see the Legal Notices.

For help with using MySQL, please visit the MySQL Forums, where you can discuss your issues with
other MySQL users.

Licensing information. This product may include third-party software, used under license. If
you are using a Commercial release of MySQL Connector/NET, see this document for licensing
information, including licensing information relating to third-party software that may be included in
this Commercial release. If you are using a Community release of MySQL Connector/NET, see this
document for licensing information, including licensing information relating to third-party software that
may be included in this Community release.

4.1 Introduction to MySQL Connector/NET
MySQL Connector/NET enables you to develop .NET applications that require secure, high-
performance data connectivity with MySQL. It implements the required ADO.NET interfaces and
integrates into ADO.NET-aware tools. You can build applications using your choice of .NET languages.
Connector/NET is a fully managed ADO.NET data provider written in 100% pure C#. It does not use
the MySQL C client library.

Connector/NET source code and tests are available from the NuGet Gallery and GitHub. For notes
detailing the changes in each release of Connector/NET, see MySQL Connector/NET Release Notes.

Connector/NET includes full support for:

• Features provided by MySQL Server, up to and including the MySQL 8.1 release series.

• MySQL as a document store (NoSQL), along with X Protocol connection support to access MySQL
data using X Plugin ports.

• Large-packet support for sending and receiving rows and BLOB values up to 2 gigabytes in size.

• Protocol compression, which enables compressing the data stream between the client and server.

• Connections using TCP/IP sockets, named pipes, or shared memory on Windows.

• Connections using TCP/IP sockets or Unix sockets on Unix.

• Encrypted connections using:

• TLSv1.2 protocol over TCP/IP with Connector/NET 8.0.11 and later.

• TLSv1.3 protocol over TCP/IP with Connector/NET 8.0.20 and later.

• .NET Standard and runs on the Universal Windows Platform (UWP) .NET implementation.

• Entity Framework 6 and Entity Framework Core to migrate data to and from MySQL data tables.

• The Open Source Mono framework developed by Novell.

Connector/NET supports Microsoft Visual Studio 2013, 2015, 2017, and 2019, although the extent of
support may be limited depending on the versions of Connector/NET and Visual Studio you use. For
details, see Section 4.2, “Connector/NET Versions”.

178

https://dev.mysql.com/doc/relnotes/connector-net/en/
https://dev.mysql.com/doc/relnotes/connector-net/en/
http://forums.mysql.com
https://downloads.mysql.com/docs/licenses/connector-net-8.3-com-en.pdf
https://downloads.mysql.com/docs/licenses/connector-net-8.3-gpl-en.pdf
https://downloads.mysql.com/docs/licenses/connector-net-8.3-gpl-en.pdf
https://dev.mysql.com/doc/relnotes/connector-net/en/
https://dev.mysql.com/doc/refman/8.0/en/blob.html

Key Topics

Key Topics

• For connection string properties when using the MySqlConnection class, see Section 4.4.5,
“Connector/NET Connection Options Reference”.

4.2 Connector/NET Versions

MySQL Connector/NET 8.2 is a continuation of Connector/NET 8.0, but now named to synchronize
with the (latest) MySQL server version it supports. This version combines the functionality of the
previous Connector/NET release series, including support for X Protocol connections. Connector/NET
customizes Entity Framework Core to operate with MySQL data, enables compression in the .NET
driver implementation, and extends cross-platform support to Linux and macOS.

Secure connections using the TLSv1.2 protocol require Connector/NET 8.0.11 or later. In addition, your
Microsoft Windows host must have the TLSv1.2 protocol enabled. Connections made using Windows
named pipes or shared memory do not support the TLSv1.2 protocol. For general guidance about
configuring the server and clients for secure connections, see Configuring MySQL to Use Encrypted
Connections.

Note

.NET 8, .NET 7, .NET 6, and .NET Framework 4.8 (Windows only) include
support for the TLSv1.3 protocol. Be sure to confirm that the operating system
running your application also supports TLSv1.3 before using it exclusively for
connections.

The following table shows the versions of ADO.NET, .NET (Core and Framework), and MySQL Server
that are supported or required by MySQL Connector/NET. For the specific Entity Framework versions
that Connector/NET targets, see Section 4.7, “Connector/NET for Entity Framework”.

Table 4.1 Connector/NET Requirements for Related Products

Connector/NET
Version

ADO.NET
Version

.NET Versions and Visual Studio MySQL
Server

8.3.0 2.x+ For apps that target .NET 8, use VS 2022 (v17.8 or
later)

For apps that target .NET 7, use VS 2022 (v17.4 or
later)

For apps that target .NET 6, use VS 2022 (v17.0
and later) or VS 2022 for Mac (v17.6 or later)

For apps that target .NET Framework 4.8, use VS
2019 (v16.3 or later)

For apps that target .NET Framework 4.6.2, use VS
2017 (v15.9 or later)

MySQL 8.3,
MySQL 8.2,
MySQL 8.1,
MySQL 8.0,
and MySQL
5.7

8.2.0 2.x+ For apps that target .NET 8 preview, use VS 2022
(v17.6 or later)

For apps that target .NET 7, use VS 2022 (v17.4 or
later)

For apps that target .NET 6, use VS 2022 (v17.0
and later) or VS 2022 for Mac (v17.6 or later)

For apps that target .NET Framework 4.8, use VS
2019 (v16.3 or later)

MySQL 8.2,
MySQL 8.1,
MySQL 8.0,
and MySQL
5.7

179

https://dev.mysql.com/doc/refman/8.0/en/using-encrypted-connections.html
https://dev.mysql.com/doc/refman/8.0/en/using-encrypted-connections.html

Connector/NET Versions

Connector/NET
Version

ADO.NET
Version

.NET Versions and Visual Studio MySQL
Server

For apps that target .NET Framework 4.6.2, use VS
2017 (v15.9 or later)

8.1.0 2.x+ For apps that target .NET 7, use VS 2022 (v17.4 or
later)

For apps that target .NET 6, use VS 2022 (v17.0
and later) or VS 2022 for Mac (v17.6 or later)

For apps that target .NET Framework 4.8, use VS
2019 (v16.3 or later)

For apps that target .NET Framework 4.6.2, use VS
2017 (v15.9 or later)

MySQL 8.1,
MySQL 8.0,
and MySQL
5.7

Archived Connector/NET versions and their requirements:

• C/NET 8.0.33: .NET 7, use VS 2022 (v17.4 or later) | .NET 6, use VS 2022 (v17.0) or VS 2022 for
Mac (v17.0 preview) | .NET Core 3.1, use VS 2019 (v16.4 or later) | .NET Framework 4.8, use VS
2019 (v16.3 or later) | .NET Framework 4.6.2, use VS 2017 (v15.9 or later)

Recommended minimum server version: MySQL 8.0.33 or MySQL 5.7.42

• C/NET 8.0.28+: .NET 6, use VS 2022 (v17.0 or later) or VS 2019 for Mac (v8.10) | .NET 5, use
VS 2019 (v16.8) or VS 2019 for Mac (v8.8) | .NET Core 3.1, use VS 2019 (v16.4 or later) | .NET
Framework 4.8, use VS 2019 (v16.3 or later) | .NET Framework 4.6.2, use VS 2017 (v15.9 or later)

Recommended minimum server version: MySQL 8.0.28 or MySQL 5.7.37

• C/NET 8.0.23+: .NET 5, use VS 2019 (v16.8) or VS 2019 for Mac (v8.8) | .NET Core 3.1, use VS
2019 (v16.4 or later) | .NET Framework 4.8, use VS 2019 (v16.3 or later)

Recommended minimum server version: MySQL 8.0.23 or MySQL 5.7.33

• C/NET 8.0.22+: .NET 5, use VS 2019 (v16.7) or VS 2019 for Mac (v8.7) | .NET Core 3.1, use VS
2019 (v16.4 or later) | .NET Framework 4.8, use VS 2019 (v16.3 or later)

Recommended minimum server version: MySQL 8.0.22 or MySQL 5.7.32

• C/NET 8.0.20+: .NET Core 3.1, use VS 2019 (v16.4 or later) | .NET Framework 4.8, use VS 2019
(v16.3 or later)

Recommended minimum server version: MySQL 8.0.20 or MySQL 5.7.30

• C/NET 8.0.19+: .NET Core 3.0, use VS 2019 (v16.3 or later) | .NET Framework 4.8, use VS 2019
(v16.3 or later)

Recommended minimum server version: MySQL 8.0.19 or MySQL 5.7.29

• C/NET 8.0.18+: .NET Core 3.0, use VS 2019 (v16.3 or later)

Recommended minimum server version: MySQL 8.0.18 or MySQL 5.7.28

• C/NET 8.0.17+: .NET Core 2.2, use VS 2017 (v15.0.9 or later) | .NET Core 2.1, use VS 2017
(v15.0.7 or later)

Recommended minimum server version: MySQL 8.0.17 or MySQL 5.7.27

• C/NET 8.0.10+: .NET Core 2.0, use VS 2017 (v15.0.3 or later)

Recommended minimum server version: MySQL 8.0.17 or MySQL 5.7.27

180

Connector/NET Installation

• C/NET 8.0.8+: .NET Framework 4.5.x, use VS 2013 / 2015 / 2017

Recommended minimum server version: MySQL 8.0.17 or MySQL 5.7.27

4.3 Connector/NET Installation

MySQL Connector/NET runs on any platform that supports the .NET Standard (.NET Framework, .NET
Core, and Mono). The .NET Framework is primarily supported on recent versions of Microsoft Windows
and Microsoft Windows Server.

Cross-platform options:

• .NET Core provides support on Windows, macOS, and Linux.

• Open Source Mono platform provides support on Linux.

Connector/NET is available for download as a standalone MSI Installer or from the NuGet gallery. The
source code is available for download from MySQL Download MySQL Connector/NET or at GitHub
from the MySQL Connector/NET repository.

Note

Starting with Connector/NET 8.0.33, application developers must ensure
the availability of following libraries at run time. Previously, the libraries were
bundled with Connector/NET installations.

For applications using OCI Authentication and SSL Certificates validation:

• Portable.BouncyCastle (see https://www.nuget.org/packages/
Portable.BouncyCastle)

For applications using X DevAPI:

• K4os.Compression.LZ4.Streams (see https://www.nuget.org/packages/
K4os.Compression.LZ4.Streams)

• Google.Protobuf (see https://www.nuget.org/packages/Google.Protobuf)

4.3.1 Installing Connector/NET on Windows

On Microsoft Windows, you can install either through a binary installation process using a Connector/
NET MSI, using NuGet, or by downloading and using the source code.

Before installing, ensure that your system is up to date, including installing the latest version of
the .NET Framework or .NET Core. For additional information, see Section 4.2, “Connector/NET
Versions”.

4.3.1.1 Installing Connector/NET Using the Standalone Installer

You can install MySQL Connector/NET through a Windows Installer (.msi) installation package, which
can install Connector/NET on supported Windows operating systems. The MSI package is a file named
mysql-connector-net-version.msi, where version indicates the Connector/NET version.

To install Connector/NET:

1. Double-click the MSI installer file, and click Next to start the installation.

2. Choose the type of installation to perform (Typical, Custom, or Complete) and then click Next.

• The typical installation is suitable in most cases. Click Typical and proceed to Step 5.

181

http://www.mono-project.com/
https://dev.mysql.com/downloads/connector/net/
https://www.nuget.org/profiles/MySQL/
https://dev.mysql.com/downloads/connector/net/
https://github.com/mysql/mysql-connector-net
https://www.nuget.org/packages/Portable.BouncyCastle
https://www.nuget.org/packages/Portable.BouncyCastle
https://www.nuget.org/packages/K4os.Compression.LZ4.Streams
https://www.nuget.org/packages/K4os.Compression.LZ4.Streams
https://www.nuget.org/packages/Google.Protobuf

Installing Connector/NET on Windows

• A Complete installation installs all the available files. To conduct a Complete installation, click the
Complete button and proceed to step 5.

• To customize your installation, including choosing the components to install and some installation
options, click the Custom button and proceed to Step 3.

The Connector/NET installer will register the connector within the Global Assembly Cache (GAC) -
this will make the Connector/NET component available to all applications, not just those where you
explicitly reference the Connector/NET component. The installer will also create the necessary links
in the Start menu to the documentation and release notes.

3. If you have chosen a custom installation, you can select the individual components to install,
including the core interface component, supporting documentation options, examples, and the
source code. Click Disk Usage to determine the disk-space requirements of your component
choices.

Select the items and their installation level and then click Next to continue the installation.

4. You will be given a final opportunity to confirm the installation. Click Install to copy and install the
files onto your computer. Use Back to return to the modify your component options.

5. When prompted, click Finish to exit the MSI installer.

Unless you choose a different folder, Connector/NET is installed in C:\Program Files
(x86)\MySQL\MySQL Connector Net version (the version installed). New installations do not
overwrite existing versions of Connector/NET.

You may also use the /quiet or /q command-line option with the msiexec tool to install the
Connector/NET package automatically (using the default options) with no notification to the user. Using
this method the user cannot select options. Additionally, no prompts, messages or dialog boxes will be
displayed.

C:\> msiexec /package connector-net.msi /quiet

To provide a progress bar to the user during automatic installation, use the /passive option.

4.3.1.2 Installing Connector/NET Using NuGet

MySQL Connector/NET functionality is available as packages from NuGet, an open-source package
manager for the Microsoft development platform (including .NET Core). The NuGet Gallery is the
central software package repository populated with the most recent NuGet packages for Connector/
NET.

You can install or upgrade one or more individual Connector/NET packages with NuGet, making it a
convenient way to introduce existing technology, such as Entity Framework, to your project. NuGet
manages dependencies across the related packages and all of the prerequisites are listed in the NuGet
Gallery. For a description of each Connector/NET package, see Connector/NET Packages (NuGet).

Important

For projects that require Connector/NET assemblies to be stored in the GAC or
integration with Entity Framework Designer (Visual Studio), use the standalone
MSI to install Connector/NET, rather than installing the NuGet packages.

Consuming Connector/NET Packages with NuGet

The NuGet Gallery (https://www.nuget.org/) provides several client tools that can help you install or
upgrade Connector/NET packages. If you are not familiar with the tool options or processes, see
Package consumption workflow to get started. After locating a package description in NuGet, confirm
the following information:

182

https://www.nuget.org/
https://docs.microsoft.com/en-us/nuget/consume-packages/overview-and-workflow

Installing Connector/NET on Unix with Mono

• The identity and version number of the package are correct. Use the Version History list to select
the current version.

• All of the prerequisites are installed. See the Dependencies list for details.

• The license terms are met. See the License Info link to view this information.

Connector/NET Packages (NuGet)

Connector/NET provides the following five NuGet packages:

MySql.Data This package contains the core functionality of Connector/NET,
including using MySQL as a document store (with Connector/NET
8.0 only). It implements the required ADO.NET interfaces and
integrates with ADO.NET-aware tools. In addition, the packages
provides access to multiple versions of MySQL server and
encapsulates database-specific protocols.

MySql.Web The MySql.Web package includes support for the ASP.NET 2.0
provider model (see Section 4.6.2, “ASP.NET Provider Model and
Tutorials”). This model enables you to focus on the business logic
of your application, rather than having to recreate boilerplate items
such as membership and roles support. The package supports the
membership, role, profile, and session-state providers.

Package dependency: MySql.Data.

MySql.Data.EntityFrameworkThis package provides object-relational mapper (ORM) capabilities,
which enables you to work with MySQL databases using domain-
specific objects, thereby eliminating the need for most of the data
access code. Select this package for your Entity Framework 6
applications (see Section 4.7.1, “Entity Framework 6 Support”).

Package dependency: MySql.Data.

MySql.Data.EntityFrameworkCoreThis package is similar to the MySql.Data.EntityFramework
package; however, it provides multi-platform support for Entity
Framework tasks. Select this package for your Entity Framework
Core applications (see Section 4.7.2, “Entity Framework Core
Support”).

MySql.Data.EntityFrameworkCore.DesignThe MySql.Data.EntityFrameworkCore.Design package
includes shared design-time components for Entity Framework Core
tools, which enable you to scaffold and migrate MySQL databases.

Note

Beginning with Connector/NET 8.0.20,
the functionality provided in this
package has been relocated to the
MySql.Data.EntityFrameworkCore
package. The original
MySql.Data.EntityFrameworkCore.Design
package is deprecated.

4.3.2 Installing Connector/NET on Unix with Mono

There is no installer available for installing the MySQL Connector/NET component on your Unix
installation. Before installing, ensure that you have a working Mono project installation. To test whether
your system has Mono installed, enter:

183

Installing Connector/NET from Source

$> mono --version

The version of the Mono JIT compiler is displayed.

To compile C# source code, make sure a Mono C# compiler is installed.

Note

There are three Mono C# compilers available: mcs, which accesses the 1.0-
profile libraries, gmcs, which accesses the 2.0-profile libraries, and dmcs, which
accesses the 4.0-profile libraries.

To install Connector/NET on Unix/Mono:

1. Download the mysql-connector-net-version-noinstall.zip and extract the contents to a
directory of your choice, for example: ~/connector-net/.

2. In the directory where you unzipped the connector to, change into the bin subdirectory. Ensure the
file MySql.Data.dll is present. This filename is case-sensitive.

3. You must register the Connector/NET component, MySql.Data, in the Global Assembly Cache
(GAC). In the current directory enter the gacutil command:

#> gacutil /i MySql.Data.dll

This will register MySql.Data into the GAC. You can check this by listing the contents of /usr/
lib/mono/gac, where you will find MySql.Data if the registration has been successful.

You are now ready to compile your application. You must ensure that when you compile your
application you include the Connector/NET component using the -r: command-line option. For
example:

$> gmcs -r:System.dll -r:System.Data.dll -r:MySql.Data.dll HelloWorld.cs

The referenced assemblies depend on the requirements of the application, but applications using
Connector/NET must provide -r:MySql.Data at a minimum.

You can further check your installation by running the compiled program, for example:

$> mono HelloWorld.exe

4.3.3 Installing Connector/NET from Source

Building MySQL Connector/NET from the source code enables you to customize build parameters
and target platforms such as Linux and macOS. The procedures in this section describe how to build
source with Microsoft Visual Studio (Windows or macOS) and .NET Core CLI (Windows, macOS, or
Linux).

MySQL Connector/NET source code is available for download from https://dev.mysql.com/downloads/
connector/net/. Select Source Code from the Select Operating System list. Use the Archive tab to
download a previous version of Connector/NET source code.

Source code is packaged as a ZIP archive file with a name similar to mysql-connector-
net-8.0.19-src.zip. Unzip the file to local directory.

The file includes the following directories with source files:

• EFCore: Source and test files for Entity Framework Core features.

• EntityFramework: Source and test files for Entity Framework 6 features.

• MySQL.Data: Source and test files for features using the MySQL library.

184

https://dev.mysql.com/downloads/connector/net/
https://dev.mysql.com/downloads/connector/net/

Connector/NET Connections

• MySQL.Web: Source and test files for the web providers, including the membership, role, profile
providers that are used in ASP.NET or ASP.NET Core websites.

Building Source Code with Visual Studio

The following procedure can be used to build the connector on Microsoft Windows or macOS.
Connector/NET supports various versions of Microsoft Visual Studio and .NET libraries. For guidance
about the Connector/NET version you intend to build, see Section 4.2, “Connector/NET Versions”
before you begin.

1. Navigate to the root of the source code directory and then to the directory with the source files to
build, such as MySql.Data. Each source directory contains a Microsoft Visual Studio solution file
with the .sln (for example, MySqlData.sln).

2. Double-click the solutions file to start Visual Studio and open the solution.

Visual Studio opens the solution files in the Solution Explorer. All of the projects related to the
solution also appear in the navigation tree. These related projects can include test files and the
projects that your solutions requires.

3. Locate the project with the same name as the solution (MySql.Data in this example). Right-click
the node and select Build from the context menu to build the solution.

Building Source Code with .NET Core CLI

The following procedure can be used to build the connector on Microsoft Windows, Linux, or macOS.
A current version of the .NET Core SDK must be installed locally to execute dotnet commands. For
additional usage information, visit https://docs.microsoft.com/en-us/dotnet/core/tools/.

1. Open a terminal such as PowerShell, Command Prompt, or bash.

Navigate to the root of the source code directory and then to the directory with the source files to
build, such as MySQL.Data.

2. Clean the output of the previous build.

dotnet clean

3. Type the following command to build the solution file (MySql.Data.sln in this example) using the
default command arguments:

dotnet build

Solution and project default. When no directory and file name is provided on the command
line, the default value depends on the current directory. If the command is executed from the top
directory, such as MySQL.Data, the solution file is selected (new with the .NET Core 3.0 SDK).
Otherwise, if executed from the src subdirectory, the project file is used.

Configuration default, -c | --configuration. Defaults to the Debug build configuration.
Alternatively, -c Release is the other supported build configuration argument value.

Framework default, -f | --framework. When no framework is specified on the command line,
the solution or project is built for all possible frameworks that apply. To determine which frameworks
are supported, use a text editor to open the related project file (for example, MySql.Data.csproj
in the src subdirectory) and search for the <TargetFrameworks> element.

To build source code on Linux and macOS, you must target .NET Standard (-f netstandard2.0
or -f netstandard2.1). To build source code on Microsoft Windows, you can target .NET
Standard and .NET Framework (-f net452 or -f net48).

4.4 Connector/NET Connections

185

https://docs.microsoft.com/en-us/dotnet/core/tools/

Creating a Connector/NET Connection String

All interaction between a .NET application and the MySQL server is routed through a
MySqlConnection object when using the classic MySQL protocol. Before your application can
interact with the server, it must instantiate, configure, and open a MySqlConnection object.

Even when using the MySqlHelper class, a MySqlConnection object is created by the helper class.
Likewise, when using the MySqlConnectionStringBuilder class to expose the connection options
as properties, your application must open a MySqlConnection object.

This sections in this chapter describe how to connect to MySQL using the MySqlConnection object.

4.4.1 Creating a Connector/NET Connection String

The MySqlConnection object is configured using a connection string. A connection string contains
several key-value pairs, separated by semicolons. In each key-value pair, the option name and its
corresponding value are joined by an equal sign. For the list of option names to use in the connection
string, see Section 4.4.5, “Connector/NET Connection Options Reference”.

The following is a sample connection string:

"server=127.0.0.1;uid=root;pwd=12345;database=test"

In this example, the MySqlConnection object is configured to connect to a MySQL server at
127.0.0.1, with a user name of root and a password of 12345. The default database for all
statements will be the test database.

Connector/NET supports several connection models:

• Opening a Connection to a Single Server

• Opening a Connection for Multiple Hosts with Failover

• Opening a Connection Using a Single DNS Domain

Opening a Connection to a Single Server

After you have created a connection string it can be used to open a connection to the MySQL server.

The following code is used to create a MySqlConnection object, assign the connection string, and
open the connection.

MySQL Connector/NET can also connect using the native Windows authentication plugin. See
Section 4.4.4, “Connector/NET Authentication” for details.

You can further extend the authentication mechanism by writing your own authentication plugin. See
Section 4.5.8, “Writing a Custom Authentication Plugin” for details.

C# Example

MySql.Data.MySqlClient.MySqlConnection conn;
string myConnectionString;
myConnectionString = "server=127.0.0.1;uid=root;" +
 "pwd=12345;database=test";
try
{
 conn = new MySql.Data.MySqlClient.MySqlConnection();
 conn.ConnectionString = myConnectionString;
 conn.Open();
}
catch (MySql.Data.MySqlClient.MySqlException ex)
{
 MessageBox.Show(ex.Message);
}

Visual Basic Example

186

Creating a Connector/NET Connection String

Dim conn As New MySql.Data.MySqlClient.MySqlConnection
Dim myConnectionString as String
myConnectionString = "server=127.0.0.1;" _
 & "uid=root;" _
 & "pwd=12345;" _
 & "database=test"
Try
 conn.ConnectionString = myConnectionString
 conn.Open()
Catch ex As MySql.Data.MySqlClient.MySqlException
 MessageBox.Show(ex.Message)
End Try

You can also pass the connection string to the constructor of the MySqlConnection class:

C# Example

MySql.Data.MySqlClient.MySqlConnection conn;
string myConnectionString;
myConnectionString = "server=127.0.0.1;uid=root;" +
 "pwd=12345;database=test";
try
{
 conn = new MySql.Data.MySqlClient.MySqlConnection(myConnectionString);
 conn.Open();
}
catch (MySql.Data.MySqlClient.MySqlException ex)
{
 MessageBox.Show(ex.Message);
}

Visual Basic Example

Dim myConnectionString as String
myConnectionString = "server=127.0.0.1;" _
 & "uid=root;" _
 & "pwd=12345;" _
 & "database=test"
Try
 Dim conn As New MySql.Data.MySqlClient.MySqlConnection(myConnectionString)
 conn.Open()
Catch ex As MySql.Data.MySqlClient.MySqlException
 MessageBox.Show(ex.Message)
End Try

After the connection is open, it can be used by the other Connector/NET classes to communicate with
the MySQL server.

Opening a Connection for Multiple Hosts with Failover

Data used by applications can be stored on multiple MySQL servers to provide high availability.
Connector/NET provides a simple way to specify multiple hosts in a connection string for cases in
which multiple MySQL servers are configured for replication and you are not concerned about the
precise server your application connects to in the set. For an example of how to configure multiple
hosts with replication, see Using Replication & Load balancing.

Starting in Connector/NET 8.0.19, both classic MySQL protocol and X Protocol connections permit the
use of multiple host names and multiple endpoints (a host:port pair) in a connection string or URI
scheme. For example:

// classic protocol example
"server=10.10.10.10:3306,192.101.10.2:3305,localhost:3306;uid=test;password=xxxx"
// X Protocol example
mysqlx://test:test@[192.1.10.10:3305,127.0.0.1:3306]

An updated failover approach selects the target for connection first by priority order, if provided,
or random order when no priority is specified. If the attempted connection to a selected target is

187

https://blogs.oracle.com/mysql/how-to:-using-replication-load-balancing-with-connectornet

Managing a Connection Pool in Connector/NET

unsuccessful, Connector/NET selects a new target from the list until no more hosts are available.
If enabled, Connector/NET uses connection pooling to manage unsuccessful connections (see
Section 4.4.2, “Managing a Connection Pool in Connector/NET”).

Opening a Connection Using a Single DNS Domain

When multiple MySQL instances provide the same service in your installation, you can apply DNS
Service (SRV) records to provide failover, load balancing, and replication services. DNS SRV records
remove the need for clients to identify each possible host in the connection string, or for connections to
be handled by an additional software component. They can also be updated centrally by administrators
when servers are added or removed from the configuration or when their host names are changed.
DNS SRV records can be used in combination with connection pooling, in which case connections
to hosts that are no longer in the current list of SRV records are removed from the pool when they
become idle. For information about DNS SRV support in MySQL, see Connecting to the Server Using
DNS SRV Records.

A service record is a specification of data managed by your domain name system that defines the
location (host name and port number) of servers for the specified services. The record format defines
the priority, weight, port, and target for the service as defined in the RFC 2782 specification (see
https://tools.ietf.org/html/rfc2782). In the following SRV record example with four server targets (for
_mysql._tcp.foo.abc.com.), Connector/NET uses the server selection order of foo2, foo1,
foo3, and foo4.

Name TTL Class Priority Weight Port Target
_mysql._tcp.foo.abc.com. 86400 IN SRV 0 5 3306 foo1.abc.com
_mysql._tcp.foo.abc.com. 86400 IN SRV 0 10 3306 foo2.abc.com
_mysql._tcp.foo.abc.com. 86400 IN SRV 10 5 3306 foo3.abc.com
_mysql._tcp.foo.abc.com. 86400 IN SRV 20 5 3306 foo4.abc.com

To open a connection using DNS SRV records, add the dns-srv connection option to your connection
string. For example:

C# Example

var conn = new MySqlConnection("server=_mysql._tcp.foo.abc.com.;dns-srv=true;" +
 "user id=user;password=****;database=test");

For additional usage examples and restrictions for both classic MySQL protocol and X Protocol, see
Options for Both Classic MySQL Protocol and X Protocol.

4.4.2 Managing a Connection Pool in Connector/NET

The MySQL Connector/NET supports connection pooling for better performance and scalability
with database-intensive applications. This is enabled by default. You can turn it off or adjust its
performance characteristics using the connection string options Pooling, Connection Reset,
Connection Lifetime, Cache Server Properties, Max Pool Size and Min Pool Size.
See Section 4.4.1, “Creating a Connector/NET Connection String” for further information.

Connection pooling works by keeping the native connection to the server live when the client disposes
of a MySqlConnection. Subsequently, if a new MySqlConnection object is opened, it is created
from the connection pool, rather than creating a new native connection. This improves performance.

Guidelines

To work as designed, it is best to let the connection pooling system manage all connections. Do not
create a globally accessible instance of MySqlConnection and then manually open and close it. This
interferes with the way the pooling works and can lead to unpredictable results or even exceptions.

One approach that simplifies things is to avoid creating a MySqlConnection object manually.
Instead, use the overloaded methods that take a connection string as an argument. With this approach,

188

https://dev.mysql.com/doc/refman/8.0/en/connecting-using-dns-srv.html
https://dev.mysql.com/doc/refman/8.0/en/connecting-using-dns-srv.html
https://tools.ietf.org/html/rfc2782

Handling Connection Errors

Connector/NET automatically creates, opens, closes and destructs connections, using the connection
pooling system for best performance.

Typed Datasets and the MembershipProvider and RoleProvider classes use this approach. Most
classes that have methods that take a MySqlConnection as an argument, also have methods that
take a connection string as an argument. This includes MySqlDataAdapter.

Instead of creating MySqlCommand objects manually, you can use the static methods of the
MySqlHelper class. These methods take a connection string as an argument and they fully support
connection pooling.

Resource Usage

Connector/NET runs a background job every three minutes and removes connections from pool that
have been idle (unused) for more than three minutes. The pool cleanup frees resources on both client
and server side. This is because on the client side every connection uses a socket, and on the server
side every connection uses a socket and a thread.

Multiple endpoints. Starting with Connector/NET 8.0.19, a connection string can include multiple
endpoints (server:port) with connection pooling enabled. At runtime, Connector/NET selects one of
the addresses from the pool randomly (or by priority when provided) and attempts to connect to it. If the
connection attempt is unsuccessful, Connector/NET selects another address until the set of addresses
is exhausted. Unsuccessful endpoints are retried every two minutes. Successful connections are
managed by the connection pooling mechanism.

4.4.3 Handling Connection Errors

Because connecting to an external server is unpredictable, it is important to add error handling to
your .NET application. When there is an error connecting, the MySqlConnection class will return a
MySqlException object. This object has two properties that are of interest when handling errors:

• Message: A message that describes the current exception.

• Number: The MySQL error number.

When handling errors, you can adapt the response of your application based on the error number. The
two most common error numbers when connecting are as follows:

• 0: Cannot connect to server.

• 1045: Invalid user name, user password, or both.

The following code example shows how to manage the response of an application based on the actual
error:

C# Example

MySql.Data.MySqlClient.MySqlConnection conn;
string myConnectionString;
myConnectionString = "server=127.0.0.1;uid=root;" +
 "pwd=12345;database=test";
try
{
 conn = new MySql.Data.MySqlClient.MySqlConnection(myConnectionString);
 conn.Open();
}
 catch (MySql.Data.MySqlClient.MySqlException ex)
{
 switch (ex.Number)
 {
 case 0:
 MessageBox.Show("Cannot connect to server. Contact administrator");
 break;

189

Connector/NET Authentication

 case 1045:
 MessageBox.Show("Invalid username/password, please try again");
 break;
 }
}

Visual Basic Example

Dim myConnectionString as String
myConnectionString = "server=127.0.0.1;" _
 & "uid=root;" _
 & "pwd=12345;" _
 & "database=test"
Try
 Dim conn As New MySql.Data.MySqlClient.MySqlConnection(myConnectionString)
 conn.Open()
Catch ex As MySql.Data.MySqlClient.MySqlException
 Select Case ex.Number
 Case 0
 MessageBox.Show("Cannot connect to server. Contact administrator")
 Case 1045
 MessageBox.Show("Invalid username/password, please try again")
 End Select
End Try

Important

If you are using multilanguage databases then you must specify the character
set in the connection string. If you do not specify the character set, the
connection defaults to the latin1 character set. You can specify the character
set as part of the connection string, for example:

MySqlConnection myConnection = new MySqlConnection("server=127.0.0.1;uid=root;" +
 "pwd=12345;database=test;Charset=latin1");

4.4.4 Connector/NET Authentication

MySQL Connector/NET implements a variety of authentication plugins that MySQL Server can invoke
to authenticate a user. Pluggable authentication enables the server to determine which plugin applies,
based on the user name and host name that your application passes to the server when making a
connection. For a complete description of the authentication process, see Pluggable Authentication.

Connector/NET provides the following authentication plugins and methods:

• authentication_kerberos_client

• authentication_ldap_sasl_client

• authentication_oci_client

• authentication_webauthn_client

• authentication_windows_client

• caching_sha2_password

• mysql_clear_password

• mysql_native_password

• sha256_password

authentication_kerberos_client

For general information, see Kerberos Pluggable Authentication.

190

https://dev.mysql.com/doc/refman/8.0/en/pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.0/en/kerberos-pluggable-authentication.html

Connector/NET Authentication

Applications and MySQL servers are able use the Kerberos authentication protocol
to authenticate MySQL Enterprise Edition user accounts and services. With the
authentication_kerberos_client plugin, both the user and the server are able to verify each
other's identity. No passwords are ever sent over the network and Kerberos protocol messages are
protected against eavesdropping and replay attacks. The server-side plugin is supported only on Linux.

Note

The Defaultauthenticationplugin connection-string option is mandatory
for supporting userless and passwordless Kerberos authentications (see
Options for Classic MySQL Protocol Only).

The availability of and the requirements for enabling Kerberos authentication differ by host type.
Connector/NET does not provide Kerberos authentication for .NET applications running on macOS.
On Windows, the Kerberos mode can be set using the KerberosAuthMode connection option (see
Section 4.4.5, “Connector/NET Connection Options Reference”).

Applications running on Linux and Windows participate in Kerberos authentication based on the
following interfaces:

• Generic Security Service Application Program Interface (GSSAPI)

Minimum version:

• Connector/NET 8.0.26 for classic MySQL protocol connections. Supported on Linux only.

• Connector/NET 8.0.32 for classic MySQL protocol connections through the MIT Kerberos library.
Supported on Windows only.

MIT Kerberos must be installed on each client system to enable authentication of request tickets for
Connector/NET by a MySQL server. The libgssapi_krb5.so.2 library for Linux is required. On
Windows, use the KRB5_CONFIG and KRB5CCNAME environment variables to specify configuration
and cache locations when using GSSAPI through the MIT Kerberos library.

For an overview of the connection process, see Connection Commands for Linux Clients.

• Security Support Provider Interface (SSPI) for Windows

Minimum version: Connector/NET 8.0.27 for classic MySQL protocol connections. Supported on
Windows only.

Connector/NET uses SSPI/Kerberos for authentication. On Windows, SSPI implements GSSAPI.
The behavioral differences between SSPI and GSSAPI include:

• Configuration. Windows clients do not use any external libraries or Kerberos configuration.
For example, with GSSAPI you can set the ticket-granting ticket (TGT) expiry time, key distribution
center (KDC) port, and so on. With SSPI, you cannot set any of these options.

• TGT tickets caching. If you provide a user name and password for authentication in SSPI
mode, those credentials can be obtained from the Windows in-memory cache, but the obtained
tickets are not stored in the Kerberos cache. New tickets are obtained every time.

• Userless and passwordless authentication. In SSPI mode, Windows logged-in user name
and credentials are used. Windows client must be part of the Active Directory domain of the server
for a successful login.

For an overview of the connection process, see Connection Commands for Windows Clients in SPPI
Mode.

authentication_ldap_sasl_client

For general information, see LDAP Pluggable Authentication.

191

https://dev.mysql.com/doc/refman/8.0/en/kerberos-pluggable-authentication.html#kerberos-usage-mysql-client-usage
https://dev.mysql.com/doc/refman/8.0/en/kerberos-pluggable-authentication.html#kerberos-usage-mysql-client-usage
https://dev.mysql.com/doc/refman/8.0/en/kerberos-pluggable-authentication.html#kerberos-usage-mysql-client-usage
https://dev.mysql.com/doc/refman/8.0/en/ldap-pluggable-authentication.html

Connector/NET Authentication

SASL-based LDAP authentication requires MySQL Enterprise Edition and can be used to establish
classic MySQL protocol connections only. This authentication protocol applies to applications running
on Linux, Windows (partial support), but not macOS.

Minimum version:

• Connector/NET 8.0.22 (SCRAM-SHA-1) on Linux and Windows.

• Connector/NET 8.0.23 (SCRAM-SHA-256) on Linux and Windows.

• Connector/NET 8.0.24 (GSSAPI) on Linux only.

MIT Kerberos must be installed on each client system to enable authentication of request tickets for
Connector/NET by a MySQL server. The authentication_ldap_sasl plugin must be configured
to use the GSSAPI mechanism and the application user must be identified as follows:

IDENTIFIED WITH 'authentication_ldap_sasl'

The libgssapi_krb5.so.2 library for Linux is required.

authentication_oci_client

Minimum version: Connector/NET 8.0.27 for classic MySQL protocol connections only.

Connector/NET supports Oracle Cloud Infrastructure pluggable authentication, which enables .NET
applications to access MySQL HeatWave Service in a secure way without using passwords. This
pluggable authentication is not supported for .NET Framework 4.5.x implementations.

Prerequisites for this type of connection include access to a tenancy, a Compute instance, a DB
System attached to a private network, and properly configured groups, compartments, and policies. An
Oracle Cloud Infrastructure administrator can provide the basic setup for MySQL user accounts.

In addition, the DB System must have the server-side authentication plugin installed and loaded before
a connection can be attempted. Connector/NET implements the client-side authentication plugin.

During authentication, the client-side plugin locates the client user’s Oracle Cloud Infrastructure
configuration file from which it obtains a signing key file. The location of the configuration file can
be specified with the ociConfigFile connection option; otherwise, the default location is used. In
Connector/NET 8.0.33, the OciConfigProfile connection option permits selecting a profile in the
configuration file to use for authentication. Connector/NET then signs a token it receives from the
server, uses the token to create the SHA256 RSA signature that it returns to the server, and waits for
the success or failure of the authentication process.

To support Oracle Cloud Infrastructure ephemeral key-based authentication, Connector/NET 8.0.33
(and later) obtains the location of the token file from the security_token_file entry. For example:

[DEFAULT]
fingerprint=59:8a:0b[...]
key_file=~/.oci/sessions/DEFAULT/oci_api_key.pem
tenancy=ocid1.tenancy.oc1.[...]
region=us-ashburn-1
security_token_file=~/.oci/sessions/DEFAULT/token

Connector/NET sends to the server a JSON attribute (named "token") with the value extracted from
the security_token_file field. If the target file referenced in the profile does not exist, or if the
file exceeds a specified maximum value, then Connector/NET terminates the action and returns an
exception with the cause.

Connector/NET sends an empty token value in the JSON payload if:

• The security-token file is empty.

• The configuration option security_token_file is found but the value in the configuration file is
empty.

192

Connector/NET Authentication

In all other cases, Connector/NET adds the content of the security-token file intact to the JSON
document.

Potential error conditions include:

• Private key could not be found at location given by OCI configuration
entry 'key_file'.

Connector/NET could not find the private key at the specified location.

• OCI configuration entry 'key_file' does not reference a valid key file.

Connector/NET was unable to load or use the specified private key.

• OCI configuration file does not contain a 'fingerprint' or 'key_file'
entry.

The configuration file is missing the fingerprint entry, the key_file entry, or both.

• OCI configuration file could not be read

Connector/NET could not find or load the configuration file. Be sure the ociConfigFile value
matches the location of the file.

• The OCI SDK cannot be found or is not installed

Connector/NET could not load the Oracle Cloud Infrastructure SDK library at run time.

Connector/NET references the OCI.DotNetSDK.Common NuGet package in the Oracle Cloud
Infrastructure SDK library to read configuration-file entry values and this package must be available.

Tip

To manage the size of your .NET project, include only the required package for
authentication rather than the full set of packages in the library.

For specific details about usage and support, see SDK and CLI Configuration File.

authentication_webauthn_client

For general information, see WebAuthn Pluggable Authentication.

MySQL Enterprise Edition supports authentication to MySQL Server 8.2.0 (and higher) using devices
such as smart cards, security keys, and biometric readers. This authentication method is based on the
FIDO and FIDO2 standards, and uses a pair of plugins, authentication_webauthn on the server
side and authentication_webauthn_client on the client side. Connector/NET 8.2.0 supports the
client-side WebAuthn authentication plugin.

The WebAuthn authentication method can be used directly for one-factor authentication (1FA) or
combined with existing MySQL authentication methods to support accounts that use 2FA or 3FA.
Connector/NET provides a callback mechanism to notify the application that the user is expected to
interact with the FIDO/FIDO2 device through its authenticator. For example:

public void OpenConnection()
{
 using(var connection = new MySQLConnection("host=foo; .. "))
 connection.WebAuthnActionRequested += WebAuthnActionRequested;
 connection.Open();
 // ...
}
public void WebAuthnActionRequested()
{
 Console.WriteLine("Please insert WebAuthn device and perform gesture action for authentication to complete.");
}

193

https://www.nuget.org/packages/OCI.DotNetSDK.Common/
https://docs.oracle.com/en-us/iaas/Content/API/Concepts/sdkconfig.htm#SDK_and_CLI_Configuration_File
https://dev.mysql.com/doc/refman/8.2/en/webauthn-pluggable-authentication.html

Connector/NET Authentication

If the following requirements are satisfied, Connector/NET notifies the application that it is expecting
user interaction with the FIDO/FIDO2 device:

• The FIDO/FIDO2 device must be registered for the specific authentication factor associated with
each user account.

• The application, Connector/NET, and the FIDO/FIDO2 device must be available on the same host or
within a trusted network.

• On Windows, the application must run as administrator to access the required libfido2 library,
which must be present on the client.

The authentication process terminates after a reasonable time interval has elapsed without user-device
interaction.

Note

The related authentication_fido_client plugin and
FidoActionCallback callback (both added in Connector/NET 8.0.29) were
removed in Connector/NET 8.4.0 in favor of using WebAuthn authentication.

authentication_windows_client

Supported for all versions of Connector/NET. For general information, see Windows Pluggable
Authentication.

MySQL Connector/NET applications can authenticate to a MySQL server using the Windows Native
Authentication Plugin. Users who have logged in to Windows can connect from MySQL client
programs to the server based on the information in their environment without specifying an additional
password. The interface matches the MySql.Data.MySqlClient object. To enable, pass in Integrated
Security to the connection string with a value of yes or sspi.

Passing in a user ID is optional. When Windows authentication is set up, a MySQL user is created and
configured to be used by Windows authentication. By default, this user ID is named auth_windows,
but can be defined using a different name. If the default name is used, then passing the user ID to
the connection string from Connector/NET is optional, because it will use the auth_windows user.
Otherwise, the name must be passed to the connection string using the standard user ID element.

caching_sha2_password

Minimum version: Connector/NET 8.0.11 for classic MySQL protocol connections only. For general
information, see Caching SHA-2 Pluggable Authentication.

mysql_clear_password

Minimum version: Connector/NET 8.0.22 for classic MySQL protocol connections only. For general
information, see Client-Side Cleartext Pluggable Authentication.

mysql_clear_password requires a secure connection to the server, which is satisfied by either
condition at the client:

• The SslMode connection option has a value other than Disabled or None (deprecated in
Connector/NET 8.0.29). The value is set to Preferred by default.

• The ConnectionProtocol connection option is set to unix for Unix domain sockets.

mysql_native_password

Supported for all versions of Connector/NET to establish classic MySQL protocol and X Protocol
connections. For general information, see Native Pluggable Authentication.

194

https://dev.mysql.com/doc/refman/8.0/en/windows-pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.0/en/windows-pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.0/en/caching-sha2-pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.0/en/cleartext-pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.0/en/native-pluggable-authentication.html

Connector/NET Connection Options Reference

sha256_password

Minimum version: Connector/NET 8.0.11 for classic MySQL protocol connections or X Protocol
connections with the MYSQL41 mechanism (see the Auth connection option). For general information,
see SHA-256 Pluggable Authentication.

4.4.5 Connector/NET Connection Options Reference

This chapter describes the full set of MySQL Connector/NET 8.0 connection options. The protocol
you use to make a connection to the server (classic MySQL protocol or X Protocol) determines which
options you should use. Connection options have a default value that you can override by defining
the new value in the connection string (classic MySQL protocol and X Protocol) or in the URI-like
connection string (X Protocol). Connector/NET option names and synonyms are not case sensitive.

For instructions about how to use connection strings, see Section 4.4.1, “Creating a Connector/NET
Connection String”. For alternative connection styles, see Connecting to the Server Using URI-Like
Strings or Key-Value Pairs.

The following sections list the connection options that apply to both protocols, classic MySQL protocol
only, and X Protocol only:

• Options for Both Classic MySQL Protocol and X Protocol

• Options for Classic MySQL Protocol Only

• Options for X Protocol Only

Options for Both Classic MySQL Protocol and X Protocol

The following Connector/NET connection options can be used with either protocol.
Connector/NET 8.0 exposes the options in this section as properties in both
the MySql.Data.MySqlClient.MySqlConnectionStringBuilder and
MySqlX.XDevAPI.MySqlXConnectionStringBuilder classes.

CertificateFile ,
Certificate File

Default: null

This option specifies the path to a certificate file in PKCS #12 format
(.pfx). For an example of usage, see Section 4.6.7.2, “Using PFX
Certificates in Connector/NET”.

CertificatePassword ,
Certificate Password

Default: null

Specifies a password that is used in conjunction with a certificate
specified using the option CertificateFile. For an example of
usage, see Section 4.6.7.2, “Using PFX Certificates in Connector/
NET”.

CertificateStoreLocation
, Certificate Store
Location

Default: null

Enables you to access a certificate held in a personal store, rather
than use a certificate file and password combination. For an
example of usage, see Section 4.6.7.2, “Using PFX Certificates in
Connector/NET”.

CertificateThumbprint ,
Certificate Thumbprint

Default: null

Specifies a certificate thumbprint to ensure correct identification of
a certificate contained within a personal store. For an example of
usage, see Section 4.6.7.2, “Using PFX Certificates in Connector/
NET”.

195

https://dev.mysql.com/doc/refman/8.0/en/sha256-pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.0/en/connecting-using-uri-or-key-value-pairs.html
https://dev.mysql.com/doc/refman/8.0/en/connecting-using-uri-or-key-value-pairs.html

Connector/NET Connection Options Reference

CharacterSet , Character
Set , CharSet

Specifies the character set that should be used to encode all queries
sent to the server. Results are still returned in the character set of
the result data.

ConnectionProtocol ,
Protocol , Connection
Protocol

Default: socket (or tcp)

Specifies the type of connection to make to the server. Values can
be:

• socket or tcp for a socket connection using TCP/IP.

• pipe for a named pipe connection (not supported with X
Protocol).

• unix for a UNIX socket connection.

• memory to use MySQL shared memory (not supported with X
Protocol).

Database , Initial
Catalog

Default: mysql

The case-sensitive name of the database to use initially.

dns-srv , dnssrv Default: false

Enables the connection to resolve service (SRV) addresses in a
DNS SRV record, which defines the location (host name and port
number) of servers for the specified services when it is used with
the default transport protocol (tcp). A single DNS domain can map
to multiple targets (servers) using SRV address records. Each SRV
record includes the host name, port, priority, and weight. DNS SRV
support was introduced in Connector/NET 8.0.19 to remove the
need for clients to identify each possible host in the connection
string, with or without connection pooling.

Specifying multiple host names, a port number, or a Unix
socket, named pipe, or shared memory connection (see the
ConnectionProtocol option) in the connection string is not
permitted when DNS SRV is enabled.

Using classic MySQL protocol. The dns-srv option applies
to connection strings; the DnsSrv property is declared in the
MySqlConnectionStringBuilder class.

// Connection string example

 var conn = new MySqlConnection("server=_mysql._tcp.example.abc.com.;
 dns-srv=true;
 user id=user;
 password=****;
 database=test");

// MySqlConnectionStringBuilder class example

 var sb = new MySqlConnectionStringBuilder();
{
 Server = "_mysql._tcp.example.abc.com.",
 UserID = "user",
 Password = "****",
 DnsSrv = true,
 Database = "test"
};

var conn = new MySqlConnection(sb.ConnectionString);

196

Connector/NET Connection Options Reference

Using X Protocol. The dns-srv option applies to connection
strings and anonymous objects. The DnsSrv property is declared in
the MySqlXConnectionStringBuilder class. An error is raised
if both dns-srv=false and the URI scheme of mysqlx+srv://
are combined to create a conflicting connection configuration. For
details about using the mysqlx+srv:// scheme element in URI-
like connection strings, see Connections Using DNS SRV Records.

// Connection string example

var session = MySQLX.GetSession("server=_mysqlx._tcp.example.abc.com.;
 dns-srv=true;
 user id=user;
 password=****;
 database=test");

// Anonymous object example

var connstring = new
{
 server = "_mysqlx._tcp.example.abc.com.",
 user = "user",
 password = "****",
 dnssrv = true
};

var session = MySQLX.GetSession(connString);

// MySqlXConnectionStringBuilder class example

var sb = new MySqlXConnectionStringBuilder();
{
 Server = "_mysqlx._tcp.example.abc.com.",
 UserID = "user",
 Password = "****",
 DnsSrv = true,
 Database = "test"
};

var session = MySQLX.GetSession(sb.ConnectionString);

Keepalive , Keep Alive Default: 0

For TCP connections, idle connection time measured in seconds,
before the first keepalive packet is sent. A value of 0 indicates that
keepalive is not used. Before Connector/NET 6.6.7/6.7.5/6.8.4,
this value was measured in milliseconds.

Password , Password1 , pwd
, pwd1

Default: an empty string

The password for the MySQL account being used for one-factor/
single-factor authentication (1FA/SFA), which uses only one
authentication method such as a password.

Starting with Connector/NET 8.0.28, this option also provides the
first secret password for an account that has multiple authentication
factors. The server can require one (1FA), two (2FA), or three (3FA)
passwords to authenticate the MySQL account. For example, if an
account with 2FA is created as follows:

CREATE USER 'abe'@'localhost'
 IDENTIFIED WITH caching_sha2_password
 BY 'sha2_password'
 AND IDENTIFIED WITH authentication_ldap_sasl

197

https://dev.mysql.com/doc/x-devapi-userguide/en/connecting-dns-srv.html

Connector/NET Connection Options Reference

 AS 'uid=u1_ldap,ou=People,dc=example,dc=com';

Then your application can specify a connection string with this
option (password or its synonyms) and a value, sha2_password
in this case, to satisfy the first authentication factor.

var connString = "server=localhost;
 user=abe;
 password=sha2_password;
 password2=ldap_password;
 port=3306";

Alternatively, for a connection made using the
MySqlConnectionStringBuilder object:

MySqlConnectionStringBuilder settings = new MySqlConnectionStringBuilder()
 {
 Server = "localhost",
 UserID = "abe",
 Pwd1 = "sha2_password",
 Pwd2 = "ldap_password",
 Port = 3306
 };

If the server does not require a secret password be used with an
authentication method, then the value specified for the password,
password2, or password3 option is ignored.

Password2 , pwd2 Default: an empty string

The second secret password for an account that has multiple
authentication factors (see the Password connection option).

Password3 , pwd3 Default: an empty string

The third secret password for an account that has multiple
authentication factors (see the Password connection option).

Port Default: 3306

The port MySQL is using to listen for connections. This value is
ignored if Unix socket is used.

Server , Host , Data
Source , DataSource

Default: localhost

The name or network address of one or more host computers.
Multiple hosts are separated by commas and a priority (0 to 100), if
provided, determines the host selection order. As of Connector/NET
8.0.19, host selection is random when priorities are omitted or are
the same for each host.

// Selects the host with the highest priority (100) first
server=(address=192.10.1.52:3305,priority=60),(address=localhost:3306,priority=100);

No attempt is made by the provider to synchronize writes to
the database, so take care when using this option. In UNIX
environments with Mono, this can be a fully qualified path to a
MySQL socket file. With this configuration, the UNIX socket is used
instead of the TCP/IP socket. Currently, only a single socket name
can be given, so accessing MySQL in a replicated environment
using UNIX sockets is not currently supported.

198

Connector/NET Connection Options Reference

SslCa , Ssl-Ca Default: null

Based on the type of certificates being used, this option either
specifies the path to a certificate file in PKCS #12 format (.pfx) or
the path to a file in PEM format (.pem) that contains a list of trusted
SSL certificate authorities (CA).

With PFX certificates in use, this option engages when the SslMode
connection option is set to a value of Required, VerifyCA, or
VerifyFull; otherwise, it is ignored.

With PEM certificates in use, this option engages when the
SslMode connection option is set to a value of VerifyCA or
VerifyFull; otherwise, it is ignored.

For examples of usage, see Section 4.6.7.1, “Using PEM
Certificates in Connector/NET”.

SslCert , Ssl-Cert Default: null

The name of the SSL certificate file in PEM format to use for
establishing an encrypted connection. This option engages only
when VerifyFull is set for the SslMode connection option and
the SslCa connection option uses a PEM certificate; otherwise, it is
ignored. For an example of usage, see Section 4.6.7.1, “Using PEM
Certificates in Connector/NET”.

SslKey , Ssl-Key Default: null

The name of the SSL key file in PEM format to use for establishing
an encrypted connection. This option engages only when
VerifyFull is set for the SslMode connection option and the
SslCa connection option uses a PEM certificate; otherwise, it is
ignored. For an example of usage, see Section 4.6.7.1, “Using PEM
Certificates in Connector/NET”.

199

Connector/NET Connection Options Reference

SslMode , Ssl Mode , Ssl-
Mode

Default: Depends on the version of Connector/NET and the protocol
in use. Named-pipe and shared-memory connections are not
supported with X Protocol.

• Required for 8.0.8 to 8.0.12 (both protocols); 8.0.13 and later (X
Protocol only).

• Preferred for 8.0.13 and later (classic MySQL protocol only).

This option has the following values:

• Disabled – Do not use SSL. Non-SSL enabled servers require
this option be set to Disabled explicitly for Connector/NET
8.0.29 or later.

• None – Do not use SSL. Non-SSL enabled servers require this
option be set to None explicitly for Connector/NET 8.0.8 or later.

Note

This value is deprecated starting with
Connector/NET 8.0.29. Use Disabled
instead.

• Preferred – Use SSL if the server supports it, but allow
connection in all cases. This option was removed in Connector/
NET 8.0.8 and reimplemented in 8.0.13 for classic MySQL
protocol only.

Note

Do not use this option for X Protocol
operations.

• Required – Always use SSL. Deny connection if server does not
support SSL.

• VerifyCA – Always use SSL. Validate the certificate authorities
(CA), but tolerate a name mismatch.

• VerifyFull – Always use SSL. Fail if the host name is not
correct.

tlsversion , tls-version ,
tls version

Default: A fallback solution decides which version of TLS to use.

Restricts the set of TLS protocol versions to use during the TLS
handshake when both the client and server support the TLS
versions indicated and the value of the SslMode connection-
string option is not set to Disabled or None (deprecated in
Connector/NET 8.0.29). This option accepts a single version
or a list of versions separated by a comma, for example, tls-
version=TLSv1.2, TLSv1.3;.

Connector/NET supports the following values:

• TLSv1.3

• TLSv1.2

An error is reported when a value other than those listed is
assigned. Likewise, an error is reported when an empty list

200

Connector/NET Connection Options Reference

is provided as the value, or if all of the versions in the list are
unsupported and no connection attempt is made.

UserID , User Id ,
Username , Uid , User name
, User

Default: null

The MySQL login account being used.

Options for Classic MySQL Protocol Only

Options related to systems using a connection pool appear together at the end of the list of general
options (see Connection-Pooling Options). Connector/NET 8.0 exposes the options in this section as
properties in the MySql.Data.MySqlClient.MySqlConnectionStringBuilder class.

General Options. The Connector/NET options that follow are for general use with connection
strings and the options apply to all MySQL server configurations:

AllowBatch , Allow Batch Default: true

When true, multiple SQL statements can be sent with one
command execution. Batch statements should be separated by the
server-defined separator character.

AllowLoadLocalInfile ,
Allow Load Local Infile

Default: false

Disables (by default) or enables the server functionality to load the
data local infile. If this option is set to true, uploading files from
any location is enabled, regardless of the path specified with the
AllowLoadLocalInfileInPath option.

AllowLoadLocalInfileInPath
, Allow Load Local
Infile In Path

Default: null

Specifies a safe path from where files can be read and uploaded
to the server. When the related AllowLoadLocalInfile
option is set to false, which is the default value, only those
files from the safe path or any valid subfolder specified with the
AllowLoadLocalInfileInPath option can be loaded. For
example, if /tmp is set as the restricted folder, then file requests for
/tmp/myfile and /tmp/myfolder/myfile can succeed. No
relative paths or symlinks that fall outside of this path are permitted.

The following table shows the behavior that results when the
AllowLoadLocalInfile and AllowLoadLocalInfileInPath
connection string options are combined.

AllowLoadLocalInfile
Value

AllowLoadLocalInfileInPath
Value

Behavior

true Empty string or
null value

All uploads are
permitted.

true A valid path All uploads
are permitted
(the path is not
respected).

false Empty string or
null value

No uploads are
permitted.

false A valid path Only uploads
from the
specified folder
and subfolder
are permitted.

201

Connector/NET Connection Options Reference

AllowPublicKeyRetrieval Default: false

Setting this option to true informs Connector/NET that RSA public
keys should be retrieved from the server and that connections
using the classic MySQL protocol, when SSL is disabled, will fail by
default. Exceptions to the default behavior can occur when previous
successful connection attempts were made or when pooling is
enabled and a pooled connection can be reused. This option was
introduced with the 8.0.10 connector.

Caution

This option is prone to man-in-the-middle
attacks, so it should be used only in
situations where you can ensure by other
means that your connections are made to
trusted servers.

AllowUserVariables ,
Allow User Variables

Default: false

Setting this to true indicates that the provider expects user
variables in the SQL.

AllowZeroDateTime , Allow
Zero Datetime

Default: false

If set to True, MySqlDataReader.GetValue() returns a
MySqlDateTime object for date or datetime columns that
have disallowed values, such as zero datetime values, and a
System.DateTime object for valid values. If set to False (the
default setting) it causes a System.DateTime object to be
returned for all valid values and an exception to be thrown for
disallowed values, such as zero datetime values.

AutoEnlist , Auto Enlist Default: true

If AutoEnlist is set to true, which is the default, a connection
opened using TransactionScope participates in this
scope, it commits when the scope commits and rolls back if
TransactionScope does not commit. However, this feature is
considered security sensitive and therefore cannot be used in a
medium trust environment.

As of 8.0.10, this option is supported in .NET Core 2.0
implementations.

BlobAsUTF8ExcludePattern Default: null

A POSIX-style regular expression that matches the names of
BLOB columns that do not contain UTF-8 character data. See
Section 4.5.16, “Character Set Considerations for Connector/NET”
for usage details.

BlobAsUTF8IncludePattern Default: null

A POSIX-style regular expression that matches the names of BLOB
columns containing UTF-8 character data. See Section 4.5.16,
“Character Set Considerations for Connector/NET” for usage details.

202

Connector/NET Connection Options Reference

CheckParameters , Check
Parameters

Default: true

Indicates if stored routine parameters should be checked against the
server.

CommandInterceptors ,
Command Interceptors

The list of interceptors that can intercept SQL command operations.

ConnectionTimeout
, Connect Timeout ,
Connection Timeout

Default: 15

The length of time (in seconds) to wait for a connection to the server
before terminating the attempt and generating an error.

ConvertZeroDateTime ,
Convert Zero Datetime

Default: false

Use true to have MySqlDataReader.GetValue()
and MySqlDataReader.GetDateTime() return
DateTime.MinValue for date or datetime columns that have
disallowed values.

DefaultAuthenticationPluginTakes precedence over the server-side default authentication
plugin when a valid authentication plugin is specified
(see Section 4.4.4, “Connector/NET Authentication”). The
Defaultauthenticationplugin option is mandatory for
supporting userless and passwordless Kerberos authentications
in which the credentials are retrieved from a cache or the Key
Distribution Center (KDC). For example:

MySqlConnectionStringBuilder settings = new MySqlConnectionStringBuilder()
 {
 Server = "localhost",
 UserID = "",
 Password = "",
 Database = "mydb",
 Port = 3306,
 DefaultAuthenticationPlugin = "authentication_kerberos_client"
 };

If no value is set, the server-side default authentication plugin is
used.

This option was introduced with the 8.0.26 connector.

DefaultCommandTimeout ,
Default Command Timeout

Default: 30

Sets the default value of the command timeout to be used. This
does not supersede the individual command timeout property on
an individual command object. If you set the command timeout
property, that will be used.

DefaultTableCacheAge ,
Default Table Cache Age

Default: 60

Specifies how long a TableDirect result should be cached,
in seconds. For usage information about table caching, see
Section 4.5.3, “Using Connector/NET with Table Caching”.

ExceptionInterceptors ,
Exception Interceptors

The list of interceptors that can triage thrown MySqlException
exceptions.

FunctionsReturnString ,
Functions Return String

Default: false

Causes the connector to return binary or varbinary values as
strings, if they do not have a table name in the metadata.

203

Connector/NET Connection Options Reference

Includesecurityasserts ,
Include security asserts

Default: false

Must be set to true when using the MySQLClientPermissions
class in a partial trust environment, with the library installed in the
GAC of the hosting environment. See Section 4.5.7, “Working with
Partial Trust / Medium Trust” for details.

As of 8.0.10, this option is supported in .NET Core 2.0
implementations.

InteractiveSession ,
Interactive , Interactive
Session

Default: false

If set to true, the client is interactive. An interactive client is one
in which the server variable CLIENT_INTERACTIVE is set. If an
interactive client is set, the wait_timeout variable is set to the
value of interactive_timeout. The client session then times
out after this period of inactivity. For more information, see Server
System Variables in the MySQL Reference Manual.

As of 8.0.10, this option is supported in .NET Core 2.0
implementations.

IntegratedSecurity ,
Integrated Security

Default: no

Use Windows authentication when connecting to server. By default,
it is turned off. To enable, specify a value of yes. (You can also
use the value sspi as an alternative to yes.) For details, see
Section 4.4.4, “Connector/NET Authentication”.

Currently not supported for .NET Core implementations.

KerberosAuthMode ,
kerberos auth mode

Default: AUTO

On Windows, provides authentication support using Security
Support Provider Interface (SSPI), which is capable of acquiring
credentials from the Windows in-memory cache, and Generic
Security Service Application Program Interface (GSSAPI) through
the MIT Kerberos library. GSSAPI is capable of acquiring cached
credentials previously generated using the kinit command. The
default value for this option (AUTO) attempts to authenticate with
GSSAPI if the authentication using SSPI fails.

Note

This option is permitted in Windows
environments only. Using it in non-Windows
environments produces an Option not
supported exception.

Possible values for this connection option are:

• AUTO – Use SSPI and fall back to GSSAPI in case of failure.

• SSPI – Use SSPI only and raise an exception in case of failure.

• GSSAPI – Use GSSAPI only and raise an exception in case
of failure. Always use the KRB5_CONFIG and KRB5CCNAME
environment variables to specify configuration and cache
locations when using GSSAPI through the MIT Kerberos library
on Windows.

204

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html

Connector/NET Connection Options Reference

Logging Default: false

When the value is set to true, various pieces of information
are sent to all configured trace listeners. For a more detailed
description, see Section 4.5.12, “Connector/NET Tracing”.

As of 8.0.10, this option is supported in .NET Core 2.0
implementations.

ociConfigFile , OCI
Config File

Defaults to one of the following path names:

• ~/.oci/config on Linux and macOS host types

• %HOMEDRIVE%%HOMEPATH%\.oci\config on Windows host
types

If set, this option specifies an alternative location to the Oracle
Cloud Infrastructure configuration file. Connector/NET 8.0.27
(and later) uses the Oracle Cloud Infrastructure SDK to obtain a
fingerprint of the API key to use for authentication (fingerprint
entry) and location of a PEM file with the private part of the API
key (key_file entry). The entries should be specified in the
[DEFAULT] profile. If the [DEFAULT] profile is missing from the
configuration file, Connector/NET locates the next profile to use
instead.

Not supported for .NET Framework 4.5.x implementations.

OciConfigProfile , OCI
Config Profile

If set in Connector/NET 8.0.33 (or later), this option specifies which
profile in an Oracle Cloud Infrastructure configuration file to use.
The profile value defaults to the DEFAULT profile when no value is
provided.

Not supported for .NET Framework 4.5.x implementations.

OldGuids , Old Guids Default: false

The back-end representation of a GUID type was changed from
BINARY(16) to CHAR(36). This was done to allow developers to
use the server function UUID() to populate a GUID table - UUID()
generates a 36-character string. Developers of older applications
can add 'Old Guids=true' to the connection string to use a
GUID of data type BINARY(16).

OldGetStringBehavior Default: false

As of Connector/NET 8.3.0, calling the
MySqlDataReader.GetString() method throws an
InvalidCastException exception if the column is not a string
type. All text types including char and varchar are allowed; and blob
is not considered a text type.

Setting this OldGetStringBehavior connection option to true
restores previous behavior by logging a deprecation warning instead
of throwing the exception.

This option was added in 8.3.0 and will be removed in the near
future (potentially 9.0.0) as it's a temporary measure.

PersistSecurityInfo ,
Persist Security Info

Default: false

205

https://dev.mysql.com/doc/refman/8.0/en/miscellaneous-functions.html#function_uuid
https://dev.mysql.com/doc/refman/8.0/en/binary-varbinary.html

Connector/NET Connection Options Reference

When set to false or no (strongly recommended), security-
sensitive information, such as the password, is not returned as part
of the connection if the connection is open or has ever been in an
open state. Resetting the connection string resets all connection
string values, including the password. Recognized values are true,
false, yes, and no.

PipeName , Pipe Name ,
Pipe

Default: mysql

When set to the name of a named pipe, the MySqlConnection
attempts to connect to MySQL on that named pipe. This setting only
applies to the Windows platform.

Important

For MySQL 8.0.14 and later, 5.7.25
and later, and 5.6.43 and later, minimal
permissions on named pipes are granted
to clients that use them to connect to the
server. However, Connector/NET can
use named pipes only when granted full
access on them. As a workaround, create
a Windows local group containing the
user that executes the client application.
Restart the target server with the
named_pipe_full_access_group
system variable and specify the local group
name as its value.

Currently not supported for .NET Core implementations.

ProcedureCacheSize ,
Procedure Cache Size
, procedure cache ,
procedurecache

Default: 25

Sets the size of the stored procedure cache. By default, Connector/
NET stores the metadata (input/output data types) about the last 25
stored procedures used. To disable the stored procedure cache, set
the value to zero (0).

Replication Default: false

Indicates if this connection is to use replicated servers.

As of 8.0.10, this option is supported in .NET Core 2.0
implementations.

RespectBinaryFlags ,
Respect Binary Flags

Default: true

Setting this option to false means that Connector/NET ignores a
column's binary flags as set by the server.

SharedMemoryName , Shared
Memory Name

Default: mysql

The name of the shared memory object to use for communication if
the transport protocol is set to memory. This setting only applies to
the Windows platform.

Currently not supported for .NET Core implementations.

SqlServerMode , Sql
Server Mode

Default: false

206

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_named_pipe_full_access_group

Connector/NET Connection Options Reference

Allow SQL Server syntax. When set to true, enables Connector/
NET to support square brackets around symbols instead of
backticks. This enables Visual Studio wizards that bracket symbols
between the [and] characters to work with Connector/NET.
This option incurs a performance hit, so should only be used if
necessary.

TableCaching , Table
Cache , TableCache

Default: false

Enables or disables caching of TableDirect commands. A
value of true enables the cache while false disables it. For
usage information about table caching, see Section 4.5.3, “Using
Connector/NET with Table Caching”.

TreatBlobsAsUTF8 , Treat
BLOBs as UTF8

Default: false

Setting this value to true causes BLOB columns to have a
character set of utf8 with the default collation for that character
set. To convert only some of your BLOB columns, you can
make use of the 'BlobAsUTF8IncludePattern' and
'BlobAsUTF8ExcludePattern' keywords. Set these to a regular
expression pattern that matches the column names to include or
exclude respectively.

TreatTinyAsBoolean ,
Treat Tiny As Boolean

Default: true

Setting this value to false causes TINYINT(1) to be treated as
an INT. See Numeric Data Type Syntax for a further explanation of
the TINYINT and BOOL data types.

UseAffectedRows , Use
Affected Rows

Default: false

When true, the connection reports changed rows instead of found
rows.

UseCompression , Compress
, Use Compression

Default: false

Setting this option to true enables compression of packets
exchanged between the client and the server. This exchange is
defined by the MySQL client/server protocol.

Compression is used if both client and server support ZLIB
compression, and the client has requested compression using this
option.

A compressed packet header is: packet length (3 bytes), packet
number (1 byte), and Uncompressed Packet Length (3 bytes). The
Uncompressed Packet Length is the number of bytes in the original,
uncompressed packet. If this is zero, the data in this packet has
not been compressed. When the compression protocol is in use,
either the client or the server may compress packets. However,
compression will not occur if the compressed length is greater than
the original length. Thus, some packets will contain compressed
data while other packets will not.

UseDefaultCommandTimeoutForEF
, Use Default Command
Timeout For EF

Default: false

Enforces the command timeout of EFMySqlCommand, which is set
to the value provided by the DefaultCommandTimeout property.

207

https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/integer-types.html
https://dev.mysql.com/doc/refman/8.0/en/numeric-type-syntax.html
https://dev.mysql.com/doc/refman/8.0/en/integer-types.html
https://dev.mysql.com/doc/refman/8.0/en/integer-types.html

Connector/NET Connection Options Reference

UsePerformanceMonitor ,
Use Performance Monitor ,
UserPerfMon , PerfMon

Default: false

Indicates that performance counters should be updated during
execution.

Currently not supported for .NET Core implementations.

UseUsageAdvisor , Use
Usage Advisor , Usage
Advisor

Default: false

Logs inefficient database operations.

As of 8.0.10, this option is supported in .NET Core 2.0
implementations.

Connection-Pooling Options. The following options are related to connection pooling within
connection strings. For more information about connection pooling, see Opening a Connection to a
Single Server.

CacheServerProperties ,
Cache Server Properties

Default: false

Specifies whether server variable settings are updated by a SHOW
VARIABLES command each time a pooled connection is returned.
Enabling this setting speeds up connections in a connection pool
environment. Your application is not informed of any changes to
configuration variables made by other connections.

ConnectionLifeTime ,
Connection Lifetime

Default: 0

When a connection is returned to the pool, its creation time is
compared with the current time and the connection is destroyed
if that time span (in seconds) exceeds the value specified by
Connection Lifetime. This option is useful in clustered
configurations to force load balancing between a running server
and a server just brought online. A value of zero (0) sets pooled
connections to the maximum connection timeout.

ConnectionReset ,
Connection Reset

Default: false

If true, the connection state is reset when it is retrieved from the
pool. The default value of false avoids making an additional server
round trip when obtaining a connection, but the connection state is
not reset.

MaximumPoolsize , Max
Pool Size , Maximum Pool
Size , MaxPoolSize

Default: 100

The maximum number of connections allowed in the pool.

MinimumPoolSize , Min
Pool Size , Minimum Pool
Size , MinPoolSize

Default: 0

The minimum number of connections allowed in the pool.

Pooling Default: true

When true, the MySqlConnection object is drawn from the
appropriate pool, or if necessary, is created and added to the
appropriate pool. Recognized values are true, false, yes, and
no.

208

Connector/NET Connection Options Reference

Options for X Protocol Only

The connection options that follow are valid for connections made with X Protocol.
Connector/NET 8.0 exposes the options in this section as properties in the
MySqlX.XDevAPI.MySqlXConnectionStringBuilder class.

Auth , Authentication ,
Authentication Mode

Authentication mechanism to use with the X Protocol. This option
was introduced with the 8.0.9 connector and has the following
values, which are not case-sensitive: MYSQL41, PLAIN, and
EXTERNAL. If the Auth option is not set, the mechanism is
chosen depending on the connection type. PLAIN is used for
secure connections (TLS or Unix sockets) and MYSQL41 is used
for unencrypted connections. EXTERNAL is used for external
authentication methods such as PAM, Windows login IDs, LDAP, or
Kerberos. (EXTERNAL is not currently supported.)

The Auth option is not supported for classic MySQL protocol
connections and returns NotSupportedException if used.

Compression , use-
compression

Default: preferred

Compression is used to send and receive data when both the client
and server support it for X Protocol connections and the client
requests compression using this option. After a successful algorithm
negotiation is made, Connector/NET can start compressing data
immediately. To prevent the compression of small data packets,
or of data already compressed, Connector/NET defines a size
threshold of 1000 bytes.

When multiple compression algorithms are supported by
the server, Connector/NET applies the following priority by
default: zstd_stream (first), lz4_message (second), and
deflate_stream (third). The deflate_stream algorithm is
supported for use with .NET Core, but not for .NET Framework.

Tip

Use the compression-algorithms option
to specify one ore more supported algorithms
in a different order. The algorithms are
negotiated in the order provided by client.
For usage details, see the compression-
algorithms option.

Data compression for X Protocol connections was added in the
Connector/NET 8.0.20 release. The Compression option accepts
the following values:

• preferred to apply data compression if the server supports the
algorithms chosen by the client. Otherwise, the data is sent and
received without compression.

• required to ensure that compression is used or to terminate the
connection and return an error message.

• disabled to prevent data compression.

compression-algorithms ,
CompressionAlgorithms

As of Connector/NET 8.0.22, a client application can specify the
order in which supported compression algorithms are negotiated
with the server. The value of the Compression connection option

209

Connector/NET Connection Options Reference

must be set to preferred or to required for this option to apply.
Unsupported algorithms are ignored.

This option accepts the following algorithm names and synonyms:

• lz4_message or lz4

• zstd_stream or zstd

• deflate_stream or deflate (not valid with .NET Framework)

Algorithm names and synonyms can be combined in a comma-
separated list or provided as a standalone value (with or without
brackets). Examples:

// Compression option set to preferred (default)
MySQLX.GetSession("mysqlx://test:test@localhost:3306?compression-algorithms=[lz4_message,deflate]
MySQLX.GetSession("mysqlx://test:test@localhost:3306?compressionalgorithms=lz4
MySQLX.GetSession("mysqlx://test:test@localhost:3306?compression=preferred&compression-algorithms=[zstd]

// Compression option set to required
MySQLX.GetSession("mysqlx://test:test@localhost:3306?compression=required&compression-algorithms=[zstd_stream,lz4_message]
MySQLX.GetSession("mysqlx://test:test@localhost:3306?compression=required&compression-algorithms=[lz4]
MySQLX.GetSession("mysqlx://test:test@localhost:3306?compression=required&compression-algorithms=zstd_stream

// Connection string
MySQLX.GetSession("server=localhost;port=3306;uid=test;password=test;compression=required;compression-algorithms=lz4_message;")

// Anonymous object
MySQLX.GetSession(new {
 server = "localhost",
 port = "3306",
 uid = "test",
 password = "test",
 compression="required",
 compressionalgorithms = "deflate_stream" })

For additional information, see Connection Compression with X
Plugin.

connection-attributes ,
ConnectionAttributes

Default: true

This option was introduced in Connector/NET 8.0.16 for submitting
a set of attributes to be passed together with default connection
attributes to the server. The aggregate size of connection
attribute data sent by a client is limited by the value of the
performance_schema_session_connect_attrs_size server
variable. The total size of the data package should be less than
the value of the server variable. For general information about
connection attributes, see Performance Schema Connection
Attribute Tables.

The connection-attributes parameter value can be empty (the
same as specifying true), a Boolean value (true or false to
enable or disable the default attribute set), or a list or zero or
more key=value specifiers separated by commas (to be sent in
addition to the default attribute set). Within a list, a missing key
value evaluates as the NULL value. Examples:

// Sessions
MySQLX.GetSession($"mysqlx://user@host/schema")
MySQLX.GetSession($"mysqlx://user@host/schema?connection-attributes")
MySQLX.GetSession($"mysqlx://user@host/schema?connection-attributes=true")
MySQLX.GetSession($"mysqlx://user@host/schema?connection-attributes=false")
MySQLX.GetSession($"mysqlx://user@host/schema?connection-attributes=[attr1=val1,attr2,attr3=]")

210

https://dev.mysql.com/doc/refman/8.0/en/x-plugin-connection-compression.html
https://dev.mysql.com/doc/refman/8.0/en/x-plugin-connection-compression.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-system-variables.html#sysvar_performance_schema_session_connect_attrs_size
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-connection-attribute-tables.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-connection-attribute-tables.html

Connector/NET Programming

MySQLX.GetSession($"mysqlx://user@host/schema?connection-attributes=[]")

// Pooling
MySQLX.GetClient($"mysqlx://user@host/schema")
MySQLX.GetClient($"mysqlx://user@host/schema?connection-attributes")
MySQLX.GetClient($"mysqlx://user@host/schema?connection-attributes=true")
MySQLX.GetClient($"mysqlx://user@host/schema?connection-attributes=false")
MySQLX.GetClient($"mysqlx://user@host/schema?connection-attributes=[attr1=val1,attr2,attr3=]")
MySQLX.GetClient($"mysqlx://user@host/schema?connection-attributes=[]")

Application-defined attribute names cannot begin with _ because
such names are reserved for internal attributes.

If connection attributes are not specified in a valid way, an error
occurs and the connection attempt fails.

Connect-Timeout ,
ConnectTimeout

Default: 10000

The length of time (in milliseconds) to wait for an X Protocol
connection to the server before terminating the attempt and
generating an error. You can disable the connection timeout by
setting the value to zero. This option can be specified as follows:

• URI-like connection string example

MySQLX.GetSession("mysqlx://test:test@localhost:33060?connect-timeout=2000");

• Connection string example

MySQLX.GetSession("server=localhost;user=test;port=33060;connect-timeout=2000");

• Anonymous object example

MySQLX.GetSession(new { server="localhost", user="test", port=33060, connecttimeout=2000 });

• MySqlXConnectionStringBuilder class example

var builder = new MySqlXConnectionStringBuilder("server=localhost;user=test;port=33060");
builder.ConnectTimeout = 2000;
MySQLX.GetSession(builder.ConnectionString);

SslCrl , Ssl-Crl Default: null

Path to a local file containing certificate revocation lists.

Important

Although the SslCrl connection-string
option is valid for use, applying it raises a
NotSupportedException message.

4.5 Connector/NET Programming
MySQL Connector/NET comprises several classes that are used to connect to the database, execute
queries and statements, and manage query results.

The following are the major classes of Connector/NET:

• MySqlConnection: Represents an open connection to a MySQL database (see Section 4.4,
“Connector/NET Connections”).

The MySqlConnectionStringBuilder class aids in the creation of a connection string by
exposing the connection options as properties.

• MySqlCommand: Represents an SQL statement to execute against a MySQL database.

211

Using GetSchema on a Connection

• MySqlCommandBuilder: Automatically generates single-table commands used to reconcile
changes made to a DataSet with the associated MySQL database.

• MySqlDataAdapter: Represents a set of data commands and a database connection that are used
to fill a data set and update a MySQL database.

• MySqlDataReader: Provides a means of reading a forward-only stream of rows from a MySQL
database.

• MySqlException: The exception that is thrown when MySQL returns an error.

• MySqlHelper: Helper class that makes it easier to work with the provider.

• MySqlTransaction: Represents an SQL transaction to be made in a MySQL database.

4.5.1 Using GetSchema on a Connection

The GetSchema() method of the connection object can be used to retrieve schema information
about the database currently connected to. The schema information is returned in the form of a
DataTable. The schema information is organized into a number of collections. Different forms of the
GetSchema() method can be used depending on the information required. There are three forms of
the GetSchema() method:

• GetSchema() - This call will return a list of available collections.

• GetSchema(String) - This call returns information about the collection named in the string
parameter. If the string “MetaDataCollections” is used then a list of all available collections is
returned. This is the same as calling GetSchema() without any parameters.

• GetSchema(String, String[]) - In this call the first string parameter represents the collection
name, and the second parameter represents a string array of restriction values. Restriction values
limit the amount of data that will be returned. Restriction values are explained in more detail in the
Microsoft .NET documentation.

Collections

The collections can be broadly grouped into two types: collections that are common to all data
providers, and collections specific to a particular provider.

Common Collections. The following collections are common to all data providers:

• MetaDataCollections

• DataSourceInformation

• DataTypes

• Restrictions

• ReservedWords

Provider-Specific Collections. The following are the collections currently provided by Connector/
NET, in addition to the common collections shown previously:

• Databases

• Tables

• Columns

• Users

• Foreign Keys

212

https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_transaction
http://msdn.microsoft.com/en-us/library/ms254934(VS.80).aspx

Using MySqlCommand

• IndexColumns

• Indexes

• Foreign Key Columns

• UDF

• Views

• ViewColumns

• Procedure Parameters

• Procedures

• Triggers

C# Code Example. A list of available collections can be obtained using the following code:

using System;
using System.Data;
using System.Text;
using MySql.Data;
using MySql.Data.MySqlClient;
namespace ConsoleApplication2
{
 class Program
 {
 private static void DisplayData(System.Data.DataTable table)
 {
 foreach (System.Data.DataRow row in table.Rows)
 {
 foreach (System.Data.DataColumn col in table.Columns)
 {
 Console.WriteLine("{0} = {1}", col.ColumnName, row[col]);
 }
 Console.WriteLine("============================");
 }
 }
 static void Main(string[] args)
 {
 string connStr = "server=localhost;user=root;database=world;port=3306;password=******";
 MySqlConnection conn = new MySqlConnection(connStr);
 try
 {
 Console.WriteLine("Connecting to MySQL...");
 conn.Open();
 DataTable table = conn.GetSchema("MetaDataCollections");
 //DataTable table = conn.GetSchema("UDF");
 DisplayData(table);
 conn.Close();
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.ToString());
 }
 Console.WriteLine("Done.");
 }
 }
}

Further information on the GetSchema() method and schema collections can be found in the
Microsoft .NET documentation.

4.5.2 Using MySqlCommand

The MySqlCommand class represents a SQL statement to execute against a MySQL database. Class
methods enable you to perform the following database operations:

213

http://msdn.microsoft.com/en-us/library/kcax58fh(VS.80).aspx

Using MySqlCommand

• Query a database

• Insert, update, and delete data

• Return a single value

Command-based database operations can run within a transaction, if needed. For a short tutorial
demonstrating how and when to use the ExecuteReader, ExecuteNonQuery, and ExecuteScalar
methods, see Section 4.6.1.2, “The MySqlCommand Object”.

An instance of MySqlCommand can be organized to execute as a prepared statement for faster
excecution and reuse, or as a stored procedure. A flexible set of class properties permits you to
package MySQL commands in several forms. The remainder of this section describes following
MySqlCommand properties:

• CommandText and CommandType Properties

• Parameters Property

• Attributes Property

• CommandTimeout Property

CommandText and CommandType Properties

The MySqlCommand class provides the CommandText and CommandType properties that you may
combine to create the type of SQL statements needed for your project. The CommandText property
is interpreted differently, depending on how you set the CommandType property. The following
CommandType types are permitted:

• Text - An SQL text command (default).

• StoredProcedure - Name of a stored procedure.

• TableDirect - Name of a table.

The default CommandType type, Text, is used for executing queries and other SQL commands. See
Section 4.6.1.2, “The MySqlCommand Object” for usage examples.

If CommandType is set to StoredProcedure, set CommandText to the name of the stored procedure
to access. For use-case examples of the CommandType property with type StoredProcedure, see
Section 4.5.5, “Creating and Calling Stored Procedures”.

If CommandType is set to TableDirect, all rows and columns of the named table are returned when
you call one of the execute methods. In effect, this command performs a SELECT * on the table
specified. The CommandText property is set to the name of the table to query. This usage is illustrated
by the following code snippet:

...
MySqlCommand cmd = new MySqlCommand();
cmd.CommandText = "mytable";
cmd.Connection = someConnection;
cmd.CommandType = CommandType.TableDirect;
MySqlDataReader reader = cmd.ExecuteReader();
while (reader.Read())
{
 Console.WriteLn(reader[0], reader[1]...);
}
...

Parameters Property

The Parameters property gives you control over the data you use to build a SQL query. Defining
a parameter is the preferred practice to reduce the risk of acquiring unwanted or malicous input. For
usage information and examples, see:

214

Using MySqlCommand

• Working with Parameters

• Accessing a Stored Procedure

• Preparing Statements in Connector/NET

Attributes Property

As of Connector/NET 8.0.26, an instance of MySqlCommand can be organized to execute simple
Transact-SQL statements or stored procedures, both can be used in a prepared statement for faster
execution and reuse. The query_attributes component must be installed on the server (see
Prerequisites for Using Query Attributes) before attributes can be searched for and used on the server
side.

Query-attributes support varies by server version:

• Prior to MySQL Server 8.0.23: no support for query attributes.

• MySQL Server 8.0.23 to 8.0.24: support for query attributes in regular statements only.

• MySQL Server 8.0.25 and higher: support for query attributes in both regular and prepared
statements.

If you send query attribute metadata to a server that does not support query attributes, the attempt is
logged by the connector but no error is emitted.

Like parameters, attributes must be named. Unlike a parameter, an attribute represents an object from
the underlying query, such as a field or table. Connector/NET does not check or enforce whether your
attribute names are unique. Parameters and attributes can be combined together in commands without
restrictions.

You can declare an attritue name and value directly by using the SetAttribute method
to create an instance of MySqlAttribute that is exposed in a collection through the
MySqlAttributeCollection object within MySqlCommand. For example, to declare a single
attribute named qa1, use the following C# syntax:

myCommand.Attributes.SetAttribute("qa1", "qaValue");

Alternatively, you can declare a variable of type MySqlAttribute to hold your attribute name and
value. Both forms persist the attribute after the query is executed, until the Clear method is called on
the MySqlAttributeCollection object. The next snippet declares two attributes named qa1 and
qa2 as variables mySqlAttribute1 and mySqlAttribute2.

MySqlCommand myCommand = new MySqlCommand();
myCommand.Connection = myConnection;
MySqlAttribute mySqlAttribute1 = new MySqlAttribute("qa1", "qaValue");
MySqlAttribute mySqlAttribute2 = new MySqlAttribute("qa2", 2);
myCommand.Attributes.SetAttribute(mySqlAttribute1);
myCommand.Attributes.SetAttribute(mySqlAttribute2);

With attribute names and values defined, a statement specifying attributes can be sent to the server.
The following SELECT statement includes the mysql_query_attribute_string() loadable
function that is used to retrieve the two attributes decared previously and then prints the results. For
more readable and convenient syntax, the $ symbol is used in this example to identify string literals as
interpolated strings.

myCommand.CommandText = $"SELECT mysql_query_attribute_string('{mySqlAttribute1.AttributeName}') AS attr1," +
 $"mysql_query_attribute_string('{mySqlAttribute2.AttributeName}') AS attr2";
using (var reader = myCommand.ExecuteReader())
{
 while (reader.Read())
 {

215

https://dev.mysql.com/doc/refman/8.0/en/query-attributes.html#query-attributes-prerequisites
https://dev.mysql.com/doc/refman/8.0/en/select.html

Using Connector/NET with Table Caching

 Console.WriteLine($"Attribute1 Value: {reader.GetString(0)}");
 Console.WriteLine($"Attribute2 Value: {reader.GetString(1)}");
 }
}
/* Output:
 Attribute1 Value: qaValue
 Attribute2 Value: 2
*/

The following code block shows the same process for setting attributes and retrieving the results using
Visual Basic syntax.

Public Sub CreateMySqlCommandWithQueryAttributes(ByVal myConnection As MySqlConnection)
 Dim myCommand As MySqlCommand = New MySqlCommand()
 myCommand.Connection = myConnection
 Dim mySqlAttribute1 As MySqlAttribute = New MySqlAttribute("qa1", "qaValue")
 Dim mySqlAttribute2 As MySqlAttribute = New MySqlAttribute("qa2", 2)
 myCommand.Attributes.SetAttribute(mySqlAttribute1)
 myCommand.Attributes.SetAttribute(mySqlAttribute2)
 myCommand.CommandText = $"SELECT mysql_query_attribute_string('{mySqlAttribute1.AttributeName}') AS attr1," &
 $"mysql_query_attribute_string('{mySqlAttribute2.AttributeName}') AS attr2"
 Using reader = myCommand.ExecuteReader()
 While reader.Read()
 Console.WriteLine($"Attribute1 Value: {reader.GetString(0)}")
 Console.WriteLine($"Attribute2 Value: {reader.GetString(1)}")
 End While
 End Using
End Sub

CommandTimeout Property

Commands can have a timeout associated with them. This feature is useful as you may not want a
situation were a command takes up an excessive amount of time. A timeout can be set using the
CommandTimeout property. The following code snippet sets a timeout of one minute:

MySqlCommand cmd = new MySqlCommand();
cmd.CommandTimeout = 60;

The default value is 30 seconds. Avoid a value of 0, which indicates an indefinite wait. To change the
default command timeout, use the connection string option Default Command Timeout.

Connector/NET supports timeouts that are aligned with how Microsoft handles
SqlCommand.CommandTimeout. This property is the cumulative timeout for all network reads
and writes during command execution or processing of the results. A timeout can still occur in the
MySqlReader.Read method after the first row is returned, and does not include user processing time,
only IO operations.

Further details on this can be found in the relevant Microsoft documentation.

4.5.3 Using Connector/NET with Table Caching

Table caching is a feature that can be used to cache slow-changing datasets on the client side. This is
useful for applications that are designed to use readers, but still want to minimize trips to the server for
slow-changing tables.

This feature is transparent to the application, and is disabled by default.

Configuration

• To enable table caching, add 'table cache = true' to the connection string.

• Optionally, specify the 'Default Table Cache Age' connection string option, which represents
the number of seconds a table is cached before the cached data is discarded. The default value is
60.

216

http://msdn.microsoft.com/en-us/library/system.data.sqlclient.sqlcommand.commandtimeout.aspx

Preparing Statements in Connector/NET

• You can turn caching on and off and set caching options at runtime, on a per-command basis.

4.5.4 Preparing Statements in Connector/NET

Prepared statements can provide significant performance improvements on queries that are executed
more than one time. Prepared execution is faster than direct execution for statements executed more
than once, primarily because the query is parsed only one time. In the case of direct execution, the
query is parsed every time it is executed. In addition, prepared execution can provide a reduction of
network traffic because for each execution of the prepared statement, it is necessary only to send the
data for the parameters.

Another advantage of prepared statements is that, with server-side prepared statements enabled, it
uses a binary protocol that makes data transfer between client and server more efficient.

To prepare a statement, use the following sequence of steps:

1. Create a MySqlCommand object and set the CommandText property to your query.

2. After entering your statement, call the Prepare method of the command object. When the
statement is prepared, add parameters for each of the dynamic elements in the query.

3. Execute the statement using the ExecuteNonQuery(), ExecuteScalar(), or ExecuteReader
methods.

For subsequent executions, you need only modify the values of the parameters and call the execute
method again, there is no need to set the CommandText property or redefine the parameters.

C# Code Example

MySql.Data.MySqlClient.MySqlConnection conn;
MySql.Data.MySqlClient.MySqlCommand cmd;
conn = new MySql.Data.MySqlClient.MySqlConnection();
cmd = new MySql.Data.MySqlClient.MySqlCommand();
conn.ConnectionString = strConnection;
try
{
 conn.Open();
 cmd.Connection = conn;
 cmd.CommandText = "INSERT INTO myTable VALUES(NULL, @number, @text)";
 cmd.Prepare();
 cmd.Parameters.AddWithValue("@number", 1);
 cmd.Parameters.AddWithValue("@text", "One");
 for (int i=1; i <= 1000; i++)
 {
 cmd.Parameters["@number"].Value = i;
 cmd.Parameters["@text"].Value = "A string value";
 cmd.ExecuteNonQuery();
 }
}
catch (MySql.Data.MySqlClient.MySqlException ex)
{
 MessageBox.Show("Error " + ex.Number + " has occurred: " + ex.Message,
 "Error", MessageBoxButtons.OK, MessageBoxIcon.Error);
}

Visual Basic Code Example

Dim conn As New MySqlConnection
Dim cmd As New MySqlCommand
conn.ConnectionString = strConnection
Try
 conn.Open()
 cmd.Connection = conn
 cmd.CommandText = "INSERT INTO myTable VALUES(NULL, @number, @text)"
 cmd.Prepare()

217

Creating and Calling Stored Procedures

 cmd.Parameters.AddWithValue("@number", 1)
 cmd.Parameters.AddWithValue("@text", "One")
 For i = 1 To 1000
 cmd.Parameters("@number").Value = i
 cmd.Parameters("@text").Value = "A string value"
 cmd.ExecuteNonQuery()
 Next
Catch ex As MySqlException
 MessageBox.Show("Error " & ex.Number & " has occurred: " &
 ex.Message, "Error", MessageBoxButtons.OK, MessageBoxIcon.Error)
End Try

4.5.5 Creating and Calling Stored Procedures

A stored procedure is a set of SQL statements that is stored in the server. Clients make a single call to
the stored procedure, passing parameters that can influence the procedure logic and query conditions,
rather than issuing individual hardcoded SQL statements.

Stored procedures can be particularly useful in situations such as the following:

• Stored procedures can act as an API or abstraction layer, allowing multiple client applications to
perform the same database operations. The applications can be written in different languages and
run on different platforms. The applications do not need to hardcode table and column names,
complicated queries, and so on. When you extend and optimize the queries in a stored procedure, all
the applications that call the procedure automatically receive the benefits.

• When security is paramount, stored procedures keep applications from directly manipulating
tables, or even knowing details such as table and column names. Banks, for example, use stored
procedures for all common operations. This provides a consistent and secure environment, and
procedures can ensure that each operation is properly logged. In such a setup, applications and
users would not get any access to the database tables directly, but can only execute specific stored
procedures.

This section does not provide in-depth information on creating stored procedures. For such information,
see Using Stored Routines.

Creating a Stored Procedure

Stored procedures in MySQL can be created using a variety of tools, such as:

• The mysql command-line client

• MySQL Workbench

• The MySqlCommand object

Unlike the command-line and GUI clients, you are not required to specify a special delimiter when
creating stored procedures in Connector/NET using the MySqlCommand class. For example, to create
a stored procedure named add_emp, use the CommandText property with the default command type
(SQL text commands) to execute each individual SQL statement in the context of your command that
has an open connection to a server.

cmd.CommandText = "DROP PROCEDURE IF EXISTS add_emp";
cmd.ExecuteNonQuery();
cmd.CommandText = "DROP TABLE IF EXISTS emp";
cmd.ExecuteNonQuery();
cmd.CommandText = "CREATE TABLE emp (+
 "empno INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY, first_name VARCHAR(20)," +
 "last_name VARCHAR(20), birthdate DATE)";
cmd.ExecuteNonQuery();
cmd.CommandText = "CREATE PROCEDURE add_emp(" +
 "IN fname VARCHAR(20), IN lname VARCHAR(20), IN bday DATETIME, OUT empno INT)" +
 "BEGIN INSERT INTO emp(first_name, last_name, birthdate) " +
 "VALUES(fname, lname, DATE(bday)); SET empno = LAST_INSERT_ID(); END";

218

https://dev.mysql.com/doc/refman/8.0/en/stored-routines.html

Creating and Calling Stored Procedures

cmd.ExecuteNonQuery();

Accessing a Stored Procedure

After the stored procedure is named, you define one MySqlCommand parameter for every parameter
in the stored procedure. IN parameters are defined with the parameter name and the object containing
the value, OUT parameters are defined with the parameter name and the data type that is expected to
be returned. All parameters need the parameter direction defined.

To call a stored procedure using Connector/NET, you create a MySqlCommand object and pass the
stored procedure name as the CommandText property. You then set the CommandType property to
CommandType.StoredProcedure. After defining the parameters, you call the stored procedure by
using the MySqlCommand.ExecuteNonQuery() method.

cmd.CommandText = "add_emp";
cmd.CommandType = CommandType.StoredProcedure;
cmd.Parameters.AddWithValue("@lname", "Jones");
cmd.Parameters["@lname"].Direction = ParameterDirection.Input;
cmd.Parameters.AddWithValue("@fname", "Tom");
cmd.Parameters["@fname"].Direction = ParameterDirection.Input;
cmd.Parameters.AddWithValue("@bday", "1940-06-07");
cmd.Parameters["@bday"].Direction = ParameterDirection.Input;
cmd.Parameters.Add("@empno", MySqlDbType.Int32);
cmd.Parameters["@empno"].Direction = ParameterDirection.Output;
cmd.ExecuteNonQuery();

Connector/NET supports the calling of stored procedures through the MySqlCommand object. Data can
be passed in and out of a MySQL stored procedure through use of the MySqlCommand.Parameters
collection.

After the stored procedure is called, the values of the output parameters can be retrieved by using the
.Value property of the MySqlCommand.Parameters collection.

Console.WriteLine("Employee number: "+cmd.Parameters["@empno"].Value);
Console.WriteLine("Birthday: " + cmd.Parameters["@bday"].Value);

Note

When a stored procedure is called using MySqlCommand.ExecuteReader,
and the stored procedure has output parameters, the output parameters are set
only after the MySqlDataReader returned by ExecuteReader is closed.

Stored Procedure Code Example

The following C# code example demonstrates the use of stored procedures. This example assumes
the 'employees' database was created in advance:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Data;
using MySql.Data;
using MySql.Data.MySqlClient;
namespace UsingStoredProcedures
{
 class Program
 {
 static void Main(string[] args)
 {
 MySqlConnection conn = new MySqlConnection();
 conn.ConnectionString = "server=localhost;user=root;database=employees;port=3306;password=******";
 MySqlCommand cmd = new MySqlCommand();
 try
 {
 Console.WriteLine("Connecting to MySQL...");

219

Creating and Calling Stored Procedures

 conn.Open();
 cmd.Connection = conn;
 cmd.CommandText = "DROP PROCEDURE IF EXISTS add_emp";
 cmd.ExecuteNonQuery();
 cmd.CommandText = "DROP TABLE IF EXISTS emp";
 cmd.ExecuteNonQuery();
 cmd.CommandText = "CREATE TABLE emp (" +
 "empno INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY," +
 "first_name VARCHAR(20), last_name VARCHAR(20), birthdate DATE)";
 cmd.ExecuteNonQuery();
 cmd.CommandText = "CREATE PROCEDURE add_emp(" +
 "IN fname VARCHAR(20), IN lname VARCHAR(20), IN bday DATETIME, OUT empno INT)" +
 "BEGIN INSERT INTO emp(first_name, last_name, birthdate) " +
 "VALUES(fname, lname, DATE(bday)); SET empno = LAST_INSERT_ID(); END";
 cmd.ExecuteNonQuery();
 }
 catch (MySqlException ex)
 {
 Console.WriteLine ("Error " + ex.Number + " has occurred: " + ex.Message);
 }
 conn.Close();
 Console.WriteLine("Connection closed.");
 try
 {
 Console.WriteLine("Connecting to MySQL...");
 conn.Open();
 cmd.Connection = conn;
 cmd.CommandText = "add_emp";
 cmd.CommandType = CommandType.StoredProcedure;
 cmd.Parameters.AddWithValue("@lname", "Jones");
 cmd.Parameters["@lname"].Direction = ParameterDirection.Input;
 cmd.Parameters.AddWithValue("@fname", "Tom");
 cmd.Parameters["@fname"].Direction = ParameterDirection.Input;
 cmd.Parameters.AddWithValue("@bday", "1940-06-07");
 cmd.Parameters["@bday"].Direction = ParameterDirection.Input;
 cmd.Parameters.Add("@empno", MySqlDbType.Int32);
 cmd.Parameters["@empno"].Direction = ParameterDirection.Output;
 cmd.ExecuteNonQuery();
 Console.WriteLine("Employee number: "+cmd.Parameters["@empno"].Value);
 Console.WriteLine("Birthday: " + cmd.Parameters["@bday"].Value);
 }
 catch (MySql.Data.MySqlClient.MySqlException ex)
 {
 Console.WriteLine("Error " + ex.Number + " has occurred: " + ex.Message);
 }
 conn.Close();
 Console.WriteLine("Done.");
 }
 }
}

The following code shows the same application in Visual Basic:

Imports System
Imports System.Collections.Generic
Imports System.Linq
Imports System.Text
Imports System.Data
Imports MySql.Data
Imports MySql.Data.MySqlClient
Module Module1
 Sub Main()
 Dim conn As New MySqlConnection()
 conn.ConnectionString = "server=localhost;user=root;database=world;port=3306;password=******"
 Dim cmd As New MySqlCommand()
 Try
 Console.WriteLine("Connecting to MySQL...")
 conn.Open()
 cmd.Connection = conn
 cmd.CommandText = "DROP PROCEDURE IF EXISTS add_emp"
 cmd.ExecuteNonQuery()
 cmd.CommandText = "DROP TABLE IF EXISTS emp"

220

Handling BLOB Data With Connector/NET

 cmd.ExecuteNonQuery()
 cmd.CommandText = "CREATE TABLE emp (" &
 "empno INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
 "first_name VARCHAR(20), last_name VARCHAR(20), birthdate DATE)"
 cmd.ExecuteNonQuery()
 cmd.CommandText = "CREATE PROCEDURE add_emp(" &
 "IN fname VARCHAR(20), IN lname VARCHAR(20), IN bday DATETIME, OUT empno INT)" &
 "BEGIN INSERT INTO emp(first_name, last_name, birthdate) " &
 "VALUES(fname, lname, DATE(bday)); SET empno = LAST_INSERT_ID(); END"
 cmd.ExecuteNonQuery()
 Catch ex As MySqlException
 Console.WriteLine(("Error " & ex.Number & " has occurred: ") + ex.Message)
 End Try
 conn.Close()
 Console.WriteLine("Connection closed.")
 Try
 Console.WriteLine("Connecting to MySQL...")
 conn.Open()
 cmd.Connection = conn
 cmd.CommandText = "add_emp"
 cmd.CommandType = CommandType.StoredProcedure
 cmd.Parameters.AddWithValue("@lname", "Jones")
 cmd.Parameters("@lname").Direction = ParameterDirection.Input
 cmd.Parameters.AddWithValue("@fname", "Tom")
 cmd.Parameters("@fname").Direction = ParameterDirection.Input
 cmd.Parameters.AddWithValue("@bday", "1940-06-07")
 cmd.Parameters("@bday").Direction = ParameterDirection.Input
 cmd.Parameters.Add("@empno", MySqlDbType.Int32)
 cmd.Parameters("@empno").Direction = ParameterDirection.Output
 cmd.ExecuteNonQuery()
 Console.WriteLine("Employee number: " & cmd.Parameters("@empno").Value)
 Console.WriteLine("Birthday: " & cmd.Parameters("@bday").Value)
 Catch ex As MySql.Data.MySqlClient.MySqlException
 Console.WriteLine(("Error " & ex.Number & " has occurred: ") + ex.Message)
 End Try
 conn.Close()
 Console.WriteLine("Done.")
 End Sub
End Module

4.5.6 Handling BLOB Data With Connector/NET

One common use for MySQL is the storage of binary data in BLOB columns. MySQL supports four
different BLOB data types: TINYBLOB, BLOB, MEDIUMBLOB, and LONGBLOB, all described in The
BLOB and TEXT Types and Data Type Storage Requirements.

Data stored in a BLOB column can be accessed using MySQL Connector/NET and manipulated using
client-side code. There are no special requirements for using Connector/NET with BLOB data.

Simple code examples will be presented within this section, and a full sample application can be found
in the Samples directory of the Connector/NET installation.

4.5.6.1 Preparing the MySQL Server

The first step is using MySQL with BLOB data is to configure the server. To start, create a table that can
be accessed. File tables often have four columns: an AUTO_INCREMENT column of appropriate size
(UNSIGNED SMALLINT) to serve as a primary key to identify the file, a VARCHAR column that stores
the file name, an UNSIGNED MEDIUMINT column that stores the size of the file, and a MEDIUMBLOB
column that stores the file itself. For this example, use the following table definition:

CREATE TABLE file(
file_id SMALLINT UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY KEY,
file_name VARCHAR(64) NOT NULL,
file_size MEDIUMINT UNSIGNED NOT NULL,
file MEDIUMBLOB NOT NULL);

After creating a table, you might need to modify the max_allowed_packet system variable. This
variable determines how large of a packet (that is, a single row) can be sent to the MySQL server. By

221

https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/storage-requirements.html

Handling BLOB Data With Connector/NET

default, the server only accepts a maximum size of 1MB from the client application. If you intend to
exceed 1MB in your file transfers, increase this number.

The max_allowed_packet option can be modified using the MySQL Workbench Server
Administration screen. Adjust the Maximum permitted option in the Data / Memory size section of the
Networking tab to an appropriate setting. After adjusting the value, click the Apply button and restart
the server using the Startup / Shutdown screen of MySQL Workbench. You can also adjust this
value directly in the my.cnf file (add a line that reads max_allowed_packet=xxM), or use the SET
max_allowed_packet=xxM; syntax from within MySQL.

Try to be conservative when setting max_allowed_packet, as transfers of BLOB data can take some
time to complete. Try to set a value that will be adequate for your intended use and increase the value
if necessary.

4.5.6.2 Writing a File to the Database

To write a file to a database, we need to convert the file to a byte array, then use the byte array as a
parameter to an INSERT query.

The following code opens a file using a FileStream object, reads it into a byte array, and inserts it into
the file table:

C# Code Example

MySql.Data.MySqlClient.MySqlConnection conn;
MySql.Data.MySqlClient.MySqlCommand cmd;
conn = new MySql.Data.MySqlClient.MySqlConnection();
cmd = new MySql.Data.MySqlClient.MySqlCommand();
string SQL;
UInt32 FileSize;
byte[] rawData;
FileStream fs;
conn.ConnectionString = "server=127.0.0.1;uid=root;" +
 "pwd=12345;database=test";
try
{
 fs = new FileStream(@"c:\image.png", FileMode.Open, FileAccess.Read);
 FileSize = fs.Length;
 rawData = new byte[FileSize];
 fs.Read(rawData, 0, FileSize);
 fs.Close();
 conn.Open();
 SQL = "INSERT INTO file VALUES(NULL, @FileName, @FileSize, @File)";
 cmd.Connection = conn;
 cmd.CommandText = SQL;
 cmd.Parameters.AddWithValue("@FileName", strFileName);
 cmd.Parameters.AddWithValue("@FileSize", FileSize);
 cmd.Parameters.AddWithValue("@File", rawData);
 cmd.ExecuteNonQuery();
 MessageBox.Show("File Inserted into database successfully!",
 "Success!", MessageBoxButtons.OK, MessageBoxIcon.Asterisk);
 conn.Close();
}
catch (MySql.Data.MySqlClient.MySqlException ex)
{
 MessageBox.Show("Error " + ex.Number + " has occurred: " + ex.Message,
 "Error", MessageBoxButtons.OK, MessageBoxIcon.Error);
}

Visual Basic Code Example

Dim conn As New MySqlConnection
Dim cmd As New MySqlCommand
Dim SQL As String
Dim FileSize As UInt32
Dim rawData() As Byte
Dim fs As FileStream

222

https://dev.mysql.com/doc/refman/8.0/en/insert.html

Handling BLOB Data With Connector/NET

conn.ConnectionString = "server=127.0.0.1;" _
 & "uid=root;" _
 & "pwd=12345;" _
 & "database=test"
Try
 fs = New FileStream("c:\image.png", FileMode.Open, FileAccess.Read)
 FileSize = fs.Length
 rawData = New Byte(FileSize) {}
 fs.Read(rawData, 0, FileSize)
 fs.Close()
 conn.Open()
 SQL = "INSERT INTO file VALUES(NULL, @FileName, @FileSize, @File)"
 cmd.Connection = conn
 cmd.CommandText = SQL
 cmd.Parameters.AddWithValue("@FileName", strFileName)
 cmd.Parameters.AddWithValue("@FileSize", FileSize)
 cmd.Parameters.AddWithValue("@File", rawData)
 cmd.ExecuteNonQuery()
 MessageBox.Show("File Inserted into database successfully!", _
 "Success!", MessageBoxButtons.OK, MessageBoxIcon.Asterisk)
 conn.Close()
Catch ex As Exception
 MessageBox.Show("There was an error: " & ex.Message, "Error", _
 MessageBoxButtons.OK, MessageBoxIcon.Error)
End Try

The Read method of the FileStream object is used to load the file into a byte array which is sized
according to the Length property of the FileStream object.

After assigning the byte array as a parameter of the MySqlCommand object, the ExecuteNonQuery
method is called and the BLOB is inserted into the file table.

4.5.6.3 Reading a BLOB from the Database to a File on Disk

After a file is loaded into the file table, we can use the MySqlDataReader class to retrieve it.

The following code retrieves a row from the file table, then loads the data into a FileStream object
to be written to disk:

C# Code Example

MySql.Data.MySqlClient.MySqlConnection conn;
MySql.Data.MySqlClient.MySqlCommand cmd;
MySql.Data.MySqlClient.MySqlDataReader myData;
conn = new MySql.Data.MySqlClient.MySqlConnection();
cmd = new MySql.Data.MySqlClient.MySqlCommand();
string SQL;
UInt32 FileSize;
byte[] rawData;
FileStream fs;
conn.ConnectionString = "server=127.0.0.1;uid=root;" +
 "pwd=12345;database=test";
SQL = "SELECT file_name, file_size, file FROM file";
try
{
 conn.Open();
 cmd.Connection = conn;
 cmd.CommandText = SQL;
 myData = cmd.ExecuteReader();
 if (! myData.HasRows)
 throw new Exception("There are no BLOBs to save");
 myData.Read();
 FileSize = myData.GetUInt32(myData.GetOrdinal("file_size"));
 rawData = new byte[FileSize];
 myData.GetBytes(myData.GetOrdinal("file"), 0, rawData, 0, (int)FileSize);
 fs = new FileStream(@"C:\newfile.png", FileMode.OpenOrCreate, FileAccess.Write);
 fs.Write(rawData, 0, (int)FileSize);
 fs.Close();
 MessageBox.Show("File successfully written to disk!",

223

Working with Partial Trust / Medium Trust

 "Success!", MessageBoxButtons.OK, MessageBoxIcon.Asterisk);
 myData.Close();
 conn.Close();
}
catch (MySql.Data.MySqlClient.MySqlException ex)
{
 MessageBox.Show("Error " + ex.Number + " has occurred: " + ex.Message,
 "Error", MessageBoxButtons.OK, MessageBoxIcon.Error);
}

Visual Basic Code Example

Dim conn As New MySqlConnection
Dim cmd As New MySqlCommand
Dim myData As MySqlDataReader
Dim SQL As String
Dim rawData() As Byte
Dim FileSize As UInt32
Dim fs As FileStream
conn.ConnectionString = "server=127.0.0.1;" _
 & "uid=root;" _
 & "pwd=12345;" _
 & "database=test"
SQL = "SELECT file_name, file_size, file FROM file"
Try
 conn.Open()
 cmd.Connection = conn
 cmd.CommandText = SQL
 myData = cmd.ExecuteReader
 If Not myData.HasRows Then Throw New Exception("There are no BLOBs to save")
 myData.Read()
 FileSize = myData.GetUInt32(myData.GetOrdinal("file_size"))
 rawData = New Byte(FileSize) {}
 myData.GetBytes(myData.GetOrdinal("file"), 0, rawData, 0, FileSize)
 fs = New FileStream("C:\newfile.png", FileMode.OpenOrCreate, FileAccess.Write)
 fs.Write(rawData, 0, FileSize)
 fs.Close()
 MessageBox.Show("File successfully written to disk!", "Success!", MessageBoxButtons.OK, MessageBoxIcon.Asterisk)
 myData.Close()
 conn.Close()
Catch ex As Exception
 MessageBox.Show("There was an error: " & ex.Message, "Error", MessageBoxButtons.OK, MessageBoxIcon.Error)
End Try

After connecting, the contents of the file table are loaded into a MySqlDataReader object. The
GetBytes method of the MySqlDataReader is used to load the BLOB into a byte array, which is then
written to disk using a FileStream object.

The GetOrdinal method of the MySqlDataReader can be used to determine the integer index of a
named column. Use of the GetOrdinal method prevents errors if the column order of the SELECT query
is changed.

4.5.7 Working with Partial Trust / Medium Trust

.NET applications operate under a given trust level. Normal desktop applications operate under full
trust, while web applications that are hosted in shared environments are normally run under the partial
trust level (also known as “medium trust”). Some hosting providers host shared applications in their
own app pools and allow the application to run under full trust, but this configuration is relatively
rare. The MySQL Connector/NET support for partial trust has improved over time to simplify the
configuration and deployment process for hosting providers.

4.5.7.1 Evolution of Partial Trust Support Across Connector/NET Versions

The partial trust support for MySQL Connector/NET has improved rapidly throughout the 6.5.x
and 6.6.x versions. The latest enhancements do require some configuration changes in existing
deployments. Here is a summary of the changes for each version.

224

https://dev.mysql.com/doc/refman/8.0/en/select.html

Working with Partial Trust / Medium Trust

6.6.4 and Above: Library Can Be Inside or Outside GAC

Now you can install the MySql.Data.dll library in the Global Assembly Cache (GAC) as explained
in Section 4.5.7.2, “Configuring Partial Trust with Connector/NET Library Installed in GAC”, or in a bin
or lib folder inside the project or solution as explained in Section 4.5.7.3, “Configuring Partial Trust
with Connector/NET Library Not Installed in GAC”. If the library is not in the GAC, the only protocol
supported is TCP/IP.

6.5.1 and Above: Partial Trust Requires Library in the GAC

Connector/NET 6.5 fully enables our provider to run in a partial trust environment when the library is
installed in the Global Assembly Cache (GAC). The new MySqlClientPermission class, derived
from the .NET DBDataPermission class, helps to simplify the permission setup.

5.0.8 / 5.1.3 and Above: Partial Trust Requires Socket Permissions

Starting with these versions, Connector/NET can be used under partial trust hosting that has been
modified to allow the use of sockets for communication. By default, partial trust does not include
SocketPermission. Connector/NET uses sockets to talk with the MySQL server, so the hosting
provider must create a new trust level that is an exact clone of partial trust but that has the following
permissions added:

• System.Net.SocketPermission

• System.Security.Permissions.ReflectionPermission

• System.Net.DnsPermission

• System.Security.Permissions.SecurityPermission

Prior to 5.0.8 / 5.1.3: Partial Trust Not Supported

Connector/NET versions prior to 5.0.8 and 5.1.3 were not compatible with partial trust hosting.

4.5.7.2 Configuring Partial Trust with Connector/NET Library Installed in GAC

If the library is installed in the GAC, you must include the connection option
includesecurityasserts=true in your connection string. This is a new requirement as of MySQL
Connector/NET 6.6.4.

The following list shows steps and code fragments needed to run a Connector/NET application in
a partial trust environment. For illustration purposes, we use the Pipe Connections protocol in this
example.

1. Install Connector/NET: version 6.6.1 or later, or 6.5.4 or later.

2. After installing the library, make the following configuration changes:

In the SecurityClasses section, add a definition for the MySqlClientPermission class,
including the version to use.

<configuration>
 <mscorlib>
 <security>
 <policy>
 <PolicyLevel version="1">
 <SecurityClasses>

 <SecurityClass Name="MySqlClientPermission" Description="MySql.Data.MySqlClient.MySqlClientPermission,
 MySql.Data, Version=6.6.4.0, Culture=neutral, PublicKeyToken=c5687fc88969c44d" />

Scroll down to the ASP.Net section:

225

Working with Partial Trust / Medium Trust

<PermissionSet class="NamedPermissionSet" version="1" Name="ASP.Net">

Add a new entry for the detailed configuration of the MySqlClientPermission class:

<IPermission class="MySqlClientPermission" version="1" Unrestricted="true"/>

Note

This configuration is the most generalized way that includes all keywords.

3. Configure the MySQL server to accept pipe connections, by adding the --enable-named-pipe
option on the command line. If you need more information about this, see Installing MySQL on
Microsoft Windows.

4. Confirm that the hosting provider has installed the Connector/NET library (MySql.Data.dll) in
the GAC.

5. Optionally, the hosting provider can avoid granting permissions globally by using
the new MySqlClientPermission class in the trust policies. (The alternative
is to globally enable the permissions System.Net.SocketPermission,
System.Security.Permissions.ReflectionPermission, System.Net.DnsPermission,
and System.Security.Permissions.SecurityPermission.)

6. Create a simple web application using Visual Studio 2010.

7. Add the reference in your application for the MySql.Data.MySqlClient library.

8. Edit your web.config file so that your application runs using a Medium trust level:

<system.web>
 <trust level="Medium"/>
</system.web>

9. Add the MySql.Data.MySqlClient namespace to your server-code page.

10. Define the connection string, in slightly different ways depending on the Connector/NET version.

Only for 6.6.4 or later: To use the connections inside any web application that will run in
Medium trust, add the new includesecurityasserts option to the connection string.
includesecurityasserts=true that makes the library request the following permissions
when required: SocketPermissions, ReflectionPermissions, DnsPermissions,
SecurityPermissions among others that are not granted in Medium trust levels.

For Connector/NET 6.6.3 or earlier: No special setting for security is needed within the
connection string.

MySqlConnectionStringBuilder myconnString = new MySqlConnectionStringBuilder("server=localhost;User Id=root;database=test");
myconnString.PipeName = "MySQL55";
myconnString.ConnectionProtocol = MySqlConnectionProtocol.Pipe;
// Following attribute is a new requirement when the library is in the GAC.
// Could also be done by adding includesecurityasserts=true; to the string literal
// in the constructor above.
// Not needed with Connector/NET 6.6.3 and earlier.
myconnString.IncludeSecurityAsserts = true;

11. Define the MySqlConnection to use:

MySqlConnection myconn = new MySqlConnection(myconnString.ConnectionString);
myconn.Open();

12. Retrieve some data from your tables:

MySqlCommand cmd = new MySqlCommand("Select * from products", myconn);
MySqlDataAdapter da = new MySqlDataAdapter(cmd);
DataSet1 tds = new DataSet1();

226

https://dev.mysql.com/doc/refman/8.0/en/windows-installation.html
https://dev.mysql.com/doc/refman/8.0/en/windows-installation.html

Writing a Custom Authentication Plugin

da.Fill(tds, tds.Tables[0].TableName);
GridView1.DataSource = tds;
GridView1.DataBind();
myconn.Close()

13. Run the program. It should execute successfully, without requiring any special code or
encountering any security problems.

4.5.7.3 Configuring Partial Trust with Connector/NET Library Not Installed in GAC

When deploying a web application to a Shared Hosted environment, where this environment is
configured to run all their .NET applications under a partial or medium trust level, you might not be able
to install the MySQL Connector/NET library in the GAC. Instead, you put a reference to the library in
the bin or lib folder inside the project or solution. In this case, you configure the security in a different
way than when the library is in the GAC.

Connector/NET is commonly used by applications that run in Windows environments where the
default communication for the protocol is used via sockets or by TCP/IP. For this protocol to operate is
necessary have the required socket permissions in the web configuration file as follows:

1. Open the medium trust policy web configuration file, which should be under this folder:

%windir%\Microsoft.NET\Framework\{version}\CONFIG\web_mediumtrust.config

Use Framework64 in the path instead of Framework if you are using a 64-bit installation of the
framework.

2. Locate the SecurityClasses tag:

<SecurityClass Name="SocketPermission"
Description="System.Net.SocketPermission, System, Version=4.0.0.0,
Culture=neutral, PublicKeyToken=b77a5c561934e089"/>

3. Scroll down and look for the following PermissionSet:

<PermissionSet version="1" Name="ASP.Net">

4. Add the following inside this PermissionSet:

<IPermission class="SocketPermission" version="1" Unrestricted="true" />

This configuration lets you use the driver with the default Windows protocol TCP/IP without having
any security issues. This approach only supports the TCP/IP protocol, so you cannot use any other
type of connection.

Also, since the MySQLClientPermissions class is not added to the medium trust policy, you
cannot use it. This configuration is the minimum required in order to work with Connector/NET
without the GAC.

4.5.8 Writing a Custom Authentication Plugin

Advanced users with special security requirements can create their own authentication plugins for
MySQL Connector/NET applications. You can extend the handshake protocol, adding custom logic. For
background and usage information about MySQL authentication plugins, see Authentication Plugins
and Writing Authentication Plugins.

To write a custom authentication plugin, you will need a reference to the assembly MySql.Data.dll.
The classes relevant for writing authentication plugins are available at the namespace
MySql.Data.MySqlClient.Authentication.

How the Custom Authentication Plugin Works

At some point during handshake, the internal method

227

https://dev.mysql.com/doc/refman/8.0/en/authentication-plugins.html
https://dev.mysql.com/doc/extending-mysql/8.0/en/writing-authentication-plugins.html

Writing a Custom Authentication Plugin

void Authenticate(bool reset)

of MySqlAuthenticationPlugin is called. This method in turns calls several overridable methods
of the current plugin.

Creating the Authentication Plugin Class

You put the authentication plugin logic inside a new class derived from
MySql.Data.MySqlClient.Authentication.MySqlAuthenticationPlugin. The following
methods are available to be overridden:

protected virtual void CheckConstraints()
protected virtual void AuthenticationFailed(Exception ex)
protected virtual void AuthenticationSuccessful()
protected virtual byte[] MoreData(byte[] data)
protected virtual void AuthenticationChange()
public abstract string PluginName { get; }
public virtual string GetUsername()
public virtual object GetPassword()
protected byte[] AuthData;

The following is a brief explanation of each one:

/// <summary>
/// This method must check authentication method specific constraints in the
environment and throw an Exception
/// if the conditions are not met. The default implementation does nothing.
/// </summary>
protected virtual void CheckConstraints()
/// <summary>
/// This method, called when the authentication failed, provides a chance to
plugins to manage the error
/// the way they consider decide (either showing a message, logging it, etc.).
/// The default implementation wraps the original exception in a MySqlException
with an standard message and rethrows it.
/// </summary>
/// <param name="ex">The exception with extra information on the error.</param>
protected virtual void AuthenticationFailed(Exception ex)
/// <summary>
/// This method is invoked when the authentication phase was successful accepted
by the server.
/// Derived classes must override this if they want to be notified of such
condition.
/// </summary>
/// <remarks>The default implementation does nothing.</remarks>
protected virtual void AuthenticationSuccessful()
/// <summary>
/// This method provides a chance for the plugin to send more data when the
server requests so during the
/// authentication phase. This method will be called at least once, and more
than one depending upon whether the
/// server response packets have the 0x01 prefix.
/// </summary>
/// <param name="data">The response data from the server, during the
authentication phase the first time is called is null, in
subsequent calls contains the server response.</param>
/// <returns>The data generated by the plugin for server consumption.</returns>
/// <remarks>The default implementation always returns null.</remarks>
protected virtual byte[] MoreData(byte[] data)
/// <summary>
/// The plugin name.
/// </summary>
public abstract string PluginName { get; }
/// <summary>
/// Gets the user name to send to the server in the authentication phase.
/// </summary>
/// <returns>An string with the user name</returns>
/// <remarks>Default implementation returns the UserId passed from the
connection string.</remarks>
public virtual string GetUsername()
/// <summary>

228

Writing a Custom Authentication Plugin

/// Gets the password to send to the server in the authentication phase. This
can be a string or a
/// </summary>
/// <returns>An object, can be byte[], string or null, with the password.
</returns>
/// <remarks>Default implementation returns null.</remarks>
public virtual object GetPassword()
/// <summary>
/// The authentication data passed when creating the plugin.
/// For example in mysql_native_password this is the seed to encrypt the
password.
/// </summary>
protected byte[] AuthData;

Authentication Plugin Example

This example shows how to create the authentication plugin and then enable it by means of a
configuration file.

1. Create a console app, adding a reference to MySql.Data.dll.

2. Design the main C# program as follows:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using MySql.Data.MySqlClient;
namespace AuthPluginTest
{
 class Program
 {
 static void Main(string[] args)
 {
 // Customize the connection string as necessary.
 MySqlConnection con = new MySqlConnection("server=localhost;
 database=test; user id=myuser; password=mypass");
 con.Open();
 con.Close();
 }
 }
}

3. Create your plugin class. In this example, we add an “alternative” implementation of the Native
password plugin by just using the same code from the original plugin. We name our class
MySqlNativePasswordPlugin2:

using System.IO;
using System;
using System.Text;
using System.Security.Cryptography;
using MySql.Data.MySqlClient.Authentication;
using System.Diagnostics;
namespace AuthPluginTest
{
 public class MySqlNativePasswordPlugin2 : MySqlAuthenticationPlugin
 {
 public override string PluginName
 {
 get { return "mysql_native_password"; }
 }
 public override object GetPassword()
 {
 Debug.WriteLine("Calling MySqlNativePasswordPlugin2.GetPassword");
 return Get411Password(Settings.Password, AuthData);
 }
 /// <summary>
 /// Returns a byte array containing the proper encryption of the
 /// given password/seed according to the new 4.1.1 authentication scheme.
 /// </summary>

229

Using the Connector/NET Interceptor Classes

 /// <param name="password"></param>
 /// <param name="seed"></param>
 /// <returns></returns>
 private byte[] Get411Password(string password, byte[] seedBytes)
 {
 // if we have no password, then we just return 1 zero byte
 if (password.Length == 0) return new byte[1];
 SHA1 sha = new SHA1CryptoServiceProvider();
 byte[] firstHash = sha.ComputeHash(Encoding.Default.GetBytes(password));
 byte[] secondHash = sha.ComputeHash(firstHash);
 byte[] input = new byte[seedBytes.Length + secondHash.Length];
 Array.Copy(seedBytes, 0, input, 0, seedBytes.Length);
 Array.Copy(secondHash, 0, input, seedBytes.Length, secondHash.Length);
 byte[] thirdHash = sha.ComputeHash(input);
 byte[] finalHash = new byte[thirdHash.Length + 1];
 finalHash[0] = 0x14;
 Array.Copy(thirdHash, 0, finalHash, 1, thirdHash.Length);
 for (int i = 1; i < finalHash.Length; i++)
 finalHash[i] = (byte)(finalHash[i] ^ firstHash[i - 1]);
 return finalHash;
 }
 }
}

Notice that the plugin implementation just overrides GetPassword, and provides an
implementation to encrypt the password using the 4.1 protocol. Add the following line in the
GetPassword body to provide confirmation that the plugin was effectively used.

Debug.WriteLine("Calling MySqlNativePasswordPlugin2.GetPassword");

Tip

You could also put a breakpoint on that method.

4. Enable the new plugin in the configuration file:

<?xml version="1.0"?>
<configuration>
 <configSections>
 <section name="MySQL" type="MySql.Data.MySqlClient.MySqlConfiguration,
MySql.Data"/>
 </configSections>
 <MySQL>
 <AuthenticationPlugins>
 <add name="mysql_native_password"
type="AuthPluginTest.MySqlNativePasswordPlugin2, AuthPluginTest"></add>
 </AuthenticationPlugins>
 </MySQL>
<startup><supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.0"/>
</startup></configuration>

5. Run the application. In Visual Studio, you will see the message Calling
MySqlNativePasswordPlugin2.GetPassword in the debug window.

Continue enhancing the authentication logic, overriding more methods if you required.

4.5.9 Using the Connector/NET Interceptor Classes

An interceptor is a software design pattern that provides a transparent way to extend or modify some
aspect of a program, similar to a user exit. No recompiling is required. With MySQL Connector/NET,
the interceptors are enabled and disabled by updating the connection string to refer to different sets of
interceptor classes that you instantiate.

Note

The classes and methods presented in this section do not apply to Connector/
NET applications developed with the .NET Core 1.1 framework.

230

Using the Connector/NET Interceptor Classes

Connector/NET includes the following interceptor classes:

• The BaseCommandInterceptor lets you perform additional operations when a program issues
a SQL command. For example, you can examine the SQL statement for logging or debugging
purposes, substitute your own result set to implement a caching mechanism, and so on. Depending
on the use case, your code can supplement the SQL command or replace it entirely.

The BaseCommandInterceptor class has these methods that you can override:

public virtual bool ExecuteScalar(string sql, ref object returnValue);
public virtual bool ExecuteNonQuery(string sql, ref int returnValue);
public virtual bool ExecuteReader(string sql, CommandBehavior behavior, ref MySqlDataReader returnValue);
public virtual void Init(MySqlConnection connection);

If your interceptor overrides one of the Execute... methods, set the returnValue output
parameter and return true if you handled the event, or false if you did not handle the event. The
SQL command is processed normally only when all command interceptors return false.

The connection passed to the Init method is the connection that is attached to this interceptor.

• The BaseExceptionInterceptor lets you perform additional operations when a program
encounters an SQL exception. The exception interception mechanism is modeled after the
Connector/J model. You can code an interceptor class and connect it to an existing program without
recompiling, and intercept exceptions when they are created. You can then change the exception
type and optionally attach information to it. This capability lets you turn on and off logging and
debugging code without hardcoding anything in the application. This technique applies to exceptions
raised at the SQL level, not to lower-level system or I/O errors.

You develop an exception interceptor first by creating a subclass of the
BaseExceptionInterceptor class. You must override the InterceptException() method.
You can also override the Init() method to do some one-time initialization.

Each exception interceptor has 2 methods:

public abstract Exception InterceptException(Exception exception,
 MySqlConnection connection);
public virtual void Init(MySqlConnection connection);

The connection passed to Init() is the connection that is attached to this interceptor.

Each interceptor is required to override InterceptException and return an exception. It can
return the exception it is given, or it can wrap it in a new exception. We currently do not offer the
ability to suppress the exception.

Here are examples of using the FQN (fully qualified name) on the connection string:

MySqlConnection c1 = new MySqlConnection(@"server=localhost;pooling=false;
commandinterceptors=CommandApp.MyCommandInterceptor,CommandApp");
MySqlConnection c2 = new MySqlConnection(@"server=localhost;pooling=false;
exceptioninterceptors=ExceptionStackTraceTest.MyExceptionInterceptor,ExceptionStackTraceTest");

In this example, the command interceptor is called CommandApp.MyCommandInterceptor
and exists in the CommandApp assembly. The exception interceptor is called
ExceptionStackTraceTest.MyExceptionInterceptor and exists in the
ExceptionStackTraceTest assembly.

To shorten the connection string, you can register your exception interceptors in your app.config or
web.config file like this:

<configSections>
<section name="MySQL" type="MySql.Data.MySqlClient.MySqlConfiguration,MySql.Data"/>
</configSections>
<MySQL>
<CommandInterceptors>

231

Handling Date and Time Information in Connector/NET

 <add name="myC" type="CommandApp.MyCommandInterceptor,CommandApp" />
</CommandInterceptors>
</MySQL>
<configSections>
<section name="MySQL" type="MySql.Data.MySqlClient.MySqlConfiguration,
MySql.Data"/>
</configSections>
<MySQL>
<ExceptionInterceptors>
 <add name="myE"
 type="ExceptionStackTraceTest.MyExceptionInterceptor,ExceptionStackTraceTest" />
</ExceptionInterceptors>
</MySQL>

After you have done that, your connection strings can look like these:

MySqlConnection c1 = new MySqlConnection(@"server=localhost;pooling=false;
commandinterceptors=myC");
MySqlConnection c2 = new MySqlConnection(@"server=localhost;pooling=false;
exceptioninterceptors=myE");

4.5.10 Handling Date and Time Information in Connector/NET

MySQL and the .NET languages handle date and time information differently, with MySQL allowing
dates that cannot be represented by a .NET data type, such as '0000-00-00 00:00:00'. These
differences can cause problems if not properly handled.

The following sections demonstrate how to properly handle date and time information when using
MySQL Connector/NET.

4.5.10.1 Fractional Seconds

MySQL Connector/NET supports the fractional seconds feature in MySQL, where the fractional
seconds part of temporal values is preserved in data stored and retrieved through SQL. For fractional
second handling in MySQL 5.6.4 and higher, see Fractional Seconds in Time Values.

To use the more precise date and time types, specify a value from 1 to 6 when creating the table
column, for example TIME(3) or DATETIME(6), representing the number of digits of precision after
the decimal point. Specifying a precision of 0 leaves the fractional part out entirely. In your C# or
Visual Basic code, refer to the Millisecond member to retrieve the fractional second value from the
MySqlDateTime object returned by the GetMySqlDateTime function. The DateTime object returned
by the GetDateTime function also contains the fractional value, but only the first 3 digits.

For related code examples, see the following blog post: https://blogs.oracle.com/MySqlOnWindows/
entry/milliseconds_value_support_on_datetime

4.5.10.2 Problems when Using Invalid Dates

The differences in date handling can cause problems for developers who use invalid dates. Invalid
MySQL dates cannot be loaded into native .NET DateTime objects, including NULL dates.

Because of this issue, .NET DataSet objects cannot be populated by the Fill method of the
MySqlDataAdapter class as invalid dates will cause a System.ArgumentOutOfRangeException
exception to occur.

4.5.10.3 Restricting Invalid Dates

The best solution to the date problem is to restrict users from entering invalid dates. This can be done
on either the client or the server side.

Restricting invalid dates on the client side is as simple as always using the .NET DateTime class
to handle dates. The DateTime class will only allow valid dates, ensuring that the values in your
database are also valid. The disadvantage of this is that it is not useful in a mixed environment

232

https://dev.mysql.com/doc/refman/8.0/en/fractional-seconds.html
https://blogs.oracle.com/MySqlOnWindows/entry/milliseconds_value_support_on_datetime
https://blogs.oracle.com/MySqlOnWindows/entry/milliseconds_value_support_on_datetime

Using the MySqlBulkLoader Class

where .NET and non .NET code are used to manipulate the database, as each application must
perform its own date validation.

Users of MySQL 5.0.2 and higher can use the new traditional SQL mode to restrict invalid date
values. For information on using the traditional SQL mode, see Server SQL Modes.

4.5.10.4 Handling Invalid Dates

Although it is strongly recommended that you avoid the use of invalid dates within your .NET
application, it is possible to use invalid dates by means of the MySqlDateTime data type.

The MySqlDateTime data type supports the same date values that are supported by the MySQL
server. The default behavior of Connector/NET is to return a .NET DateTime object for valid date
values, and return an error for invalid dates. This default can be modified to cause Connector/NET to
return MySqlDateTime objects for invalid dates.

To instruct Connector/NET to return a MySqlDateTime object for invalid dates, add the following line
to your connection string:

Allow Zero Datetime=True

The MySqlDateTime class can still be problematic. The following are some known issues:

• Data binding for invalid dates can still cause errors (zero dates like 0000-00-00 do not seem to have
this problem).

• The ToString method return a date formatted in the standard MySQL format (for example,
2005-02-23 08:50:25). This differs from the ToString behavior of the .NET DateTime class.

• The MySqlDateTime class supports NULL dates, while the .NET DateTime class does not. This can
cause errors when trying to convert a MySQLDateTime to a DateTime if you do not check for NULL
first.

Because of the known issues, the best recommendation is still to use only valid dates in your
application.

4.5.10.5 Handling NULL Dates

The .NET DateTime data type cannot handle NULL values. As such, when assigning values from a
query to a DateTime variable, you must first check whether the value is in fact NULL.

When using a MySqlDataReader, use the .IsDBNull method to check whether a value is NULL
before making the assignment:

C# Code Example

if (! myReader.IsDBNull(myReader.GetOrdinal("mytime")))
 myTime = myReader.GetDateTime(myReader.GetOrdinal("mytime"));
else
 myTime = DateTime.MinValue;

Visual Basic Code Example

If Not myReader.IsDBNull(myReader.GetOrdinal("mytime")) Then
 myTime = myReader.GetDateTime(myReader.GetOrdinal("mytime"))
Else
 myTime = DateTime.MinValue
End If

NULL values will work in a data set and can be bound to form controls without special handling.

4.5.11 Using the MySqlBulkLoader Class

233

https://dev.mysql.com/doc/refman/8.0/en/sql-mode.html

Using the MySqlBulkLoader Class

MySQL Connector/NET features a bulk loader class that wraps the MySQL statement LOAD DATA
INFILE. This gives Connector/NET the ability to load a data file from a local or remote host to the
server, or a stream to a database (from Connector/NET 8.0.32).

The class concerned is MySqlBulkLoader. This class has various methods, the main overloaded
method being load, which permits a stream object to be loaded directly to a database (8.0.32) or the
specified file to the server. Various parameters can be set to control how the data file is processed.
This is achieved through setting various properties of the class. For example, the field separator used,
such as comma or tab, can be specified, along with the record terminator, such as newline.

The following code shows a simple example of using the MySqlBulkLoader class. First an empty
table needs to be created, in this case in the test database.

CREATE TABLE Career (
 Name VARCHAR(100) NOT NULL,
 Age INTEGER,
 Profession VARCHAR(200)
);

A simple tab-delimited data file is also created (it could use any other field delimiter such as comma).

Table Career in Test Database
Name Age Profession
Tony 47 Technical Writer
Ana 43 Nurse
Fred 21 IT Specialist
Simon 45 Hairy Biker

The first three lines need to be ignored with this test file, as they do not contain table data. This task is
accomplished in the following C# code example by setting the NumberOfLinesToSkip property . The
file can then be loaded and used to populate the Career table in the test database.

Note

As of Connector/NET 8.0.15, the Local property must be set to True explicitly
to enable the local-infile capability. Previous versions set this value to True by
default.

using System;
using System.Text;
using MySql.Data;
using MySql.Data.MySqlClient;
namespace ConsoleApplication1
{
 class Program
 {
 static void Main(string[] args)
 {
 string connStr = "server=localhost;user=root;database=test;port=3306;password=******";
 MySqlConnection conn = new MySqlConnection(connStr);
 MySqlBulkLoader bl = new MySqlBulkLoader(conn);
 bl.Local = true;
 bl.TableName = "Career";
 bl.FieldTerminator = "\t";
 bl.LineTerminator = "\n";
 bl.FileName = "c:/career_data.txt";
 bl.NumberOfLinesToSkip = 3;
 try
 {
 Console.WriteLine("Connecting to MySQL...");
 conn.Open();
 // Upload data from file
 int count = bl.Load();
 Console.WriteLine(count + " lines uploaded.");
 string sql = "SELECT Name, Age, Profession FROM Career";
 MySqlCommand cmd = new MySqlCommand(sql, conn);
 MySqlDataReader rdr = cmd.ExecuteReader();

234

https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html

Connector/NET Tracing

 while (rdr.Read())
 {
 Console.WriteLine(rdr[0] + " -- " + rdr[1] + " -- " + rdr[2]);
 }
 rdr.Close();
 conn.Close();
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.ToString());
 }
 Console.WriteLine("Done.");
 }
 }
}

Further information on LOAD DATA INFILE can be found in LOAD DATA Statement. Further
information on MySqlBulkLoader can be found in the reference documentation that was included
with your connector.

4.5.12 Connector/NET Tracing

4.5.12.1 Enabling OpenTelemetry Tracing

OpenTelementry (OTel) standardizes instrumentation, generation, collecting and exporting telemetry
data to be consumed by an Observability backend. For more details on OpenTelemetry, visit its official
site.

Starting in Connector/NET 8.1.0, support for OTel is encapsulated in the
MySQL.Data.OpenTelemetry NuGet package. This package implements the functionality to add
the connector to the tracer provider using OpenTelementry.Api. Connector/NET neither creates nor
provides the means to create an OTel exporter. Instead, it relies on the default exporter supplied by
your application.

Note

OTel context forwarding works only with MySQL Enterprise Edition, a
commercial product. To learn more about commercial products, see https://
www.mysql.com/products/.

Requirements for Enabling Tracing

• .NET 5 and later.

• Connector/NET 8.1.0 MySQL.Data.OpenTelemetry and MySQL.Data NuGet packages.

Note

The Connector/NET MSI file does not include support this OTel
implementation.

• An OpenTelemetry SDK of your choosing and an appropriate exporter package.

• MySQL Enterprise Edition server with the query attributes enabled. If the server does not support
query attributes or has them disabled, then Connector/NET skips the entire context propagation flow.

• Code that uses OTel instrumentation. If your code does not use instrumentation, then the connector
does not forward the current OTel context for each executed statement.

Enabling OpenTelemetry

To enable OTel tracing using the Connector/NET implementation, add the connector to the trace
provider builder as follows:

235

https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://opentelemetry.io/
https://opentelemetry.io/
https://www.mysql.com/products/
https://www.mysql.com/products/

Connector/NET Tracing

var tracerProvider = sdk.TraceProviderBuilder().AddConnectorNet().Build();

When you build code that links to Connector/NET and uses OTel instrumentation, the additional spans
generated by the connector appear in the traces generated by your code. Spans generated by the
connector are sent to the same destination (trace exporter) where other spans generated by the user
code are sent as configured by user code. It is not possible to send spans generated by the connector
to any other destination.

4.5.12.2 Using the Connector/NET Trace Source Object

The .NET tracing architecture consists of four main parts:

• Source - This is the originator of the trace information. The source is used to send trace messages.
The name of the source provided by Connector/NET is mysql.

• Switch - This defines the level of trace information to emit. Typically, this is specified in the
app.config file, so that it is not necessary to recompile an application to change the trace level.

• Listener - Trace listeners define where the trace information will be written to. Supported listeners
include, for example, the Visual Studio Output window, the Windows Event Log, and the console.

• Filter - Filters can be attached to listeners. Filters determine the level of trace information that will be
written. While a switch defines the level of information that will be written to all listeners, a filter can
be applied on a per-listener basis, giving finer grained control of trace information.

To use tracing MySql.Data.MySqlClient.MySqlTrace can be used as a TraceSource for Connector/
NET and the connection string must include "Logging=True".

To enable trace messages, configure a trace switch. Trace switches have associated with them a trace
level enumeration, these are Off, Error, Warning, Info, and Verbose.

MySqlTrace.Switch.Level = SourceLevels.Verbose;

This sets the trace level to Verbose, meaning that all trace messages will be written.

It is convenient to be able to change the trace level without having to recompile the code. This is
achieved by specifying the trace level in application configuration file, app.config. You then simply
need to specify the desired trace level in the configuration file and restart the application. The trace
source is configured within the system.diagnostics section of the file. The following XML snippet
illustrates this:

<configuration>
 ...
 <system.diagnostics>
 <sources>
 <source name="mysql" switchName="MySwitch"
 switchType="System.Diagnostics.SourceSwitch" />
 ...
 </sources>
 <switches>
 <add name="MySwitch" value="Verbose"/>
 ...
 </switches>
 </system.diagnostics>
 ...
</configuration>

By default, trace information is written to the Output window of Microsoft Visual Studio. There are a
wide range of listeners that can be attached to the trace source, so that trace messages can be written
out to various destinations. You can also create custom listeners to allow trace messages to be written
to other destinations as mobile devices and web services. A commonly used example of a listener is
ConsoleTraceListener, which writes trace messages to the console.

To add a listener at runtime, use code such as the following:

236

Connector/NET Tracing

ts.Listeners.Add(new ConsoleTraceListener());

Then, call methods on the trace source object to generate trace information. For example, the
TraceInformation(), TraceEvent(), or TraceData() methods can be used.

Viewing MySQL Trace Information

This section describes how to set up your application to view MySQL trace information.

The first thing you need to do is create a suitable app.config file for your application. For example:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <system.diagnostics>
 <sources>
 <source name="mysql" switchName="SourceSwitch"
 switchType="System.Diagnostics.SourceSwitch" >
 <listeners>
 <add name="console" />
 <remove name ="Default" />
 </listeners>
 </source>
 </sources>
 <switches>
 <!-- You can set the level at which tracing is to occur -->
 <add name="SourceSwitch" value="Verbose" />
 <!-- You can turn tracing off -->
 <!--add name="SourceSwitch" value="Off" -->
 </switches>
 <sharedListeners>
 <add name="console"
 type="System.Diagnostics.ConsoleTraceListener"
 initializeData="false"/>
 </sharedListeners>
 </system.diagnostics>
</configuration>

This configuration ensures that a suitable trace source is created, along with a switch. The switch level
in this case is set to Verbose to display the maximum amount of information.

Next, add logging=true to the connection string in your C# application. For example:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Diagnostics;
using MySql.Data;
using MySql.Data.MySqlClient;
using MySql.Web;
namespace ConsoleApplication1
{
 class Program
 {
 static void Main(string[] args)
 {
 string connStr = "server=localhost;user=root;database=world;port=3306;password=******;logging=true";
 MySqlConnection conn = new MySqlConnection(connStr);
 try
 {
 Console.WriteLine("Connecting to MySQL...");
 conn.Open();
 string sql = "SELECT Name, HeadOfState FROM Country WHERE Continent='Oceania'";
 MySqlCommand cmd = new MySqlCommand(sql, conn);
 MySqlDataReader rdr = cmd.ExecuteReader();
 while (rdr.Read())
 {
 Console.WriteLine(rdr[0] + " -- " + rdr[1]);
 }
 rdr.Close();

237

Connector/NET Tracing

 conn.Close();
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.ToString());
 }
 Console.WriteLine("Done.");
 }
 }
}

This simple application then generates the following output:

Connecting to MySQL...
mysql Information: 1 : 1: Connection Opened: connection string = 'server=localhost;User Id=root;database=world;port=3306
;password=******;logging=True'
mysql Information: 3 : 1: Query Opened: SHOW VARIABLES
mysql Information: 4 : 1: Resultset Opened: field(s) = 2, affected rows = -1, inserted id = -1
mysql Information: 5 : 1: Resultset Closed. Total rows=272, skipped rows=0, size (bytes)=7058
mysql Information: 6 : 1: Query Closed
mysql Information: 3 : 1: Query Opened: SHOW COLLATION
mysql Information: 4 : 1: Resultset Opened: field(s) = 6, affected rows = -1, inserted id = -1
mysql Information: 5 : 1: Resultset Closed. Total rows=127, skipped rows=0, size (bytes)=4102
mysql Information: 6 : 1: Query Closed
mysql Information: 3 : 1: Query Opened: SET character_set_results=NULL
mysql Information: 4 : 1: Resultset Opened: field(s) = 0, affected rows = 0, inserted id = 0
mysql Information: 5 : 1: Resultset Closed. Total rows=0, skipped rows=0, size (bytes)=0
mysql Information: 6 : 1: Query Closed
mysql Information: 10 : 1: Set Database: world
mysql Information: 3 : 1: Query Opened: SELECT Name, HeadOfState FROM Country WHERE Continent='Oceania'
mysql Information: 4 : 1: Resultset Opened: field(s) = 2, affected rows = -1, inserted id = -1
American Samoa -- George W. Bush
Australia -- Elisabeth II
...
Wallis and Futuna -- Jacques Chirac
Vanuatu -- John Bani
United States Minor Outlying Islands -- George W. Bush
mysql Information: 5 : 1: Resultset Closed. Total rows=28, skipped rows=0, size (bytes)=788
mysql Information: 6 : 1: Query Closed
Done.
mysql Information: 2 : 1: Connection Closed

The first number displayed in the trace message corresponds to the MySQL event type. The second
number displayed in the trace message is the connection count. The following table describes each
MySQL event type.

Event Type Description

1 ConnectionOpened: connection string

2 ConnectionClosed:

3 QueryOpened: mysql server thread id, query text

4 ResultOpened: field count, affected rows (-1 if select), inserted id (-1 if
select)

5 ResultClosed: total rows read, rows skipped, size of result set in bytes

6 QueryClosed:

7 StatementPrepared: prepared sql, statement id

8 StatementExecuted: statement id, mysql server thread id

9 StatementClosed: statement id

10 NonQuery: [varies]

11 UsageAdvisorWarning: usage advisor flag. NoIndex = 1, BadIndex = 2,
SkippedRows = 3, SkippedColumns = 4, FieldConversion = 5.

12 Warning: level, code, message

238

Connector/NET Tracing

Event Type Description

13 Error: error number, error message

Although this example uses the ConsoleTraceListener, any of the other standard listeners can
be used. Another possibility is to create a custom listener that uses the information passed in with
the TraceEvent method. For example, a custom trace listener can be created to perform active
monitoring of the MySQL event messages, rather than simply writing these to an output device.

It is also possible to add listeners to the MySQL Trace Source at runtime. This can be done with the
following code:

MySqlTrace.Listeners.Add(new ConsoleTraceListener());

Connector/NET provides the ability to switch tracing on and off at runtime. This can be achieved
using the calls MySqlTrace.EnableQueryAnalyzer(string host, int postInterval)
and MySqlTrace.DisableQueryAnalyzer(). The parameter host is the URL of the MySQL
Enterprise Monitor server to monitor. The parameter postInterval is how often to post the data to
MySQL Enterprise Monitor, in seconds.

Building Custom Listeners

To build custom listeners that work with the MySQL Connector/NET Trace Source, it is necessary to
understand the key methods used, and the event data formats used.

The main method involved in passing trace messages is the TraceSource.TraceEvent method.
This has the prototype:

public void TraceEvent(
 TraceEventType eventType,
 int id,
 string format,
 params Object[] args
)

This trace source method will process the list of attached listeners and call the listener's
TraceListener.TraceEvent method. The prototype for the TraceListener.TraceEvent
method is as follows:

public virtual void TraceEvent(
 TraceEventCache eventCache,
 string source,
 TraceEventType eventType,
 int id,
 string format,
 params Object[] args
)

The first three parameters are used in the standard as defined by Microsoft. The last three parameters
contain MySQL-specific trace information. Each of these parameters is now discussed in more detail.

int id

This is a MySQL-specific identifier. It identifies the MySQL event type that has occurred, resulting in a
trace message being generated. This value is defined by the MySqlTraceEventType public enum
contained in the Connector/NET code:

public enum MySqlTraceEventType : int
{
 ConnectionOpened = 1,
 ConnectionClosed,
 QueryOpened,
 ResultOpened,
 ResultClosed,
 QueryClosed,
 StatementPrepared,

239

http://msdn.microsoft.com/en-us/library/d193webf.aspx

Using Connector/NET with Crystal Reports

 StatementExecuted,
 StatementClosed,
 NonQuery,
 UsageAdvisorWarning,
 Warning,
 Error
}

The MySQL event type also determines the contents passed using the parameter params Object[]
args. The nature of the args parameters are described in further detail in the following material.

string format

This is the format string that contains zero or more format items, which correspond to objects in the
args array. This would be used by a listener such as ConsoleTraceListener to write a message to
the output device.

params Object[] args

This is a list of objects that depends on the MySQL event type, id. However, the first parameter
passed using this list is always the driver id. The driver id is a unique number that is incremented each
time the connector is opened. This enables groups of queries on the same connection to be identified.
The parameters that follow driver id depend on the MySQL event id, and are as follows:

MySQL-specific event type Arguments (params Object[] args)

ConnectionOpened Connection string

ConnectionClosed No additional parameters

QueryOpened mysql server thread id, query text

ResultOpened field count, affected rows (-1 if select), inserted id (-1 if select)

ResultClosed total rows read, rows skipped, size of result set in bytes

QueryClosed No additional parameters

StatementPrepared prepared sql, statement id

StatementExecuted statement id, mysql server thread id

StatementClosed statement id

NonQuery Varies

UsageAdvisorWarning usage advisor flag. NoIndex = 1, BadIndex = 2, SkippedRows = 3,
SkippedColumns = 4, FieldConversion = 5.

Warning level, code, message

Error error number, error message

This information allows you to create custom trace listeners that can actively monitor the MySQL-
specific events.

4.5.13 Using Connector/NET with Crystal Reports

Crystal Reports is a common tool used by Windows application developers to perform reporting and
document generation. In this section we will show how to use Crystal Reports XI with MySQL and
MySQL Connector/NET.

4.5.13.1 Creating a Data Source

When creating a report in Crystal Reports there are two options for accessing the MySQL data while
designing your report.

The first option is to use Connector/ODBC as an ADO data source when designing your report. You will
be able to browse your database and choose tables and fields using drag and drop to build your report.

240

Using Connector/NET with Crystal Reports

The disadvantage of this approach is that additional work must be performed within your application to
produce a data set that matches the one expected by your report.

The second option is to create a data set in VB.NET and save it as XML. This XML file can then be
used to design a report. This works quite well when displaying the report in your application, but is less
versatile at design time because you must choose all relevant columns when creating the data set. If
you forget a column you must re-create the data set before the column can be added to the report.

The following code can be used to create a data set from a query and write it to disk:

C# Code Example

DataSet myData = new DataSet();
MySql.Data.MySqlClient.MySqlConnection conn;
MySql.Data.MySqlClient.MySqlCommand cmd;
MySql.Data.MySqlClient.MySqlDataAdapter myAdapter;
conn = new MySql.Data.MySqlClient.MySqlConnection();
cmd = new MySql.Data.MySqlClient.MySqlCommand();
myAdapter = new MySql.Data.MySqlClient.MySqlDataAdapter();
conn.ConnectionString = "server=127.0.0.1;uid=root;" +
 "pwd=12345;database=test";
try
{
 cmd.CommandText = "SELECT city.name AS cityName, city.population AS CityPopulation, " +
 "country.name, country.population, country.continent " +
 "FROM country, city ORDER BY country.continent, country.name";
 cmd.Connection = conn;
 myAdapter.SelectCommand = cmd;
 myAdapter.Fill(myData);
 myData.WriteXml(@"C:\dataset.xml", XmlWriteMode.WriteSchema);
}
catch (MySql.Data.MySqlClient.MySqlException ex)
{
 MessageBox.Show(ex.Message, "Report could not be created",
 MessageBoxButtons.OK, MessageBoxIcon.Error);
}

Visual Basic Code Example

Dim myData As New DataSet
Dim conn As New MySqlConnection
Dim cmd As New MySqlCommand
Dim myAdapter As New MySqlDataAdapter
conn.ConnectionString = "server=127.0.0.1;" _
 & "uid=root;" _
 & "pwd=12345;" _
 & "database=world"
Try
 conn.Open()
 cmd.CommandText = "SELECT city.name AS cityName, city.population AS CityPopulation, " _
 & "country.name, country.population, country.continent " _
 & "FROM country, city ORDER BY country.continent, country.name"
 cmd.Connection = conn
 myAdapter.SelectCommand = cmd
 myAdapter.Fill(myData)
 myData.WriteXml("C:\dataset.xml", XmlWriteMode.WriteSchema)
Catch ex As Exception
 MessageBox.Show(ex.Message, "Report could not be created", MessageBoxButtons.OK, MessageBoxIcon.Error)
End Try

The resulting XML file can be used as an ADO.NET XML datasource when designing your report.

If you choose to design your reports using Connector/ODBC, it can be downloaded from
dev.mysql.com.

4.5.13.2 Creating the Report

For most purposes, the Standard Report wizard helps with the initial creation of a report. To start the
wizard, open Crystal Reports and choose the New > Standard Report option from the File menu.

241

https://dev.mysql.com/downloads/connector/odbc/3.51.html

Using Connector/NET with Crystal Reports

The wizard first prompts you for a data source. If you use Connector/ODBC as your data source,
use the OLEDB provider for ODBC option from the OLE DB (ADO) tree instead of the ODBC (RDO)
tree when choosing a data source. If using a saved data set, choose the ADO.NET (XML) option and
browse to your saved data set.

The remainder of the report creation process is done automatically by the wizard.

After the report is created, choose the Report Options entry from the File menu. Un-check the Save
Data With Report option. This prevents saved data from interfering with the loading of data within our
application.

4.5.13.3 Displaying the Report

To display a report we first populate a data set with the data needed for the report, then load the report
and bind it to the data set. Finally we pass the report to the crViewer control for display to the user.

The following references are needed in a project that displays a report:

• CrystalDecisions.CrystalReports.Engine

• CrystalDecisions.ReportSource

• CrystalDecisions.Shared

• CrystalDecisions.Windows.Forms

The following code assumes that you created your report using a data set saved using the code
shown in Section 4.5.13.1, “Creating a Data Source”, and have a crViewer control on your form named
myViewer.

C# Code Example

using CrystalDecisions.CrystalReports.Engine;
using System.Data;
using MySql.Data.MySqlClient;
ReportDocument myReport = new ReportDocument();
DataSet myData = new DataSet();
MySql.Data.MySqlClient.MySqlConnection conn;
MySql.Data.MySqlClient.MySqlCommand cmd;
MySql.Data.MySqlClient.MySqlDataAdapter myAdapter;
conn = new MySql.Data.MySqlClient.MySqlConnection();
cmd = new MySql.Data.MySqlClient.MySqlCommand();
myAdapter = new MySql.Data.MySqlClient.MySqlDataAdapter();
conn.ConnectionString = "server=127.0.0.1;uid=root;" +
 "pwd=12345;database=test";
try
{
 cmd.CommandText = "SELECT city.name AS cityName, city.population AS CityPopulation, " +
 "country.name, country.population, country.continent " +
 "FROM country, city ORDER BY country.continent, country.name";
 cmd.Connection = conn;
 myAdapter.SelectCommand = cmd;
 myAdapter.Fill(myData);
 myReport.Load(@".\world_report.rpt");
 myReport.SetDataSource(myData);
 myViewer.ReportSource = myReport;
}
catch (MySql.Data.MySqlClient.MySqlException ex)
{
 MessageBox.Show(ex.Message, "Report could not be created",
 MessageBoxButtons.OK, MessageBoxIcon.Error);
}

Visual Basic Code Example

Imports CrystalDecisions.CrystalReports.Engine

242

Using Connector/NET with Crystal Reports

Imports System.Data
Imports MySql.Data.MySqlClient
Dim myReport As New ReportDocument
Dim myData As New DataSet
Dim conn As New MySqlConnection
Dim cmd As New MySqlCommand
Dim myAdapter As New MySqlDataAdapter
conn.ConnectionString = _
 "server=127.0.0.1;" _
 & "uid=root;" _
 & "pwd=12345;" _
 & "database=test"
Try
 conn.Open()
 cmd.CommandText = "SELECT city.name AS cityName, city.population AS CityPopulation, " _
 & "country.name, country.population, country.continent " _
 & "FROM country, city ORDER BY country.continent, country.name"
 cmd.Connection = conn
 myAdapter.SelectCommand = cmd
 myAdapter.Fill(myData)
 myReport.Load(".\world_report.rpt")
 myReport.SetDataSource(myData)
 myViewer.ReportSource = myReport
Catch ex As Exception
 MessageBox.Show(ex.Message, "Report could not be created", MessageBoxButtons.OK, MessageBoxIcon.Error)
End Try

A new data set it generated using the same query used to generate the previously saved data set.
Once the data set is filled, a ReportDocument is used to load the report file and bind it to the data set.
The ReportDocument is the passed as the ReportSource of the crViewer.

This same approach is taken when a report is created from a single table using Connector/ODBC. The
data set replaces the table used in the report and the report is displayed properly.

When a report is created from multiple tables using Connector/ODBC, a data set with multiple tables
must be created in our application. This enables each table in the report data source to be replaced
with a report in the data set.

We populate a data set with multiple tables by providing multiple SELECT statements in our
MySqlCommand object. These SELECT statements are based on the SQL query shown in Crystal
Reports in the Database menu's Show SQL Query option. Assume the following query:

SELECT `country`.`Name`, `country`.`Continent`, `country`.`Population`, `city`.`Name`, `city`.`Population`
FROM `world`.`country` `country` LEFT OUTER JOIN `world`.`city` `city` ON `country`.`Code`=`city`.`CountryCode`
ORDER BY `country`.`Continent`, `country`.`Name`, `city`.`Name`

This query is converted to two SELECT queries and displayed with the following code:

C# Code Example

using CrystalDecisions.CrystalReports.Engine;
using System.Data;
using MySql.Data.MySqlClient;
ReportDocument myReport = new ReportDocument();
DataSet myData = new DataSet();
MySql.Data.MySqlClient.MySqlConnection conn;
MySql.Data.MySqlClient.MySqlCommand cmd;
MySql.Data.MySqlClient.MySqlDataAdapter myAdapter;
conn = new MySql.Data.MySqlClient.MySqlConnection();
cmd = new MySql.Data.MySqlClient.MySqlCommand();
myAdapter = new MySql.Data.MySqlClient.MySqlDataAdapter();
conn.ConnectionString = "server=127.0.0.1;uid=root;" +
 "pwd=12345;database=test";
try
{
 cmd.CommandText = "SELECT name, population, countrycode FROM city ORDER " +
 "BY countrycode, name; SELECT name, population, code, continent FROM " +
 "country ORDER BY continent, name";
 cmd.Connection = conn;

243

https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/select.html

Asynchronous Methods

 myAdapter.SelectCommand = cmd;
 myAdapter.Fill(myData);
 myReport.Load(@".\world_report.rpt");
 myReport.Database.Tables(0).SetDataSource(myData.Tables(0));
 myReport.Database.Tables(1).SetDataSource(myData.Tables(1));
 myViewer.ReportSource = myReport;
}
catch (MySql.Data.MySqlClient.MySqlException ex)
{
 MessageBox.Show(ex.Message, "Report could not be created",
 MessageBoxButtons.OK, MessageBoxIcon.Error);
}

Visual Basic Code Example

Imports CrystalDecisions.CrystalReports.Engine
Imports System.Data
Imports MySql.Data.MySqlClient
Dim myReport As New ReportDocument
Dim myData As New DataSet
Dim conn As New MySqlConnection
Dim cmd As New MySqlCommand
Dim myAdapter As New MySqlDataAdapter
conn.ConnectionString = "server=127.0.0.1;" _
 & "uid=root;" _
 & "pwd=12345;" _
 & "database=world"
Try
 conn.Open()
 cmd.CommandText = "SELECT name, population, countrycode FROM city ORDER BY countrycode, name; " _
 & "SELECT name, population, code, continent FROM country ORDER BY continent, name"
 cmd.Connection = conn
 myAdapter.SelectCommand = cmd
 myAdapter.Fill(myData)
 myReport.Load(".\world_report.rpt")
 myReport.Database.Tables(0).SetDataSource(myData.Tables(0))
 myReport.Database.Tables(1).SetDataSource(myData.Tables(1))
 myViewer.ReportSource = myReport
Catch ex As Exception
 MessageBox.Show(ex.Message, "Report could not be created", MessageBoxButtons.OK, MessageBoxIcon.Error)
End Try

It is important to order the SELECT queries in alphabetic order, as this is the order the report will expect
its source tables to be in. One SetDataSource statement is needed for each table in the report.

This approach can cause performance problems because Crystal Reports must bind the tables
together on the client-side, which will be slower than using a pre-saved data set.

4.5.14 Asynchronous Methods

The Task-based Asynchronous Pattern (TAP) is a pattern for asynchrony in the .NET Framework. It
is based on the Task and Task<TResult> types in the System.Threading.Tasks namespace,
which are used to represent arbitrary asynchronous operations.

Async-Await are new keywords introduced to work with the TAP. The Async modifier is used to
specify that a method, lambda expression, or anonymous method is asynchronous. The Await operator
is applied to a task in an asynchronous method to suspend the execution of the method until the
awaited task completes.

Requirements

• Async-Await support requires .NET Framework 4.5 or later

• TAP support requires .NET Framework 4.0 or later

• MySQL Connector/NET 6.9 or later

244

https://dev.mysql.com/doc/refman/8.0/en/select.html

Asynchronous Methods

Methods

The following methods can be used with either TAP or Async-Await.

• Namespace MySql.Data.Entity

• Class EFMySqlCommand

• Task PrepareAsync()

• Task PrepareAsync(CancellationToken)

• Namespace MySql.Data

• Class MySqlBulkLoader

• Task<int> LoadAsync()

• Task<int> LoadAsync(CancellationToken

• Class MySqlConnection

• Task<MySqlTransaction> BeginTransactionAsync()

• Task<MySqlTransaction> BeginTransactionAsync (CancellationToken)

• Task<MySqlTransaction> BeginTransactionAsync(IsolationLevel)

• Task<MySqlTransaction> BeginTransactionAsync (IsolationLevel ,
CancellationToken)

• Task ChangeDatabaseAsync(string)

• Task ChangeDatabaseAsync(string, CancellationToken)

• Task CloseAsync()

• Task CloseAsync(CancellationToken)

• Task ClearPoolAsync(MySqlConnection)

• Task ClearPoolAsync(MySqlConnection, CancellationToken)

• Task ClearAllPoolsAsync()

• Task ClearAllPoolsAsync(CancellationToken)

• Task<MySqlSchemaCollection> GetSchemaCollection(string, string[])

• Task<MySqlSchemaCollection> GetSchemaCollection(string, string[],
CancellationToken)

• Class MySqlDataAdapter

• Task<int> FillAsync(DataSet)

• Task<int> FillAsync(DataSet, CancellationToken)

• Task<int> FillAsync(DataTable)

• Task<int> FillAsync(DataTable, CancellationToken)

• Task<int> FillAsync(DataSet, string)

245

Asynchronous Methods

• Task<int> FillAsync(DataSet, string, CancellationToken)

• Task<int> FillAsync(DataTable, IDataReader)

• Task<int> FillAsync(DataTable, IDataReader, CancellationToken)

• Task<int> FillAsync(DataTable, IDbCommand, CommandBehavior)

• Task<int> FillAsync(DataTable, IDbCommand, CommandBehavior,
CancellationToken)

• Task<int> FillAsync(int, int, params DataTable[])

• Task<int> FillAsync(int, int, params DataTable[], CancellationToken)

• Task<int> FillAsync(DataSet, int, int, string)

• Task<int> FillAsync(DataSet, int, int, string, CancellationToken)

• Task<int> FillAsync(DataSet, string, IDataReader, int, int)

• Task<int> FillAsync(DataSet, string, IDataReader, int, int,
CancellationToken)

• Task<int> FillAsync(DataTable[], int, int, IDbCommand, CommandBehavior)

• Task<int> FillAsync(DataTable[], int, int, IDbCommand, CommandBehavior,
CancellationToken)

• Task<int> FillAsync(DataSet, int, int, string, IDbCommand,
CommandBehavior)

• Task<int> FillAsync(DataSet, int, int, string, IDbCommand,
CommandBehavior, CancellationToken)

• Task<DataTable[]> FillSchemaAsync(DataSet, SchemaType)

• Task<DataTable[]> FillSchemaAsync(DataSet, SchemaType,
CancellationToken)

• Task<DataTable[]> FillSchemaAsync(DataSet, SchemaType, string)

• Task<DataTable[]> FillSchemaAsync(DataSet, SchemaType, string,
CancellationToken)

• Task<DataTable[]> FillSchemaAsync(DataSet, SchemaType, string,
IDataReader)

• Task<DataTable[]> FillSchemaAsync(DataSet, SchemaType, string,
IDataReader, CancellationToken)

• Task<DataTable[]> FillSchemaAsync(DataSet, SchemaType, IDbCommand,
string, CommandBehavior)

• Task<DataTable[]> FillSchemaAsync(DataSet, SchemaType, IDbCommand,
string, CommandBehavior, CancellationToken)

• Task<DataTable> FillSchemaAsync(DataTable, SchemaType)

• Task<DataTable> FillSchemaAsync(DataTable, SchemaType,
CancellationToken)

246

Asynchronous Methods

• Task<DataTable> FillSchemaAsync(DataTable, SchemaType, IDataReader)

• Task<DataTable> FillSchemaAsync(DataTable, SchemaType, IDataReader,
CancellationToken)

• Task<DataTable> FillSchemaAsync(DataTable, SchemaType, IDbCommand,
CommandBehavior)

• Task<DataTable> FillSchemaAsync(DataTable, SchemaType, IDbCommand,
CommandBehavior, CancellationToken)

• Task<int> UpdateAsync(DataRow[])

• Task<int> UpdateAsync(DataRow[], CancellationToken)

• Task<int> UpdateAsync(DataSet)

• Task<int> UpdateAsync(DataSet, CancellationToken)

• Task<int> UpdateAsync(DataTable)

• Task<int> UpdateAsync(DataTable, CancellationToken)

• Task<int> UpdateAsync(DataRow[], DataTableMapping, CancellationToken)

• Task<int> UpdateAsync(DataSet, string)

• Task<int> UpdateAsync(DataSet, string, CancellationToken)

• Class MySqlHelper

• Task<DataRow> ExecuteDataRowAsync(string, string, params
MySqlParameter[])

• Task<DataRow> ExecuteDataRowAsync(string, string, CancellationToken,
params MySqlParameter[])

• Task<int> ExecuteNonQueryAsync(MySqlConnection, string, params
MySqlParameter[])

• Task<int> ExecuteNonQueryAsync(MySqlConnection, string,
CancellationToken, params MySqlParameter[])

• Task<int> ExecuteNonQueryAsync(string, string, params MySqlParameter[])

• Task<int> ExecuteNonQueryAsync(string, string, CancellationToken,
params MySqlParameter[])

• Task<DataSet> ExecuteDatasetAsync(string, string)

• Task<DataSet> ExecuteDatasetAsync(string, string, CancellationToken)

• Task<DataSet> ExecuteDatasetAsync(string, string, CancellationToken,
params MySqlParameter[])

• Task<DataSet> ExecuteDatasetAsync(MySqlConnection, string)

• Task<DataSet> ExecuteDatasetAsync(MySqlConnection, string,
CancellationToken)

247

Asynchronous Methods

• Task<DataSet> ExecuteDatasetAsync(MySqlConnection, string, params
MySqlParameter[])

• Task<DataSet> ExecuteDatasetAsync(MySqlConnection, string,
CancellationToken, params MySqlParameter[])

• Task UpdateDataSetAsync(string, string, DataSet, string)

• Task UpdateDataSetAsync(string, string, DataSet, string,
CancellationToken)

• Task<MySqlDataReader> ExecuteReaderAsync(MySqlConnection,
MySqlTransaction, string, MySqlParameter[], bool)

• Task<MySqlDataReader> ExecuteReaderAsync(MySqlConnection,
MySqlTransaction, string, MySqlParameter[], bool, CancellationToken)

• Task<MySqlDataReader> ExecuteReaderAsync(string, string)

• Task<MySqlDataReader> ExecuteReaderAsync(string, string,
CancellationToken)

• Task<MySqlDataReader> ExecuteReaderAsync(MySqlConnection, string)

• Task<MySqlDataReader> ExecuteReaderAsync(MySqlConnection, string,
CancellationToken)

• Task<MySqlDataReader> ExecuteReaderAsync(string, string, params
MySqlParameter[])

• Task<MySqlDataReader> ExecuteReaderAsync(string, string,
CancellationToken, params MySqlParameter[])

• Task<MySqlDataReader> ExecuteReaderAsync(MySqlConnection, string,
params MySqlParameter[])

• Task<MySqlDataReader> ExecuteReaderAsync(MySqlConnection, string,
CancellationToken, params MySqlParameter[])

• Task<object> ExecuteScalarAsync(string, string)

• Task<object> ExecuteScalarAsync(string, string, CancellationToken)

• Task<object> ExecuteScalarAsync(string, string, params
MySqlParameter[])

• Task<object> ExecuteScalarAsync(string, string, CancellationToken,
params MySqlParameter[])

• Task<object> ExecuteScalarAsync(MySqlConnection, string)

• Task<object> ExecuteScalarAsync(MySqlConnection, string,
CancellationToken)

• Task<object> ExecuteScalarAsync(MySqlConnection, string, params
MySqlParameter[])

• Task<object> ExecuteScalarAsync(MySqlConnection, string,
CancellationToken, params MySqlParameter[])

248

Asynchronous Methods

• Class MySqlScript

• Task<int> ExecuteAsync()

• Task<int> ExecuteAsync(CancellationToken)

In addition to the methods listed above, the following are methods inherited from the .NET Framework:

• Namespace MySql.Data.Entity

• Class EFMySqlCommand

• Task<DbDataReader> ExecuteDbDataReaderAsync(CommandBehaviour,
CancellationToken)

• Task<int> ExecuteNonQueryAsync()

• Task<int> ExecuteNonQueryAsync(CancellationToken)

• Task<DbDataReader> ExecuteReaderAsync()

• Task<DbDataReader> ExecuteReaderAsync(CancellationToken)

• Task<DbDataReader> ExecuteReaderAsync(CommandBehaviour)

• Task<DbDataReader> ExecuteReaderAsync(CommandBehaviour,
CancellationToken)

• Task<object> ExecuteScalarAsync()

• Task<object> ExecuteScalarAsync(CancellationToken)

• Namespace MySql.Data

• Class MySqlCommand

• Task<DbDataReader> ExecuteDbDataReaderAsync(CommandBehaviour,
CancellationToken)

• Task<int> ExecuteNonQueryAsync()

• Task<int> ExecuteNonQueryAsync(CancellationToken)

• Task<DbDataReader> ExecuteReaderAsync()

• Task<DbDataReader> ExecuteReaderAsync(CancellationToken)

• Task<DbDataReader> ExecuteReaderAsync(CommandBehaviour)

• Task<DbDataReader> ExecuteReaderAsync(CommandBehaviour,
CancellationToken)

• Task<object> ExecuteScalarAsync()

• Task<object> ExecuteScalarAsync(CancellationToken)

• Class MySqlConnection

• Task OpenAsync()

• Task OpenAsync(CancellationToken)

249

Binary and Nonbinary Issues

• Class MySqlDataReader

• Task<T> GetFieldValueAsync<T>(int)

• Task<T> GetFieldValueAsync<T>(int, CancellationToken)

• Task<bool> IsDBNullAsync(int)

• Task<bool> IsDBNullAsync(int, CancellationToken)

• Task<bool> NextResultAsync()

• Task<bool> NextResultAsync(CancellationToken)

• Task<bool> ReadAsync()

• Task<bool> ReadAsync(CancellationToken)

Examples

The following C# code examples demonstrate how to use the asynchronous methods:

In this example, a method has the async modifier because the method await call made applies to
the method LoadAsync. The method returns a Task object that contains information about the result
of the awaited method. Returning Task is like having a void method, but you should not use async
void if your method is not a top-level access method like an event.

public async Task BulkLoadAsync()
{
 MySqlConnection myConn = new MySqlConnection("MyConnectionString");
 MySqlBulkLoader loader = new MySqlBulkLoader(myConn);

 loader.TableName = "BulkLoadTest";
 loader.FileName = @"c:\MyPath\MyFile.txt";
 loader.Timeout = 0;

 var result = await loader.LoadAsync();
}

In this example, an "async void" method is used with "await" for the ExecuteNonQueryAsync
method, to correspond to the onclick event of a button. This is why the method does not return a Task.

private async void myButton_Click()
{
 MySqlConnection myConn = new MySqlConnection("MyConnectionString");
 MySqlCommand proc = new MySqlCommand("MyAsyncSpTest", myConn);

 proc.CommandType = CommandType.StoredProcedure;

 int result = await proc.ExecuteNonQueryAsync();
}

4.5.15 Binary and Nonbinary Issues

There are certain situations where MySQL will return incorrect metadata about one or more columns.
More specifically, the server can sometimes report that a column is binary when it is not (and the
reverse). In these situations, it becomes practically impossible for the connector to be able to correctly
identify the correct metadata.

Some examples of situations that may return incorrect metadata are:

• Execution of SHOW PROCESSLIST. Some of the columns are returned as binary even though they
only hold string data.

250

https://dev.mysql.com/doc/refman/8.0/en/show-processlist.html

Character Set Considerations for Connector/NET

• When a temporary table is used to process a result set, some columns may be returned with
incorrect binary flags.

• Some server functions such DATE_FORMAT return the column incorrectly as binary.

With the availability of BINARY and VARBINARY data types, it is important to respect the metadata
returned by the server. However, some existing applications may encounter issues with this change
and can use a connection string option to enable or disable it. By default, Connector/NET respects
the binary flags returned by the server. You might need to make small changes to your application to
accommodate this change.

In the event that the changes required to your application are too large, adding 'respect binary
flags=false' to your connection string causes the connector to use the prior behavior: any column
that is marked as string, regardless of binary flags, will be returned as string. Only columns that are
specifically marked as a BLOB will be returned as BLOB.

4.5.16 Character Set Considerations for Connector/NET

Treating Binary Blobs As UTF8

Before the introduction of 4-byte UTF-8 character set, MySQL did not support 4-byte UTF8 sequences.
This makes it difficult to represent some multibyte languages such as Japanese. To try and alleviate
this, MySQL Connector/NET supports a mode where binary blobs can be treated as strings.

To do this, you set the 'Treat Blobs As UTF8' connection string keyword to true. This is
all that needs to be done to enable conversion of all binary blobs to UTF8 strings. To convert only
some of your BLOB columns, you can make use of the 'BlobAsUTF8IncludePattern' and
'BlobAsUTF8ExcludePattern' keywords. Set these to a regular expression pattern that matches
the column names to include or exclude respectively.

When the regular expression patterns both match a single column, the include pattern is applied before
the exclude pattern. The result, in this case, is that the column is excluded. Also, be aware that this
mode does not apply to columns of type BINARY or VARBINARY and also do not apply to nonbinary
BLOB columns.

This mode only applies to reading strings out of MySQL. To insert 4-byte UTF8 strings into blob
columns, use the .NET Encoding.GetBytes function to convert your string to a series of bytes. You
can then set this byte array as a parameter for a BLOB column.

4.6 Connector/NET Tutorials
The following MySQL Connector/NET tutorials illustrate how to develop MySQL programs using
technologies such as Visual Studio, C#, ASP.NET, and the .NET, .NET Core, and Mono frameworks.
Work through the first tutorial to verify that you have the right software components installed and
configured, then choose other tutorials to try depending on the features you intend to use in your
applications.

4.6.1 Tutorial: An Introduction to Connector/NET Programming

This section provides a gentle introduction to programming with MySQL Connector/NET. The code
example is written in C#, and is designed to work on both Microsoft .NET Framework and Mono.

This tutorial is designed to get you up and running with Connector/NET as quickly as possible, it does
not go into detail on any particular topic. However, the following sections of this manual describe each
of the topics introduced in this tutorial in more detail. In this tutorial you are encouraged to type in and
run the code, modifying it as required for your setup.

This tutorial assumes you have MySQL and Connector/NET already installed. It also assumes that you
have installed the world database sample, which can be downloaded from the MySQL Documentation
page. You can also find details on how to install the database on the same page.

251

https://dev.mysql.com/doc/refman/8.0/en/charset-unicode-utf8mb4.html
https://dev.mysql.com/doc/index-other.html
https://dev.mysql.com/doc/index-other.html

Tutorial: An Introduction to Connector/NET Programming

Note

Before compiling the code example, make sure that you have added
References to your project as required. The References required are System,
System.Data and MySql.Data.

4.6.1.1 The MySqlConnection Object

For your MySQL Connector/NET application to connect to a MySQL database, it must establish a
connection by using a MySqlConnection object.

The MySqlConnection constructor takes a connection string as one of its parameters. The
connection string provides necessary information to make the connection to the MySQL database.
The connection string is discussed more fully in Section 4.4, “Connector/NET Connections”. For a
list of supported connection string options, see Section 4.4.5, “Connector/NET Connection Options
Reference”.

The following code shows how to create a connection object/

using System;
using System.Data;

using MySql.Data;
using MySql.Data.MySqlClient;

public class Tutorial1
{
 public static void Main()
 {
 string connStr = "server=localhost;user=root;database=world;port=3306;password=******";
 MySqlConnection conn = new MySqlConnection(connStr);
 try
 {
 Console.WriteLine("Connecting to MySQL...");
 conn.Open();
 // Perform database operations
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.ToString());
 }
 conn.Close();
 Console.WriteLine("Done.");
 }
}

When the MySqlConnection constructor is invoked, it returns a connection object, which is used for
subsequent database operations. Open the connection before any other operations take place. Before
the application exits, close the connection to the database by calling Close on the connection object.

Sometimes an attempt to perform an Open on a connection object can fail, generating an exception
that can be handled using standard exception handling code.

In this section you have learned how to create a connection to a MySQL database, and open and close
the corresponding connection object.

4.6.1.2 The MySqlCommand Object

When a connection has been established with the MySQL database, the next step enables you to
perform database operations. This task can be achieved through the use of the MySqlCommand object.

After it has been created, there are three main methods of interest that you can call:

• ExecuteReader to query the database. Results are usually returned in a MySqlDataReader
object, created by ExecuteReader.

252

Tutorial: An Introduction to Connector/NET Programming

• ExecuteNonQuery to insert, update, and delete data.

• ExecuteScalar to return a single value.

After the MySqlCommand object is created, you can call one of the previous methods on it to
carry out a database operation, such as perform a query. The results are usually returned into a
MySqlDataReader object, and then processed. For example, the results might be displayed as the
following code example demonstrates.

using System;
using System.Data;

using MySql.Data;
using MySql.Data.MySqlClient;

public class Tutorial2
{
 public static void Main()
 {
 string connStr = "server=localhost;user=root;database=world;port=3306;password=******";
 MySqlConnection conn = new MySqlConnection(connStr);
 try
 {
 Console.WriteLine("Connecting to MySQL...");
 conn.Open();

 string sql = "SELECT Name, HeadOfState FROM Country WHERE Continent='Oceania'";
 MySqlCommand cmd = new MySqlCommand(sql, conn);
 MySqlDataReader rdr = cmd.ExecuteReader();

 while (rdr.Read())
 {
 Console.WriteLine(rdr[0]+" -- "+rdr[1]);
 }
 rdr.Close();
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.ToString());
 }

 conn.Close();
 Console.WriteLine("Done.");
 }
}

When a connection has been created and opened, the code then creates a MySqlCommand
object. Then the SQL query to be executed is passed to the MySqlCommand constructor. The
ExecuteReader method is then used to generate a MySqlReader object. The MySqlReader
object contains the results generated by the SQL executed on the MySqlCommand object. When the
results have been obtained in a MySqlReader object, the results can be processed. In this case, the
information is printed out by a while loop. Finally, the MySqlReader object is disposed of by invoking
the Close method.

The next example shows how to use the ExecuteNonQuery method.

The procedure for performing an ExecuteNonQuery method call is simpler, as there is no need
to create an object to store results. This is because ExecuteNonQuery is only used for inserting,
updating and deleting data. The following example illustrates a simple update to the Country table:

using System;
using System.Data;

using MySql.Data;
using MySql.Data.MySqlClient;

public class Tutorial3
{

253

Tutorial: An Introduction to Connector/NET Programming

 public static void Main()
 {
 string connStr = "server=localhost;user=root;database=world;port=3306;password=******";
 MySqlConnection conn = new MySqlConnection(connStr);
 try
 {
 Console.WriteLine("Connecting to MySQL...");
 conn.Open();

 string sql = "INSERT INTO Country (Name, HeadOfState, Continent) VALUES ('Disneyland','Mickey Mouse', 'North America')";
 MySqlCommand cmd = new MySqlCommand(sql, conn);
 cmd.ExecuteNonQuery();
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.ToString());
 }

 conn.Close();
 Console.WriteLine("Done.");
 }
}

The query is constructed, the MySqlCommand object created and the ExecuteNonQuery method
called on the MySqlCommand object. You can access your MySQL database with mysql and verify
that the update was carried out correctly.

Finally, you can use the ExecuteScalar method to return a single value. Again, this is
straightforward, as a MySqlDataReader object is not required to store results, a variable is used
instead. The following code illustrates how to use the ExecuteScalar method:

using System;
using System.Data;

using MySql.Data;
using MySql.Data.MySqlClient;

public class Tutorial4
{
 public static void Main()
 {
 string connStr = "server=localhost;user=root;database=world;port=3306;password=******";
 MySqlConnection conn = new MySqlConnection(connStr);
 try
 {
 Console.WriteLine("Connecting to MySQL...");
 conn.Open();

 string sql = "SELECT COUNT(*) FROM Country";
 MySqlCommand cmd = new MySqlCommand(sql, conn);
 object result = cmd.ExecuteScalar();
 if (result != null)
 {
 int r = Convert.ToInt32(result);
 Console.WriteLine("Number of countries in the world database is: " + r);
 }

 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.ToString());
 }

 conn.Close();
 Console.WriteLine("Done.");
 }
}

This example uses a simple query to count the rows in the Country table. The result is obtained by
calling ExecuteScalar on the MySqlCommand object.

254

Tutorial: An Introduction to Connector/NET Programming

4.6.1.3 Working with Decoupled Data

Previously, when using MySqlDataReader, the connection to the database was continually
maintained unless explicitly closed. It is also possible to work in a manner where a connection is only
established when needed. For example, in this mode, a connection could be established to read a
chunk of data, the data could then be modified by the application as required. A connection could then
be reestablished only if and when the application writes data back to the database. This decouples the
working data set from the database.

This decoupled mode of working with data is supported by MySQL Connector/NET. There are several
parts involved in allowing this method to work:

• Data Set. The Data Set is the area in which data is loaded to read or modify it. A DataSet object
is instantiated, which can store multiple tables of data.

• Data Adapter. The Data Adapter is the interface between the Data Set and the database
itself. The Data Adapter is responsible for efficiently managing connections to the database,
opening and closing them as required. The Data Adapter is created by instantiating an object of the
MySqlDataAdapter class. The MySqlDataAdapter object has two main methods: Fill which
reads data into the Data Set, and Update, which writes data from the Data Set to the database.

• Command Builder. The Command Builder is a support object. The Command Builder works
in conjunction with the Data Adapter. When a MySqlDataAdapter object is created, it is typically
given an initial SELECT statement. From this SELECT statement the Command Builder can work
out the corresponding INSERT, UPDATE and DELETE statements that would be required to update
the database. To create the Command Builder, an object of the class MySqlCommandBuilder is
created.

The remaining sections describe each of these classes in more detail.

Instantiating a DataSet Object

A DataSet object can be created simply, as shown in the following code-snippet:

DataSet dsCountry;
...
dsCountry = new DataSet();

Although this creates the DataSet object, it has not yet filled it with data. For that, a Data Adapter is
required.

Instantiating a MySqlDataAdapter Object

The MySqlDataAdapter can be created as illustrated by the following example:

MySqlDataAdapter daCountry;
...
string sql = "SELECT Code, Name, HeadOfState FROM Country WHERE Continent='North America'";
daCountry = new MySqlDataAdapter (sql, conn);

Note

The MySqlDataAdapter is given the SQL specifying the data to work with.

Instantiating a MySqlCommandBuilder Object

Once the MySqlDataAdapter has been created, it is necessary to generate the additional statements
required for inserting, updating and deleting data. There are several ways to do this, but in this tutorial
you will see how this can most easily be done with MySqlCommandBuilder. The following code
snippet illustrates how this is done:

MySqlCommandBuilder cb = new MySqlCommandBuilder(daCountry);

255

https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/delete.html

Tutorial: An Introduction to Connector/NET Programming

Note

The MySqlDataAdapter object is passed as a parameter to the command
builder.

Filling the Data Set

To do anything useful with the data from your database, you need to load it into a Data Set. This is one
of the jobs of the MySqlDataAdapter object, and is carried out with its Fill method. The following
code example illustrates this point.

DataSet dsCountry;
...
dsCountry = new DataSet();
...
daCountry.Fill(dsCountry, "Country");

The Fill method is a MySqlDataAdapter method, and the Data Adapter knows how to establish a
connection with the database and retrieve the required data, and then populate the Data Set when the
Fill method is called. The second parameter “Country” is the table in the Data Set to update.

Updating the Data Set

The data in the Data Set can now be manipulated by the application as required. At some
point, changes to data will need to be written back to the database. This is achieved through a
MySqlDataAdapter method, the Update method.

daCountry.Update(dsCountry, "Country");

Again, the Data Set and the table within the Data Set to update are specified.

Working Example

The interactions between the DataSet, MySqlDataAdapter and MySqlCommandBuilder classes
can be a little confusing, so their operation can perhaps be best illustrated by working code.

In this example, data from the world database is read into a Data Grid View control. Here, the data
can be viewed and changed before clicking an update button. The update button then activates code to
write changes back to the database. The code uses the principles explained previously. The application
was built using the Microsoft Visual Studio to place and create the user interface controls, but the
main code that uses the key classes described previously is shown in the next code example, and is
portable.

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;

using MySql.Data;
using MySql.Data.MySqlClient;

namespace WindowsFormsApplication5
{
 public partial class Form1 : Form
 {
 MySqlDataAdapter daCountry;
 DataSet dsCountry;

 public Form1()
 {
 InitializeComponent();
 }

256

Tutorial: An Introduction to Connector/NET Programming

 private void Form1_Load(object sender, EventArgs e)
 {

 string connStr = "server=localhost;user=root;database=world;port=3306;password=******";
 MySqlConnection conn = new MySqlConnection(connStr);
 try
 {
 label2.Text = "Connecting to MySQL...";

 string sql = "SELECT Code, Name, HeadOfState FROM Country WHERE Continent='North America'";
 daCountry = new MySqlDataAdapter (sql, conn);
 MySqlCommandBuilder cb = new MySqlCommandBuilder(daCountry);

 dsCountry = new DataSet();
 daCountry.Fill(dsCountry, "Country");
 dataGridView1.DataSource = dsCountry;
 dataGridView1.DataMember = "Country";
 }
 catch (Exception ex)
 {
 label2.Text = ex.ToString();
 }
 }

 private void button1_Click(object sender, EventArgs e)
 {
 daCountry.Update(dsCountry, "Country");
 label2.Text = "MySQL Database Updated!";
 }

 }
}

The following figure shows the application started. The World Database Application updated data in
three columns: Code, Name, and HeadOfState.

Figure 4.1 World Database Application

4.6.1.4 Working with Parameters

This part of the tutorial shows you how to use parameters in your MySQL Connector/NET application.

257

Tutorial: An Introduction to Connector/NET Programming

Although it is possible to build SQL query strings directly from user input, this is not advisable as it does
not prevent erroneous or malicious information being entered. It is safer to use parameters as they will
be processed as field data only. For example, imagine the following query was constructed from user
input:

string sql = "SELECT Name, HeadOfState FROM Country WHERE Continent = "+user_continent;

If the string user_continent came from a Text Box control, there would potentially be no control
over the string entered by the user. The user could enter a string that generates a runtime error, or in
the worst case actually harms the system. When using parameters it is not possible to do this because
a parameter is only ever treated as a field parameter, rather than an arbitrary piece of SQL code.

The same query written using a parameter for user input is:

string sql = "SELECT Name, HeadOfState FROM Country WHERE Continent = @Continent";

Note

The parameter is preceded by an '@' symbol to indicate it is to be treated as a
parameter.

As well as marking the position of the parameter in the query string, it is necessary to add a parameter
to the MySqlCommand object. This is illustrated by the following code snippet:

cmd.Parameters.AddWithValue("@Continent", "North America");

In this example the string "North America" is supplied as the parameter value statically, but in a more
practical example it would come from a user input control.

A further example illustrates the complete process:

using System;
using System.Data;

using MySql.Data;
using MySql.Data.MySqlClient;

public class Tutorial5
{
 public static void Main()
 {
 string connStr = "server=localhost;user=root;database=world;port=3306;password=******";
 MySqlConnection conn = new MySqlConnection(connStr);
 try
 {
 Console.WriteLine("Connecting to MySQL...");
 conn.Open();

 string sql = "SELECT Name, HeadOfState FROM Country WHERE Continent=@Continent";
 MySqlCommand cmd = new MySqlCommand(sql, conn);

 Console.WriteLine("Enter a continent e.g. 'North America', 'Europe': ");
 string user_input = Console.ReadLine();

 cmd.Parameters.AddWithValue("@Continent", user_input);

 MySqlDataReader rdr = cmd.ExecuteReader();

 while (rdr.Read())
 {
 Console.WriteLine(rdr["Name"]+" --- "+rdr["HeadOfState"]);
 }
 rdr.Close();
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.ToString());
 }

258

Tutorial: An Introduction to Connector/NET Programming

 conn.Close();
 Console.WriteLine("Done.");
 }
}

In this part of the tutorial you have see how to use parameters to make your code more secure.

4.6.1.5 Working with Stored Procedures

This section illustrates how to work with stored procedures. Putting database-intensive operations into
stored procedures lets you define an API for your database application. You can reuse this API across
multiple applications and multiple programming languages. This technique avoids duplicating database
code, saving time and effort when you make updates due to schema changes, tune the performance
of queries, or add new database operations for logging, security, and so on. Before working through
this tutorial, familiarize yourself with the CREATE PROCEDURE and CREATE FUNCTION statements that
create different kinds of stored routines.

For the purposes of this tutorial, you will create a simple stored procedure to see how it can be called
from MySQL Connector/NET. In the MySQL Client program, connect to the world database and enter
the following stored procedure:

DELIMITER //
CREATE PROCEDURE country_hos
(IN con CHAR(20))
BEGIN
 SELECT Name, HeadOfState FROM Country
 WHERE Continent = con;
END //
DELIMITER ;

Test that the stored procedure works as expected by typing the following into the mysql command
interpreter:

CALL country_hos('Europe');

Note

The stored routine takes a single parameter, which is the continent to restrict
your search to.

Having confirmed that the stored procedure is present and correct, you can see how to access it from
Connector/NET.

Calling a stored procedure from your Connector/NET application is similar to techniques you have seen
earlier in this tutorial. A MySqlCommand object is created, but rather than taking an SQL query as a
parameter, it takes the name of the stored procedure to call. Set the MySqlCommand object to the type
of stored procedure, as shown by the following code snippet:

string rtn = "country_hos";
MySqlCommand cmd = new MySqlCommand(rtn, conn);
cmd.CommandType = CommandType.StoredProcedure;

In this case, the stored procedure requires you to pass a parameter. This can be achieved using the
techniques seen in the previous section on parameters, Section 4.6.1.4, “Working with Parameters”, as
shown in the following code snippet:

cmd.Parameters.AddWithValue("@con", "Europe");

The value of the parameter @con could more realistically have come from a user input control, but for
simplicity it is set as a static string in this example.

At this point, everything is set up and you can call the routine using techniques also learned in earlier
sections. In this case, the ExecuteReader method of the MySqlCommand object is used.

259

https://dev.mysql.com/doc/refman/8.0/en/create-procedure.html
https://dev.mysql.com/doc/refman/8.0/en/create-function.html

ASP.NET Provider Model and Tutorials

The following code shows the complete stored procedure example.

using System;
using System.Data;

using MySql.Data;
using MySql.Data.MySqlClient;

public class Tutorial6
{
 public static void Main()
 {
 string connStr = "server=localhost;user=root;database=world;port=3306;password=******";
 MySqlConnection conn = new MySqlConnection(connStr);
 try
 {
 Console.WriteLine("Connecting to MySQL...");
 conn.Open();

 string rtn = "country_hos";
 MySqlCommand cmd = new MySqlCommand(rtn, conn);
 cmd.CommandType = CommandType.StoredProcedure;

 cmd.Parameters.AddWithValue("@con", "Europe");

 MySqlDataReader rdr = cmd.ExecuteReader();
 while (rdr.Read())
 {
 Console.WriteLine(rdr[0] + " --- " + rdr[1]);
 }
 rdr.Close();
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.ToString());
 }

 conn.Close();
 Console.WriteLine("Done.");
 }
}

In this section, you have seen how to call a stored procedure from Connector/NET. For the moment,
this concludes our introductory tutorial on programming with Connector/NET.

4.6.2 ASP.NET Provider Model and Tutorials

MySQL Connector/NET includes a provider model for use with ASP.NET applications. This model
enables developers to focus on the business logic of their application instead of having to recreate
such boilerplate items as membership and roles support.

Connector/NET supports the following web providers:

• Membership provider

• Roles provider

• Profiles provider

• Session state provider

The following tables show the supported providers, their default provider and the corresponding
MySQL provider.

Membership Provider

Default Provider System.Web.Security.SqlMembershipProvider

260

ASP.NET Provider Model and Tutorials

MySQL Provider MySql.Web.Security.MySQLMembershipProvider

Role Provider

Default Provider System.Web.Security.SqlRoleProvider

MySQL Provider MySql.Web.Security.MySQLRoleProvider

Profile Provider

Default Provider System.Web.Profile.SqlProfileProvider

MySQL Provider MySql.Web.Profile.MySQLProfileProvider

Session State Provider

Default Provider System.Web.SessionState.InProcSessionStateStore

MySQL Provider MySql.Web.SessionState.MySqlSessionStateStore

Note

The MySQL session state provider uses slightly different capitalization on the
class name compared to the other MySQL providers.

Installing the Providers

The installation of Connector/NET installs the providers and registers them in the .NET configuration
file (machine.config) on your computer. The additional entries modify the system.web section of
the file, which appears similar to the following example after the installation.

<system.web>
 <processModel autoConfig="true" />
 <httpHandlers />
 <membership>
 <providers>
 <add name="AspNetSqlMembershipProvider" type="System.Web.Security.SqlMembershipProvider, System.Web, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a" connectionStringName="LocalSqlServer" enablePasswordRetrieval="false" enablePasswordReset="true" requiresQuestionAndAnswer="true" applicationName="/" requiresUniqueEmail="false" passwordFormat="Hashed" maxInvalidPasswordAttempts="5" minRequiredPasswordLength="7" minRequiredNonalphanumericCharacters="1" passwordAttemptWindow="10" passwordStrengthRegularExpression="" />
 <add name="MySQLMembershipProvider" type="MySql.Web.Security.MySQLMembershipProvider, MySql.Web, Version=6.1.1.0, Culture=neutral, PublicKeyToken=c5687fc88969c44d" connectionStringName="LocalMySqlServer" enablePasswordRetrieval="false" enablePasswordReset="true" requiresQuestionAndAnswer="true" applicationName="/" requiresUniqueEmail="false" passwordFormat="Clear" maxInvalidPasswordAttempts="5" minRequiredPasswordLength="7" minRequiredNonalphanumericCharacters="1" passwordAttemptWindow="10" passwordStrengthRegularExpression="" />
 </providers>
 </membership>
 <profile>
 <providers>
 <add name="AspNetSqlProfileProvider" connectionStringName="LocalSqlServer" applicationName="/" type="System.Web.Profile.SqlProfileProvider, System.Web, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a" />
 <add name="MySQLProfileProvider" type="MySql.Web.Profile.MySQLProfileProvider, MySql.Web, Version=6.1.1.0, Culture=neutral, PublicKeyToken=c5687fc88969c44d" connectionStringName="LocalMySqlServer" applicationName="/" />
 </providers>
 </profile>
 <roleManager>
 <providers>
 <add name="AspNetSqlRoleProvider" connectionStringName="LocalSqlServer" applicationName="/" type="System.Web.Security.SqlRoleProvider, System.Web, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a" />
 <add name="AspNetWindowsTokenRoleProvider" applicationName="/" type="System.Web.Security.WindowsTokenRoleProvider, System.Web, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a" />
 <add name="MySQLRoleProvider" type="MySql.Web.Security.MySQLRoleProvider, MySql.Web, Version=6.1.1.0, Culture=neutral, PublicKeyToken=c5687fc88969c44d" connectionStringName="LocalMySqlServer" applicationName="/" />
 </providers>
 </roleManager>
</system.web>

Each provider type can have multiple provider implementations. The default provider can also be
set here using the defaultProvider attribute, but usually this is set in the web.config file either
manually or by using the ASP.NET configuration tool.

At time of writing, the MySqlSessionStateStore is not added to machine.config at install time,
and so add the following:

<sessionState>
 <providers>
 <add name="MySqlSessionStateStore" type="MySql.Web.SessionState.MySqlSessionStateStore, MySql.Web, Version=6.1.1.0, Culture=neutral, PublicKeyToken=c5687fc88969c44d" connectionStringName="LocalMySqlServer" applicationName="/" />

261

ASP.NET Provider Model and Tutorials

 </providers>
</sessionState>

The session state provider uses the customProvider attribute, rather than defaultProvider, to
set the provider as the default. A typical web.config file might contain:

 <system.web>
 <membership defaultProvider="MySQLMembershipProvider" />
 <roleManager defaultProvider="MySQLRoleProvider" />
 <profile defaultProvider="MySQLProfileProvider" />
 <sessionState customProvider="MySqlSessionStateStore" />
 <compilation debug="false">
 ...

This sets the MySQL Providers as the defaults to be used in this web application.

The providers are implemented in the file mysql.web.dll and this file can be found in your
Connector/NET installation folder. There is no need to run any type of SQL script to set up the
database schema, as the providers create and maintain the proper schema automatically.

Working with MySQL Providers

The easiest way to start using the providers is to use the ASP.NET configuration tool that is available
on the Solution Explorer toolbar when you have a website project loaded.

In the web pages that open, you can select the MySQL membership and roles providers by picking a
custom provider for each area.

When the provider is installed, it creates a dummy connection string named LocalMySqlServer.
Although this has to be done so that the provider will work in the ASP.NET configuration tool, you
override this connection string in your web.config file. You do this by first removing the dummy
connection string and then adding in the proper one, as shown in the following example:

<connectionStrings>
 <remove name="LocalMySqlServer"/>
 <add name="LocalMySqlServer" connectionString="server=xxx;uid=xxx;pwd=xxx;database=xxx"/>
</connectionStrings>

Note

You must specify the database in this connection.

A tutorial demonstrating how to use the membership and role providers can be found in the following
section Section 4.6.2.1, “Tutorial: Connector/NET ASP.NET Membership and Role Provider”.

Deployment

To use the providers on a production server, distribute the MySql.Data and the MySql.Web
assemblies, and either register them in the remote systems Global Assembly Cache or keep them in
the bin directory of your application.

4.6.2.1 Tutorial: Connector/NET ASP.NET Membership and Role Provider

Many websites feature the facility for the user to create a user account. They can then log into the
website and enjoy a personalized experience. This requires that the developer creates database tables
to store user information, along with code to gather and process this data. This represents a burden
on the developer, and there is the possibility for security issues to creep into the developed code.
However, ASP.NET introduced the membership system. This system is designed around the concept
of membership, profile, and role providers, which together provide all of the functionality to implement a
user system, that previously would have to have been created by the developer from scratch.

Currently, MySQL Connector/NET includes web providers for membership (or simple membership),
roles, profiles, session state, site map, and web personalization.

262

ASP.NET Provider Model and Tutorials

This tutorial shows you how to set up your ASP.NET web application to use the Connector/NET
membership and role providers. It assumes that you have MySQL Server installed, along with
Connector/NET and Microsoft Visual Studio. This tutorial was tested with Connector/NET 6.0.4 and
Microsoft Visual Studio 2008 Professional Edition. It is recommended you use 6.0.4 or above for this
tutorial.

1. Create a new MySQL database using the MySQL Command-Line Client program (mysql), or other
suitable tool. It does not matter what name is used for the database, but record it. You specify
it in the connection string constructed later in this tutorial. This database contains the tables,
automatically created for you later, used to store data about users and roles.

2. Create a new ASP.NET website in Visual Studio. If you are not sure how to do this, refer to
Section 4.6.4, “Tutorial: Data Binding in ASP.NET Using LINQ on Entities”, which demonstrates
how to create a simple ASP.NET website.

3. Add References to MySql.Data and MySql.Web to the website project.

4. Locate the machine.config file on your system, which is the configuration file for the .NET
Framework.

5. Search the machine.config file to find the membership provider MySQLMembershipProvider.

6. Add the attribute autogenerateschema="true". The appropriate section should now resemble
the following example.

Note

For the sake of brevity, some information is excluded.

<membership>
 <providers>
 <add name="AspNetSqlMembershipProvider"
 type="System.Web.Security.SqlMembershipProvider"
 ...
 connectionStringName="LocalSqlServer"
 ... />
 <add name="MySQLMembershipProvider"
 autogenerateschema="true"
 type="MySql.Web.Security.MySQLMembershipProvider,
 MySql.Web, Version=6.0.4.0, Culture=neutral,
 PublicKeyToken=c5687fc88969c44d"
 connectionStringName="LocalMySqlServer"
 ... />
 </providers>
</membership>

Note

The connection string, LocalMySqlServer, connects to the MySQL server
that contains the membership database.

The autogenerateschema="true" attribute will cause Connector/NET to silently create, or
upgrade, the schema on the database server, to contain the required tables for storing membership
information.

7. It is now necessary to create the connection string referenced in the previous step. Load the
web.config file for the website into Visual Studio.

8. Locate the section marked <connectionStrings>. Add the following connection string
information.

<connectionStrings>
 <remove name="LocalMySqlServer"/>
 <add name="LocalMySqlServer"
 connectionString="Datasource=localhost;Database=users;uid=root;pwd=password"

263

ASP.NET Provider Model and Tutorials

 providerName="MySql.Data.MySqlClient"/>
</connectionStrings>

The database specified is the one created in the first step. You could alternatively have used an
existing database.

9. At this point build the solution to ensure no errors are present. This can be done by selecting Build,
Build Solution from the main menu, or pressing F6.

10. ASP.NET supports the concept of locally and remotely authenticated users. With local
authentication the user is validated using their Windows credentials when they attempt to access
the website. This can be useful in an Intranet environment. With remote authentication, a user is
prompted for their login details when accessing the website, and these credentials are checked
against the membership information stored in a database server such as MySQL Server. You will
now see how to choose this form of authentication.

Start the ASP.NET Website Administration Tool. This can be done quickly by clicking the small
hammer/Earth icon in the Solution Explorer. You can also launch this tool by selecting Website and
then ASP.NET Configuration from the main menu.

11. In the ASP.NET Website Administration Tool click the Security tab and do the following:

a. Click the User Authentication Type link.

b. Select the From the internet option. The website will now need to provide a form to allow the
user to enter their login details. The details will be checked against membership information
stored in the MySQL database.

12. You now need to specify the role and membership provider to be used. Click the Provider tab and
do the following:

a. Click the Select a different provider for each feature (advanced) link.

b. For membership provider, select the MySQLMembershipProvider option and for role provider,
select the MySQLRoleProvider option.

13. In Visual Studio, rebuild the solution by clicking Build and then Rebuild Solution from the main
menu.

14. Check that the necessary schema has been created. This can be achieved using SHOW
DATABASES; and SHOW TABLES; the mysql command interpreter.

mysql> SHOW DATABASES;
+---------------------+
| Database |
+---------------------+
| information_schema |
| mysql |
| test |
| users |
| world |
+---------------------+
5 rows in set (0.01 sec)

mysql> SHOW TABLES;
+---------------------------+
| Tables_in_users |
+---------------------------+
| my_aspnet_applications |
| my_aspnet_membership |
| my_aspnet_profiles |
| my_aspnet_roles |
| my_aspnet_schemaversion |
| my_aspnet_users |
| my_aspnet_usersinroles |
+---------------------------+

264

ASP.NET Provider Model and Tutorials

7 rows in set (0.00 sec)

15. Assuming all is present and correct, you can now create users and roles for your web application.
The easiest way to do this is with the ASP.NET Website Administration Tool. However, many web
applications contain their own modules for creating roles and users. For simplicity, the ASP.NET
Website Administration Tool will be used in this tutorial.

16. In the ASP.NET Website Administration Tool, click the Security tab. Now that both the membership
and role provider are enabled, you will see links for creating roles and users. Click the Create or
Manage Roles link.

17. You can now enter the name of a new Role and click Add Role to create the new Role. Create new
Roles as required.

18. Click the Back button.

19. Click the Create User link. You can now fill in information about the user to be created, and also
allocate that user to one or more Roles.

20. Using the mysql command interpreter, you can check that your database has been correctly
populated with the membership and role data.

mysql> SELECT * FROM my_aspnet_users;

mysql> SELECT * FROM my_aspnet_roles;

In this tutorial, you have seen how to set up the Connector/NET membership and role providers for use
in your ASP.NET web application.

4.6.2.2 Tutorial: Connector/NET ASP.NET Profile Provider

This tutorial shows you how to use the MySQL Profile Provider to store user profile information in a
MySQL database. The tutorial uses MySQL Connector/NET 6.9.9, MySQL Server 5.7.21 and Microsoft
Visual Studio 2017 Professional Edition.

Many modern websites allow the user to create a personal profile. This requires a significant amount of
code, but ASP.NET reduces this considerable by including the functionality in its Profile classes. The
Profile Provider provides an abstraction between these classes and a data source. The MySQL Profile
Provider enables profile data to be stored in a MySQL database. This enables the profile properties
to be written to a persistent store, and be retrieved when required. The Profile Provider also enables
profile data to be managed effectively, for example it enables profiles that have not been accessed
since a specific date to be deleted.

The following steps show you how you can select the MySQL Profile Provider:

1. Create a new ASP.NET web project.

2. Select the MySQL Application Configuration tool.

3. In the MySQL Application Configuration tool navigate through the tool to the Profiles page.

4. Select the Use MySQL to manage my profiles check box.

5. Select the Autogenerate Schema check box.

6. Click Edit and then configure a connection string for the database that will be used to store user
profile information.

7. Navigate to the last page of the tool and click Finish to save your changes and exit the tool.

At this point you are now ready to start using the MySQL Profile Provider. With the following steps you
can carry out a preliminary test of your installation.

1. Open your web.config file.

265

ASP.NET Provider Model and Tutorials

2. Add a simple profile such as the following example.

<system.web>
 <anonymousIdentification enabled="true"/>
 <profile defaultProvider="MySQLProfileProvider">
 ...
 <properties>
 <add name="Name" allowAnonymous="true"/>
 <add name="Age" allowAnonymous="true" type="System.UInt16"/>
 <group name="UI">
 <add name="Color" allowAnonymous="true" defaultValue="Blue"/>
 <add name="Style" allowAnonymous="true" defaultValue="Plain"/>
 </group>
 </properties>
 </profile>
 ...

Setting anonymousIdentification to true enables unauthenticated users to use profiles. They
are identified by a GUID in a cookie rather than by a user name.

Now that the simple profile has been defined in web.config, the next step is to write some code to
test the profile.

1. In Design View, design a simple page with the added controls. The following figure shows the
Default.aspx tab open with various text box, list, and button controls.

Figure 4.2 Simple Profile Application

These will allow the user to enter some profile information. The user can also use the buttons to
save their profile, clear the page, and restore their profile data.

2. In the Code View add the following code snippet.

...
protected void Page_Load(object sender, EventArgs e)
{
 if (!IsPostBack)
 {
 TextBox1.Text = Profile.Name;
 TextBox2.Text = Profile.Age.ToString();
 Label1.Text = Profile.UI.Color;

266

ASP.NET Provider Model and Tutorials

 }
}

// Store Profile
protected void Button1_Click(object sender, EventArgs e)
{
 Profile.Name = TextBox1.Text;
 Profile.Age = UInt16.Parse(TextBox2.Text);
}

// Clear Form
protected void Button2_Click(object sender, EventArgs e)
{
 TextBox1.Text = "";
 TextBox2.Text = "";
 Label1.Text = "";
}

// Retrieve Profile
protected void Button3_Click(object sender, EventArgs e)
{
 TextBox1.Text = Profile.Name;
 TextBox2.Text = Profile.Age.ToString();
 Label1.Text = Profile.UI.Color;
}

protected void DropDownList1_SelectedIndexChanged(object sender, EventArgs e)
{
 Profile.UI.Color = DropDownList1.SelectedValue;
}
...

3. Save all files and build the solution to check that no errors have been introduced.

4. Run the application.

5. Enter your name, age, and select a color from the list. Now store this information in your profile by
clicking Store Profile.

Not selecting a color from the list uses the default color, Blue, that was specified in the
web.config file.

6. Click Clear Form to clear text from the text boxes and the label that displays your chosen color.

7. Now click Retrieve Profile to restore your profile data from the MySQL database.

8. Now exit the browser to terminate the application.

9. Run the application again, which also restores your profile information from the MySQL database.

In this tutorial you have seen how to using the MySQL Profile Provider with Connector/NET.

4.6.2.3 Tutorial: Web Parts Personalization Provider

MySQL Connector/NET provides a web parts personalization provider that allows you to use a MySQL
server to store personalization data.

Note

This feature was added in Connector/NET 6.9.0.

This tutorial demonstrates how to configure the web parts personalization provider using Connector/
NET.

Minimum Requirements

• An ASP.NET website or web application with a membership provider

• .NET Framework 3.0

267

ASP.NET Provider Model and Tutorials

• MySQL 5.5

Configuring MySQL Web Parts Personalization Provider

To configure the provider, do the following:

1. Add References to MySql.Data and MySql.Web to the website or web application project.

2. Include a Connector/NET personalization provider into the system.web section in the
web.config file.

<webParts>
 <personalization defaultProvider="MySQLPersonalizationProvider">
 <providers>
 <clear/>
 <add name="MySQLPersonalizationProvider"
 type="MySql.Web.Personalization.MySqlPersonalizationProvider,
 MySql.Web, Version=6.9.3.0, Culture=neutral,
 PublicKeyToken=c5687fc88969c44d"
 connectionStringName="LocalMySqlServer"
 applicationName="/" />
 </providers>
 <authorization>
 <allow verbs="modifyState" users="*" />
 <allow verbs="enterSharedScope" users="*"/>
 </authorization>
 </personalization>
</webParts>

Creating Web Part Controls

To create the web part controls, follow these steps:

1. Create a web application using Connector/NET ASP.NET Membership. For information about doing
this, see Section 4.6.2.1, “Tutorial: Connector/NET ASP.NET Membership and Role Provider”.

2. Create a new ASP.NET page and then change to the Design view.

3. From the Toolbox, drag a WebPartManager control to the page.

4. Now define an HTML table with three columns and one row.

5. From the WebParts Toolbox, drag and drop a WebPartZone control into both the first and second
columns.

6. From the WebParts Toolbox, drag and drop a CatalogZone with PageCatalogPart and
EditorZone controls into the third column.

7. Add controls to the WebPartZone, which should look similar to the following example:

<table>
 <tr>
 <td>
 <asp:WebPartZone ID="LeftZone" runat="server" HeaderText="Left Zone">
 <ZoneTemplate>
 <asp:Label ID="Label1" runat="server" title="Left Zone">
 <asp:BulletedList ID="BulletedList1" runat="server">
 <asp:ListItem Text="Item 1"></asp:ListItem>
 <asp:ListItem Text="Item 2"></asp:ListItem>
 <asp:ListItem Text="Item 3"></asp:ListItem>
 </asp:BulletedList>
 </asp:Label>
 </ZoneTemplate>
 </asp:WebPartZone>
 </td>
 <td>
 <asp:WebPartZone ID="MainZone" runat="server" HeaderText="Main Zone">
 <ZoneTemplate>
 <asp:Label ID="Label11" runat="server" title="Main Zone">
 <h2>This is the Main Zone</h2>

268

ASP.NET Provider Model and Tutorials

 </asp:Label>
 </ZoneTemplate>
 </asp:WebPartZone>
 </td>
 <td>
 <asp:CatalogZone ID="CatalogZone1" runat="server">
 <ZoneTemplate>
 <asp:PageCatalogPart ID="PageCatalogPart1" runat="server" />
 </ZoneTemplate>
 </asp:CatalogZone>
 <asp:EditorZone ID="EditorZone1" runat="server">
 <ZoneTemplate>
 <asp:LayoutEditorPart ID="LayoutEditorPart1" runat="server" />
 <asp:AppearanceEditorPart ID="AppearanceEditorPart1" runat="server" />
 </ZoneTemplate>
 </asp:EditorZone>
 </td>
 </tr>
</table>

8. Outside of the HTML table, add a drop-down list, two buttons, and a label as follows.

<asp:DropDownList ID="DisplayModes" runat="server" AutoPostBack="True"
 OnSelectedIndexChanged="DisplayModes_SelectedIndexChanged">
</asp:DropDownList>
<asp:Button ID="ResetButton" runat="server" Text="Reset"
 OnClick="ResetButton_Click" />
<asp:Button ID="ToggleButton" runat="server" OnClick="ToggleButton_Click"
 Text="Toggle Scope" />
<asp:Label ID="ScopeLabel" runat="server"></asp:Label>

9. The following code fills the list for the display modes, shows the current scope, resets the
personalization state, toggles the scope (between user and the shared scope), and changes the
display mode.

public partial class WebPart : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {
 if (!IsPostBack)
 {
 foreach (WebPartDisplayMode mode in WebPartManager1.SupportedDisplayModes)
 {
 if (mode.IsEnabled(WebPartManager1))
 {
 DisplayModes.Items.Add(mode.Name);
 }
 }
 }
 ScopeLabel.Text = WebPartManager1.Personalization.Scope.ToString();
 }

 protected void ResetButton_Click(object sender, EventArgs e)
 {
 if (WebPartManager1.Personalization.IsEnabled &&
 WebPartManager1.Personalization.IsModifiable)
 {
 WebPartManager1.Personalization.ResetPersonalizationState();
 }
 }

 protected void ToggleButton_Click(object sender, EventArgs e)
 {
 WebPartManager1.Personalization.ToggleScope();
 }

 protected void DisplayModes_SelectedIndexChanged(object sender, EventArgs e)
 {
 var mode = WebPartManager1.SupportedDisplayModes[DisplayModes.SelectedValue];
 if (mode != null && mode.IsEnabled(WebPartManager1))
 {

269

ASP.NET Provider Model and Tutorials

 WebPartManager1.DisplayMode = mode;
 }
 }
}

Testing Web Part Changes

Use the following steps to validate your changes:

1. Run the application and open the web part page. The page should look like similar to the example
shown in the following figure in which the Toggle Scope button is set to Shared. The page also
includes the drop-down list, the Reset button, and the Left Zone and Main Zone controls.

Figure 4.3 Web Parts Page

Initially when the user account is not authenticated, the scope is Shared by default. The user
account must be authenticated to change settings on the web-part controls. The following figure
shows an example in which an authenticated user is able to customize the controls by using the
Browse drop-down list. The options in the list are Design, Catalog, and Edit.

Figure 4.4 Authenticated User Controls

2. Click Toggle Scope to switch the application back to the shared scope.

3. Now you can personalize the zones using the Edit or Catalog display modes at a specific user or
all-users level. The next figure shows Catalog selected from the drop-down list, which include the
Catalog Zone control that was added previously.

270

ASP.NET Provider Model and Tutorials

Figure 4.5 Personalize Zones

4.6.2.4 Tutorial: Simple Membership Web Provider

This section documents the ability to use a simple membership provider on MVC 4 templates. The
configuration OAuth compatible for the application to login using external credentials from third-party
providers like Google, Facebook, Twitter, or others.

This tutorial creates an application using a simple membership provider and then adds third-party
(Google) OAuth authentication support.

Note

This feature was added in MySQL Connector/NET 6.9.0.

Requirements

• Connector/NET 6.9.x or later

• .NET Framework 4.0 or later

• Visual Studio 2012 or later

• MVC 4

Creating and Configuring a New Project

To get started with a new project, do the following:

1. Open Visual Studio, create a new project of ASP.NET MVC 4 Web Application type, and configure
the project to use .NET Framework 4.5. The following figure shows and example of the New Project
window with the items selected.

271

ASP.NET Provider Model and Tutorials

Figure 4.6 Simple Membership: New Project

2. Choose the template and view engine that you like. This tutorial uses the Internet Application
Template with the Razor view engine (see the next figure). Optionally, you can add a unit test
project by selecting Create a unit test project.

Figure 4.7 Simple Membership: Choose Template and Engine

3. Add references to the MySql.Data, MySql.Data.Entities, and MySql.Web assemblies. The
assemblies chosen must match the .NET Framework and Entity Framework versions added to the
project by the template.

4. Add a valid MySQL connection string to the web.config file, similar to the following example.

<add
 name="MyConnection"
 connectionString="server=localhost;
 UserId=root;
 password=pass;
 database=MySqlSimpleMembership;

272

ASP.NET Provider Model and Tutorials

 logging=true;port=3305"
 providerName="MySql.Data.MySqlClient"/>

5. Under the <system.data> node, add configuration information similar to the following example.

<membership defaultProvider="MySqlSimpleMembershipProvider">
<providers>
<clear/>
<add
 name="MySqlSimpleMembershipProvider"
 type="MySql.Web.Security.MySqlSimpleMembershipProvider,MySql.Web,
 Version=6.9.2.0,Culture=neutral,PublicKeyToken=c5687fc88969c44d"
 applicationName="MySqlSimpleMembershipTest"
 description="MySQLdefaultapplication"
 connectionStringName="MyConnection"
 userTableName="MyUserTable"
 userIdColumn="MyUserIdColumn"
 userNameColumn="MyUserNameColumn"
 autoGenerateTables="True"/>
</providers>
</membership>

6. Update the configuration with valid values for the following properties: connectionStringName,
userTableName, userIdColumn, userNameColumn, and autoGenerateTables.

• userTableName: Name of the table to store the user information. This table is independent from
the schema generated by the provider, and it can be changed in the future.

• userId: Name of the column that stores the ID for the records in the userTableName.

• userName: Name of the column that stores the name/user for the records in the
userTableName.

• connectionStringName: This property must match a connection string defined in
web.config file.

• autoGenerateTables: This must be set to false if the table to handle the credentials already
exists.

7. Update your DBContext class with the connection string name configured.

8. Open the InitializeSimpleMembershipAttribute.cs file from the Filters/
folder and locate the SimpleMembershipInitializer class. Then find the
WebSecurity.InitializeDatabaseConnection method call and update the parameters
with the configuration for connectionStringName, userTableName, userIdColumn, and
userNameColumn.

9. If the database configured in the connection string does not exist, then create it.

273

ASP.NET Provider Model and Tutorials

10. After running the web application, the generated home page is displayed on success (see the figure
that follows).

Figure 4.8 Simple Membership: Generated Home Page

11. If the application executed with success, then the generated schema will be similar to the following
figure showing an object browser open to the tables.

Figure 4.9 Simple Membership: Generated Schema and Tables

12. To create a user login, click Register on the generated web page. Type the user name and
password, and then execute the registration form. This action redirects you to the home page with
the newly created user logged in.

The data for the newly created user can be located in the UserProfile and
Webpages_Membership tables.

Adding OAuth Authentication to a Project

OAuth is another authentication option for websites that use the simple membership provider. A user
can be validated using an external account like Facebook, Twitter, Google, and others.

Use the following steps to enable authentication using a Google account in the application:

1. Locate the AuthConfig.cs file in the App_Start folder.

274

Tutorial: Using an Entity Framework Entity as a Windows Forms Data Source

2. As this tutorial uses Google, find the RegisterAuth method and uncomment the last line where it
calls OauthWebSecurity.RegisterGoogleClient.

3. Run the application. When the application is running, click Log in to open the log in page. Then,
click Google under Use another service to log in (shown in the figure that follows).

Figure 4.10 Simple Membership with OAuth: Google Service

4. This action redirects to the Google login page (at google.com), and requests you to sign in with
your Google account information.

5. After submitting the correct credentials, a message requests permission for your application to
access the user's information. Read the description and then click Accept to allow the quoted
actions, and to redirect back to the login page of the application.

6. The application now can register the account. The User name field will be filled in with the
appropriate information (in this case, the email address that is associated with the Google account).
Click Register to register the user with your application.

Now the new user is logged into the application from an external source using OAuth. Information
about the new user is stored in the UserProfile and Webpages_OauthMembership tables.

To use another external option to authenticate users, you must enable the client in the same class
where we enabled the Google provider in this tutorial. Typically, providers require you to register your
application before allowing OAuth authentication, and once registered they typically provide a token/
key and an ID that must be used when registering the provider in the application.

4.6.3 Tutorial: Using an Entity Framework Entity as a Windows Forms Data
Source

This tutorial describes how to create a Windows Forms Data Source from an Entity in an Entity Data
Model using Microsoft Visual Studio. The steps are:

• Creating a New Windows Forms Application

• Adding an Entity Data Model

• Adding a New Data Source

• Using the Data Source in a Windows Form

• Adding Code to Populate the Data Grid View

• Adding Code to Save Changes to the Database

275

Tutorial: Using an Entity Framework Entity as a Windows Forms Data Source

To perform the steps in this tutorial, first install the world database sample, which you may download
from the MySQL Documentation page. You can also find details on how to install the database on the
same page.

Creating a New Windows Forms Application

The first step is to create a new Windows Forms application.

1. In Visual Studio, select File, New, and then Project from the main menu.

2. Choose the Windows Forms Application installed template. Click OK. The solution is created.

To acquire the latest Entity Framework assembly for MySQL, download the NuGet package.

Adding an Entity Data Model

To add an Entity Data Model to your solution, do the following:

1. In the Solution Explorer, right-click your application and select Add and then New Item. From
Visual Studio installed templates, select ADO.NET Entity Data Model (see the figure that
follows). Click Add.

Figure 4.11 Add Entity Data Model

2. You will now see the Entity Data Model Wizard. You will use the wizard to generate the Entity
Data Model from the world database sample. Select the icon EF Designer from database (or
Generate from database in older versions of Visual Studio). Click Next.

3. You can now select the localhost(world) connection you made earlier to the database. Select
the following items:

• Yes, include the sensitive data in the connection string.

• Save entity connection settings in App.config as:

worldEntities

276

https://dev.mysql.com/doc/index-other.html

Tutorial: Using an Entity Framework Entity as a Windows Forms Data Source

If you have not already done so, you can create the new connection at this time by clicking New
Connection (see the figure that follows).

Figure 4.12 Entity Data Model Wizard - Connection

Make a note of the entity connection settings to be used in App.Config, as these will be used
later to write the necessary control code. Click Next.

4. The Entity Data Model Wizard connects to the database.

As the next figure shows, you are then presented with a tree structure of the database. From here
you can select the object you would like to include in your model. If you also created Views and

277

Tutorial: Using an Entity Framework Entity as a Windows Forms Data Source

Stored Routines, these items will be displayed along with any tables. In this example you just need
to select the tables. Click Finish to create the model and exit the wizard.

Figure 4.13 Entity Data Model Wizard - Objects and Settings

Visual Studio generates a model with three tables (city, country, and countrylanguage) and then
display it, as the following figure shows.

278

Tutorial: Using an Entity Framework Entity as a Windows Forms Data Source

Figure 4.14 Entity Data Model Diagram

5. From the Visual Studio main menu, select Build and then Build Solution to ensure that everything
compiles correctly so far.

Adding a New Data Source

You will now add a new Data Source to your project and see how it can be used to read and write to
the database.

1. From the Visual Studio main menu select Data and then Add New Data Source. You will be
presented with the Data Source Configuration Wizard.

2. Select the Object icon. Click Next.

3. Select the object to bind to. Expand the tree as the next figure shows.

In this tutorial, you will select the city table. After the city table has been selected click Next.

279

Tutorial: Using an Entity Framework Entity as a Windows Forms Data Source

Figure 4.15 Data Source Configuration Wizard

4. The wizard will confirm that the city object is to be added. Click Finish.

5. The city object will now appear in the Data Sources panel. If the Data Sources panel is not
displayed, select Data and then Show Data Sources from the Visual Studio main menu. The
docked panel will then be displayed.

Using the Data Source in a Windows Form

This step describes how to use the Data Source in a Windows Form.

1. In the Data Sources panel select the Data Source you just created and drag and drop it onto the
Form Designer. By default, the Data Source object will be added as a Data Grid View control as the
following figure shows.

Note

The Data Grid View control is bound to cityBindingSource, and the
Navigator control is bound to cityBindingNavigator.

280

Tutorial: Using an Entity Framework Entity as a Windows Forms Data Source

Figure 4.16 Data Form Designer

2. Save and rebuild the solution before continuing.

Adding Code to Populate the Data Grid View

You are now ready to add code to ensure that the Data Grid View control will be populated with data
from the city database table.

1. Double-click the form to access its code.

2. Add the following code to instantiate the Entity Data Model EntityContainer object and retrieve
data from the database to populate the control.

using System.Windows.Forms;

namespace WindowsFormsApplication4
{
 public partial class Form1 : Form
 {
 worldEntities we;

 public Form1()
 {
 InitializeComponent();
 }

 private void Form1_Load(object sender, EventArgs e)
 {
 we = new worldEntities();
 cityBindingSource.DataSource = we.city.ToList();
 }
 }
}

3. Save and rebuild the solution.

4. Run the solution. Confirm that the grid is populated (see the next figure for an example) and that
you can navigate the database.

281

Tutorial: Data Binding in ASP.NET Using LINQ on Entities

Figure 4.17 The Populated Grid Control

Adding Code to Save Changes to the Database

This step explains how to add code that enables you to save changes to the database.

The Binding source component ensures that changes made in the Data Grid View control are also
made to the Entity classes bound to it. However, that data needs to be saved back from the entities to
the database itself. This can be achieved by the enabling of the Save button in the Navigator control,
and the addition of some code.

1. In the Form Designer, click the save icon in the form toolbar and confirm that its Enabled property
is set to True.

2. Double-click the save icon in the form toolbar to display its code.

3. Add the following (or similar) code to ensure that data is saved to the database when a user clicks
the save button in the application.

 public Form1()
 {
 InitializeComponent();
 }

 private void Form1_Load(object sender, EventArgs e)
 {
 we = new worldEntities();
 cityBindingSource.DataSource = we.city.ToList();
 }
 private void cityBindingNavigatorSaveItem_Click(object sender, EventArgs e)
 {
 we.SaveChanges();
 }
 }
}

4. When the code has been added, save the solution and then rebuild it. Run the application and
verify that changes made in the grid are saved.

4.6.4 Tutorial: Data Binding in ASP.NET Using LINQ on Entities

In this tutorial you create an ASP.NET web page that binds LINQ queries to entities using the Entity
Framework mapping with MySQL Connector/NET.

282

Tutorial: Data Binding in ASP.NET Using LINQ on Entities

If you have not already done so, install the world database sample prior to attempting this tutorial.
See the tutorial Section 4.6.3, “Tutorial: Using an Entity Framework Entity as a Windows Forms Data
Source” for instructions on downloading and installing this database.

Creating an ASP.NET Website

In this part of the tutorial, you create an ASP.NET website. The website uses the world database. The
main web page features a drop-down list from which you can select a country. Data about the cities of
that country is then displayed in a GridView control.

1. From the Visual Studio main menu select File, New, and then Web Site.

2. From the Visual Studio installed templates select ASP.NET Web Site. Click OK. You will be
presented with the Source view of your web page by default.

3. Click the Design view tab situated underneath the Source view panel.

4. In the Design view panel, enter some text to decorate the blank web page.

5. Click Toolbox. From the list of controls, select DropDownList. Drag and drop the control to a
location beneath the text on your web page.

6. From the DropDownList control context menu, ensure that the Enable AutoPostBack check
box is enabled. This will ensure the control's event handler is called when an item is selected. The
user's choice will in turn be used to populate the GridView control.

7. From the Toolbox select the GridView control. Drag and drop the GridView control to a location
just below the drop-down list you already placed.

The following figure shows an example of the decorative text and two controls in the Design view
tab. The added GridView control produced a grid with three columns (Column0, Column1, and
Column3) and the string abc in each cell of the grid.

Figure 4.18 Placed GridView Control

8. At this point it is recommended that you save your solution, and build the solution to ensure that
there are no errors.

9. If you run the solution you will see that the text and drop down list are displayed, but the list is
empty. Also, the grid view does not appear at all. Adding this functionality is described in the
following sections.

283

Tutorial: Data Binding in ASP.NET Using LINQ on Entities

At this stage you have a website that will build, but further functionality is required. The next step will be
to use the Entity Framework to create a mapping from the world database into entities that you can
control programmatically.

Creating an ADO.NET Entity Data Model

In this stage of the tutorial you will add an ADO.NET Entity Data Model to your project, using the
world database at the storage level. The procedure for doing this is described in the tutorial
Section 4.6.3, “Tutorial: Using an Entity Framework Entity as a Windows Forms Data Source”, and so
will not be repeated here.

Populating a List Box by Using the Results of a Entity LINQ Query

In this part of the tutorial you will write code to populate the DropDownList control. When the web
page loads the data to populate the list will be achieved by using the results of a LINQ query on the
model created previously.

1. In the Design view panel, double-click any blank area. This brings up the Page_Load method.

2. Modify the relevant section of code according to the following listing example.

...
public partial class _Default : System.Web.UI.Page
{
 worldModel.worldEntities we;

 protected void Page_Load(object sender, EventArgs e)
 {
 we = new worldModel.worldEntities();

 if (!IsPostBack)
 {
 var countryQuery = from c in we.country
 orderby c.Name
 select new { c.Code, c.Name };
 DropDownList1.DataValueField = "Code";
 DropDownList1.DataTextField = "Name";
 DropDownList1.DataSource = countryQuery.ToList();
 DataBind();
 }
 }
...

The list control only needs to be populated when the page first loads. The conditional code ensures
that if the page is subsequently reloaded, the list control is not repopulated, which would cause the
user selection to be lost.

3. Save the solution, build it and run it. You should see that the list control has been populated. You
can select an item, but as yet the GridView control does not appear.

At this point you have a working Drop Down List control, populated by a LINQ query on your entity data
model.

Populating a Grid View Control by Using an Entity LINQ Query

In the last part of this tutorial you will populate the Grid View Control using a LINQ query on your entity
data model.

1. In the Design view, double-click the DropDownList control. This action causes its
SelectedIndexChanged code to be displayed. This method is called when a user selects an item
in the list control and thus generates an AutoPostBack event.

2. Modify the relevant section of code accordingly to the following listing example.

...
 protected void DropDownList1_SelectedIndexChanged(object sender, EventArgs e)

284

Tutorial: Generating MySQL DDL from an Entity Framework Model

 {
 var cityQuery = from c in we.city
 where c.CountryCode == DropDownList1.SelectedValue
 orderby c.Name
 select new { c.Name, c.Population, c.CountryCode };
 GridView1.DataSource = cityQuery;
 DataBind();
 }
...

The grid view control is populated from the result of the LINQ query on the entity data model.

3. Save, build, and run the solution. As you select a country you will see its cities are displayed in the
GridView control. The following figure shows Belgium selected from the list box and a table with
three columns: Name, Population, and CountryCode.

Figure 4.19 The Working Website

In this tutorial you have seen how to create an ASP.NET website, you have also seen how you can
access a MySQL database using LINQ queries on an entity data model.

4.6.5 Tutorial: Generating MySQL DDL from an Entity Framework Model

This tutorial demonstrates how to create MySQL DDL from an Entity Framework model. Minimally, you
will need Microsoft Visual Studio 2017 and MySQL Connector/NET 6.10 to perform this tutorial.

1. Create a new console application in Visual Studio 2017.

2. Using the Solution Explorer, add a reference to MySql.Data.Entity.

3. From the Solution Explorer select Add, New Item. In the Add New Item dialog select Online
Templates. Select ADO.NET Entity Data Model and click Add to open the Entity Data Model
dialog.

4. In the Entity Data Model dialog select Empty Model. Click Finish to create a blank model.

5. Create a simple model. A single Entity will do for the purposes of this tutorial.

6. In the Properties panel select ConceptualEntityModel from the drop-down list.

7. In the Properties panel, locate the DDL Generation Template in the category Database Script
Generation.

285

https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_ddl

Tutorial: Basic CRUD Operations with Connector/NET

8. For the DDL Generation property select SSDLToMySQL.tt(VS) from the drop-down list.

9. Save the solution.

10. Right-click an empty space in the model design area to open the context-sensitive menu. From the
menu select Generate Database from Model to open the Generate Database Wizard dialog.

11. In the Generate Database Wizard dialog select an existing connection, or create a new connection
to a server. Select an appropriate option to show or hide sensitive data. For the purposes of this
tutorial, you can select Yes, although you might skip this for commercial applications.

12. Click Next to generate MySQL compatible DDL code and then click Finish to exit the wizard.

You have seen how to create MySQL DDL code from an Entity Framework model.

4.6.6 Tutorial: Basic CRUD Operations with Connector/NET

This tutorial provides instructions to get you started using MySQL as a document store with MySQL
Connector/NET.

• Minimum Requirements

• Import the Document Store Sample

• Add References to Required DLLs

• Import Namespaces

• Create a Session

• Find a Row Within a Collection

• Insert a New Document into a Collection

• Update an Existing Document

• Delete a Specific Document

• Close the Session

• Complete Code Example

For concepts and additional usage examples, see X DevAPI User Guide.

Minimum Requirements

• MySQL Server 8.0.11 with X Protocol enabled

• Connector/NET 8.0.11

• Visual Studio 2013/2015/2017

• world_x database sample

Import the Document Store Sample

A MySQL script is provided with data and a JSON collection. The sample contains the following:

• Collection

• countryinfo: Information about countries in the world.

• Tables

• country: Minimal information about countries of the world.

• city: Information about some of the cities in those countries.

286

https://dev.mysql.com/doc/x-devapi-userguide/en/

Tutorial: Basic CRUD Operations with Connector/NET

• countrylanguage: Languages spoken in each country.

To install the world_x database sample, follow these steps:

1. Download world_x.zip from http://dev.mysql.com/doc/index-other.html.

2. Extract the installation archive to a temporary location such as /tmp/.

Unpacking the archive results in two files, one of them named world_x.sql.

3. Connect to the MySQL server using the MySQL Client with the following command:

$> mysql -u root -p

Enter your password when prompted. A non-root account can be used as long as the account has
privileges to create new databases. For more information about using the MySQL Client, see mysql
— The MySQL Command-Line Client.

4. Execute the world_x.sql script to create the database structure and insert the data as follows:

mysql> SOURCE /temp/world_x.sql;

Replace /temp/ with the path to the world_x.sql file on your system.

Add References to Required DLLs

Create a new Visual Studio Console Project targeting .NET Framework 4.6.2 (or later), .NET Core 1.1,
or .NET Core 2.0. The code examples in this tutorial are shown in the C# language, but you can use
any .NET language.

Add a reference in your project to the following DLLs:

• MySql.Data.dll

• Google.Protobuf.dll

Import Namespaces

Import the required namespaces by adding the following statements:

using MySqlX.XDevAPI;
using MySqlX.XDevAPI.Common;
using MySqlX.XDevAPI.CRUD;

Create a Session

A session in the X DevAPI is a high-level database session concept that is different from working with
traditional low-level MySQL connections. It is important to understand that this session is not the same
as a traditional MySQL session. Sessions encapsulate one or more actual MySQL connections.

The following example opens a session, which you can use later to retrieve a schema and perform
basic CRUD operations.

string schemaName = "world_x";
// Define the connection string
string connectionURI = "mysqlx://test:test@localhost:33060";
Session session = MySQLX.GetSession(connectionURI);
// Get the schema object
Schema schema = session.GetSchema(schemaName);

Find a Row Within a Collection

After the session is instantiated, you can execute a find operation. The next example uses the session
object that you created:

287

http://dev.mysql.com/doc/index-other.html
https://dev.mysql.com/doc/refman/8.0/en/mysql.html
https://dev.mysql.com/doc/refman/8.0/en/mysql.html

Tutorial: Basic CRUD Operations with Connector/NET

// Use the collection 'countryinfo'
var myCollection = schema.GetCollection("countryinfo");
var docParams = new DbDoc(new { name1 = "Albania", _id1 = "ALB" });

// Find a document
DocResult foundDocs = myCollection.Find("Name = :name1 || _id = :_id1").Bind(docParams).Execute();

while (foundDocs.Next())
{
 Console.WriteLine(foundDocs.Current["Name"]);
 Console.WriteLine(foundDocs.Current["_id"]);
}

Insert a New Document into a Collection

//Insert a new document with an identifier
var obj = new { _id = "UKN", Name = "Unknown" };
Result r = myCollection.Add(obj).Execute();

Update an Existing Document

// using the same docParams object previously created
docParams = new DbDoc(new { name1 = "Unknown", _id1 = "UKN" });
r = myCollection.Modify("_id = :Id").Bind("id", "UKN").Set("GNP", "3308").Execute();
if (r.AffectedItemsCount == 1)
{
 foundDocs = myCollection.Find("Name = :name1|| _id = :_id1").Bind(docParams).Execute();
 while (foundDocs.Next())
 {
 Console.WriteLine(foundDocs.Current["Name"]);
 Console.WriteLine(foundDocs.Current["_id"]);
 Console.WriteLine(foundDocs.Current["GNP"]);
 }
}

Delete a Specific Document

r = myCollection.Remove("_id = :id").Bind("id", "UKN").Execute();

Close the Session

session.Close();

Complete Code Example

The following example shows the basic operations that you can perform with a collection.

using MySqlX.XDevAPI;
using MySqlX.XDevAPI.Common;
using MySqlX.XDevAPI.CRUD;
using System;

namespace MySQLX_Tutorial
{
 class Program
 {
 static void Main(string[] args)
 {

 string schemaName = "world_x";
 string connectionURI = "mysqlx://test:test@localhost:33060";
 Session session = MySQLX.GetSession(connectionURI);
 Schema schema = session.GetSchema(schemaName);

 // Use the collection 'countryinfo'
 var myCollection = schema.GetCollection("countryinfo");
 var docParams = new DbDoc(new { name1 = "Albania", _id1 = "ALB" });

 // Find a document

288

Tutorial: Configuring SSL with Connector/NET

 DocResult foundDocs = myCollection.Find("Name = :name1 || _id = :_id1").Bind(docParams).Execute();

 while (foundDocs.Next())
 {
 Console.WriteLine(foundDocs.Current["Name"]);
 Console.WriteLine(foundDocs.Current["_id"]);
 }

 //Insert a new document with an id
 var obj = new { _id = "UKN", Name = "Unknown" };
 Result r = myCollection.Add(obj).Execute();

 //update an existing document
 docParams = new DbDoc(new { name1 = "Unknown", _id1 = "UKN" });
 r = myCollection.Modify("_id = :Id").Bind("id", "UKN").Set("GNP", "3308").Execute();
 if (r.AffectedItemsCount == 1)
 {
 foundDocs = myCollection.Find("Name = :name1|| _id = :_id1").Bind(docParams).Execute();
 while (foundDocs.Next())
 {
 Console.WriteLine(foundDocs.Current["Name"]);
 Console.WriteLine(foundDocs.Current["_id"]);
 Console.WriteLine(foundDocs.Current["GNP"]);
 }
 }

 // delete a row in a document
 r = myCollection.Remove("_id = :id").Bind("id", "UKN").Execute();

 //close the session
 session.Close();

 Console.ReadKey();

 }
 }
}

4.6.7 Tutorial: Configuring SSL with Connector/NET

In this tutorial you will learn how you can use MySQL Connector/NET to connect to a MySQL server
configured to use SSL. Support for SSL client PFX certificates was added to the Connector/NET 6.2
release series. PFX is the native format of certificates on Microsoft Windows. More recently, support for
SSL client PEM certificates was added in the Connector/NET 8.0.16 release.

MySQL Server uses the PEM format for certificates and private keys. Connector/NET enables the use
of either PEM or PFX certificates with both classic MySQL protocol and X Protocol. This tutorial uses
the test certificates from the server test suite by way of example. You can obtain the MySQL Server
source code from MySQL Downloads. The certificates can be found in the ./mysql-test/std_data
directory.

To apply the server-side startup configuration for SSL connections:

1. In the MySQL Server configuration file, set the SSL parameters as shown in the follow PEM format
example. Adjust the directory paths according to the location in which you installed the MySQL
source code.

ssl-ca=path/to/repo/mysql-test/std_data/cacert.pem
ssl-cert=path/to/repo/mysql-test/std_data/server-cert.pem
ssl-key=path/to/repo/mysql-test/std_data/server-key.pem

The SslCa connection option accepts both PEM and PFX format certificates, using the file
extension to determine how to process certificates. Change cacert.pem to cacert.pfx if you
intend to continue with the PFX portion of this tutorial.

For a description of the connection string options used in this tutorial, see Section 4.4.5,
“Connector/NET Connection Options Reference”.

289

https://dev.mysql.com/downloads/mysql/5.1.html#source

Tutorial: Configuring SSL with Connector/NET

2. Create a test user account to use in this tutorial and set the account to require SSL. Using the
MySQL Command-Line Client, connect as root and create the user sslclient (with test as the
account password). Then, grant all privileges to the new user account as follows:

CREATE USER sslclient@'%' IDENTIFIED BY 'test' REQUIRE SSL;

GRANT ALL PRIVILEGES ON *.* TO sslclient@'%';

For detailed information about account-management strategies, see Access Control and Account
Management.

Now that the server-side configuration is finished, you can begin the client-side configuration using
either PEM or PFX format certificates in Connector/NET.

4.6.7.1 Using PEM Certificates in Connector/NET

The direct use of PEM format certificates was introduced to simplify certificate management in
multiplatform environments that include similar MySQL products. In previous versions of Connector/
NET, your only choice was to use platform-dependent PFX format certificates.

For this example, use the test client certificates from the MySQL server repository (server-
repository-root/mysql-test/std_data). In your application, add a connection string using the
test database and the sslclient user account (created previously). For example:

1. Set the SslMode connection option to the level of security needed. PEM certificates are only
validated for VerifyCA and VerifyFull SSL mode values. All other mode values ignore
certificates even if they are provided.

using (MySqlConnection connection = new MySqlConnection(
"database=test;user=sslclient;" +
"SslMode=VerifyFull"

2. Add the appropriate SSL certificates. Because this tutorial sets the SslMode option to
VerifyFull, you must also provide values for the SslCa, SslCert, and SslKey connection
options. Each option must point to a file with the .pem file extension.

"SslCa=ca.pem;" +
"SslCert=client-cert.pem;" +
"SslKey=client-key.pem;"))

Alternatively, if you set the SSL mode to VerifyCA, only the SslCa connection option is required.

3. Open a connection. The following example opens a connection using the classic MySQL protocol,
but you can perform a similar test using X Protocol.

using (MySqlConnection connection = new MySqlConnection(
"database=test;user=sslclient;" +
 "SslMode=VerifyFull" +
 "SslCa=ca.pem;" +
 "SslCert=client-cert.pem;" +
 "SslKey=client-key.pem;"))

{
 connection.Open();
}

Errors found when processing the PEM certificates will result in an exception being thrown. For
additional information, see Command Options for Encrypted Connections.

4.6.7.2 Using PFX Certificates in Connector/NET

.NET does not provide native support the PEM format. Instead, Windows includes a certificate store
that provides platform-dependent certificates in PFX format. For the purposes of this example, use test
client certificates from the MySQL server repository (./mysql-test/std_data). Convert these to
PFX format first. This format is also known as PKCS#12.

290

https://dev.mysql.com/doc/refman/8.0/en/access-control.html
https://dev.mysql.com/doc/refman/8.0/en/access-control.html
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#encrypted-connection-options

Tutorial: Configuring SSL with Connector/NET

To complete the steps in this tutorial for PFX certificates, you must have Open SSL installed. This can
be downloaded for Microsoft Windows at no charge from Shining Light Productions.

Creating a Certificate File to Use with the .NET Client

1. From the directory server-repository-root/mysql-test/std_data, issue the following
command.

openssl pkcs12 -export -in client-cert.pem -inkey client-key.pem -certfile cacert.pem -out client.pfx

2. When asked for an export password, enter the password “pass”. The file client.pfx will be
generated. This file is used in the remainder of the tutorial.

Connecting to the Server Using a File-Based Certificate

1. Use the client.pfx file that you created in the previous step to authenticate the client. The
following example demonstrates how to connect using the SslMode, CertificateFile, and
CertificatePassword connection string options.

using (MySqlConnection connection = new MySqlConnection(
 "database=test;user=sslclient;" +
 "CertificateFile=H:\\git\\mysql-trunk\\mysql-test\\std_data\\client.pfx;" +
 "CertificatePassword=pass;" +
 "SslMode=Required "))

{
 connection.Open();
}

The path to the certificate file needs to be changed to reflect your individual installation. When using
PFX format certificates, the SslMode connection option validates certificates for all SSL mode
values, except Disabled or None (deprecated in Connector/NET 8.0.29).

Connecting to the Server Using a Store-Based Certificate

1. The first step is to import the PFX file, client.pfx, into the Personal Store. Double-click the file in
Windows explorer. This launches the Certificate Import Wizard.

2. Follow the steps dictated by the wizard, and when prompted for the password for the PFX file, enter
“pass”.

3. Click Finish to close the wizard and import the certificate into the personal store.

Examining Certificates in the Personal Store

1. Start the Microsoft Management Console by entering mmc.exe at a command prompt.

2. Select Add/Remove snap-in from the File menu. Click Add. Select Certificates from the list of
available snap-ins.

3. In the dialog, click Add and then select the My user account option. This option is used for
personal certificates.

4. Click Finish.

5. Click OK to close the Add/Remove Snap-in dialog.

6. You now have Certificates – Current User displayed in the left panel of the Microsoft Management
Console. Expand the Certificates - Current User tree item and select Personal, Certificates. The
right panel displays a certificate issued to MySQL that was previously imported. Double-click the
certificate to display its details.

7. After you have imported the certificate to the Personal Store, you can use a more succinct
connection string to connect to the database, as illustrated by the following code:

291

http://www.slproweb.com/products/Win32OpenSSL.html

Tutorial: Using MySqlScript

using (MySqlConnection connection = new MySqlConnection(
 "database=test;user=sslclient;" +
 "Certificate Store Location=CurrentUser;" +
 "SslMode=Required"))

{
 connection.Open();
}

Certificate Thumbprint Parameter

If you have a large number of certificates in your store, and many have the same Issuer, this can be a
source of confusion and result in the wrong certificate being used. To alleviate this situation, there is an
optional Certificate Thumbprint parameter that can additionally be specified as part of the connection
string. As mentioned before, you can double-click a certificate in the Microsoft Management Console to
display the certificate's details. When the Certificate dialog is displayed click the Details tab and scroll
down to see the thumbprint. The thumbprint will typically be a number such as ‎47 94 36 00 9a 40
f3 01 7a 14 5c f8 47 9e 76 94 d7 aa de f0. This thumbprint can be used in the connection
string, as the following code illustrates:

using (MySqlConnection connection = new MySqlConnection(
 "database=test;user=sslclient;" +
 "Certificate Store Location=CurrentUser;" +
 "Certificate Thumbprint=479436009a40f3017a145cf8479e7694d7aadef0;"+
 "SSL Mode=Required"))
{
 connection.Open();
}

Spaces in the thumbprint parameter are optional and the value is not case-sensitive.

4.6.8 Tutorial: Using MySqlScript

This tutorial teaches you how to use the MySqlScript class. This class enables you to execute a
series of statements. Depending on the circumstances, this can be more convenient than using the
MySqlCommand approach.

Further details of the MySqlScript class can be found in the reference documentation supplied with
MySQL Connector/NET.

To run the example programs in this tutorial, set up a simple test database and table using the mysql
Command-Line Client or MySQL Workbench. Commands for the mysql Command-Line Client are
given here:

CREATE DATABASE TestDB;
USE TestDB;
CREATE TABLE TestTable (id INT NOT NULL PRIMARY KEY
 AUTO_INCREMENT, name VARCHAR(100));

The main method of the MySqlScript class is the Execute method. This method causes the script
(sequence of statements) assigned to the Query property of the MySqlScript object to be executed.
The Query property can be set through the MySqlScript constructor or by using the Query property.
Execute returns the number of statements executed.

The MySqlScript object will execute the specified script on the connection set using the Connection
property. Again, this property can be set directly or through the MySqlScript constructor. The
following code snippets illustrate this:

string sql = "SELECT * FROM TestTable";
...
MySqlScript script = new MySqlScript(conn, sql);
...
MySqlScript script = new MySqlScript();
script.Query = sql;
script.Connection = conn;

292

Tutorial: Using MySqlScript

...
script.Execute();

The MySqlScript class has several events associated with it. There are:

1. Error - generated if an error occurs.

2. ScriptCompleted - generated when the script successfully completes execution.

3. StatementExecuted - generated after each statement is executed.

It is possible to assign event handlers to each of these events. These user-provided routines are called
back when the connected event occurs. The following code shows how the event handlers are set up.

script.Error += new MySqlScriptErrorEventHandler(script_Error);
script.ScriptCompleted += new EventHandler(script_ScriptCompleted);
script.StatementExecuted += new MySqlStatementExecutedEventHandler(script_StatementExecuted);

In VisualStudio, you can save typing by using tab completion to fill out stub routines. Start by typing, for
example, “script.Error +=”. Then press TAB, and then press TAB again. The assignment is completed,
and a stub event handler created. A complete working example is shown below:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

using System.Data;
using MySql.Data;
using MySql.Data.MySqlClient;

namespace MySqlScriptTest
{
 class Program
 {
 static void Main(string[] args)
 {
 string connStr = "server=localhost;user=root;database=TestDB;port=3306;password=******";
 MySqlConnection conn = new MySqlConnection(connStr);

 try
 {
 Console.WriteLine("Connecting to MySQL...");
 conn.Open();

 string sql = "INSERT INTO TestTable(name) VALUES ('Superman');" +
 "INSERT INTO TestTable(name) VALUES ('Batman');" +
 "INSERT INTO TestTable(name) VALUES ('Wolverine');" +
 "INSERT INTO TestTable(name) VALUES ('Storm');";

 MySqlScript script = new MySqlScript(conn, sql);

 script.Error += new MySqlScriptErrorEventHandler(script_Error);
 script.ScriptCompleted += new EventHandler(script_ScriptCompleted);
 script.StatementExecuted += new MySqlStatementExecutedEventHandler(script_StatementExecuted);

 int count = script.Execute();

 Console.WriteLine("Executed " + count + " statement(s).");
 Console.WriteLine("Delimiter: " + script.Delimiter);
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.ToString());
 }

 conn.Close();
 Console.WriteLine("Done.");
 }

 static void script_StatementExecuted(object sender, MySqlScriptEventArgs args)

293

Tutorial: Using MySqlScript

 {
 Console.WriteLine("script_StatementExecuted");
 }

 static void script_ScriptCompleted(object sender, EventArgs e)
 {
 /// EventArgs e will be EventArgs.Empty for this method
 Console.WriteLine("script_ScriptCompleted!");
 }

 static void script_Error(Object sender, MySqlScriptErrorEventArgs args)
 {
 Console.WriteLine("script_Error: " + args.Exception.ToString());
 }
 }
}

In the script_ScriptCompleted event handler, the EventArgs parameter e will be
EventArgs.Empty. In the case of the ScriptCompleted event there is no additional data to be
obtained, which is why the event object is EventArgs.Empty.

Using Delimiters with MySqlScript

Depending on the nature of the script, you may need control of the delimiter used to separate the
statements that will make up a script. The most common example of this is where you have a multi-
statement stored routine as part of your script. In this case if the default delimiter of “;” is used you will
get an error when you attempt to execute the script. For example, consider the following stored routine:

CREATE PROCEDURE test_routine()
BEGIN
 SELECT name FROM TestTable ORDER BY name;
 SELECT COUNT(name) FROM TestTable;
END

This routine actually needs to be executed on the MySQL Server as a single statement. However, with
the default delimiter of “;”, the MySqlScript class would interpret the above as two statements, the
first being:

CREATE PROCEDURE test_routine()
BEGIN
 SELECT name FROM TestTable ORDER BY name;

Executing this as a statement would generate an error. To solve this problem MySqlScript supports
the ability to set a different delimiter. This is achieved through the Delimiter property. For example, you
could set the delimiter to “??”, in which case the above stored routine would no longer generate an
error when executed. Multiple statements can be delimited in the script, so for example, you could have
a three statement script such as:

string sql = "DROP PROCEDURE IF EXISTS test_routine??" +
 "CREATE PROCEDURE test_routine() " +
 "BEGIN " +
 "SELECT name FROM TestTable ORDER BY name;" +
 "SELECT COUNT(name) FROM TestTable;" +
 "END??" +
 "CALL test_routine()";

You can change the delimiter back at any point by setting the Delimiter property. The following code
shows a complete working example:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

using MySql.Data;
using MySql.Data.MySqlClient;

namespace ConsoleApplication8

294

Connector/NET for Entity Framework

{
 class Program
 {
 static void Main(string[] args)
 {
 string connStr = "server=localhost;user=root;database=TestDB;port=3306;password=******";
 MySqlConnection conn = new MySqlConnection(connStr);

 try
 {
 Console.WriteLine("Connecting to MySQL...");
 conn.Open();

 string sql = "DROP PROCEDURE IF EXISTS test_routine??" +
 "CREATE PROCEDURE test_routine() " +
 "BEGIN " +
 "SELECT name FROM TestTable ORDER BY name;" +
 "SELECT COUNT(name) FROM TestTable;" +
 "END??" +
 "CALL test_routine()";

 MySqlScript script = new MySqlScript(conn);

 script.Query = sql;
 script.Delimiter = "??";
 int count = script.Execute();
 Console.WriteLine("Executed " + count + " statement(s)");
 script.Delimiter = ";";
 Console.WriteLine("Delimiter: " + script.Delimiter);
 Console.WriteLine("Query: " + script.Query);
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.ToString());
 }

 conn.Close();
 Console.WriteLine("Done.");
 }
 }
}

4.7 Connector/NET for Entity Framework
Entity Framework is the name given to a set of technologies that support the development of data-
oriented software applications. MySQL Connector/NET supports Entity Framework 6.0 (EF6 or EF
6.4) and Entity Framework Core (EF Core), which is the most recent framework available to .NET
developers who work with MySQL data using .NET objects.

The following table identifies each Entity Framework release and shows which Connector/NET series
supports the release. Backward compatibility of each feature set is determined by the framework rather
than by Connector/NET.

Table 4.2 Entity Framework Support by Connector/NET Version

Framework Type Connector/NET Support

EF Core • EF Core 8.0: Full support with 8.3.0 and later on platforms that
support .NET 8.

• EF Core 7.0: Full support with 8.1.0 and later on platforms that
support .NET 7.

• EF Core 7.0: Full support with 8.0.33 and later on platforms that
support .NET 7.

• EF Core 6.0: Full support with 8.0.28 and later on platforms that
support .NET 6.

295

Entity Framework 6 Support

Framework Type Connector/NET Support

EF6 | EF 6.4 • EF 6.4: Full cross-platform support in 8.0.22 and later.

• EF6: Full support on Windows only in 8.0.11 and later.

4.7.1 Entity Framework 6 Support

MySQL Connector/NET integrates support for Entity Framework 6 (EF6), which now includes support
for cross-platform application deployment with the EF 6.4 version. This chapter describes how to
configure and use the EF6 features that are implemented in Connector/NET.

In this section:

• Minimum Requirements for EF6 on Windows Only

• Minimum Requirements for EF 6.4 with Cross-Platform Support

• Configuration

• EF6 Features

• Code First Features

• Example for Using EF6

Minimum Requirements for EF6 on Windows Only

• Connector/NET 6.10 or 8.0.11

• MySQL Server 5.6

• Entity Framework 6 assemblies

• .NET Framework 4.6.2

Minimum Requirements for EF 6.4 with Cross-Platform Support

• Connector/NET 8.0.22

• MySQL Server 5.6

• Entity Framework 6.4 assemblies

• .NET Standard 2.1 (.NET Core SDK 3.1 and Visual Studio 2019 version 16.5)

Configuration

Note

The MySQL Connector/NET 8.0 release series has a naming scheme for
EF6 assemblies and NuGet packages that differs from the scheme used with
previous release series, such as 6.9 and 6.10. To configure Connector/NET 6.9
or 6.10 for use with EF6, substitute the assembly and package names in this
section with the following:

• Assembly: MySql.Data.Entity.EF6

• NuGet package: MySql.Data.Entity

For more information about the MySql.Data.Entity NuGet package and
its uses, see https://www.nuget.org/packages/MySql.Data.Entity/.

To configure Connector/NET support for EF6:

296

https://www.nuget.org/packages/MySql.Data.Entity/

Entity Framework 6 Support

1. Edit the configuration sections in the app.config file to add the connection string and the
Connector/NET provider.

<connectionStrings>
 <add name="MyContext" providerName="MySql.Data.MySqlClient"
 connectionString="server=localhost;port=3306;database=mycontext;uid=root;password=********"/>
</connectionStrings>
<entityFramework>
 <defaultConnectionFactory type="System.Data.Entity.Infrastructure.SqlConnectionFactory, EntityFramework"/>
 <providers>
 <provider invariantName="MySql.Data.MySqlClient"
 type="MySql.Data.MySqlClient.MySqlProviderServices, MySql.Data.EntityFramework"/>
 <provider invariantName="System.Data.SqlClient"
 type="System.Data.Entity.SqlServer.SqlProviderServices, EntityFramework.SqlServer"/>
 </providers>
</entityFramework>

2. Apply the assembly reference using one of the following techniques:

• NuGet package. Install the NuGet package to add this reference automatically to the
app.config or web.config file during the installation. For example, to install the package for
Connector/NET 8.0.22, use one of the following installation options:

• Command Line Interface (CLI)

dotnet add package MySql.Data.EntityFramework -Version 8.0.22

• Package Manager Console (PMC)

Install-Package MySql.Data.EntityFramework -Version 8.0.22

• Visual Studio with NuGet Package Manager. For this option, select nuget.org
as the package source, search for mysql.data, and install a stable version of
MySql.Data.EntityFramework.

• MySQL Connector/NET MSI file. Install MySQL Connector/NET and then add a reference
for the MySql.Data.EntityFramework assembly to your project. Depending on the .NET
Framework version used, the assembly is taken from the v4.0, v4.5, or v4.8 folder.

• MySQL Connector/NET source code. Build Connector/NET from source and then insert the
following data provider information into the app.config or web.config file:

<system.data>
 <DbProviderFactories>
 <remove invariant="MySql.Data.MySqlClient" />
 <add name="MySQL Data Provider" invariant="MySql.Data.MySqlClient" description=".Net Framework Data Provider for MySQL"
 type="MySql.Data.MySqlClient.MySqlClientFactory, MySql.Data, Version=8.0.22.0, Culture=neutral, PublicKeyToken=c5687fc88969c44d" />
 </DbProviderFactories>
</system.data>

Important

Always update the version number to match the one in the
MySql.Data.dll assembly.

3. Set the new DbConfiguration class for MySQL. This step is optional but highly recommended,
because it adds all the dependency resolvers for MySQL classes. This can be done in three ways:

• Adding the DbConfigurationTypeAttribute on the context class:

[DbConfigurationType(typeof(MySqlEFConfiguration))]

• Calling DbConfiguration.SetConfiguration(new MySqlEFConfiguration()) at the
application start up.

• Set the DbConfiguration type in the configuration file:

297

Entity Framework 6 Support

<entityFramework codeConfigurationType="MySql.Data.Entity.MySqlEFConfiguration, MySql.Data.EntityFramework">

It is also possible to create a custom DbConfiguration class and add the dependency resolvers
needed.

EF6 Features

Following are the new features in Entity Framework 6 implemented in Connector/NET:

• Cross-platform support in Connector/NET 8.0.22 implements EF 6.4 as the initial provider version to
include Linux and macOS compatibility with .NET Standard 2.1 from Microsoft.

• Async Query and Save adds support for the task-based asynchronous patterns that have been
available since .NET 4.5. The new asynchronous methods supported by Connector/NET are:

• ExecuteNonQueryAsync

• ExecuteScalarAsync

• PrepareAsync

• Connection Resiliency / Retry Logic enables automatic recovery from transient connection failures.
To use this feature, add to the OnCreateModel method:

SetExecutionStrategy(MySqlProviderInvariantName.ProviderName, () => new MySqlExecutionStrategy());

• Code-Based Configuration gives you the option of performing configuration in code, instead of
performing it in a configuration file, as it has been done traditionally.

• Dependency Resolution introduces support for the Service Locator. Some pieces of functionality
that can be replaced with custom implementations have been factored out. To add a dependency
resolver, use:

AddDependencyResolver(new MySqlDependencyResolver());

The following resolvers can be added:

• DbProviderFactory -> MySqlClientFactory

• IDbConnectionFactory -> MySqlConnectionFactory

• MigrationSqlGenerator -> MySqlMigrationSqlGenerator

• DbProviderServices -> MySqlProviderServices

• IProviderInvariantName -> MySqlProviderInvariantName

• IDbProviderFactoryResolver -> MySqlProviderFactoryResolver

• IManifestTokenResolver -> MySqlManifestTokenResolver

• IDbModelCacheKey -> MySqlModelCacheKeyFactory

• IDbExecutionStrategy -> MySqlExecutionStrategy

• Interception/SQL logging provides low-level building blocks for interception of Entity Framework
operations with simple SQL logging built on top:

myContext.Database.Log = delegate(string message) { Console.Write(message); };

• DbContext can now be created with a DbConnection that is already opened, which enables
scenarios where it would be helpful if the connection could be open when creating the context

298

Entity Framework 6 Support

(such as sharing a connection between components when you cannot guarantee the state of the
connection)

 [DbConfigurationType(typeof(MySqlEFConfiguration))]
 class JourneyContext : DbContext
 {
 public DbSet<MyPlace> MyPlaces { get; set; }

 public JourneyContext()
 : base()
 {

 }

 public JourneyContext(DbConnection existingConnection, bool contextOwnsConnection)
 : base(existingConnection, contextOwnsConnection)
 {

 }
 }

 using (MySqlConnection conn = new MySqlConnection("<connectionString>"))
 {
 conn.Open();
 ...

 using (var context = new JourneyContext(conn, false))
 {
 ...
 }
 }

• Improved Transaction Support provides support for a transaction external to the framework as
well as improved ways of creating a transaction within the Entity Framework. Starting with Entity
Framework 6, Database.ExecuteSqlCommand() will wrap by default the command in a
transaction if one was not already present. There are overloads of this method that allow users to
override this behavior if wished. Execution of stored procedures included in the model through APIs
such as ObjectContext.ExecuteFunction() does the same. It is also possible to pass an
existing transaction to the context.

• DbSet.AddRange/RemoveRange provides an optimized way to add or remove multiple entities from
a set.

Code First Features

Following are new Code First features supported by Connector/NET:

• Code First Mapping to Insert/Update/Delete Stored Procedures supported:

modelBuilder.Entity<EntityType>().MapToStoredProcedures();

• Idempotent migrations scripts allow you to generate an SQL script that can upgrade a database
at any version up to the latest version. To do so, run the Update-Database -Script -
SourceMigration: $InitialDatabase command in Package Manager Console.

• Configurable Migrations History Table allows you to customize the definition of the migrations history
table.

Example for Using EF6

The following C# code example represents the structure of an Entity Framework 6 model.

using MySql.Data.Entity;
using System.Data.Common;
using System.Data.Entity;

299

Entity Framework 6 Support

namespace EF6
{
 // Code-Based Configuration and Dependency resolution
 [DbConfigurationType(typeof(MySqlEFConfiguration))]
 public class Parking : DbContext
 {
 public DbSet<Car> Cars { get; set; }

 public Parking()
 : base()
 {

 }

 // Constructor to use on a DbConnection that is already opened
 public Parking(DbConnection existingConnection, bool contextOwnsConnection)
 : base(existingConnection, contextOwnsConnection)
 {

 }

 protected override void OnModelCreating(DbModelBuilder modelBuilder)
 {
 base.OnModelCreating(modelBuilder);
 modelBuilder.Entity<Car>().MapToStoredProcedures();
 }
 }

 public class Car
 {
 public int CarId { get; set; }

 public string Model { get; set; }

 public int Year { get; set; }

 public string Manufacturer { get; set; }
 }
}

The C# code example that follows shows how to use the entities from the previous model in an
application that stores the data within a MySQL table.

using MySql.Data.MySqlClient;
using System;
using System.Collections.Generic;

namespace EF6
{
 class Example
 {
 public static void ExecuteExample()
 {
 string connectionString = "server=localhost;port=3305;database=parking;uid=root";

 using (MySqlConnection connection = new MySqlConnection(connectionString))
 {
 // Create database if not exists
 using (Parking contextDB = new Parking(connection, false))
 {
 contextDB.Database.CreateIfNotExists();
 }

 connection.Open();
 MySqlTransaction transaction = connection.BeginTransaction();

 try
 {
 // DbConnection that is already opened
 using (Parking context = new Parking(connection, false))
 {

300

Entity Framework Core Support

 // Interception/SQL logging
 context.Database.Log = (string message) => { Console.WriteLine(message); };

 // Passing an existing transaction to the context
 context.Database.UseTransaction(transaction);

 // DbSet.AddRange
 List<Car> cars = new List<Car>();

 cars.Add(new Car { Manufacturer = "Nissan", Model = "370Z", Year = 2012 });
 cars.Add(new Car { Manufacturer = "Ford", Model = "Mustang", Year = 2013 });
 cars.Add(new Car { Manufacturer = "Chevrolet", Model = "Camaro", Year = 2012 });
 cars.Add(new Car { Manufacturer = "Dodge", Model = "Charger", Year = 2013 });

 context.Cars.AddRange(cars);

 context.SaveChanges();
 }

 transaction.Commit();
 }
 catch
 {
 transaction.Rollback();
 throw;
 }
 }
 }
 }
}

4.7.2 Entity Framework Core Support

MySQL Connector/NET integrates support for Entity Framework Core (EF Core). The requirements
and configuration of EF Core depend on the version of Connector/NET installed and the features that
you require. Use the table that follows to evaluate the minimum requirements.

Table 4.3 Connector/NET Versions and Entity Framework Core Support

Connector/NET EF Core 8.0 EF Core 7.0 EF Core 6.0

8.3.0 .NET 8, .NET 7, .NET 6 .NET 7, .NET 6 .NET 6

8.2.0 .NET 8 preview .NET 7 .NET 6

8.1.0 Not supported .NET 7 .NET 6

8.0.33 Not supported .NET 7 .NET 6

8.0.28 Not supported Not supported .NET 6

8.0.23 to 8.0.27 Not supported Not supported EF Core 6.0 preview

In this section:

• General Requirements for EF Core Support

• Configuration with MySQL

• Limitations

• Maximum String Length

General Requirements for EF Core Support

• Connector/NET 8.3 (or later)

• Server version: MySQL 8.3, MySQL 8.2, MySQL 8.1, MySQL 8.0, or MySQL 5.7

301

Entity Framework Core Support

• Entity Framework Core packages (replace n with a valid number to complete the full version of the
package):

• MySql.EntityFrameworkCore 8.0.n+MySQL8.3.n (Connector/NET 8.3.0 and later)

• MySql.EntityFrameworkCore 7.0.n+MySQL8.3.n (Connector/NET 8.3.0 and later)

• MySql.EntityFrameworkCore 6.0.n+MySQL8.3.n (Connector/NET 8.3.0 and later)

• An implementation of .NET Standard or .NET Framework that is supported by Connector/NET (see
Table 4.3, “Connector/NET Versions and Entity Framework Core Support”)

• .NET | .NET Core SDK

• .NET 8.0 for all supported platforms: https://dotnet.microsoft.com/es-es/download/dotnet/8.0

• .NET 7.0 for all supported platforms: https://dotnet.microsoft.com/download/dotnet/7.0

• .NET 6.0 for all supported platforms: https://dotnet.microsoft.com/download/dotnet/6.0

• .NET Core for Microsoft Windows: https://www.microsoft.com/net/core#windowscmd

• .NET Core for Linux: https://www.microsoft.com/net/core#linuxredhat

• .NET Core for macOS: https://www.microsoft.com/net/core#macos

• Docker: https://www.microsoft.com/net/core#dockercmd

• Optional: Microsoft Visual Studio 2017, 2019, 2022, or Code

Note

For the minimum version of Visual Studio to use with Connector/NET, see
Table 4.1, “Connector/NET Requirements for Related Products”.

Configuration with MySQL

To use Entity Framework Core with a MySQL database, do the following:

1. Install the NuGet package.

When you install either the MySql.EntityFrameworkCore or
MySql.Data.EntityFrameworkCore package, all of the related packages required to run your
application are installed for you. For instructions on adding a NuGet package, see the relevant
Microsoft documentation.

2. In the class that derives from the DbContext class, override the OnConfiguring method to set
the MySQL data provider with UseMySQL. The following example shows how to set the provider
using a generic connection string in C#.

protected override void OnConfiguring(DbContextOptionsBuilder optionsBuilder)
{
 #warning To protect potentially sensitive information in your connection string,
 you should move it out of source code. See http://go.microsoft.com/fwlink/?LinkId=723263
 for guidance on storing connection strings.

 optionsBuilder.UseMySQL("server=localhost;database=library;user=user;password=password");
}

Limitations

The Connector/NET implementation of EF Core has the following limitations:

• Memory-Optimized Tables is not supported.

302

https://www.nuget.org/packages/MySql.EntityFrameworkCore/
https://www.nuget.org/packages/MySql.EntityFrameworkCore/
https://www.nuget.org/packages/MySql.EntityFrameworkCore/
https://dotnet.microsoft.com/platform/dotnet-standard#versions
https://dotnet.microsoft.com/es-es/download/dotnet/8.0
https://dotnet.microsoft.com/download/dotnet/7.0
https://dotnet.microsoft.com/download/dotnet/6.0
https://www.microsoft.com/net/core#windowscmd
https://www.microsoft.com/net/core#linuxredhat
https://www.microsoft.com/net/core#macos
https://www.microsoft.com/net/core#dockercmd
https://docs.microsoft.com/en-us/nuget/quickstart/use-a-package#add-the-newtonsoftjson-nuget-package

Entity Framework Core Support

Maximum String Length

The following table shows the maximum length of string types supported by the Connector/NET
implementation of EF Core. Length values are in bytes for nonbinary and binary string types,
depending on the character set used.

Table 4.4 Maximum Length of strings used with Entity Framework Core

Data Type Maximum Length .NET Type

CHAR 255 string

BINARY 255 byte[]

VARCHAR, VARBINARY 65,535 string, byte[]

TINYBLOB, TINYTEXT 255 byte[]

BLOB, TEXT 65,535 byte[]

MEDIUMBLOB, MEDIUMTEXT 16,777,215 byte[]

LONGBLOB, LONGTEXT 4,294,967,295 byte[]

ENUM 65,535 string

SET 65,535 string

For additional information about the storage requirements of the string types, see String Type Storage
Requirements.

4.7.2.1 Creating a Database with Code First in EF Core

The Code First approach enables you to define an entity model in code, create a database from the
model, and then add data to the database. MySQL Connector/NET is compatible with multiple versions
of Entity Framework Core. For specific compatibility information, see Table 4.3, “Connector/NET
Versions and Entity Framework Core Support”.

The following example shows the process of creating a database from existing code. Although this
example uses the C# language, you can use any .NET language and run the resulting application on
Windows, macOS, or Linux.

1. Create a console application for this example.

a. Initialize a valid .NET Core project and console application using the .NET Core command-line
interface (CLI) and then switch to the newly created folder (mysqlefcore).

dotnet new console –o mysqlefcore

cd mysqlefcore

b. Add the MySql.EntityFrameworkCore package to the application by using the dotnet CLI or
the Package Manager Console in Visual Studio.

dotnet CLI

Enter the following command to add the MySQL EF Core 7.0 package for use with Connector/
NET 8.0.33 and later.

dotnet add package MySql.EntityFrameworkCore --version 7.0.2

Package Manager Console

Enter the following command to add the MySQL EF Core 7.0 package for use with Connector/
NET 8.0.33 and later.

Install-Package MySql.EntityFrameworkCore -Version 7.0.2

303

https://dev.mysql.com/doc/refman/8.0/en/storage-requirements.html#data-types-storage-reqs-strings
https://dev.mysql.com/doc/refman/8.0/en/storage-requirements.html#data-types-storage-reqs-strings

Entity Framework Core Support

c. Restore dependencies and project-specific tools that are specified in the project file as follows:

dotnet restore

2. Create the model and run the application.

The model in this example is to be used by the console application. It consists of two entities
related to a book library that are configured in the LibraryContext class (or database context).

a. Create a new file named LibraryModel.cs and then add the following Book and Publisher
classes to the mysqlefcore namespace.

namespace mysqlefcore
{
 public class Book
 {
 public string ISBN { get; set; }
 public string Title { get; set; }
 public string Author { get; set; }
 public string Language { get; set; }
 public int Pages { get; set; }
 public virtual Publisher Publisher { get; set; }
 }

 public class Publisher
 {
 public int ID { get; set; }
 public string Name { get; set; }
 public virtual ICollection<Book> Books { get; set; }
 }
}

b. Create a new file named LibraryContext.cs and add the code that follows. Replace the
generic connection string with one that is appropriate for your MySQL server configuration.

Note

The MySQL.EntityFrameworkCore.Extensions namespace
applies to Connector/NET 8.0.23 and later. Earlier connector versions
require the MySQL.Data.EntityFrameworkCore.Extensions
namespace.

using Microsoft.EntityFrameworkCore;
using MySQL.EntityFrameworkCore.Extensions;

namespace mysqlefcore
{
 public class LibraryContext : DbContext
 {
 public DbSet<Book> Book { get; set; }

 public DbSet<Publisher> Publisher { get; set; }

 protected override void OnConfiguring(DbContextOptionsBuilder optionsBuilder)
 {
 optionsBuilder.UseMySQL("server=localhost;database=library;user=user;password=password");
 }

 protected override void OnModelCreating(ModelBuilder modelBuilder)
 {
 base.OnModelCreating(modelBuilder);

 modelBuilder.Entity<Publisher>(entity =>
 {
 entity.HasKey(e => e.ID);
 entity.Property(e => e.Name).IsRequired();
 });

304

Entity Framework Core Support

 modelBuilder.Entity<Book>(entity =>
 {
 entity.HasKey(e => e.ISBN);
 entity.Property(e => e.Title).IsRequired();
 entity.HasOne(d => d.Publisher)
 .WithMany(p => p.Books);
 });
 }
 }
}

The LibraryContex class contains the entities to use and it enables the configuration of
specific attributes of the model, such as Key, required columns, references, and so on.

c. Insert the following code into the existing Program.cs file, replacing the default C# code.

using Microsoft.EntityFrameworkCore;
using System;
using System.Text;

namespace mysqlefcore
{
 class Program
 {
 static void Main(string[] args)
 {
 InsertData();
 PrintData();
 }

 private static void InsertData()
 {
 using(var context = new LibraryContext())
 {
 // Creates the database if not exists
 context.Database.EnsureCreated();

 // Adds a publisher
 var publisher = new Publisher
 {
 Name = "Mariner Books"
 };
 context.Publisher.Add(publisher);

 // Adds some books
 context.Book.Add(new Book
 {
 ISBN = "978-0544003415",
 Title = "The Lord of the Rings",
 Author = "J.R.R. Tolkien",
 Language = "English",
 Pages = 1216,
 Publisher = publisher
 });
 context.Book.Add(new Book
 {
 ISBN = "978-0547247762",
 Title = "The Sealed Letter",
 Author = "Emma Donoghue",
 Language = "English",
 Pages = 416,
 Publisher = publisher
 });

 // Saves changes
 context.SaveChanges();
 }
 }

 private static void PrintData()
 {

305

Entity Framework Core Support

 // Gets and prints all books in database
 using (var context = new LibraryContext())
 {
 var books = context.Book
 .Include(p => p.Publisher);
 foreach(var book in books)
 {
 var data = new StringBuilder();
 data.AppendLine($"ISBN: {book.ISBN}");
 data.AppendLine($"Title: {book.Title}");
 data.AppendLine($"Publisher: {book.Publisher.Name}");
 Console.WriteLine(data.ToString());
 }
 }
 }
 }
}

d. Use the following CLI commands to restore the dependencies and then run the application.

dotnet restore

dotnet run

The output from running the application is represented by the following example:

ISBN: 978-0544003415
Title: The Lord of the Rings
Publisher: Mariner Books

ISBN: 978-0547247762
Title: The Sealed Letter
Publisher: Mariner Books

4.7.2.2 Scaffolding an Existing Database in EF Core

Scaffolding a database produces an Entity Framework model from an existing database. The resulting
entities are created and mapped to the tables in the specified database. For an overview of the
requirements to use EF Core with MySQL, see Table 4.3, “Connector/NET Versions and Entity
Framework Core Support”).

NuGet packages have the ability to select the best target for a project, which means that NuGet installs
the libraries related to that specific framework version.

There are two different ways to scaffold an existing database:

• Scaffolding a Database Using .NET Core CLI

• Scaffolding a Database Using Package Manager Console in Visual Studio

This section shows how to scaffold the sakila database using both approaches. Additional
scaffolding techniques are:

• Scaffolding a Database by Filtering Tables

• Scaffolding with Multiple Schemas

Requirements

For the components needed to reproduce each scaffolding approach, see General Requirements for
EF Core Support. With the Package Manager Console approach, determine which version of Visual
Studio is recommended for the version of .NET or .NET Core in use (see Table 4.1, “Connector/NET
Requirements for Related Products”).

To download sakila database, see https://dev.mysql.com/doc/sakila/en/.

306

https://dev.mysql.com/doc/sakila/en/

Entity Framework Core Support

Note

When upgrading ASP.NET Core applications to a newer framework, be sure
to use the appropriate EF Core version (see https://docs.microsoft.com/en-us/
aspnet/core/migration/30-to-31?view=aspnetcore-3.1).

Scaffolding a Database Using .NET Core CLI

1. Initialize a valid .NET Core project and console application using the .NET Core command-line
interface (CLI) and then change to the newly created folder (sakilaConsole).

dotnet new console –o sakilaConsole

cd sakilaConsole

2. Add the MySQL NuGet package for EF Core using the CLI. For example, use the following
command to add the MySQL EF Core 7.0 package for use with Connector/NET 8.0.33 and later.

dotnet add package MySql.EntityFrameworkCore --version 7.0.2

3. Add the following Microsoft.EntityFrameworkCore.Design Nuget package:

dotnet add package Microsoft.EntityFrameworkCore.Tools

4. Restore dependencies and project-specific tools that are specified in the project file as follows:

dotnet restore

5. Create the Entity Framework Core model by executing the following command. The connection
string for this example must include database=sakila. For information about using connection
strings, see Section 4.4.1, “Creating a Connector/NET Connection String”.

Note

If you are using a connector version earlier than Connector/
NET 8.0.23, replace MySql.EntityFrameworkCore with
MySql.Data.EntityFrameworkCore.

dotnet ef dbcontext scaffold "connection-string" MySql.EntityFrameworkCore -o sakila -f

To validate that the model has been created, open the new sakila folder. You should see files
corresponding to all tables mapped to entities. In addition, look for the sakilaContext.cs file,
which contains the DbContext for this database.

Scaffolding a Database Using Package Manager Console in Visual Studio

1. Open Visual Studio and create a new Console App (.NET Core) for C#.

2. Add the MySQL NuGet package for EF Core using the Package Manager Console. For example,
use the following command to add the MySQL EF Core 7.0 package for use the Connector/NET
8.0.33 and later.

Install-Package MySql.EntityFrameworkCore -Version 7.0.2

3. Install the following NuGet package by selecting either Package Manager Console (or Manage
NuGet Packages for Solution and then NuGet Package Manager) from the Tools menu:
Microsoft.EntityFrameworkCore.Tools.

4. Open Package Manager Console and enter the following command at the prompt to create the
entities and DbContext for the sakila database. The connection string for this example must
include database=sakila. For information about using connection strings, see Section 4.4.1,
“Creating a Connector/NET Connection String”.

307

https://docs.microsoft.com/en-us/aspnet/core/migration/30-to-31?view=aspnetcore-3.1
https://docs.microsoft.com/en-us/aspnet/core/migration/30-to-31?view=aspnetcore-3.1

Entity Framework Core Support

Note

If you are using a connector version earlier than Connector/
NET 8.0.23, replace MySql.EntityFrameworkCore with
MySql.Data.EntityFrameworkCore.

Scaffold-DbContext "connection-string" MySql.EntityFrameworkCore -OutputDir sakila -f

Visual Studio creates a new sakila folder inside the project, which contains all the tables mapped
to entities and the sakilaContext.cs file.

Scaffolding a Database by Filtering Tables

It is possible to specify the exact tables in a schema to use when scaffolding database and to omit
the rest. The command-line examples that follow show the parameters needed for filtering tables. The
connection string for this example must include database=sakila.

If you are using a connector version earlier than Connector/NET 8.0.23, replace
MySql.EntityFrameworkCore with MySql.Data.EntityFrameworkCore.

.NET Core CLI:

dotnet ef dbcontext scaffold "connection-string" MySql.EntityFrameworkCore -o sakila -t actor -t film -t film_actor -t language -f

Package Manager Console in Visual Studio:

Scaffold-DbContext "connection-string" MySql.EntityFrameworkCore -OutputDir Sakila -Tables actor,film,language -f

Scaffolding with Multiple Schemas

When scaffolding a database, you can use more than one schema or database. Note that the account
used to connect to the MySQL server must have access to each schema to be included within the
context.

The following command-line examples show how to incorporate the sakila and world schemas
within a single context. If you are using a connector version earlier than Connector/NET 8.0.23, replace
MySql.EntityFrameworkCore with MySql.Data.EntityFrameworkCore.

.NET Core CLI:

dotnet ef dbcontext scaffold "connection-string" MySql.EntityFrameworkCore -o sakila --schema sakila --schema world -f

Package Manager Console in Visual Studio:

Scaffold-DbContext "connection-string" MySql.EntityFrameworkCore -OutputDir Sakila -Schemas sakila,world -f

4.7.2.3 Configuring Character Sets and Collations in EF Core

This section describes how to change the character set, collation, or both at the entity and entity-
property level in an Entity Framework (EF) Core model. Modifications made to the model affect the
tables and columns generated from your code.

There are two distinct approaches available for configuring character sets and collations in code-
first scenarios. Data annotation enables you to apply attributes directly to your EF Core model.
Alternatively, you can override the OnModelCreating method on your derived DbContext class
and use the code-first fluent API to configure specific characteristics of the model. An example of each
approach follows.

For more information about supported character sets and collations, see Character Sets and Collations
in MySQL.

308

https://dev.mysql.com/doc/refman/8.0/en/charset-mysql.html
https://dev.mysql.com/doc/refman/8.0/en/charset-mysql.html

Entity Framework Core Support

Using Data Annotation

Before you can annotate an EF Core model with character set and collation attributes, add a reference
to the following namespace in the file that contains your entity model.

Note

The MySQL.EntityFrameworkCore.DataAnnotations namespace applies
to Connector/NET 8.0.23 and later. Earlier connector versions require the
MySQL.Data.EntityFrameworkCore.DataAnnotations namespace.

using MySql.EntityFrameworkCore.DataAnnotations;

Add one or more [MySqlCharset] attributes to store data using a variety of character sets and one
or more [MySqlCollation] attributes to perform comparisons according to a variety of collations.
In the following example, the ComplexKey class represents an entity (or table) and Key1, Key2, and
CollationColumn represent entity properties (or columns).

[MySqlCharset("utf8")]
public class ComplexKey
{
 [MySqlCharset("latin1")
 public string Key1 { get; set; }

 [MySqlCharset("latin1")]
 public string Key2 { get; set; }

 [MySqlCollation("latin1_spanish_ci")]
 public string CollationColumn { get; set; }
}

Using the Code-First Fluent API

Add the following directive to reference the methods related to character set and collation configuration.

Note

The MySQL.EntityFrameworkCore.Extensions namespace applies
to Connector/NET 8.0.23 and later. Earlier connector versions require the
MySQL.Data.EntityFrameworkCore.Extensions namespace.

using MySQL.EntityFrameworkCore.Extensions;

When using the fluent API approach, the EF Core model remains unchanged. Fluent API overrides any
rule set by an attribute.

public class ComplexKey
{
 public string Key1 { get; set; }

 public string Key2 { get; set; }

 public string CollationColumn { get; set; }
}

In this example, the entity and various entity properties are reconfigured, including the conventional
mappings to character sets and collations. This approach uses the ForMySQLHasCharset and
ForMySQLHasCollation methods.

public class MyContext : DbContext
{
 public DbSet<ComplexKey> ComplexKeys { get; set; }

 protected override void OnModelCreating(ModelBuilder modelBuilder)
 {
 modelBuilder.Entity<ComplexKey>(e =>
 {
 e.HasKey(p => new { p.Key1, p.Key2 });

309

Connector/NET API Reference

 e.ForMySQLHasCollation("ascii_bin"); // defining collation at Entity level
 e.Property(p => p.Key1).ForMySQLHasCharset("latin1"); // defining charset in a property
 e.Property(p => p.CollationColumnFA).ForMySQLHasCollation("utf8_bin"); // defining collation in a property
 });
 }
}

4.8 Connector/NET API Reference
This chapter provides a high-level reference to the ADO.NET and .NET Core components that are
implemented in the most recent version of Connector/NET. For a complete API listing, visit MySQL
Documentation to locate the Connector/NET 8.0 API reference guide that is generated from embedded
documentation.

4.8.1 MySql.Data.Common.DnsClient

Enumerations

Enumeration Description

OPCode DNS Record OpCode. A four bit field that specifies
kind of query in this message. This value is set
by the originator of a query and copied into the
response.

4.8.2 MySql.Data.MySqlClient Namespace

Classes

Class Description

AuthenticationPluginConfigurationElementRetrieves the authentication plugin configuration
from the configuration file.

BaseCommandInterceptor Provides a means of enhancing or replacing SQL
commands through the connection string rather
than recompiling.

BaseTableCache Provides a base class used for the table cache.

CharacterSet Specifies a character set.

GenericConfigurationElementCollection<T>Retrieves an element collection from the
configuration file.

InterceptorConfigurationElement Class used in the configuration file to get
configuration details for interceptors.

MySqlAttribute Represents a query attribute to a
MySqlCommand.

MySqlAttributeCollection Represents a collection of query attributes
relevant to a MySqlCommand.

MySqlBaseConnectionStringBuilder Abstract class that provides common functionality
for connection options that apply for all protocols.

MySqlBulkLoader Load many rows into the database.

MySqlClientFactory Represents the DBProviderFactory
implementation for MySqlClient.

MySqlClientPermission Derived from the .NET DBDataPermission
class. For usage information, see Section 4.5.7,
“Working with Partial Trust / Medium Trust”.

MySqlClientPermissionAttribute Associates a security action with a custom
security attribute.

310

https://dev.mysql.com/doc/
https://dev.mysql.com/doc/
http://msdn.microsoft.com/en-us/library/system.data.common.dbdatapermission.aspx

MySql.Data.MySqlClient Namespace

Class Description

MySqlCommand Represents an SQL statement to execute
against a MySQL database. This class cannot be
inherited.

MySqlCommandBuilder Automatically generates single-table commands
used to reconcile changes made to a data set
with the associated MySQL database. This class
cannot be inherited.

MySqlConfiguration Defines a configuration section that contains the
information specific to MySQL.

MySqlConnection Represents an open connection to a MySQL
Server database. This class cannot be inherited.

MySqlConnectionStringBuilder Defines all of the connection string options that
can be used.

MySqlDataAdapter Represents a set of data commands and a
database connection that are used to fill a data set
and update a MySQL database. This class cannot
be inherited.

MySqlDataReader Provides a means of reading a forward-only
stream of rows from a MySQL database. This
class cannot be inherited.

MySqlError Collection of error codes that can be returned by
the server

MySqlException The exception that is thrown when MySQL returns
an error. This class cannot be inherited.

MySqlHelper Helper class that makes it easier to work with the
provider.

MySqlInfoMessageEventArgs Provides data for the InfoMessage event. This
class cannot be inherited.

MySqlParameter Represents a parameter to a
MySql.Data.MySqlClient.MySqlCommand,
and optionally, its mapping to columns in a
dataset. This class cannot be inherited.

MySqlParameterCollection Represents a collection of parameters relevant to
a MySql.Data.MySqlClient.MySqlCommand
as well as their respective mappings to columns in
a dataset. This class cannot be inherited.

MySqlRowUpdatedEventArgs Provides data for the RowUpdated event. This
class cannot be inherited.

MySqlRowUpdatingEventArgs Provides data for the RowUpdating event. This
class cannot be inherited.

MySqlSchemaCollection Contains information about a schema.

MySqlSchemaRow Represents a row within a schema.

MySqlScript Provides a class capable of executing an SQL
script containing multiple SQL statements
including CREATE PROCEDURE statements that
require changing the delimiter.

MySqlScriptErrorEventArgs Provides an error event argument used in
MySqlScript.

MySqlScriptEventArgs Provides an event argument used in MySqlScript.

311

MySql.Data.MySqlClient Namespace

Class Description

MySqlSecurityPermission Creates permission sets.

MySqlTrace Logs events in a defined listener.

MySqlTransaction Represents an SQL transaction to be made in a
MySQL database. This class cannot be inherited.

ReplicationConfigurationElement Defines a replication configuration element in the
configuration file.

ReplicationServerConfigurationElement Defines a replication server in the configuration
file.

ReplicationServerGroupConfigurationElementDefines a replication server group in the
configuration file

SchemaColumn Represents a column object within a schema.

Delegates

Delegate Description

FidoActionCallback Represents the method to handle the
FidoActionRequested event of a
MySqlConnection.

MySqlInfoMessageEventHandler Represents the method to handle the
InfoMessage event of a MySqlConnection.

MySqlRowUpdatedEventHandler Represents the method to handle the
RowUpdatedevent of a MySqlDataAdapter.

MySqlRowUpdatingEventHandler Represents the method to handle the
RowUpdatingevent of a MySqlDataAdapter.

MySqlScriptErrorEventHandler Represents the method to handle an error in
MySqlScript.

MySqlStatementExecutedEventHandler Represents the method to be called after the
execution of a statement in MySqlScript.

Enumerations

Enumeration Description

CloseNotification The warnings that cause a connection to close.

CompressionAlgorithms Defines the compression algorithms that can be
used.

CompressionType Defines the type of compression used when data
is exchanged between client and server.

KerberosAuthMode Defines the different modes that can be used for
Kerberos authentication.

LockContention Defines waiting options that may be used with row
locking options.

MySqlAuthenticationMode Specifies the authentication mechanism that
should be used.

MySqlBulkLoaderConflictOption Defines the action to perform when a conflict is
found.

MySqlBulkLoaderPriority Defines the load priority.

MySqlCertificateStoreLocation Defines the certificate store location.

MySqlConnectionProtocol Specifies the type of connection to use.

312

MySql.Data.MySqlClient.Authentication Namespace

Enumeration Description

MySqlDbType Specifies the MySQL data type
of a field or property for use in a
MySql.Data.MySqlClient.MySqlParameter.

MySqlDriverType Specifies the connection types that are supported.

MySqlErrorCode Provides a reference to error codes returned by
MySQL.

MySQLGuidFormat Specifies the stored type for a MySQL GUID data
type.

MySqlSslMode Provides the SSL options for a connection.

MySqlTraceEventType Defines the log event type in MySqlTrace.

UsageAdvisorWarningFlags Defines the usage advisor warning type.

4.8.3 MySql.Data.MySqlClient.Authentication Namespace

Classes

Class Description

MySqlAuthenticationPlugin Abstract class used to define an authentication
plugin.

MySqlClearPasswordPlugin Allows connections to a user account set with the
mysql_clear_password authentication plugin.

MySqlNativePasswordPlugin Implements the mysql_native_password
authentication plugin.

MySqlPemReader Provides functionality to read, decode, and
convert PEM files into objects supported in .NET.

4.8.4 MySql.Data.MySqlClient.Interceptors Namespace

Classes

Class Description

BaseExceptionInterceptor Represents the base class for all user-defined
exception interceptors.

4.8.5 MySql.Data.MySqlClient.Replication Namespace

The MySql.Data.MySqlClient.Replication namespace contains members for replication and
load-balancing components.

Classes

Class Description

ReplicationRoundRobinServerGroup Class that implements round-robin load balancing.

ReplicationServer Represents a server in the replication
environment.

ReplicationServerGroup Base class used to implement load-balancing
features.

4.8.6 MySql.Data.Types Namespace

The MySql.Data.Types namespace contains members for converting MySQL types.

313

MySql.Data.EntityFramework Namespace

Classes

Class Description

MySqlConversionException Represents exceptions returned during the
conversion of MySQL types.

Structures

Structure Description

MySqlDateTime Defines operations that apply to MySqlDateTime
objects.

MySqlDecimal Defines operations that apply to MySqlDecimal
objects.

MySqlGeometry Defines operations that apply to MySqlGeometry
objects.

4.8.7 MySql.Data.EntityFramework Namespace

Classes

Class Description

BackoffAlgorithm Represents the base class for backoff algorithms.

BackoffAlgorithmErr1040 Backoff algorithm customized for the MySQL error
code 1040 - Too many connections.

BackoffAlgorithmErr1205 Backoff algorithm customized for the MySQL
error code 1205 - Lock wait timeout exceeded; try
restarting transaction.

BackoffAlgorithmErr1213 Backoff algorithm customized for MySQL error
code 1213 - Deadlock found when trying to get
lock; try restarting transaction.

BackoffAlgorithmErr1614 Backoff algorithm for the MySQL error code 1614 -
Transaction branch was rolled back: deadlock was
detected.

BackoffAlgorithmErr2006 Backoff algorithm customized for MySQL error
code 2006 - MySQL server has gone away.

BackoffAlgorithmErr2013 Backoff algorithm customized for MySQL error
code 2013 - Lost connection to MySQL server
during query.

BackoffAlgorithmNdb Backoff algorithm customized for MySQL Cluster
(NDB) errors.

MySqlConnectionFactory Used for creating connections in Code First 4.3.

MySqlDependencyResolver Class used to resolve implementation of services.

MySqlEFConfiguration Class used to define the MySQL services used in
Entity Framework.

MySqlExecutionStrategy Provided an execution strategy tailored for
handling MySQL server transient errors.

MySqlHistoryContext Class used by code first migrations to read and
write migration history from the database.

MySqlLogger Provides the logger class for use with Entity
Framework.

314

Microsoft.EntityFrameworkCore Namespace

Class Description

MySqlManifestTokenResolver Represents a service for getting a provider
manifest token given a connection.

MySqlMigrationCodeGenerator Class used to customized code generation to
avoid the dbo. prefix added on table names.

MySqlMigrationSqlGenerator Implements the MySQL SQL generator for EF 4.3
data migrations.

MySqlModelCacheKey Represents a key value that uniquely identifies an
Entity Framework model that has been loaded into
memory.

MySqlProviderFactoryResolver Represents a service for obtaining the correct
MySQL DbProviderFactory from a connection.

MySqlProviderInvariantName Defines the MySQL provider name.

Enumerations

Enumeration Description

OpType Represents a set of database operations.

4.8.8 Microsoft.EntityFrameworkCore Namespace

Enables access to .NET Core command-line interface (CLI) tools.

Classes

Class Description

MySQLDbContextOptionsExtensions Represents the context-option extensions
implemented for MySQL.

4.8.9 MySql.EntityFrameworkCore Namespace

Namespaces in this section:

• MySql.EntityFrameworkCore.DataAnnotations Namespace

• MySQL.EntityFrameworkCore.Diagnostics Namespace

• MySql.EntityFrameworkCore.Extensions Namespace

• MySql.EntityFrameworkCore.Infrastructure Namespace

• MySql.EntityFrameworkCore.Infrastructure.Internal Namespace

• MySql.EntityFrameworkCore.Metadata Namespace

• MySql.EntityFrameworkCore.Migrations.Operations Namespace

• MySql.EntityFrameworkCore.Query Namespace

MySql.EntityFrameworkCore.DataAnnotations Namespace

Classes

Class Description

MySqlCharsetAttribute Establishes the character set of an entity property.

MySqlCollationAttribute Sets the collation in an entity property.

315

MySql.EntityFrameworkCore Namespace

MySQL.EntityFrameworkCore.Diagnostics Namespace

Classes

Class Description

MySQLEventId Event IDs for MySQL events that correspond to
messages logged to an ILogger and events
sent to a DiagnosticSource. The IDs are also
used with WarningsConfigurationBuilder
to configure the behavior of warnings.

MySql.EntityFrameworkCore.Extensions Namespace

Classes

Class Description

MySQLDatabaseFacadeExtensions MySQL specific extension methods for
Database().

MySQLDbFunctionsExtensions Provides CLR methods that get translated to
database functions when used in LINQ to Entities
queries. The methods on this class are accessed
via Functions().

MySQLEntityTypeExtensions MySQL specific extension methods for entity
types.

MySqlIndexBuilderExtensions Inheritance

MySQLIndexExtensions Extension methods for IIndex for SQL Server-
specific metadata.

MySQLKeyBuilderExtensions Inheritance

MySQLKeyExtensions Extension methods for IKey for MySQL-specific
metadata.

MySQLMigrationBuilderExtensions MySQL specific extension methods for
MigrationBuilder.

MySQLModelBuilderExtensions Inheritance

MySQLPropertyBuilderExtensions Represents the implementation of MySQL
property-builder extensions used in Fluent API.

MySQLPropertyExtensions Extension methods for IProperty for MySQL
Server-specific metadata.

MySQLServiceCollectionExtensions MySQL extension class for
IServiceCollection.

Enumerations

Enumeration Description

MySQLMatchSearchMode Performs a search against a text collection.

MySql.EntityFrameworkCore.Infrastructure Namespace

Classes

Class Description

MySQLDbContextOptionsBuilder Represents the
RelationalDbContextOptionsBuilder type
implemented for MySQL.

316

MySql.Web Namespace

Delegates

Delegate Description

MySQLSchemaNameTranslator Translates the specified schema and object to an
output object name whenever a schema is being
used.

Enumerations

Enumeration Description

MySqlSchemaBehavior Represents the behavior of the schema.

MySql.EntityFrameworkCore.Infrastructure.Internal Namespace

Classes

Class Description

MySQLOptionsExtension Represents the
RelationalOptionsExtension type
implemented for MySQL.

Interfaces

Interface Description

IMySQLOptions Represents options to set on the provider.

MySql.EntityFrameworkCore.Metadata Namespace

Enumerations

Enumeration Description

MySQLValueGenerationStrategy An internal enumeration that supports the Entity
Framework Core infrastructure.

MySql.EntityFrameworkCore.Migrations.Operations Namespace

Classes

Class Description

MySQLDropPrimaryKeyAndRecreateForeignKeysOperationA migration operation for dropping a primary key
and recreating foreign keys.

MySQLDropUniqueConstraintAndRecreateForeignKeysOperationA migration operation for dropping a unique
constraint and recreating foreign keys.

MySql.EntityFrameworkCore.Query Namespace

Classes

Class Description

MySQLJsonString Represents a string that contains valid JSON data.
To mark a string as containing JSON data, just
cast the string to MySQLJsonString.

4.8.10 MySql.Web Namespace

317

MySql.Web Namespace

The MySql.Web namespace includes a set of subordinate namespaces that represent the features
managed by various MySQL providers and available for use within ASP.NET applications.

Namespaces in this section:

• MySql.Web.Common Namespace

• MySql.Web.Personalization Namespace

• MySql.Web.Profile Namespace

• MySql.Web.Security Namespace

• MySql.Web.SessionState Namespace

• MySql.Web.SiteMap Namespace

MySql.Web.Common Namespace

Classes

Class Description

SchemaManager Manages schema-related operations.

MySql.Web.Personalization Namespace

Classes

Class Description

MySqlPersonalizationProvider Implements a personalization provider enabling
the use of web parts at ASP.NET websites.

MySql.Web.Profile Namespace

Classes

Class Description

MySQLProfileProvider Implements a profile provider for the MySQL
database.

MySql.Web.Security Namespace

Classes

Class Description

MySQLMembershipProvider Manages storage of membership information for
an ASP.NET application in a MySQL database.

MySQLRoleProvider Manages storage of role membership information
for an ASP.NET application in a MySQL database.

MySqlSimpleMembershipProvider Provides support for website membership tasks,
such as creating accounts, deleting accounts, and
managing passwords.

MySqlSimpleRoleProvider Provides basic role-management functionality.

MySqlWebSecurity Provides security and authentication features
for ASP.NET Web Pages applications, including

318

Connector/NET Support

Class Description
the ability to create user accounts, log users in
and out, reset or change passwords, and perform
related tasks.

MySql.Web.SessionState Namespace

Classes

Class Description

MySqlSessionStateStore Enables ASP.NET applications to store and
manage session state information in a MySQL
database. Expired session data is periodically
deleted from the database.

MySql.Web.SiteMap Namespace

Classes

Class Description

MySqlSiteMapProvider Implements a site-map provider for the MySQL
database.

4.9 Connector/NET Support

The developers of MySQL Connector/NET greatly value the input of our users in the software
development process. If you find Connector/NET lacking some feature important to you, or if you
discover a bug and need to file a bug report, please use the instructions in How to Report Bugs or
Problems.

4.9.1 Connector/NET Community Support

• Community support for MySQL Connector/NET can be found through the forums at http://
forums.mysql.com.

• Paid support is available from Oracle. Additional information is available at http://dev.mysql.com/
support/.

4.9.2 How to Report Connector/NET Problems or Bugs

If you encounter difficulties or problems with MySQL Connector/NET, contact the Connector/NET
community, as explained in Section 4.9.1, “Connector/NET Community Support”.

First try to execute the same SQL statements and commands from the mysql client program. This
helps you determine whether the error is in Connector/NET or MySQL.

If reporting a problem, ideally include the following information with the email:

• Operating system and version.

• Connector/NET version.

• MySQL server version.

• Copies of error messages or other unexpected output.

• Simple reproducible sample.

319

https://dev.mysql.com/doc/refman/8.0/en/bug-reports.html
https://dev.mysql.com/doc/refman/8.0/en/bug-reports.html
http://forums.mysql.com
http://forums.mysql.com
http://dev.mysql.com/support/
http://dev.mysql.com/support/

How to Report Connector/NET Problems or Bugs

Remember that the more information you can supply to us, the more likely it is that we can fix the
problem.

If you believe the problem to be a bug, then you must report the bug through http://bugs.mysql.com/.

320

http://bugs.mysql.com/

Chapter 5 MySQL Connector/ODBC Developer Guide

Table of Contents
5.1 Introduction to MySQL Connector/ODBC .. 322
5.2 Connector/ODBC Versions .. 323
5.3 General Information About ODBC and Connector/ODBC ... 324

5.3.1 Connector/ODBC Architecture ... 324
5.3.2 ODBC Driver Managers .. 326

5.4 Connector/ODBC Installation ... 327
5.4.1 Installing Connector/ODBC on Windows .. 328
5.4.2 Installing Connector/ODBC on Unix-like Systems ... 330
5.4.3 Installing Connector/ODBC on macOS .. 332
5.4.4 Building Connector/ODBC from a Source Distribution on Windows 333
5.4.5 Building Connector/ODBC from a Source Distribution on Unix 335
5.4.6 Building Connector/ODBC from a Source Distribution on macOS 337
5.4.7 Installing Connector/ODBC from the Development Source Tree 337

5.5 Configuring Connector/ODBC .. 338
5.5.1 Overview of Connector/ODBC Data Source Names .. 338
5.5.2 Connector/ODBC Connection Parameters ... 338
5.5.3 Configuring a Connector/ODBC DSN on Windows ... 347
5.5.4 Configuring a Connector/ODBC DSN on macOS .. 351
5.5.5 Configuring a Connector/ODBC DSN on Unix .. 353
5.5.6 Connecting Without a Predefined DSN .. 354
5.5.7 ODBC Connection Pooling .. 355
5.5.8 OpenTelemetry Tracing Support .. 355
5.5.9 Authentication Options .. 356
5.5.10 Getting an ODBC Trace File ... 356

5.6 Connector/ODBC Examples ... 359
5.6.1 Basic Connector/ODBC Application Steps ... 359
5.6.2 Step-by-step Guide to Connecting to a MySQL Database through Connector/ODBC 360
5.6.3 Connector/ODBC and Third-Party ODBC Tools .. 361
5.6.4 Using Connector/ODBC with Microsoft Access ... 362
5.6.5 Using Connector/ODBC with Microsoft Word or Excel .. 371
5.6.6 Using Connector/ODBC with Crystal Reports ... 373
5.6.7 Connector/ODBC Programming ... 378

5.7 Connector/ODBC Reference .. 385
5.7.1 Connector/ODBC API Reference ... 385
5.7.2 Connector/ODBC Data Types ... 388
5.7.3 Connector/ODBC Error Codes .. 390

5.8 Connector/ODBC Notes and Tips .. 391
5.8.1 Connector/ODBC General Functionality ... 391
5.8.2 Connector/ODBC Application-Specific Tips .. 393
5.8.3 Connector/ODBC and the Application Both Use OpenSSL .. 397
5.8.4 Connector/ODBC Errors and Resolutions (FAQ) .. 397

5.9 Connector/ODBC Support .. 402
5.9.1 Connector/ODBC Community Support ... 402
5.9.2 How to Report Connector/ODBC Problems or Bugs ... 402

MySQL Connector/ODBC is the driver that enables ODBC applications to communicate with MySQL
servers.

For notes detailing the changes in each release of Connector/ODBC, see MySQL Connector/ODBC
Release Notes.

For legal information, see the Legal Notices.

321

https://dev.mysql.com/doc/relnotes/connector-odbc/en/
https://dev.mysql.com/doc/relnotes/connector-odbc/en/

Introduction to MySQL Connector/ODBC

For help with using MySQL, please visit the MySQL Forums, where you can discuss your issues with
other MySQL users.

Licensing information. This product may include third-party software, used under license. If
you are using a Commercial release of MySQL Connector/ODBC, see this document for licensing
information, including licensing information relating to third-party software that may be included in
this Commercial release. If you are using a Community release of MySQL Connector/ODBC, see this
document for licensing information, including licensing information relating to third-party software that
may be included in this Community release.

5.1 Introduction to MySQL Connector/ODBC

The MySQL Connector/ODBC is the name for the family of MySQL ODBC drivers (previously called
MyODBC drivers) that provide access to a MySQL database using the industry standard Open
Database Connectivity (ODBC) API. This reference covers Connector/ODBC 8.3, which includes the
functionality of the Unicode driver and the ANSI driver.

MySQL Connector/ODBC provides both driver-manager based and native interfaces to the MySQL
database, with full support for MySQL functionality, including stored procedures, transactions and full
Unicode compliance.

For more information on the ODBC API standard and how to use it, refer to http://
support.microsoft.com/kb/110093.

The application development section of the ODBC API reference assumes a good working knowledge
of C, general DBMS, and a familiarity with MySQL. For more information about MySQL functionality
and its syntax, refer to https://dev.mysql.com/doc/.

Typically, you need to install Connector/ODBC only on Windows machines. For Unix and macOS,
you can use the native MySQL network or named pipes to communicate with your MySQL database.
You may need Connector/ODBC for Unix or macOS if you have an application that requires an ODBC
interface to communicate with the database. Applications that require ODBC to communicate with
MySQL include ColdFusion, Microsoft Office, and Filemaker Pro.

For notes detailing the changes in each release of Connector/ODBC, see MySQL Connector/ODBC
Release Notes.

Key Connector/ODBC topics include:

• Installing Connector/ODBC: Section 5.4, “Connector/ODBC Installation”.

• The configuration options: Section 5.5.2, “Connector/ODBC Connection Parameters”.

• An example that connects to a MySQL database from a Windows host: Section 5.6.2, “Step-by-step
Guide to Connecting to a MySQL Database through Connector/ODBC”.

• An example that uses Microsoft Access as an interface to a MySQL database: Section 5.6.4, “Using
Connector/ODBC with Microsoft Access”.

• General tips and notes, including how to obtain the last auto-increment ID: Section 5.8.1, “Connector/
ODBC General Functionality”.

• Application-specific usage tips and notes: Section 5.8.2, “Connector/ODBC Application-Specific
Tips”.

• A FAQ (Frequently Asked Questions) list: Section 5.8.4, “Connector/ODBC Errors and Resolutions
(FAQ)”.

• Additional Connector/ODBC support options: Section 5.9, “Connector/ODBC Support”.

322

http://forums.mysql.com
https://downloads.mysql.com/docs/licenses/connector-odbc-8.3-com-en.pdf
https://downloads.mysql.com/docs/licenses/connector-odbc-8.3-gpl-en.pdf
https://downloads.mysql.com/docs/licenses/connector-odbc-8.3-gpl-en.pdf
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_transaction
http://support.microsoft.com/kb/110093
http://support.microsoft.com/kb/110093
https://dev.mysql.com/doc/
https://dev.mysql.com/doc/relnotes/connector-odbc/en/
https://dev.mysql.com/doc/relnotes/connector-odbc/en/

Connector/ODBC Versions

5.2 Connector/ODBC Versions

Information about each Connector/ODBC version; for release notes, see the Connector/ODBC release
notes.

• Connector/ODBC 8.x: 8.1.0 is the first GA release version that supersedes the 8.0 series. MySQL
connector releases use the latest Innovation release number. For example, when MySQL Server
released versions 5.7.43, 8.0.34, and 8.1.0, this connector released connector version (8.1.0) that
connects to all three MySQL Server versions.

This is the first series without 32-bit support, which ended for all MySQL products.

• Connector/ODBC 8.0: added MySQL Server 8.0 support, including caching_sha2_password and the
related GET_SERVER_PUBLIC_KEY connection attribute.

Note

As of 8.0.35, 32-bit Connector/ODBC builds exist for Windows. The 8.0 series
no longer includes new functionality but it does contain bug fixes. You're
encouraged to use the latest Connector/ODBC version and not the 8.0 series
if you do not need 32-bit builds.

• Connector/ODBC 5.3: functions with MySQL Server versions between 4.1 and 5.7. It does not
work with 4.0 or earlier releases, and does not support all MySQL 8 features. It conforms to the
ODBC 3.8 specification and contains key ODBC 3.8 features including self-identification as a ODBC
3.8 driver, streaming of output parameters (supported for binary types only), and support of the
SQL_ATTR_RESET_CONNECTION connection attribute (for the Unicode driver only). Connector/
ODBC 5.3 also introduces a GTK+-based setup library, providing GUI DSN setup dialog on some
Unix-based systems. The library is currently included in the Oracle Linux 6 and Debian 6 binary
packages. Other new features in the 5.3 series include file DSN and bookmark support.

Connector/ODBC 5.3.11 added caching_sha2_password support by adding the
GET_SERVER_PUBLIC_KEY connection attribute.

• Connector/ODBC 5.2: upgrades the ANSI driver of Connector/ODBC 3.51 to the 5.x code base.
It also includes new features, such as enabling server-side prepared statements by default. At
installation time, you can choose the Unicode driver for the broadest compatibility with data sources
using various character sets, or the ANSI driver for optimal performance with a more limited range of
character sets. It works with MySQL versions 4.1 to 5.7.

• Connector/ODBC 5.1: is a partial rewrite of the of the 3.51 code base, and is designed to work with
MySQL versions 4.1 to 5.7.

Connector/ODBC 5.1: also includes the following changes and improvements over the 3.51 release:

• Improved support on Windows 64-bit platforms.

• Full Unicode support at the driver level. This includes support for the SQL_WCHAR data type, and
support for Unicode login, password and DSN configurations. For more information, see Microsoft
Knowledgebase Article #716246.

• Support for the SQL_NUMERIC_STRUCT data type, which provides easier access to the precise
definition of numeric values. For more information, see Microsoft Knowledgebase Article #714556

• Native Windows setup library. This replaces the Qt library based interface for configuring DSN
information within the ODBC Data Sources application.

• Support for the ODBC descriptor, which improves the handling and metadata of columns and
parameter data. For more information, see Microsoft Knowledgebase Article #716339.

323

https://dev.mysql.com/doc/relnotes/connector-odbc/en/
https://dev.mysql.com/doc/relnotes/connector-odbc/en/
https://dev.mysql.com/doc/refman/8.0/en/caching-sha2-pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.0/en/caching-sha2-pluggable-authentication.html
http://msdn2.microsoft.com/en-us/library/ms716246.aspx
http://msdn2.microsoft.com/en-us/library/ms716246.aspx
http://msdn2.microsoft.com/en-us/library/ms714556.aspx
http://msdn2.microsoft.com/en-us/library/ms716339.aspx

General Information About ODBC and Connector/ODBC

• Connector/ODBC 3.51, also known as the MySQL ODBC 3.51 driver, is a 32-bit ODBC driver.
Connector/ODBC 3.51 has support for ODBC 3.5x specification level 1 (complete core API + level 2
features) to continue to provide all functionality of ODBC for accessing MySQL.

The manual for versions of Connector/ODBC older than 5.3 can be located in the corresponding binary
or source distribution.

Note

Versions of Connector/ODBC earlier than the 3.51 revision were not fully
compliant with the ODBC specification.

Note

From this section onward, the primary focus of this guide is the Connector/
ODBC 5.3 driver.

Note

Version numbers for MySQL products are formatted as X.X.X. However,
Windows tools (Control Panel, properties display) may show the version
numbers as XX.XX.XX. For example, the official MySQL formatted version
number 5.0.9 may be displayed by Windows tools as 5.00.09. The two versions
are the same; only the number display formats are different.

5.3 General Information About ODBC and Connector/ODBC

ODBC (Open Database Connectivity) provides a way for client programs to access a wide range of
databases or data sources. ODBC is a standardized API that enables connections to SQL database
servers. It was developed according to the specifications of the SQL Access Group and defines a
set of function calls, error codes, and data types that can be used to develop database-independent
applications. ODBC usually is used when database independence or simultaneous access to different
data sources is required.

For more information about ODBC, refer to http://support.microsoft.com/kb/110093.

Open Database Connectivity (ODBC) is a widely accepted application-programming interface (API) for
database access. It is based on the Call-Level Interface (CLI) specifications from X/Open and ISO/IEC
for database APIs and uses Structured Query Language (SQL) as its database access language.

A survey of ODBC functions supported by Connector/ODBC is given at Section 5.7.1, “Connector/
ODBC API Reference”. For general information about ODBC, see http://support.microsoft.com/
kb/110093.

5.3.1 Connector/ODBC Architecture

The Connector/ODBC architecture is based on five components, as shown in the following diagram:

324

http://support.microsoft.com/kb/110093
http://support.microsoft.com/kb/110093
http://support.microsoft.com/kb/110093

Connector/ODBC Architecture

Figure 5.1 Connector/ODBC Architecture Components

• Application:

The Application uses the ODBC API to access the data from the MySQL server. The ODBC API in
turn communicates with the Driver Manager. The Application communicates with the Driver Manager
using the standard ODBC calls. The Application does not care where the data is stored, how it is
stored, or even how the system is configured to access the data. It needs to know only the Data
Source Name (DSN).

A number of tasks are common to all applications, no matter how they use ODBC. These tasks are:

• Selecting the MySQL server and connecting to it.

• Submitting SQL statements for execution.

• Retrieving results (if any).

• Processing errors.

• Committing or rolling back the transaction enclosing the SQL statement.

• Disconnecting from the MySQL server.

Because most data access work is done with SQL, the primary tasks for applications that use ODBC
are submitting SQL statements and retrieving any results generated by those statements.

• Driver manager:

The Driver Manager is a library that manages communication between application and driver or
drivers. It performs the following tasks:

• Resolves Data Source Names (DSN). The DSN is a configuration string that identifies a given
database driver, database, database host and optionally authentication information that enables an
ODBC application to connect to a database using a standardized reference.

Because the database connectivity information is identified by the DSN, any ODBC-compliant
application can connect to the data source using the same DSN reference. This eliminates the

325

https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_commit
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_rollback
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_transaction

ODBC Driver Managers

need to separately configure each application that needs access to a given database; instead you
instruct the application to use a pre-configured DSN.

• Loading and unloading of the driver required to access a specific database as defined within the
DSN. For example, if you have configured a DSN that connects to a MySQL database then the
driver manager will load the Connector/ODBC driver to enable the ODBC API to communicate with
the MySQL host.

• Processes ODBC function calls or passes them to the driver for processing.

• Connector/ODBC Driver:

The Connector/ODBC driver is a library that implements the functions supported by the ODBC API.
It processes ODBC function calls, submits SQL requests to MySQL server, and returns results
back to the application. If necessary, the driver modifies an application's request so that the request
conforms to syntax supported by MySQL.

• DSN Configuration:

The ODBC configuration file stores the driver and database information required to connect to
the server. It is used by the Driver Manager to determine which driver to be loaded according to
the definition in the DSN. The driver uses this to read connection parameters based on the DSN
specified. For more information, Section 5.5, “Configuring Connector/ODBC”.

• MySQL Server:

The MySQL database where the information is stored. The database is used as the source of the
data (during queries) and the destination for data (during inserts and updates).

5.3.2 ODBC Driver Managers

An ODBC Driver Manager is a library that manages communication between the ODBC-aware
application and any drivers. Its main functionality includes:

• Resolving Data Source Names (DSN).

• Driver loading and unloading.

• Processing ODBC function calls or passing them to the driver.

Most ODBC Driver Manager implementations also include an administration application that makes
the configuration of DSN and drivers easier. Examples and information on ODBC Driver Managers for
different operating systems are listed below:

• Windows: Microsoft Windows ODBC Driver Manager (odbc32.dll). It is included in the Windows
operating system. See http://support.microsoft.com/kb/110093 for more information.

• macOS: ODBC Administrator is a GUI application for macOS. It provides a simplified configuration
mechanism for the iODBC Driver Manager. You can configure DSN and driver information either
through ODBC Administrator or through the iODBC configuration files. This also means that
you can test ODBC Administrator configurations using the iodbctest command. See http://
support.apple.com/kb/DL895 for more information.

• Unix:

• unixODBC Driver Manager for Unix (libodbc.so). See http://www.unixodbc.org, for more
information.

• iODBC Driver Manager for Unix (libiodbc.so). See http://www.iodbc.org, for more information.

326

http://support.microsoft.com/kb/110093
http://support.apple.com/kb/DL895
http://support.apple.com/kb/DL895
http://www.unixodbc.org
http://www.iodbc.org

Connector/ODBC Installation

5.4 Connector/ODBC Installation
This section explains where to download Connector/ODBC, and how to run the installer, copy the files
manually, or build from source.

Where to Get Connector/ODBC

You can get a copy of the latest version of Connector/ODBC binaries and sources from our website at
https://dev.mysql.com/downloads//connector/odbc/.

Choosing Binary or Source Installation Method

You can install the Connector/ODBC drivers using two different methods:

• The binary installation is the easiest and most straightforward method of installation. You receive
all the necessary libraries and other files pre-built, with an installer program or batch script to perform
all necessary copying and configuration.

• The source installation method is intended for platforms where a binary installation package is
not available, or in situations where you want to customize or modify the installation process or
Connector/ODBC drivers before installation.

If a binary distribution is not available for a particular platform, and you build the driver from the
original source code.

Connector/ODBC binary distributions include an INFO_BIN file that describes the environment and
configuration options used to build the distribution. If you installed Connector/ODBC from a binary
distribution and experience build-related issues on a platform, it may help to check the settings
that were used to build the distribution on that platform. Binary and source distributions include an
INFO_SRC file that provides information about the product version and the source repository from
which the distribution was produced. This information was added in Connector/ODBC 8.0.14.

Supported Platforms

Connector/ODBC can be used on all major platforms supported by MySQL according to https://
www.mysql.com/en/support/supportedplatforms/database.html. This includes Windows, most Unix-like
operation systems, and macOS.

Note

On all non-Windows platforms except macOS, the driver is built against
unixODBC and is expecting a 2-byte SQLWCHAR, not 4 bytes as iODBC is using.
For this reason, the binaries are only compatible with unixODBC; recompile
the driver against iODBC to use them together. For further information, see
Section 5.3.2, “ODBC Driver Managers”.

For further instructions, consult the documentation corresponding to the platform where you are
installing and whether you are running a binary installer or building from source:

Platform Binary Installer Build from Source

Windows Installation Instructions Build Instructions

Unix/Linux Installation Instructions Build Instructions

macOS Installation Instructions

Choosing Unicode or ANSI Driver

Connector/ODBC offers the flexibility to handle data using any character set through its Unicode-
enabled driver, or the maximum raw speed for a more limited range of character sets through its
ANSI driver. Both kinds of drivers are provided in the same download package, and are both installed

327

https://dev.mysql.com/downloads//connector/odbc/
https://www.mysql.com/en/support/supportedplatforms/database.html
https://www.mysql.com/en/support/supportedplatforms/database.html

Prerequisites

onto your systems by the installation program or script that comes with the download package. Users
who install Connector/ODBC and register it to the ODBC manager manually can choose to install
and register either one or both of the drivers; the different drivers are identified by a w (for “wide
characters”) for the Unicode driver and a for the ANSI driver at the end of the library names. For
example, myodbc8w.dll versus myodbc8a.dll, or libmyodbc8w.so versus libmyodbc8a.so.

Note

Related: The previously described file names contain an "8", such as
myodbc8a.dll, which means they are for Connector/ODBC 8.x. File names
with a "5", such as myodbc5a.dll, are for Connector/ODBC 5.x.

Prerequisites

The ODBC driver is linked against the MySQL Server client library, so it inherits its dependencies for its
shared libraries. For example, the MySQL Server client library depends on C++ runtime libraries.

5.4.1 Installing Connector/ODBC on Windows

Before installing the Connector/ODBC drivers on Windows:

• Make sure your Microsoft Data Access Components (MDAC) are up to date. You can obtain the
latest version from the Microsoft Data Access and Storage website.

• Make sure the Visual C++ Redistributable for Visual Studio is installed.

• Connector/ODBC 8.0.14 or higher: VC++ Runtime 2015 or VC++ Runtime 2017

• Connector/ODBC 8.0.11 to 8.0.13: VC++ Runtime 2015

• Connector/ODBC 5.3: VC++ Runtime 2013

Use the version of the package that matches the system type of your Connector/ODBC driver: use
the 64-bit version (marked by “x64” in the package's title and filename) if you are running a 64-bit
driver, and use the 32-bit version (marked by “x86” in the package's title and filename) if you are
running a 32-bit driver.

• OpenSSL is a required dependency. The MSI package bundles OpenSSL libraries used by
Connector/ODBC while the Zip Archive does not and requires that you install OpenSSL on the
system.

There are different distribution types to use when installing for Windows. The software that is installed
is identical in each case, only the installation method is different.

• MSI: The Windows MSI Installer Package wizard installs Connector/ODBC. Download it from https://
dev.mysql.com/downloads/connector/odbc/. Configure ODBC connections using Section 5.5,
“Configuring Connector/ODBC” after the installation.

• Zip Archive: Contains DLL files that must be manually installed. See Section 5.4.1.1, “Installing the
Windows Connector/ODBC Driver Using the Zipped DLL Package” for additional details.

• Connector/ODBC 8.0 and below: MySQL Installer: The general MySQL Installer application
for Windows can install, upgrade, configure, and manage most MySQL 8.0 products, including
Connector/ODBC 8.0 and its prerequisites. Download it from http://dev.mysql.com/downloads/
windows/installer/ and see the MySQL Installer documentation for additional details. This is not a
Connector/ODBC specific installer.

5.4.1.1 Installing the Windows Connector/ODBC Driver Using the Zipped DLL Package

If you have downloaded the zipped DLL package:

1. Unzip the installation files to the location you want it installed.

328

https://www.microsoft.com/en-in/download/details.aspx?id=21995
https://dev.mysql.com/downloads/connector/odbc/
https://dev.mysql.com/downloads/connector/odbc/
http://dev.mysql.com/downloads/windows/installer/
http://dev.mysql.com/downloads/windows/installer/
https://dev.mysql.com/doc/refman/8.0/en/mysql-installer.html

Installing Connector/ODBC on Windows

2. Run the included batch file to perform an installation from the current directory and registers the
ODBC driver.

3. Alternatively to the batch file, install the individual files required for Connector/ODBC operation
manually.

4. Optionally install debug related files that are bundled in a different Zip file.

To install using the batch file:

1. Unzip the Connector/ODBC zipped Connector/ODBC package to the desired installation directory.
For example, to C:\Program Files\MySQL\Connector ODBC 8.3\.

Note

Multiple Zip files are available: 32-bit and 64-bit, and (as of 8.0.31) a
separate Debug Zip file that includes PDB files and unit tests.

2. Open a command prompt (with Admin privileges) and change the location to that directory.

3. Run Install.bat to register the Connector/ODBC driver with the Windows ODBC manager for
both the ANSI and Unicode versions. Output is similar to:

cd C:\Program Files\MySQL\Connector ODBC 8.3\
Install.bat
Registering Unicode driver
Checking if "MySQL ODBC 8.3 Unicode Driver" is not already registered
Registering "MySQL ODBC 8.3 Unicode Driver"
Success: Usage count is 1
Registering ANSI driver
Checking if "MySQL ODBC 8.3 ANSI Driver" is not already registered
Registering "MySQL ODBC 8.3 ANSI Driver"
Success: Usage count is 1

Note

Install.bat assumes the default naming scheme but optionally accepts
a custom name as the first parameter. For example, "Install.bat Fun" yields
"Fun Unicode" and "Fun ANSI" as the driver names.

Optionally use myodbc-installer.exe to list the registered drivers, for example:

cd C:\Program Files\MySQL\Connector ODBC 8.3\bin
myodbc-installer -d -l
SQL Server
MySQL ODBC 8.3 Unicode Driver
MySQL ODBC 8.3 ANSI Driver

Note

Changing or adding a new DSN (data source name) may be accomplished
using either the GUI, or from the command-line using myodbc-
installer.exe.

Using Install.bat is optional, directly using myodbc-installer.exe is an alternative option to
register drivers. For example:

For Unicode-enabled driver:
myodbc-installer -a -d -n "MySQL ODBC 8.3 Unicode Driver" -t "DRIVER=myodbc8w.dll;SETUP=myodbc8S.dll"
For ANSI driver:
myodbc-installer -a -d -n "MySQL ODBC 8.3 ANSI Driver" -t "DRIVER=myodbc8a.dll;SETUP=myodbc8S.dll"

5.4.1.2 Installing the Windows Connector/ODBC Debug Packages

The associated Debug files are bundled in its own Zip file, including two lib/ directories:

329

Installing Connector/ODBC on Unix-like Systems

• lib/: PDB files to use with regular builds; they are built in RelWithDebInfo mode.

• Debug/lib/: Debug builds built in Debug mode; includes driver, PDB files, and unit tests in test/
subdirectory.

Note

The separate debug Zip file was added in v8.0.31.

Add Debug Functionality to Regular Build

Download the debug zip and copy its lib/ contents to your driver installation directory; this adds the
PDB files generated in the RelWithDebInfo build.

Note

Regular builds are built with RelWithDebInfo so not all debugging information is
available. For example, some variables might be optimized out.

Replace Regular Build with Debug Build

Manually copy Debug/lib/ files from the Zip package into the driver installation directory to replace
the DLL and PDB files inside. No new driver registration is required.

Install an Independent Debug Build

This requires copying the plugin/ directory and dependency libraries (lib*.dll) from the regular
driver build, and optionally copying additional authentication plugins (fido2.dll, libsasl.dll, and
saslSCRAM.dll) depending on the plugins you use.

Register with the myodbc-installer command line tool from the regular driver bin/ sub-directory.

5.4.2 Installing Connector/ODBC on Unix-like Systems

There are three methods available for installing Connector/ODBC on a Unix-like system from a binary
distribution. For most Unix environments, you will use the tarball distribution. For Linux systems, RPM
distributions are available, through the MySQL Yum repository (for some platforms) or direct download.

Prerequisites

• unixODBC 2.2.12 or later

• OpenSSL

• C++ runtime libraries (libstdc++)

Note

Connector/ODBC provides generic Linux packages for Intel architecture (both
32 and 64 bits). As of Connector/ODBC 8.0.32, generic Linux packages for
ARM architecture (64 bit) are also available.

5.4.2.1 Installing Connector/ODBC Using the MySQL Yum Repository

The MySQL Yum repository for Oracle Linux, Red Hat Enterprise Linux, CentOS, and Fedora provides
Connector/ODBC RPM packages using the MySQL Yum repository. You must have the MySQL Yum
repository on your system's repository list (see Adding the MySQL Yum Repository for details). Make
sure your Yum repository setup is up-to-date by running:

$> su root
$> yum update mysql-community-release

330

https://dev.mysql.com/downloads/repo/yum/
https://dev.mysql.com/downloads/repo/yum/
https://dev.mysql.com/doc/refman/8.0/en/linux-installation-yum-repo.html#yum-repo-setup

Installing Connector/ODBC on Unix-like Systems

You can then install Connector/ODBC by the following command:

$> yum install mysql-connector-odbc

See Installing Additional MySQL Products and Components with Yum for more details.

5.4.2.2 Installing Connector/ODBC from a Binary Tarball Distribution

To install the driver from a tarball distribution (.tar.gz file), download the latest version of the driver
for your operating system and follow these steps, substituting the appropriate file and directory names
based on the package you download (some of the steps below might require superuser privileges):

1. Extract the archive:

$> gunzip mysql-connector-odbc-8.3.0-i686-pc-linux.tar.gz
$> tar xvf mysql-connector-odbc-8.3.0-i686-pc-linux.tar

2. The extra directory contains two subdirectories, lib and bin. Copy their contents to the proper
locations on your system (we use /usr/local/bin and /usr/local/lib in this example;
replace them with the destinations of your choice):

$> cp bin/* /usr/local/bin
$> cp lib/* /usr/local/lib

The last command copies both the Connector/ODBC ANSI and the Unicode drivers from lib into
/usr/local/lib; if you do not need both, you can just copy the one you want. See Choosing
Unicode or ANSI Driver for details.

3. Finally, register the driver version of your choice (the ANSI version, the Unicode version, or
both) with your system's ODBC manager (for example, iODBC or unixodbc) using the myodbc-
installer tool that was included in the package under the bin subdirectory (and is now under
the /usr/local/bin directory, if the last step was followed); for example, this registers the
Unicode driver with the ODBC manager:

// Registers the Unicode driver:
$> myodbc-installer -a -d -n "MySQL ODBC 8.3 Unicode Driver" -t "Driver=/usr/local/lib/libmyodbc8w.so"
// Registers the ANSI driver
$> myodbc-installer -a -d -n "MySQL ODBC 8.3 ANSI Driver" -t "Driver=/usr/local/lib/libmyodbc8a.so"

4. Verify that the driver is installed and registered using the ODBC manager, or the myodbc-
installer utility:

$> myodbc-installer -d -l

Next, see Section 5.5.5, “Configuring a Connector/ODBC DSN on Unix” on how to configure a DSN for
Connector/ODBC.

5.4.2.3 Installing Connector/ODBC from a DEB Distribution

Connector/ODBC Debian packages (.deb files) are available (as of v8.0.20) for Debian or Debian-like
Linux systems from the Connector/ODBC downloads page. The two package types are:

• mysql-connector-odbc: This driver package installs MySQL ODBC driver libraries and the
installer tool. It installs these files:

${LibDir}/odbc/libmyodbc8a.so
${LibDir}/odbc/libmyodbc8w.so
${BinDir}/myodbc-installer
${DocDir}/mysql-connector-odbc/*

Prerequisites: it depends on the unixODBC libraries (libodbc, libodbcinst).

It installs and registers both the Unicode (MySQL ODBC 8.3 Unicode Driver) and ANSI (MySQL
ODBC 8.3 ANSI Driver) drivers.

331

https://dev.mysql.com/doc/refman/8.0/en/linux-installation-yum-repo.html#yum-install-components
https://dev.mysql.com/downloads/connector/odbc/

Installing Connector/ODBC on macOS

This driver package does not conflict with the official Debian package libmyodbc. It is possible to
install/uninstall/use both packages independently.

• mysql-connector-odbc-setup: This setup package provides the GUI configuration widget
library. It installs these files:

${LibDir}/odbc/libmyodbc8S.so
${DocDir}/mysql-connector-odbc-setup/*

The installation process registers the setup library for ODBC drivers with the ODBC manager.

The ${LibDir}, ${BinDir}, ${DocDir} locations used above should be the standard locations where
DEB packages install libraries/executables/documentation. The library location contains architecture
component, and here are example locations:

/usr/lib/x86_64-linux-gnu/odbc/libmyodbc8a.so
/usr/lib/x86_64-linux-gnu/odbc/libmyodbc8w.so
/usr/lib/x86_64-linux-gnu/odbc/libmyodbc8S.so
/usr/bin/myodbc-installer
/usr/share/doc/mysql-connector-odbc/*
/usr/share/doc/mysql-connector-odbc-setup/*

5.4.2.4 Installing Connector/ODBC from an RPM Distribution

To install or upgrade Connector/ODBC from an RPM distribution on Linux, simply download the RPM
distribution of the latest version of Connector/ODBC and follow the instructions below. Use su root to
become root, then install the RPM file.

If you are installing for the first time:

$> su root
$> rpm -ivh mysql-connector-odbc-8.3.0.i686.rpm

If the driver exists, upgrade it like this:

$> su root
$> rpm -Uvh mysql-connector-odbc-8.3.0.i686.rpm

If there is any dependency error for MySQL client library, libmysqlclient, simply ignore it by
supplying the --nodeps option, and then make sure the MySQL client shared library is in the path or
set through LD_LIBRARY_PATH.

This installs the driver libraries and related documents to /usr/local/lib and /usr/share/doc/
MyODBC, respectively. See Section 5.5.5, “Configuring a Connector/ODBC DSN on Unix” for the post-
installation configuration steps.

To uninstall the driver, become root and execute an rpm command:

$> su root
$> rpm -e mysql-connector-odbc

5.4.3 Installing Connector/ODBC on macOS

macOS is based on the FreeBSD operating system, and you can normally use the MySQL network
port for connecting to MySQL servers on other hosts. Installing the Connector/ODBC driver lets you
connect to MySQL databases on any platform through the ODBC interface. If your application requires
an ODBC interface, install the Connector/ODBC driver.

On macOS, the ODBC Administrator, based on the iODBC manager, provides easy administration
of ODBC drivers and configuration, allowing the updates of the underlying iODBC configuration files
through a GUI tool. The tool is included in macOS v10.5 and earlier; users of later versions of macOS

332

Building Connector/ODBC from a Source Distribution on Windows

need to download it from http://www.iodbc.org/dataspace/doc/iodbc/wiki/iodbcWiki/Downloads and
install it manually.

Prerequisites

• iODBC

• OpenSSL is a required dependency. The macOS installation binaries bundle OpenSSL, while the
compressed tar archives do not and require that you install OpenSSL on your system before the
installation process.

• C++ runtime libraries (libc++)

There are two ways to install Connector/ODBC on macOS. You can use either the package provided in
a compressed tar archive that you manually install, or use a compressed disk image (.dmg) file, which
includes an installer.

To install using the compressed tar archive (some of the steps below might require superuser
privileges):

1. Download the compressed tar archive.

2. Extract the archive:

$> tar xvzf mysql-connector-odbc-x.y.z-macos10.z-x86-(32|64)bit.tar.gz

3. The directory created contains two subdirectories, lib and bin. Copy these to a suitable location
such as /usr/local:

$> cp bin/* /usr/local/bin
$> cp lib/* /usr/local/lib

4. Finally, register the driver with iODBC using the myodbc-installer tool that was included in the
package:

$> myodbc-installer -a -d -n "MySQL ODBC 8.3 Driver" -t "Driver=/usr/local/lib/libmyodbc8w.so"

To install using the a compressed disk image (.dmg) file:

Important

iODBC 3.52.12 or later must be installed on the macOS system before you can
install Connector/ODBC using a compressed disk image. See Section 5.4.3,
“Installing Connector/ODBC on macOS” [332].

1. Download the disk image.

2. Double click the disk image to open it. You see the Connector/ODBC installer inside.

3. Double click the Connector/ODBC installer, and you will be guided through the rest of the
installation process. You need superuser privileges to finish the installation.

To verify the installed drivers, either use the ODBC Administrator application or the myodbc-
installer utility:

$> myodbc-installer -d -l

5.4.4 Building Connector/ODBC from a Source Distribution on Windows

You only need to build Connector/ODBC from source on Windows to modify the source or installation
location. If you are unsure whether to install from source, please use the binary installation detailed in
Section 5.4.1, “Installing Connector/ODBC on Windows”.

333

http://www.iodbc.org/dataspace/doc/iodbc/wiki/iodbcWiki/Downloads

Building Connector/ODBC from a Source Distribution on Windows

Building Connector/ODBC from source on Windows requires a number of different tools and packages:

• MDAC, Microsoft Data Access SDK from https://www.microsoft.com/en-in/download/details.aspx?
id=21995.

• A suitable C++ compiler, such as Microsoft Visual C++ or the C++ compiler included with Microsoft
Visual Studio 2015 or later. Compiling Connector/ODBC 5.3 can use VS 2013.

• CMake.

• The MySQL client library and include files from MySQL 8.0 or higher for Connector/ODBC 8.3, or
MySQL 5.7 for Connector/ODBC 5.3. This is required because Connector/ODBC uses calls and
structures that do not exist in older versions of the library. To get the client library and include files,
visit https://dev.mysql.com/downloads/.

Build Steps

Set the environment variables for the Visual Studio toolchain. Visual Studio includes a batch file to set
these for you, and installs a Start menu shortcut that opens a command prompt with these variables
set.

Set MYSQL_DIR to the MySQL server installation path, while using the short-style file names. For
example:

C:\> set MYSQL_DIR=C:\PROGRA~1\MySQL\MYSQLS~1.0

Build Connector/ODBC using the cmake command-line tool by executing the following from the source
root directory (in a command prompt window):

C:\> cmake -G "Visual Studio 12 2013"

This produces a project file that you can open with Visual Studio, or build from the command line with
either of the following commands:

C:\> devenv.com MySQL_Connector_ODBC.sln /build Release

While building Connector/ODBC from source, dynamic linking with the MySQL client library is selected
by default—that is, the MYSQLCLIENT_STATIC_LINKING cmake option is FALSE by default (however,
the binary distributions of Connector/ODBC from Oracle are linked statically to the client library). If you
want to link statically to the MySQL client library, set the MYSQLCLIENT_STATIC_LINKING option
to TRUE, and use the MYSQLCLIENT_LIB_NAME option to supply the client library's name for static
linking:

C:\> cmake -G "Visual Studio 12 2013" -DMYSQLCLIENT_STATIC_LINKING:BOOL=TRUE \
 DMYSQLCLIENT_LIB_NAME=client_lib_name_with_extension

Also use the MYSQLCLIENT_LIB_NAME option to link dynamically to a MySQL client library other than
libmysql.dll. cmake looks for the client library under the location specified by the MYSQL_LIB_DIR
option; if the option is not specified, cmake looks under the default locations inside the folder specified
by the MYSQL_DIR option.

Since Connector/ODBC 8.0.11, use BUNDLE_DEPENDENCIES to install external library runtime
dependencies, such as OpenSSL, together with the connector. For dependencies inherited from the
MySQL client library, this only works if these dependencies are bundled with the client library itself.

INFO_SRC: this file provides information about the product version and the source repository from
which the distribution was produced. Was added in Connector/ODBC 8.0.14.

Optionally link Connector/ODBC statically (equivalent to the /MT compiler option in Visual
Studio) or dynamically (equivalent to the /MD compiler option in Visual Studio) to the Visual C
++ runtime. The default option is to link dynamically; if you want to link statically, set the option
STATIC_MSVCRT:BOOL=TRUE, that is:

334

https://www.microsoft.com/en-in/download/details.aspx?id=21995
https://www.microsoft.com/en-in/download/details.aspx?id=21995
https://dev.mysql.com/downloads/

Building Connector/ODBC from a Source Distribution on Unix

C:\> cmake -G "Visual Studio 12 2013" -DSTATIC_MSVCRT:BOOL=TRUE

The STATIC_MSVCRT option and the MYSQLCLIENT_STATIC_LINKING option are independent
of each other; that is, you can link Connector/ODBC dynamically to the Visual C++ runtime while
linking statically to the MySQL client library, and vice versa. However, if you link Connector/ODBC
dynamically to the Visual C++ runtime, you also need to link to a MySQL client library that is itself
linked dynamically to the Visual C++ runtime; and similarly, linking Connector/ODBC statically to the
Visual C++ runtime requires linking to a MySQL client library that is itself linked statically to the Visual
C++ runtime.

To compile a debug build, set the cmake build type so that the correct versions of the MySQL
client libraries are used; also, because the MySQL C client library built by Oracle is not built with
the debug options, when linking to it while building Connector/ODBC in debug mode, use the
WITH_NODEFAULTLIB option to tell cmake to ignore the default non-debug C++ runtime:

C:\> cmake -G "Visual Studio 14 2015" -DWITH_DEBUG=1 -DWITH_NODEFAULTLIB=libcmt

Create the debug build then with this command:

C:\> devenv.com MySQL_Connector_ODBC.sln /build Debug

Upon completion, the executables are in the bin/ and lib/ subdirectories.

See Section 5.4.1.1, “Installing the Windows Connector/ODBC Driver Using the Zipped DLL Package”
on how to complete the installation by copying the binary files to the right locations and registering
Connector/ODBC with the ODBC manager.

5.4.5 Building Connector/ODBC from a Source Distribution on Unix

You need the following tools to build MySQL from source on Unix:

• A working ANSI C++ compiler. GCC 4.2.1 or later, Sun Studio 12.1 or later, and many current
vendor-supplied compilers are known to work.

• CMake.

• MySQL client libraries and include files. To get the client libraries and include files, visit https://
dev.mysql.com/downloads/.

• A compatible ODBC manager must be installed. Connector/ODBC is known to work with the iODBC
and unixODBC managers. See Section 5.3.2, “ODBC Driver Managers” for more information.

• If you are using a character set that is not compiled into the MySQL client library, install the MySQL
character definitions from the charsets directory into SHAREDIR (by default, /usr/local/
mysql/share/mysql/charsets). These should be in place if you have installed the MySQL
server on the same machine. See Character Sets, Collations, Unicode for more information on
character set support.

Once you have all the required files, unpack the source files to a separate directory, then run cmake
with the following command:

$> cmake -G "Unix Makefiles"

Typical cmake Parameters and Options

You might need to help cmake find the MySQL headers and libraries by setting the environment
variables MYSQL_INCLUDE_DIR, MYSQL_LIB_DIR, and MYSQL_DIR to the appropriate locations; for
example:

$> export MYSQL_INCLUDE_DIR=/usr/local/mysql/include
$> export MYSQL_LIB_DIR=/usr/local/mysql/lib

335

https://dev.mysql.com/downloads/
https://dev.mysql.com/downloads/
https://dev.mysql.com/doc/refman/8.0/en/charset.html

Building Connector/ODBC from a Source Distribution on Unix

$> export MYSQL_DIR=/usr/local/mysql

When you run cmake, you might add options to the command line. Here are some examples:

• -DODBC_INCLUDES=dir_name: Use when the ODBC include directory is not found within the
system $PATH.

• -DODBC_LIB_DIR=dir_name: Use when the ODBC library directory is not found within the system
$PATH.

• -DWITH_UNIXODBC=1: Enables unixODBC support. iODBC is the default ODBC library used when
building Connector/ODBC from source on Linux platforms. Alternatively, unixODBC may be used by
setting this option to “1”.

• -DMYSQLCLIENT_STATIC_LINKING=boolean: Link statically to the MySQL client
library. Dynamic linking with the MySQL client library is selected by default—that is, the
MYSQLCLIENT_STATIC_LINKING cmake option is FALSE by default (however, the binary
distributions of Connector/ODBC from Oracle are linked statically to the client library). If you want to
link statically to the MySQL client library, set the option to TRUE. See also the description for the -
DMYSQLCLIENT_LIB_NAME=client_lib_name_with_extension option.

• -DBUNDLE_DEPENDENCIES=boolean: Enable to install external library runtime dependencies,
such as OpenSSL, together with the connector. For dependencies inherited from the MySQL client
library, this only works if these dependencies are bundled with the client library itself. Option added in
v8.0.11.

• -DMYSQLCLIENT_LIB_NAME=client_lib_name_with_extension: Location of the MySQL
client library. See the description for MYSQLCLIENT_STATIC_LINKING. To link statically to the
MySQL client library, use this option to supply the client library's name for static linking. Also use this
option If you want to link dynamically to a MySQL client library other than libmysqlclient.so.
cmake looks for the client library under the location specified by the environment variable
MYSQL_LIB_DIR; if the variable is not specified, cmake looks under the default locations inside the
folder specified by the environment variable MYSQL_DIR.

• -DMYSQL_CONFIG_EXECUTABLE=/path/to/mysql_config: Specifies location of the
utility mysql_config, which is used to fetch values of the variables MYSQL_INCLUDE_DIR,
MYSQL_LIB_DIR, MYSQL_LINK_FLAGS, and MYSQL_CXXFLAGS. Values fetched by mysql_config
are overridden by values provided directly to cmake as parameters.

• -DMYSQL_EXTRA_LIBRARIES=dependencies: When linking the MySQL client library
statically (-DMYSQLCLIENT_STATIC_LINKING=ON) and when setting MYSQL_LIB_DIR and
MYSQL_INCLUDE_DIR (so that the mysql_config is not used to detect settings), use this to
define a list of dependencies required by the client library.

• -DMYSQL_LINK_FLAGS=MySQL link flags

• -DMYSQL_CXXFLAGS=MySQL C++ linkage flags

• -DMYSQL_CXX_LINKAGE=1: Enables C++ linkage to MySQL client library. By default,
MYSQL_CXX_LINKAGE is enabled for MySQL 5.6.4 or later. For MySQL 5.6.3 and earlier, this option
must be set explicitly to 1.

Build Steps for Unix

To build the driver libraries, execute make:

$> make

If any errors occur, correct them and continue with the build process. If you are not able to finish the
build, see Section 5.9.1, “Connector/ODBC Community Support”.

336

https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html#option_cmake_odbc_includes
https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html#option_cmake_odbc_lib_dir
https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html#option_cmake_with_unixodbc
https://dev.mysql.com/doc/refman/8.0/en/mysql-config.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-config.html

Building Connector/ODBC from a Source Distribution on macOS

Installing Driver Libraries

To install the driver libraries, execute the following command:

$> make install

For more information on build process, refer to the BUILD file that comes with the source distribution.

Testing Connector/ODBC on Unix

Some tests for Connector/ODBC are provided in the distribution with the libraries that you built. To run
the tests:

1. Make sure you have an odbc.ini file in place, by which you can configure your DSN entries.
A sample odbc.ini file is generated by the build process under the test folder. Set the
environment variable ODBCINI to the location of your odbc.ini file.

2. Set up a test DSN in your odbc.ini file (see Section 5.5.5, “Configuring a Connector/ODBC DSN
on Unix” for details). A sample DSN entry, which you can use for your tests, can be found in the
sample odbc.ini file.

3. Set the environment variable TEST_DSN to the name of your test DSN.

4. Set the environment variable TEST_UID and perhaps also TEST_PASSWORD to the user name
and password for the tests, if needed. By default, the tests use “root” as the user and do not enter
a password; if you want the tests to use another user name or password, set TEST_UID and
TEST_PASSWORD accordingly.

5. Make sure that your MySQL server is running.

6. Run the following command:

$> make test

5.4.6 Building Connector/ODBC from a Source Distribution on macOS

To build Connector/ODBC from source on macOS, follow the same instructions given for Section 5.4.5,
“Building Connector/ODBC from a Source Distribution on Unix”. Notice that iODBC is the default ODBC
library used when building Connector/ODBC on macOS from source. Alternatively, unixODBC may be
used by setting the option -DWITH_UNIXODBC=1.

5.4.7 Installing Connector/ODBC from the Development Source Tree

Caution

This section is only for users who are interested in helping us test our new code.
To just get MySQL Connector/ODBC up and running on your system, use a
standard release distribution.

The Connector/ODBC code repository uses Git. To check out the latest source code, visit GitHub:
https://github.com/mysql/mysql-connector-odbc To clone the Git repository to your machine, use this
command

$> git clone https://github.com/mysql/mysql-connector-odbc.git

You should now have a copy of the entire Connector/ODBC source tree in the directory mysql-
connector-odbc. To build and then install the driver libraries from this source tree on Unix or Linux,
use the same steps outlined in Section 5.4.5, “Building Connector/ODBC from a Source Distribution on
Unix”.

On Windows, make use of Windows Makefiles WIN-Makefile and WIN-Makefile_debug in
building the driver. For more information, see Section 5.4.4, “Building Connector/ODBC from a Source
Distribution on Windows”.

337

https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html#option_cmake_with_unixodbc
https://github.com/mysql/mysql-connector-odbc

Configuring Connector/ODBC

After the initial checkout operation to get the source tree, run git pull periodically to update your
source according to the latest version.

5.5 Configuring Connector/ODBC

Before you connect to a MySQL database using the Connector/ODBC driver, you configure an ODBC
Data Source Name (DSN). The DSN associates the various configuration parameters required to
communicate with a database to a specific name. You use the DSN in an application to communicate
with the database, rather than specifying individual parameters within the application itself. DSN
information can be user-specific, system-specific, or provided in a special file. ODBC data source
names are configured in different ways, depending on your platform and ODBC driver.

5.5.1 Overview of Connector/ODBC Data Source Names

A Data Source Name associates the configuration parameters for communicating with a specific
database. Generally, a DSN consists of the following parameters:

• Name

• Host Name

• Database Name

• Login

• Password

In addition, different ODBC drivers, including Connector/ODBC, may accept additional driver-specific
options and parameters.

There are three types of DSN:

• A System DSN is a global DSN definition that is available to any user and application on a particular
system. A System DSN can normally only be configured by a systems administrator, or by a user
who has specific permissions that let them create System DSNs.

• A User DSN is specific to an individual user, and can be used to store database connectivity
information that the user regularly uses.

• A File DSN uses a simple file to define the DSN configuration. File DSNs can be shared between
users and machines and are therefore more practical when installing or deploying DSN information
as part of an application across many machines.

DSN information is stored in different locations depending on your platform and environment.

5.5.2 Connector/ODBC Connection Parameters

You can specify the parameters in the following tables for Connector/ODBC when configuring a DSN:

• Table 5.1, “Connector/ODBC DSN Configuration Options”

• Table 5.3, “Connector/ODBC Option Parameters”

Users on Windows can use the ODBC Data Source Administrator to set these parameters;
see Section 5.5.3, “Configuring a Connector/ODBC DSN on Windows” on how to do that, and
see Table 5.1, “Connector/ODBC DSN Configuration Options” for information on the options and
the fields and check boxes they corrrespond to on the graphical user interface of the ODBC Data
Source Administrator. On Unix and macOS, use the parameter name and value as the
keyword/value pair in the DSN configuration. Alternatively, you can set these parameters within the
InConnectionString argument in the SQLDriverConnect() call.

338

Connector/ODBC Connection Parameters

Table 5.1 Connector/ODBC DSN Configuration Options

Parameter GUI Option Default Value Comment

user User ODBC The user name used to connect to MySQL.

uid User ODBC Synonymous with user. Added in 3.51.16.

server TCP/IP Server localhost The host name of the MySQL server. Can define multiple hosts if
MULTI_HOST is enabled.

database Database - The default database.

option - 0 Options that specify how Connector/ODBC works. See Table 5.3,
“Connector/ODBC Option Parameters” and Table 5.4, “Recommended
Connector/ODBC Option Values for Different Configurations”.

port Port 3306 The TCP/IP port to use if server is not localhost.

initstmt Initial Statement - Initial statement. A statement to execute when connecting to MySQL. In
version 3.51 the parameter is called stmt. The driver supports the initial
statement being executed only at the time of the initial connection.

password Password - The password for the user account on server. pwd is an alias.

password1,
password2,
password3

Password - For Multi-Factor Authentication (MFA); password1 is an alias for
password. There'as also the pwd1, pwd2, and pwd3 aliases. These were
added in 8.0.28.

socket - - The Unix socket file or Windows named pipe to connect to; only define
socket if server is set to localhost

ssl-ca SSL Certificate - Alias of SSLCA as an eventual replacement; added in v8.0.29.

SSLCA SSL Certificate - The path to a file with a list of trust SSL CAs.

An ssl-ca alias was added in 8.0.29, which is preferred over SSLCA.

ssl-
capath

SSL CA Path - Alias of SSLCAPATH as an eventual replacement; added in v8.0.29.

SSLCAPATHSSL CA Path - The path to a directory that contains trusted SSL CA certificates in PEM
format.

An ssl-capath alias was added in 8.0.29, which is preferred over
SSLCAPATH.

ssl-cert SSL Certificate - Alias of SSLCERT as an eventual replacement; added in v8.0.29.

SSLCERT SSL Certificate - The name of the SSL certificate file to use for establishing a secure
connection.

An ssl-cert alias was added in 8.0.29, which is preferred over SSLCERT.

ssl-
cipher

SSL Cipher - Alias of SSLCIPHER as an eventual replacement; added in v8.0.29.

SSLCIPHERSSL Cipher - The list of permissible ciphers for SSL encryption. The cipher list has the
same format as the openssl ciphers command.

An ssl-cipher alias was added in 8.0.29, which is preferred over
SSLCIPHER.

ssl-key SSL Key - Alias of SSLKEY as an eventual replacement; added in v8.0.29.

SSLKEY SSL Key - The name of the SSL key file to use for establishing a secure connection.

An ssl-key alias was added in 8.0.29, which is preferred over SSLKEY.

ssl-crl The path name of
the file containing

- Added in 8.0.31

339

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_socket

Connector/ODBC Connection Parameters

Parameter GUI Option Default Value Comment
certificate revocation
lists in PEM format.

ssl-
crlpath

The path of the
directory that contains
certificate revocation
list files in PEM
format.

- Added in 8.0.31

rsakey RSA Public Key - The full-path name of the PEM file that contains the RSA public key for
using the SHA256 authentication plugin of MySQL. Added in 5.3.4.

sslverifyVerify SSL 0 If set to 1, the SSL certificate will be verified when used with the MySQL
connection. If not set, then the default behavior is to ignore SSL certificate
verification.

Note

The option is deprecated since Connector/ODBC
5.3.7. It is preferable to use the SSLMODE option
parameter instead.

authentication-
kerberos-
mode

Kerberos
implementation

SSPI Acceptable values are "SSPI" (default) or "GSSAPI". For functionality
details, see Kerberos Pluggable Authentication. The SSPI option is only
supported by Windows, whereas GSSAPI is supported by both Windows
and other operating systems. Added in Connector/ODBC 8.0.32.

OPENTELEMETRYOpenTelemetry
implementation

PREFERRED Acceptable values are PREFERRED (default) or DISABLED. For
functionality details, see Section 5.5.8, “OpenTelemetry Tracing Support”.
Added in Connector/ODBC 8.1.0.

MULTI_HOSTWhether to enable
multiple host
functionality

0 Enable new connections to try multiple hosts until a
successful connection is established. A list of hosts is
defined with SERVER in the connection string. For example,
SERVER=address1[:port1],address2[:port2];MULTI_HOST=1 -- option
added in 8.0.19.

ENABLE_DNS_SRVWhether to use DNS
+SRV usage in the
DSN

0 If set to 1, enables DNS+SRV usage in the DSN; the host
is passed for SRV lookup without a port and with a full
lookup name. Example usage: DRIVER={MySQL ODBC 8.3
Driver};SERVER=_mysql._tcp.foo.abc.com;ENABLE_DNS_SRV=1;USER=user;PWD=passwd;
-- option added in Connector/ODBC 8.0.19.

charset Character Set - The character set to use for the connection. Added in 3.51.17. Note:
executing SET NAMES is not allowed as of v5.1.

readtimeout- - The timeout in seconds for attempts to read from the server. Each attempt
uses this timeout value and there are retries if necessary, so the total
effective timeout value is three times the option value. You can set the
value so that a lost connection can be detected earlier than the TCP/
IP Close_Wait_Timeout value of 10 minutes. This option works only
for TCP/IP connections, and only for Windows prior to MySQL 5.1.12.
Corresponds to the MYSQL_OPT_READ_TIMEOUT option of the MySQL
Client Library. Added in 3.51.27.

writetimeout- - The timeout in seconds for attempts to write to the server. Each attempt
uses this timeout value and there are net_retry_count retries if
necessary, so the total effective timeout value is net_retry_count
times the option value. This option works only for TCP/IP connections,
and only for Windows prior to MySQL 5.1.12. Corresponds to the
MYSQL_OPT_WRITE_TIMEOUT option of the MySQL Client Library. Added
in 3.51.27.

340

https://dev.mysql.com/doc/refman/8.0/en/kerberos-pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.0/en/set-names.html

Connector/ODBC Connection Parameters

Parameter GUI Option Default Value Comment

interactiveInteractive Client 0 If set to 1, the CLIENT_INTERACTIVE connection option of mysql-real-
connect() is enabled. Added in 5.1.7.

OCI_CONFIG_FILEOracle Clound
Infastructure
configuration file path

~/.oci/config on
Linux and macOS,
and %HOMEDRIVE
%%HOMEPATH%
\.oci\config on
Windows.

Used by the authentication_oci_client plugin for the Oracle Cloud
Infrastructure (OCI) to support ephemeral key pairs and security
tokens. The default profile is DEFAULT and can be configured using
OCI_CONFIG_PROFILE. Option added in Connector/ODBC 8.0.27.

OCI_CONFIG_PROFILEOracle Clound
Infastructure
configuration profile
name

DEFAULT Defaults to DEFAULT, optionally specify a specific profile as defined in
OCI_CONFIG_FILE. Option added in Connector/ODBC 8.0.33.

prefetch Prefetch from server
by _ rows at a time

0 When set to a non-zero value N, causes all queries in the connection to
return N rows at a time rather than the entire result set. Useful for queries
against very large tables where it is not practical to retrieve the whole result
set at once. You can scroll through the result set, N records at a time.

This option works only with forward-only cursors. It does not work when the
option parameter MULTI_STATEMENTS is set. It can be used in combination
with the option parameter NO_CACHE. Its behavior in ADO applications is
undefined: the prefetching might or might not occur. Added in 5.1.11.

no_ssps - 0 In Connector/ODBC 5.2 and after, by default, server-side prepared
statements are used. When this option is set to a non-zero value, prepared
statements are emulated on the client side, which is the same behavior as
in 5.1 and 3.51. Added in 5.2.0.

can_handle_exp_pwdCan Handle Expired
Password

0 Indicates that the application can deal with an expired password, which
is signalled by an SQL state of 08004 (“Server rejected the connection”)
and a native error code ER_MUST_CHANGE_PASSWORD_LOGIN (1862).
The connection is “sandboxed”, and can do nothing other than issue a
SET PASSWORD statement. To establish a connection in this case, your
application must either use the initstmt connection option to set a new
password at the start, or issue a SET PASSWORD statement immediately
after connecting. Once the expired password is reset, the restrictions on
the connection are lifted. See ALTER USER Statement for details about
password expiration for MySQL server accounts. Added in 5.2.4.

ENABLE_CLEARTEXT_PLUGINEnable Cleartext
Authentication

0 Set to 1 to enable cleartext authentication. Added in 5.1.13 and 5.2.5.

ENABLE_LOCAL_INFILEEnable LOAD DATA
operations

0 A connection string, DSN, and GUI option. Set ENABLE_LOCAL_INFILE=1
to enable LOAD DATA operations. This toggles the
MYSQL_OPT_LOCAL_INFILE mysql_options() option. The connection
string overrides the DSN value if both are set. Added in 5.3.12 and 8.0.14.

LOAD_DATA_LOCAL_DIRRestrict LOAD DATA
operations

A connection string, DSN, and GUI option. Set LOAD_DATA_LOCAL_DIR
to a specific directory, such as LOAD_DATA_LOCAL_DIR=/
tmp, to restrict uploading files to a specific path. This sets the
MYSQL_OPT_LOAD_DATA_LOCAL_DIR mysql_options() option. The
connection string overrides the DSN value if both are set. This option has
no effect if ENABLE_LOCAL_INFILE=1. Added in 8.0.22.

GET_SERVER_PUBLIC_KEYGet Server Public Key 0 When connecting to accounts that use caching_sha2_password
authentication over non-secure connection (TLS disabled), Connector/
ODBC requests the RSA public key required to perform the authentication
from the server. The option is ignored if the authentication mechanism used
for the connection is different from caching_sha2_password. This option

341

https://dev.mysql.com/doc/c-api/8.2/en/mysql-real-connect.html
https://dev.mysql.com/doc/c-api/8.2/en/mysql-real-connect.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html

Connector/ODBC Connection Parameters

Parameter GUI Option Default Value Comment
corresponds to the MYSQL_OPT_GET_SERVER_PUBLIC_KEY option for the
mysql_options() C API function. The value is a boolean.

The option is added in Connector/ODBC versions 8.0.11 and 5.3.11. It
requires Connector/ODBC built using OpenSSL-based MySQL client library.
If MySQL client library used by Connector/ODBC was built with YaSSL, as
is the case for GPL distributions of Connector/ODBC 5.3, the option does
not function and is ignored

NO_TLS_1_0Disable TLS 1.0 0 This option was removed in v8.0.28. It disallowed the use of TLS 1.0 for
connection encryption. All versions of TLS are allowed by default, and
this option exluded version 1.0 from being used. Added in 5.3.7. TLS 1.0
support was deprecated in v8.0.26 before removal in v8.0.28.

NO_TLS_1_1Disable TLS 1.1 0 This option was removed in v8.0.28. It disallowed the use of TLS 1.1 for
connection encryption. All versions of TLS are allowed by default, and
this option exluded version 1.1 from being used. Added in 5.3.7. TLS 1.1
support was deprecated in v8.0.26 before removal in v8.0.28.

NO_TLS_1_2Disable TLS 1.2 0 Disallows the use of TLS 1.2 for connection encryption. All versions of TLS
are allowed by default, and this option exludes version 1.2 from being used.
Added in 5.3.7.

NO_TLS_1_3Disable TLS 1.3 0 Disallows the use of TLS 1.3 for connection encryption. All versions of TLS
are allowed by default, and this option exludes version 1.3 from being used.
Added in 8.0.26.

tls-
versions

Define the allowed
TLS protocol versions

TLSv1.2,TLSv1.3 (set
by libmysqlclient)

Accepts TLSv1.2 and/or TLSv1.3; while other values generate an error. It
has no effect if ssl-mode=DISABLED, and overrides (disables) the related
NO_TLS_X_Y connection options such as NO_TLS_1_2. Added in 8.0.30.

SSL_ENFORCEEnforce SSL 0 Enforce the requirement to use SSL for connections to server.
See Table 5.2, “Combined Effects of SSL_ENFORCE and
DISABLE_SSL_DEFAULT ”. Added in 5.3.6.

Note

This option is deprecated since Connector/ODBC
5.3.7 and removed in 8.0.13. It is preferable to use
the SSLMODE option parameter instead.

DISABLE_SSL_DEFAULTDisable default SSL 0 Disable the default requirement to use SSL for connections to server.
When set to “0” [default], Connector/ODBC tries to connect with SSL
first, and falls back to unencrypted connection if it is not possible to
establish an SSL connection. When set to “1,” Connection with SSL is not
attempted, and unencrypted connection is used, unless SSL_ENFORCE is
also set to “1.” See Table 5.2, “Combined Effects of SSL_ENFORCE and
DISABLE_SSL_DEFAULT ”. Added in 5.3.6.

Note

The option is deprecated since Connector/ODBC
5.3.7 and removed in 8.0.13. Use the SSLMODE
option parameter instead.

ssl-mode SSL Mode - Alias of SSLMODE as an eventual replacement; added in v8.0.29.

SSLMODE SSL Mode - Sets the SSL mode of the server connection. The option can be set to any
of the following values: DISABLED, PREFERRED, REQUIRED, VERIFY_CA,
or VERIFY_IDENTITY. See description for the --ssl-mode option in the
MySQL 8.0 Reference Manual for the meaning of each of the option values.

An ssl-mode alias was added in 8.0.29, which is preferred over SSLMODE.

342

https://dev.mysql.com/doc/c-api/8.2/en/mysql-options.html
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-mode
https://dev.mysql.com/doc/refman/8.0/en/

Connector/ODBC Connection Parameters

Parameter GUI Option Default Value Comment
If SSLMODE is not explicitly set, use of the SSLCA or SSLCAPTH option
implies SSLMODE=VERIFY_CA.

Added in 5.3.7. This option overrides the deprecatedsslverify and
SSL_ENFORCE options.

Note

The SSL configuration parameters can also be automatically loaded from a
my.ini or my.cnf file. See Using Option Files.

Table 5.2 Combined Effects of SSL_ENFORCE and DISABLE_SSL_DEFAULT

DISABLE_SSL_DEFAULT =
0

DISABLE_SSL_DEFAULT =
1

SSL_ENFORCE = 0 (Default) Connection with
SSL is attempted first; if
not possible, fall back to
unencrypted connection.

Connection with SSL is not
attempted; use unencrypted
connection.

SSL_ENFORCE = 1 Connect with SSL; throw an
error if an SSL connection
cannot be established.

Connect with SSL; throw an
error if an SSL connection
cannot be established.
DISABLE_SSL_DEFAULT=1
is overridden.

The behavior of Connector/ODBC can be also modified by using special option parameters listed in
Table 5.3, “Connector/ODBC Option Parameters”, specified in the connection string or through the GUI
dialog box. All of the connection parameters also have their own numeric constant values, which can
be added up as a combined value for the option parameter for specifying those options. However, the
numerical option value in the connection string can only enable, but not disable parameters enabled
on the DSN, which can only be overridden by specifying the option parameters using their text names
in the connection string.

Note

While the combined numerical value for the option parameter can be easily
constructed by addition of the options' constant values, decomposing the value
to verify if particular options are enabled can be difficult. We recommend using
the options' parameter names instead in the connection string, because they are
self-explanatory.

Table 5.3 Connector/ODBC Option Parameters

Parameter Name GUI Option Constant Value Description

FOUND_ROWS Return matched rows instead
of affected rows

2 The client cannot handle when MySQL returns
the true value of affected rows. If this flag is set,
MySQL returns “found rows” instead. You must
have MySQL 3.21.14 or newer for this to work.

BIG_PACKETS Allow big result set 8 Do not set any packet limit for results and bind
parameters. Without this option, parameter
binding will be truncated to 255 characters.

NO_PROMPT Don't prompt when
connecting

16 Do not prompt for questions even if driver would
like to prompt.

DYNAMIC_CURSOR Enable Dynamic Cursors 32 Enable or disable the dynamic cursor support.

NO_SCHEMA Disables support for ODBC
schemas

64 Ignore use of database schema name in
catalog.schema.table.column. See

343

https://dev.mysql.com/doc/refman/8.0/en/option-files.html

Connector/ODBC Connection Parameters

Parameter Name GUI Option Constant Value Description
also the related NO_CATALOG option. This
option was removed in Connector/ODBC
8.0.13 but served no function before then,
and was reintroduced in Connector/ODBC
8.0.26. This option is enabled by default as of
Connector/ODBC 8.0.27. For usage details,
see Section 5.8.1.3, “Configuring Catalog and
Schema Support”

NO_DEFAULT_CURSOR Disable driver-provided
cursor support

128 Force use of ODBC manager cursors
(experimental).

NO_LOCALE Don't use setlocale() 256 Disable the use of extended fetch
(experimental).

PAD_SPACE Pad CHAR to full length with
space

512 Pad CHAR columns to full column length.

FULL_COLUMN_NAMES Include table name in
SQLDescribeCol()

1024 SQLDescribeCol() returns fully-qualified
column names.

COMPRESSED_PROTO Use compression 2048 Use the compressed client/server protocol.

IGNORE_SPACE Ignore space after function
names

4096 Tell server to ignore space after function name
and before “(” (needed by PowerBuilder). This
makes all function names keywords.

NAMED_PIPE Named Pipe 8192 Connect with named pipes to a mysqld server
running on NT.

NO_BIGINT Treat BIGINT columns as INT
columns

16384 Change BIGINT columns to INT columns
(some applications cannot handle BIGINT).

NO_CATALOG Disable catalog support 32768 Forces results from the catalog functions, such
as SQLTables, to always return NULL and the
driver to report that catalogs are not supported.
See also the related NO_SCHEMA option. For
usage details, see Section 5.8.1.3, “Configuring
Catalog and Schema Support”

USE_MYCNF Read options from my.cnf 65536 Read parameters from the [client] and
[odbc] groups from my.cnf.

SAFE Enable safe options 131072 Add some extra safety checks.

NO_TRANSACTIONS Disable transaction support 262144 Disable transactions.

LOG_QUERY Log queries to %TEMP%
\myodbc.sql

524288 Enable query logging to c:\myodbc.sql(/
tmp/myodbc.sql) file. (Enabled only in debug
mode.)

NO_CACHE Don't cache results of
forward-only cursors

1048576 Do not cache the results locally in
the driver, instead read from server
(mysql_use_result()). This works only
for forward-only cursors. This option is very
important in dealing with large tables when you
do not want the driver to cache the entire result
set.

FORWARD_CURSOR Force use of forward-only
cursors

2097152 Force the use of Forward-only cursor type. In
cases of applications setting the default static/
dynamic cursor type and one wants the driver
to use noncache result sets, this option ensures
the forward-only cursor behavior.

344

https://dev.mysql.com/doc/refman/8.0/en/char.html
https://dev.mysql.com/doc/refman/8.0/en/integer-types.html
https://dev.mysql.com/doc/refman/8.0/en/integer-types.html
https://dev.mysql.com/doc/refman/8.0/en/integer-types.html
https://dev.mysql.com/doc/c-api/8.2/en/mysql-use-result.html

Connector/ODBC Connection Parameters

Parameter Name GUI Option Constant Value Description

AUTO_RECONNECT Enable automatic reconnect 4194304 Enables auto-reconnection functionality. Do
not use this option with transactions, since
an auto-reconnection during a incomplete
transaction may cause corruption. An auto-
reconnected connection will not inherit the
same settings and environment as the original
connection. MySQL Server deprecated this
functionality in 8.0.34/8.1.0 and removed it in
8.3.0. This connection option was removed from
Connector/ODBC 8.3.0 and setting it returns
SQL_SUCCESS_WITH_INFO with an HY000
error stating that it's no longer supported.

AUTO_IS_NULL Enable
SQL_AUTO_IS_NULL

8388608 When AUTO_IS_NULL is set, the driver
does not change the default value of
sql_auto_is_null, leaving it at 1, so you
get the MySQL default, not the SQL standard
behavior.

When AUTO_IS_NULL is not set, the
driver changes the default value of
SQL_AUTO_IS_NULL to 0 after connecting,
so you get the SQL standard, not the MySQL
default behavior.

Thus, omitting the flag disables the compatibility
option and forces SQL standard behavior.

See IS NULL. Added in 3.51.13.

ZERO_DATE_TO_MIN Return SQL_NULL_DATA for
zero date

16777216 Translates zero dates (XXXX-00-00) into the
minimum date values supported by ODBC,
XXXX-01-01. This resolves an issue where
some statements will not work because the date
returned and the minimum ODBC date value are
incompatible. Added in 3.51.17.

MIN_DATE_TO_ZERO Bind minimal date as zero
date

33554432 Translates the minimum ODBC date value
(XXXX-01-01) to the zero date format
supported by MySQL (XXXX-00-00). This
resolves an issue where some statements will
not work because the date returned and the
minimum ODBC date value are incompatible.
Added in 3.51.17.

NO_DATE_OVERFLOW Ignore data overflow error 0 Continue with the query execution rather then
return error if the time portion is missing. The
server will ignore the time component and the
result is the same as if they were zeros. Added
in 5.3.8.

MULTI_STATEMENTS Allow multiple statements 67108864 Enables support for batched statements. As
of 8.0.24, preparing a query with multiple
statements raises an error. The direct execution
of parameter-less statements prepared using
the SQLPrepare() function is not supported.
Multiple statements can only be executed
through the SQLExecDirec() ODBC function.

345

https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_transaction
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_sql_auto_is_null
https://dev.mysql.com/doc/refman/8.0/en/comparison-operators.html#operator_is-null

Connector/ODBC Connection Parameters

Parameter Name GUI Option Constant Value Description

COLUMN_SIZE_S32 Limit column size to signed
32-bit range

134217728 Limits the column size to a signed 32-bit value
to prevent problems with larger column sizes
in applications that do not support them. This
option is automatically enabled when working
with ADO applications. Added in 3.51.22.

NO_BINARY_RESULT Always handle binary function
results as character data

268435456 When set, this option disables charset 63 for
columns with an empty org_table. Added in
3.51.26.

DFLT_BIGINT_BIND_STR Bind BIGINT parameters as
strings

536870912 Causes BIGINT parameters to be bound as
strings. Microsoft Access treats BIGINT as
a string on linked tables. The value is read
correctly, but bound as a string. This option
is used automatically if the driver is used by
Microsoft Access. Added in 5.1.3.

NO_I_S Don't use
INFORMATION_SCHEMA
for metadata

1073741824 Tells catalog functions not to use
INFORMATION_SCHEMA, but rather use legacy
algorithms. The trade-off here is usually
speed for information quality. Added in 5.1.7,
deprecated in 8.0.26, and removed (and now
ignored) in 8.0.31.

CB_FIDO_GLOBAL Registers a global
callback function for the
authentication_webauthn
connection

20480 User-defined constant (see Connector/
ODBC WebAuthn and FIDO Information);
the last registered global callback is reused
in connections not defining a callback. Only
use with connections that use the MySQL
ODBC driver; using with other connections
might lead to undefined behavior. Example
usage: SQLSetConnectAttr(hdbc,
CB_FIDO_GLOBAL, &my_user_callback,
SQL_IS_POINTER);. Support added in 8.2.0.

CB_FIDO_CONNECTION Registers a per-connection
callback function for the
authentication_webauthn
connection

20481 User-defined constant (see Connector/ODBC
WebAuthn and FIDO Information); the callback
is registered for a single connection. Only use
with connections that use the MySQL ODBC
driver; using with other connections might lead
to undefined behavior. Support added in 8.2.0.

Table 5.4, “Recommended Connector/ODBC Option Values for Different Configurations” shows some
recommended parameter settings and their corresponding option values for various configurations:

Table 5.4 Recommended Connector/ODBC Option Values for Different Configurations

ConfigurationParameter
Settings

Option
Value

Microsoft
Access,
Visual
Basic

FOUND_ROWS=1;2

Microsoft
Access
(with
improved
DELETE
queries)

FOUND_ROWS=1;DYNAMIC_CURSOR=1;34

346

https://dev.mysql.com/doc/refman/8.2/en/webauthn-pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.2/en/webauthn-pluggable-authentication.html

Configuring a Connector/ODBC DSN on Windows

ConfigurationParameter
Settings

Option
Value

Microsoft
SQL
Server

COLUMN_SIZE_S32=1;134217728

Large
tables
with
too
many
rows

COMPRESSED_PROTO=1;2048

Sybase
PowerBuilder

IGNORE_SPACE=1;FLAG_SAFE=1;135168

Query
log
generation
(Debug
mode)

LOG_QUERY=1;524288

Large
tables
with
no-
cache
results

NO_CACHE=1;FORWARD_CURSOR=1;3145728

Applications
that
run
full-
table
"SELECT
*
FROM ...
"
query,
but
read
only
a
small
number
(N)
of
rows
from
the
result

PREFETCH=NNot
Applicable

5.5.3 Configuring a Connector/ODBC DSN on Windows

To add or configure a Connector/ODBC 5.x or 8.x DSN on Windows, use either the ODBC Data
Source Administrator GUI, or the command-line tool myodbc-installer.exe that comes with
Connector/ODBC.

347

Configuring a Connector/ODBC DSN on Windows

5.5.3.1 Configuring a Connector/ODBC DSN on Windows with the ODBC Data Source
Administrator GUI

The ODBC Data Source Administrator on Windows lets you create DSNs, check driver
installation, and configure ODBC functions such as tracing (used for debugging) and connection
pooling. The following are steps for creating and configuring a DSN with the ODBC Data Source
Administrator:

1. Open the ODBC Data Source Administrator.

Different editions and versions of Windows store the ODBC Data Source Administrator in
different locations. For instructions on opening the ODBC Data Source Administrator, see
the documentation for you Windows version; these instructions from Microsoft cover some popuar
Windows platforms. You should see a window similar to the following when you open the ODBC
Data Source Administrator:

Figure 5.2 ODBC Data Source Administrator Dialog

2. To create a System DSN (which will be available to all users), select the System DSN tab. To
create a User DSN, which will be available only to the current user, click the Add... button to open
the "Create New Data Source" dialog.

3. From the "Create New Data Source" dialog, select the MySQL ODBC 5.x ANSI or Unicode Driver,
then click Finish to open its connection parameters dialog.

Figure 5.3 Create New Data Source Dialog: Choosing a MySQL ODBC Driver

348

https://docs.microsoft.com/en-us/sql/database-engine/configure-windows/open-the-odbc-data-source-administrator

Configuring a Connector/ODBC DSN on Windows

4. You now need to configure the specific fields for the DSN you are creating through the
Connection Parameters dialog.

Figure 5.4 Data Source Configuration Connection Parameters Dialog

In the Data Source Name box, enter the name of the data source to access. It can be any valid
name that you choose.

Tip

To identify whether a DSN was created using the 32-bit or the 64-bit
driver, include the driver being used within the DSN identifier. This will
help you to identify the right DSN to use with applications such as Excel
that are only compatible with the 32-bit driver. For example, you might
add Using32bitCODBC to the DSN identifier for the 32-bit interface and
Using64bitCODBC for those using the 64-bit Connector/ODBC driver.

5. In the Description box, enter some text to help identify the connection.

6. In the Server field, enter the name of the MySQL server host to access. By default, it is
localhost.

7. In the User field, enter the user name to use for this connection.

8. In the Password field, enter the corresponding password for this connection.

9. The Database pop-up should be automatically populated with the list of databases that the user
has permissions to access.

10. To communicate over a different TCP/IP port than the default (3306), change the value of the Port.

11. Click OK to save the DSN.

To verify the connection using the parameters you have entered, click the Test button. If the
connection can be made successfully, you will be notified with a Connection Successful dialog;
otherwise, you will be notified with a Connection Failed dialog.

You can configure a number of options for a specific DSN by clicking the Details button.

349

Configuring a Connector/ODBC DSN on Windows

Figure 5.5 Connector/ODBC Connect Options Dialog

Toggling the Details button opens (or closes) an additional tabbed display where you set additional
options that include the following:

• Connections, Metadata, and Cursors/Results enable you to select the additional flags for the DSN
connection. For more information on these flags, see Section 5.5.2, “Connector/ODBC Connection
Parameters”.

Note

For the Unicode version of Connector/ODBC, due to its native Unicode
support, you do not need to specify the initial character set to be used
with your connection. However, for the ANSI version, if you want to use
a multibyte character set such as UTF-16 or UTF-32 initially, specify it in
Character Set box; however, that is not necessary for using UTF-8 or UTF-8-
MB4 initially, because they do not contain \0 bytes in any characters, and
therefore the ANSI driver will not truncate the strings by accident when finding
\0 bytes.

350

Configuring a Connector/ODBC DSN on macOS

• Debug lets you turn on ODBC debugging to record the queries you execute through the DSN to the
myodbc.sql file. For more information, see Section 5.5.10, “Getting an ODBC Trace File”.

• SSL configures the additional options required for using the Secure Sockets Layer (SSL) when
communicating with MySQL server.

Figure 5.6 Connector/ODBC Connect Options Dialog: SSL Options

You must also enable and configure SSL on the MySQL server with suitable certificates to
communicate using it using SSL.

5.5.3.2 Configuring a Connector/ODBC DSN on Windows, Using the Command Line

Use myodbc-installer.exe when configuring Connector/ODBC from the command-line.

Execute myodbc-installer.exe without arguments to view a list of available options.

5.5.3.3 Troubleshooting ODBC Connection Problems

This section answers Connector/ODBC connection-related questions.

• While configuring a Connector/ODBC DSN, a Could Not Load Translator or Setup
Library error occurs

For more information, refer to MS KnowledgeBase Article(Q260558). Also, make sure you have the
latest valid ctl3d32.dll in your system directory.

• The Connector/ODBC .dll (Windows) and .so (Linux) file names depend on several factors:

Connector/ODBC Version: A digit in the file name indicates the major Connector/ODBC version
number. For example, a file named myodbc8w.dll is for Connector/ODBC 8.x whereas myodbc5w.dll
is for Connector/ODBC 5.x.

Driver Type: The Unicode driver adds the letter "w" to file names to indicate that wide characters are
supported. For example, myodbc8w.dll is for the Unicode driver. The ANSI driver adds the letter "a"
instead of a "w", like myodbc8a.dll.

GUI Setup module: The GUI setup module files add the letter "S" to file names.

• Enabling Debug Mode: typically debug mode is not enabled as it decreases performance. The
driver must be compiled with debug mode enabled.

5.5.4 Configuring a Connector/ODBC DSN on macOS

To configure a DSN on macOS, you can either use the command-line utility (myodbc-installer),
edit the odbc.ini file within the Library/ODBC directory of the user, or use the ODBC Administrator
GUI.

351

http://support.microsoft.com/default.aspx?scid=kb;EN-US;q260558

Configuring a Connector/ODBC DSN on macOS

Note

The ODBC Administrator is included in OS X v10.5 and earlier; users of later
versions of OS X and macOS need to download and install it manually.

To create a DSN using the myodbc-installer utility, you only need to specify the DSN type and the
DSN connection string. For example:

$> myodbc-installer -a -s -t"DSN=mydb;DRIVER=MySQL ODBC 8.3 Driver;SERVER=mysql;USER=username;PASSWORD=pass"

To use ODBC Administrator:

Warning

• For correct operation of ODBC Administrator, ensure that the /Library/
ODBC/odbc.ini file used to set up ODBC connectivity and DSNs are
writable by the admin group. If this file is not writable by this group, then the
ODBC Administrator may fail, or may appear to work but not generate the
correct entry.

• There are known issues with the macOS ODBC Administrator and Connector/
ODBC that may prevent you from creating a DSN using this method. In that
case, use the command line or edit the odbc.ini file directly. Existing DSNs
or those that you created using the myodbc-installer tool can still be
checked and edited using ODBC Administrator.

1. Open the ODBC Administrator from the Utilities folder in the Applications folder.

Figure 5.7 ODBC Administrator Dialog

2. From the ODBC Administrator dialog, choose either the User DSN or System DSN tab and
click Add.

3. Select the Connector/ODBC driver and click OK.

4. You will be presented with the Data Source Name (DSN) dialog. Enter the Data Source Name
and an optional Description for the DSN.

352

Configuring a Connector/ODBC DSN on Unix

Figure 5.8 ODBC Administrator Data Source Name Dialog

5. Click Add to add a new keyword/value pair to the panel. Configure at least four pairs to specify
the server, username, password and database connection parameters. See Section 5.5.2,
“Connector/ODBC Connection Parameters”.

6. Click OK to add the DSN to the list of configured data source names.

A completed DSN configuration may look like this:

Figure 5.9 ODBC Administrator Sample DSN Dialog

You can configure other ODBC options in your DSN by adding further keyword/value pairs and setting
the corresponding values. See Section 5.5.2, “Connector/ODBC Connection Parameters”.

5.5.5 Configuring a Connector/ODBC DSN on Unix

On Unix, you configure DSN entries directly in the odbc.ini file. Here is a typical odbc.ini file that
configures myodbc8w (Unicode) and myodbc8a (ANSI) as DSN names for Connector/ODBC 8.3:

;
; odbc.ini configuration for Connector/ODBC 8.3 driver
;

353

Connecting Without a Predefined DSN

[ODBC Data Sources]
myodbc8w = MyODBC 8.3 UNICODE Driver DSN
myodbc8a = MyODBC 8.3 ANSI Driver DSN
[myodbc8w]
Driver = /usr/local/lib/libmyodbc8w.so
Description = Connector/ODBC 8.3 UNICODE Driver DSN
SERVER = localhost
PORT =
USER = root
Password =
Database = test
OPTION = 3
SOCKET =
[myodbc8a]
Driver = /usr/local/lib/libmyodbc8a.so
Description = Connector/ODBC 8.3 ANSI Driver DSN
SERVER = localhost
PORT =
USER = root
Password =
Database = test
OPTION = 3
SOCKET =

Refer to the Section 5.5.2, “Connector/ODBC Connection Parameters”, for the list of connection
parameters that can be supplied.

Note

If you are using unixODBC, you can use the following tools to set up the DSN:

• ODBCConfig GUI tool (HOWTO: ODBCConfig)

• odbcinst

In some cases when using unixODBC, you might get this error:

Data source name not found and no default driver specified

If this happens, make sure the ODBCINI and ODBCSYSINI environment variables are pointing to
the right odbc.ini file. For example, if your odbc.ini file is located in /usr/local/etc, set the
environment variables like this:

export ODBCINI=/usr/local/etc/odbc.ini
export ODBCSYSINI=/usr/local/etc

5.5.6 Connecting Without a Predefined DSN

You can connect to the MySQL server using SQLDriverConnect, by specifying the DRIVER name
field. Here are the connection strings for Connector/ODBC using DSN-less connections:

For Connector/ODBC 8.3:

ConnectionString = "DRIVER={MySQL ODBC 8.3 Driver};\
 SERVER=localhost;\
 DATABASE=test;\
 USER=venu;\
 PASSWORD=venu;\
 OPTION=3;"

Substitute “MySQL ODBC 8.3 Driver” with the name by which you have registered your Connector/
ODBC driver with the ODBC driver manager, if it is different. If your programming language converts
backslash followed by whitespace to a space, it is preferable to specify the connection string as a
single long string, or to use a concatenation of multiple strings that does not add spaces in between.
For example:

ConnectionString = "DRIVER={MySQL ODBC 8.3 Driver};"
 "SERVER=localhost;"
 "DATABASE=test;"

354

http://www.unixodbc.org/config.html

ODBC Connection Pooling

 "USER=venu;"
 "PASSWORD=venu;"
 "OPTION=3;"

Note. On macOS, you might need to specify the full path to the Connector/ODBC driver library.

Refer to Section 5.5.2, “Connector/ODBC Connection Parameters” for the list of connection parameters
that can be supplied.

5.5.7 ODBC Connection Pooling

Connection pooling enables the ODBC driver to re-use existing connections to a given database from
a pool of connections, instead of opening a new connection each time the database is accessed. By
enabling connection pooling you can improve the overall performance of your application by lowering
the time taken to open a connection to a database in the connection pool.

For more information about connection pooling: http://support.microsoft.com/default.aspx?scid=kb;EN-
US;q169470.

5.5.8 OpenTelemetry Tracing Support

For applications on Linux systems that use OpenTelemetry (OTel) instrumentation, the connector
adds query and connection spans to the trace generated by application code and forwards the current
OpenTelemetry context to the server. OpenTelemetry tracing was introduced in the Connector/ODBC
8.1.0 release.

Note

OTel context forwarding works only with MySQL Enterprise Edition, a
commercial product. To learn more about commercial products, see https://
www.mysql.com/products/.

Enabling and Disabling Tracing

By default, the connector forwards the context only when an instrumented application installs the
required OpenTelemetry SDK libraries and configures the trace exporter to send trace data to some
destination. If the application code does not use instrumentation, then the legacy connector does not
use it either.

Connector/ODBC supports a connection property option, OPENTELEMETRY, which has these values:

• PREFERRED: Default. Use instrumentation in the connection if the required OpenTelemetry
instrumentation is available. Otherwise, permit the connection to operate without any OpenTelemetry
instrumentation.

• DISABLED: The connector does not create OpenTelemetry spans or forward the OpenTelemetry
context to the server.

Setting to boolean false behaves the same as DISABLED.

When you build code that links to Connector/ODBC and uses OTel instrumentation, the additional
spans generated by the connector appear in the traces generated by your code. Spans generated
by the connector are sent to the same destination (trace exporter) where other spans generated by
the user code are sent as configured by user code. It is not possible to send spans generated by the
connector to any other destination.

This implementation is distinct from the implementation provided through the MySQL client library (or
the related telemetry_client client-side plugin).

Limitation

OTel instrumentation in the ODBC driver only functions if the application is built with the -rdynamic
compiler option so that symbols defined in user code are externally visible. Without this, the OTel

355

http://support.microsoft.com/default.aspx?scid=kb;EN-US;q169470
http://support.microsoft.com/default.aspx?scid=kb;EN-US;q169470
https://www.mysql.com/products/
https://www.mysql.com/products/

Authentication Options

context is not forwarded to the server (as the driver has no way of getting the current OTel context) and
the spans generated by the ODBC driver will be not sent to the destination specified in the application
(they will be discarded).

5.5.9 Authentication Options

Connector/ODBC supports different authentication methods, including:

• Standard authentication using a MySQL username and password, such as caching_sha2_password.

• The Kerberos authentication protocol for passwordless authentication. For more information about
Kerberos authentication, see Kerberos Pluggable Authentication.

Support added in Connector/ODBC 8.0.26 for Linux clients, and 8.0.27 for Windows clients.

• Multi-Factor Authentication (MFA) by utilizing the PASSWORD1 (alias of PASSWORD), PASSWORD2, and
PASSWORD3 connection options. In addition there are PWD1, PWD2, and PWD3 aliases.

Support added in Connector/ODBC 8.0.28.

• FIDO-based authentication is supported and Connector/ODBC supports the FIDO-based
WebAuthn Pluggable Authentication plugin. See the general WebAuthn Pluggable Authentication
documentation for installation requirements and implementation details.

Note

Support for the authentication_webauthn plugin was added in Connector/
ODBC 8.2.0. Support for the authentication_fido plugin was added in 8.0.29,
deprecated in 8.2.0, and removed in 8.4.0.

A callback usage example:

// SQL_DRIVER_CONNECT_ATTR_BASE is not defined in all driver managers.
// Therefore use a custom constant until it becomes a standard.
#define MYSQL_DRIVER_CONNECT_ATTR_BASE 0x00004000
// Custom constants used for callback
#define CB_FIDO_GLOBAL MYSQL_DRIVER_CONNECT_ATTR_BASE + 0x00001000
#define CB_FIDO_CONNECTION MYSQL_DRIVER_CONNECT_ATTR_BASE + 0x00001001
// Usage example
// Callback function inside code:
void user_callback(const char* msg)
{
 // Do something ...
}
SQLHENV henv = nullptr;
SQLAllocHandle(SQL_HANDLE_ENV, nullptr, &henv);
// Set the ODBC version to 3.80 otherwise the custom constants don't work
SQLSetEnvAttr(henv, SQL_ATTR_ODBC_VERSION,
(SQLPOINTER)SQL_OV_ODBC3_80, 0);
SQLHDBC hdbc = nullptr;
SQLAllocHandle(SQL_HANDLE_DBC, henv, &hdbc);
// CB_FIDO_X is either CB_FIDO_GLOBAL or CB_FIDO_CONNECTION
SQLSetConnectAttr(hdbc, CB_FIDO_X, &user_callback, SQL_IS_POINTER);
SQLDriverConnect(hdbc, hwnd, conn_str,);

5.5.10 Getting an ODBC Trace File

If you encounter difficulties or problems with Connector/ODBC, start by making a log file from the ODBC
Manager and Connector/ODBC. This is called tracing, and is enabled through the ODBC Manager.
The procedure for this differs for Windows, macOS and Unix.

5.5.10.1 Enabling ODBC Tracing on Windows

To enable the trace option on Windows:

356

https://dev.mysql.com/doc/refman/8.0/en/caching-sha2-pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.0/en/kerberos-pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.2/en/webauthn-pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.2/en/webauthn-pluggable-authentication.html

Getting an ODBC Trace File

1. The Tracing tab of the ODBC Data Source Administrator dialog box lets you configure the way
ODBC function calls are traced.

Figure 5.10 ODBC Data Source Administrator Tracing Dialog

2. When you activate tracing from the Tracing tab, the Driver Manager logs all ODBC function
calls for all subsequently run applications.

3. ODBC function calls from applications running before tracing is activated are not logged. ODBC
function calls are recorded in a log file you specify.

4. Tracing ceases only after you click Stop Tracing Now. Remember that while tracing is on, the
log file continues to increase in size and that tracing affects the performance of all your ODBC
applications.

5.5.10.2 Enabling ODBC Tracing on macOS

To enable the trace option on macOS, use the Tracing tab within ODBC Administrator .

1. Open the ODBC Administrator.

2. Select the Tracing tab.

357

Getting an ODBC Trace File

Figure 5.11 ODBC Administrator Tracing Dialog

3. Select the Enable Tracing check box.

4. Enter the location to save the Tracing log. To append information to an existing log file, click the
Choose... button.

5.5.10.3 Enabling ODBC Tracing on Unix

To enable the trace option on OS X 10.2 (or earlier) or Unix, add the trace option to the ODBC
configuration:

1. On Unix, explicitly set the Trace option in the ODBC.INI file.

Set the tracing ON or OFF by using TraceFile and Trace parameters in odbc.ini as shown
below:

TraceFile = /tmp/odbc.trace
Trace = 1

TraceFile specifies the name and full path of the trace file and Trace is set to ON or OFF. You
can also use 1 or YES for ON and 0 or NO for OFF. If you are using ODBCConfig from unixODBC,
then follow the instructions for tracing unixODBC calls at HOWTO-ODBCConfig.

5.5.10.4 Enabling a Connector/ODBC Log

To generate a Connector/ODBC log, do the following:

1. Within Windows, enable the Trace Connector/ODBC option flag in the Connector/ODBC
connect/configure screen. The log is written to file C:\myodbc.log. If the trace option is not
remembered when you are going back to the above screen, it means that you are not using the
myodbcd.dll driver, see Section 5.5.3.3, “Troubleshooting ODBC Connection Problems”.

On macOS, Unix, or if you are using a DSN-less connection, either supply OPTION=4 in the
connection string, or set the corresponding keyword/value pair in the DSN.

2. Start your application and try to get it to fail. Then check the Connector/ODBC trace file to find out
what could be wrong.

358

http://www.unixodbc.org/config.html

Connector/ODBC Examples

If you need help determining what is wrong, see Section 5.9.1, “Connector/ODBC Community Support”.

5.6 Connector/ODBC Examples

Once you have configured a DSN to provide access to a database, how you access and use that
connection is dependent on the application or programming language. As ODBC is a standardized
interface, any application or language that supports ODBC can use the DSN and connect to the
configured database.

5.6.1 Basic Connector/ODBC Application Steps

Interacting with a MySQL server from an applications using the Connector/ODBC typically involves the
following operations:

• Configure the Connector/ODBC DSN.

• Connect to MySQL server.

This might include: allocate environment handle, set ODBC version, allocate connection handle,
connect to MySQL Server, and set optional connection attributes.

• Initialization statements.

This might include: allocate statement handle and set optional statement attributes.

• Execute SQL statements.

This might include: prepare the SQL statement and execute the SQL statement, or execute it directly
without prepare.

• Retrieve results, depending on the statement type.

For SELECT / SHOW / Catalog API the results might include: get number of columns, get column
information, fetch rows, and get the data to buffers. For Delete / Update / Insert the results might
include the number of rows affected.

• Perform transactions; perform commit or rollback.

• Disconnect from the server.

This might include: disconnect the connection and free the connection and environment handles.

Most applications use some variation of these steps. The basic application steps are also shown in the
following diagram:

359

https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_transaction

Step-by-step Guide to Connecting to a MySQL Database through Connector/ODBC

Figure 5.12 Connector/ODBC Programming Flowchart

5.6.2 Step-by-step Guide to Connecting to a MySQL Database through
Connector/ODBC

A typical situation where you would install Connector/ODBC is to access a database on a Linux or Unix
host from a Windows machine.

As an example of the process required to set up access between two machines, the steps below take
you through the basic steps. These instructions assume that you connect to system ALPHA from
system BETA with a user name and password of myuser and mypassword.

On system ALPHA (the MySQL server) follow these steps:

1. Start the MySQL server.

2. Use GRANT to set up an account with a user name of myuser that can connect from system BETA
using a password of myuser to the database test:

GRANT ALL ON test.* to 'myuser'@'BETA' IDENTIFIED BY 'mypassword';

For more information about MySQL privileges, refer to Access Control and Account Management.

On system BETA (the Connector/ODBC client), follow these steps:

360

https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/access-control.html

Connector/ODBC and Third-Party ODBC Tools

1. Configure a Connector/ODBC DSN using parameters that match the server, database and
authentication information that you have just configured on system ALPHA.

Parameter Value Comment

DSN remote_test A name to identify the connection.

SERVER ALPHA The address of the remote server.

DATABASE test The name of the default database.

USER myuser The user name configured for access to this database.

PASSWORD mypassword The password for myuser.

2. Using an ODBC-capable application, such as Microsoft Office, connect to the MySQL server using
the DSN you have just created. If the connection fails, use tracing to examine the connection
process. See Section 5.5.10, “Getting an ODBC Trace File”, for more information.

5.6.3 Connector/ODBC and Third-Party ODBC Tools

Once you have configured your Connector/ODBC DSN, you can access your MySQL database through
any application that supports the ODBC interface, including programming languages and third-party
applications. This section contains guides and help on using Connector/ODBC with various ODBC-
compatible tools and applications, including Microsoft Word, Microsoft Excel and Adobe/Macromedia
ColdFusion.

Connector/ODBC has been tested with the following applications:

Publisher Application Notes

Adobe ColdFusion Formerly Macromedia ColdFusion

Borland C++ Builder

Builder 4

Delphi

Business Objects Crystal Reports

Claris Filemaker Pro

Corel Paradox

Computer Associates Visual Objects Also known as CAVO

AllFusion ERwin Data
Modeler

Gupta Team Developer Previously known as Centura Team Developer;
Gupta SQL/Windows

Gensym G2-ODBC Bridge

Inline iHTML

Lotus Notes Versions 4.5 and 4.6

Microsoft Access

Excel

Visio Enterprise

Visual C++

Visual Basic

ODBC.NET Using C#, Visual Basic, C++

FoxPro

Visual Interdev

361

Using Connector/ODBC with Microsoft Access

Publisher Application Notes

OpenOffice.org OpenOffice.org

Perl DBD::ODBC

Pervasive Software DataJunction

Sambar Technologies Sambar Server

SPSS SPSS

SoftVelocity Clarion

SQLExpress SQLExpress for Xbase+
+

Sun StarOffice

SunSystems Vision

Sybase PowerBuilder

PowerDesigner

theKompany.com Data Architect

5.6.4 Using Connector/ODBC with Microsoft Access

You can use a MySQL database with Microsoft Access using Connector/ODBC. The MySQL database
can be used as an import source, an export source, or as a linked table for direct use within an Access
application, so you can use Access as the front-end interface to a MySQL database.

5.6.4.1 Exporting Access Data to MySQL

Important

Make sure that the information that you are exporting to the MySQL table is
valid for the corresponding MySQL data types. Values that are valid within
Access but are outside of the supported ranges of the MySQL data types may
trigger an “overflow” error during the export.

To export a table of data from an Access database to MySQL, follow these instructions:

1. With an Access database opened, the navigation plane on the right should display, among other
things, all the tables in the database that are available for export (if that is not the case, adjust the
navigation plane's display settings). Right click on the table you want to export, and in the menu
that appears, choose Export , ODBC Database.

362

Using Connector/ODBC with Microsoft Access

Figure 5.13 Access: Export ODBC Database Menu Selected

2. The Export dialog box appears. Enter the desired name for the table after its import into the
MySQL server, and click OK.

Figure 5.14 Entering Name For Table To Be Exported

3. The Select Data Source dialog box appears; it lists the defined data sources for any ODBC drivers
installed on your computer. Click either the File Data Source or Machine Data Source tab, and
then double-click the Connector/ODBC DSN to which you want to export your table. To define
a new DSN for Connector/ODBC instead, click New and follow the instructions in Section 5.5.3,

363

Using Connector/ODBC with Microsoft Access

“Configuring a Connector/ODBC DSN on Windows”; double click the new DSN after it has been
created.

Figure 5.15 Selecting An ODBC Database

If the ODBC data source that you selected requires you to log in, enter your login ID and password
(additional information might also be required), and then click OK.

4. A dialog box appears with a success message if the export is successful. In the dialog box, you can
choose to save the export steps for easy repetitions in the future.

Figure 5.16 Save Export Success Message

Note

If you see the following error message instead when you try to export to
the Connector/ODBC DSN, it means you did not choose the Database to
connect to when you defined or logged in to the DSN. Reconfigure the DSN
and specify the Database to connect to (see Section 5.5.3, “Configuring

364

Using Connector/ODBC with Microsoft Access

a Connector/ODBC DSN on Windows” for details), or choose a Database
when you log in to the DSN .

Figure 5.17 Error Message Dialog: Database Not Selected

5.6.4.2 Importing MySQL Data to Access

To import tables from MySQL to Access, follow these instructions:

1. Open the Access database into which that you want to import MySQL data.

2. On the External Data tab, choose ODBC Database.

Figure 5.18 External Data: ODBC Database

3. In the Get External Data dialog box that appears, choose Import the source data into a new
table in the current database and click OK.

Figure 5.19 Get External Data: ODBC Database

365

Using Connector/ODBC with Microsoft Access

4. The Select Data Source dialog box appears. It lists the defined data sources for any ODBC drivers
installed on your computer. Click either the File Data Source or Machine Data Source tab, and
then double-click the Connector/ODBC DSN from which you want to import your table. To define
a new DSN for Connector/ODBC instead, click New and follow the instructions in Section 5.5.3,
“Configuring a Connector/ODBC DSN on Windows”; double click the new DSN after it has been
created.

Figure 5.20 Select Data Source Dialog: Selecting an ODBC Database

If the ODBC data source that you selected requires you to log in, enter your login ID and password
(additional information might also be required), and then click OK.

5. Microsoft Access connects to the MySQL server and displays the list of tables (objects) that you
can import. Select the tables you want to import from this Import Objects dialog (or click Select All),
and then click OK.

Figure 5.21 Import Objects Dialog: Selecting Tables To Import

Notes

• If no tables show up for you to select, it might be because you did not
choose the Database to connect to when you defined or logged in to the

366

Using Connector/ODBC with Microsoft Access

DSN. Reconfigure the DSN and specify the Database to connect to (see
Section 5.5.3, “Configuring a Connector/ODBC DSN on Windows” for
details), or choose a Database when you log in to the DSN .

• If your Access database already has a table with the same name as the
one you are importing, Access will append a number to the name of the
imported table.

6. A dialog box appears with a success message if the import is successful. In the dialog box, you can
choose to save the import steps for easy repetitions in the future.

Figure 5.22 Get External Data: Save Import Steps Dialog

5.6.4.3 Using Microsoft Access as a Front-end to MySQL

You can use Microsoft Access as a front end to MySQL by linking tables within your Microsoft Access
database to tables that exist within your MySQL database. When a query is requested on a table within
Access, ODBC is used to execute the queries on the MySQL database.

To create a linked table:

1. Open the Access database that you want to link to MySQL.

2. On the External Data tab, choose ODBC Database.

Figure 5.23 External Data: ODBC Database

3. In the Get External Data dialog box that appears, choose Link to the data source by
creating a linked table and click OK.

367

Using Connector/ODBC with Microsoft Access

Figure 5.24 Get External Data: Link To ODBC Database Option Chosen

4. The Select Data Source dialog box appears; it lists the defined data sources for any ODBC drivers
installed on your computer. Click either the File Data Source or Machine Data Source tab, and
then double-click the Connector/ODBC DSN you want to link your table to. To define a new DSN
for Connector/ODBC instead, click New and follow the instructions in Section 5.5.3, “Configuring a
Connector/ODBC DSN on Windows”; double click the new DSN after it has been created.

Figure 5.25 Selecting An ODBC Database

If the ODBC data source that you selected requires you to log in, enter your login ID and password
(additional information might also be required), and then click OK.

368

Using Connector/ODBC with Microsoft Access

5. Microsoft Access connects to the MySQL server and displays the list of tables that you can link to.
Choose the tables you want to link to (or click Select All), and then click OK.

Figure 5.26 Link Tables Dialog: Selecting Tables to Link

Notes

• If no tables show up for you to select, it might be because you did not
choose the Database to connect to when you defined or logged in to the
DSN. Reconfigure the DSN and specify the Database to connect to (see
Section 5.5.3, “Configuring a Connector/ODBC DSN on Windows” for
details), or choose a Database when you log in to the DSN.

• If your database on Access already has a table with the same name as
the one you are linking to, Access will append a number to the name of
the new linked table.

6. If Microsoft Access is unable to determine the unique record identifier for a table automatically, it
will ask you to choose a column (or a combination of columns) to be used to uniquely identify each
row from the source table. Select the column[s] to use and click OK.

Figure 5.27 Linking Microsoft Access Tables To MySQL Tables, Choosing Unique Record
Identifier

369

Using Connector/ODBC with Microsoft Access

Once the process has been completed, you can build interfaces and queries to the linked tables just as
you would for any Access database.

Use the following procedure to view links or to refresh them when the structures of the linked tables
have changed.

To view or refresh links:

1. Open the database that contains links to MySQL tables.

2. On the External Data tab, choose Linked Table Manager.

Figure 5.28 External Data: Linked Table Manager

3. The Linked Table Manager appears. Select the check box for the tables whose links you want to
refresh. Click OK to refresh the links.

Figure 5.29 External Data: Linked Table Manager Dialog

If the ODBC data source requires you to log in, enter your login ID and password (additional
information might also be required), and then click OK.

Microsoft Access confirms a successful refresh or, if the tables are not found, returns an error
message, in which case you should update the links with the steps below.

370

Using Connector/ODBC with Microsoft Word or Excel

To change the path for a set of linked tables (for pictures of the GUI dialog boxes involved, see the
instructions above for linking tables and refreshing links) :

1. Open the database that contains the linked tables.

2. On the External Data tab, choose Linked Table Manager.

3. In the Linked Table Manager that appears, select the Always Prompt For A New Location check
box.

4. Select the check box for the tables whose links you want to change, and then click OK.

5. The Select Data Source dialog box appears. Select the new DSN and database with it.

5.6.5 Using Connector/ODBC with Microsoft Word or Excel

You can use Microsoft Word and Microsoft Excel to access information from a MySQL database using
Connector/ODBC. Within Microsoft Word, this facility is most useful when importing data for mailmerge,
or for tables and data to be included in reports. Within Microsoft Excel, you can execute queries on
your MySQL server and import the data directly into an Excel Worksheet, presenting the data as a
series of rows and columns.

With both applications, data is accessed and imported into the application using Microsoft Query, which
lets you execute a query though an ODBC source. You use Microsoft Query to build the SQL statement
to be executed, selecting the tables, fields, selection criteria and sort order. For example, to insert
information from a table in the World test database into an Excel spreadsheet, using the DSN samples
shown in Section 5.5, “Configuring Connector/ODBC”:

1. Create a new Worksheet.

2. From the Data menu, choose Import External Data, and then select New Database
Query.

3. Microsoft Query will start. First, you need to choose the data source, by selecting an existing Data
Source Name.

Figure 5.30 Microsoft Query Wizard: Choose Data Source Dialog

4. Within the Query Wizard, choose the columns to import. The list of tables available to the user
configured through the DSN is shown on the left, the columns that will be added to your query are
shown on the right. The columns you choose are equivalent to those in the first section of a SELECT
query. Click Next to continue.

371

https://dev.mysql.com/doc/refman/8.0/en/select.html

Using Connector/ODBC with Microsoft Word or Excel

Figure 5.31 Microsoft Query Wizard: Choose Columns

5. You can filter rows from the query (the equivalent of a WHERE clause) using the Filter Data
dialog. Click Next to continue.

Figure 5.32 Microsoft Query Wizard: Filter Data

6. Select an (optional) sort order for the data. This is equivalent to using a ORDER BY clause in your
SQL query. You can select up to three fields for sorting the information returned by the query. Click
Next to continue.

Figure 5.33 Microsoft Query Wizard: Sort Order

372

Using Connector/ODBC with Crystal Reports

7. Select the destination for your query. You can select to return the data Microsoft Excel, where you
can choose a worksheet and cell where the data will be inserted; you can continue to view the
query and results within Microsoft Query, where you can edit the SQL query and further filter and
sort the information returned; or you can create an OLAP Cube from the query, which can then be
used directly within Microsoft Excel. Click Finish.

Figure 5.34 Microsoft Query Wizard: Selecting A Destination

The same process can be used to import data into a Word document, where the data will be inserted
as a table. This can be used for mail merge purposes (where the field data is read from a Word table),
or where you want to include data and reports within a report or other document.

5.6.6 Using Connector/ODBC with Crystal Reports

Crystal Reports can use an ODBC DSN to connect to a database from which you to extract data and
information for reporting purposes.

Note

There is a known issue with certain versions of Crystal Reports where the
application is unable to open and browse tables and fields through an ODBC
connection. Before using Crystal Reports with MySQL, please ensure that you
have update to the latest version, including any outstanding service packs
and hotfixes. For more information on this issue, see the Business) Objects
Knowledgebase for more information.

For example, to create a simple crosstab report within Crystal Reports XI, follow these steps:

1. Create a DSN using the Data Sources (ODBC) tool. You can either specify a complete
database, including user name and password, or you can build a basic DSN and use Crystal
Reports to set the user name and password.

For the purposes of this example, a DSN that provides a connection to an instance of the MySQL
Sakila sample database has been created.

2. Open Crystal Reports and create a new project, or an open an existing reporting project into which
you want to insert data from your MySQL data source.

3. Start the Cross-Tab Report Wizard, either by clicking the option on the Start Page. Expand the
Create New Connection folder, then expand the ODBC (RDO) folder to obtain a list of ODBC data
sources.

You will be asked to select a data source.

373

http://support.crystaldecisions.com/library/kbase/new_articles/c2013269.asp
http://support.crystaldecisions.com/library/kbase/new_articles/c2013269.asp

Using Connector/ODBC with Crystal Reports

Figure 5.35 Cross-Tab Report Creation Wizard

4. When you first expand the ODBC (RDO) folder you will be presented the Data Source Selection
screen. From here you can select either a pre-configured DSN, open a file-based DSN or enter and
manual connection string. For this example, the pre-configured Sakila DSN will be used.

If the DSN contains a user name/password combination, or you want to use different authentication
credentials, click Next to enter the user name and password that you want to use. Otherwise, click
Finish to continue the data source selection wizard.

Figure 5.36 ODBC (RDO) Data Source Selection Wizard

374

Using Connector/ODBC with Crystal Reports

5. You will be returned the Cross-Tab Report Creation Wizard. You now need to select the database
and tables that you want to include in your report. For our example, we will expand the selected
Sakila database. Click the city table and use the > button to add the table to the report. Then
repeat the action with the country table. Alternatively you can select multiple tables and add them
to the report.

Finally, you can select the parent Sakila resource and add of the tables to the report.

Once you have selected the tables you want to include, click Next to continue.

Figure 5.37 Cross-Tab Report Creation Wizard with Example ODBC (RDO) Data

6. Crystal Reports will now read the table definitions and automatically identify the links between the
tables. The identification of links between tables enables Crystal Reports to automatically lookup
and summarize information based on all the tables in the database according to your query. If

375

Using Connector/ODBC with Crystal Reports

Crystal Reports is unable to perform the linking itself, you can manually create the links between
fields in the tables you have selected.

Click Next to continue the process.

Figure 5.38 Cross-Tab Report Creation Wizard: Table Links

7. You can now select the columns and rows that to include within the Cross-Tab report. Drag and
drop or use the > buttons to add fields to each area of the report. In the example shown, we will

376

Using Connector/ODBC with Crystal Reports

report on cities, organized by country, incorporating a count of the number of cities within each
country. If you want to browse the data, select a field and click the Browse Data... button.

Click Next to create a graph of the results. Since we are not creating a graph from this data, click
Finish to generate the report.

Figure 5.39 Cross-Tab Report Creation Wizard: Cross-Tab Selection Dialog

377

Connector/ODBC Programming

8. The finished report will be shown, a sample of the output from the Sakila sample database is shown
below.

Figure 5.40 Cross-Tab Report Creation Wizard: Final Report

Once the ODBC connection has been opened within Crystal Reports, you can browse and add any
fields within the available tables into your reports.

5.6.7 Connector/ODBC Programming

With a suitable ODBC Manager and the Connector/ODBC driver installed, any programming language
or environment that can support ODBC can connect to a MySQL database through Connector/ODBC.

This includes, but is not limited to, Microsoft support languages (including Visual Basic, C# and
interfaces such as ODBC.NET), Perl (through the DBI module, and the DBD::ODBC driver).

5.6.7.1 Using Connector/ODBC with Visual Basic Using ADO, DAO and RDO

This section contains simple examples of the use of Connector/ODBC with ADO, DAO and RDO.

ADO: rs.addNew, rs.delete, and rs.update

The following ADO (ActiveX Data Objects) example creates a table my_ado and demonstrates the use
of rs.addNew, rs.delete, and rs.update.

Private Sub myodbc_ado_Click()
Dim conn As ADODB.Connection
Dim rs As ADODB.Recordset
Dim fld As ADODB.Field
Dim sql As String
'connect to MySQL server using Connector/ODBC
Set conn = New ADODB.Connection
conn.ConnectionString = "DRIVER={MySQL ODBC 3.51 Driver};"_
& "SERVER=localhost;"_
& " DATABASE=test;"_
& "UID=venu;PWD=venu; OPTION=3"
conn.Open
'create table

378

Connector/ODBC Programming

conn.Execute "DROP TABLE IF EXISTS my_ado"
conn.Execute "CREATE TABLE my_ado(id int not null primary key, name varchar(20)," _
& "txt text, dt date, tm time, ts timestamp)"
'direct insert
conn.Execute "INSERT INTO my_ado(id,name,txt) values(1,100,'venu')"
conn.Execute "INSERT INTO my_ado(id,name,txt) values(2,200,'MySQL')"
conn.Execute "INSERT INTO my_ado(id,name,txt) values(3,300,'Delete')"
Set rs = New ADODB.Recordset
rs.CursorLocation = adUseServer
'fetch the initial table ..
rs.Open "SELECT * FROM my_ado", conn
Debug.Print rs.RecordCount
rs.MoveFirst
Debug.Print String(50, "-") & "Initial my_ado Result Set " & String(50, "-")
For Each fld In rs.Fields
Debug.Print fld.Name,
Next
Debug.Print
Do Until rs.EOF
For Each fld In rs.Fields
Debug.Print fld.Value,
Next
rs.MoveNext
Debug.Print
Loop
rs.Close
'rs insert
rs.Open "select * from my_ado", conn, adOpenDynamic, adLockOptimistic
rs.AddNew
rs!ID = 8
rs!Name = "Mandy"
rs!txt = "Insert row"
rs.Update
rs.Close
'rs update
rs.Open "SELECT * FROM my_ado"
rs!Name = "update"
rs!txt = "updated-row"
rs.Update
rs.Close
'rs update second time..
rs.Open "SELECT * FROM my_ado"
rs!Name = "update"
rs!txt = "updated-second-time"
rs.Update
rs.Close
'rs delete
rs.Open "SELECT * FROM my_ado"
rs.MoveNext
rs.MoveNext
rs.Delete
rs.Close
'fetch the updated table ..
rs.Open "SELECT * FROM my_ado", conn
Debug.Print rs.RecordCount
rs.MoveFirst
Debug.Print String(50, "-") & "Updated my_ado Result Set " & String(50, "-")
For Each fld In rs.Fields
Debug.Print fld.Name,
Next
Debug.Print
Do Until rs.EOF
For Each fld In rs.Fields
Debug.Print fld.Value,
Next
rs.MoveNext
Debug.Print
Loop
rs.Close
conn.Close
End Sub

379

Connector/ODBC Programming

DAO: rs.addNew, rs.update, and Scrolling

The following DAO (Data Access Objects) example creates a table my_dao and demonstrates the use
of rs.addNew, rs.update, and result set scrolling.

Private Sub myodbc_dao_Click()
Dim ws As Workspace
Dim conn As Connection
Dim queryDef As queryDef
Dim str As String
'connect to MySQL using MySQL ODBC 3.51 Driver
Set ws = DBEngine.CreateWorkspace("", "venu", "venu", dbUseODBC)
str = "odbc;DRIVER={MySQL ODBC 3.51 Driver};"_
& "SERVER=localhost;"_
& " DATABASE=test;"_
& "UID=venu;PWD=venu; OPTION=3"
Set conn = ws.OpenConnection("test", dbDriverNoPrompt, False, str)
'Create table my_dao
Set queryDef = conn.CreateQueryDef("", "drop table if exists my_dao")
queryDef.Execute
Set queryDef = conn.CreateQueryDef("", "create table my_dao(Id INT AUTO_INCREMENT PRIMARY KEY, " _
& "Ts TIMESTAMP(14) NOT NULL, Name varchar(20), Id2 INT)")
queryDef.Execute
'Insert new records using rs.addNew
Set rs = conn.OpenRecordset("my_dao")
Dim i As Integer
For i = 10 To 15
rs.AddNew
rs!Name = "insert record" & i
rs!Id2 = i
rs.Update
Next i
rs.Close
'rs update..
Set rs = conn.OpenRecordset("my_dao")
rs.Edit
rs!Name = "updated-string"
rs.Update
rs.Close
'fetch the table back...
Set rs = conn.OpenRecordset("my_dao", dbOpenDynamic)
str = "Results:"
rs.MoveFirst
While Not rs.EOF
str = " " & rs!Id & " , " & rs!Name & ", " & rs!Ts & ", " & rs!Id2
Debug.Print "DATA:" & str
rs.MoveNext
Wend
'rs Scrolling
rs.MoveFirst
str = " FIRST ROW: " & rs!Id & " , " & rs!Name & ", " & rs!Ts & ", " & rs!Id2
Debug.Print str
rs.MoveLast
str = " LAST ROW: " & rs!Id & " , " & rs!Name & ", " & rs!Ts & ", " & rs!Id2
Debug.Print str
rs.MovePrevious
str = " LAST-1 ROW: " & rs!Id & " , " & rs!Name & ", " & rs!Ts & ", " & rs!Id2
Debug.Print str
'free all resources
rs.Close
queryDef.Close
conn.Close
ws.Close
End Sub

RDO: rs.addNew and rs.update

The following RDO (Remote Data Objects) example creates a table my_rdo and demonstrates the use
of rs.addNew and rs.update.

Dim rs As rdoResultset

380

Connector/ODBC Programming

Dim cn As New rdoConnection
Dim cl As rdoColumn
Dim SQL As String
'cn.Connect = "DSN=test;"
cn.Connect = "DRIVER={MySQL ODBC 3.51 Driver};"_
& "SERVER=localhost;"_
& " DATABASE=test;"_
& "UID=venu;PWD=venu; OPTION=3"
cn.CursorDriver = rdUseOdbc
cn.EstablishConnection rdDriverPrompt
'drop table my_rdo
SQL = "drop table if exists my_rdo"
cn.Execute SQL, rdExecDirect
'create table my_rdo
SQL = "create table my_rdo(id int, name varchar(20))"
cn.Execute SQL, rdExecDirect
'insert - direct
SQL = "insert into my_rdo values (100,'venu')"
cn.Execute SQL, rdExecDirect
SQL = "insert into my_rdo values (200,'MySQL')"
cn.Execute SQL, rdExecDirect
'rs insert
SQL = "select * from my_rdo"
Set rs = cn.OpenResultset(SQL, rdOpenStatic, rdConcurRowVer, rdExecDirect)
rs.AddNew
rs!id = 300
rs!Name = "Insert1"
rs.Update
rs.Close
'rs insert
SQL = "select * from my_rdo"
Set rs = cn.OpenResultset(SQL, rdOpenStatic, rdConcurRowVer, rdExecDirect)
rs.AddNew
rs!id = 400
rs!Name = "Insert 2"
rs.Update
rs.Close
'rs update
SQL = "select * from my_rdo"
Set rs = cn.OpenResultset(SQL, rdOpenStatic, rdConcurRowVer, rdExecDirect)
rs.Edit
rs!id = 999
rs!Name = "updated"
rs.Update
rs.Close
'fetch back...
SQL = "select * from my_rdo"
Set rs = cn.OpenResultset(SQL, rdOpenStatic, rdConcurRowVer, rdExecDirect)
Do Until rs.EOF
For Each cl In rs.rdoColumns
Debug.Print cl.Value,
Next
rs.MoveNext
Debug.Print
Loop
Debug.Print "Row count="; rs.RowCount
'close
rs.Close
cn.Close
End Sub

5.6.7.2 Using Connector/ODBC with .NET

This section contains simple examples that demonstrate the use of Connector/ODBC drivers with
ODBC.NET.

Using Connector/ODBC with ODBC.NET and C# (C sharp)

The following sample creates a table my_odbc_net and demonstrates its use in C#.

/**

381

Connector/ODBC Programming

 * @sample : mycon.cs
 * @purpose : Demo sample for ODBC.NET using Connector/ODBC
 *
 **/
/* build command
 *
 * csc /t:exe
 * /out:mycon.exe mycon.cs
 * /r:Microsoft.Data.Odbc.dll
 */
using Console = System.Console;
using Microsoft.Data.Odbc;
namespace myodbc3
{
 class mycon
 {
 static void Main(string[] args)
 {
 try
 {
 //Connection string for Connector/ODBC 3.51
 string MyConString = "DRIVER={MySQL ODBC 3.51 Driver};" +
 "SERVER=localhost;" +
 "DATABASE=test;" +
 "UID=venu;" +
 "PASSWORD=venu;" +
 "OPTION=3";
 //Connect to MySQL using Connector/ODBC
 OdbcConnection MyConnection = new OdbcConnection(MyConString);
 MyConnection.Open();
 Console.WriteLine("\n !!! success, connected successfully !!!\n");
 //Display connection information
 Console.WriteLine("Connection Information:");
 Console.WriteLine("\tConnection String:" +
 MyConnection.ConnectionString);
 Console.WriteLine("\tConnection Timeout:" +
 MyConnection.ConnectionTimeout);
 Console.WriteLine("\tDatabase:" +
 MyConnection.Database);
 Console.WriteLine("\tDataSource:" +
 MyConnection.DataSource);
 Console.WriteLine("\tDriver:" +
 MyConnection.Driver);
 Console.WriteLine("\tServerVersion:" +
 MyConnection.ServerVersion);
 //Create a sample table
 OdbcCommand MyCommand =
 new OdbcCommand("DROP TABLE IF EXISTS my_odbc_net",
 MyConnection);
 MyCommand.ExecuteNonQuery();
 MyCommand.CommandText =
 "CREATE TABLE my_odbc_net(id int, name varchar(20), idb bigint)";
 MyCommand.ExecuteNonQuery();
 //Insert
 MyCommand.CommandText =
 "INSERT INTO my_odbc_net VALUES(10,'venu', 300)";
 Console.WriteLine("INSERT, Total rows affected:" +
 MyCommand.ExecuteNonQuery());;
 //Insert
 MyCommand.CommandText =
 "INSERT INTO my_odbc_net VALUES(20,'mysql',400)";
 Console.WriteLine("INSERT, Total rows affected:" +
 MyCommand.ExecuteNonQuery());
 //Insert
 MyCommand.CommandText =
 "INSERT INTO my_odbc_net VALUES(20,'mysql',500)";
 Console.WriteLine("INSERT, Total rows affected:" +
 MyCommand.ExecuteNonQuery());
 //Update
 MyCommand.CommandText =
 "UPDATE my_odbc_net SET id=999 WHERE id=20";
 Console.WriteLine("Update, Total rows affected:" +

382

Connector/ODBC Programming

 MyCommand.ExecuteNonQuery());
 //COUNT(*)
 MyCommand.CommandText =
 "SELECT COUNT(*) as TRows FROM my_odbc_net";
 Console.WriteLine("Total Rows:" +
 MyCommand.ExecuteScalar());
 //Fetch
 MyCommand.CommandText = "SELECT * FROM my_odbc_net";
 OdbcDataReader MyDataReader;
 MyDataReader = MyCommand.ExecuteReader();
 while (MyDataReader.Read())
 {
 if(string.Compare(MyConnection.Driver,"myodbc3.dll") == 0) {
 //Supported only by Connector/ODBC 3.51
 Console.WriteLine("Data:" + MyDataReader.GetInt32(0) + " " +
 MyDataReader.GetString(1) + " " +
 MyDataReader.GetInt64(2));
 }
 else {
 //BIGINTs not supported by Connector/ODBC
 Console.WriteLine("Data:" + MyDataReader.GetInt32(0) + " " +
 MyDataReader.GetString(1) + " " +
 MyDataReader.GetInt32(2));
 }
 }
 //Close all resources
 MyDataReader.Close();
 MyConnection.Close();
 }
 catch (OdbcException MyOdbcException) //Catch any ODBC exception ..
 {
 for (int i=0; i < MyOdbcException.Errors.Count; i++)
 {
 Console.Write("ERROR #" + i + "\n" +
 "Message: " +
 MyOdbcException.Errors[i].Message + "\n" +
 "Native: " +
 MyOdbcException.Errors[i].NativeError.ToString() + "\n" +
 "Source: " +
 MyOdbcException.Errors[i].Source + "\n" +
 "SQL: " +
 MyOdbcException.Errors[i].SQLState + "\n");
 }
 }
 }
 }
}

Using Connector/ODBC with ODBC.NET and Visual Basic

The following sample creates a table my_vb_net and demonstrates the use in VB.

' @sample : myvb.vb
' @purpose : Demo sample for ODBC.NET using Connector/ODBC
'
'
' build command
'
' vbc /target:exe
' /out:myvb.exe
' /r:Microsoft.Data.Odbc.dll
' /r:System.dll
' /r:System.Data.dll
'
Imports Microsoft.Data.Odbc
Imports System
Module myvb
 Sub Main()
 Try
 'Connector/ODBC 3.51 connection string
 Dim MyConString As String = "DRIVER={MySQL ODBC 3.51 Driver};" & _
 "SERVER=localhost;" & _

383

Connector/ODBC Programming

 "DATABASE=test;" & _
 "UID=venu;" & _
 "PASSWORD=venu;" & _
 "OPTION=3;"
 'Connection
 Dim MyConnection As New OdbcConnection(MyConString)
 MyConnection.Open()
 Console.WriteLine("Connection State::" & MyConnection.State.ToString)
 'Drop
 Console.WriteLine("Dropping table")
 Dim MyCommand As New OdbcCommand()
 MyCommand.Connection = MyConnection
 MyCommand.CommandText = "DROP TABLE IF EXISTS my_vb_net"
 MyCommand.ExecuteNonQuery()
 'Create
 Console.WriteLine("Creating....")
 MyCommand.CommandText = "CREATE TABLE my_vb_net(id int, name varchar(30))"
 MyCommand.ExecuteNonQuery()
 'Insert
 MyCommand.CommandText = "INSERT INTO my_vb_net VALUES(10,'venu')"
 Console.WriteLine("INSERT, Total rows affected:" & _
 MyCommand.ExecuteNonQuery())
 'Insert
 MyCommand.CommandText = "INSERT INTO my_vb_net VALUES(20,'mysql')"
 Console.WriteLine("INSERT, Total rows affected:" & _
 MyCommand.ExecuteNonQuery())
 'Insert
 MyCommand.CommandText = "INSERT INTO my_vb_net VALUES(20,'mysql')"
 Console.WriteLine("INSERT, Total rows affected:" & _
 MyCommand.ExecuteNonQuery())
 'Insert
 MyCommand.CommandText = "INSERT INTO my_vb_net(id) VALUES(30)"
 Console.WriteLine("INSERT, Total rows affected:" & _
 MyCommand.ExecuteNonQuery())
 'Update
 MyCommand.CommandText = "UPDATE my_vb_net SET id=999 WHERE id=20"
 Console.WriteLine("Update, Total rows affected:" & _
 MyCommand.ExecuteNonQuery())
 'COUNT(*)
 MyCommand.CommandText = "SELECT COUNT(*) as TRows FROM my_vb_net"
 Console.WriteLine("Total Rows:" & MyCommand.ExecuteScalar())
 'Select
 Console.WriteLine("Select * FROM my_vb_net")
 MyCommand.CommandText = "SELECT * FROM my_vb_net"
 Dim MyDataReader As OdbcDataReader
 MyDataReader = MyCommand.ExecuteReader
 While MyDataReader.Read
 If MyDataReader("name") Is DBNull.Value Then
 Console.WriteLine("id = " & _
 CStr(MyDataReader("id")) & " name = " & _
 "NULL")
 Else
 Console.WriteLine("id = " & _
 CStr(MyDataReader("id")) & " name = " & _
 CStr(MyDataReader("name")))
 End If
 End While
 'Catch ODBC Exception
 Catch MyOdbcException As OdbcException
 Dim i As Integer
 Console.WriteLine(MyOdbcException.ToString)
 'Catch program exception
 Catch MyException As Exception
 Console.WriteLine(MyException.ToString)
 End Try
 End Sub

384

Connector/ODBC Reference

5.7 Connector/ODBC Reference

This section provides reference material for the Connector/ODBC API, showing supported functions
and methods, supported MySQL column types and the corresponding native type in Connector/ODBC,
and the error codes returned by Connector/ODBC when a fault occurs.

5.7.1 Connector/ODBC API Reference

This section summarizes ODBC routines, categorized by functionality.

For the complete ODBC API reference, please refer to the ODBC Programmer's Reference at http://
msdn.microsoft.com/en-us/library/ms714177.aspx.

An application can call SQLGetInfo function to obtain conformance information about Connector/
ODBC. To obtain information about support for a specific function in the driver, an application can call
SQLGetFunctions.

Note

For backward compatibility, the Connector/ODBC driver supports all deprecated
functions.

The following tables list Connector/ODBC API calls grouped by task:

Table 5.5 ODBC API Calls for Connecting to a Data Source

Function Name Connector/
ODBC
Supports?

Standard Purpose

SQLAllocHandle Yes ISO 92 Obtains an environment, connection, statement, or
descriptor handle.

SQLConnect Yes ISO 92 Connects to a specific driver by data source
name, user ID, and password.

SQLDriverConnect Yes ODBC Connects to a specific driver by connection string
or requests that the Driver Manager and driver
display connection dialog boxes for the user.

SQLAllocEnv Yes Deprecated Obtains an environment handle allocated from
driver.

SQLAllocConnect Yes Deprecated Obtains a connection handle

Table 5.6 ODBC API Calls for Obtaining Information about a Driver and Data Source

Function Name Connector/
ODBC
Supports?

Standard Purpose

SQLDataSources No ISO 92 Returns the list of available data sources, handled
by the Driver Manager

SQLDrivers No ODBC Returns the list of installed drivers and their
attributes, handles by Driver Manager

SQLGetInfo Yes ISO 92 Returns information about a specific driver and
data source.

SQLGetFunctions Yes ISO 92 Returns supported driver functions.

SQLGetTypeInfo Yes ISO 92 Returns information about supported data types.

385

http://msdn.microsoft.com/en-us/library/ms714177.aspx
http://msdn.microsoft.com/en-us/library/ms714177.aspx

Connector/ODBC API Reference

Table 5.7 ODBC API Calls for Setting and Retrieving Driver Attributes

Function Name Connector/
ODBC
Supports?

Standard Purpose

SQLSetConnectAttr Yes ISO 92 Sets a connection attribute.

SQLGetConnectAttr Yes ISO 92 Returns the value of a connection attribute.

SQLSetConnectOption Yes Deprecated Sets a connection option

SQLGetConnectOption Yes Deprecated Returns the value of a connection option

SQLSetEnvAttr Yes ISO 92 Sets an environment attribute.

SQLGetEnvAttr Yes ISO 92 Returns the value of an environment attribute.

SQLSetStmtAttr Yes ISO 92 Sets a statement attribute.

SQLGetStmtAttr Yes ISO 92 Returns the value of a statement attribute.

SQLSetStmtOption Yes Deprecated Sets a statement option

SQLGetStmtOption Yes Deprecated Returns the value of a statement option

Table 5.8 ODBC API Calls for Preparing SQL Requests

Function Name Connector/
ODBC
Supports?

Standard Purpose

SQLAllocStmt Yes Deprecated Allocates a statement handle

SQLPrepare Yes ISO 92 Prepares an SQL statement for later execution.

SQLBindParameter Yes ODBC Assigns storage for a parameter in an SQL
statement. Connector/ODBC 5.2 adds
support for “out” and “inout” parameters,
through the SQL_PARAM_OUTPUT or
SQL_PARAM_INPUT_OUTPUT type specifiers.
(“Out” and “inout” parameters are not supported
for LONGTEXT and LONGBLOB columns.)

SQLGetCursorName Yes ISO 92 Returns the cursor name associated with a
statement handle.

SQLSetCursorName Yes ISO 92 Specifies a cursor name.

SQLSetScrollOptions Yes ODBC Sets options that control cursor behavior.

Table 5.9 ODBC API Calls for Submitting Requests

Function Name Connector/
ODBC
Supports?

Standard Purpose

SQLExecute Yes ISO 92 Executes a prepared statement.

SQLExecDirect Yes ISO 92 Executes a statement

SQLNativeSql Yes ODBC Returns the text of an SQL statement as
translated by the driver.

SQLDescribeParam No ODBC Returns the description for a specific parameter in
a statement. Not supported by Connector/ODBC
—the returned results should not be trusted.

SQLNumParams Yes ISO 92 Returns the number of parameters in a statement.

SQLParamData Yes ISO 92 Used in conjunction with SQLPutData to supply
parameter data at execution time. (Useful for long
data values.)

386

Connector/ODBC API Reference

Function Name Connector/
ODBC
Supports?

Standard Purpose

SQLPutData Yes ISO 92 Sends part or all of a data value for a parameter.
(Useful for long data values.)

Table 5.10 ODBC API Calls for Retrieving Results and Information about Results

Function Name Connector/
ODBC
Supports?

Standard Purpose

SQLRowCount Yes ISO 92 Returns the number of rows affected by an insert,
update, or delete request.

SQLNumResultCols Yes ISO 92 Returns the number of columns in the result set.

SQLDescribeCol Yes ISO 92 Describes a column in the result set.

SQLColAttribute Yes ISO 92 Describes attributes of a column in the result set.

SQLColAttributes Yes Deprecated Describes attributes of a column in the result set.

SQLFetch Yes ISO 92 Returns multiple result rows.

SQLFetchScroll Yes ISO 92 Returns scrollable result rows.

SQLExtendedFetch Yes Deprecated Returns scrollable result rows.

SQLSetPos Yes ODBC Positions a cursor within a fetched block of data
and enables an application to refresh data in the
rowset or to update or delete data in the result set.

SQLBulkOperations Yes ODBC Performs bulk insertions and bulk bookmark
operations, including update, delete, and fetch by
bookmark.

Table 5.11 ODBC API Calls for Retrieving Error or Diagnostic Information

Function Name Connector/
ODBC
Supports?

Standard Purpose

SQLError Yes Deprecated Returns additional error or status information

SQLGetDiagField Yes ISO 92 Returns additional diagnostic information (a single
field of the diagnostic data structure).

SQLGetDiagRec Yes ISO 92 Returns additional diagnostic information (multiple
fields of the diagnostic data structure).

Table 5.12 ODBC API Calls for Obtaining Information about the Data Source's System Tables
(Catalog Functions) Item

Function Name Connector/
ODBC
Supports?

Standard Purpose

SQLColumnPrivileges Yes ODBC Returns a list of columns and associated
privileges for one or more tables.

SQLColumns Yes X/Open Returns the list of column names in specified
tables.

SQLForeignKeys Yes ODBC Returns a list of column names that make up
foreign keys, if they exist for a specified table.

387

Connector/ODBC Data Types

Function Name Connector/
ODBC
Supports?

Standard Purpose

SQLPrimaryKeys Yes ODBC Returns the list of column names that make up the
primary key for a table.

SQLSpecialColumns Yes X/Open Returns information about the optimal set
of columns that uniquely identifies a row in
a specified table, or the columns that are
automatically updated when any value in the row
is updated by a transaction.

SQLStatistics Yes ISO 92 Returns statistics about a single table and the list
of indexes associated with the table.

SQLTablePrivileges Yes ODBC Returns a list of tables and the privileges
associated with each table.

SQLTables Yes X/Open Returns the list of table names stored in a specific
data source.

Table 5.13 ODBC API Calls for Performing Transactions

Function Name Connector/
ODBC
Supports?

Standard Purpose

SQLTransact Yes Deprecated Commits or rolls back a transaction

SQLEndTran Yes ISO 92 Commits or rolls back a transaction.

Table 5.14 ODBC API Calls for Terminating a Statement

Function Name Connector/
ODBC
Supports?

Standard Purpose

SQLFreeStmt Yes ISO 92 Ends statement processing, discards pending
results, and, optionally, frees all resources
associated with the statement handle.

SQLCloseCursor Yes ISO 92 Closes a cursor that has been opened on a
statement handle.

SQLCancel Yes ISO 92 Cancels an SQL statement.

Table 5.15 ODBC API Calls for Terminating a Connection

Function Name Connector/
ODBC
Supports?

Standard Purpose

SQLDisconnect Yes ISO 92 Closes the connection.

SQLFreeHandle Yes ISO 92 Releases an environment, connection, statement,
or descriptor handle.

SQLFreeConnect Yes Deprecated Releases connection handle.

SQLFreeEnv Yes Deprecated Releases an environment handle.

5.7.2 Connector/ODBC Data Types

The following table illustrates how Connector/ODBC maps the server data types to default SQL and C
data types.

388

https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_commit
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_rollback
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_transaction

Connector/ODBC Data Types

Table 5.16 How Connector/ODBC Maps MySQL Data Types to SQL and C Data Types

Native Value SQL Type C Type

bigint unsigned SQL_BIGINT SQL_C_UBIGINT

bigint SQL_BIGINT SQL_C_SBIGINT

bit SQL_BIT SQL_C_BIT

bit SQL_CHAR SQL_C_CHAR

blob SQL_LONGVARBINARY SQL_C_BINARY

bool SQL_CHAR SQL_C_CHAR

char SQL_CHAR SQL_C_CHAR

date SQL_DATE SQL_C_DATE

datetime SQL_TIMESTAMP SQL_C_TIMESTAMP

decimal SQL_DECIMAL SQL_C_CHAR

double precision SQL_DOUBLE SQL_C_DOUBLE

double SQL_FLOAT SQL_C_DOUBLE

enum SQL_VARCHAR SQL_C_CHAR

float SQL_REAL SQL_C_FLOAT

int unsigned SQL_INTEGER SQL_C_ULONG

int SQL_INTEGER SQL_C_SLONG

integer unsigned SQL_INTEGER SQL_C_ULONG

integer SQL_INTEGER SQL_C_SLONG

long varbinary SQL_LONGVARBINARY SQL_C_BINARY

long varchar SQL_LONGVARCHAR SQL_C_CHAR

longblob SQL_LONGVARBINARY SQL_C_BINARY

longtext SQL_LONGVARCHAR SQL_C_CHAR

mediumblob SQL_LONGVARBINARY SQL_C_BINARY

mediumint unsigned SQL_INTEGER SQL_C_ULONG

mediumint SQL_INTEGER SQL_C_SLONG

mediumtext SQL_LONGVARCHAR SQL_C_CHAR

numeric SQL_NUMERIC SQL_C_CHAR

real SQL_FLOAT SQL_C_DOUBLE

set SQL_VARCHAR SQL_C_CHAR

smallint unsigned SQL_SMALLINT SQL_C_USHORT

smallint SQL_SMALLINT SQL_C_SSHORT

text SQL_LONGVARCHAR SQL_C_CHAR

time SQL_TIME SQL_C_TIME

timestamp SQL_TIMESTAMP SQL_C_TIMESTAMP

tinyblob SQL_LONGVARBINARY SQL_C_BINARY

tinyint unsigned SQL_TINYINT SQL_C_UTINYINT

tinyint SQL_TINYINT SQL_C_STINYINT

tinytext SQL_LONGVARCHAR SQL_C_CHAR

varchar SQL_VARCHAR SQL_C_CHAR

year SQL_SMALLINT SQL_C_SHORT

389

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_timestamp

Connector/ODBC Error Codes

5.7.3 Connector/ODBC Error Codes

The following tables lists the error codes returned by Connector/ODBC apart from the server errors.

Table 5.17 Special Error Codes Returned by Connector/ODBC

Native
Code

SQLSTATE 2 SQLSTATE 3 Error Message

500 01000 01000 General warning

501 01004 01004 String data, right truncated

502 01S02 01S02 Option value changed

503 01S03 01S03 No rows updated/deleted

504 01S04 01S04 More than one row updated/deleted

505 01S06 01S06 Attempt to fetch before the result set returned the first row
set

506 07001 07002 SQLBindParameter not used for all parameters

507 07005 07005 Prepared statement not a cursor-specification

508 07009 07009 Invalid descriptor index

509 08002 08002 Connection name in use

510 08003 08003 Connection does not exist

511 24000 24000 Invalid cursor state

512 25000 25000 Invalid transaction state

513 25S01 25S01 Transaction state unknown

514 34000 34000 Invalid cursor name

515 S1000 HY000 General driver defined error

516 S1001 HY001 Memory allocation error

517 S1002 HY002 Invalid column number

518 S1003 HY003 Invalid application buffer type

519 S1004 HY004 Invalid SQL data type

520 S1009 HY009 Invalid use of null pointer

521 S1010 HY010 Function sequence error

522 S1011 HY011 Attribute can not be set now

523 S1012 HY012 Invalid transaction operation code

524 S1013 HY013 Memory management error

525 S1015 HY015 No cursor name available

526 S1024 HY024 Invalid attribute value

527 S1090 HY090 Invalid string or buffer length

528 S1091 HY091 Invalid descriptor field identifier

529 S1092 HY092 Invalid attribute/option identifier

530 S1093 HY093 Invalid parameter number

531 S1095 HY095 Function type out of range

532 S1106 HY106 Fetch type out of range

533 S1117 HY117 Row value out of range

534 S1109 HY109 Invalid cursor position

535 S1C00 HYC00 Optional feature not implemented

390

Connector/ODBC Notes and Tips

Native
Code

SQLSTATE 2 SQLSTATE 3 Error Message

0 21S01 21S01 Column count does not match value count

0 23000 23000 Integrity constraint violation

0 42000 42000 Syntax error or access violation

0 42S02 42S02 Base table or view not found

0 42S12 42S12 Index not found

0 42S21 42S21 Column already exists

0 42S22 42S22 Column not found

0 08S01 08S01 Communication link failure

5.8 Connector/ODBC Notes and Tips
Here are some common notes and tips for using Connector/ODBC within different environments,
applications and tools. The notes provided here are based on the experiences of Connector/ODBC
developers and users.

5.8.1 Connector/ODBC General Functionality

This section provides help with common queries and areas of functionality in MySQL and how to use
them with Connector/ODBC.

5.8.1.1 Obtaining Auto-Increment Values

Obtaining the value of column that uses AUTO_INCREMENT after an INSERT statement can be
achieved in a number of different ways. To obtain the value immediately after an INSERT, use a
SELECT query with the LAST_INSERT_ID() function.

For example, using Connector/ODBC you would execute two separate statements, the INSERT
statement and the SELECT query to obtain the auto-increment value.

INSERT INTO tbl (auto,text) VALUES(NULL,'text');
SELECT LAST_INSERT_ID();

If you do not require the value within your application, but do require the value as part of another
INSERT, the entire process can be handled by executing the following statements:

INSERT INTO tbl (auto,text) VALUES(NULL,'text');
INSERT INTO tbl2 (id,text) VALUES(LAST_INSERT_ID(),'text');

Certain ODBC applications (including Delphi and Access) may have trouble obtaining the auto-
increment value using the previous examples. In this case, try the following statement as an alternative:

SELECT * FROM tbl WHERE auto IS NULL;

This alternative method requires that sql_auto_is_null variable is not set to 0. See Server System
Variables.

See also Obtaining the Unique ID for the Last Inserted Row.

5.8.1.2 Dynamic Cursor Support

Support for the dynamic cursor is provided in Connector/ODBC 3.51, but dynamic cursors are not
enabled by default. You can enable this function within Windows by selecting the Enable Dynamic
Cursor check box within the ODBC Data Source Administrator.

On other platforms, you can enable the dynamic cursor by adding 32 to the OPTION value when
creating the DSN.

391

https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_last-insert-id
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_sql_auto_is_null
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html
https://dev.mysql.com/doc/c-api/8.2/en/getting-unique-id.html

Connector/ODBC General Functionality

5.8.1.3 Configuring Catalog and Schema Support

Many relational databases reference CATALOG and SCHEMA in ways that do not directly
correspond to what MySQL refers to as a database. It is neither a CATALOG nor a SCHEMA.
Generally, catalogs are collections of schemas, so the fully qualified name would look like
catalog.schema.table.column. Historically with MySQL ODBC Driver, CATALOG and
DATABASE were two names used for the same thing. At the same time SCHEMA was often used as
a synonym for a MySQL Database. This would suggest that CATALOG equals a SCHEMA, which is
incorrect, but in the MySQL Server context they would be the same thing.

In ODBC both schemas and catalogs can be used when referring to database objects such as tables.
The expectation on how to interpret these schema and catalog notions differs between developers,
which is why both the NO_CATALOG and NO_SCHEMA options exist: to cover all these expectations
and allow one to disable interpreting ODBC function parameters as CATALOG or SCHEMA explicitly.

The Connector/ODBC driver does not allow using catalog and schema functionality at the same time
because it would cause unsupported naming. However, some software such as MS SQL Server might
try do so through the linked server objects. This is why Connector/ODBC 8.0.26 added a NO_SCHEMA
option to MySQL ODBC Driver to report schemas as not supported, which is already done for catalogs
with the NO_CATALOG option. Using NO_SCHEMA causes the driver to report schema operations
unsupported through SQLGetInfo() call. As a result the client software will not attempt to access tables
as catalog.schema.table, but instead as catalog.table.

Table 5.18 Connector/ODBC NO_CATALOG and NO_SCHEMA combinations

NO_CATALOGNO_SCHEMADescription and notes

true true Driver does not support catalogs nor schemas.

false true Catalogs are supported and interpreted as MySQL database names, specifying
schema triggers an error.

true false Schemas are supported and interpreted as MySQL database names, specifying
catalog triggers an error.

false false Both catalogs and schemas are supported but it is an error if both are specified
at the same time. If only catalog or only schema is specified, it is interpreted as a
MySQL database name.

5.8.1.4 Connector/ODBC Performance

The Connector/ODBC driver has been optimized to provide very fast performance. If you experience
problems with the performance of Connector/ODBC, or notice a large amount of disk activity for simple
queries, there are a number of aspects to check:

• Ensure that ODBC Tracing is not enabled. With tracing enabled, a lot of information is recorded in
the tracing file by the ODBC Manager. You can check, and disable, tracing within Windows using the
Tracing panel of the ODBC Data Source Administrator. Within macOS, check the Tracing panel of
ODBC Administrator. See Section 5.5.10, “Getting an ODBC Trace File”.

• Make sure you are using the standard version of the driver, and not the debug version. The debug
version includes additional checks and reporting measures.

• Disable the Connector/ODBC driver trace and query logs. These options are enabled for each DSN,
so make sure to examine only the DSN that you are using in your application. Within Windows, you
can disable the Connector/ODBC and query logs by modifying the DSN configuration. Within macOS
and Unix, ensure that the driver trace (option value 4) and query logging (option value 524288) are
not enabled.

5.8.1.5 Setting ODBC Query Timeout in Windows

For more information on how to set the query timeout on Microsoft Windows when executing
queries through an ODBC connection, read the Microsoft knowledgebase document at https://

392

https://docs.microsoft.com/en-us/office/client-developer/access/desktop-database-reference/database-querytimeout-property-dao

Connector/ODBC Application-Specific Tips

docs.microsoft.com/en-us/office/client-developer/access/desktop-database-reference/database-
querytimeout-property-dao.

5.8.2 Connector/ODBC Application-Specific Tips

Most programs should work with Connector/ODBC, but for each of those listed here, there are specific
notes and tips to improve or enhance the way you work with Connector/ODBC and these applications.

With all applications, ensure that you are using the latest Connector/ODBC drivers, ODBC Manager
and any supporting libraries and interfaces used by your application. For example, on Windows, using
the latest version of Microsoft Data Access Components (MDAC) will improve the compatibility with
ODBC in general, and with the Connector/ODBC driver.

5.8.2.1 Using Connector/ODBC with Microsoft Applications

The majority of Microsoft applications have been tested with Connector/ODBC, including Microsoft
Office, Microsoft Access and the various programming languages supported within ASP and Microsoft
Visual Studio.

Microsoft Access

To improve the integration between Microsoft Access and MySQL through Connector/ODBC:

• For all versions of Access, enable the Connector/ODBC Return matching rows option. For
Access 2.0, also enable the Simulate ODBC 1.0 option.

• Include a TIMESTAMP column in all tables that you want to be able to update. For maximum
portability, do not use a length specification in the column declaration (which is unsupported within
MySQL in versions earlier than 4.1).

• Include a primary key in each MySQL table you want to use with Access. If not, new or updated rows
may show up as #DELETED#.

• Use only DOUBLE float fields. Access fails when comparing with single-precision floats. The symptom
usually is that new or updated rows may show up as #DELETED# or that you cannot find or update
rows.

• If you are using Connector/ODBC to link to a table that has a BIGINT column, the results are
displayed as #DELETED#. The work around solution is:

• Have one more dummy column with TIMESTAMP as the data type.

• Select the Change BIGINT columns to INT option in the connection dialog in ODBC DSN
Administrator.

• Delete the table link from Access and re-create it.

Old records may still display as #DELETED#, but newly added/updated records are displayed
properly.

• If you still get the error Another user has changed your data after adding a TIMESTAMP
column, the following trick may help you:

Do not use a table data sheet view. Instead, create a form with the fields you want, and use that
form data sheet view. Set the DefaultValue property for the TIMESTAMP column to NOW().
Consider hiding the TIMESTAMP column from view so your users are not confused.

• In some cases, Access may generate SQL statements that MySQL cannot understand. You can fix
this by selecting "Query|SQLSpecific|Pass-Through" from the Access menu.

• On Windows NT, Access reports BLOB columns as OLE OBJECTS. If you want to have MEMO
columns instead, change BLOB columns to TEXT with ALTER TABLE.

393

https://docs.microsoft.com/en-us/office/client-developer/access/desktop-database-reference/database-querytimeout-property-dao
https://docs.microsoft.com/en-us/office/client-developer/access/desktop-database-reference/database-querytimeout-property-dao
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_primary_key
https://dev.mysql.com/doc/refman/8.0/en/floating-point-types.html
https://dev.mysql.com/doc/refman/8.0/en/integer-types.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_now
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html

Connector/ODBC Application-Specific Tips

• Access cannot always handle the MySQL DATE column properly. If you have a problem with these,
change the columns to DATETIME.

• If you have in Access a column defined as BYTE, Access tries to export this as TINYINT instead of
TINYINT UNSIGNED. This gives you problems if you have values larger than 127 in the column.

• If you have very large (long) tables in Access, it might take a very long time to open them. Or you
might run low on virtual memory and eventually get an ODBC Query Failed error and the table
cannot open. To deal with this, select the following options:

• Return Matching Rows (2)

• Allow BIG Results (8).

These add up to a value of 10 (OPTION=10).

Some external articles and tips that may be useful when using Access, ODBC and Connector/ODBC:

• Read How to Trap ODBC Login Error Messages in Access

• Optimizing Access ODBC Applications

• Optimizing for Client/Server Performance

• Tips for Converting Applications to Using ODBCDirect

• Tips for Optimizing Queries on Attached SQL Tables

Microsoft Excel and Column Types

If you have problems importing data into Microsoft Excel, particularly numeric, date, and time values,
this is probably because of a bug in Excel, where the column type of the source data is used to
determine the data type when that data is inserted into a cell within the worksheet. The result is that
Excel incorrectly identifies the content and this affects both the display format and the data when it is
used within calculations.

To address this issue, use the CONCAT() function in your queries. The use of CONCAT() forces Excel
to treat the value as a string, which Excel will then parse and usually correctly identify the embedded
information.

However, even with this option, some data may be incorrectly formatted, even though the source data
remains unchanged. Use the Format Cells option within Excel to change the format of the displayed
information.

Microsoft Visual Basic

To be able to update a table, you must define a primary key for the table.

Visual Basic with ADO cannot handle big integers. This means that some queries like SHOW
PROCESSLIST do not work properly. The fix is to use OPTION=16384 in the ODBC connect string or to
select the Change BIGINT columns to INT option in the Connector/ODBC connect screen. You
may also want to select the Return matching rows option.

Microsoft Visual InterDev

If you have a BIGINT in your result, you may get the error [Microsoft][ODBC Driver Manager]
Driver does not support this parameter. Try selecting the Change BIGINT columns to
INT option in the Connector/ODBC connect screen.

Visual Objects

Select the Don't optimize column widths option.

394

https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/integer-types.html
http://support.microsoft.com/support/kb/articles/Q124/9/01.asp?LN=EN-US&SD=gn&FR=0%3CP%3E
http://support.microsoft.com/default.aspx?scid=kb;en-us;128808
http://support.microsoft.com/default.aspx?scid=kb;en-us;164481
http://support.microsoft.com/default.aspx?scid=kb;EN-US;q99321
https://dev.mysql.com/doc/refman/8.0/en/string-functions.html#function_concat
https://dev.mysql.com/doc/refman/8.0/en/string-functions.html#function_concat
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_primary_key
https://dev.mysql.com/doc/refman/8.0/en/show-processlist.html
https://dev.mysql.com/doc/refman/8.0/en/show-processlist.html
https://dev.mysql.com/doc/refman/8.0/en/integer-types.html

Connector/ODBC Application-Specific Tips

Microsoft ADO

When you are coding with the ADO API and Connector/ODBC, you need to pay attention to
some default properties that aren't supported by the MySQL server. For example, using the
CursorLocation Property as adUseServer returns a result of −1 for the RecordCount
Property. To have the right value, you need to set this property to adUseClient, as shown in the
VB code here:

Dim myconn As New ADODB.Connection
Dim myrs As New Recordset
Dim mySQL As String
Dim myrows As Long
myconn.Open "DSN=MyODBCsample"
mySQL = "SELECT * from user"
myrs.Source = mySQL
Set myrs.ActiveConnection = myconn
myrs.CursorLocation = adUseClient
myrs.Open
myrows = myrs.RecordCount
myrs.Close
myconn.Close

Another workaround is to use a SELECT COUNT(*) statement for a similar query to get the correct row
count.

To find the number of rows affected by a specific SQL statement in ADO, use the RecordsAffected
property in the ADO execute method. For more information on the usage of execute method, refer to
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/ado270/htm/mdmthcnnexecute.asp.

For information, see ActiveX Data Objects(ADO) Frequently Asked Questions.

Using Connector/ODBC with Active Server Pages (ASP)

Select the Return matching rows option in the DSN.

For more information about how to access MySQL through ASP using Connector/ODBC, refer to the
following articles:

• Using MyODBC To Access Your MySQL Database Via ASP

• ASP and MySQL at DWAM.NT

A Frequently Asked Questions list for ASP can be found at http://support.microsoft.com/default.aspx?
scid=/Support/ActiveServer/faq/data/adofaq.asp.

Using Connector/ODBC with Visual Basic (ADO, DAO and RDO) and ASP

Some articles that may help with Visual Basic and ASP:

• MySQL BLOB columns and Visual Basic 6 by Mike Hillyer (<mike@openwin.org>).

• How to map Visual basic data type to MySQL types by Mike Hillyer (<mike@openwin.org>).

5.8.2.2 Using Connector/ODBC with Borland Applications

With all Borland applications where the Borland Database Engine (BDE) is used, follow these steps to
improve compatibility:

• Update to BDE 3.2 or newer.

• Enable the Don't optimize column widths option in the DSN.

• Enabled the Return matching rows option in the DSN.

395

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/ado270/htm/mdmthcnnexecute.asp
http://support.microsoft.com/default.aspx?scid=kb;EN-US;q183606
http://www.devarticles.com/c/a/ASP/Using-MyODBC-To-Access-Your-MySQL-Database-Via-ASP/
http://www.dwam.net/mysql/asp_myodbc.asp
http://support.microsoft.com/default.aspx?scid=/Support/ActiveServer/faq/data/adofaq.asp
http://support.microsoft.com/default.aspx?scid=/Support/ActiveServer/faq/data/adofaq.asp
http://dev.mysql.com/tech-resources/articles/vb-blob-handling.html
http://dev.mysql.com/tech-resources/articles/visual-basic-datatypes.html

Connector/ODBC Application-Specific Tips

Using Connector/ODBC with Borland Builder 4

When you start a query, you can use the Active property or the Open method.

The Active property starts by automatically issuing a SELECT * FROM ... query. That may affect
performance for large tables.

Using Connector/ODBC with Delphi

Also, here is some potentially useful Delphi code that sets up both an ODBC entry and a BDE entry for
Connector/ODBC. The BDE entry requires a BDE Alias Editor that is free at a Delphi Super Page near
you. (Thanks to Bryan Brunton <bryan@flesherfab.com> for this):

fReg:= TRegistry.Create;
fReg.OpenKey('\Software\ODBC\ODBC.INI\DocumentsFab', True);
fReg.WriteString('Database', 'Documents');
fReg.WriteString('Description', ' ');
fReg.WriteString('Driver', 'C:\WINNT\System32\myodbc.dll');
fReg.WriteString('Flag', '1');
fReg.WriteString('Password', '');
fReg.WriteString('Port', ' ');
fReg.WriteString('Server', 'xmark');
fReg.WriteString('User', 'winuser');
fReg.OpenKey('\Software\ODBC\ODBC.INI\ODBC Data Sources', True);
fReg.WriteString('DocumentsFab', 'MySQL');
fReg.CloseKey;
fReg.Free;
Memo1.Lines.Add('DATABASE NAME=');
Memo1.Lines.Add('USER NAME=');
Memo1.Lines.Add('ODBC DSN=DocumentsFab');
Memo1.Lines.Add('OPEN MODE=READ/WRITE');
Memo1.Lines.Add('BATCH COUNT=200');
Memo1.Lines.Add('LANGDRIVER=');
Memo1.Lines.Add('MAX ROWS=-1');
Memo1.Lines.Add('SCHEMA CACHE DIR=');
Memo1.Lines.Add('SCHEMA CACHE SIZE=8');
Memo1.Lines.Add('SCHEMA CACHE TIME=-1');
Memo1.Lines.Add('SQLPASSTHRU MODE=SHARED AUTOCOMMIT');
Memo1.Lines.Add('SQLQRYMODE=');
Memo1.Lines.Add('ENABLE SCHEMA CACHE=FALSE');
Memo1.Lines.Add('ENABLE BCD=FALSE');
Memo1.Lines.Add('ROWSET SIZE=20');
Memo1.Lines.Add('BLOBS TO CACHE=64');
Memo1.Lines.Add('BLOB SIZE=32');
AliasEditor.Add('DocumentsFab','MySQL',Memo1.Lines);

Using Connector/ODBC with C++ Builder

Tested with BDE 3.0. The only known problem is that when the table schema changes, query fields
are not updated. BDE, however, does not seem to recognize primary keys, only the index named
PRIMARY, although this has not been a problem.

5.8.2.3 Using Connector/ODBC with ColdFusion

The following information is taken from the ColdFusion documentation:

Use the following information to configure ColdFusion Server for Linux to use the unixODBC driver
with Connector/ODBC for MySQL data sources. You can download Connector/ODBC at https://
dev.mysql.com/downloads/Connector/ODBC/.

ColdFusion version 4.5.1 lets you use the ColdFusion Administrator to add the MySQL data source.
However, the driver is not included with ColdFusion version 4.5.1. Before the MySQL driver appears
in the ODBC data sources drop-down list, build and copy the Connector/ODBC driver to /opt/
coldfusion/lib/libmyodbc.so.

The Contrib directory contains the program mydsn-xxx.zip which lets you build and remove the DSN
registry file for the Connector/ODBC driver on ColdFusion applications.

396

https://dev.mysql.com/downloads/Connector/ODBC/
https://dev.mysql.com/downloads/Connector/ODBC/

Connector/ODBC and the Application Both Use OpenSSL

For more information and guides on using ColdFusion and Connector/ODBC, see the following external
sites:

• Troubleshooting Data Sources and Database Connectivity for Unix Platforms.

5.8.2.4 Using Connector/ODBC with OpenOffice.org

Open Office (http://www.openoffice.org) How-to: MySQL + OpenOffice. How-to: OpenOffice +
MyODBC + unixODBC.

5.8.2.5 Using Connector/ODBC with Pervasive Software DataJunction

You have to change it to output VARCHAR rather than ENUM, as it exports the latter in a manner that
causes MySQL problems.

5.8.2.6 Using Connector/ODBC with SunSystems Vision

Select the Return matching rows option.

5.8.3 Connector/ODBC and the Application Both Use OpenSSL

If Connector/ODBC is connecting securely with the MySQL server and the application using the
connection makes calls itself to an OpenSSL library, the application might then fail, as two copies of the
OpenSSL library will then be in use.

Note

Connector/ODBC 8.0 and higher link to OpenSSL dynamically while earlier
Connector/ODBC versions link to OpenSSL statically. This solves problems
related to using two OpenSSL copies from the same application.

Note

The TLSv1.0 and TLSv1.1 connection protocols were deprecated in Connector/
ODBC 8.0.26 and removed in version 8.0.28.

Note

See also the tls-versions connection option.

To prevent the issue, in your application, do not allow OpenSSL initialization in one thread
and the opening of an Connector/ODBC connection in another thread (which also initializes
openSSL) to happen simultaneously. For example, use a mutex to ensure synchronization between
SQLDriverConnect() or SQLConnect() calls and openSSL initialization. In addition to that,
implement the following if possible:

• Use a build of Connector/ODBC that links (statically or dynamically) to a version of the
libmysqlclient library that is in turn dynamically linked to the same OpenSSL library that the
application calls.

• When creating a build of Connector/ODBC that links (statically or dynamically) to a version of the
libmysqlclient library that is in turn statically linked to an OpenSSL library, do NOT export
OpenSSL symbols in your build. That prevents incorrect resolution of application symbols; however,
that does not prevent other issues that come with running two copies of OpenSSL code within a
single application.

5.8.4 Connector/ODBC Errors and Resolutions (FAQ)

The following section details some common errors and their suggested fix or alternative solution. If you
are still experiencing problems, use the Connector/ODBC mailing list; see Section 5.9.1, “Connector/
ODBC Community Support”.

397

http://www.macromedia.com/v1/handlers/index.cfm?ID=11328&Method=Full&PageCall=/support/index.cfm
http://www.openoffice.org
http://wiki.services.openoffice.org/wiki/Connect_MySQL_and_Base
http://www.unixodbc.org/doc/OOoMySQL.pdf
http://www.unixodbc.org/doc/OOoMySQL.pdf
https://dev.mysql.com/doc/refman/8.0/en/char.html
https://dev.mysql.com/doc/refman/8.0/en/enum.html

Connector/ODBC Errors and Resolutions (FAQ)

Many problems can be resolved by upgrading your Connector/ODBC drivers to the latest available
release. On Windows, make sure that you have the latest versions of the Microsoft Data Access
Components (MDAC) installed.

64-Bit Windows and ODBC Data Source Administrator

I have installed Connector/ODBC on Windows XP x64 Edition or Windows Server 2003 R2 x64. The
installation completed successfully, but the Connector/ODBC driver does not appear in ODBC Data
Source Administrator.

This is not a bug, but is related to the way Windows x64 editions operate with the ODBC driver. On
Windows x64 editions, the Connector/ODBC driver is installed in the %SystemRoot%\SysWOW64
folder. However, the default ODBC Data Source Administrator that is available through
the Administrative Tools or Control Panel in Windows x64 Editions is located in the
%SystemRoot%\system32 folder, and only searches this folder for ODBC drivers.

On Windows x64 editions, use the ODBC administration tool located at %SystemRoot%
\SysWOW64\odbcad32.exe, this will correctly locate the installed Connector/ODBC drivers and
enable you to create a Connector/ODBC DSN.

This issue was originally reported as Bug #20301.

Error 10061 (Cannot connect to server)

When connecting or using the Test button in ODBC Data Source Administrator I get error 10061
(Cannot connect to server)

This error can be raised by a number of different issues, including server problems, network problems,
and firewall and port blocking problems. For more information, see Can't connect to [local] MySQL
server.

"Transactions are not enabled" Error

The following error is reported when using transactions: Transactions are not enabled

This error indicates that you are trying to use transactions with a MySQL table that does not support
transactions. Transactions are supported within MySQL when using the InnoDB database engine,
which is the default storage engine in MySQL 5.5 and higher. In versions of MySQL before MySQL 5.1,
you may also use the BDB engine.

Check the following before continuing:

• Verify that your MySQL server supports a transactional database engine. Use SHOW ENGINES to
obtain a list of the available engine types.

• Verify that the tables you are updating use a transactional database engine.

• Ensure that you have not enabled the disable transactions option in your DSN.

#DELETED# Records Reported by Access

Access reports records as #DELETED# when inserting or updating records in linked tables.

If the inserted or updated records are shown as #DELETED# in Access, then:

• If you are using Access 2000, get and install the newest (version 2.6 or higher) Microsoft MDAC
(Microsoft Data Access Components) from https://www.microsoft.com/en-in/download/
details.aspx?id=21995. This fixes a bug in Access that when you export data to MySQL, the table
and column names aren't specified.

398

https://dev.mysql.com/doc/refman/8.0/en/can-not-connect-to-server.html
https://dev.mysql.com/doc/refman/8.0/en/can-not-connect-to-server.html
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_transaction
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/show-engines.html
https://www.microsoft.com/en-in/download/details.aspx?id=21995
https://www.microsoft.com/en-in/download/details.aspx?id=21995

Connector/ODBC Errors and Resolutions (FAQ)

Also, get and apply the Microsoft Jet 4.0 Service Pack 5 (SP5), which can be found at http://
support.microsoft.com/default.aspx?scid=kb;EN-US;q239114. This fixes some cases where columns
are marked as #DELETED# in Access.

• For all versions of Access, enable the Connector/ODBC Return matching rows option. For
Access 2.0, also enable the Simulate ODBC 1.0 option.

• Include a TIMESTAMP in all tables that you want to be able to update.

• Include a primary key in the table. If not, new or updated rows may show up as #DELETED#.

• Use only DOUBLE float fields. Access fails when comparing with single-precision floats. The symptom
usually is that new or updated rows may show up as #DELETED# or that you cannot find or update
rows.

• If you are using Connector/ODBC to link to a table that has a BIGINT column, the results are
displayed as #DELETED. The work around solution is:

• Have one more dummy column with TIMESTAMP as the data type.

• Select the Change BIGINT columns to INT option in the connection dialog in ODBC DSN
Administrator.

• Delete the table link from Access and re-create it.

Old records still display as #DELETED#, but newly added/updated records are displayed properly.

Write Conflicts or Row Location Errors

How do I handle Write Conflicts or Row Location errors?

If you see the following errors, select the Return Matching Rows option in the DSN configuration
dialog, or specify OPTION=2, as the connection parameter:

Write Conflict. Another user has changed your data.
Row cannot be located for updating. Some values may have been changed
since it was last read.

Importing from Access 97

Exporting data from Access 97 to MySQL reports a Syntax Error.

This error is specific to Access 97 and versions of Connector/ODBC earlier than 3.51.02. Update to the
latest version of the Connector/ODBC driver to resolve this problem.

Importing from Microsoft DTS

Exporting data from Microsoft DTS to MySQL reports a Syntax Error.

This error occurs only with MySQL tables using the TEXT or VARCHAR data types. You can fix this error
by upgrading your Connector/ODBC driver to version 3.51.02 or higher.

SQL_NO_DATA Exception from ODBC.NET

Using ODBC.NET with Connector/ODBC, while fetching empty string (0 length), it starts giving the
SQL_NO_DATA exception.

You can get the patch that addresses this problem from http://support.microsoft.com/default.aspx?
scid=kb;EN-US;q319243.

Error with SELECT COUNT(*)

Using SELECT COUNT(*) FROM tbl_name within Visual Basic and ASP returns an error.

399

http://support.microsoft.com/default.aspx?scid=kb;EN-US;q239114
http://support.microsoft.com/default.aspx?scid=kb;EN-US;q239114
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_primary_key
https://dev.mysql.com/doc/refman/8.0/en/floating-point-types.html
https://dev.mysql.com/doc/refman/8.0/en/integer-types.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/char.html
http://support.microsoft.com/default.aspx?scid=kb;EN-US;q319243
http://support.microsoft.com/default.aspx?scid=kb;EN-US;q319243

Connector/ODBC Errors and Resolutions (FAQ)

This error occurs because the COUNT(*) expression is returning a BIGINT, and ADO cannot make
sense of a number this big. Select the Change BIGINT columns to INT option (option value
16384).

Multiple-Step Operation Error

Using the AppendChunk() or GetChunk() ADO methods, the Multiple-step operation
generated errors. Check each status value error is returned.

The GetChunk() and AppendChunk() methods from ADO do not work as expected when the cursor
location is specified as adUseServer. On the other hand, you can overcome this error by using
adUseClient.

A simple example can be found from http://www.dwam.net/iishelp/ado/docs/adomth02_4.htm

Modified Record Error

Access returns Another user had modified the record that you have modified while
editing records on a Linked Table.

In most cases, this can be solved by doing one of the following things:

• Add a primary key for the table if one doesn't exist.

• Add a timestamp column if one doesn't exist.

• Only use double-precision float fields. Some programs may fail when they compare single-precision
floats.

If these strategies do not help, start by making a log file from the ODBC manager (the log you get when
requesting logs from ODBCADMIN) and a Connector/ODBC log to help you figure out why things go
wrong. For instructions, see Section 5.5.10, “Getting an ODBC Trace File”.

Direct Application Linking Under Unix or Linux

When linking an application directly to the Connector/ODBC library under Unix or Linux, the application
crashes.

Connector/ODBC under Unix or Linux is not compatible with direct application linking. To connect to an
ODBC source, use a driver manager, such as iODBC or unixODBC.

Microsoft Office and DATE or TIMESTAMP Columns

Applications in the Microsoft Office suite cannot update tables that have DATE or TIMESTAMP columns.

This is a known issue with Connector/ODBC. Ensure that the field has a default value (rather than
NULL) and that the default value is nonzero (that is, something other than 0000-00-00 00:00:00).

INFORMATION_SCHEMA Database

When connecting Connector/ODBC 5.x to a MySQL 4.x server, the error 1044 Access denied for
user 'xxx'@'%' to database 'information_schema' is returned.

Connector/ODBC 5.x is designed to work with MySQL 5.0 or later, taking advantage of the
INFORMATION_SCHEMA database to determine data definition information. Support for MySQL 4.1 is
planned for the final release.

S1T00 Error

When calling SQLTables, the error S1T00 is returned, but I cannot find this in the list of error numbers
for Connector/ODBC.

400

https://dev.mysql.com/doc/refman/8.0/en/aggregate-functions.html#function_count
https://dev.mysql.com/doc/refman/8.0/en/integer-types.html
http://www.dwam.net/iishelp/ado/docs/adomth02_4.htm
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_primary_key
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html

Connector/ODBC Errors and Resolutions (FAQ)

The S1T00 error indicates that a general timeout has occurred within the ODBC system and is not a
MySQL error. Typically it indicates that the connection you are using is stale, the server is too busy to
accept your request or that the server has gone away.

"Table does not exist" Error in Access 2000

When linking to tables in Access 2000 and generating links to tables programmatically, rather than
through the table designer interface, you may get errors about tables not existing.

There is a known issue with a specific version of the msjet40.dll that exhibits this issue. The version
affected is 4.0.9025.0. Reverting to an older version will enable you to create the links. If you have
recently updated your version, check your WINDOWS directory for the older version of the file and copy it
to the drivers directory.

Batched Statements

When I try to use batched statements, the execution of the batched statements fails.

Batched statement support was added in 3.51.18. Support for batched statements is not enabled by
default. Enable option FLAG_MULTI_STATEMENTS, value 67108864, or select the Allow multiple
statements flag within a GUI configuration. Batched statements using prepared statements is not
supported in MySQL.

Packet Errors with ADODB and Excel

When connecting to a MySQL server using ADODB and Excel, occasionally the application fails to
communicate with the server and the error Got an error reading communication packets
appears in the error log.

This error may be related to Keyboard Logger 1.1 from PanteraSoft.com, which is known to interfere
with the network communication between MySQL Connector/ODBC and MySQL.

Outer Join Error

When using some applications to access a MySQL server using Connector/ODBC and outer joins, an
error is reported regarding the Outer Join Escape Sequence.

This is a known issue with MySQL Connector/ODBC which is not correctly parsing the "Outer Join
Escape Sequence", as per the specs at Microsoft ODBC Specs. Currently, Connector/ODBC will return
a value > 0 when asked for SQL_OJ_CAPABILITIES even though no parsing takes place in the driver
to handle the outer join escape sequence.

Hebrew/CJK Characters

I can correctly store extended characters in the database (Hebrew/CJK) using Connector/ODBC 5.1,
but when I retrieve the data, the text is not formatted correctly and I get garbled characters.

When using ASP and UTF8 characters, add the following to your ASP files to ensure that the data
returned is correctly encoded:

Response.CodePage = 65001
Response.CharSet = "utf-8"

Duplicate Entry in Installed Programs List

I have a duplicate MySQL Connector/ODBC entry within my Installed Programs list, but I cannot
delete one of them.

This problem can occur when you upgrade an existing Connector/ODBC installation, rather than
removing and then installing the updated version.

401

http://msdn2.microsoft.com/en-us/library/ms710299.aspx

Connector/ODBC Support

Warning

To fix the problem, use any working uninstallers to remove existing installations;
then may have to edit the contents of the registry. Make sure you have a
backup of your registry information before attempting any editing of the registry
contents.

Values Truncated to 255 Characters

When submitting queries with parameter binding using UPDATE, my field values are being truncated to
255 characters.

Ensure that the FLAG_BIG_PACKETS option is set for your connection. This removes the 255 character
limitation on bound parameters.

Disabling Data-At-Execution

Is it possible to disable data-at-execution using a flag?

If you do not want to use data-at-execution, remove the corresponding calls. For example:

SQLLEN ylen = SQL_LEN_DATA_AT_EXEC(10);
SQLBindCol(hstmt,2,SQL_C_BINARY, buf, 10, &ylen);

Would become:

SQLBindCol(hstmt,2,SQL_C_BINARY, buf, 10, NULL);

This example also replaced &ylen with NULL in the call to SQLBindCol().

For further information, refer to the MSDN documentation for SQLBindCol().

NULLABLE Attribute for AUTO_INCREMENT Columns

When you call SQLColumns() for a table column that is AUTO_INCREMENT, the NULLABLE column of
the result set is always SQL_NULLABLE (1).

This is because MySQL reports the DEFAULT value for such a column as NULL. It means, if you insert
a NULL value into the column, you will get the next integer value for the table's auto_increment
counter.

5.9 Connector/ODBC Support

There are many different places where you can get support for using Connector/ODBC. Always try
the Connector/ODBC Mailing List or Connector/ODBC Forum. See Section 5.9.1, “Connector/ODBC
Community Support”, for help before reporting a specific bug or issue to MySQL.

5.9.1 Connector/ODBC Community Support

Community support from experienced users is also available through the ODBC Forum. You may also
find help from other users in the other MySQL Forums, located at http://forums.mysql.com.

5.9.2 How to Report Connector/ODBC Problems or Bugs

If you encounter difficulties or problems with Connector/ODBC, start by making a log file from the
ODBC Manager (the log you get when requesting logs from ODBC ADMIN) and Connector/ODBC. The
procedure for doing this is described in Section 5.5.10, “Getting an ODBC Trace File”.

Check the Connector/ODBC trace file to find out what could be wrong. Determine what statements
were issued by searching for the string >mysql_real_query in the myodbc.log file.

402

https://dev.mysql.com/doc/refman/8.0/en/update.html
http://msdn.microsoft.com/en-us/library/ms711010(VS.85).aspx
https://forums.mysql.com/list.php?37
http://forums.mysql.com

How to Report Connector/ODBC Problems or Bugs

Also, try issuing the statements from the mysql client program or from admndemo. This helps you
determine whether the error is in Connector/ODBC or MySQL.

Ideally, include the following information with your bug report:

• Operating system and version

• Connector/ODBC version

• ODBC Driver Manager type and version

• MySQL server version

• ODBC trace from Driver Manager

• Connector/ODBC log file from Connector/ODBC driver

• Simple reproducible sample

The more information you supply, the more likely it is that we can fix the problem.

If you are unable to find out what is wrong, the last option is to create an archive in tar or zip format
that contains a Connector/ODBC trace file, the ODBC log file, and a README file that explains the
problem. Initiate a bug report for our bugs database at http://bugs.mysql.com/, then click the Files tab in
the bug report for instructions on uploading the archive to the bugs database. Only MySQL engineers
have access to the files you upload, and we are very discreet with the data.

If you can create a program that also demonstrates the problem, please include it in the archive as
well.

If the program works with another SQL server, include an ODBC log file where you perform exactly the
same SQL statements so that we can compare the results between the two systems.

Remember that the more information you can supply to us, the more likely it is that we can fix the
problem.

403

http://bugs.mysql.com/

404

Chapter 6 MySQL Connector/Python Developer Guide

Table of Contents
6.1 Introduction to MySQL Connector/Python ... 406
6.2 Guidelines for Python Developers .. 406
6.3 Connector/Python Versions .. 408
6.4 Connector/Python Installation ... 410

6.4.1 Obtaining Connector/Python .. 410
6.4.2 Installing Connector/Python from a Binary Distribution .. 410
6.4.3 Installing Connector/Python from a Source Distribution ... 412
6.4.4 Verifying Your Connector/Python Installation .. 413

6.5 Connector/Python Coding Examples .. 414
6.5.1 Connecting to MySQL Using Connector/Python ... 414
6.5.2 Creating Tables Using Connector/Python ... 416
6.5.3 Inserting Data Using Connector/Python ... 419
6.5.4 Querying Data Using Connector/Python ... 420

6.6 Connector/Python Tutorials .. 420
6.6.1 Tutorial: Raise Employee's Salary Using a Buffered Cursor .. 421

6.7 Connector/Python Connection Establishment .. 421
6.7.1 Connector/Python Connection Arguments .. 421
6.7.2 Connector/Python Option-File Support ... 429

6.8 Connector/Python Other Topics ... 430
6.8.1 Connector/Python Logging .. 430
6.8.2 OpenTelemetry Support .. 431
6.8.3 Asynchronous Connectivity ... 434
6.8.4 Connector/Python Connection Pooling ... 442
6.8.5 Connector/Python Django Back End .. 444

6.9 Connector/Python API Reference ... 445
6.9.1 mysql.connector Module ... 445
6.9.2 connection.MySQLConnection Class ... 446
6.9.3 pooling.MySQLConnectionPool Class .. 458
6.9.4 pooling.PooledMySQLConnection Class .. 459
6.9.5 cursor.MySQLCursor Class ... 460
6.9.6 Subclasses cursor.MySQLCursor .. 469
6.9.7 constants.ClientFlag Class .. 472
6.9.8 constants.FieldType Class .. 473
6.9.9 constants.SQLMode Class .. 473
6.9.10 constants.CharacterSet Class .. 473
6.9.11 constants.RefreshOption Class .. 473
6.9.12 Errors and Exceptions .. 474

MySQL Connector/Python is a self-contained Python driver for communicating with MySQL servers.

For notes detailing the changes in each release of Connector/Python, see MySQL Connector/Python
Release Notes.

For legal information, see the Legal Notices.

For help with using MySQL, please visit the MySQL Forums, where you can discuss your issues with
other MySQL users.

Licensing information. This product may include third-party software, used under license. If
you are using a Commercial release of MySQL Connector/Python, see this document for licensing
information, including licensing information relating to third-party software that may be included in this
Commercial release. If you are using a Community release of MySQL Connector/Python, see this

405

https://dev.mysql.com/doc/relnotes/connector-python/en/
https://dev.mysql.com/doc/relnotes/connector-python/en/
http://forums.mysql.com
https://downloads.mysql.com/docs/licenses/connector-python-8.3-com-en.pdf
https://downloads.mysql.com/docs/licenses/connector-python-8.3-gpl-en.pdf

Introduction to MySQL Connector/Python

document for licensing information, including licensing information relating to third-party software that
may be included in this Community release.

6.1 Introduction to MySQL Connector/Python
MySQL Connector/Python enables Python programs to access MySQL databases, using an API that is
compliant with the Python Database API Specification v2.0 (PEP 249).

For notes detailing the changes in each release of Connector/Python, see MySQL Connector/Python
Release Notes.

MySQL Connector/Python includes support for:

• Almost all features provided by MySQL Server version 5.7 and higher.

• Connector/Python supports X DevAPI. For X DevAPI specific documentation, see X DevAPI User
Guide.

Note

X DevAPI support was separated into its own package (mysqlx-
connector-python) in Connector/Python 8.3.0. For related information,
see Section 6.4, “Connector/Python Installation”.

• Converting parameter values back and forth between Python and MySQL data types, for example
Python datetime and MySQL DATETIME. You can turn automatic conversion on for convenience,
or off for optimal performance.

• All MySQL extensions to standard SQL syntax.

• Protocol compression, which enables compressing the data stream between the client and server.

• Connections using TCP/IP sockets and on Unix using Unix sockets.

• Secure TCP/IP connections using SSL.

• Self-contained driver. Connector/Python does not require the MySQL client library or any Python
modules outside the standard library.

For information about which versions of Python can be used with different versions of MySQL
Connector/Python, see Section 6.3, “Connector/Python Versions”.

Note

Connector/Python does not support the old MySQL Server authentication
methods, which means that MySQL versions prior to 4.1 will not work.

6.2 Guidelines for Python Developers
The following guidelines cover aspects of developing MySQL applications that might not be
immediately obvious to developers coming from a Python background:

• For security, do not hardcode the values needed to connect and log into the database in your
main script. Python has the convention of a config.py module, where you can keep such values
separate from the rest of your code.

• Python scripts often build up and tear down large data structures in memory, up to the limits of
available RAM. Because MySQL often deals with data sets that are many times larger than available
memory, techniques that optimize storage space and disk I/O are especially important. For example,
in MySQL tables, you typically use numeric IDs rather than string-based dictionary keys, so that the
key values are compact and have a predictable length. This is especially important for columns that
make up the primary key for an InnoDB table, because those column values are duplicated within
each secondary index.

406

https://downloads.mysql.com/docs/licenses/connector-python-8.3-gpl-en.pdf
http://www.python.org/dev/peps/pep-0249/
https://dev.mysql.com/doc/relnotes/connector-python/en/
https://dev.mysql.com/doc/relnotes/connector-python/en/
https://dev.mysql.com/doc/x-devapi-userguide/en/
https://dev.mysql.com/doc/x-devapi-userguide/en/
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_primary_key
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_secondary_index

Guidelines for Python Developers

• Any application that accepts input must expect to handle bad data.

The bad data might be accidental, such as out-of-range values or misformatted strings. The
application can use server-side checks such as unique constraints and NOT NULL constraints, to
keep the bad data from ever reaching the database. On the client side, use techniques such as
exception handlers to report any problems and take corrective action.

The bad data might also be deliberate, representing an “SQL injection” attack. For example, input
values might contain quotation marks, semicolons, % and _ wildcard characters and other characters
significant in SQL statements. Validate input values to make sure they have only the expected
characters. Escape any special characters that could change the intended behavior when substituted
into an SQL statement. Never concatenate a user input value into an SQL statement without doing
validation and escaping first. Even when accepting input generated by some other program, expect
that the other program could also have been compromised and be sending you incorrect or malicious
data.

• Because the result sets from SQL queries can be very large, use the appropriate method to retrieve
items from the result set as you loop through them. fetchone() retrieves a single item, when you
know the result set contains a single row. fetchall() retrieves all the items, when you know the
result set contains a limited number of rows that can fit comfortably into memory. fetchmany() is the
general-purpose method when you cannot predict the size of the result set: you keep calling it and
looping through the returned items, until there are no more results to process.

• Since Python already has convenient modules such as pickle and cPickle to read and write
data structures on disk, data that you choose to store in MySQL instead is likely to have special
characteristics:

• Too large to all fit in memory at one time. You use SELECT statements to query only the precise
items you need, and aggregate functions to perform calculations across multiple items. You
configure the innodb_buffer_pool_size option within the MySQL server to dedicate a certain
amount of RAM for caching table and index data.

• Too complex to be represented by a single data structure. You divide the data between
different SQL tables. You can recombine data from multiple tables by using a join query. You
make sure that related data is kept in sync between different tables by setting up foreign key
relationships.

• Updated frequently, perhaps by multiple users simultaneously. The updates might only affect
a small portion of the data, making it wasteful to write the whole structure each time. You use the
SQL INSERT, UPDATE, and DELETE statements to update different items concurrently, writing only
the changed values to disk. You use InnoDB tables and transactions to keep write operations from
conflicting with each other, and to return consistent query results even as the underlying data is
being updated.

• Using MySQL best practices for performance can help your application to scale without requiring
major rewrites and architectural changes. See Optimization for best practices for MySQL
performance. It offers guidelines and tips for SQL tuning, database design, and server configuration.

• You can avoid reinventing the wheel by learning the MySQL SQL statements for common
operations: operators to use in queries, techniques for bulk loading data, and so on. Some
statements and clauses are extensions to the basic ones defined by the SQL standard. See Data
Manipulation Statements, Data Definition Statements, and SELECT Statement for the main classes
of statements.

• Issuing SQL statements from Python typically involves declaring very long, possibly multi-line string
literals. Because string literals within the SQL statements could be enclosed by single quotation,
double quotation marks, or contain either of those characters, for simplicity you can use Python's
triple-quoting mechanism to enclose the entire statement. For example:

'''It doesn't matter if this string contains 'single'
or "double" quotes, as long as there aren't 3 in a

407

https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_unique_constraint
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_not_null_constraint
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/aggregate-functions.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html#sysvar_innodb_buffer_pool_size
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_join
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_foreign_key
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/delete.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_transaction
https://dev.mysql.com/doc/refman/8.0/en/optimization.html
https://dev.mysql.com/doc/refman/8.0/en/sql-data-manipulation-statements.html
https://dev.mysql.com/doc/refman/8.0/en/sql-data-manipulation-statements.html
https://dev.mysql.com/doc/refman/8.0/en/sql-data-definition-statements.html
https://dev.mysql.com/doc/refman/8.0/en/select.html

Connector/Python Versions

row.'''

You can use either of the ' or " characters for triple-quoting multi-line string literals.

• Many of the secrets to a fast, scalable MySQL application involve using the right syntax at the very
start of your setup procedure, in the CREATE TABLE statements. For example, Oracle recommends
the ENGINE=INNODB clause for most tables, and makes InnoDB the default storage engine in
MySQL 5.5 and up. Using InnoDB tables enables transactional behavior that helps scalability of
read-write workloads and offers automatic crash recovery. Another recommendation is to declare
a numeric primary key for each table, which offers the fastest way to look up values and can act
as a pointer to associated values in other tables (a foreign key). Also within the CREATE TABLE
statement, using the most compact column data types that meet your application requirements helps
performance and scalability because that enables the database server to move less data back and
forth between memory and disk.

6.3 Connector/Python Versions

This section describes both version releases, such as 8.0.34, along with notes specific to the two
implementations (C Extension and Pure Python).

Connector/Python Releases

The following table summarizes the available Connector/Python versions. For series that have reached
General Availability (GA) status, development releases in the series prior to the GA version are no
longer supported.

Note

MySQL Connectors and other MySQL client tools and applications now
synchronize the first digit of their version number with the (highest) MySQL
server version they support. For example, MySQL Connector/Python 8.0.12
would be designed to support all features of MySQL server version 8 (or lower).
This change makes it easy and intuitive to decide which client version to use for
which server version.

Connector/Python 8.0.4 is the first release to use the new numbering. It is the
successor to Connector/Python 2.2.3.

Table 6.1 Connector/Python Version Reference

Connector/Python
Version

MySQL Server
Versions

Python Versions Connector Status

8.x Innovation 8.3, 8.2, 8.1, 8.0,
5.7, 5.6

3.12 (8.2.0+), 3.11,
3.10, 3.9, 3.8

General Availability

8.0 8.0, 5.7, 5.6, 5.5 3.11, 3.10, 3.9, 3.8,
3.7, (3.6 before
8.0.29), (2.7 and
3.5 before 8.0.24)

General Availability

2.2 (continues as
8.0)

5.7, 5.6, 5.5 3.5, 3.4, 2.7 Developer
Milestone, No
releases

2.1 5.7, 5.6, 5.5 3.5, 3.4, 2.7, 2.6 General Availability

2.0 5.7, 5.6, 5.5 3.5, 3.4, 2.7, 2.6 GA, final release
on 2016-10-26

1.2 5.7, 5.6, 5.5 (5.1,
5.0, 4.1)

3.4, 3.3, 3.2, 3.1,
2.7, 2.6

GA, final release
on 2014-08-22

408

https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_crash_recovery
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_primary_key
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_foreign_key
https://dev.mysql.com/doc/refman/8.0/en/create-table.html

Connector/Python Implementations

Note

MySQL server and Python versions within parentheses are known to work with
Connector/Python, but are not officially supported. Bugs might not get fixed for
those versions.

Note

Connector/Python does not support the old MySQL Server authentication
methods, which means that MySQL versions prior to 4.1 will not work.

Note

On macOS x86_64 ARM: Python 3.7 is not supported with the c-ext
implementation; note this is a non-default version of Python on macOS.

Connector/Python Implementations

Connector/Python implements the MySQL client/server protocol two ways:

• As pure Python; an implementation written in Python. Its dependencies are the Python Standard
Library and Python Protobuf >= 4.21.1,<= 4.21.12.

Note

EL7 and Ubuntu 16.04 do not provide Python Protobuf 3+ making the pure
Python version unavailable on those platforms; use the C Extension variant
there instead. You may have to --force the installation but may not use
use_pure=True.

• As a C Extension that interfaces with the MySQL C client library. This implementation of the protocol
is dependent on the client library, but can use the library provided by MySQL Server packages (see
MySQL C API Implementations).

Neither implementation of the client/server protocol has any third-party dependencies. However, if you
need SSL support, verify that your Python installation has been compiled using the OpenSSL libraries.

TLS Support

By default, EL8 and Debian 10 supports TLSv1.2 and later when the policy
level is set to DEFAULT. To support TLSv1 and TLSv1.1, the policy needs to be
changed to LEGACY. This means that a default EL8/DEB10 setup cannot make
connections with TLSv1 and TLSv1.1 using the C-extension. Other platforms
may change their default behavior in the future.

The TLSv1.0 and TLSv1.1 connection protocols are deprecated as of
Connector/Python 8.0.26 and support for them was removed in Connector/
Python 8.0.28.

Note

Support for distutils was removed in Connector/Python 8.0.32.

Python terminology regarding distributions:

• Built Distribution: A package created in the native packaging format intended for a given platform. It
contains both sources and platform-independent bytecode. Connector/Python binary distributions are
built distributions.

• Source Distribution: A distribution that contains only source files and is generally platform
independent.

409

https://dev.mysql.com/doc/c-api/8.2/en/c-api-implementations.html
http://www.openssl.org/

Connector/Python Installation

6.4 Connector/Python Installation
Connector/Python runs on any platform where Python is installed. Python comes preinstalled on most
Unix and Unix-like systems, such as Linux, macOS, and FreeBSD. On Microsoft Windows, a Python
installer is available at the Python Download website or via the Microsoft app store. If necessary,
download and install Python for Windows before attempting to install Connector/Python.

Note

Connector/Python requires python in the system's PATH.

Installing Connector/Python with pip

Using pip is the recommended way to install Connector/Python and it functions on all standard
systems, including Windows, and installing the Python language also installs pip.

Installation
$> pip install mysql-connector-python
Upgrade
$> pip install mysql-connector-python --upgrade
Optional, installs the X DevAPI interface
$> pip install mysqlx-connector-python

6.4.1 Obtaining Connector/Python

Although using pip to obtain and install Connector/Python is recommended, there are alternatives.
Packages are available at the Connector/Python download site. For some packaging formats, there
are different packages for different versions of Python; choose the one appropriate for the version of
Python installed on your system.

Note

The X DevAPI interface was separated into its own package (mysqlx-
connector-python) in Connector/Python 8.3.0. Previously, the classic
MySQL protocol package (mysql-connector-python) installed interfaces to
both X and classic protocols.

6.4.2 Installing Connector/Python from a Binary Distribution

Connector/Python installers in native package formats are available for most Unix-based systems, but
not for macOS or Windows.

Note

Prior to Connector/Python 8.0.22, the C extension and pure Python
implementations were installed using two separate binary distributions; except
they were always combined for Windows and macOS. The C extension
implementation had “cext” in the package name.

Binary distributions that provide the C Extension link to an already installed C client library provided
by a MySQL Server installation. For those distributions that are not statically linked, you must install
MySQL Server if it is not already present on your system. To obtain it, visit the MySQL download site.

Installing Connector/Python with pip

Use pip to install Connector/Python on most any operating system:

$> pip install mysql-connector-python

Installing Connector/Python on Microsoft Windows

Use pip; installing Python on Windows also makes pip available from the command line (cmd.exe).

410

http://python.org/download/
https://pip.pypa.io/en/latest/installation/
https://dev.mysql.com/downloads/connector/python/
https://dev.mysql.com/downloads/

Installing Connector/Python from a Binary Distribution

Note

MSI installer packages were available before Connector/Python 8.1.0.

Installing Connector/Python on Linux Using the MySQL Yum Repository

For EL7 or EL8-based platforms and Fedora, you can install Connector/Python using the MySQL Yum
repository (see Installing Additional MySQL Products and Components with Yum). You must have
the MySQL Yum repository on your system's repository list (for details, see Adding the MySQL Yum
Repository). To make sure that your Yum repository is up-to-date, use this command:

$> sudo yum update mysql-community-release

Prerequisites

• On EL7, EL8, and SUSE: A python3-protobuf RPM package is not available for Python 3.8 on
these platforms, so the dependency is not part of the RPM specification; instead it must be manually
installed with the likes of pip install protobuf. This is required as of v8.0.29.

• Although optional, the mysql-community-client-plugins package is required to use newer
authentication methods, such as caching_sha2_password that's the default authentication
method as of MySQL 8.0.

$> sudo yum install mysql-community-client-plugins

Then install Connector/Python as follows:

$> sudo yum install mysql-connector-python

Installing Connector/Python on Linux Using an RPM Package

Connector/Python Linux RPM packages (.rpm files) are available from the Connector/Python
download site (see Section 6.4.1, “Obtaining Connector/Python”).

To install a Connector/Python RPM package (denoted here as PACKAGE.rpm), use this command:

$> rpm -i PACKAGE.rpm

Prerequisites

• On EL7, EL8, and SUSE: A python3-protobuf RPM package is not available for Python 3.8 on
these platforms, so the dependency is not part of the RPM specification; instead it must be manually
installed with the likes of pip install protobuf. This is required as of v8.0.29.

• Although optional, the mysql-community-client-plugins package is required to use newer
authentication methods, such as caching_sha2_password that's the default authentication
method as of MySQL 8.0.

Note

Prior to Connector/Python 8.0.22, the C extension implementation was a
separate RPM package that contained “cext” in the name.

RPM provides a feature to verify the integrity and authenticity of packages before installing them. To
learn more, see Verifying Package Integrity Using MD5 Checksums or GnuPG.

Installing Connector/Python on Linux Using a Debian Package

Connector/Python Debian packages (.deb files) are available for Debian or Debian-like Linux systems
from the Connector/Python download site (see Section 6.4.1, “Obtaining Connector/Python”).

411

https://dev.mysql.com/doc/refman/8.0/en/linux-installation-yum-repo.html#yum-install-components
https://dev.mysql.com/doc/refman/8.0/en/linux-installation-yum-repo.html#yum-repo-setup
https://dev.mysql.com/doc/refman/8.0/en/linux-installation-yum-repo.html#yum-repo-setup
https://dev.mysql.com/doc/refman/8.0/en/verifying-package-integrity.html

Installing Connector/Python from a Source Distribution

Prerequisite. Although optional, the mysql-community-client-plugins package is required
to use newer authentication methods, such as caching_sha2_password that's the default
authentication method as of MySQL 8.0.

To install a Connector/Python Debian package (denoted here as PACKAGE.deb), use this command:

$> dpkg -i PACKAGE.deb

Note

Prior to Connector/Python 8.0.22, the C extension implementation was a
separate DEB package that contained “cext” in the name.

Installing Connector/Python on macOS

Use pip; installing Python on macOS also makes pip available.

Note

DMG installer packages were available before Connector/Python 8.1.0.

6.4.3 Installing Connector/Python from a Source Distribution

Connector/Python source distributions are platform independent and can be used on any platform.
Source distributions are packaged in two formats:

• Zip archive format (.zip file)

• Compressed tar archive format (.tar.gz file)

Either packaging format can be used on any platform, but Zip archives are more commonly used on
Windows systems and tar archives on Unix and Unix-like systems.

Prerequisites for Compiling Connector/Python with the C Extension

As of Connector/Python 2.1.1, source distributions include the C Extension that interfaces with the
MySQL C client library. You can build the distribution with or without support for this extension. To build
Connector/Python with support for the C Extension, you must satisfy the following prerequisites.

Note

Python 2.7 support was removed in Connector/Python 8.0.24, and Python 3.7
support was removed in Connector/Python 8.1.0.

• Linux: A C/C++ compiler, such as gcc

Windows: Current version of Visual Studio

• Protobuf C++ (version >= 4.21.1,<=4.21.12) for the C extension and/or Python's protobuf package for
the pure Python implementation

• Python development files

• MySQL Server installed, including development files to compile the optional C Extension that
interfaces with the MySQL C client library

You must install MySQL Server if it is not already present on your system. To obtain it, visit the MySQL
download site.

For certain platforms, MySQL development files are provided in separate packages. This is true for
RPM and Debian packages, for example.

412

https://dev.mysql.com/downloads/
https://dev.mysql.com/downloads/

Verifying Your Connector/Python Installation

Installing Connector/Python from Source on Microsoft Windows

A Connector/Python Zip archive (.zip file) is available from the Connector/Python download site (see
Section 6.4.1, “Obtaining Connector/Python”).

To install Connector/Python from a Zip archive, download the latest version and follow these steps:

1. Unpack the Zip archive in the intended installation directory (for example, C:\mysql-connector
\) using WinZip or another tool that can read .zip files.

2. Start a console window and change location to the folder where you unpacked the Zip archive:

$> cd C:\mysql-connector\

3. Inside the Connector/Python folder, perform the installation using this command:

$> python setup.py install

To include the C Extension (available as of Connector/Python 2.1.1), use this command instead:

$> python setup.py install --with-mysql-capi="path_name"

The argument to --with-mysql-capi is the path to the installation directory of MySQL Server.

To see all options and commands supported by setup.py, use this command:

$> python setup.py --help

Installing Connector/Python from Source on Unix and Unix-Like Systems

For Unix and Unix-like systems such as Linux, Solaris, macOS, and FreeBSD, a Connector/Python
tar archive (.tar.gz file) is available from the Connector/Python download site (see Section 6.4.1,
“Obtaining Connector/Python”).

To install Connector/Python from a tar archive, download the latest version (denoted here as VER),
and execute these commands:

$> tar xzf mysql-connector-python-VER.tar.gz
$> cd mysql-connector-python-VER
$> sudo python setup.py install \
--with-protobuf-include-dir=/dir/to/protobuf/include \
--with-protobuf-lib-dir=/dir/to/protobuf/lib \
--with-protoc=/path/to/protoc/binary

To include the C Extension (available as of Connector/Python 2.1.1) that interfaces with the MySQL C
client library, also add the --with-mysql-capi such as:

$> sudo python setup.py install \
 --with-protobuf-include-dir=/dir/to/protobuf/include \
 --with-protobuf-lib-dir=/dir/to/protobuf/lib \
 --with-protoc=/path/to/protoc/binary \
 --with-mysql-capi="path_name

The argument to --with-mysql-capi is the path to the installation directory of MySQL Server, or the
path to the mysql_config command.

To see all options and commands supported by setup.py, use this command:

$> python setup.py --help

6.4.4 Verifying Your Connector/Python Installation

On Windows, the default Connector/Python installation location is C:\PythonX.Y\Lib\site-
packages\, where X.Y is the Python version you used to install the connector.

413

Connector/Python Coding Examples

On Unix-like systems, the default Connector/Python installation location is /prefix/pythonX.Y/
site-packages/, where prefix is the location where Python is installed and X.Y is the Python
version. See How installation works in the Python manual.

The C Extension is installed as _mysql_connector.so in the site-packages directory, not in the
mysql/connector directory.

Depending on your platform, the installation path might differ from the default. If you are not sure
where Connector/Python is installed, do the following to determine its location. The output here shows
installation locations as might be seen on macOS:

$> python
>>> from distutils.sysconfig import get_python_lib
>>> print get_python_lib() # Python v2.x
/Library/Python/2.7/site-packages
>>> print(get_python_lib()) # Python v3.x
/Library/Frameworks/Python.framework/Versions/3.1/lib/python3.1/site-packages

To test that your Connector/Python installation is working and able to connect to MySQL Server, you
can run a very simple program where you supply the login credentials and host information required for
the connection. For an example, see Section 6.5.1, “Connecting to MySQL Using Connector/Python”.

6.5 Connector/Python Coding Examples

These coding examples illustrate how to develop Python applications and scripts which connect to
MySQL Server using MySQL Connector/Python.

6.5.1 Connecting to MySQL Using Connector/Python

The connect() constructor creates a connection to the MySQL server and returns a
MySQLConnection object.

The following example shows how to connect to the MySQL server:

import mysql.connector
cnx = mysql.connector.connect(user='scott', password='password',
 host='127.0.0.1',
 database='employees')
cnx.close()

Section 6.7.1, “Connector/Python Connection Arguments” describes the permitted connection
arguments.

It is also possible to create connection objects using the connection.MySQLConnection() class:

from mysql.connector import (connection)
cnx = connection.MySQLConnection(user='scott', password='password',
 host='127.0.0.1',
 database='employees')
cnx.close()

Both forms (either using the connect() constructor or the class directly) are valid and functionally
equal, but using connect() is preferred and used by most examples in this manual.

To handle connection errors, use the try statement and catch all errors using the errors.Error
exception:

import mysql.connector
from mysql.connector import errorcode
try:
 cnx = mysql.connector.connect(user='scott',
 database='employ')
except mysql.connector.Error as err:
 if err.errno == errorcode.ER_ACCESS_DENIED_ERROR:

414

http://docs.python.org/install/index.html#how-installation-works

Connecting to MySQL Using Connector/Python

 print("Something is wrong with your user name or password")
 elif err.errno == errorcode.ER_BAD_DB_ERROR:
 print("Database does not exist")
 else:
 print(err)
else:
 cnx.close()

Defining connection arguments in a dictionary and using the ** operator is another option:

import mysql.connector
config = {
 'user': 'scott',
 'password': 'password',
 'host': '127.0.0.1',
 'database': 'employees',
 'raise_on_warnings': True
}
cnx = mysql.connector.connect(**config)
cnx.close()

Defining Logger options, a reconnection routine, and defined as a connection method named
connect_to_mysql:

[
import logging
import time
import mysql.connector
Set up logger
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
formatter = logging.Formatter("%(asctime)s - %(name)s - %(levelname)s - %(message)s")
Log to console
handler = logging.StreamHandler()
handler.setFormatter(formatter)
logger.addHandler(handler)
Also log to a file
file_handler = logging.FileHandler("cpy-errors.log")
file_handler.setFormatter(formatter)
logger.addHandler(file_handler)
def connect_to_mysql(config, attempts=3, delay=2):
 attempt = 1
 # Implement a reconnection routine
 while attempt < attempts + 1:
 try:
 return mysql.connector.connect(**config)
 except (mysql.connector.Error, IOError) as err:
 if (attempts is attempt):
 # Attempts to reconnect failed; returning None
 logger.info("Failed to connect, exiting without a connection: %s", err)
 return None
 logger.info(
 "Connection failed: %s. Retrying (%d/%d)...",
 err,
 attempt,
 attempts-1,
)
 # progressive reconnect delay
 time.sleep(delay ** attempt)
 attempt += 1
 return None

Connecting and using the Sakila database using the above routine, assuming it's defined in a file
named myconnection.py:

[
from myconnection import connect_to_mysql
config = {
 "host": "127.0.0.1",
 "user": "user",

415

Creating Tables Using Connector/Python

 "password": "pass",
 "database": "sakila",
}
cnx = connect_to_mysql(config, attempts=3)
if cnx and cnx.is_connected():
 with cnx.cursor() as cursor:
 result = cursor.execute("SELECT * FROM actor LIMIT 5")
 rows = cursor.fetchall()
 for rows in rows:
 print(rows)
 cnx.close()
else:
 print("Could not connect")

Using the Connector/Python Python or C Extension

Connector/Python offers two implementations: a pure Python interface and a C extension that uses the
MySQL C client library (see The Connector/Python C Extension). This can be configured at runtime
using the use_pure connection argument. It defaults to False as of MySQL 8, meaning the C
extension is used. If the C extension is not available on the system then use_pure defaults to True.
Setting use_pure=False causes the connection to use the C Extension if your Connector/Python
installation includes it, while use_pure=True to False means the Python implementation is used if
available.

Note

The use_pure option and C extension were added in Connector/Python 2.1.1.

The following example shows how to set use_pure to False.

import mysql.connector
cnx = mysql.connector.connect(user='scott', password='password',
 host='127.0.0.1',
 database='employees',
 use_pure=False)
cnx.close()

It is also possible to use the C Extension directly by importing the _mysql_connector module rather
than the mysql.connector module. For more information, see The _mysql_connector C Extension
Module.

6.5.2 Creating Tables Using Connector/Python

All DDL (Data Definition Language) statements are executed using a handle structure known as a
cursor. The following examples show how to create the tables of the Employee Sample Database. You
need them for the other examples.

In a MySQL server, tables are very long-lived objects, and are often accessed by multiple applications
written in different languages. You might typically work with tables that are already set up, rather
than creating them within your own application. Avoid setting up and dropping tables over and over
again, as that is an expensive operation. The exception is temporary tables, which can be created and
dropped quickly within an application.

from __future__ import print_function
import mysql.connector
from mysql.connector import errorcode
DB_NAME = 'employees'
TABLES = {}
TABLES['employees'] = (
 "CREATE TABLE `employees` ("
 " `emp_no` int(11) NOT NULL AUTO_INCREMENT,"
 " `birth_date` date NOT NULL,"
 " `first_name` varchar(14) NOT NULL,"
 " `last_name` varchar(16) NOT NULL,"
 " `gender` enum('M','F') NOT NULL,"

416

https://dev.mysql.com/doc/connector-python/en/connector-python-cext.html
https://dev.mysql.com/doc/connector-python/en/connector-python-cext-module.html
https://dev.mysql.com/doc/connector-python/en/connector-python-cext-module.html
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_ddl
http://dev.mysql.com/doc/employee/en/index.html
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_temporary_table

Creating Tables Using Connector/Python

 " `hire_date` date NOT NULL,"
 " PRIMARY KEY (`emp_no`)"
 ") ENGINE=InnoDB")
TABLES['departments'] = (
 "CREATE TABLE `departments` ("
 " `dept_no` char(4) NOT NULL,"
 " `dept_name` varchar(40) NOT NULL,"
 " PRIMARY KEY (`dept_no`), UNIQUE KEY `dept_name` (`dept_name`)"
 ") ENGINE=InnoDB")
TABLES['salaries'] = (
 "CREATE TABLE `salaries` ("
 " `emp_no` int(11) NOT NULL,"
 " `salary` int(11) NOT NULL,"
 " `from_date` date NOT NULL,"
 " `to_date` date NOT NULL,"
 " PRIMARY KEY (`emp_no`,`from_date`), KEY `emp_no` (`emp_no`),"
 " CONSTRAINT `salaries_ibfk_1` FOREIGN KEY (`emp_no`) "
 " REFERENCES `employees` (`emp_no`) ON DELETE CASCADE"
 ") ENGINE=InnoDB")
TABLES['dept_emp'] = (
 "CREATE TABLE `dept_emp` ("
 " `emp_no` int(11) NOT NULL,"
 " `dept_no` char(4) NOT NULL,"
 " `from_date` date NOT NULL,"
 " `to_date` date NOT NULL,"
 " PRIMARY KEY (`emp_no`,`dept_no`), KEY `emp_no` (`emp_no`),"
 " KEY `dept_no` (`dept_no`),"
 " CONSTRAINT `dept_emp_ibfk_1` FOREIGN KEY (`emp_no`) "
 " REFERENCES `employees` (`emp_no`) ON DELETE CASCADE,"
 " CONSTRAINT `dept_emp_ibfk_2` FOREIGN KEY (`dept_no`) "
 " REFERENCES `departments` (`dept_no`) ON DELETE CASCADE"
 ") ENGINE=InnoDB")
TABLES['dept_manager'] = (
 " CREATE TABLE `dept_manager` ("
 " `emp_no` int(11) NOT NULL,"
 " `dept_no` char(4) NOT NULL,"
 " `from_date` date NOT NULL,"
 " `to_date` date NOT NULL,"
 " PRIMARY KEY (`emp_no`,`dept_no`),"
 " KEY `emp_no` (`emp_no`),"
 " KEY `dept_no` (`dept_no`),"
 " CONSTRAINT `dept_manager_ibfk_1` FOREIGN KEY (`emp_no`) "
 " REFERENCES `employees` (`emp_no`) ON DELETE CASCADE,"
 " CONSTRAINT `dept_manager_ibfk_2` FOREIGN KEY (`dept_no`) "
 " REFERENCES `departments` (`dept_no`) ON DELETE CASCADE"
 ") ENGINE=InnoDB")
TABLES['titles'] = (
 "CREATE TABLE `titles` ("
 " `emp_no` int(11) NOT NULL,"
 " `title` varchar(50) NOT NULL,"
 " `from_date` date NOT NULL,"
 " `to_date` date DEFAULT NULL,"
 " PRIMARY KEY (`emp_no`,`title`,`from_date`), KEY `emp_no` (`emp_no`),"
 " CONSTRAINT `titles_ibfk_1` FOREIGN KEY (`emp_no`)"
 " REFERENCES `employees` (`emp_no`) ON DELETE CASCADE"
 ") ENGINE=InnoDB")

The preceding code shows how we are storing the CREATE statements in a Python dictionary called
TABLES. We also define the database in a global variable called DB_NAME, which enables you to easily
use a different schema.

cnx = mysql.connector.connect(user='scott')
cursor = cnx.cursor()

A single MySQL server can manage multiple databases. Typically, you specify the database to switch
to when connecting to the MySQL server. This example does not connect to the database upon
connection, so that it can make sure the database exists, and create it if not:

def create_database(cursor):
 try:
 cursor.execute(

417

https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_database

Creating Tables Using Connector/Python

 "CREATE DATABASE {} DEFAULT CHARACTER SET 'utf8'".format(DB_NAME))
 except mysql.connector.Error as err:
 print("Failed creating database: {}".format(err))
 exit(1)
try:
 cursor.execute("USE {}".format(DB_NAME))
except mysql.connector.Error as err:
 print("Database {} does not exists.".format(DB_NAME))
 if err.errno == errorcode.ER_BAD_DB_ERROR:
 create_database(cursor)
 print("Database {} created successfully.".format(DB_NAME))
 cnx.database = DB_NAME
 else:
 print(err)
 exit(1)

We first try to change to a particular database using the database property of the connection object
cnx. If there is an error, we examine the error number to check if the database does not exist. If so, we
call the create_database function to create it for us.

On any other error, the application exits and displays the error message.

After we successfully create or change to the target database, we create the tables by iterating over the
items of the TABLES dictionary:

for table_name in TABLES:
 table_description = TABLES[table_name]
 try:
 print("Creating table {}: ".format(table_name), end='')
 cursor.execute(table_description)
 except mysql.connector.Error as err:
 if err.errno == errorcode.ER_TABLE_EXISTS_ERROR:
 print("already exists.")
 else:
 print(err.msg)
 else:
 print("OK")
cursor.close()
cnx.close()

To handle the error when the table already exists, we notify the user that it was already there. Other
errors are printed, but we continue creating tables. (The example shows how to handle the “table
already exists” condition for illustration purposes. In a real application, we would typically avoid the
error condition entirely by using the IF NOT EXISTS clause of the CREATE TABLE statement.)

The output would be something like this:

Database employees does not exists.
Database employees created successfully.
Creating table employees: OK
Creating table departments: already exists.
Creating table salaries: already exists.
Creating table dept_emp: OK
Creating table dept_manager: OK
Creating table titles: OK

To populate the employees tables, use the dump files of the Employee Sample Database. Note that
you only need the data dump files that you will find in an archive named like employees_db-dump-
files-1.0.5.tar.bz2. After downloading the dump files, execute the following commands, adding
connection options to the mysql commands if necessary:

$> tar xzf employees_db-dump-files-1.0.5.tar.bz2
$> cd employees_db
$> mysql employees < load_employees.dump
$> mysql employees < load_titles.dump
$> mysql employees < load_departments.dump
$> mysql employees < load_salaries.dump
$> mysql employees < load_dept_emp.dump

418

https://dev.mysql.com/doc/refman/8.0/en/create-table.html
http://dev.mysql.com/doc/employee/en/index.html

Inserting Data Using Connector/Python

$> mysql employees < load_dept_manager.dump

6.5.3 Inserting Data Using Connector/Python

Inserting or updating data is also done using the handler structure known as a cursor. When you use a
transactional storage engine such as InnoDB (the default in MySQL 5.5 and higher), you must commit
the data after a sequence of INSERT, DELETE, and UPDATE statements.

This example shows how to insert new data. The second INSERT depends on the value of the newly
created primary key of the first. The example also demonstrates how to use extended formats. The
task is to add a new employee starting to work tomorrow with a salary set to 50000.

Note

The following example uses tables created in the example Section 6.5.2,
“Creating Tables Using Connector/Python”. The AUTO_INCREMENT column
option for the primary key of the employees table is important to ensure
reliable, easily searchable data.

from __future__ import print_function
from datetime import date, datetime, timedelta
import mysql.connector
cnx = mysql.connector.connect(user='scott', database='employees')
cursor = cnx.cursor()
tomorrow = datetime.now().date() + timedelta(days=1)
add_employee = ("INSERT INTO employees "
 "(first_name, last_name, hire_date, gender, birth_date) "
 "VALUES (%s, %s, %s, %s, %s)")
add_salary = ("INSERT INTO salaries "
 "(emp_no, salary, from_date, to_date) "
 "VALUES (%(emp_no)s, %(salary)s, %(from_date)s, %(to_date)s)")
data_employee = ('Geert', 'Vanderkelen', tomorrow, 'M', date(1977, 6, 14))
Insert new employee
cursor.execute(add_employee, data_employee)
emp_no = cursor.lastrowid
Insert salary information
data_salary = {
 'emp_no': emp_no,
 'salary': 50000,
 'from_date': tomorrow,
 'to_date': date(9999, 1, 1),
}
cursor.execute(add_salary, data_salary)
Make sure data is committed to the database
cnx.commit()
cursor.close()
cnx.close()

We first open a connection to the MySQL server and store the connection object in the variable cnx.
We then create a new cursor, by default a MySQLCursor object, using the connection's cursor()
method.

We could calculate tomorrow by calling a database function, but for clarity we do it in Python using the
datetime module.

Both INSERT statements are stored in the variables called add_employee and add_salary. Note
that the second INSERT statement uses extended Python format codes.

The information of the new employee is stored in the tuple data_employee. The query to insert
the new employee is executed and we retrieve the newly inserted value for the emp_no column (an
AUTO_INCREMENT column) using the lastrowid property of the cursor object.

Next, we insert the new salary for the new employee, using the emp_no variable in the dictionary
holding the data. This dictionary is passed to the execute() method of the cursor object if an error
occurred.

419

https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_commit
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/delete.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_primary_key

Querying Data Using Connector/Python

Since by default Connector/Python turns autocommit off, and MySQL 5.5 and higher uses transactional
InnoDB tables by default, it is necessary to commit your changes using the connection's commit()
method. You could also roll back using the rollback() method.

6.5.4 Querying Data Using Connector/Python

The following example shows how to query data using a cursor created using the connection's
cursor() method. The data returned is formatted and printed on the console.

The task is to select all employees hired in the year 1999 and print their names and hire dates to the
console.

import datetime
import mysql.connector
cnx = mysql.connector.connect(user='scott', database='employees')
cursor = cnx.cursor()
query = ("SELECT first_name, last_name, hire_date FROM employees "
 "WHERE hire_date BETWEEN %s AND %s")
hire_start = datetime.date(1999, 1, 1)
hire_end = datetime.date(1999, 12, 31)
cursor.execute(query, (hire_start, hire_end))
for (first_name, last_name, hire_date) in cursor:
 print("{}, {} was hired on {:%d %b %Y}".format(
 last_name, first_name, hire_date))
cursor.close()
cnx.close()

We first open a connection to the MySQL server and store the connection object in the variable cnx.
We then create a new cursor, by default a MySQLCursor object, using the connection's cursor()
method.

In the preceding example, we store the SELECT statement in the variable query. Note that we are
using unquoted %s-markers where dates should have been. Connector/Python converts hire_start
and hire_end from Python types to a data type that MySQL understands and adds the required
quotes. In this case, it replaces the first %s with '1999-01-01', and the second with '1999-12-31'.

We then execute the operation stored in the query variable using the execute() method. The data
used to replace the %s-markers in the query is passed as a tuple: (hire_start, hire_end).

After executing the query, the MySQL server is ready to send the data. The result set could be
zero rows, one row, or 100 million rows. Depending on the expected volume, you can use different
techniques to process this result set. In this example, we use the cursor object as an iterator. The first
column in the row is stored in the variable first_name, the second in last_name, and the third in
hire_date.

We print the result, formatting the output using Python's built-in format() function. Note that
hire_date was converted automatically by Connector/Python to a Python datetime.date object.
This means that we can easily format the date in a more human-readable form.

The output should be something like this:

..
Wilharm, LiMin was hired on 16 Dec 1999
Wielonsky, Lalit was hired on 16 Dec 1999
Kamble, Dannz was hired on 18 Dec 1999
DuBourdieux, Zhongwei was hired on 19 Dec 1999
Fujisawa, Rosita was hired on 20 Dec 1999
..

6.6 Connector/Python Tutorials

These tutorials illustrate how to develop Python applications and scripts that connect to a MySQL
database server using MySQL Connector/Python.

420

https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_autocommit
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_rollback
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_query

Tutorial: Raise Employee's Salary Using a Buffered Cursor

6.6.1 Tutorial: Raise Employee's Salary Using a Buffered Cursor

The following example script gives a long-overdue 15% raise effective tomorrow to all employees who
joined in the year 2000 and are still with the company.

To iterate through the selected employees, we use buffered cursors. (A buffered cursor
fetches and buffers the rows of a result set after executing a query; see Section 6.9.6.1,
“cursor.MySQLCursorBuffered Class”.) This way, it is unnecessary to fetch the rows in a new variables.
Instead, the cursor can be used as an iterator.

Note

This script is an example; there are other ways of doing this simple task.

from __future__ import print_function
from decimal import Decimal
from datetime import datetime, date, timedelta
import mysql.connector
Connect with the MySQL Server
cnx = mysql.connector.connect(user='scott', database='employees')
Get two buffered cursors
curA = cnx.cursor(buffered=True)
curB = cnx.cursor(buffered=True)
Query to get employees who joined in a period defined by two dates
query = (
 "SELECT s.emp_no, salary, from_date, to_date FROM employees AS e "
 "LEFT JOIN salaries AS s USING (emp_no) "
 "WHERE to_date = DATE('9999-01-01')"
 "AND e.hire_date BETWEEN DATE(%s) AND DATE(%s)")
UPDATE and INSERT statements for the old and new salary
update_old_salary = (
 "UPDATE salaries SET to_date = %s "
 "WHERE emp_no = %s AND from_date = %s")
insert_new_salary = (
 "INSERT INTO salaries (emp_no, from_date, to_date, salary) "
 "VALUES (%s, %s, %s, %s)")
Select the employees getting a raise
curA.execute(query, (date(2000, 1, 1), date(2000, 12, 31)))
Iterate through the result of curA
for (emp_no, salary, from_date, to_date) in curA:
 # Update the old and insert the new salary
 new_salary = int(round(salary * Decimal('1.15')))
 curB.execute(update_old_salary, (tomorrow, emp_no, from_date))
 curB.execute(insert_new_salary,
 (emp_no, tomorrow, date(9999, 1, 1,), new_salary))
 # Commit the changes
 cnx.commit()
cnx.close()

6.7 Connector/Python Connection Establishment
Connector/Python provides a connect() call used to establish connections to the MySQL server. The
following sections describe the permitted arguments for connect() and describe how to use option
files that supply additional arguments.

6.7.1 Connector/Python Connection Arguments

A connection with the MySQL server can be established using either the
mysql.connector.connect() function or the mysql.connector.MySQLConnection() class:

cnx = mysql.connector.connect(user='joe', database='test')
cnx = MySQLConnection(user='joe', database='test')

The following table describes the arguments that can be used to initiate a connection. An asterisk (*)
following an argument indicates a synonymous argument name, available only for compatibility with
other Python MySQL drivers. Oracle recommends not to use these alternative names.

421

Connector/Python Connection Arguments

Table 6.2 Connection Arguments for Connector/Python

Argument Name Default Description

user (username*) The user name used to authenticate with the MySQL
server.

password (passwd*) The password to authenticate the user with the MySQL
server.

password1, password2,
and password3

For Multi-Factor Authentication (MFA); password1 is
an alias for password. Added in 8.0.28.

database (db*) The database name to use when connecting with the
MySQL server.

host 127.0.0.1 The host name or IP address of the MySQL server.

unix_socket The location of the Unix socket file.

port 3306 The TCP/IP port of the MySQL server. Must be an
integer.

conn_attrs Standard
performance_schema.session_connect_attrs
values are sent; use conn_attrs to optionally set
additional custom connection attributes as defined by a
dictionary such as config['conn_attrs'] = {"foo": "bar"}.

The c-ext and pure python implementations differ.
The c-ext implementation depends on the mysqlclient
library so its standard conn_attrs values originate from
it. For example, '_client_name' is 'libmysql' with c-ext
but 'mysql-connector-python' with pure python. C-ext
adds these additional attributes: '_connector_version',
'_connector_license', '_connector_name', and
'_source_host'.

This option was added in 8.0.17, as was the default
session_connect_attrs behavior.

init_command Command (SQL query) executed immediately after the
connection is established as part of the initialization
process. Added in 8.0.32.

auth_plugin Authentication plugin to use. Added in 1.2.1.

fido_callback Deprecated as of 8.2.0 and removed in 8.4.0; instead
use webauthn_callback.

An callable defined by the optional fido_callback
option is executed when it's ready for user interaction
with the hardware FIDO device. This option can be a
callable object or a string path that the connector can
import in runtime and execute. It does not block and is
only used to notify the user of the need for interaction
with the hardware FIDO device.

This functionality was only available in the C extension.
A NotSupportedError was raised when using the pure
Python implementation.

webauthn_callback An callable defined by the optional
webauthn_callback option is executed when
it's ready for user interaction with the hardware
WebAuthn device. This option can be a callable

422

Connector/Python Connection Arguments

Argument Name Default Description
object or a string path that the connector can
import in runtime and execute. It does not block
and is only used to notify the user of the need for
interaction with the hardware FIDO device. Enable the
authentication_webauthn_client auth_plugin in
the connection configuration to use.

This option was added in 8.2.0, and it deprecated the
fido_callback option that was removed in version
8.4.0.

use_unicode True Whether to use Unicode.

charset utf8mb4 Which MySQL character set to use.

collation utf8mb4_general_ai_ci
(is
utf8_general_ci
in 2.x

Which MySQL collation to use. The 8.x default values
are generated from the latest MySQL Server 8.0
defaults.

autocommit False Whether to autocommit transactions.

time_zone Set the time_zone session variable at connection
time.

sql_mode Set the sql_mode session variable at connection time.

get_warnings False Whether to fetch warnings.

raise_on_warnings False Whether to raise an exception on warnings.

connection_timeout
(connect_timeout*)

Timeout for the TCP and Unix socket connections.

client_flags MySQL client flags.

buffered False Whether cursor objects fetch the results immediately
after executing queries.

raw False Whether MySQL results are returned as is, rather than
converted to Python types.

consume_results False Whether to automatically read result sets.

tls_versions ["TLSv1.2",
"TLSv1.3"]

TLS versions to support; allowed versions are TLSv1.2
and TLSv1.3. Versions TLSv1 and TLSv1.1 were
removed in Connector/Python 8.0.28.

ssl_ca File containing the SSL certificate authority.

ssl_cert File containing the SSL certificate file.

ssl_disabled False True disables SSL/TLS usage. The TLSv1 and
TLSv1.1 connection protocols are deprecated as
of Connector/Python 8.0.26 and removed as of
Connector/Python 8.0.28.

ssl_key File containing the SSL key.

ssl_verify_cert False When set to True, checks the server certificate against
the certificate file specified by the ssl_ca option. Any
mismatch causes a ValueError exception.

ssl_verify_identity False When set to True, additionally perform host name
identity verification by checking the host name that
the client uses for connecting to the server against the
identity in the certificate that the server sends to the
client. Option added in Connector/Python 8.0.14.

423

https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_autocommit

Connector/Python Connection Arguments

Argument Name Default Description

force_ipv6 False When set to True, uses IPv6 when an address
resolves to both IPv4 and IPv6. By default, IPv4 is used
in such cases.

kerberos_auth_mode SSPI Windows-only, for choosing between
SSPI and GSSAPI at runtime for the
authentication_kerberos_client authentication
plugin on Windows. Option added in Connector/Python
8.0.32.

oci_config_file "" Optionally define a specific path to the
authentication_oci server-side authentication
configuration file. The profile name can be configured
with oci_config_profile.

The default file path on Linux and macOS is ~/.oci/
config, and %HOMEDRIVE%%HOMEPATH%\.oci
\config on Windows.

oci_config_profile "DEFAULT" Used to specify a profile to use from the OCI
configuration file that contains the generated ephemeral
key pair and security token. The OCI configuration file
location can be defined by oci_config_file. Option
oci_config_profile was added in Connector/
Python 8.0.33.

dsn Not supported (raises NotSupportedError when
used).

pool_name Connection pool name. The pool name is restricted to
alphanumeric characters and the special characters .,
_, *, $, and #. The pool name must be no more than
pooling.CNX_POOL_MAXNAMESIZE characters long
(default 64).

pool_size 5 Connection pool size. The pool size must
be greater than 0 and less than or equal to
pooling.CNX_POOL_MAXSIZE (default 32).

pool_reset_session True Whether to reset session variables when connection is
returned to pool.

compress False Whether to use compressed client/server protocol.

converter_class Converter class to use.

converter_str_fallback False Enable the conversion to str of value types not
supported by the Connector/Python converter class or
by a custom converter class.

failover Server failover sequence.

option_files Which option files to read. Added in 2.0.0.

option_groups ['client',
'connector_python']

Which groups to read from option files. Added in 2.0.0.

allow_local_infile True Whether to enable LOAD DATA LOCAL INFILE.
Added in 2.0.0.

use_pure False as
of 8.0.11,
and True
in earlier
versions.
If only one

Whether to use pure Python or C Extension. If
use_pure=False and the C Extension is not
available, then Connector/Python will automatically
fall back to the pure Python implementation. Can
be set with mysql.connector.connect() but not
MySQLConnection.connect(). Added in 2.1.1.

424

https://dev.mysql.com/doc/refman/8.0/en/load-data.html

Connector/Python Connection Arguments

Argument Name Default Description
implementation
(C or Python)
is available,
then then
the default
value is set
to enable
the available
implementation.

krb_service_principal The "@realm"
defaults to the
default realm,
as configured
in the
krb5.conf
file.

Must be a string in the form "primary/instance@realm"
such as "ldap/ldapauth@MYSQL.COM" where
"@realm" is optional. Added in 8.0.23.

MySQL Authentication Options

Authentication with MySQL typically uses a username and password.

When the database argument is given, the current database is set to the given value. To change
the current database later, execute a USE SQL statement or set the database property of the
MySQLConnection instance.

By default, Connector/Python tries to connect to a MySQL server running on the local host using TCP/
IP. The host argument defaults to IP address 127.0.0.1 and port to 3306. Unix sockets are supported
by setting unix_socket. Named pipes on the Windows platform are not supported.

Connector/Python supports authentication plugins available as of MySQL 5.6. This includes
mysql_clear_password and sha256_password, both of which require an SSL connection. The
sha256_password plugin does not work over a non-SSL connection because Connector/Python does
not support RSA encryption.

The connect() method supports an auth_plugin argument that can be used to force use of a
particular plugin. For example, if the server is configured to use sha256_password by default and you
want to connect to an account that authenticates using mysql_native_password, either connect
using SSL or specify auth_plugin='mysql_native_password'.

Note

MySQL Connector/Python does not support the old, less-secure password
protocols of MySQL versions prior to 4.1.

Connector/Python supports the Kerberos authentication protocol for passwordless authentication.
Linux clients are supported as of Connector/Python 8.0.26, and Windows support was added in
Connector/Python 8.0.27 with the C extension implementation, and in Connector/Python 8.0.29 with
the pure Python implementation. For Windows, the related kerberos_auth_mode connection option
was added in 8.0.32 to configure the mode as either SSPI (default) or GSSAPI (via the pure Python
implementation, or the C extension implementation as of 8.4.0). While Windows supports both modes,
Linux only supports GSSAPI.

The following example assumes LDAP Pluggable Authentication is set up to utilize GSSAPI/Kerberos
SASL authentication:

import mysql.connector as cpy
import logging
logging.basicConfig(level=logging.DEBUG)
SERVICE_NAME = "ldap"
LDAP_SERVER_IP = "server_ip or hostname" # e.g., winexample01

425

https://dev.mysql.com/doc/refman/8.0/en/kerberos-pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.0/en/ldap-pluggable-authentication.html

Connector/Python Connection Arguments

config = {
 "host": "127.0.0.1",
 "port": 3306,
 "user": "myuser@example.com",
 "password": "s3cret",
 "use_pure": True,
 "krb_service_principal": f"{SERVICE_NAME}/{LDAP_SERVER_IP}"
}
with cpy.connect(**config) as cnx:
 with cnx.cursor() as cur:
 cur.execute("SELECT @@version")
 res = cur.fetchone()
 print(res[0])

Connector/Python supports Multi-Factor Authentication (MFA) as of v8.0.28 by utilizing the password1
(alias of password), password2, and password3 connection options.

Connector/Python supports WebAuthn Pluggable Authentication as of Connector/Python 8.2.0, which
is supported in MySQL Enterprise Edition. Optionally use the Connector/Python webauthn_callback
connection option to notify users that they need to touch the hardware device. This functionality is
present in the C implementation (which uses libmysqlclient) but the pure Python implementation
requires the FIDO2 dependency that is not provided with the MySQL connector and is assumed to
already be present in your environment. It can be independently installed using:

$> pip install fido2

Previously, the now removed (as of version 8.4.0) authentication_fido MySQL Server plugin was
supported using the fido_callback option that was available in the C extension implementation.

Character Encoding

By default, strings coming from MySQL are returned as Python Unicode literals. To change this
behavior, set use_unicode to False. You can change the character setting for the client connection
through the charset argument. To change the character set after connecting to MySQL, set the
charset property of the MySQLConnection instance. This technique is preferred over using the SET
NAMES SQL statement directly. Similar to the charset property, you can set the collation for the
current MySQL session.

Transactions

The autocommit value defaults to False, so transactions are not automatically committed. Call
the commit() method of the MySQLConnection instance within your application after doing a set
of related insert, update, and delete operations. For data consistency and high throughput for write
operations, it is best to leave the autocommit configuration option turned off when using InnoDB or
other transactional tables.

Time Zones

The time zone can be set per connection using the time_zone argument. This is useful, for example,
if the MySQL server is set to UTC and TIMESTAMP values should be returned by MySQL converted to
the PST time zone.

SQL Modes

MySQL supports so-called SQL Modes. which change the behavior of the server globally or per
connection. For example, to have warnings raised as errors, set sql_mode to TRADITIONAL. For
more information, see Server SQL Modes.

Troubleshooting and Error Handling

Warnings generated by queries are fetched automatically when get_warnings is set to True. You
can also immediately raise an exception by setting raise_on_warnings to True. Consider using the
MySQL sql_mode setting for turning warnings into errors.

426

https://dev.mysql.com/doc/refman/8.2/en/webauthn-pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.0/en/sql-mode.html
https://dev.mysql.com/doc/refman/8.0/en/sql-mode.html

Connector/Python Connection Arguments

To set a timeout value for connections, use connection_timeout.

Enabling and Disabling Features Using Client Flags

MySQL uses client flags to enable or disable features. Using the client_flags argument, you have
control of what is set. To find out what flags are available, use the following:

from mysql.connector.constants import ClientFlag
print '\n'.join(ClientFlag.get_full_info())

If client_flags is not specified (that is, it is zero), defaults are used for MySQL 4.1 and higher. If
you specify an integer greater than 0, make sure all flags are set properly. A better way to set and
unset flags individually is to use a list. For example, to set FOUND_ROWS, but disable the default
LONG_FLAG:

flags = [ClientFlag.FOUND_ROWS, -ClientFlag.LONG_FLAG]
mysql.connector.connect(client_flags=flags)

Result Set Handling

By default, MySQL Connector/Python does not buffer or prefetch results. This means that after a query
is executed, your program is responsible for fetching the data. This avoids excessive memory use
when queries return large result sets. If you know that the result set is small enough to handle all at
once, you can fetch the results immediately by setting buffered to True. It is also possible to set this
per cursor (see Section 6.9.2.6, “MySQLConnection.cursor() Method”).

Results generated by queries normally are not read until the client program fetches them. To
automatically consume and discard result sets, set the consume_results option to True. The result
is that all results are read, which for large result sets can be slow. (In this case, it might be preferable to
close and reopen the connection.)

Type Conversions

By default, MySQL types in result sets are converted automatically to Python types. For example, a
DATETIME column value becomes a datetime.datetime object. To disable conversion, set the raw
option to True. You might do this to get better performance or perform different types of conversion
yourself.

Connecting through SSL

Using SSL connections is possible when your Python installation supports SSL, that is, when
it is compiled against the OpenSSL libraries. When you provide the ssl_ca, ssl_key and
ssl_cert options, the connection switches to SSL, and the client_flags option includes the
ClientFlag.SSL value automatically. You can use this in combination with the compressed option
set to True.

As of Connector/Python 2.2.2, if the MySQL server supports SSL connections, Connector/Python
attempts to establish a secure (encrypted) connection by default, falling back to an unencrypted
connection otherwise.

From Connector/Python 1.2.1 through Connector/Python 2.2.1, it is possible to establish an SSL
connection using only the ssl_ca opion. The ssl_key and ssl_cert arguments are optional.
However, when either is given, both must be given or an AttributeError is raised.

Note (Example is valid for Python v2 and v3)
from __future__ import print_function
import sys
#sys.path.insert(0, 'python{0}/'.format(sys.version_info[0]))
import mysql.connector
from mysql.connector.constants import ClientFlag
config = {
 'user': 'ssluser',

427

https://dev.mysql.com/doc/c-api/8.2/en/mysql-real-connect.html
http://docs.python.org/library/datetime.html#datetime.datetime
http://docs.python.org/library/ssl.html

Connector/Python Connection Arguments

 'password': 'password',
 'host': '127.0.0.1',
 'client_flags': [ClientFlag.SSL],
 'ssl_ca': '/opt/mysql/ssl/ca.pem',
 'ssl_cert': '/opt/mysql/ssl/client-cert.pem',
 'ssl_key': '/opt/mysql/ssl/client-key.pem',
}
cnx = mysql.connector.connect(**config)
cur = cnx.cursor(buffered=True)
cur.execute("SHOW STATUS LIKE 'Ssl_cipher'")
print(cur.fetchone())
cur.close()
cnx.close()

Connection Pooling

With either the pool_name or pool_size argument present, Connector/Python creates the new
pool. If the pool_name argument is not given, the connect() call automatically generates the name,
composed from whichever of the host, port, user, and database connection arguments are given,
in that order. If the pool_size argument is not given, the default size is 5 connections.

The pool_reset_session permits control over whether session variables are reset when the
connection is returned to the pool. The default is to reset them.

For additional information about connection pooling, see Section 6.8.4, “Connector/Python Connection
Pooling”.

Protocol Compression

The boolean compress argument indicates whether to use the compressed client/server protocol
(default False). This provides an easier alternative to setting the ClientFlag.COMPRESS flag. This
argument is available as of Connector/Python 1.1.2.

Converter Class

The converter_class argument takes a class and sets it when configuring the
connection. An AttributeError is raised if the custom converter class is not a subclass of
conversion.MySQLConverterBase.

Server Failover

The connect() method accepts a failover argument that provides information to use for server
failover in the event of connection failures. The argument value is a tuple or list of dictionaries (tuple
is preferred because it is nonmutable). Each dictionary contains connection arguments for a given
server in the failover sequence. Permitted dictionary values are: user, password, host, port,
unix_socket, database, pool_name, pool_size. This failover option was added in Connector/
Python 1.2.1.

Option File Support

As of Connector/Python 2.0.0, option files are supported using two options for connect():

• option_files: Which option files to read. The value can be a file path name (a string) or a
sequence of path name strings. By default, Connector/Python reads no option files, so this argument
must be given explicitly to cause option files to be read. Files are read in the order specified.

• option_groups: Which groups to read from option files, if option files are read. The value can
be an option group name (a string) or a sequence of group name strings. If this argument is not
given, the default value is ['client', 'connector_python'] to read the [client] and
[connector_python] groups.

For more information, see Section 6.7.2, “Connector/Python Option-File Support”.

428

Connector/Python Option-File Support

LOAD DATA LOCAL INFILE

Prior to Connector/Python 2.0.0, to enable use of LOAD DATA LOCAL INFILE, clients had to explicitly
set the ClientFlag.LOCAL_FILES flag. As of 2.0.0, this flag is enabled by default. To disable it, the
allow_local_infile connection option can be set to False at connect time (the default is True).

Compatibitility with Other Connection Interfaces

passwd, db and connect_timeout are valid for compatibility with other MySQL interfaces
and are respectively the same as password, database and connection_timeout. The
latter take precedence. Data source name syntax or dsn is not used; if specified, it raises a
NotSupportedError exception.

Client/Server Protocol Implementation

Connector/Python can use a pure Python interface to MySQL, or a C Extension that uses the MySQL
C client library. The use_pure mysql.connector.connect() connection argument determines which. The
default changed in Connector/Python 8 from True (use the pure Python implementation) to False.
Setting use_pure changes the implementation used.

The use_pure argument is available as of Connector/Python 2.1.1. For more information about the C
extension, see The Connector/Python C Extension.

6.7.2 Connector/Python Option-File Support

As of version 2.0.0, Connector/Python has the capability of reading options from option files. (For
general information about option files in MySQL, see Using Option Files.) Two arguments for the
connect() call control use of option files in Connector/Python programs:

• option_files: Which option files to read. The value can be a file path name (a string) or a
sequence of path name strings. By default, Connector/Python reads no option files, so this argument
must be given explicitly to cause option files to be read. Files are read in the order specified.

• option_groups: Which groups to read from option files, if option files are read. The value can
be an option group name (a string) or a sequence of group name strings. If this argument is not
given, the default value is ['client', 'connector_python'], to read the [client] and
[connector_python] groups.

Connector/Python also supports the !include and !includedir inclusion directives within option
files. These directives work the same way as for other MySQL programs (see Using Option Files).

This example specifies a single option file as a string:

cnx = mysql.connector.connect(option_files='/etc/mysql/connectors.cnf')

This example specifies multiple option files as a sequence of strings:

mysql_option_files = [
 '/etc/mysql/connectors.cnf',
 './development.cnf',
]
cnx = mysql.connector.connect(option_files=mysql_option_files)

Connector/Python reads no option files by default, for backward compatibility with versions older than
2.0.0. This differs from standard MySQL clients such as mysql or mysqldump, which do read option
files by default. To find out which option files the standard clients read on your system, invoke one of
them with its --help option and examine the output. For example:

$> mysql --help
...
Default options are read from the following files in the given order:
/etc/my.cnf /etc/mysql/my.cnf /usr/local/mysql/etc/my.cnf ~/.my.cnf
...

429

https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/connector-python/en/connector-python-cext.html
https://dev.mysql.com/doc/refman/8.0/en/option-files.html
https://dev.mysql.com/doc/refman/8.0/en/option-files.html

Connector/Python Other Topics

If you specify the option_files connection argument to read option files, Connector/Python reads
the [client] and [connector_python] option groups by default. To specify explicitly which
groups to read, use the option_groups connection argument. The following example causes only the
[connector_python] group to be read:

cnx = mysql.connector.connect(option_files='/etc/mysql/connectors.cnf',
 option_groups='connector_python')

Other connection arguments specified in the connect() call take precedence over options read from
option files. Suppose that /etc/mysql/connectors.conf contains these lines:

[client]
database=cpyapp

The following connect() call includes no database connection argument. The resulting connection
uses cpyapp, the database specified in the option file:

cnx = mysql.connector.connect(option_files='/etc/mysql/connectors.cnf')

By contrast, the following connect() call specifies a default database different from the one found in
the option file. The resulting connection uses cpyapp_dev as the default database, not cpyapp:

cnx2 = mysql.connector.connect(option_files='/etc/mysql/connectors.cnf',
 database='cpyapp_dev')

Connector/Python raises a ValueError if an option file cannot be read, or has already been read.
This includes files read by inclusion directives.

For the [connector_python] group, only options supported by Connector/Python are accepted.
Unrecognized options cause a ValueError to be raised.

For other option groups, Connector/Python ignores unrecognized options.

It is not an error for a named option group not to exist.

Connector/Python treats option values in option files as strings and evaluates them using eval(). This
enables specification of option values more complex than simple scalars.

6.8 Connector/Python Other Topics
This section describes additional Connection/Python features:

• Connection pooling: Section 6.8.4, “Connector/Python Connection Pooling”

• Django back end for MySQL: Section 6.8.5, “Connector/Python Django Back End”

6.8.1 Connector/Python Logging

By default, logging functionality follows the default Python logging behavior. If logging functionality is
not configured, only events with a severity level of WARNING and greater are printed to sys.stderr. For
related information, see Python's Configuring Logging for a Library documentation.

Outputting additional levels requires configuration. For example, to output debug events to sys.stderr
set logging.DEBUG and add the logging.StreamHandler handler. Additional handles can also be
added, such as logging.FileHandler. This example sets both:

Classic Protocol Example
import logging
import mysql.connector
logger = logging.getLogger("mysql.connector")
logger.setLevel(logging.DEBUG)
formatter = logging.Formatter("%(asctime)s - %(name)s - %(levelname)s- %(message)s")
stream_handler = logging.StreamHandler()
stream_handler.setFormatter(formatter)
logger.addHandler(stream_handler)

430

https://docs.python.org/3/howto/logging.html#configuring-logging-for-a-library

OpenTelemetry Support

file_handler = logging.FileHandler("cpy.log")
file_handler.setFormatter(formatter)
logger.addHandler(file_handler)
XDevAPI Protocol Example
import logging
import mysqlx
logger = logging.getLogger("mysqlx")
logger.setLevel(logging.DEBUG)
formatter = logging.Formatter("%(asctime)s - %(name)s - %(levelname)s- %(message)s")
stream_handler = logging.StreamHandler()
stream_handler.setFormatter(formatter)
logger.addHandler(stream_handler)
file_handler = logging.FileHandler("cpy.log")
file_handler.setFormatter(formatter)
logger.addHandler(file_handler)

6.8.2 OpenTelemetry Support

MySQL Server added OpenTelemetry support in MySQL Enterprise Edition version 8.1.0, which is a
commercial product. OpenTelemetry tracing support was added in Connector/Python 8.1.0.

Introduction to OpenTelemetry

OpenTelemetry is an observability framework and toolkit designed to create and manage telemetry
data such as traces, metrics, and logs. Visit What is OpenTelemetry? for an explanation of what
OpenTelemetry offers.

Connector/Python only supports tracing, so this guide does not include information about metric and
log signals.

Instrumentation

For instrumenting an application, Connector/Python utilizes the official OpenTelemetry SDK to initialize
OpenTelemetry, and the official OpenTelemetry API to instrument the application's code. This emits
telemetry from the application and from utilized libraries that include instrumentation.

To enable OpenTelemetry support, first install the official OpenTelemetry API and SDK packages:

pip install opentelemetry-api
pip install opentelemetry-sdk

Then, an application can be instrumented as demonstrated by this generic example:

from opentelemetry import trace
from opentelemetry.sdk.trace import TracerProvider
from opentelemetry.sdk.trace.export import BatchSpanProcessor
from opentelemetry.sdk.trace.export import ConsoleSpanExporter
provider = TracerProvider()
processor = BatchSpanProcessor(ConsoleSpanExporter())
provider.add_span_processor(processor)
trace.set_tracer_provider(provider)
tracer = trace.get_tracer(__name__)
with tracer.start_as_current_span("app"):
 my_app()

To better understand and get started using OpenTelemetry tracing for Python, see the official
OpenTelemetry Python Instrumentation guide.

MySQL Connector/Python

Connector/Python includes a MySQL instrumentor to instrument MySQL connections. This
instrumentor provides an API and usage similar to OpenTelemetry's own MySQL package named
opentelemetry-instrumentation-mysql.

An exception is raised if a system does not support OpenTelemetry when attempting to use the
instrumentor.

431

https://www.mysql.com/products/enterprise/
https://opentelemetry.io/docs/what-is-opentelemetry/
https://opentelemetry.io/docs/instrumentation/python/manual/
https://github.com/open-telemetry/opentelemetry-python-contrib/tree/main/instrumentation/opentelemetry-instrumentation-mysql

OpenTelemetry Support

Note

Connector/Python also includes an optional bundled version of the
OpenTelemetry SDK/API; and its limitations and usage are documented
separately. This guide assumes the system's OpenTelemetry SDK/API are
installed and used instead of the bundled version.

An example that utilizes the system's OpenTelemetry SDK/API and implements tracing with MySQL
Connector/Python:

import os
import mysql.connector
An instrumentor that comes with mysql-connector-python
from mysql.connector.opentelemetry.instrumentation import (
 MySQLInstrumentor as OracleMySQLInstrumentor,
)
Loading SDK from the system
from opentelemetry import trace
from opentelemetry.sdk.trace import TracerProvider
from opentelemetry.sdk.trace.export import BatchSpanProcessor
from opentelemetry.sdk.trace.export import ConsoleSpanExporter
provider = TracerProvider()
processor = BatchSpanProcessor(ConsoleSpanExporter())
provider.add_span_processor(processor)
trace.set_tracer_provider(provider)
tracer = trace.get_tracer(__name__)
config = {
 "host": "127.0.0.1",
 "user": "root",
 "password": os.environ.get("password"),
 "use_pure": True,
 "port": 3306,
 "database": "test",
}
Global instrumentation: all connection objects returned by
mysql.connector.connect will be instrumented.
OracleMySQLInstrumentor().instrument()
with tracer.start_as_current_span("client_app"):
 with mysql.connector.connect(**config) as cnx:
 with cnx.cursor() as cur:
 cur.execute("SELECT @@version")
 _ = cur.fetchall()

Morphology of the Emitted Traces

A trace generated by the Connector/Python instrumentor contains one connection span, and zero or
more query spans as described in the rest of this section.

Connection Span

• Time from connection initialization to the moment the connection ends. The span is named
connection.

• If the application does not provide a span, the connection span generated is a ROOT span,
originating in the connector.

• If the application does provide a span, the query span generated is a CHILD span, originating in the
connector.

Query Span

• Time from when an SQL statement is requested (on the connector side) to the moment the
connector finishes processing the server's reply to this statement.

• A query span is created for each query request sent to the server. If the application does not provide
a span, the query span generated is a ROOT span, originating in the connector.

432

OpenTelemetry Support

• If the application does provide a span, the query span generated is a CHILD span, originating in the
connector.

• The query span is linked to the existing connection span of the connection the query was executed.

• Query attributes with prepared statements is supported as of MySQL Enterprise Edition 8.3.0.

Context Propagation

By default, the trace context of the span in progress (if any) is propagated to the MySQL server.

Propagation has no effect when the MySQL server either disabled or does not support OpenTelemetry
(the trace context is ignored by the server), however, when connecting to a server with OpenTelemetry
enabled and configured, the server processes the propagated traces and creates parent-child
relationships between the spans from the connector and those from the server. In other words, this
provides trace continuity.

Note

Context propagation with prepared statements is supported as of MySQL
Enterprise Edition 8.3.0.

• The trace context is propagated for statements with query attributes defined in the MySQL client/
server protocol, such as COM_QUERY.

The trace context is not propagated for statements without query attributes defined in the MySQL
client/server protocol, statements such as COM_PING.

• Trace context propagation is done via query attributes where a new attribute named "traceparent" is
defined. Its value is based on the current span context. For details on how this value is computed,
read the traceparent header W3C specification.

If the "traceparent" query attribute is manually set for a query, then it is not be overwritten by the
connector; it's assumed that it provides OTel context intended to forward to the server.

Disabling Trace Context Propagation

The boolean connection property named otel_context_propagation is True by default. Setting it
to False disables context propagation.

Since otel_context_propagation is a connection property that can be changed after a connection
is established (a connection object is created), setting such property to False does not have an effect
over the spans generated during the connection phase. In other words, spans generated during the
connection phase are always propagated since otel_context_propagation is True by default.

This implementation is distinct from the implementation provided through the MySQL client library (or
the related telemetry_client client-side plugin).

Bundled OpenTelemetry Support

If unable to install opentelemetry-api and opentelemetry-sdk system packages on a system,
then you may instead use the OpenTelemetry SDK/API libraries bundled with MySQL Connector/
Python. This section describes the differences and limitations when using this bundled version.

Note

Using the system OpenTelemetry SDK/API is recommended as it gives access
to the latest OpenTelemetry version, and the bundled versions lack exporter
support.

Enabling the bundled OpenTelemetry installation requires a different installation workflow. Compare the
following:

A standard (non-bundled) full installation:

433

https://www.w3.org/TR/trace-context/#traceparent-header
https://opentelemetry.io/docs/instrumentation/python/exporters/

Asynchronous Connectivity

pip install opentelemetry-api
pip install opentelemetry-sdk
pip install mysql-connector-python

The alternative to instead have Connector/Python utilize the bundled OpenTelemetry SDK/API
libraries:

pip install mysql-connector-python[opentelemetry]

The [opentelemetry] syntax tells the installation driver to include the corresponding dependencies to
utilize the bundled installation.

Alternative versions of the bundled installation version:

Alternatively, install from source code
(assuming you are in the root source code folder)
pip install ".[opentelemetry]"

When calling OpenTelemetry, the connector tries to load the corresponding modules from the system
(the Python environment from which the program is being executed); if the load fails (modules not
found) it falls back to the bundled installation. An exception is raised if neither installation dependencies
are available.

Example code that directly utilizes the bundled installation, note the mysql.opentelemetry.sdk.* prefix
as opposed to opentelemetry.sdk.* demonstrated earlier:

import mysql.connector
from mysql.connector.opentelemetry.instrumentation import (
 MySQLInstrumentor as OracleMySQLInstrumentor,
)
from mysql.opentelemetry import trace
from mysql.opentelemetry.sdk.trace import TracerProvider
from mysql.opentelemetry.sdk.trace.export import BatchSpanProcessor
from mysql.opentelemetry.sdk.trace.export import ConsoleSpanExporter

Potential issues to consider:

• Mixing the bundled and the system installations: consider the application code example utilizing the
bundled installation, if otel happens to be available in the system and the application tries to run
the example it will likely fail because the module mysql.connector.opentelemetry.instrumentation
is loading otel SDK and API resources from the system installation (higher precedence), while the
application is loading resources from the bundled installation.

• Trying to load an exporter from the bundled installation: the bundled installation includes the bare
minimum otel modules to carry out instrumentation and print the traces to the console, however, it
does not include an exporter. If you want to export traces, install otel in the system and utilize the
system installation.

6.8.3 Asynchronous Connectivity

Installing Connector/Python also installs the mysql.connector.aio package that integrates asyncio
with the connector to allow integrating asynchronous MySQL interactions with an application.

Here are code examples that integrate mysql.connector.aio functionality:

Basic Usage:

from mysql.connector.aio import connect
Connect to a MySQL server and get a cursor
cnx = await connect(user="myuser", password="mypass")
cur = await cnx.cursor()
Execute a non-blocking query
await cur.execute("SELECT version()")
Retrieve the results of the query asynchronously
results = await cur.fetchall()
print(results)
Close cursor and connection

434

https://docs.python.org/3/library/asyncio.html

Asynchronous Connectivity

await cur.close()
await cnx.close()

Usage with context managers:

from mysql.connector.aio import connect
Connect to a MySQL server and get a cursor
async with await connect(user="myuser", password="mypass") as cnx:
 async with await cnx.cursor() as cur:
 # Execute a non-blocking query
 await cur.execute("SELECT version()")
 # Retrieve the results of the query asynchronously
 results = await cur.fetchall()
 print(results)

Running Multiple Tasks Asynchronously

This example showcases how to run tasks asynchronously and the usage of to_thread, which is the
backbone to asynchronously run blocking functions:

Note

The synchronous version of this example implements coroutines instead of
following a common synchronous approach; this to explicitly demonstrate that
only awaiting coroutines does not make the code run asynchronously. Functions
included in the asyncio API must be used to achieve asynchronicity.

import asyncio
import os
import time
from mysql.connector.aio import connect
Global variable which will help to format the job sequence output.
DISCLAIMER: this is an example for showcasing/demo purposes,
you should avoid global variables usage for production code.
global indent
indent = 0
MySQL Connection arguments
config = {
 "host": "127.0.0.1",
 "user": "root",
 "password": os.environ.get("MYPASS", ":("),
 "use_pure": True,
 "port": 3306,
}
async def job_sleep(n):
 """Take a nap for n seconds.
 This job represents any generic task - it may be or not an IO task.
 """
 # Increment indent
 global indent
 offset = "\t" * indent
 indent += 1
 # Emulating a generic job/task
 print(f"{offset}START_SLEEP")
 await asyncio.sleep(n)
 print(f"{offset}END_SLEEP")
 return f"I slept for {n} seconds"
async def job_mysql():
 """Connect to a MySQL Server and do some operations.
 Run queries, run procedures, insert data, etc.
 """
 # Increment indent
 global indent
 offset = "\t" * indent
 indent += 1
 # MySQL operations
 print(f"{offset}START_MYSQL_OPS")
 async with await connect(**config) as cnx:
 async with await cnx.cursor() as cur:
 await cur.execute("SELECT @@version")

435

Asynchronous Connectivity

 res = await cur.fetchone()
 time.sleep(1) # for simulating that the fetch isn't immediate
 print(f"{offset}END_MYSQL_OPS")
 # return server version
 return res
async def job_io():
 """Emulate an IO operation.
 `to_thread` allows to run a blocking function asynchronously.
 References:
 [asyncio.to_thread]: https://docs.python.org/3/library/asyncio-task.html#asyncio.to_thread
 """
 # Emulating a native blocking IO procedure
 def io():
 """Blocking IO operation."""
 time.sleep(5)
 # Increment indent
 global indent
 offset = "\t" * indent
 indent += 1
 # Showcasing how a native blocking IO procedure can be awaited,
 print(f"{offset}START_IO")
 await asyncio.to_thread(io)
 print(f"{offset}END_IO")
 return "I am an IO operation"
async def main_asynchronous():
 """Running tasks asynchronously.
 References:
 [asyncio.gather]: https://docs.python.org/3/library/asyncio-task.html#asyncio.gather
 """
 print("-------------------- ASYNCHRONOUS --------------------")
 # reset indent
 global indent
 indent = 0
 clock = time.time()
 # `asyncio.gather()` allows to run awaitable objects
 # in the aws sequence asynchronously.\
 # If all awaitables are completed successfully,
 # the result is an aggregate list of returned values.
 aws = (job_io(), job_mysql(), job_sleep(4))
 returned_vals = await asyncio.gather(*aws)
 print(f"Elapsed time: {time.time() - clock:0.2f}")
 # The order of result values corresponds to the
 # order of awaitables in aws.
 print(returned_vals, end="\n" * 2)
 # Example expected output
 # -------------------- ASYNCHRONOUS --------------------
 # START_IO
 # START_MYSQL_OPS
 # START_SLEEP
 # END_MYSQL_OPS
 # END_SLEEP
 # END_IO
 # Elapsed time: 5.01
 # ['I am an IO operation', ('8.3.0-commercial',), 'I slept for 4 seconds']
async def main_non_asynchronous():
 """Running tasks non-asynchronously"""
 print("------------------- NON-ASYNCHRONOUS -------------------")
 # reset indent
 global indent
 indent = 0
 clock = time.time()
 # Sequence of awaitable objects
 aws = (job_io(), job_mysql(), job_sleep(4))
 # The line below this docstring is the short version of:
 # coro1, coro2, coro3 = *aws
 # res1 = await coro1
 # res2 = await coro2
 # res3 = await coro3
 # returned_vals = [res1, res2, res3]
 # NOTE: Simply awaiting a coro does not make the code run asynchronously!
 returned_vals = [await coro for coro in aws] # this will run synchronously
 print(f"Elapsed time: {time.time() - clock:0.2f}")

436

Asynchronous Connectivity

 print(returned_vals, end="\n")
 # Example expected output
 # ------------------- NON-ASYNCHRONOUS -------------------
 # START_IO
 # END_IO
 # START_MYSQL_OPS
 # END_MYSQL_OPS
 # START_SLEEP
 # END_SLEEP
 # Elapsed time: 10.07
 # ['I am an IO operation', ('8.3.0-commercial',), 'I slept for 4 seconds']
if __name__ == "__main__":
 # `asyncio.run()`` allows to execute a coroutine (`coro`) and return the result.
 # You cannot run a coro without it.
 # References:
 # [asyncio.run]: https://docs.python.org/3/library/asyncio-runner.html#asyncio.run
 assert asyncio.run(main_asynchronous()) == asyncio.run(main_non_asynchronous())

It shows these three jobs running asynchronously:

• job_io: Emulate an I/O operation; with to_thread to allow running a blocking function
asynchronously.

Starts first, and takes five seconds to complete so is the last job to finish.

• job_mysql: Connects to a MySQL server to perform operations such as queries and stored
procedures.

Starts second, and takes one second to complete so is the first job to finish.

• job_sleep: Sleeps for n seconds to represent a generic task.

Starts last, and takes four seconds to complete so is the second job to finish.

Note

A lock/mutex wasn't added to the indent variable because multithreading isn't
used; instead the unique active thread executes all of the jobs. Asynchronous
execution is about completing other jobs while waiting for the result of an I/O
operation.

Asynchronous MySQL Queries

This is a similar example that uses MySQL queries instead of generic jobs.

Note

While cursors are not utilized in the these examples, the principles and workflow
could apply to cursors by letting every connection object create a cursor to
operate from.

Synchronous code to create and populate hundreds of tables:

import os
import time
from typing import TYPE_CHECKING, Callable, List, Tuple
from mysql.connector import connect
if TYPE_CHECKING:
 from mysql.connector.abstracts import (
 MySQLConnectionAbstract,
)
MySQL Connection arguments
config = {
 "host": "127.0.0.1",
 "user": "root",
 "password": os.environ.get("MYPASS", ":("),
 "use_pure": True,
 "port": 3306,

437

Asynchronous Connectivity

}
exec_sequence = []
def create_table(
 exec_seq: List[str], table_names: List[str], cnx: "MySQLConnectionAbstract", i: int
) -> None:
 """Creates a table."""
 if i >= len(table_names):
 return False
 exec_seq.append(f"start_{i}")
 stmt = f"""
 CREATE TABLE IF NOT EXISTS {table_names[i]} (
 dish_id INT(11) UNSIGNED AUTO_INCREMENT UNIQUE KEY,
 category TEXT,
 dish_name TEXT,
 price FLOAT,
 servings INT,
 order_time TIME
)
 """
 cnx.cmd_query(f"DROP TABLE IF EXISTS {table_names[i]}")
 cnx.cmd_query(stmt)
 exec_seq.append(f"end_{i}")
 return True
def drop_table(
 exec_seq: List[str], table_names: List[str], cnx: "MySQLConnectionAbstract", i: int
) -> None:
 """Drops a table."""
 if i >= len(table_names):
 return False
 exec_seq.append(f"start_{i}")
 cnx.cmd_query(f"DROP TABLE IF EXISTS {table_names[i]}")
 exec_seq.append(f"end_{i}")
 return True
def main(
 kernel: Callable[[List[str], List[str], "MySQLConnectionAbstract", int], None],
 table_names: List[str],
) -> Tuple[List, List]:
 exec_seq = []
 database_name = "TABLE_CREATOR"
 with connect(**config) as cnx:
 # Create/Setup database
 cnx.cmd_query(f"CREATE DATABASE IF NOT EXISTS {database_name}")
 cnx.cmd_query(f"USE {database_name}")
 # Execute Kernel: Create or Delete tables
 for i in range(len(table_names)):
 kernel(exec_seq, table_names, cnx, i)
 # Show tables
 cnx.cmd_query("SHOW tables")
 show_tables = cnx.get_rows()[0]
 # Return execution sequence and table names retrieved with `SHOW tables;`.
 return exec_seq, show_tables
if __name__ == "__main__":
 # with num_tables=511 -> Elapsed time ~ 25.86
 clock = time.time()
 print_exec_seq = False
 num_tables = 511
 table_names = [f"table_sync_{n}" for n in range(num_tables)]
 print("-------------------- SYNC CREATOR --------------------")
 exec_seq, show_tables = main(kernel=create_table, table_names=table_names)
 assert len(show_tables) == num_tables
 if print_exec_seq:
 print(exec_seq)
 print("-------------------- SYNC DROPPER --------------------")
 exec_seq, show_tables = main(kernel=drop_table, table_names=table_names)
 assert len(show_tables) == 0
 if print_exec_seq:
 print(exec_seq)
 print(f"Elapsed time: {time.time() - clock:0.2f}")
 # Expected output with num_tables = 11:
 # -------------------- SYNC CREATOR --------------------
 # [
 # "start_0",

438

Asynchronous Connectivity

 # "end_0",
 # "start_1",
 # "end_1",
 # "start_2",
 # "end_2",
 # "start_3",
 # "end_3",
 # "start_4",
 # "end_4",
 # "start_5",
 # "end_5",
 # "start_6",
 # "end_6",
 # "start_7",
 # "end_7",
 # "start_8",
 # "end_8",
 # "start_9",
 # "end_9",
 # "start_10",
 # "end_10",
 #]
 # -------------------- SYNC DROPPER --------------------
 # [
 # "start_0",
 # "end_0",
 # "start_1",
 # "end_1",
 # "start_2",
 # "end_2",
 # "start_3",
 # "end_3",
 # "start_4",
 # "end_4",
 # "start_5",
 # "end_5",
 # "start_6",
 # "end_6",
 # "start_7",
 # "end_7",
 # "start_8",
 # "end_8",
 # "start_9",
 # "end_9",
 # "start_10",
 # "end_10",
 #]

That script creates and deletes {num_tables} tables, and is fully sequential in that it creates and deletes
table_{i} before moving to table_{i+1}.

An asynchronous code example for the same task:

import asyncio
import os
import time
from typing import TYPE_CHECKING, Callable, List, Tuple
from mysql.connector.aio import connect
if TYPE_CHECKING:
 from mysql.connector.aio.abstracts import (
 MySQLConnectionAbstract,
)
MySQL Connection arguments
config = {
 "host": "127.0.0.1",
 "user": "root",
 "password": os.environ.get("MYPASS", ":("),
 "use_pure": True,
 "port": 3306,
}
exec_sequence = []
async def create_table(

439

Asynchronous Connectivity

 exec_seq: List[str], table_names: List[str], cnx: "MySQLConnectionAbstract", i: int
) -> None:
 """Creates a table."""
 if i >= len(table_names):
 return False
 exec_seq.append(f"start_{i}")
 stmt = f"""
 CREATE TABLE IF NOT EXISTS {table_names[i]} (
 dish_id INT(11) UNSIGNED AUTO_INCREMENT UNIQUE KEY,
 category TEXT,
 dish_name TEXT,
 price FLOAT,
 servings INT,
 order_time TIME
)
 """
 await cnx.cmd_query(f"DROP TABLE IF EXISTS {table_names[i]}")
 await cnx.cmd_query(stmt)
 exec_seq.append(f"end_{i}")
 return True
async def drop_table(
 exec_seq: List[str], table_names: List[str], cnx: "MySQLConnectionAbstract", i: int
) -> None:
 """Drops a table."""
 if i >= len(table_names):
 return False
 exec_seq.append(f"start_{i}")
 await cnx.cmd_query(f"DROP TABLE IF EXISTS {table_names[i]}")
 exec_seq.append(f"end_{i}")
 return True
async def main_async(
 kernel: Callable[[List[str], List[str], "MySQLConnectionAbstract", int], None],
 table_names: List[str],
 num_jobs: int = 2,
) -> Tuple[List, List]:
 """The asynchronous tables creator...
 Reference:
 [as_completed]: https://docs.python.org/3/library/asyncio-task.html#asyncio.as_completed
 """
 exec_seq = []
 database_name = "TABLE_CREATOR"
 # Create/Setup database
 # ---------------------
 # No asynchronous execution is done here.
 # NOTE: observe usage WITH context manager.
 async with await connect(**config) as cnx:
 await cnx.cmd_query(f"CREATE DATABASE IF NOT EXISTS {database_name}")
 await cnx.cmd_query(f"USE {database_name}")
 config["database"] = database_name
 # Open connections
 # ----------------
 # `as_completed` allows to run awaitable objects in the `aws` iterable asynchronously.
 # NOTE: observe usage WITHOUT context manager.
 aws = [connect(**config) for _ in range(num_jobs)]
 cnxs: List["MySQLConnectionAbstract"] = [
 await coro for coro in asyncio.as_completed(aws)
]
 # Execute Kernel: Create or Delete tables
 # -------------
 # N tables must be created/deleted and we can run up to `num_jobs` jobs asynchronously,
 # therefore we execute jobs in batches of size num_jobs`.
 returned_values, i = [True], 0
 while any(returned_values): # Keep running until i >= len(table_names) for all jobs
 # Prepare coros: map connections/cursors and table-name IDs to jobs.
 aws = [
 kernel(exec_seq, table_names, cnx, i + idx) for idx, cnx in enumerate(cnxs)
]
 # When i >= len(table_names) coro simply returns False, else True.
 returned_values = [await coro for coro in asyncio.as_completed(aws)]
 # Update table-name ID offset based on the number of jobs
 i += num_jobs
 # Close cursors

440

Asynchronous Connectivity

 # -------------
 # `as_completed` allows to run awaitable objects in the `aws` iterable asynchronously.
 for coro in asyncio.as_completed([cnx.close() for cnx in cnxs]):
 await coro
 # Load table names
 # ----------------
 # No asynchronous execution is done here.
 async with await connect(**config) as cnx:
 # Show tables
 await cnx.cmd_query("SHOW tables")
 show_tables = (await cnx.get_rows())[0]
 # Return execution sequence and table names retrieved with `SHOW tables;`.
 return exec_seq, show_tables
if __name__ == "__main__":
 # `asyncio.run()`` allows to execute a coroutine (`coro`) and return the result.
 # You cannot run a coro without it.
 # References:
 # [asyncio.run]: https://docs.python.org/3/library/asyncio-runner.html#asyncio.run
 # with num_tables=511 and num_jobs=3 -> Elapsed time ~ 19.09
 # with num_tables=511 and num_jobs=12 -> Elapsed time ~ 13.15
 clock = time.time()
 print_exec_seq = False
 num_tables = 511
 num_jobs = 12
 table_names = [f"table_async_{n}" for n in range(num_tables)]
 print("-------------------- ASYNC CREATOR --------------------")
 exec_seq, show_tables = asyncio.run(
 main_async(kernel=create_table, table_names=table_names, num_jobs=num_jobs)
)
 assert len(show_tables) == num_tables
 if print_exec_seq:
 print(exec_seq)
 print("-------------------- ASYNC DROPPER --------------------")
 exec_seq, show_tables = asyncio.run(
 main_async(kernel=drop_table, table_names=table_names, num_jobs=num_jobs)
)
 assert len(show_tables) == 0
 if print_exec_seq:
 print(exec_seq)
 print(f"Elapsed time: {time.time() - clock:0.2f}")
 # Expected output with num_tables = 11 and num_jobs = 3:
 # -------------------- ASYNC CREATOR --------------------
 # 11
 # [
 # "start_2",
 # "start_1",
 # "start_0",
 # "end_2",
 # "end_0",
 # "end_1",
 # "start_5",
 # "start_3",
 # "start_4",
 # "end_3",
 # "end_5",
 # "end_4",
 # "start_8",
 # "start_7",
 # "start_6",
 # "end_7",
 # "end_8",
 # "end_6",
 # "start_10",
 # "start_9",
 # "end_9",
 # "end_10",
 #]
 # -------------------- ASYNC DROPPER --------------------
 # [
 # "start_1",
 # "start_2",
 # "start_0",

441

Connector/Python Connection Pooling

 # "end_1",
 # "end_2",
 # "end_0",
 # "start_3",
 # "start_5",
 # "start_4",
 # "end_4",
 # "end_5",
 # "end_3",
 # "start_6",
 # "start_8",
 # "start_7",
 # "end_7",
 # "end_6",
 # "end_8",
 # "start_10",
 # "start_9",
 # "end_9",
 # "end_10",
 #]

This output shows how the job flow isn't sequential in that up to {num_jobs} can be executed
asynchronously. The jobs are run following a batch-like approach of {num_jobs} and waits until all
terminate before launching the next batch, and the loop ends once no tables remain to create.

Performance comparison for these examples: the asynchronous implementation is about 26% faster
when using 3 jobs, and 49% faster using 12 jobs. Note that increasing the number of jobs does add
job management overhead which at some point evaporates the initial speed-up. The optimal number of
jobs is problem-dependent, and is a value determined with experience.

As demonstrated, the asynchronous version requires more code to function than the non-asynchronous
variant. Is it worth the effort? It depends on the goal as asynchronous code better optimizes
performance, such as CPU usage, whereas writing standard synchronous code is simpler.

For additional information about the asyncio module, see the official Asynchronous I/O Python
Documentation.

6.8.4 Connector/Python Connection Pooling

Simple connection pooling is supported that has these characteristics:

• The mysql.connector.pooling module implements pooling.

• A pool opens a number of connections and handles thread safety when providing connections to
requesters.

• The size of a connection pool is configurable at pool creation time. It cannot be resized thereafter.

• A connection pool can be named at pool creation time. If no name is given, one is generated using
the connection parameters.

• The connection pool name can be retrieved from the connection pool or connections obtained from it.

• It is possible to have multiple connection pools. This enables applications to support pools of
connections to different MySQL servers, for example.

• For each connection request, the pool provides the next available connection. No round-robin or
other scheduling algorithm is used. If a pool is exhausted, a PoolError is raised.

• It is possible to reconfigure the connection parameters used by a pool. These apply to connections
obtained from the pool thereafter. Reconfiguring individual connections obtained from the pool by
calling the connection config() method is not supported.

Applications that can benefit from connection-pooling capability include:

442

https://docs.python.org/3/library/asyncio.html#module-asyncio
https://docs.python.org/3/library/asyncio.html#module-asyncio

Connector/Python Connection Pooling

• Middleware that maintains multiple connections to multiple MySQL servers and requires connections
to be readily available.

• websites that can have more “permanent” connections open to the MySQL server.

A connection pool can be created implicitly or explicitly.

To create a connection pool implicitly: Open a connection and specify one or more pool-related
arguments (pool_name, pool_size). For example:

dbconfig = {
 "database": "test",
 "user": "joe"
}
cnx = mysql.connector.connect(pool_name = "mypool",
 pool_size = 3,
 **dbconfig)

The pool name is restricted to alphanumeric characters and the special characters ., _, *, $, and #.
The pool name must be no more than pooling.CNX_POOL_MAXNAMESIZE characters long (default
64).

The pool size must be greater than 0 and less than or equal to pooling.CNX_POOL_MAXSIZE
(default 32).

With either the pool_name or pool_size argument present, Connector/Python creates the new
pool. If the pool_name argument is not given, the connect() call automatically generates the name,
composed from whichever of the host, port, user, and database connection arguments are given,
in that order. If the pool_size argument is not given, the default size is 5 connections.

Subsequent calls to connect() that name the same connection pool return connections from the
existing pool. Any pool_size or connection parameter arguments are ignored, so the following
connect() calls are equivalent to the original connect() call shown earlier:

cnx = mysql.connector.connect(pool_name = "mypool", pool_size = 3)
cnx = mysql.connector.connect(pool_name = "mypool", **dbconfig)
cnx = mysql.connector.connect(pool_name = "mypool")

Pooled connections obtained by calling connect() with a pool-related argument have a class
of PooledMySQLConnection (see Section 6.9.4, “pooling.PooledMySQLConnection Class”).
PooledMySQLConnection pooled connection objects are similar to MySQLConnection unpooled
connection objects, with these differences:

• To release a pooled connection obtained from a connection pool, invoke its close() method, just
as for any unpooled connection. However, for a pooled connection, close() does not actually close
the connection but returns it to the pool and makes it available for subsequent connection requests.

• A pooled connection cannot be reconfigured using its config() method. Connection changes must
be done through the pool object itself, as described shortly.

• A pooled connection has a pool_name property that returns the pool name.

To create a connection pool explicitly: Create a MySQLConnectionPool object (see Section 6.9.3,
“pooling.MySQLConnectionPool Class”):

dbconfig = {
 "database": "test",
 "user": "joe"
}
cnxpool = mysql.connector.pooling.MySQLConnectionPool(pool_name = "mypool",
 pool_size = 3,
 **dbconfig)

To request a connection from the pool, use its get_connection() method:

443

Connector/Python Django Back End

cnx1 = cnxpool.get_connection()
cnx2 = cnxpool.get_connection()

When you create a connection pool explicitly, it is possible to use the pool object's set_config()
method to reconfigure the pool connection parameters:

dbconfig = {
 "database": "performance_schema",
 "user": "admin",
 "password": "password"
}
cnxpool.set_config(**dbconfig)

Connections requested from the pool after the configuration change use the new parameters.
Connections obtained before the change remain unaffected, but when they are closed (returned to
the pool) are reopened with the new parameters before being returned by the pool for subsequent
connection requests.

6.8.5 Connector/Python Django Back End

Connector/Python includes a mysql.connector.django module that provides a Django back end
for MySQL. This back end supports new features found as of MySQL 5.6 such as fractional seconds
support for temporal data types.

Django Configuration

Django uses a configuration file named settings.py that contains a variable called DATABASES (see
https://docs.djangoproject.com/en/1.5/ref/settings/#std:setting-DATABASES). To configure Django to
use Connector/Python as the MySQL back end, the example found in the Django manual can be used
as a basis:

DATABASES = {
 'default': {
 'NAME': 'user_data',
 'ENGINE': 'mysql.connector.django',
 'HOST': '127.0.0.1',
 'PORT': 3306,
 'USER': 'mysql_user',
 'PASSWORD': 'password',
 'OPTIONS': {
 'autocommit': True,
 'use_oure': True,
 'init_command': "SET foo='bar';"
 },
 }
}

It is possible to add more connection arguments using OPTIONS.

Support for MySQL Features

Django can launch the MySQL client application mysql. When the Connector/Python back end does
this, it arranges for the sql_mode system variable to be set to TRADITIONAL at startup.

Some MySQL features are enabled depending on the server version. For example, support for
fractional seconds precision is enabled when connecting to a server from MySQL 5.6.4 or higher.
Django's DateTimeField is stored in a MySQL column defined as DATETIME(6), and TimeField is
stored as TIME(6). For more information about fractional seconds support, see Fractional Seconds in
Time Values.

Using a custom class for data type conversation is supported as a subclass of
mysql.connector.django.base.DjangoMySQLConverter. This support was added in Connector/Python
8.0.29.

444

https://docs.djangoproject.com/en/1.5/ref/settings/#std:setting-DATABASES
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_sql_mode
https://dev.mysql.com/doc/refman/8.0/en/fractional-seconds.html
https://dev.mysql.com/doc/refman/8.0/en/fractional-seconds.html

Connector/Python API Reference

6.9 Connector/Python API Reference

This chapter contains the public API reference for Connector/Python. Examples should be considered
working for Python 2.7, and Python 3.1 and greater. They might also work for older versions (such as
Python 2.4) unless they use features introduced in newer Python versions. For example, exception
handling using the as keyword was introduced in Python 2.6 and will not work in Python 2.4.

Note

Python 2.7 support was removed in Connector/Python 8.0.24.

The following overview shows the mysql.connector package with its modules. Currently, only the
most useful modules, classes, and methods for end users are documented.

mysql.connector
 errorcode
 errors
 connection
 constants
 conversion
 cursor
 dbapi
 locales
 eng
 client_error
 protocol
 utils

6.9.1 mysql.connector Module

The mysql.connector module provides top-level methods and properties.

6.9.1.1 mysql.connector.connect() Method

This method sets up a connection, establishing a session with the MySQL server. If no arguments are
given, it uses the already configured or default values. For a complete list of possible arguments, see
Section 6.7.1, “Connector/Python Connection Arguments”.

A connection with the MySQL server can be established using either the
mysql.connector.connect() method or the mysql.connector.MySQLConnection() class:

cnx = mysql.connector.connect(user='joe', database='test')
cnx = MySQLConnection(user='joe', database='test')

For descriptions of connection methods and properties, see Section 6.9.2,
“connection.MySQLConnection Class”.

6.9.1.2 mysql.connector.apilevel Property

This property is a string that indicates the supported DB API level.

>>> mysql.connector.apilevel
'2.0'

6.9.1.3 mysql.connector.paramstyle Property

This property is a string that indicates the Connector/Python default parameter style.

>>> mysql.connector.paramstyle
'pyformat'

445

connection.MySQLConnection Class

6.9.1.4 mysql.connector.threadsafety Property

This property is an integer that indicates the supported level of thread safety provided by Connector/
Python.

>>> mysql.connector.threadsafety
1

6.9.1.5 mysql.connector.__version__ Property

This property indicates the Connector/Python version as a string. It is available as of Connector/Python
1.1.0.

>>> mysql.connector.__version__
'1.1.0'

6.9.1.6 mysql.connector.__version_info__ Property

This property indicates the Connector/Python version as an array of version components. It is available
as of Connector/Python 1.1.0.

>>> mysql.connector.__version_info__
(1, 1, 0, 'a', 0)

6.9.2 connection.MySQLConnection Class

The MySQLConnection class is used to open and manage a connection to a MySQL server. It also
used to send commands and SQL statements and read the results.

6.9.2.1 connection.MySQLConnection() Constructor

Syntax:

cnx = MySQLConnection(**kwargs)

The MySQLConnection constructor initializes the attributes and when at least one argument is
passed, it tries to connect to the MySQL server.

For a complete list of arguments, see Section 6.7.1, “Connector/Python Connection Arguments”.

6.9.2.2 MySQLConnection.close() Method

Syntax:

cnx.close()

close() is a synonym for disconnect(). See Section 6.9.2.20, “MySQLConnection.disconnect()
Method”.

For a connection obtained from a connection pool, close() does not actually close it but returns it to
the pool and makes it available for subsequent connection requests. See Section 6.8.4, “Connector/
Python Connection Pooling”.

6.9.2.3 MySQLConnection.commit() Method

446

connection.MySQLConnection Class

This method sends a COMMIT statement to the MySQL server, committing the current transaction.
Since by default Connector/Python does not autocommit, it is important to call this method after every
transaction that modifies data for tables that use transactional storage engines.

>>> cursor.execute("INSERT INTO employees (first_name) VALUES (%s), (%s)", ('Jane', 'Mary'))
>>> cnx.commit()

To roll back instead and discard modifications, see the rollback() method.

6.9.2.4 MySQLConnection.config() Method

Syntax:

cnx.config(**kwargs)

Configures a MySQLConnection instance after it has been instantiated. For a complete list of possible
arguments, see Section 6.7.1, “Connector/Python Connection Arguments”.

Arguments:

• kwargs: Connection arguments.

You could use the config() method to change (for example) the user name, then call reconnect().

Example:

cnx = mysql.connector.connect(user='joe', database='test')
Connected as 'joe'
cnx.config(user='jane')
cnx.reconnect()
Now connected as 'jane'

For a connection obtained from a connection pool, config() raises an exception. See Section 6.8.4,
“Connector/Python Connection Pooling”.

6.9.2.5 MySQLConnection.connect() Method

Syntax:

MySQLConnection.connect(**kwargs)

This method sets up a connection, establishing a session with the MySQL server. If no arguments are
given, it uses the already configured or default values. For a complete list of possible arguments, see
Section 6.7.1, “Connector/Python Connection Arguments”.

Arguments:

• kwargs: Connection arguments.

Example:

cnx = MySQLConnection(user='joe', database='test')

For a connection obtained from a conection pool, the connection object class is
PooledMySQLConnection. A pooled connection differs from an unpooled connection as described in
Section 6.8.4, “Connector/Python Connection Pooling”.

6.9.2.6 MySQLConnection.cursor() Method

Syntax:

447

connection.MySQLConnection Class

cursor = cnx.cursor([arg=value[, arg=value]...])

This method returns a MySQLCursor() object, or a subclass of it depending on the passed
arguments. The returned object is a cursor.CursorBase instance. For more information about
cursor objects, see Section 6.9.5, “cursor.MySQLCursor Class”, and Section 6.9.6, “Subclasses
cursor.MySQLCursor”.

Arguments may be passed to the cursor() method to control what type of cursor to create:

• If buffered is True, the cursor fetches all rows from the server after an operation is executed. This
is useful when queries return small result sets. buffered can be used alone, or in combination with
the dictionary or named_tuple argument.

buffered can also be passed to connect() to set the default buffering mode for all cursors
created from the connection object. See Section 6.7.1, “Connector/Python Connection Arguments”.

For information about the implications of buffering, see Section 6.9.6.1,
“cursor.MySQLCursorBuffered Class”.

• If raw is True, the cursor skips the conversion from MySQL data types to Python types when
fetching rows. A raw cursor is usually used to get better performance or when you want to do the
conversion yourself.

raw can also be passed to connect() to set the default raw mode for all cursors created from the
connection object. See Section 6.7.1, “Connector/Python Connection Arguments”.

• If dictionary is True, the cursor returns rows as dictionaries. This argument is available as of
Connector/Python 2.0.0.

• If named_tuple is True, the cursor returns rows as named tuples. This argument is available as of
Connector/Python 2.0.0.

• If prepared is True, the cursor is used for executing prepared statements. This argument is
available as of Connector/Python 1.1.2. The C extension supports this as of Connector/Python
8.0.17.

• The cursor_class argument can be used to pass a class to use for instantiating a new cursor. It
must be a subclass of cursor.CursorBase.

The returned object depends on the combination of the arguments. Examples:

• If not buffered and not raw: MySQLCursor

• If buffered and not raw: MySQLCursorBuffered

• If not buffered and raw: MySQLCursorRaw

• If buffered and raw: MySQLCursorBufferedRaw

6.9.2.7 MySQLConnection.cmd_change_user() Method

Changes the user using username and password. It also causes the specified database to become
the default (current) database. It is also possible to change the character set using the charset
argument.

Syntax:

cnx.cmd_change_user(username='', password='', database='', charset=33)

Returns a dictionary containing the OK packet information.

6.9.2.8 MySQLConnection.cmd_debug() Method

448

connection.MySQLConnection Class

Instructs the server to write debugging information to the error log. The connected user must have the
SUPER privilege.

Returns a dictionary containing the OK packet information.

6.9.2.9 MySQLConnection.cmd_init_db() Method

Syntax:

cnx.cmd_init_db(db_name)

This method makes specified database the default (current) database. In subsequent queries, this
database is the default for table references that include no explicit database qualifier.

Returns a dictionary containing the OK packet information.

6.9.2.10 MySQLConnection.cmd_ping() Method

Checks whether the connection to the server is working.

This method is not to be used directly. Use ping() or is_connected() instead.

Returns a dictionary containing the OK packet information.

6.9.2.11 MySQLConnection.cmd_process_info() Method

This method raises the NotSupportedError exception. Instead, use the SHOW PROCESSLIST statement
or query the tables found in the database INFORMATION_SCHEMA.

Deprecation

This MySQL Server functionality is deprecated.

6.9.2.12 MySQLConnection.cmd_process_kill() Method

Syntax:

cnx.cmd_process_kill(mysql_pid)

Deprecation

This MySQL Server functionality is deprecated.

Asks the server to kill the thread specified by mysql_pid. Although still available, it is better to use the
KILL SQL statement.

Returns a dictionary containing the OK packet information.

The following two lines have the same effect:

>>> cnx.cmd_process_kill(123)
>>> cnx.cmd_query('KILL 123')

6.9.2.13 MySQLConnection.cmd_query() Method

Syntax:

cnx.cmd_query(statement)

This method sends the given statement to the MySQL server and returns a result. To send multiple
statements, use the cmd_query_iter() method instead.

449

https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_super

connection.MySQLConnection Class

The returned dictionary contains information depending on what kind of query was executed. If the
query is a SELECT statement, the result contains information about columns. Other statements return a
dictionary containing OK or EOF packet information.

Errors received from the MySQL server are raised as exceptions. An InterfaceError is raised when
multiple results are found.

Returns a dictionary.

6.9.2.14 MySQLConnection.cmd_query_iter() Method

Syntax:

cnx.cmd_query_iter(statement)

Similar to the cmd_query() method, but returns a generator object to iterate through results.
Use cmd_query_iter() when sending multiple statements, and separate the statements with
semicolons.

The following example shows how to iterate through the results after sending multiple statements:

statement = 'SELECT 1; INSERT INTO t1 VALUES (); SELECT 2'
for result in cnx.cmd_query_iter(statement):
 if 'columns' in result:
 columns = result['columns']
 rows = cnx.get_rows()
 else:
 # do something useful with INSERT result

Returns a generator object.

6.9.2.15 MySQLConnection.cmd_quit() Method

This method sends a QUIT command to the MySQL server, closing the current connection. Since there
is no response from the MySQL server, the packet that was sent is returned.

6.9.2.16 MySQLConnection.cmd_refresh() Method

Syntax:

cnx.cmd_refresh(options)

Deprecation

This MySQL Server functionality is deprecated.

This method flushes tables or caches, or resets replication server information. The connected user
must have the RELOAD privilege.

The options argument should be a bitmask value constructed using constants from the
constants.RefreshOption class.

For a list of options, see Section 6.9.11, “constants.RefreshOption Class”.

Example:

>>> from mysql.connector import RefreshOption
>>> refresh = RefreshOption.LOG | RefreshOption.THREADS
>>> cnx.cmd_refresh(refresh)

6.9.2.17 MySQLConnection.cmd_reset_connection() Method

450

https://dev.mysql.com/doc/refman/8.0/en/select.html

connection.MySQLConnection Class

Syntax:

cnx.cmd_reset_connection()

Resets the connection by sending a COM_RESET_CONNECTION command to the server to clear the
session state.

This method permits the session state to be cleared without reauthenticating. For MySQL servers older
than 5.7.3 (when COM_RESET_CONNECTION was introduced), the reset_session() method can be
used instead. That method resets the session state by reauthenticating, which is more expensive.

This method was added in Connector/Python 1.2.1.

6.9.2.18 MySQLConnection.cmd_shutdown() Method

Deprecation

This MySQL Server functionality is deprecated.

Asks the database server to shut down. The connected user must have the SHUTDOWN privilege.

Returns a dictionary containing the OK packet information.

6.9.2.19 MySQLConnection.cmd_statistics() Method

Returns a dictionary containing information about the MySQL server including uptime in seconds and
the number of running threads, questions, reloads, and open tables.

6.9.2.20 MySQLConnection.disconnect() Method

This method tries to send a QUIT command and close the socket. It raises no exceptions.

MySQLConnection.close() is a synonymous method name and more commonly used.

To shut down the connection without sending a QUIT command first, use shutdown().

6.9.2.21 MySQLConnection.get_row() Method

This method retrieves the next row of a query result set, returning a tuple.

The tuple returned by get_row() consists of:

• The row as a tuple containing byte objects, or None when no more rows are available.

• EOF packet information as a dictionary containing status_flag and warning_count, or None
when the row returned is not the last row.

The get_row() method is used by MySQLCursor to fetch rows.

6.9.2.22 MySQLConnection.get_rows() Method

Syntax:

cnx.get_rows(count=None)

This method retrieves all or remaining rows of a query result set, returning a tuple containing the rows
as sequences and the EOF packet information. The count argument can be used to obtain a given
number of rows. If count is not specified or is None, all rows are retrieved.

The tuple returned by get_rows() consists of:

451

connection.MySQLConnection Class

• A list of tuples containing the row data as byte objects, or an empty list when no rows are available.

• EOF packet information as a dictionary containing status_flag and warning_count.

An InterfaceError is raised when all rows have been retrieved.

MySQLCursor uses the get_rows() method to fetch rows.

Returns a tuple.

6.9.2.23 MySQLConnection.get_server_info() Method

This method returns the MySQL server information verbatim as a string, for example '5.6.11-log',
or None when not connected.

6.9.2.24 MySQLConnection.get_server_version() Method

This method returns the MySQL server version as a tuple, or None when not connected.

6.9.2.25 MySQLConnection.is_connected() Method

Reports whether the connection to MySQL Server is available.

This method checks whether the connection to MySQL is available using the ping() method, but unlike
ping(), is_connected() returns True when the connection is available, False otherwise.

6.9.2.26 MySQLConnection.isset_client_flag() Method

Syntax:

cnx.isset_client_flag(flag)

This method returns True if the client flag was set, False otherwise.

6.9.2.27 MySQLConnection.ping() Method

Syntax:

cnx.ping(reconnect=False, attempts=1, delay=0)

Check whether the connection to the MySQL server is still available.

When reconnect is set to True, one or more attempts are made to try to reconnect to the MySQL
server, and these options are forwarded to the reconnect()>method. Use the delay argument
(seconds) if you want to wait between each retry.

When the connection is not available, an InterfaceError is raised. Use the is_connected() method
to check the connection without raising an error.

Raises InterfaceError on errors.

6.9.2.28 MySQLConnection.reconnect() Method

Syntax:

cnx.reconnect(attempts=1, delay=0)

Attempt to reconnect to the MySQL server.

The argument attempts specifies the number of times a reconnect is tried. The delay argument is
the number of seconds to wait between each retry.

452

connection.MySQLConnection Class

You might set the number of attempts higher and use a longer delay when you expect the MySQL
server to be down for maintenance, or when you expect the network to be temporarily unavailable.

6.9.2.29 MySQLConnection.reset_session() Method

Syntax:

cnx.reset_session(user_variables = None, session_variables = None)

Resets the connection by reauthenticating to clear the session state. user_variables, if given, is a
dictionary of user variable names and values. session_variables, if given, is a dictionary of system
variable names and values. The method sets each variable to the given value.

Example:

user_variables = {'var1': '1', 'var2': '10'}
session_variables = {'wait_timeout': 100000, 'sql_mode': 'TRADITIONAL'}
self.cnx.reset_session(user_variables, session_variables)

This method resets the session state by reauthenticating. For MySQL servers 5.7 or higher, the
cmd_reset_connection() method is a more lightweight alternative.

This method was added in Connector/Python 1.2.1.

6.9.2.30 MySQLConnection.rollback() Method

This method sends a ROLLBACK statement to the MySQL server, undoing all data changes from the
current transaction. By default, Connector/Python does not autocommit, so it is possible to cancel
transactions when using transactional storage engines such as InnoDB.

>>> cursor.execute("INSERT INTO employees (first_name) VALUES (%s), (%s)", ('Jane', 'Mary'))
>>> cnx.rollback()

To commit modifications, see the commit() method.

6.9.2.31 MySQLConnection.set_charset_collation() Method

Syntax:

cnx.set_charset_collation(charset=None, collation=None)

This method sets the character set and collation to be used for the current connection. The charset
argument can be either the name of a character set, or the numerical equivalent as defined in
constants.CharacterSet.

When collation is None, the default collation for the character set is used.

In the following example, we set the character set to latin1 and the collation to
latin1_swedish_ci (the default collation for: latin1):

>>> cnx = mysql.connector.connect(user='scott')
>>> cnx.set_charset_collation('latin1')

Specify a given collation as follows:

>>> cnx = mysql.connector.connect(user='scott')
>>> cnx.set_charset_collation('latin1', 'latin1_general_ci')

6.9.2.32 MySQLConnection.set_client_flags() Method

453

https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_commit

connection.MySQLConnection Class

Syntax:

cnx.set_client_flags(flags)

This method sets the client flags to use when connecting to the MySQL server, and returns the new
value as an integer. The flags argument can be either an integer or a sequence of valid client flag
values (see Section 6.9.7, “constants.ClientFlag Class”).

If flags is a sequence, each item in the sequence sets the flag when the value is positive or unsets it
when negative. For example, to unset LONG_FLAG and set the FOUND_ROWS flags:

>>> from mysql.connector.constants import ClientFlag
>>> cnx.set_client_flags([ClientFlag.FOUND_ROWS, -ClientFlag.LONG_FLAG])
>>> cnx.reconnect()

Note

Client flags are only set or used when connecting to the MySQL server. It is
therefore necessary to reconnect after making changes.

6.9.2.33 MySQLConnection.shutdown() Method

This method closes the socket. It raises no exceptions.

Unlike disconnect(), shutdown() closes the client connection without attempting to send a QUIT
command to the server first. Thus, it will not block if the connection is disrupted for some reason such
as network failure.

shutdown() was added in Connector/Python 2.0.1.

6.9.2.34 MySQLConnection.start_transaction() Method

This method starts a transaction. It accepts arguments indicating whether to use a consistent snapshot,
which transaction isolation level to use, and the transaction access mode:

cnx.start_transaction(consistent_snapshot=bool,
 isolation_level=level,
 readonly=access_mode)

The default consistent_snapshot value is False. If the value is True, Connector/Python sends
WITH CONSISTENT SNAPSHOT with the statement. MySQL ignores this for isolation levels for which
that option does not apply.

The default isolation_level value is None, and permitted values are 'READ UNCOMMITTED',
'READ COMMITTED', 'REPEATABLE READ', and 'SERIALIZABLE'. If the isolation_level
value is None, no isolation level is sent, so the default level applies.

The readonly argument can be True to start the transaction in READ ONLY mode or False to start
it in READ WRITE mode. If readonly is omitted, the server's default access mode is used. For details
about transaction access mode, see the description for the START TRANSACTION statement at START
TRANSACTION, COMMIT, and ROLLBACK Statements. If the server is older than MySQL 5.6.5, it
does not support setting the access mode and Connector/Python raises a ValueError.

Invoking start_transaction() raises a ProgrammingError if invoked while a transaction is
currently in progress. This differs from executing a START TRANSACTION SQL statement while a
transaction is in progress; the statement implicitly commits the current transaction.

To determine whether a transaction is active for the connection, use the in_transaction property.

start_transaction() was added in MySQL Connector/Python 1.1.0. The readonly argument
was added in Connector/Python 1.1.5.

454

https://dev.mysql.com/doc/refman/8.0/en/commit.html
https://dev.mysql.com/doc/refman/8.0/en/commit.html
https://dev.mysql.com/doc/refman/8.0/en/commit.html

connection.MySQLConnection Class

6.9.2.35 MySQLConnection.autocommit Property

This property can be assigned a value of True or False to enable or disable the autocommit feature
of MySQL. The property can be invoked to retrieve the current autocommit setting.

Note

Autocommit is disabled by default when connecting through Connector/Python.
This can be enabled using the autocommit connection parameter.

When the autocommit is turned off, you must commit transactions when using transactional storage
engines such as InnoDB or NDBCluster.

>>> cnx.autocommit
False
>>> cnx.autocommit = True
>>> cnx.autocommit
True

6.9.2.36 MySQLConnection.unread_results Property

Indicates whether there is an unread result. It is set to False if there is not an unread result, otherwise
True. This is used by cursors to check whether another cursor still needs to retrieve its result set.

Do not set the value of this property, as only the connector should change the value. In other words,
treat this as a read-only property.

6.9.2.37 MySQLConnection.can_consume_results Property

This property indicates the value of the consume_results connection parameter that controls
whether result sets produced by queries are automatically read and discarded. See Section 6.7.1,
“Connector/Python Connection Arguments”.

This method was added in Connector/Python 2.1.1.

6.9.2.38 MySQLConnection.charset Property

This property returns a string indicating which character set is used for the connection, whether or not it
is connected.

6.9.2.39 MySQLConnection.collation Property

This property returns a string indicating which collation is used for the connection, whether or not it is
connected.

6.9.2.40 MySQLConnection.connection_id Property

This property returns the integer connection ID (thread ID or session ID) for the current connection or
None when not connected.

6.9.2.41 MySQLConnection.database Property

This property sets the current (default) database by executing a USE statement. The property can also
be used to retrieve the current database name.

>>> cnx.database = 'test'
>>> cnx.database = 'mysql'
>>> cnx.database
u'mysql'

455

connection.MySQLConnection Class

Returns a string.

6.9.2.42 MySQLConnection.get_warnings Property

This property can be assigned a value of True or False to enable or disable whether warnings should
be fetched automatically. The default is False (default). The property can be invoked to retrieve the
current warnings setting.

Fetching warnings automatically can be useful when debugging queries. Cursors make warnings
available through the method MySQLCursor.fetchwarnings().

>>> cnx.get_warnings = True
>>> cursor.execute('SELECT "a"+1')
>>> cursor.fetchall()
[(1.0,)]
>>> cursor.fetchwarnings()
[(u'Warning', 1292, u"Truncated incorrect DOUBLE value: 'a'")]

Returns True or False.

6.9.2.43 MySQLConnection.in_transaction Property

This property returns True or False to indicate whether a transaction is active for the connection. The
value is True regardless of whether you start a transaction using the start_transaction() API
call or by directly executing an SQL statement such as START TRANSACTION or BEGIN.

>>> cnx.start_transaction()
>>> cnx.in_transaction
True
>>> cnx.commit()
>>> cnx.in_transaction
False

in_transaction was added in MySQL Connector/Python 1.1.0.

6.9.2.44 MySQLConnection.raise_on_warnings Property

This property can be assigned a value of True or False to enable or disable whether warnings should
raise exceptions. The default is False (default). The property can be invoked to retrieve the current
exceptions setting.

Setting raise_on_warnings also sets get_warnings because warnings need to be fetched so they
can be raised as exceptions.

Note

You might always want to set the SQL mode if you would like to have the
MySQL server directly report warnings as errors (see Section 6.9.2.47,
“MySQLConnection.sql_mode Property”). It is also good to use transactional
engines so transactions can be rolled back when catching the exception.

Result sets needs to be fetched completely before any exception can be raised. The following example
shows the execution of a query that produces a warning:

>>> cnx.raise_on_warnings = True
>>> cursor.execute('SELECT "a"+1')
>>> cursor.fetchall()

456

https://dev.mysql.com/doc/refman/8.0/en/commit.html
https://dev.mysql.com/doc/refman/8.0/en/commit.html

connection.MySQLConnection Class

..
mysql.connector.errors.DataError: 1292: Truncated incorrect DOUBLE value: 'a'

Returns True or False.

6.9.2.45 MySQLConnection.server_host Property

This read-only property returns the host name or IP address used for connecting to the MySQL server.

Returns a string.

6.9.2.46 MySQLConnection.server_port Property

This read-only property returns the TCP/IP port used for connecting to the MySQL server.

Returns an integer.

6.9.2.47 MySQLConnection.sql_mode Property

This property is used to retrieve and set the SQL Modes for the current connection. The value should
be a list of different modes separated by comma (","), or a sequence of modes, preferably using the
constants.SQLMode class.

To unset all modes, pass an empty string or an empty sequence.

>>> cnx.sql_mode = 'TRADITIONAL,NO_ENGINE_SUBSTITUTION'
>>> cnx.sql_mode.split(',')
[u'STRICT_TRANS_TABLES', u'STRICT_ALL_TABLES', u'NO_ZERO_IN_DATE',
u'NO_ZERO_DATE', u'ERROR_FOR_DIVISION_BY_ZERO', u'TRADITIONAL',
u'NO_AUTO_CREATE_USER', u'NO_ENGINE_SUBSTITUTION']
>>> from mysql.connector.constants import SQLMode
>>> cnx.sql_mode = [SQLMode.NO_ZERO_DATE, SQLMode.REAL_AS_FLOAT]
>>> cnx.sql_mode

u'REAL_AS_FLOAT,NO_ZERO_DATE'

Returns a string.

6.9.2.48 MySQLConnection.time_zone Property

This property is used to set or retrieve the time zone session variable for the current connection.

>>> cnx.time_zone = '+00:00'
>>> cursor = cnx.cursor()
>>> cursor.execute('SELECT NOW()') ; cursor.fetchone()
(datetime.datetime(2012, 6, 15, 11, 24, 36),)
>>> cnx.time_zone = '-09:00'
>>> cursor.execute('SELECT NOW()') ; cursor.fetchone()
(datetime.datetime(2012, 6, 15, 2, 24, 44),)
>>> cnx.time_zone
u'-09:00'

Returns a string.

6.9.2.49 MySQLConnection.unix_socket Property

This read-only property returns the Unix socket file for connecting to the MySQL server.

Returns a string.

6.9.2.50 MySQLConnection.user Property

457

pooling.MySQLConnectionPool Class

This read-only property returns the user name used for connecting to the MySQL server.

Returns a string.

6.9.3 pooling.MySQLConnectionPool Class

This class provides for the instantiation and management of connection pools.

6.9.3.1 pooling.MySQLConnectionPool Constructor

Syntax:

MySQLConnectionPool(pool_name=None,
 pool_size=5,
 pool_reset_session=True,
 **kwargs)

This constructor instantiates an object that manages a connection pool.

Arguments:

• pool_name: The pool name. If this argument is not given, Connector/Python automatically
generates the name, composed from whichever of the host, port, user, and database
connection arguments are given in kwargs, in that order.

It is not an error for multiple pools to have the same name. An application that must distinguish pools
by their pool_name property should create each pool with a distinct name.

• pool_size: The pool size. If this argument is not given, the default is 5.

• pool_reset_session: Whether to reset session variables when the connection is returned to the
pool. This argument was added in Connector/Python 1.1.5. Before 1.1.5, session variables are not
reset.

• kwargs: Optional additional connection arguments, as described in Section 6.7.1, “Connector/
Python Connection Arguments”.

Example:

dbconfig = {
 "database": "test",
 "user": "joe",
}
cnxpool = mysql.connector.pooling.MySQLConnectionPool(pool_name = "mypool",
 pool_size = 3,
 **dbconfig)

6.9.3.2 MySQLConnectionPool.add_connection() Method

Syntax:

cnxpool.add_connection(cnx = None)

This method adds a new or existing MySQLConnection to the pool, or raises a PoolError if the pool
is full.

Arguments:

• cnx: The MySQLConnection object to be added to the pool. If this argument is missing, the pool
creates a new connection and adds it.

Example:

cnxpool.add_connection() # add new connection to pool

458

pooling.PooledMySQLConnection Class

cnxpool.add_connection(cnx) # add existing connection to pool

6.9.3.3 MySQLConnectionPool.get_connection() Method

Syntax:

cnxpool.get_connection()

This method returns a connection from the pool, or raises a PoolError if no connections are
available.

Example:

cnx = cnxpool.get_connection()

6.9.3.4 MySQLConnectionPool.set_config() Method

Syntax:

cnxpool.set_config(**kwargs)

This method sets the configuration parameters for connections in the pool. Connections requested
from the pool after the configuration change use the new parameters. Connections obtained before the
change remain unaffected, but when they are closed (returned to the pool) are reopened with the new
parameters before being returned by the pool for subsequent connection requests.

Arguments:

• kwargs: Connection arguments.

Example:

dbconfig = {
 "database": "performance_schema",
 "user": "admin",
 "password": "password",
}
cnxpool.set_config(**dbconfig)

6.9.3.5 MySQLConnectionPool.pool_name Property

Syntax:

cnxpool.pool_name

This property returns the connection pool name.

Example:

name = cnxpool.pool_name

6.9.4 pooling.PooledMySQLConnection Class

This class is used by MySQLConnectionPool to return a pooled connection instance. It is also the
class used for connections obtained with calls to the connect() method that name a connection pool
(see Section 6.8.4, “Connector/Python Connection Pooling”).

PooledMySQLConnection pooled connection objects are similar to MySQLConnection unpooled
connection objects, with these differences:

• To release a pooled connection obtained from a connection pool, invoke its close() method, just
as for any unpooled connection. However, for a pooled connection, close() does not actually close
the connection but returns it to the pool and makes it available for subsequent connection requests.

459

cursor.MySQLCursor Class

• A pooled connection cannot be reconfigured using its config() method. Connection changes must
be done through the pool object itself, as described by Section 6.8.4, “Connector/Python Connection
Pooling”.

• A pooled connection has a pool_name property that returns the pool name.

6.9.4.1 pooling.PooledMySQLConnection Constructor

Syntax:

PooledMySQLConnection(cnxpool, cnx)

This constructor takes connection pool and connection arguments and returns a pooled connection. It
is used by the MySQLConnectionPool class.

Arguments:

• cnxpool: A MySQLConnectionPool instance.

• cnx: A MySQLConnection instance.

Example:

pcnx = mysql.connector.pooling.PooledMySQLConnection(cnxpool, cnx)

6.9.4.2 PooledMySQLConnection.close() Method

Syntax:

cnx.close()

Returns a pooled connection to its connection pool.

For a pooled connection, close() does not actually close it but returns it to the pool and makes it
available for subsequent connection requests.

If the pool configuration parameters are changed, a returned connection is closed and reopened with
the new configuration before being returned from the pool again in response to a connection request.

6.9.4.3 PooledMySQLConnection.config() Method

For pooled connections, the config() method raises a PoolError exception. Configuration for
pooled connections should be done using the pool object.

6.9.4.4 PooledMySQLConnection.pool_name Property

Syntax:

cnx.pool_name

This property returns the name of the connection pool to which the connection belongs.

Example:

cnx = cnxpool.get_connection()
name = cnx.pool_name

6.9.5 cursor.MySQLCursor Class

The MySQLCursor class instantiates objects that can execute operations such as SQL statements.
Cursor objects interact with the MySQL server using a MySQLConnection object.

To create a cursor, use the cursor() method of a connection object:

460

cursor.MySQLCursor Class

import mysql.connector
cnx = mysql.connector.connect(database='world')
cursor = cnx.cursor()

Several related classes inherit from MySQLCursor. To create a cursor of one of these types, pass the
appropriate arguments to cursor():

• MySQLCursorBuffered creates a buffered cursor. See Section 6.9.6.1,
“cursor.MySQLCursorBuffered Class”.

cursor = cnx.cursor(buffered=True)

• MySQLCursorRaw creates a raw cursor. See Section 6.9.6.2, “cursor.MySQLCursorRaw Class”.

cursor = cnx.cursor(raw=True)

• MySQLCursorBufferedRaw creates a buffered raw cursor. See Section 6.9.6.3,
“cursor.MySQLCursorBufferedRaw Class”.

cursor = cnx.cursor(raw=True, buffered=True)

• MySQLCursorDict creates a cursor that returns rows as dictionaries. See Section 6.9.6.4,
“cursor.MySQLCursorDict Class”.

cursor = cnx.cursor(dictionary=True)

• MySQLCursorBufferedDict creates a buffered cursor that returns rows as dictionaries. See
Section 6.9.6.5, “cursor.MySQLCursorBufferedDict Class”.

cursor = cnx.cursor(dictionary=True, buffered=True)

• MySQLCursorNamedTuple creates a cursor that returns rows as named tuples. See
Section 6.9.6.6, “cursor.MySQLCursorNamedTuple Class”.

cursor = cnx.cursor(named_tuple=True)

• MySQLCursorBufferedNamedTuple creates a buffered cursor that returns rows as named tuples.
See Section 6.9.6.7, “cursor.MySQLCursorBufferedNamedTuple Class”.

cursor = cnx.cursor(named_tuple=True, buffered=True)

• MySQLCursorPrepared creates a cursor for executing prepared statements. See Section 6.9.6.8,
“cursor.MySQLCursorPrepared Class”.

cursor = cnx.cursor(prepared=True)

6.9.5.1 cursor.MySQLCursor Constructor

In most cases, the MySQLConnection cursor() method is used to instantiate a MySQLCursor
object:

import mysql.connector
cnx = mysql.connector.connect(database='world')
cursor = cnx.cursor()

It is also possible to instantiate a cursor by passing a MySQLConnection object to MySQLCursor:

import mysql.connector
from mysql.connector.cursor import MySQLCursor
cnx = mysql.connector.connect(database='world')
cursor = MySQLCursor(cnx)

The connection argument is optional. If omitted, the cursor is created but its execute() method raises
an exception.

6.9.5.2 MySQLCursor.add_attribute() Method

461

cursor.MySQLCursor Class

Syntax:

cursor.add_attribute(name, value)

Adds a new named query attribute to the list, as part of MySQL server's Query Attributes functionality.

name: The name must be a string, but no other validation checks are made; attributes are sent as is to
the server and errors, if any, will be detected and reported by the server.

value: a value converted to the MySQL Binary Protocol, similar to how prepared statement
parameters are converted. An error is reported if the conversion fails.

Query attributes must be enabled on the server, and are disabled by default. A warning is logged when
setting query attributes server connection that does not support them. See also Prerequisites for Using
Query Attributes for enabling the query_attributes MySQL server component.

Example query attribute usage:

Each invocation of `add_attribute` method will add a new query attribute:
 cur.add_attribute("foo", 2)
 cur.execute("SELECT first_name, last_name FROM clients")
 # The query above sent attibute "foo" with value 2.
 cur.add_attribute(*("bar", "3"))
 cur.execute("SELECT * FROM products WHERE price < ?", 10)
 # The query above sent attibutes ("foo", 2) and ("bar", "3").
 my_attributes = [("page_name", "root"), ("previous_page", "login")]
 for attribute_tuple in my_attributes:
 cur.add_attribute(*attribute_tuple)
 cur.execute("SELECT * FROM offers WHERE publish = ?", 0)
 # The query above sent 4 attibutes.
To check the current query attributes:
 print(cur.get_attributes())
 # prints:
 [("foo", 2), ("bar", "3"), ("page_name", "root"), ("previous_page", "login")]
Query attributes are not cleared until the cursor is closed or
of the clear_attributes() method is invoked:

 cur.clear_attributes()
 print(cur.get_attributes())
 # prints:
 []
 cur.execute("SELECT first_name, last_name FROM clients")
 # The query above did not send any attibute.

This method was added in Connector/Python 8.0.26.

6.9.5.3 MySQLCursor.clear_attributes() Method

Syntax:

cursor.clear_attributes()

Clear the list of query attributes on the connector's side, as set by Section 6.9.5.2,
“MySQLCursor.add_attribute() Method”.

This method was added in Connector/Python 8.0.26.

6.9.5.4 MySQLCursor.get_attributes() Method

Syntax:

cursor.get_attributes()

Return a list of existing query attributes, as set by Section 6.9.5.2, “MySQLCursor.add_attribute()
Method”.

This method was added in Connector/Python 8.0.26.

462

https://dev.mysql.com/doc/refman/8.0/en/query-attributes.html
https://dev.mysql.com/doc/refman/8.0/en/query-attributes.html#query-attributes-prerequisites
https://dev.mysql.com/doc/refman/8.0/en/query-attributes.html#query-attributes-prerequisites

cursor.MySQLCursor Class

6.9.5.5 MySQLCursor.callproc() Method

Syntax:

result_args = cursor.callproc(proc_name, args=())

This method calls the stored procedure named by the proc_name argument. The args sequence
of parameters must contain one entry for each argument that the procedure expects. callproc()
returns a modified copy of the input sequence. Input parameters are left untouched. Output and input/
output parameters may be replaced with new values.

Result sets produced by the stored procedure are automatically fetched and stored as
MySQLCursorBuffered instances. For more information about using these result sets, see
stored_results().

Suppose that a stored procedure takes two parameters, multiplies the values, and returns the product:

CREATE PROCEDURE multiply(IN pFac1 INT, IN pFac2 INT, OUT pProd INT)
BEGIN
 SET pProd := pFac1 * pFac2;
END;

The following example shows how to execute the multiply() procedure:

>>> args = (5, 6, 0) # 0 is to hold value of the OUT parameter pProd
>>> cursor.callproc('multiply', args)
('5', '6', 30L)

Connector/Python 1.2.1 and up permits parameter types to be specified. To do this, specify a
parameter as a two-item tuple consisting of the parameter value and type. Suppose that a procedure
sp1() has this definition:

CREATE PROCEDURE sp1(IN pStr1 VARCHAR(20), IN pStr2 VARCHAR(20),
 OUT pConCat VARCHAR(100))
BEGIN
 SET pConCat := CONCAT(pStr1, pStr2);
END;

To execute this procedure from Connector/Python, specifying a type for the OUT parameter, do this:

args = ('ham', 'eggs', (0, 'CHAR'))
result_args = cursor.callproc('sp1', args)
print(result_args[2])

6.9.5.6 MySQLCursor.close() Method

Syntax:

cursor.close()

Use close() when you are done using a cursor. This method closes the cursor, resets all results, and
ensures that the cursor object has no reference to its original connection object.

6.9.5.7 MySQLCursor.execute() Method

Syntax:

cursor.execute(operation, params=None, multi=False)
iterator = cursor.execute(operation, params=None, multi=True)

This method executes the given database operation (query or command). The parameters found
in the tuple or dictionary params are bound to the variables in the operation. Specify variables using
%s or %(name)s parameter style (that is, using format or pyformat style). execute() returns an
iterator if multi is True.

463

cursor.MySQLCursor Class

Note

In Python, a tuple containing a single value must include a comma. For
example, ('abc') is evaluated as a scalar while ('abc',) is evaluated as a tuple.

This example inserts information about a new employee, then selects the data for that person. The
statements are executed as separate execute() operations:

insert_stmt = (
 "INSERT INTO employees (emp_no, first_name, last_name, hire_date) "
 "VALUES (%s, %s, %s, %s)"
)
data = (2, 'Jane', 'Doe', datetime.date(2012, 3, 23))
cursor.execute(insert_stmt, data)
select_stmt = "SELECT * FROM employees WHERE emp_no = %(emp_no)s"
cursor.execute(select_stmt, { 'emp_no': 2 })

The data values are converted as necessary from Python objects to something MySQL understands. In
the preceding example, the datetime.date() instance is converted to '2012-03-23'.

If multi is set to True, execute() is able to execute multiple statements specified in the
operation string. It returns an iterator that enables processing the result of each statement. However,
using parameters does not work well in this case, and it is usually a good idea to execute each
statement on its own.

The following example selects and inserts data in a single execute() operation and displays the
result of each statement:

operation = 'SELECT 1; INSERT INTO t1 VALUES (); SELECT 2'
for result in cursor.execute(operation, multi=True):
 if result.with_rows:
 print("Rows produced by statement '{}':".format(
 result.statement))
 print(result.fetchall())
 else:
 print("Number of rows affected by statement '{}': {}".format(
 result.statement, result.rowcount))

If the connection is configured to fetch warnings, warnings generated by the operation are available
through the MySQLCursor.fetchwarnings() method.

6.9.5.8 MySQLCursor.executemany() Method

Syntax:

cursor.executemany(operation, seq_of_params)

This method prepares a database operation (query or command) and executes it against all
parameter sequences or mappings found in the sequence seq_of_params.

Note

In Python, a tuple containing a single value must include a comma. For
example, ('abc') is evaluated as a scalar while ('abc',) is evaluated as a tuple.

In most cases, the executemany() method iterates through the sequence of parameters, each time
passing the current parameters to the execute() method.

An optimization is applied for inserts: The data values given by the parameter sequences are batched
using multiple-row syntax. The following example inserts three records:

data = [
 ('Jane', date(2005, 2, 12)),
 ('Joe', date(2006, 5, 23)),
 ('John', date(2010, 10, 3)),

464

cursor.MySQLCursor Class

]
stmt = "INSERT INTO employees (first_name, hire_date) VALUES (%s, %s)"
cursor.executemany(stmt, data)

For the preceding example, the INSERT statement sent to MySQL is:

INSERT INTO employees (first_name, hire_date)
VALUES ('Jane', '2005-02-12'), ('Joe', '2006-05-23'), ('John', '2010-10-03')

With the executemany() method, it is not possible to specify multiple statements to execute in the
operation argument. Doing so raises an InternalError exception. Consider using execute()
with multi=True instead.

6.9.5.9 MySQLCursor.fetchall() Method

Syntax:

rows = cursor.fetchall()

The method fetches all (or all remaining) rows of a query result set and returns a list of tuples. If no
more rows are available, it returns an empty list.

The following example shows how to retrieve the first two rows of a result set, and then retrieve any
remaining rows:

>>> cursor.execute("SELECT * FROM employees ORDER BY emp_no")
>>> head_rows = cursor.fetchmany(size=2)
>>> remaining_rows = cursor.fetchall()

You must fetch all rows for the current query before executing new statements using the same
connection.

6.9.5.10 MySQLCursor.fetchmany() Method

Syntax:

rows = cursor.fetchmany(size=1)

This method fetches the next set of rows of a query result and returns a list of tuples. If no more rows
are available, it returns an empty list.

The number of rows returned can be specified using the size argument, which defaults to one. Fewer
rows are returned if fewer rows are available than specified.

You must fetch all rows for the current query before executing new statements using the same
connection.

6.9.5.11 MySQLCursor.fetchone() Method

Syntax:

row = cursor.fetchone()

This method retrieves the next row of a query result set and returns a single sequence, or None if
no more rows are available. By default, the returned tuple consists of data returned by the MySQL
server, converted to Python objects. If the cursor is a raw cursor, no such conversion occurs; see
Section 6.9.6.2, “cursor.MySQLCursorRaw Class”.

The fetchone() method is used by fetchall() and fetchmany(). It is also used when a cursor is used
as an iterator.

The following example shows two equivalent ways to process a query result. The first uses
fetchone() in a while loop, the second uses the cursor as an iterator:

465

https://dev.mysql.com/doc/refman/8.0/en/insert.html

cursor.MySQLCursor Class

Using a while loop
cursor.execute("SELECT * FROM employees")
row = cursor.fetchone()
while row is not None:
 print(row)
 row = cursor.fetchone()
Using the cursor as iterator
cursor.execute("SELECT * FROM employees")
for row in cursor:
 print(row)

You must fetch all rows for the current query before executing new statements using the same
connection.

6.9.5.12 MySQLCursor.fetchwarnings() Method

Syntax:

tuples = cursor.fetchwarnings()

This method returns a list of tuples containing warnings generated by the previously executed
operation. To set whether to fetch warnings, use the connection's get_warnings property.

The following example shows a SELECT statement that generates a warning:

>>> cnx.get_warnings = True
>>> cursor.execute("SELECT 'a'+1")
>>> cursor.fetchall()
[(1.0,)]
>>> cursor.fetchwarnings()
[(u'Warning', 1292, u"Truncated incorrect DOUBLE value: 'a'")]

When warnings are generated, it is possible to raise errors instead, using the connection's
raise_on_warnings property.

6.9.5.13 MySQLCursor.stored_results() Method

Syntax:

iterator = cursor.stored_results()

This method returns a list iterator object that can be used to process result sets produced by a stored
procedure executed using the callproc() method. The result sets remain available until you use the
cursor to execute another operation or call another stored procedure.

The following example executes a stored procedure that produces two result sets, then uses
stored_results() to retrieve them:

>>> cursor.callproc('myproc')
()
>>> for result in cursor.stored_results():
... print result.fetchall()
...
[(1,)]
[(2,)]

6.9.5.14 MySQLCursor.column_names Property

Syntax:

sequence = cursor.column_names

This read-only property returns the column names of a result set as sequence of Unicode strings.

The following example shows how to create a dictionary from a tuple containing data with keys using
column_names:

466

https://dev.mysql.com/doc/refman/8.0/en/select.html

cursor.MySQLCursor Class

cursor.execute("SELECT last_name, first_name, hire_date "
 "FROM employees WHERE emp_no = %s", (123,))
row = dict(zip(cursor.column_names, cursor.fetchone()))
print("{last_name}, {first_name}: {hire_date}".format(row))

Alternatively, as of Connector/Python 2.0.0, you can fetch rows as dictionaries directly; see
Section 6.9.6.4, “cursor.MySQLCursorDict Class”.

6.9.5.15 MySQLCursor.description Property

Syntax:

tuples = cursor.description

This read-only property returns a list of tuples describing the columns in a result set. Each tuple in the
list contains values as follows:

(column_name,
 type,
 None,
 None,
 None,
 None,
 null_ok,
 column_flags)

The following example shows how to interpret description tuples:

import mysql.connector
from mysql.connector import FieldType
...
cursor.execute("SELECT emp_no, last_name, hire_date "
 "FROM employees WHERE emp_no = %s", (123,))
for i in range(len(cursor.description)):
 print("Column {}:".format(i+1))
 desc = cursor.description[i]
 print(" column_name = {}".format(desc[0]))
 print(" type = {} ({})".format(desc[1], FieldType.get_info(desc[1])))
 print(" null_ok = {}".format(desc[6]))
 print(" column_flags = {}".format(desc[7]))

The output looks like this:

Column 1:
 column_name = emp_no
 type = 3 (LONG)
 null_ok = 0
 column_flags = 20483
Column 2:
 column_name = last_name
 type = 253 (VAR_STRING)
 null_ok = 0
 column_flags = 4097
Column 3:
 column_name = hire_date
 type = 10 (DATE)
 null_ok = 0
 column_flags = 4225

The column_flags value is an instance of the constants.FieldFlag class. To see how to
interpret it, do this:

>>> from mysql.connector import FieldFlag
>>> FieldFlag.desc

6.9.5.16 MySQLCursor.lastrowid Property

Syntax:

467

cursor.MySQLCursor Class

id = cursor.lastrowid

This read-only property returns the value generated for an AUTO_INCREMENT column by the previous
INSERT or UPDATE statement or None when there is no such value available. For example, if you
perform an INSERT into a table that contains an AUTO_INCREMENT column, lastrowid returns the
AUTO_INCREMENT value for the new row. For an example, see Section 6.5.3, “Inserting Data Using
Connector/Python”.

The lastrowid property is like the mysql_insert_id() C API function; see mysql_insert_id().

6.9.5.17 MySQLCursor.rowcount Property

Syntax:

count = cursor.rowcount

This read-only property returns the number of rows returned for SELECT statements, or the number of
rows affected by DML statements such as INSERT or UPDATE. For an example, see Section 6.9.5.7,
“MySQLCursor.execute() Method”.

For nonbuffered cursors, the row count cannot be known before the rows have been fetched. In this
case, the number of rows is -1 immediately after query execution and is incremented as rows are
fetched.

The rowcount property is like the mysql_affected_rows() C API function; see
mysql_affected_rows().

6.9.5.18 MySQLCursor.statement Property

Syntax:

str = cursor.statement

This read-only property returns the last executed statement as a string. The statement property can
be useful for debugging and displaying what was sent to the MySQL server.

The string can contain multiple statements if a multiple-statement string was executed. This occurs for
execute() with multi=True. In this case, the statement property contains the entire statement
string and the execute() call returns an iterator that can be used to process results from the
individual statements. The statement property for this iterator shows statement strings for the
individual statements.

6.9.5.19 MySQLCursor.with_rows Property

Syntax:

boolean = cursor.with_rows

This read-only property returns True or False to indicate whether the most recently executed
operation could have produced rows.

The with_rows property is useful when it is necessary to determine whether a statement produces
a result set and you need to fetch rows. The following example retrieves the rows returned by the
SELECT statements, but reports only the affected-rows value for the UPDATE statement:

import mysql.connector
cnx = mysql.connector.connect(user='scott', database='test')
cursor = cnx.cursor()
operation = 'SELECT 1; UPDATE t1 SET c1 = 2; SELECT 2'
for result in cursor.execute(operation, multi=True):
 if result.with_rows:
 result.fetchall()
 else:

468

https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/c-api/8.2/en/mysql-insert-id.html
https://dev.mysql.com/doc/c-api/8.2/en/mysql-insert-id.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/c-api/8.2/en/mysql-affected-rows.html
https://dev.mysql.com/doc/c-api/8.2/en/mysql-affected-rows.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/update.html

Subclasses cursor.MySQLCursor

 print("Number of affected rows: {}".format(result.rowcount))

6.9.6 Subclasses cursor.MySQLCursor

The cursor classes described in the following sections inherit from the MySQLCursor class, which is
described in Section 6.9.5, “cursor.MySQLCursor Class”.

6.9.6.1 cursor.MySQLCursorBuffered Class

The MySQLCursorBuffered class inherits from MySQLCursor.

After executing a query, a MySQLCursorBuffered cursor fetches the entire result set from the server
and buffers the rows.

For queries executed using a buffered cursor, row-fetching methods such as fetchone() return rows
from the set of buffered rows. For nonbuffered cursors, rows are not fetched from the server until a
row-fetching method is called. In this case, you must be sure to fetch all rows of the result set before
executing any other statements on the same connection, or an InternalError (Unread result found)
exception will be raised.

MySQLCursorBuffered can be useful in situations where multiple queries, with small result sets,
need to be combined or computed with each other.

To create a buffered cursor, use the buffered argument when calling a connection's cursor()
method. Alternatively, to make all cursors created from the connection buffered by default, use the
buffered connection argument.

Example:

import mysql.connector
cnx = mysql.connector.connect()
Only this particular cursor will buffer results
cursor = cnx.cursor(buffered=True)
All cursors created from cnx2 will be buffered by default
cnx2 = mysql.connector.connect(buffered=True)

For a practical use case, see Section 6.6.1, “Tutorial: Raise Employee's Salary Using a Buffered
Cursor”.

6.9.6.2 cursor.MySQLCursorRaw Class

The MySQLCursorRaw class inherits from MySQLCursor.

A MySQLCursorRaw cursor skips the conversion from MySQL data types to Python types when
fetching rows. A raw cursor is usually used to get better performance or when you want to do the
conversion yourself.

To create a raw cursor, use the raw argument when calling a connection's cursor() method.
Alternatively, to make all cursors created from the connection raw by default, use the raw connection
argument.

Example:

import mysql.connector
cnx = mysql.connector.connect()
Only this particular cursor will be raw
cursor = cnx.cursor(raw=True)
All cursors created from cnx2 will be raw by default
cnx2 = mysql.connector.connect(raw=True)

6.9.6.3 cursor.MySQLCursorBufferedRaw Class

The MySQLCursorBufferedRaw class inherits from MySQLCursor.

469

Subclasses cursor.MySQLCursor

A MySQLCursorBufferedRaw cursor is like a MySQLCursorRaw cursor, but is buffered: After
executing a query, it fetches the entire result set from the server and buffers the rows. For information
about the implications of buffering, see Section 6.9.6.1, “cursor.MySQLCursorBuffered Class”.

To create a buffered raw cursor, use the raw and buffered arguments when calling a connection's
cursor() method. Alternatively, to make all cursors created from the connection raw and buffered by
default, use the raw and buffered connection arguments.

Example:

import mysql.connector
cnx = mysql.connector.connect()
Only this particular cursor will be raw and buffered
cursor = cnx.cursor(raw=True, buffered=True)
All cursors created from cnx2 will be raw and buffered by default
cnx2 = mysql.connector.connect(raw=True, buffered=True)

6.9.6.4 cursor.MySQLCursorDict Class

The MySQLCursorDict class inherits from MySQLCursor. This class is available as of Connector/
Python 2.0.0.

A MySQLCursorDict cursor returns each row as a dictionary. The keys for each dictionary object are
the column names of the MySQL result.

Example:

cnx = mysql.connector.connect(database='world')
cursor = cnx.cursor(dictionary=True)
cursor.execute("SELECT * FROM country WHERE Continent = 'Europe'")
print("Countries in Europe:")
for row in cursor:
 print("* {Name}".format(Name=row['Name']

The preceding code produces output like this:

Countries in Europe:
* Albania
* Andorra
* Austria
* Belgium
* Bulgaria
...

It may be convenient to pass the dictionary to format() as follows:

cursor.execute("SELECT Name, Population FROM country WHERE Continent = 'Europe'")
print("Countries in Europe with population:")
for row in cursor:
 print("* {Name}: {Population}".format(**row))

6.9.6.5 cursor.MySQLCursorBufferedDict Class

The MySQLCursorBufferedDict class inherits from MySQLCursor. This class is available as of
Connector/Python 2.0.0.

A MySQLCursorBufferedDict cursor is like a MySQLCursorDict cursor, but is buffered: After
executing a query, it fetches the entire result set from the server and buffers the rows. For information
about the implications of buffering, see Section 6.9.6.1, “cursor.MySQLCursorBuffered Class”.

To get a buffered cursor that returns dictionaries, add the buffered argument when instantiating a
new dictionary cursor:

cursor = cnx.cursor(dictionary=True, buffered=True)

6.9.6.6 cursor.MySQLCursorNamedTuple Class

470

Subclasses cursor.MySQLCursor

The MySQLCursorNamedTuple class inherits from MySQLCursor. This class is available as of
Connector/Python 2.0.0.

A MySQLCursorNamedTuple cursor returns each row as a named tuple. The attributes for each
named-tuple object are the column names of the MySQL result.

Example:

cnx = mysql.connector.connect(database='world')
cursor = cnx.cursor(named_tuple=True)
cursor.execute("SELECT * FROM country WHERE Continent = 'Europe'")
print("Countries in Europe with population:")
for row in cursor:
 print("* {Name}: {Population}".format(
 Name=row.Name,
 Population=row.Population
))

6.9.6.7 cursor.MySQLCursorBufferedNamedTuple Class

The MySQLCursorBufferedNamedTuple class inherits from MySQLCursor. This class is available
as of Connector/Python 2.0.0.

A MySQLCursorBufferedNamedTuple cursor is like a MySQLCursorNamedTuple cursor, but is
buffered: After executing a query, it fetches the entire result set from the server and buffers the rows.
For information about the implications of buffering, see Section 6.9.6.1, “cursor.MySQLCursorBuffered
Class”.

To get a buffered cursor that returns named tuples, add the buffered argument when instantiating a
new named-tuple cursor:

cursor = cnx.cursor(named_tuple=True, buffered=True)

6.9.6.8 cursor.MySQLCursorPrepared Class

The MySQLCursorPrepared class inherits from MySQLCursor.

Note

This class is available as of Connector/Python 1.1.0. The C extension supports
it as of Connector/Python 8.0.17.

In MySQL, there are two ways to execute a prepared statement:

• Use the PREPARE and EXECUTE statements.

• Use the binary client/server protocol to send and receive data. To repeatedly execute the same
statement with different data for different executions, this is more efficient than using PREPARE and
EXECUTE. For information about the binary protocol, see C API Prepared Statement Interface.

In Connector/Python, there are two ways to create a cursor that enables execution of prepared
statements using the binary protocol. In both cases, the cursor() method of the connection object
returns a MySQLCursorPrepared object:

• The simpler syntax uses a prepared=True argument to the cursor() method. This syntax is
available as of Connector/Python 1.1.2.

import mysql.connector
cnx = mysql.connector.connect(database='employees')
cursor = cnx.cursor(prepared=True)

• Alternatively, create an instance of the MySQLCursorPrepared class using the cursor_class
argument to the cursor() method. This syntax is available as of Connector/Python 1.1.0.

471

https://dev.mysql.com/doc/refman/8.0/en/prepare.html
https://dev.mysql.com/doc/refman/8.0/en/execute.html
https://dev.mysql.com/doc/refman/8.0/en/prepare.html
https://dev.mysql.com/doc/refman/8.0/en/execute.html
https://dev.mysql.com/doc/c-api/8.2/en/c-api-prepared-statement-interface.html

constants.ClientFlag Class

import mysql.connector
from mysql.connector.cursor import MySQLCursorPrepared
cnx = mysql.connector.connect(database='employees')
cursor = cnx.cursor(cursor_class=MySQLCursorPrepared)

A cursor instantiated from the MySQLCursorPrepared class works like this:

• The first time you pass a statement to the cursor's execute() method, it prepares the statement.
For subsequent invocations of execute(), the preparation phase is skipped if the statement is the
same.

• The execute() method takes an optional second argument containing a list of data values to
associate with parameter markers in the statement. If the list argument is present, there must be one
value per parameter marker.

Example:

cursor = cnx.cursor(prepared=True)
stmt = "SELECT fullname FROM employees WHERE id = %s" # (1)
cursor.execute(stmt, (5,)) # (2)
... fetch data ...
cursor.execute(stmt, (10,)) # (3)
... fetch data ...

1. The %s within the statement is a parameter marker. Do not put quote marks around parameter
markers.

2. For the first call to the execute() method, the cursor prepares the statement. If data is given in
the same call, it also executes the statement and you should fetch the data.

3. For subsequent execute() calls that pass the same SQL statement, the cursor skips the
preparation phase.

Prepared statements executed with MySQLCursorPrepared can use the format (%s) or qmark (?)
parameterization style. This differs from nonprepared statements executed with MySQLCursor, which
can use the format or pyformat parameterization style.

To use multiple prepared statements simultaneously, instantiate multiple cursors from the
MySQLCursorPrepared class.

The MySQL client/server protocol has an option to send prepared statement parameters via the
COM_STMT_SEND_LONG_DATA command. To use this from Connector/Python scripts, send the
parameter in question using the IOBase interface. Example:

from io import IOBase
...
cur = cnx.cursor(prepared=True)
cur.execute("SELECT (%s)", (io.BytesIO(bytes("A", "latin1")),))

6.9.7 constants.ClientFlag Class

This class provides constants defining MySQL client flags that can be used when the connection
is established to configure the session. The ClientFlag class is available when importing
mysql.connector.

>>> import mysql.connector
>>> mysql.connector.ClientFlag.FOUND_ROWS
2

See Section 6.9.2.32, “MySQLConnection.set_client_flags() Method” and the connection argument
client_flag.

472

constants.FieldType Class

The ClientFlag class cannot be instantiated.

6.9.8 constants.FieldType Class

This class provides all supported MySQL field or data types. They can be useful when dealing with raw
data or defining your own converters. The field type is stored with every cursor in the description for
each column.

The following example shows how to print the name of the data type for each column in a result set.

from __future__ import print_function
import mysql.connector
from mysql.connector import FieldType
cnx = mysql.connector.connect(user='scott', database='test')
cursor = cnx.cursor()
cursor.execute(
 "SELECT DATE(NOW()) AS `c1`, TIME(NOW()) AS `c2`, "
 "NOW() AS `c3`, 'a string' AS `c4`, 42 AS `c5`")
rows = cursor.fetchall()
for desc in cursor.description:
 colname = desc[0]
 coltype = desc[1]
 print("Column {} has type {}".format(
 colname, FieldType.get_info(coltype)))
cursor.close()
cnx.close()

The FieldType class cannot be instantiated.

6.9.9 constants.SQLMode Class

This class provides all known MySQL Server SQL Modes. It is mostly used when setting the SQL
modes at connection time using the connection's sql_mode property. See Section 6.9.2.47,
“MySQLConnection.sql_mode Property”.

The SQLMode class cannot be instantiated.

6.9.10 constants.CharacterSet Class

This class provides all known MySQL characters sets and their default collations. For examples, see
Section 6.9.2.31, “MySQLConnection.set_charset_collation() Method”.

The CharacterSet class cannot be instantiated.

6.9.11 constants.RefreshOption Class

This class performs various flush operations.

• RefreshOption.GRANT

Refresh the grant tables, like FLUSH PRIVILEGES.

• RefreshOption.LOG

Flush the logs, like FLUSH LOGS.

• RefreshOption.TABLES

Flush the table cache, like FLUSH TABLES.

• RefreshOption.HOSTS

Flush the host cache, like FLUSH HOSTS.

473

https://dev.mysql.com/doc/refman/8.0/en/sql-mode.html
https://dev.mysql.com/doc/refman/8.0/en/flush.html#flush-privileges
https://dev.mysql.com/doc/refman/8.0/en/flush.html#flush-logs
https://dev.mysql.com/doc/refman/8.0/en/flush.html#flush-tables
https://dev.mysql.com/doc/refman/8.0/en/flush.html#flush-hosts

Errors and Exceptions

• RefreshOption.STATUS

Reset status variables, like FLUSH STATUS.

• RefreshOption.THREADS

Flush the thread cache.

• RefreshOption.REPLICA

On a replica replication server, reset the source server information and restart the replica, like RESET
SLAVE. This constant was named "RefreshOption.SLAVE" before v8.0.23.

6.9.12 Errors and Exceptions

The mysql.connector.errors module defines exception classes for errors and warnings raised
by MySQL Connector/Python. Most classes defined in this module are available when you import
mysql.connector.

The exception classes defined in this module mostly follow the Python Database API Specification v2.0
(PEP 249). For some MySQL client or server errors it is not always clear which exception to raise. It is
good to discuss whether an error should be reclassified by opening a bug report.

MySQL Server errors are mapped with Python exception based on their SQLSTATE value (see Server
Error Message Reference). The following table shows the SQLSTATE classes and the exception
Connector/Python raises. It is, however, possible to redefine which exception is raised for each server
error. The default exception is DatabaseError.

Table 6.3 Mapping of Server Errors to Python Exceptions

SQLSTATE Class Connector/Python Exception

02 DataError

02 DataError

07 DatabaseError

08 OperationalError

0A NotSupportedError

21 DataError

22 DataError

23 IntegrityError

24 ProgrammingError

25 ProgrammingError

26 ProgrammingError

27 ProgrammingError

28 ProgrammingError

2A ProgrammingError

2B DatabaseError

2C ProgrammingError

2D DatabaseError

2E DatabaseError

33 DatabaseError

34 ProgrammingError

35 ProgrammingError

474

https://dev.mysql.com/doc/refman/8.0/en/flush.html#flush-status
https://dev.mysql.com/doc/refman/8.0/en/reset-slave.html
https://dev.mysql.com/doc/refman/8.0/en/reset-slave.html
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html

Errors and Exceptions

SQLSTATE Class Connector/Python Exception

37 ProgrammingError

3C ProgrammingError

3D ProgrammingError

3F ProgrammingError

40 InternalError

42 ProgrammingError

44 InternalError

HZ OperationalError

XA IntegrityError

0K OperationalError

HY DatabaseError

6.9.12.1 errorcode Module

This module contains both MySQL server and client error codes defined as module attributes with the
error number as value. Using error codes instead of error numbers could make reading the source
code a bit easier.

>>> from mysql.connector import errorcode
>>> errorcode.ER_BAD_TABLE_ERROR
1051

For more information about MySQL errors, see Error Messages and Common Problems.

6.9.12.2 errors.Error Exception

This exception is the base class for all other exceptions in the errors module. It can be used to catch
all errors in a single except statement.

The following example shows how we could catch syntax errors:

import mysql.connector
try:
 cnx = mysql.connector.connect(user='scott', database='employees')
 cursor = cnx.cursor()
 cursor.execute("SELECT * FORM employees") # Syntax error in query
 cnx.close()
except mysql.connector.Error as err:
 print("Something went wrong: {}".format(err))

Initializing the exception supports a few optional arguments, namely msg, errno, values and
sqlstate. All of them are optional and default to None. errors.Error is internally used by
Connector/Python to raise MySQL client and server errors and should not be used by your application
to raise exceptions.

The following examples show the result when using no arguments or a combination of the arguments:

>>> from mysql.connector.errors import Error
>>> str(Error())
'Unknown error'
>>> str(Error("Oops! There was an error."))
'Oops! There was an error.'
>>> str(Error(errno=2006))
'2006: MySQL server has gone away'
>>> str(Error(errno=2002, values=('/tmp/mysql.sock', 2)))
"2002: Can't connect to local MySQL server through socket '/tmp/mysql.sock' (2)"

475

https://dev.mysql.com/doc/refman/8.0/en/error-handling.html

Errors and Exceptions

>>> str(Error(errno=1146, sqlstate='42S02', msg="Table 'test.spam' doesn't exist"))
"1146 (42S02): Table 'test.spam' doesn't exist"

The example which uses error number 1146 is used when Connector/Python receives an error packet
from the MySQL Server. The information is parsed and passed to the Error exception as shown.

Each exception subclassing from Error can be initialized using the previously mentioned arguments.
Additionally, each instance has the attributes errno, msg and sqlstate which can be used in your
code.

The following example shows how to handle errors when dropping a table which does not exist (when
the DROP TABLE statement does not include a IF EXISTS clause):

import mysql.connector
from mysql.connector import errorcode
cnx = mysql.connector.connect(user='scott', database='test')
cursor = cnx.cursor()
try:
 cursor.execute("DROP TABLE spam")
except mysql.connector.Error as err:
 if err.errno == errorcode.ER_BAD_TABLE_ERROR:
 print("Creating table spam")
 else:
 raise

Prior to Connector/Python 1.1.1, the original message passed to errors.Error() is not saved in
such a way that it could be retrieved. Instead, the Error.msg attribute was formatted with the error
number and SQLSTATE value. As of 1.1.1, only the original message is saved in the Error.msg
attribute. The formatted value together with the error number and SQLSTATE value can be obtained by
printing or getting the string representation of the error object. Example:

try:
 conn = mysql.connector.connect(database = "baddb")
except mysql.connector.Error as e:
 print "Error code:", e.errno # error number
 print "SQLSTATE value:", e.sqlstate # SQLSTATE value
 print "Error message:", e.msg # error message
 print "Error:", e # errno, sqlstate, msg values
 s = str(e)
 print "Error:", s # errno, sqlstate, msg values

errors.Error is a subclass of the Python StandardError.

6.9.12.3 errors.DataError Exception

This exception is raised when there were problems with the data. Examples are a column set to NULL
that cannot be NULL, out-of-range values for a column, division by zero, column count does not match
value count, and so on.

errors.DataError is a subclass of errors.DatabaseError.

6.9.12.4 errors.DatabaseError Exception

This exception is the default for any MySQL error which does not fit the other exceptions.

errors.DatabaseError is a subclass of errors.Error.

6.9.12.5 errors.IntegrityError Exception

This exception is raised when the relational integrity of the data is affected. For example, a duplicate
key was inserted or a foreign key constraint would fail.

The following example shows a duplicate key error raised as IntegrityError:

476

https://dev.mysql.com/doc/refman/8.0/en/drop-table.html

Errors and Exceptions

cursor.execute("CREATE TABLE t1 (id int, PRIMARY KEY (id))")
try:
 cursor.execute("INSERT INTO t1 (id) VALUES (1)")
 cursor.execute("INSERT INTO t1 (id) VALUES (1)")
except mysql.connector.IntegrityError as err:
 print("Error: {}".format(err))

errors.IntegrityError is a subclass of errors.DatabaseError.

6.9.12.6 errors.InterfaceError Exception

This exception is raised for errors originating from Connector/Python itself, not related to the MySQL
server.

errors.InterfaceError is a subclass of errors.Error.

6.9.12.7 errors.InternalError Exception

This exception is raised when the MySQL server encounters an internal error, for example, when a
deadlock occurred.

errors.InternalError is a subclass of errors.DatabaseError.

6.9.12.8 errors.NotSupportedError Exception

This exception is raised when some feature was used that is not supported by the version of MySQL
that returned the error. It is also raised when using functions or statements that are not supported by
stored routines.

errors.NotSupportedError is a subclass of errors.DatabaseError.

6.9.12.9 errors.OperationalError Exception

This exception is raised for errors which are related to MySQL's operations. For example: too
many connections; a host name could not be resolved; bad handshake; server is shutting down,
communication errors.

errors.OperationalError is a subclass of errors.DatabaseError.

6.9.12.10 errors.PoolError Exception

This exception is raised for connection pool errors. errors.PoolError is a subclass of
errors.Error.

6.9.12.11 errors.ProgrammingError Exception

This exception is raised on programming errors, for example when you have a syntax error in your SQL
or a table was not found.

The following example shows how to handle syntax errors:

try:
 cursor.execute("CREATE DESK t1 (id int, PRIMARY KEY (id))")
except mysql.connector.ProgrammingError as err:
 if err.errno == errorcode.ER_SYNTAX_ERROR:
 print("Check your syntax!")
 else:
 print("Error: {}".format(err))

errors.ProgrammingError is a subclass of errors.DatabaseError.

6.9.12.12 errors.Warning Exception

477

Errors and Exceptions

This exception is used for reporting important warnings, however, Connector/Python does not use it. It
is included to be compliant with the Python Database Specification v2.0 (PEP-249).

Consider using either more strict Server SQL Modes or the raise_on_warnings connection argument to
make Connector/Python raise errors when your queries produce warnings.

errors.Warning is a subclass of the Python StandardError.

6.9.12.13 errors.custom_error_exception() Function

Syntax:

errors.custom_error_exception(error=None, exception=None)

This method defines custom exceptions for MySQL server errors and returns current customizations.

If error is a MySQL Server error number, you must also pass the exception class. The error
argument can be a dictionary, in which case the key is the server error number, and value the class of
the exception to be raised.

To reset the customizations, supply an empty dictionary.

import mysql.connector
from mysql.connector import errorcode
Server error 1028 should raise a DatabaseError
mysql.connector.custom_error_exception(1028, mysql.connector.DatabaseError)
Or using a dictionary:
mysql.connector.custom_error_exception({
 1028: mysql.connector.DatabaseError,
 1029: mysql.connector.OperationalError,
})
To reset, pass an empty dictionary:
mysql.connector.custom_error_exception({})

478

https://dev.mysql.com/doc/refman/8.0/en/sql-mode.html

Chapter 7 MySQL and PHP

Table of Contents
7.1 Introduction to the MySQL PHP API .. 479

This chapter describes the PHP extensions and interfaces that can be used with MySQL.

For legal information, see the Legal Notices.

For help with using MySQL, please visit the MySQL Forums, where you can discuss your issues with
other MySQL users.

7.1 Introduction to the MySQL PHP API

PHP is a server-side, HTML-embedded scripting language that may be used to create dynamic Web
pages. It is available for most operating systems and Web servers, and can access most common
databases, including MySQL. PHP may be run as a separate program or compiled as a module for use
with a Web server.

PHP provides several different MySQL API extensions:

Note

The PHP documentation assumes PHP 7 and higher is used; functionality
specific to PHP 5 and below is not documented.

• MySQLi: Stands for “MySQL, Improved”; this extension is available as of PHP 5.0.0. It is intended
for use with MySQL 4.1.1 and later. This extension fully supports the authentication protocol used
in MySQL 5.0, as well as the Prepared Statements and Multiple Statements APIs. In addition, this
extension provides an advanced, object-oriented programming interface.

• PDO_MySQL: Not its own API, but instead it's a MySQL driver for the PHP database abstraction
layer PDO (PHP Data Objects). The PDO MySQL driver sits in the layer below PDO itself, and
provides MySQL-specific functionality. This extension is available as of PHP 5.1.0.

• MySQL_XDevAPI: This extension uses MySQL's X DevAPI and is available as a PECL extension
named mysql_xdevapi. For general concepts and X DevAPI usage details, see X DevAPI User
Guide.

Note

This documentation, and other publications, sometimes uses the term
Connector/PHP. This term refers to the full set of MySQL related functionality
in PHP, which includes the APIs that are described in the preceding discussion,
along with the mysqlnd core library and all of its plugins.

The PHP distribution and documentation are available from the PHP website.

479

http://forums.mysql.com
https://www.php.net/manual/en/book.mysqli.php
https://www.php.net/manual/en/ref.pdo-mysql.php
https://www.php.net/manual/en/book.mysql-xdevapi.php
https://pecl.php.net/package/mysql_xdevapi
https://dev.mysql.com/doc/x-devapi-userguide/en/
https://dev.mysql.com/doc/x-devapi-userguide/en/
https://www.php.net/manual/en/book.mysqlnd.php
https://www.php.net/

480

	Connectors and APIs
	Table of Contents
	Preface and Legal Notices
	Chapter 1 Introduction
	Chapter 2 MySQL Connector/C++ Developer Guide
	2.1 Introduction to Connector/C++
	2.2 Obtaining Connector/C++
	2.3 Installing Connector/C++ from a Binary Distribution
	2.4 Installing Connector/C++ from Source
	2.4.1 Source Installation System Prerequisites
	2.4.2 Obtaining and Unpacking a Connector/C++ Source Distribution
	2.4.3 Installing Connector/C++ from Source
	2.4.4 Connector/C++ Source-Configuration Options

	2.5 Building Connector/C++ Applications
	2.5.1 Building Connector/C++ Applications: General Considerations
	2.5.2 Building Connector/C++ Applications: Platform-Specific Considerations
	2.5.2.1 Windows Notes
	2.5.2.2 macOS Notes
	2.5.2.3 Generic Linux Notes

	2.5.3 Authentication Support
	2.5.4 OpenTelemetry Tracing Support

	2.6 Connector/C++ Known Issues
	2.7 Connector/C++ Support

	Chapter 3 MySQL Connector/J Developer Guide
	3.1 Overview of MySQL Connector/J
	3.2 Compatibility with MySQL and Java Versions
	3.3 Connector/J Installation
	3.3.1 Installing Connector/J from a Binary Distribution
	3.3.2 Installing Connector/J Using Maven
	3.3.3 Installing from Source
	3.3.4 Upgrading from an Older Version
	3.3.4.1 Upgrading to MySQL Connector/J 8.0
	Running on the Java 8 Platform
	Changes in Connection Properties
	Changes in the Connector/J API
	Changes for Build Properties
	Change for Test Properties
	Changes for Exceptions
	Other Changes

	3.3.5 Testing Connector/J

	3.4 Connector/J Examples
	3.5 Connector/J Reference
	3.5.1 Driver/Datasource Class Name
	3.5.2 Connection URL Syntax
	3.5.3 Configuration Properties
	3.5.3.1 Authentication
	3.5.3.2 Connection
	3.5.3.3 Session
	3.5.3.4 Networking
	3.5.3.5 Security
	3.5.3.6 Statements
	3.5.3.7 Prepared Statements
	3.5.3.8 Result Sets
	3.5.3.9 Metadata
	3.5.3.10 BLOB/CLOB processing
	3.5.3.11 Datetime types processing
	3.5.3.12 High Availability and Clustering
	3.5.3.13 Performance Extensions
	3.5.3.14 Debugging/Profiling
	3.5.3.15 Exceptions/Warnings
	3.5.3.16 Tunes for integration with other products
	3.5.3.17 JDBC compliance
	3.5.3.18 X Protocol and X DevAPI

	3.5.4 JDBC API Implementation Notes
	3.5.5 Java, JDBC, and MySQL Types
	3.5.6 Handling of Date-Time Values
	3.5.6.1 Preserving Time Instants
	3.5.6.2 Fractional Seconds
	3.5.6.3 Handling of YEAR Values

	3.5.7 Using Character Sets and Unicode
	3.5.8 Using Query Attributes
	3.5.9 Connecting Securely Using SSL
	3.5.9.1 Setting up Server Authentication
	3.5.9.2 Setting up Client Authentication
	3.5.9.3 Setting up 2-Way Authentication
	3.5.9.4 JSSE in FIPS Mode
	3.5.9.5 Debugging an SSL Connection

	3.5.10 Connecting Using Unix Domain Sockets
	3.5.11 Connecting Using Named Pipes
	3.5.12 Connecting Using Various Authentication Methods
	3.5.12.1 Connecting Using PAM Authentication
	3.5.12.2 Connecting Using Kerberos
	3.5.12.3 Connecting Using Multifactor Authentication
	3.5.12.4 Connecting Using Fast Identity Online (FIDO) Authentication

	3.5.13 Using Source/Replica Replication with ReplicationConnection
	3.5.14 Support for DNS SRV Records
	3.5.15 Client Session State Tracker
	3.5.16 Mapping MySQL Error Numbers to JDBC SQLState Codes

	3.6 JDBC Concepts
	3.6.1 Connecting to MySQL Using the JDBC DriverManager Interface
	3.6.2 Using JDBC Statement Objects to Execute SQL
	3.6.3 Using JDBC CallableStatements to Execute Stored Procedures
	3.6.4 Retrieving AUTO_INCREMENT Column Values through JDBC

	3.7 Connection Pooling with Connector/J
	3.8 Multi-Host Connections
	3.8.1 Configuring Server Failover for Connections Using JDBC
	3.8.2 Configuring Server Failover for Connections Using X DevAPI
	3.8.3 Configuring Load Balancing with Connector/J
	3.8.4 Configuring Source/Replica Replication with Connector/J
	3.8.5 Advanced Load-balancing and Failover Configuration

	3.9 Using the X DevAPI with Connector/J: Special Topics
	3.9.1 Connection Compression Using X DevAPI
	3.9.2 Schema Validation

	3.10 Using the Connector/J Interceptor Classes
	3.11 Using Logging Frameworks with SLF4J
	3.12 Using Connector/J with Tomcat
	3.13 Using Connector/J with Spring
	3.13.1 Using JdbcTemplate
	3.13.2 Transactional JDBC Access
	3.13.3 Connection Pooling with Spring

	3.14 Troubleshooting Connector/J Applications
	3.15 Known Issues and Limitations
	3.16 Connector/J Support
	3.16.1 Connector/J Community Support
	3.16.2 How to Report Connector/J Bugs or Problems

	Chapter 4 MySQL Connector/NET Developer Guide
	4.1 Introduction to MySQL Connector/NET
	4.2 Connector/NET Versions
	4.3 Connector/NET Installation
	4.3.1 Installing Connector/NET on Windows
	4.3.1.1 Installing Connector/NET Using the Standalone Installer
	4.3.1.2 Installing Connector/NET Using NuGet

	4.3.2 Installing Connector/NET on Unix with Mono
	4.3.3 Installing Connector/NET from Source

	4.4 Connector/NET Connections
	4.4.1 Creating a Connector/NET Connection String
	4.4.2 Managing a Connection Pool in Connector/NET
	4.4.3 Handling Connection Errors
	4.4.4 Connector/NET Authentication
	4.4.5 Connector/NET Connection Options Reference

	4.5 Connector/NET Programming
	4.5.1 Using GetSchema on a Connection
	4.5.2 Using MySqlCommand
	4.5.3 Using Connector/NET with Table Caching
	4.5.4 Preparing Statements in Connector/NET
	4.5.5 Creating and Calling Stored Procedures
	4.5.6 Handling BLOB Data With Connector/NET
	4.5.6.1 Preparing the MySQL Server
	4.5.6.2 Writing a File to the Database
	4.5.6.3 Reading a BLOB from the Database to a File on Disk

	4.5.7 Working with Partial Trust / Medium Trust
	4.5.7.1 Evolution of Partial Trust Support Across Connector/NET Versions
	4.5.7.2 Configuring Partial Trust with Connector/NET Library Installed in GAC
	4.5.7.3 Configuring Partial Trust with Connector/NET Library Not Installed in GAC

	4.5.8 Writing a Custom Authentication Plugin
	4.5.9 Using the Connector/NET Interceptor Classes
	4.5.10 Handling Date and Time Information in Connector/NET
	4.5.10.1 Fractional Seconds
	4.5.10.2 Problems when Using Invalid Dates
	4.5.10.3 Restricting Invalid Dates
	4.5.10.4 Handling Invalid Dates
	4.5.10.5 Handling NULL Dates

	4.5.11 Using the MySqlBulkLoader Class
	4.5.12 Connector/NET Tracing
	4.5.12.1 Enabling OpenTelemetry Tracing
	4.5.12.2 Using the Connector/NET Trace Source Object
	Viewing MySQL Trace Information
	Building Custom Listeners

	4.5.13 Using Connector/NET with Crystal Reports
	4.5.13.1 Creating a Data Source
	4.5.13.2 Creating the Report
	4.5.13.3 Displaying the Report

	4.5.14 Asynchronous Methods
	4.5.15 Binary and Nonbinary Issues
	4.5.16 Character Set Considerations for Connector/NET

	4.6 Connector/NET Tutorials
	4.6.1 Tutorial: An Introduction to Connector/NET Programming
	4.6.1.1 The MySqlConnection Object
	4.6.1.2 The MySqlCommand Object
	4.6.1.3 Working with Decoupled Data
	4.6.1.4 Working with Parameters
	4.6.1.5 Working with Stored Procedures

	4.6.2 ASP.NET Provider Model and Tutorials
	4.6.2.1 Tutorial: Connector/NET ASP.NET Membership and Role Provider
	4.6.2.2 Tutorial: Connector/NET ASP.NET Profile Provider
	4.6.2.3 Tutorial: Web Parts Personalization Provider
	4.6.2.4 Tutorial: Simple Membership Web Provider

	4.6.3 Tutorial: Using an Entity Framework Entity as a Windows Forms Data Source
	4.6.4 Tutorial: Data Binding in ASP.NET Using LINQ on Entities
	4.6.5 Tutorial: Generating MySQL DDL from an Entity Framework Model
	4.6.6 Tutorial: Basic CRUD Operations with Connector/NET
	4.6.7 Tutorial: Configuring SSL with Connector/NET
	4.6.7.1 Using PEM Certificates in Connector/NET
	4.6.7.2 Using PFX Certificates in Connector/NET

	4.6.8 Tutorial: Using MySqlScript

	4.7 Connector/NET for Entity Framework
	4.7.1 Entity Framework 6 Support
	4.7.2 Entity Framework Core Support
	4.7.2.1 Creating a Database with Code First in EF Core
	4.7.2.2 Scaffolding an Existing Database in EF Core
	4.7.2.3 Configuring Character Sets and Collations in EF Core

	4.8 Connector/NET API Reference
	4.8.1 MySql.Data.Common.DnsClient
	4.8.2 MySql.Data.MySqlClient Namespace
	4.8.3 MySql.Data.MySqlClient.Authentication Namespace
	4.8.4 MySql.Data.MySqlClient.Interceptors Namespace
	4.8.5 MySql.Data.MySqlClient.Replication Namespace
	4.8.6 MySql.Data.Types Namespace
	4.8.7 MySql.Data.EntityFramework Namespace
	4.8.8 Microsoft.EntityFrameworkCore Namespace
	4.8.9 MySql.EntityFrameworkCore Namespace
	4.8.10 MySql.Web Namespace

	4.9 Connector/NET Support
	4.9.1 Connector/NET Community Support
	4.9.2 How to Report Connector/NET Problems or Bugs

	Chapter 5 MySQL Connector/ODBC Developer Guide
	5.1 Introduction to MySQL Connector/ODBC
	5.2 Connector/ODBC Versions
	5.3 General Information About ODBC and Connector/ODBC
	5.3.1 Connector/ODBC Architecture
	5.3.2 ODBC Driver Managers

	5.4 Connector/ODBC Installation
	5.4.1 Installing Connector/ODBC on Windows
	5.4.1.1 Installing the Windows Connector/ODBC Driver Using the Zipped DLL Package
	5.4.1.2 Installing the Windows Connector/ODBC Debug Packages

	5.4.2 Installing Connector/ODBC on Unix-like Systems
	5.4.2.1 Installing Connector/ODBC Using the MySQL Yum Repository
	5.4.2.2 Installing Connector/ODBC from a Binary Tarball Distribution
	5.4.2.3 Installing Connector/ODBC from a DEB Distribution
	5.4.2.4 Installing Connector/ODBC from an RPM Distribution

	5.4.3 Installing Connector/ODBC on macOS
	5.4.4 Building Connector/ODBC from a Source Distribution on Windows
	5.4.5 Building Connector/ODBC from a Source Distribution on Unix
	5.4.6 Building Connector/ODBC from a Source Distribution on macOS
	5.4.7 Installing Connector/ODBC from the Development Source Tree

	5.5 Configuring Connector/ODBC
	5.5.1 Overview of Connector/ODBC Data Source Names
	5.5.2 Connector/ODBC Connection Parameters
	5.5.3 Configuring a Connector/ODBC DSN on Windows
	5.5.3.1 Configuring a Connector/ODBC DSN on Windows with the ODBC Data Source Administrator GUI
	5.5.3.2 Configuring a Connector/ODBC DSN on Windows, Using the Command Line
	5.5.3.3 Troubleshooting ODBC Connection Problems

	5.5.4 Configuring a Connector/ODBC DSN on macOS
	5.5.5 Configuring a Connector/ODBC DSN on Unix
	5.5.6 Connecting Without a Predefined DSN
	5.5.7 ODBC Connection Pooling
	5.5.8 OpenTelemetry Tracing Support
	5.5.9 Authentication Options
	5.5.10 Getting an ODBC Trace File
	5.5.10.1 Enabling ODBC Tracing on Windows
	5.5.10.2 Enabling ODBC Tracing on macOS
	5.5.10.3 Enabling ODBC Tracing on Unix
	5.5.10.4 Enabling a Connector/ODBC Log

	5.6 Connector/ODBC Examples
	5.6.1 Basic Connector/ODBC Application Steps
	5.6.2 Step-by-step Guide to Connecting to a MySQL Database through Connector/ODBC
	5.6.3 Connector/ODBC and Third-Party ODBC Tools
	5.6.4 Using Connector/ODBC with Microsoft Access
	5.6.4.1 Exporting Access Data to MySQL
	5.6.4.2 Importing MySQL Data to Access
	5.6.4.3 Using Microsoft Access as a Front-end to MySQL

	5.6.5 Using Connector/ODBC with Microsoft Word or Excel
	5.6.6 Using Connector/ODBC with Crystal Reports
	5.6.7 Connector/ODBC Programming
	5.6.7.1 Using Connector/ODBC with Visual Basic Using ADO, DAO and RDO
	ADO: rs.addNew, rs.delete, and rs.update
	DAO: rs.addNew, rs.update, and Scrolling
	RDO: rs.addNew and rs.update

	5.6.7.2 Using Connector/ODBC with .NET
	Using Connector/ODBC with ODBC.NET and C# (C sharp)
	Using Connector/ODBC with ODBC.NET and Visual Basic

	5.7 Connector/ODBC Reference
	5.7.1 Connector/ODBC API Reference
	5.7.2 Connector/ODBC Data Types
	5.7.3 Connector/ODBC Error Codes

	5.8 Connector/ODBC Notes and Tips
	5.8.1 Connector/ODBC General Functionality
	5.8.1.1 Obtaining Auto-Increment Values
	5.8.1.2 Dynamic Cursor Support
	5.8.1.3 Configuring Catalog and Schema Support
	5.8.1.4 Connector/ODBC Performance
	5.8.1.5 Setting ODBC Query Timeout in Windows

	5.8.2 Connector/ODBC Application-Specific Tips
	5.8.2.1 Using Connector/ODBC with Microsoft Applications
	Microsoft Access
	Microsoft Excel and Column Types
	Microsoft Visual Basic
	Microsoft Visual InterDev
	Visual Objects
	Microsoft ADO
	Using Connector/ODBC with Active Server Pages (ASP)
	Using Connector/ODBC with Visual Basic (ADO, DAO and RDO) and ASP

	5.8.2.2 Using Connector/ODBC with Borland Applications
	Using Connector/ODBC with Borland Builder 4
	Using Connector/ODBC with Delphi
	Using Connector/ODBC with C++ Builder

	5.8.2.3 Using Connector/ODBC with ColdFusion
	5.8.2.4 Using Connector/ODBC with OpenOffice.org
	5.8.2.5 Using Connector/ODBC with Pervasive Software DataJunction
	5.8.2.6 Using Connector/ODBC with SunSystems Vision

	5.8.3 Connector/ODBC and the Application Both Use OpenSSL
	5.8.4 Connector/ODBC Errors and Resolutions (FAQ)

	5.9 Connector/ODBC Support
	5.9.1 Connector/ODBC Community Support
	5.9.2 How to Report Connector/ODBC Problems or Bugs

	Chapter 6 MySQL Connector/Python Developer Guide
	6.1 Introduction to MySQL Connector/Python
	6.2 Guidelines for Python Developers
	6.3 Connector/Python Versions
	6.4 Connector/Python Installation
	6.4.1 Obtaining Connector/Python
	6.4.2 Installing Connector/Python from a Binary Distribution
	6.4.3 Installing Connector/Python from a Source Distribution
	6.4.4 Verifying Your Connector/Python Installation

	6.5 Connector/Python Coding Examples
	6.5.1 Connecting to MySQL Using Connector/Python
	6.5.2 Creating Tables Using Connector/Python
	6.5.3 Inserting Data Using Connector/Python
	6.5.4 Querying Data Using Connector/Python

	6.6 Connector/Python Tutorials
	6.6.1 Tutorial: Raise Employee's Salary Using a Buffered Cursor

	6.7 Connector/Python Connection Establishment
	6.7.1 Connector/Python Connection Arguments
	6.7.2 Connector/Python Option-File Support

	6.8 Connector/Python Other Topics
	6.8.1 Connector/Python Logging
	6.8.2 OpenTelemetry Support
	6.8.3 Asynchronous Connectivity
	6.8.4 Connector/Python Connection Pooling
	6.8.5 Connector/Python Django Back End

	6.9 Connector/Python API Reference
	6.9.1 mysql.connector Module
	6.9.1.1 mysql.connector.connect() Method
	6.9.1.2 mysql.connector.apilevel Property
	6.9.1.3 mysql.connector.paramstyle Property
	6.9.1.4 mysql.connector.threadsafety Property
	6.9.1.5 mysql.connector.__version__ Property
	6.9.1.6 mysql.connector.__version_info__ Property

	6.9.2 connection.MySQLConnection Class
	6.9.2.1 connection.MySQLConnection() Constructor
	6.9.2.2 MySQLConnection.close() Method
	6.9.2.3 MySQLConnection.commit() Method
	6.9.2.4 MySQLConnection.config() Method
	6.9.2.5 MySQLConnection.connect() Method
	6.9.2.6 MySQLConnection.cursor() Method
	6.9.2.7 MySQLConnection.cmd_change_user() Method
	6.9.2.8 MySQLConnection.cmd_debug() Method
	6.9.2.9 MySQLConnection.cmd_init_db() Method
	6.9.2.10 MySQLConnection.cmd_ping() Method
	6.9.2.11 MySQLConnection.cmd_process_info() Method
	6.9.2.12 MySQLConnection.cmd_process_kill() Method
	6.9.2.13 MySQLConnection.cmd_query() Method
	6.9.2.14 MySQLConnection.cmd_query_iter() Method
	6.9.2.15 MySQLConnection.cmd_quit() Method
	6.9.2.16 MySQLConnection.cmd_refresh() Method
	6.9.2.17 MySQLConnection.cmd_reset_connection() Method
	6.9.2.18 MySQLConnection.cmd_shutdown() Method
	6.9.2.19 MySQLConnection.cmd_statistics() Method
	6.9.2.20 MySQLConnection.disconnect() Method
	6.9.2.21 MySQLConnection.get_row() Method
	6.9.2.22 MySQLConnection.get_rows() Method
	6.9.2.23 MySQLConnection.get_server_info() Method
	6.9.2.24 MySQLConnection.get_server_version() Method
	6.9.2.25 MySQLConnection.is_connected() Method
	6.9.2.26 MySQLConnection.isset_client_flag() Method
	6.9.2.27 MySQLConnection.ping() Method
	6.9.2.28 MySQLConnection.reconnect() Method
	6.9.2.29 MySQLConnection.reset_session() Method
	6.9.2.30 MySQLConnection.rollback() Method
	6.9.2.31 MySQLConnection.set_charset_collation() Method
	6.9.2.32 MySQLConnection.set_client_flags() Method
	6.9.2.33 MySQLConnection.shutdown() Method
	6.9.2.34 MySQLConnection.start_transaction() Method
	6.9.2.35 MySQLConnection.autocommit Property
	6.9.2.36 MySQLConnection.unread_results Property
	6.9.2.37 MySQLConnection.can_consume_results Property
	6.9.2.38 MySQLConnection.charset Property
	6.9.2.39 MySQLConnection.collation Property
	6.9.2.40 MySQLConnection.connection_id Property
	6.9.2.41 MySQLConnection.database Property
	6.9.2.42 MySQLConnection.get_warnings Property
	6.9.2.43 MySQLConnection.in_transaction Property
	6.9.2.44 MySQLConnection.raise_on_warnings Property
	6.9.2.45 MySQLConnection.server_host Property
	6.9.2.46 MySQLConnection.server_port Property
	6.9.2.47 MySQLConnection.sql_mode Property
	6.9.2.48 MySQLConnection.time_zone Property
	6.9.2.49 MySQLConnection.unix_socket Property
	6.9.2.50 MySQLConnection.user Property

	6.9.3 pooling.MySQLConnectionPool Class
	6.9.3.1 pooling.MySQLConnectionPool Constructor
	6.9.3.2 MySQLConnectionPool.add_connection() Method
	6.9.3.3 MySQLConnectionPool.get_connection() Method
	6.9.3.4 MySQLConnectionPool.set_config() Method
	6.9.3.5 MySQLConnectionPool.pool_name Property

	6.9.4 pooling.PooledMySQLConnection Class
	6.9.4.1 pooling.PooledMySQLConnection Constructor
	6.9.4.2 PooledMySQLConnection.close() Method
	6.9.4.3 PooledMySQLConnection.config() Method
	6.9.4.4 PooledMySQLConnection.pool_name Property

	6.9.5 cursor.MySQLCursor Class
	6.9.5.1 cursor.MySQLCursor Constructor
	6.9.5.2 MySQLCursor.add_attribute() Method
	6.9.5.3 MySQLCursor.clear_attributes() Method
	6.9.5.4 MySQLCursor.get_attributes() Method
	6.9.5.5 MySQLCursor.callproc() Method
	6.9.5.6 MySQLCursor.close() Method
	6.9.5.7 MySQLCursor.execute() Method
	6.9.5.8 MySQLCursor.executemany() Method
	6.9.5.9 MySQLCursor.fetchall() Method
	6.9.5.10 MySQLCursor.fetchmany() Method
	6.9.5.11 MySQLCursor.fetchone() Method
	6.9.5.12 MySQLCursor.fetchwarnings() Method
	6.9.5.13 MySQLCursor.stored_results() Method
	6.9.5.14 MySQLCursor.column_names Property
	6.9.5.15 MySQLCursor.description Property
	6.9.5.16 MySQLCursor.lastrowid Property
	6.9.5.17 MySQLCursor.rowcount Property
	6.9.5.18 MySQLCursor.statement Property
	6.9.5.19 MySQLCursor.with_rows Property

	6.9.6 Subclasses cursor.MySQLCursor
	6.9.6.1 cursor.MySQLCursorBuffered Class
	6.9.6.2 cursor.MySQLCursorRaw Class
	6.9.6.3 cursor.MySQLCursorBufferedRaw Class
	6.9.6.4 cursor.MySQLCursorDict Class
	6.9.6.5 cursor.MySQLCursorBufferedDict Class
	6.9.6.6 cursor.MySQLCursorNamedTuple Class
	6.9.6.7 cursor.MySQLCursorBufferedNamedTuple Class
	6.9.6.8 cursor.MySQLCursorPrepared Class

	6.9.7 constants.ClientFlag Class
	6.9.8 constants.FieldType Class
	6.9.9 constants.SQLMode Class
	6.9.10 constants.CharacterSet Class
	6.9.11 constants.RefreshOption Class
	6.9.12 Errors and Exceptions
	6.9.12.1 errorcode Module
	6.9.12.2 errors.Error Exception
	6.9.12.3 errors.DataError Exception
	6.9.12.4 errors.DatabaseError Exception
	6.9.12.5 errors.IntegrityError Exception
	6.9.12.6 errors.InterfaceError Exception
	6.9.12.7 errors.InternalError Exception
	6.9.12.8 errors.NotSupportedError Exception
	6.9.12.9 errors.OperationalError Exception
	6.9.12.10 errors.PoolError Exception
	6.9.12.11 errors.ProgrammingError Exception
	6.9.12.12 errors.Warning Exception
	6.9.12.13 errors.custom_error_exception() Function

	Chapter 7 MySQL and PHP
	7.1 Introduction to the MySQL PHP API

