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Abstract

This manual describes how to install and configure MySQL Connector/C++ 9.6, which provides C++ and plain
C interfaces for communicating with MySQL servers, and how to use Connector/C++ to develop database
applications.

Connector/C++ 9.6 is highly recommended for use with all active MySQL server versions, such as MySQL 8.0,
8.4, and 9.6.

For notes detailing the changes in each release of Connector/C++, see MySQL Connector/C++ Release Notes.

For legal information, see the Legal Notices.

For help with using MySQL, please visit the MySQL Forums, where you can discuss your issues with other
MySQL users.

Licensing information.  This product may include third-party software, used under license. If you are using
a Commercial release of MySQL Connector/C++, see the MySQL Connector/C++ Commercial Release License
Information User Manual for licensing information, including licensing information relating to third-party software
that may be included in this Commercial release. If you are using a Community release of MySQL Connector/C+
+, see the MySQL Connector/C++ Community Release License Information User Manual for licensing information,
including licensing information relating to third-party software that may be included in this Community release.
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Preface and Legal Notices
This manual describes how to install and configure MySQL Connector/C++ 9.6, and how to use it to
develop database applications.

Legal Notices

Copyright © 2008, 2026, Oracle and/or its affiliates.

License Restrictions

This software and related documentation are provided under a license agreement containing
restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly
permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,
broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any
form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless
required by law for interoperability, is prohibited.

Warranty Disclaimer

The information contained herein is subject to change without notice and is not warranted to be error-
free. If you find any errors, please report them to us in writing.

Restricted Rights Notice

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or
related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the
U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications
of such programs) and Oracle computer documentation or other Oracle data delivered to or accessed
by U.S. Government end users are "commercial computer software," "commercial computer software
documentation," or "limited rights data" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, the use, reproduction, duplication, release, display,
disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle programs
(including any operating system, integrated software, any programs embedded, installed, or activated
on delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/
or iii) other Oracle data, is subject to the rights and limitations specified in the license contained in
the applicable contract. The terms governing the U.S. Government's use of Oracle cloud services
are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

Hazardous Applications Notice

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Trademark Notice

Oracle, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other
names may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC
trademarks are used under license and are trademarks or registered trademarks of SPARC
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Documentation Accessibility

International, Inc. AMD, Epyc, and the AMD logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

Third-Party Content, Products, and Services Disclaimer

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible
for and expressly disclaim all warranties of any kind with respect to third-party content, products,
and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to
your access to or use of third-party content, products, or services, except as set forth in an applicable
agreement between you and Oracle.

Use of This Documentation

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the
following terms:

You may create a printed copy of this documentation solely for your own personal use. Conversion
to other formats is allowed as long as the actual content is not altered or edited in any way. You shall
not publish or distribute this documentation in any form or on any media, except if you distribute the
documentation in a manner similar to how Oracle disseminates it (that is, electronically for download
on a Web site with the software) or on a CD-ROM or similar medium, provided however that the
documentation is disseminated together with the software on the same medium. Any other use, such
as any dissemination of printed copies or use of this documentation, in whole or in part, in another
publication, requires the prior written consent from an authorized representative of Oracle. Oracle and/
or its affiliates reserve any and all rights to this documentation not expressly granted above.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program
website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support for Accessibility

Oracle customers that have purchased support have access to electronic support through My Oracle
Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/
topic/lookup?ctx=acc&id=trs if you are hearing impaired.
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Chapter 1 Introduction to Connector/C++
MySQL Connector/C++ is a MySQL database connector for C++ applications that connect to MySQL
servers. Connector/C++ can be used to access MySQL servers that implement a document store, or in
a traditional way using SQL statements. The preferred development environment for Connector/C++ is
to enable development of C++ applications using X DevAPI, or plain C applications using X DevAPI for
C, but Connector/C++ also enables development of C++ applications that use the legacy JDBC-based
API from Connector/C++ 1.1.

Connector/C++ applications that use X DevAPI or X DevAPI for C require a MySQL server that has X
Plugin enabled. Connector/C++ applications that use the legacy JDBC-based API neither require nor
support X Plugin.

For more detailed requirements about required MySQL versions for Connector/C++ applications, see
Platform Support and Prerequisites.

For notes detailing the changes in each release of Connector/C++, see MySQL Connector/C++
Release Notes.

• Connector/C++ Benefits

• X DevAPI and X DevAPI for C

• Legacy JDBC API and JDBC Compatibility

• Platform Support and Prerequisites

Connector/C++ Benefits
MySQL Connector/C++ offers the following benefits for C++ users compared to the MySQL C API
provided by the MySQL client library:

• Convenience of pure C++.

• Support for these application programming interfaces:

• X DevAPI

• X DevAPI for C

• Legacy JDBC 4.0-based API

• Support for the object-oriented programming paradigm.

• Reduced development time.

• Licensed under the GPL with the FLOSS License Exception.

• Available under a commercial license upon request.

X DevAPI and X DevAPI for C
Connector/C++ implements X DevAPI, which enables connecting to MySQL servers that implement a
document store with X Plugin. X DevAPI also enables applications to execute SQL statements.

Connector/C++ also implements a similar interface called X DevAPI for C for use by applications
written in plain C.

For general information about X DevAPI, see X DevAPI User Guide. For reference information specific
to the Connector/C++ implementation of X DevAPI and X DevAPI for C, see MySQL Connector/C++ X
DevAPI Reference in the X DevAPI section of MySQL Documentation.
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Legacy JDBC API and JDBC Compatibility

Legacy JDBC API and JDBC Compatibility

Connector/C++ implements the JDBC 4.0 API, if built to include the legacy JDBC connector:

• Connector/C++ binary distributions include the JDBC connector.

• If you build Connector/C++ from source, the JDBC connector is not built by default, but can be
included by enabling the WITH_JDBC CMake option. See Chapter 4, Installing Connector/C++ from
Source.

The Connector/C++ JDBC API is compatible with the JDBC 4.0 API. Connector/C++ does
not implement the entire JDBC 4.0 API, but does feature these classes: Connection,
DatabaseMetaData, Driver, PreparedStatement, ResultSet, ResultSetMetaData,
Savepoint, Statement.

The JDBC 4.0 API defines approximately 450 methods for the classes just mentioned. Connector/C++
implements approximately 80% of these.

Platform Support and Prerequisites

To see which platforms are supported, visit the Connector/C++ downloads page.

On Windows platforms, Commercial and Community Connector/C++ distributions require the Visual
C++ Redistributable for Visual Studio. The Redistributable is available at the Visual Studio Download
Center; install it before installing Connector/C++. The acceptable Redistributable versions depend on
your Connector/C++ version:

• Connector/C++ 8.0.19 and higher: VC++ Redistributable 2017 or higher.

• Connector/C++ 8.0.14 to 8.0.18: VC++ Redistributable 2015 or higher.

The following requirements apply to building and running Connector/C++ applications, and to building
Connector/C++ itself if you build it from source:

• To run Connector/C++ applications, the MySQL server requirements depend on the API the
application uses:

• Connector/C++ applications that use X DevAPI or X DevAPI for C require a server from MySQL
8.0.11 or later with X Plugin enabled (default).

• Applications that use the JDBC API support MySQL 8.0 or higher. X Plugin is neither required nor
supported.

• To build Connector/C++ applications:

• The MySQL version does not apply.

• On Windows, Microsoft Visual Studio is required. The acceptable MSVC versions depend on your
Connector/C++ version and the type of linking you use:

• Connector/C++ 8.0.20 and higher: Same as Connector/C++ 8.0.19, with the addition that binary
distributions are also compatible with MSVC 2017 using the static X DevAPI connector library.
This means that binary distributions are fully compatible with MSVC 2019, and fully compatible
with MSVC 2017 with the exception of the static legacy (JDBC) connector library.

• Connector/C++ 8.0.19: Connector/C++ binary distributions are compatible with projects built
using MSVC 2019 (using either dynamic or static connector libraries) or MSVC 2017 (using
dynamic connector libraries).

• Connector/C++ 8.0.14 to 8.0.18: MSVC 2017 or 2015.
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Platform Support and Prerequisites

• Connector/C++ prior to 8.0.14: MSVC 2015.

• To build Connector/C++ from source:

• The MySQL C API client library may be required:

• For Connector/C++ built without the JDBC connector (which is the default), the client library is
not needed.

• To build Connector/C++ with the JDBC connector, configure Connector/C++ with the
WITH_JDBC CMake option enabled. In this case, the JDBC connector requires a client library
from MySQL 8.0 or later.

• On Windows, Microsoft Visual Studio is required. The acceptable MSVC versions depend on your
Connector/C++ version:

• Connector/C++ 8.0.19 and higher: MSVC 2019 or 2017.

• Connector/C++ 8.0.14 to 8.0.18: MSVC 2017 or 2015.

• Connector/C++ prior to 8.0.14: MSVC 2015.
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Chapter 2 Obtaining Connector/C++
Connector/C++ binary and source distributions are available, in platform-specific packaging formats.
To obtain a distribution, visit the Connector/C++ downloads page. It is also possible to clone the
Connector/C++ Git source repository.

• Connector/C++ binary distributions are available for Microsoft Windows, and for Unix and Unix-like
platforms. See Chapter 3, Installing Connector/C++ from a Binary Distribution.

• Connector/C++ source distributions are available as compressed tar files or Zip archives and can
be used on any supported platform. See Chapter 4, Installing Connector/C++ from Source.

• The Connector/C++ source code repository uses Git and is available at GitHub. See Chapter 4,
Installing Connector/C++ from Source.
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Chapter 3 Installing Connector/C++ from a Binary Distribution
To obtain a Connector/C++ binary distribution, visit the Connector/C++ downloads page.

For some platforms, Connector/C++ binary distributions are available in platform-specific packaging
formats. Binary distributions are also available in more generic format, in the form of compressed tar
files or Zip archives.

Note

Generic Linux packages do not contain Connector/C++ static libraries. If you
intend to link your application to a static library, consider installing a package
that is specific to the platform on which you build your final application.

For descriptions here that refer to documentation files, those files have names such as
CONTRIBUTING.md, README.md, README.txt, README, LICENSE.txt, LICENSE, INFO_BIN,
and INFO_SRC. (Prior to Connector/C++ 8.0.14, the information file is BUILDINFO.txt rather than
INFO_BIN and INFO_SRC.)

• Installation on Windows

• Installation on Linux

• Installation on macOS

• Installation on Solaris

• Installation Using a tar or Zip Package

Installation on Windows

Important

On Windows platforms, Commercial and Community Connector/C++
distributions require the Visual C++ Redistributable for Visual Studio.
The Redistributable is available at the Visual Studio Download Center;
install it before installing Connector/C++. For information about which VC
++ Redistributable versions are acceptable, see Platform Support and
Prerequisites.

These methods of installing binary distributions are available on Windows:

• Windows MSI Installer.  As of Connector/C++ 8.0.12, an MSI Installer is available for Windows.
To use the MSI Installer (.msi file), launch it and follow the prompts in the screens it presents. The
MSI Installer can install components for these connectors:

• The connector for X DevAPI (including X DevAPI for C).

• The connector for the legacy JDBC API.

For each connector, there are two components:

• The DLL component includes the connector DLLs and libraries to satisfy runtime dependencies.
The DLL component is required to run Connector/C++ application binaries that use the connector.

• The Developer component includes header files, static libraries, and import libraries for DLLs. The
Developer component is required to build from source Connector/C++ applications that use the
connector.

The MSI Installer requires administrative privileges. It begins by presenting a welcome screen that
enables you to continue the installation or cancel it. If you continue the installation, the MSI Installer
overview screen enables you to select the type of installation to perform:
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Installation on Linux

• The Complete installation installs the DLL and Developer components for both connectors.

• The Typical installation installs the DLL component for both connectors.

• The Custom installation enables you to specify the installation location and select which
components to install. The DLL and Developer components for the X DevAPI connector are
preselected, but you can override the selection. The Developer component for a connector cannot
be selected without also selecting the connector DLL component.

The MSI Installer performs these actions:

• It checks whether the required Visual C++ Redistributable for Visual Studio is present. If not,
the installer asks you to install it and exits with an error. For information about which VC++
Redistributable versions are acceptable, see Platform Support and Prerequisites.

• It installs documentation files.

To install Connector/C++ from the command line in batch mode, use a command similar to:

msiexec.exe /i packages\mysql-connector-cpp-commercial-8.X.X-winx64.msi /qn /lvx* 
msi_install.log ALLUSERS=1 INSTALLDIR=C:\tmp\c-cpp-unpacked INSTALLLEVEL=4

To uninstall Connector/C++ from the command line in batch mode, use a command similar to:

msiexec.exe /x packages\mysql-connector-cpp-commercial-8.X.X-winx64.msi /qn /lvx* 
msi_uninstall.log 

• Zip archive package without installer.  To install from a Zip archive package (.zip file), see
Installation Using a tar or Zip Package.

In addition to the standard Zip archive packages, packages are available that were built in debug
mode. However, applications should use the same build mode as Connector/C++. If you install
Connector/C++ packages built in debug mode, build applications in debug mode. If you install
Connector/C++ packages built in release mode, build applications in release mode.

Installation on Linux

These methods of installing binary distributions are available on Linux:

• RPM package.  RPM packages are available for Linux (as of Connector/C++ 8.0.12). The
packages are distinguished by their base names (the full names include the Connector/C++ version
and suffixes):

• mysql-connector-c++: This package provides the shared connector library implementing X
DevAPI and X DevAPI for C.

• mysql-connector-c++-jdbc: This package provides the shared legacy connector library
implementing the JDBC API.

• mysql-connector-c++-devel: This package installs development files required for building
applications that use Connector/C++ libraries provided by the other packages, and static connector
libraries. This package depends on the shared libraries provided by the other packages. It cannot
be installed by itself without the other two packages.

• Debian package.  Debian packages are available for Linux (as of Connector/C++ 8.0.14). The
packages are distinguished by their base names (the full names include the Connector/C++ version
and suffixes):

• libmysqlcppconn8-1: This package provides the shared connector library implementing X
DevAPI and X DevAPI for C.
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Installation on macOS

• libmysqlcppconn7: This package provides the shared legacy connector library implementing
the JDBC API.

• libmysqlcppconn-dev: This package installs development files required for building
applications that use Connector/C++ libraries provided by the other packages, and static connector
libraries. This package depends on the shared libraries provided by the other packages. It cannot
be installed by itself without the other two packages.

• Compressed tar file.  To install from a compressed tar file (.tar.gz file), see Installation Using
a tar or Zip Package.

Installation on macOS

These methods of installing binary distributions are available on macOS:

• DMG package.  DMG (disk image) packages for macOS are available as of Connector/C++
8.0.12. A DMG package provides shared and static connector libraries implementing X DevAPI and
X DevAPI for C, and the legacy connector library implementing the JDBC API. The package also
includes OpenSSL libraries, public header files, and documentation files.

• Compressed tar file.  To install from a compressed tar file (.tar.gz file), see Installation Using
a tar or Zip Package.

Installation on Solaris

These methods of installing binary distributions are available on Solaris:

• Compressed tar file.  To install from a compressed tar file (.tar.gz file), see Installation Using
a tar or Zip Package.

Installation Using a tar or Zip Package

Connector/C++ binary distributions are available for several platforms, packaged in the form of
compressed tar files or Zip archives, denoted here as PACKAGE.tar.gz or PACKAGE.zip.

Note

Generic Linux packages do not contain Connector/C++ static libraries.

To unpack a compressed tar file, use this command in the intended installation directory:

tar zxvf PACKAGE.tar.gz

To install from a Zip archive package (.zip file), use WinZip or another tool that can read .zip files
to unpack the file into the location of your choosing.
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Chapter 4 Installing Connector/C++ from Source

Table of Contents
4.1 Source Installation System Prerequisites ................................................................................ 11
4.2 Obtaining and Unpacking a Connector/C++ Source Distribution ............................................... 12
4.3 Installing Connector/C++ from Source .................................................................................... 13
4.4 Connector/C++ Source-Configuration Options ......................................................................... 16

This chapter describes how to install Connector/C++ using a source distribution or a copy of the Git
source repository.

4.1 Source Installation System Prerequisites
To install Connector/C++ from source, the following system requirements must be satisfied:

• Build Tools

• MySQL Client Library

• Boost C++ Libraries

• SSL Support

Build Tools

You must have the cross-platform build tool CMake (3.0 or higher).

You must have a C++ compiler that supports C++17 (as of Connector/C++ 8.0.33).

MySQL Client Library

To build Connector/C++ from source, the MySQL C API client library may be required:

• Building the JDBC connector requires a client library from MySQL 8.0 or later. This occurs when
Connector/C++ is configured with the WITH_JDBC CMake option enabled to include the JDBC
connector.

• For Connector/C++ built without the JDBC connector, the client library is not needed.

Typically, the MySQL client library is installed when MySQL is installed. However, check your operating
system documentation for other installation options.

To specify where to find the client library, set the MYSQL_DIR CMake option appropriately at
configuration time as necessary (see Section 4.4, “Connector/C++ Source-Configuration Options”).

Boost C++ Libraries

To compile Connector/C++ the Boost C++ libraries are needed only if you build the legacy JDBC API
or if the version of the C++ standard library on your system does not implement the UTF8 converter
(codecvt_utf8).

If the Boost C++ libraries are needed, Boost 1.59.0 or newer must be installed. To obtain Boost and its
installation instructions, visit the official Boost site.

After Boost is installed, use the WITH_BOOST CMake option to indicate where the Boost files are
located (see Section 4.4, “Connector/C++ Source-Configuration Options”):

cmake [other_options] -DWITH_BOOST=/usr/local/boost_1_59_0
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SSL Support

Adjust the path as necessary to match your installation.

SSL Support

Use the WITH_SSL CMake option to specify which SSL library to use when compiling Connector/C++.
OpenSSL 1.0.x or higher is required. Your other options are:

• As of Connector/C++ 8.0.18, it is possible to compile against OpenSSL 1.1.

• As of Connector/C++ 8.0.30, it is possible to compile against OpenSSL 3.0.

For more information about WITH_SSL and SSL libraries, see Section 4.4, “Connector/C++ Source-
Configuration Options”.

4.2 Obtaining and Unpacking a Connector/C++ Source
Distribution

To obtain a Connector/C++ source distribution, visit the Connector/C++ downloads page. Alternatively,
clone the Connector/C++ Git source repository.

A Connector/C++ source distribution is packaged as a compressed tar file or Zip archive, denoted
here as PACKAGE.tar.gz or PACKAGE.zip. A source distribution in tar file or Zip archive format can
be used on any supported platform.

The distribution when unpacked includes an INFO_SRC file that provides information about the product
version and the source repository from which the distribution was produced. The distribution also
includes other documentation files such as those listed in Chapter 3, Installing Connector/C++ from a
Binary Distribution.

To unpack a compressed tar file, use this command in the intended installation directory:

tar zxvf PACKAGE.tar.gz

After unpacking the distribution, build it using the appropriate instructions for your platform later in this
chapter.

To install from a Zip archive package (.zip file), use WinZip or another tool that can read .zip files
to unpack the file into the location of your choosing. After unpacking the distribution, build it using the
appropriate instructions for your platform later in this chapter.

To clone the Connector/C++ code from the source code repository located on GitHub at https://
github.com/mysql/mysql-connector-cpp, use this command:

git clone https://github.com/mysql/mysql-connector-cpp.git

That command should create a mysql-connector-cpp directory containing a copy of the entire
Connector/C++ source tree.

The git clone command sets the sources to the master branch, which is the branch that contains
the latest sources. Released code is in the 8.0 branche (the 8.0 branch contains the same sources
as the master branch). If necessary, use git checkout in the source directory to select the desired
branch. For example, to build Connector/C++ 8.0:

cd mysql-connector-cpp
git checkout 8.0

After cloning the repository, build it using the appropriate instructions for your platform later in this
chapter.

After the initial checkout operation to get the source tree, run git pull periodically to update your
source to the latest version.
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Installing Connector/C++ from Source

4.3 Installing Connector/C++ from Source

To install Connector/C++ from source, verify that your system satisfies the requirements outlined in
Section 4.1, “Source Installation System Prerequisites”.

• Configuring Connector/C++

• Specifying External Dependencies

• Building Connector/C++

• Installing Connector/C++

• Verifying Connector/C++ Functionality

Configuring Connector/C++

Use CMake to configure and build Connector/C++. Only out-of-source-builds are supported, so create a
directory to use for the build and change location into it. Then configure the build using this command,
where concpp_source is the directory containing the Connector/C++ source code:

cmake concpp_source

It may be necessary to specify other options on the configuration command. Some examples:

• By default, these installation locations are used:

• /usr/local/mysql/connector-c++-8.0 (Unix and Unix-like systems)

• User_home/MySQL/"MySQL Connector C++ 8.0" (Windows)

To specify the installation location explicitly, use the CMAKE_INSTALL_PREFIX option:

-DCMAKE_INSTALL_PREFIX=path_name

• On Windows, you can use the -G and -A options to select a particular generator:

• -G "Visual Studio 16" -A x64 (64-bit builds)

• -G "Visual Studio 16" -A Win32 (32-bit builds)

Consult the CMake manual or check cmake --help to find out which generators are supported by
your CMake version. (However, it may be that your version of CMake supports more generators than
can actually be used to build Connector/C++.)

• If the Boost C++ libraries are needed, use the WITH_BOOST option to specify their location:

-DWITH_BOOST=path_name

• By default, the build creates dynamic (shared) libraries. To build static libraries, enable the
BUILD_STATIC option:

-DBUILD_STATIC=ON

• By default, the legacy JDBC connector is not built. To include the JDBC connector in the build,
enable the WITH_JDBC option:

-DWITH_JDBC=ON

Note

If you configure and build the test programs later, use the same CMake
options to configure them as the ones you use to configure Connector/C++
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Specifying External Dependencies

(-G, WITH_BOOST, BUILD_STATIC, and so forth). Exceptions: Path name
arguments will differ, and you need not specify CMAKE_INSTALL_PREFIX.

For information about CMake configuration options, see Section 4.4, “Connector/C++ Source-
Configuration Options”.

Specifying External Dependencies

Use CMake options to configure and build Connector/C++ with external sources that you can substitute
for the required third-party dependencies currently bundled with the connector. If the dependency is an
external library, then the library is linked dynamically to the connector. In contrast, bundled third-party
libraries used by connector are linked statically to it.

Note

Using an external third-party library that cannot be linked to the connector
dynamically causes the build to fail, even when the static library is available.

The supported options are:

• WITH_BOOST

• WITH_LZ4

• WITH_MYSQL

• WITH_PROTOBUF

• WITH_SSL

• WITH_ZLIB

• WITH_ZSTD

For example, to use an external installation of Protobuf, instead of building it from bundled sources,
specify the WITH_PROTOBUF option and provide the path name to the location where CMake can find
the alternative dependency.

Note

If an external dependency cannot be found (or is unusable), then the build fails.
No attempt is made to locate the bundled source.

cmake [other_options] -DWITH_PROTOBUF=path_name_to_protobuf_install 

To configure the standard system-wide location for an external dependency, use the literal value
system rather than providing a path name. For example:

-DWITH_SSL=system

For information about CMake configuration options, see Section 4.4, “Connector/C++ Source-
Configuration Options”.

External dependencies make it possible to use shared third-party libraries that are linked dynamically
to the connector. This can be an advantage because, for example, you cannot use the connector static
library with an application that also links to a Protobuf library.

When running an application that is linked to the connector dynamic library, the third-party libraries
on which the connector depends should be correctly found if they are placed in the file system next to
the connector library. The application should also work when the libraries are installed at the standard
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system-wide locations. This assumes that the external third-party dependency version is expected by
Connector/C++.

Except for Windows, it should be possible to run an application linked to the connector dynamic library
when the connector library and the third-party libraries are placed in a nonstandard location, provided
that these locations were stored as runtime paths when building the application (gcc -rpath option).

For Windows, an application that is linked to the connector shared library can be run only if the
connector library and the libraries are stored either:

• In the Windows system folder

• In the same folder as the application

• In a folder listed in the PATH environment variable

If the application is linked to the connector static library, it remains true that the required libraries must
be found in one of the preceding locations.

Building Connector/C++

After configuring the Connector/C++ distribution, build it using this command:

cmake --build . --config build_type

The --config option is optional. It specifies the build configuration to use, such as Release or
Debug. If you omit --config, the default is Debug.

Important

If you specify the --config option on the preceding command, specify the
same --config option for later steps, such as the steps that install Connector/
C++ or that build test programs.

If the build is successful, it creates the connector libraries in the build directory. (For Windows, look
for the libraries in a subdirectory with the same name as the build_type value specified for the --
config option.)

• If you build dynamic libraries, they have these names:

• libmysqlcppconn8.so.1 (Unix)

• libmysqlcppconn8.3.dylib (macOS)

• mysqlcppconn8-1-vs14.dll (Windows)

• If you build static libraries, they have these names:

• libmysqlcppconn8-static.a (Unix, macOS)

• mysqlcppconn8-static.lib (Windows)

If you enabled the WITH_JDBC option to include the legacy JDBC connector in the build, the following
additional library files are created.

• If you build legacy dynamic libraries, they have these names:

• libmysqlcppconn.so.7 (Unix)

• libmysqlcppconn.7.dylib (macOS)

• mysqlcppconn-7-vs14.dll (Windows)
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• If you build legacy static libraries, they have these names:

• libmysqlcppconn-static.a (Unix, macOS)

• mysqlcppconn-static.lib (Windows)

Installing Connector/C++

To install Connector/C++, use this command:

cmake --build . --target install --config build_type

Verifying Connector/C++ Functionality

To verify connector functionality, build and run one or more of the test programs included in the
testapp directory of the source distribution. Create a directory to use and change location into it. Then
issue the following commands:

cmake [other_options] -DWITH_CONCPP=concpp_install concpp_source/testapp
cmake --build . --config=build_type

WITH_CONCPP is an option used only to configure the test application. other_options consists
of the options that you used to configure Connector/C++ itself (-G, WITH_BOOST, BUILD_STATIC,
and so forth). concpp_source is the directory containing the Connector/C++ source code, and
concpp_install is the directory where Connector/C++ is installed:

The preceding commands should create the devapi_test and xapi_test programs in the run
directory of the build location. If you enable WITH_JDBC when configuring the test programs, the build
also creates the jdbc_test program.

Before running test programs, ensure that a MySQL server instance is running with X Plugin enabled.
The easiest way to arrange this is to use the mysql-test-run.pl script from the MySQL distribution.
For MySQL 8.0, X Plugin is enabled by default, so invoke this command in the mysql-test directory
of that distribution:

perl mysql-test-run.pl --start-and-exit

The command should start a test server instance with X Plugin enabled and listening on port 13009
instead of its standard port (33060).

Now you can run one of the test programs. They accept a connection-string argument, so if the server
was started as just described, you can run them like this:

run/devapi_test mysqlx://root@127.0.0.1:13009
run/xapi_test mysqlx://root@127.0.0.1:13009

The connection string assumes availability of a root user account without any password and the
programs assume that there is a test schema available (assumptions that hold for a server started
using mysql-test-run.pl).

To test jdbc_test, you need a MySQL server, but X Plugin is not required. Also, the connection
options must be in the form specified by the JDBC API. Pass the user name as the second argument.
For example:

run/jdbc_test tcp://127.0.0.1:13009 root

4.4 Connector/C++ Source-Configuration Options

Connector/C++ recognizes the CMake options described in this section.
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Table 4.1 Connector/C++ Source-Configuration Option Reference

Formats Description Default

BUILD_STATIC Whether to build a static librarty OFF

BUNDLE_DEPENDENCIES Whether to bundle external
dependency libraries with the
connector

OFF

CMAKE_BUILD_TYPE Type of build to produce Debug

CMAKE_INSTALL_DOCDIR Documentation installation
directory

CMAKE_INSTALL_INCLUDEDIR Header file installation directory

CMAKE_INSTALL_LIBDIR Library installation directory

CMAKE_INSTALL_PREFIX Installation base directory /usr/local

MAINTAINER_MODE For internal use only OFF

MYSQLCLIENT_STATIC_BINDINGWhether to link to the shared
MySQL client library

ON

MYSQLCLIENT_STATIC_LINKINGWhether to statically link to the
MySQL client library

OFF

MYSQL_CONFIG_EXECUTABLE Path to the mysql_config
program

${MYSQL_DIR}/bin/
mysql_config

MYSQL_DIR MySQL Server installation
directory

STATIC_MSVCRT Use the static runtime library

WITH_BOOST The Boost source directory system

WITH_DOC Whether to generate Doxygen
documentation

OFF

WITH_JDBC Whether to build legacy JDBC
library

OFF

WITH_LZ4 The LZ4 source directory

WITH_MYSQL The MySQL Server source
directory

system

WITH_PROTOBUF The Protobuf source directory

WITH_SSL The SSL source directory system

WITH_ZLIB The ZLIB source directory

WITH_ZSTD The ZSTD source directory

• -DBUILD_STATIC=bool

By default, dynamic (shared) libraries are built. If this option is enabled, static libraries are built
instead.

• -DBUNDLE_DEPENDENCIES=bool

This is an internal option used for creating Connector/C++ distribution packages.

• -DCMAKE_BUILD_TYPE=type

The type of build to produce:

• Debug: Disable optimizations and generate debugging information. This is the default.

• Release: Enable optimizations.
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• RelWithDebInfo: Enable optimizations and generate debugging information.

• -DCMAKE_INSTALL_DOCDIR=dir_name

The documentation installation directory, relative to CMAKE_INSTALL_PREFIX. If not specified, the
default is to install in CMAKE_INSTALL_PREFIX.

This option requires that WITH_DOC be enabled.

This option was added in Connector/C++ 8.0.14.

• -DCMAKE_INSTALL_INCLUDEDIR=dir_name

The header file installation directory, relative to CMAKE_INSTALL_PREFIX. If not specified, the
default is include.

This option was added in Connector/C++ 8.0.14.

• -DCMAKE_INSTALL_LIBDIR=dir_name

The library installation directory, relative to CMAKE_INSTALL_PREFIX. If not specified, the default is
lib64 or lib.

This option was added in Connector/C++ 8.0.14.

• -DCMAKE_INSTALL_PREFIX=dir_name

The installation base directory (where to install Connector/C++).

• -DMAINTAINER_MODE=bool

This is an internal option used for creating Connector/C++ distribution packages. It was added in
Connector/C++ 8.0.12.

• -DMYSQLCLIENT_STATIC_BINDING=bool

Whether to link to the shared MySQL client library. This option is used only if
MYSQLCLIENT_STATIC_LINKING is disabled to enable dynamic linking of the MySQL client
library. In that case, if MYSQLCLIENT_STATIC_BINDING is enabled (the default), Connector/C++ is
linked to the shared MySQL client library. Otherwise, the shared MySQL client library is loaded and
mapped at runtime.

This option applies only if you are building the legacy JDBC connector (that is, only if WITH_JDBC is
enabled). It was added in Connector/C++ 8.0.16.

• -DMYSQLCLIENT_STATIC_LINKING=bool

Whether to link statically to the MySQL client library. The default depends on the legacy JDBC
connector that you are building:

• From Connector/C++ 8.0.33, the default is OFF (use dynamic linking to the client library). Enabling
this option disables dynamic linking to the client library.

• For Connector/C++ 8.0.16 to 8.0.32, the default is ON (use static linking to the client library).
Disabling this option enables dynamic linking to the client library. CMake verifies that the current
compiler and standard libraries can build without errors at configuration time.

This option applies only if you are building the legacy JDBC connector (that is, only if WITH_JDBC is
enabled). It was added in Connector/C++ 8.0.16.
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• -DMYSQL_CONFIG_EXECUTABLE=file_name

The path to the mysql_config program.

On non-Windows systems, CMake checks to see whether MYSQL_CONFIG_EXECUTABLE is set. If
not, CMake tries to locate mysql_config in the default locations.

This option applies only if you are building the legacy JDBC connector (that is, only if WITH_JDBC is
enabled).

• -DMYSQL_DIR=dir_name

The directory where MySQL is installed.

This option applies only if you are building the legacy JDBC connector (that is, only if WITH_JDBC is
enabled).

• -DSTATIC_MSVCRT=bool

(Windows only) Use the static runtime library (the /MT* compiler option). This option might be
necessary if code that uses Connector/C++ also uses the static runtime library.

• -DWITH_BOOST={system|path_name}

This option specifies which BOOST header file to use when compiling Connector/C++ with an
external dependency. The option value to use:

• system: Use the system BOOST header file.

• path_name is the path name to the file to use.

For consistency with CMake conventions, BOOST_DIR or BOOST_ROOT_DIR can be used instead
of WITH_BOOST to indicate the base location of the dependency. As an alternative that implies the
WITH_BOOST option (without specifying it), use BOOST_INCLUDE_DIR to provide the header file
location instead of deriving it from the BOOST_ROOT_DIR value.

This option applies only if you are building the legacy JDBC connector (that is, only if WITH_JDBC is
enabled).

• -DWITH_DOC=bool

Whether to enable generating the Doxygen documentation. As of Connector/C++ 8.0.16, enabling
this option also causes the Doxygen documentation to be built by the all target.

• -DWITH_JDBC=bool

Whether to build the legacy JDBC connector. This option is disabled by default. If it is enabled,
Connector/C++ 8.0 applications can use the legacy JDBC API, just like Connector/C++ 1.1
applications.
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• -DWITH_LZ4={system|path_name}

This option specifies which LZ4 installation to use when compiling Connector/C++ with an external
dependency. The option value to use:

• system: Use the system LZ4 location.

• path_name is the path name to the installation location to use.

For consistency with CMake conventions, LZ4_DIR or LZ4_ROOT_DIR can be used instead of
WITH_LZ4 to indicate the base location of the dependency.

To imply the WITH_LZ4 option but with more fine-grained specification of installation directories,
use LZ4_INCLUDE_DIR or LZ4_LIB_DIR to indicate the header file (or library) location instead
of deriving it from the LZ4_ROOT_DIR value. To specify a list of external libraries to link to, use
LZ4_LIBRARY instead of the WITH_LZ4 option.

If you specify both LZ4_LIBRARY and LZ4_LIB_DIR, then LZ4_LIB_DIR is used as an additional
prefix when finding the library file and LZ4_LIBRARY should be relative to that prefix. On Windows,
LZ4_LIBRARY should point at the import library of the DLL.

• -DWITH_MYSQL={system|path_name}

The location where the MySQL sources are installed. The client library is linked statically when you
specify this option unless you also request MYSQLCLIENT_STATIC_LINKING=OFF. The option
value to use:

• system: Use the system MYSQL location.

• path_name is the path name to the installation location to use.

This option applies only if you are building the legacy JDBC connector (that is, only if WITH_JDBC is
enabled).

For consistency with CMake conventions, MYSQL_DIR or MYSQL_ROOT_DIR can be used instead of
WITH_MYSQL to indicate the base location of the dependency.

To imply the WITH_MYSQL option but with more fine-grained specification of installation directories,
use MYSQL_INCLUDE_DIR or MYSQL_LIB_DIR to indicate the header file (or library) location
instead of deriving it from the MYSQL_ROOT_DIR value. To specify a list of external libraries to link to,
use MYSQL_LIBRARY instead of the WITH_MYSQL option.

If you specify both MYSQL_LIBRARY and MYSQL_LIB_DIR, then MYSQL_LIB_DIR is used as an
additional prefix when finding the library file and MYSQL_LIBRARY should be relative to that prefix.
On Windows, MYSQL_LIBRARY should point at the import library of the DLL.

• -DWITH_PROTOBUF={system|path_name}

This option specifies which Protobuf installation to use when compiling Connector/C++ with an
external dependency. Although the library in Connector/C++ binary packages still links in Protobuf
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statically, using this option makes it possible to build from external sources a variant that links in
Protobuf dynamically.

The option value to use:

• system: Use the system Protobuf location.

• path_name is the path name to the installation location to use.

For consistency with CMake conventions, PROTOBUF_DIR or PROTOBUF_ROOT_DIR can be used
instead of WITH_PROTOBUF to indicate the base location of the dependency.

To imply the WITH_PROTOBUF option but with more fine-grained specification of installation
directories, use PROTOBUF_INCLUDE_DIR or PROTOBUF_LIB_DIR to indicate the header file (or
library) location instead of deriving it from the PROTOBUF_ROOT_DIR value. To specify a list of
external libraries to link to, use PROTOBUF_LIBRARY instead of the WITH_PROTOBUF option.

If you specify both PROTOBUF_LIBRARY and PROTOBUF_LIB_DIR, then PROTOBUF_LIB_DIR is
used as an additional prefix when finding the library file and PROTOBUF_LIBRARY should be relative
to that prefix. On Windows, PROTOBUF_LIBRARY should point at the import library of the DLL.

Similarly, specifying PROTOBUF_BIN_DIR makes it possible to locate the binaries required to use the
dependency and find the compiler.

• -DWITH_SSL={system|path_name}

This option specifies which SSL library to use when compiling Connector/C++. The option value to
use:

• system: Use the system OpenSSL library.

• path_name is the path name to the SSL installation to use. It should be the path to the installed
OpenSSL library, and must point to a directory containing a lib subdirectory with OpenSSL
libraries that are already built. Specifying a path name for the OpenSSL installation can be
preferable to using system because it can prevent CMake from detecting and using an older or
incorrect OpenSSL version installed on the system.

For consistency with CMake conventions, SSL_DIR or SSL_ROOT_DIR (OPENSSL_ROOT_DIR) can
be used instead of WITH_SSL to indicate the base location of the dependency.

To imply the WITH_SSL option but with more fine-grained specification of installation directories,
use OPENSSL_INCLUDE_DIR or OPENSSL_LIB_DIR to indicate the header file (or library) location
instead of deriving it from the SSL_ROOT_DIR value. To specify a list of external libraries to link to,
use SSL_LIBRARY instead of the WITH_SSL option.

If you specify both SSL_LIBRARY and OPENSSL_LIB_DIR, then OPENSSL_LIB_DIR is used as an
additional prefix when finding the library file and SSL_LIBRARY should be relative to that prefix. On
Windows, SSL_LIBRARY should point at the import library of the DLL.
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• -DWITH_ZLIB={system|path_name}

This option specifies which ZLIB installation to use when compiling Connector/C++ with an external
dependency. The option value to use:

• system: Use the system ZLIB location.

• path_name is the path name to the installation location to use.

For consistency with CMake conventions, ZLIB_DIR or ZLIB_ROOT_DIR can be used instead of
WITH_ZLIB to indicate the base location of the dependency.

To imply the WITH_ZLIB option but with more fine-grained specification of installation directories,
use ZLIB_INCLUDE_DIR or ZLIB_LIB_DIR to indicate the header file (or library) location instead
of deriving it from the ZLIB_ROOT_DIR value. To specify a list of external libraries to link to, use
ZLIB_LIBRARY instead of the WITH_ZLIB option.

If you specify both ZLIB_LIBRARY and ZLIB_LIB_DIR, then ZLIB_LIB_DIR is used as an
additional prefix when finding the library file and ZLIB_LIBRARY should be relative to that prefix. On
Windows, ZLIB_LIBRARY should point at the import library of the DLL,

• -DWITH_ZSTD={system|path_name}

This option specifies which ZSTD installation to use when compiling Connector/C++ with an external
dependency. The option value to use:

• system: Use the system ZSTD location.

• path_name is the path name to the installation location to use.

For consistency with CMake conventions, ZSTD_DIR or ZSTD_ROOT_DIR can be used instead of
WITH_ZSTD to indicate the base location of the dependency.

To imply the WITH_ZSTD option but with more fine-grained specification of installation directories,
use ZSTD_INCLUDE_DIR or ZSTD_LIB_DIR to indicate the header file (or library) location instead
of deriving it from the ZSTD_ROOT_DIR value. To specify a list of external libraries to link to, use
ZSTD_LIBRARY instead of the WITH_ZSTD option.

If you specify both ZSTD_LIBRARY and ZSTD_LIB_DIR, then ZSTD_LIB_DIR is used as an
additional prefix when finding the library file and ZSTD_LIBRARY should be relative to that prefix. On
Windows, ZSTD_LIBRARY should point at the import library of the DLL.
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This chapter provides guidance on building Connector/C++ applications:

• General considerations for building Connector/C++ applications successfully. See Section 5.1,
“Building Connector/C++ Applications: General Considerations”.

• Information about building Connector/C++ applications that applies to specific platforms such
as Windows, macOS, generic Linux, and Solaris. See Section 5.2, “Building Connector/C++
Applications: Platform-Specific Considerations”.

For discussion of the programming interfaces available to Connector/C++ applications, see Chapter 1,
Introduction to Connector/C++.

5.1 Building Connector/C++ Applications: General Considerations
This section discusses general considerations to keep in mind when building Connector/C++
applications. For information that applies to particular platforms, see the section that applies to your
platform in Section 5.2, “Building Connector/C++ Applications: Platform-Specific Considerations”.

Commands shown here are as given from the command line (for example, as invoked from a
Makefile). The commands apply to any platform that supports make and command-line build tools
such as g++, cc, or clang, but may need adjustment for your build environment.

• Build Tools and Configuration Settings

• C++17 Support

• Connector/C++ Header Files

• Connector/C++ Version Macros

• Boost Header Files

• Link Libraries

• Runtime Libraries

• Using the Connector/C++ Dynamic Library

• Using the Connector/C++ Static Library

Build Tools and Configuration Settings

It is important that the tools you use to build your Connector/C++ applications are compatible with the
tools used to build Connector/C++ itself. Ideally, build your applications with the same tools that were
used to build the Connector/C++ binaries.

To avoid issues, ensure that these factors are the same for your applications and Connector/C++ itself:
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• Compiler version.

• Runtime library.

• Runtime linker configuration settings.

To avoid potential crashes, the build configuration of Connector/C++ should match the build
configuration of the application using it. For example, do not use a release build of Connector/C++ with
a debug build of the client application.

To use a different compiler version, release configuration, or runtime library, first build Connector/C++
from source using your desired settings (see Chapter 4, Installing Connector/C++ from Source), then
build your applications using those same settings.

Connector/C++ binary distributions include an INFO_BIN file that describes the environment and
configuration options used to build the distribution. If you installed Connector/C++ from a binary
distribution and experience build-related issues on a platform, it may help to check the settings that
were used to build the distribution on that platform. Binary distributions also include an INFO_SRC
file that provides information about the product version and the source repository from which the
distribution was produced. (Prior to Connector/C++ 8.0.14, look for BUILDINFO.txt rather than
INFO_BIN and INFO_SRC.)

C++17 Support

X DevAPI uses C++17 language features (as of Connector/C++ 8.0.33). To compile Connector/C++
applications that use X DevAPI, enable C++17 support in the compiler using the -std=c++17 option.
This option is not needed for applications that use X DevAPI for C (which is a plain C API) or the legacy
JDBC API (which is based on plain C++), unless the application code uses C++17.

Connector/C++ Header Files

The API an application uses determines which Connector/C++ header files it should include.
The following include directives work under the assumption that the include path contains
$MYSQL_CPPCONN_DIR/include, where $MYSQL_CPPCONN_DIR is the Connector/C++ installation
location. Pass an -I $MYSQL_CPPCONN_DIR/include option on the compiler invocation command
to ensure this.

• For applications that use X DevAPI:

#include <mysqlx/xdevapi.h>

• For applications that use X DevAPI for C:

#include <mysqlx/xapi.h>

• For applications that use the legacy JDBC API, the header files are version dependent:

• As of Connector/C++ 8.0.16, a single #include directive suffices:

#include <mysql/jdbc.h>

• Prior to Connector/C++ 8.0.16, use this set of #include directives:

#include <jdbc/mysql_driver.h>
#include <jdbc/mysql_connection.h>
#include <jdbc/cppconn/*.h>

The notation <jdbc/cppconn/*.h> means that you should include all header files from the
jdbc/cppconn directory that are needed by your application. The particular files needed depend
on the application.

• Legacy code that uses Connector/C++ 1.1 has #include directives of this form:
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#include <mysql_driver.h>
#include <mysql_connection.h>
#include <cppconn/*.h>

To build such code with Connector/C++ 8.0 without modifying it, add $MYSQL_CPPCONN_DIR/
include/jdbc to the include path.

To compile code that you intend to link statically against Connector/C++, define a macro that adjusts
API declarations in the header files for usage with the static library. For details, see Using the
Connector/C++ Static Library.

Connector/C++ Version Macros

Starting with Connector/C++ 8.0.30, version-related macros are defined in public header files. The
intent of the macros is to provide a way to systematically and predictably maintain version numbering of
the Connector/C++ product. The following table describes the version-related macros.

Macro Name Description

MYSQL_CONCPP_VERSION_MAJOR Major number of the product version; currently 8.

MYSQL_CONCPP_VERSION_MINOR Minor number of the product version; currently 00.

MYSQL_CONCPP_VERSION_MICRO Micro number of the product version; initially 30.

MYSQL_CONCPP_VERSION_NUMBER Full Connector/C++ version number, which
combines the major, minor, and micro numbers.
For example, the combined version number
8000030 represents Connector/C++ 8.0.30.

Note

The version numbers maintained by these macros apply to the Connector/C
++ product only and are unrelated to API or ABI versions, which are handled
separately.

Connector/C++ applications that use X DevAPI, X DevAPI for C, or the legacy JDBC API can
specify the MYSQL_CONCPP_VERSION_NUMBER macro to add conditional tests that determine the
inclusion or exclusion of feature dependencies, based on which Connector/C++ version introduced the
dependency. For example, it is possible to use the MYSQL_CONCPP_VERSION_NUMBER macro in the
following cases:

• When a Connector/C++ application needs a guard that checks for features introduced after the
specified version. The following example specifies version 8.0.32, which has the macro defined in
public header files. The same conditional-compilation directive also works when the macro is not
defined (with pre-8.0.30 header files), because the value is treated as 0.

#if MYSQL_CONCPP_VERSION_NUMBER > 8000032
  // use some 8.0.32+ feature
#endif

• When a Connector/C++ application requires all features introduced before the specified version.

#if MYSQL_CONCPP_VERSION_NUMBER < 8000032
  // this usage is OK; it compiles with 8.0.31 and all previous versions
#endif

• When a Connector/C++ application that uses X DevAPI also uses the CharacterSet::utf8mb3
enumeration constant or any of the new utf8mb4 collation members. If the application compiles with
the pre-8.0.30 connector, then it is possible to guard the use of these new API elements.

#if MYSQL_CONCPP_VERSION_NUMBER >= 8000030
  if (CharacterSet::utf8mb3 == cs)
#else
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  if (CharacterSet::utf8 == cs)
#endif
  {
    // cs is the id of the utf8 character set
  }

• When a Connector/C++ application that uses X DevAPI needs to check the name of the utf8mb3
character set or any of its collations, and it must also be compiled with the pre-8.0.30 connector.

#if MYSQL_CONCPP_VERSION_NUMBER >= 8000030
  if ("utf8mb3" == characterSetName(cs))
#else
  if ("utf8" == characterSetName(cs))
#endif
  {
    // cs is the id of the utf8 character set
  }

Note

Alternatively, you can compare against numeric enumeration constant value,
which should work regardless of the connector version.

• When a Connector/C++ application that uses the legacy JDBC API needs to check the name of
the utf8mb3 character set or any of its collations, and it must also be compiled with the pre-8.0.30
connector.

#if MYSQL_CONCPP_VERSION_NUMBER >= 8000030
  if ("utf8mb3" == metadata->getColumnCharset(column))
#else
  if ("utf8" == metadata->getColumnCharset(column))
#endif
  {
    // column is the column index using the utf8 character set
  }

Do not use the MYSQL_CONCPP_VERSION_NUMBER macro to check against versions earlier than
Connector/C++ 8.0.30, which can produce unreliable results. For example:

#if MYSQL_CONCPP_VERSION_NUMBER > 8000028
  // this does not compile the with 8.0.29 connector!
#endif

#if MYSQL_CONCPP_VERSION_NUMBER < 8000028
  // this compiles with the 8.0.29 connector!
#endif

Boost Header Files

The Boost header files are needed under these circumstances:

• Prior to Connector/C++ 8.0.16, on Unix and Unix-like platforms for applications that use X DevAPI
or X DevAPI for C, if you build using gcc and the version of the C++ standard library on your system
does not implement the UTF8 converter (codecvt_utf8).

• Prior to Connector/C++ 8.0.23, to compile Connector/C++ applications that use the legacy JDBC
API.

If the Boost header files are needed, Boost 1.59.0 or newer must be installed, and the location of the
headers must be added to the include path. To obtain Boost and its installation instructions, visit the
official Boost site.

Link Libraries

When running an application that uses the shared Connector/C++ library, the library and its runtime
dependencies must be found by the dynamic linker. The dynamic linker must be properly configured to
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find Connector/C++ libraries and their dependencies. This includes adding -lresolv explicitly to the
compile/link command.

Building Connector/C++ using OpenSSL makes the connector library dependent on OpenSSL dynamic
libraries. In that case:

• When linking an application to Connector/C++ dynamically, this dependency is relevant only at
runtime.

• When linking an application to Connector/C++ statically, link to the OpenSSL libraries as well. On
Linux, this means adding -lssl -lcrypto explicitly to the compile/link command. On Windows,
this is handled automatically.

On Windows, link to the dynamic version of the C++ Runtime Library.

Runtime Libraries

X DevAPI for C applications need libstdc++ at runtime. Depending on your platform or build tools, a
different library may apply. For example, the library is libc++ on macOS; see Section 5.2.2, “macOS
Notes”.

If an application is built using dynamic link libraries, those libraries must be present not just on the build
host, but on target hosts where the application runs. The dynamic linker must be properly configured to
find those libraries and their runtime dependencies, as well as to find Connector/C++ libraries and their
runtime dependencies.

Connector/C++ libraries built by Oracle depend on the OpenSSL libraries. The latter must be installed
on the system in order to run code that links against Connector/C++ libraries. Another option is
to put the OpenSSL libraries in the same location as Connector/C++, in which case, the dynamic
linker should find them next to the connector library. See also Section 5.2.1, “Windows Notes”, and
Section 5.2.2, “macOS Notes”.

Note

The TLSv1 and TLSv1.1 connection protocols are no longer supported as of
Connector/C++ 8.0.28, making TLSv1.2 the earliest supported connection
protocol.

Using the Connector/C++ Dynamic Library

The Connector/C++ dynamic library name depends on the platform. These libraries implement X
DevAPI and X DevAPI for C, where A in the library name represents the ABI version:

• libmysqlcppconn8.so.A (Unix)

• libmysqlcppconn8.A.dylib (macOS)

• mysqlcppconn8-A-vsNN.dll, with import library vsNN/mysqlcppconn8.lib (Windows)

For the legacy JDBC API, the dynamic libraries are named as follows, where B in the library name
represents the ABI version:

• libmysqlcppconn.so.B (Unix)

• libmysqlcppconn.B.dylib (macOS)

• mysqlcppconn-B-vsNN.dll, with import library vsNN/mysqlcppconn-static.lib (Windows)

On Windows, the vsNN value in library names depends on the MSVC toolchain version used to build
the libraries. (Connector/C++ libraries provided by Oracle use vs14, and they are compatible with
MSVC 2019 and 2017.) This convention enables using libraries built with different versions of MSVC on
the same system. See also Section 5.2.1, “Windows Notes”.
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To build code that uses X DevAPI or X DevAPI for C, add -lmysqlcppconn8 to the linker options. To
build code that uses the legacy JDBC API, add -lmysqlcppconn.

You must also indicate whether to use the 64-bit or 32-bit libraries by specifying the appropriate
library directory. Use an -L linker option to specify $MYSQL_CONCPP_DIR/lib64 (64-bit libraries) or
$MYSQL_CONCPP_DIR/lib (32-bit libraries), where $MYSQL_CPPCONN_DIR is the Connector/C++
installation location. On FreeBSD, /lib64 is not used. The library name always ends with /lib.

To build a Connector/C++ application that uses X DevAPI, has sources in app.cc, and links
dynamically to the connector library, the Makefile might look like this:

MYSQL_CONCPP_DIR = Connector/C++ installation location
CPPFLAGS = -I $(MYSQL_CONCPP_DIR)/include -L $(MYSQL_CONCPP_DIR)/lib64
LDLIBS = -lmysqlcppconn8
CXXFLAGS = -std=c++17
app : app.cc

With that Makefile, the command make app generates the following compiler invocation:

g++ -std=c++17 -I .../include -L .../lib64 app.cc -lmysqlcppconn8 -o app

To build a plain C application that uses X DevAPI for C, has sources in app.c, and links dynamically to
the connector library, the Makefile might look like this:

MYSQL_CONCPP_DIR = Connector/C++ installation location
CPPFLAGS = -I $(MYSQL_CONCPP_DIR)/include -L $(MYSQL_CONCPP_DIR)/lib64
LDLIBS = -lmysqlcppconn8
app : app.c

With that Makefile, the command make app generates the following compiler invocation:

cc -I .../include -L .../lib64 app.c -lmysqlcppconn8 -o app

Note

The resulting code, even though it is compiled as plain C, depends on the C++
runtime (typically libstdc++, though this may differ depending on platform or
build tools; see Runtime Libraries).

To build a plain C++ application that uses the legacy JDBC API, has sources in app.c, and links
dynamically to the connector library, the Makefile might look like this:

MYSQL_CONCPP_DIR = Connector/C++ installation location
CPPFLAGS = -I $(MYSQL_CONCPP_DIR)/include -L $(MYSQL_CONCPP_DIR)/lib64
LDLIBS = -lmysqlcppconn
app : app.c

The library option in this case is -lmysqlcppcon, rather than -lmysqlcppcon8 as for an X DevAPI
or X DevAPI for C application.

With that Makefile, the command make app generates the following compiler invocation:

cc -I .../include -L .../lib64 app.c -lmysqlcppconn -o app

Note

When running an application that uses the Connector/C++ dynamic library, the
library and its runtime dependencies must be found by the dynamic linker. See
Runtime Libraries.

Using the Connector/C++ Static Library

It is possible to link your application with the Connector/C++ static library. This way there is no runtime
dependency on the connector, and the resulting binary can run on systems where Connector/C++ is
not installed.
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Note

Even when linking statically, the resulting code still depends on all runtime
dependencies of the Connector/C++ library. For example, if Connector/C++
is built using OpenSSL, the code has a runtime dependency on the OpenSSL
libraries. See Runtime Libraries.

The Connector/C++ static library name depends on the platform. These libraries implement X DevAPI
and X DevAPI for C:

• libmysqlcppconn8-static.a (Unix, macOS)

• vsNN/mysqlcppconn8-static.lib (Windows)

For the legacy JDBC API, the static libraries are named as follows:

• libmysqlcppconn-static.a (Unix, macOS)

• vsNN/mysqlcppconn-static.lib (Windows)

Note

Generic Linux packages do not contain any Connector/C++ static libraries.
If you intend to link your application to a static library, consider installing a
package that is specific to the platform on which you build your final application.

On Windows, the vsNN value in library names depends on the MSVC toolchain version used to build
the libraries. (Connector/C++ libraries provided by Oracle use vs14, and they are compatible with
MSVC 2019 and 2017.) This convention enables using libraries built with different versions of MSVC on
the same system. See also Section 5.2.1, “Windows Notes”.

To compile code that you intend to link statically against Connector/C++, define a macro that adjusts
API declarations in the header files for usage with the static library. One way to define the macro is by
passing a -D option on the compiler invocation command:

• For applications that use X DevAPI, X DevAPI for C, or (as of Connector/C++ 8.0.16) the legacy
JDBC API, define the STATIC_CONCPP macro. All that matters is that you define it; the value does
not matter. For example: -DSTATIC_CONCPP

• Prior to Connector/C++ 8.0.16, for applications that use the legacy JDBC API, define
the CPPCONN_PUBLIC_FUNC macro as an empty string. To ensure this, define the
macro as CPPCONN_PUBLIC_FUNC=, not as CPPCONN_PUBLIC_FUNC. For example: -
DCPPCONN_PUBLIC_FUNC=

To build a Connector/C++ application that uses X DevAPI, has sources in app.cc, and links statically
to the connector library, the Makefile might look like this:

MYSQL_CONCPP_DIR = Connector/C++ installation location
CPPFLAGS = -DSTATIC_CONCPP -I $(MYSQL_CONCPP_DIR)/include
LDLIBS = $(MYSQL_CONCPP_DIR)/lib64/libmysqlcppconn8-static.a -lssl -lcrypto -lpthread
CXXFLAGS = -std=c++17
app : app.cc

With that Makefile, the command make app generates the following compiler invocation:

g++ -std=c++17 -DSTATIC_CONCPP -I .../include app.cc
  .../lib64/libmysqlcppconn8-static.a -lssl -lcrypto -lpthread -o app

Note

To avoid having the linker report unresolved symbols, the compile line must
include the OpenSSL libraries and the pthread library on which Connector/C+
+ code depends.
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OpenSSL libraries are not needed if Connector/C++ is built without them, but
Connector/C++ distributions built by Oracle do depend on OpenSSL.

The exact list of libraries required by Connector/C++ library depends on the
platform. For example, on Solaris, the socket, rt, and nsl libraries might be
needed.

To build a plain C application that uses X DevAPI for C, has sources in app.c, and links statically to
the connector library, the Makefile might look like this:

MYSQL_CONCPP_DIR = Connector/C++ installation location
CPPFLAGS = -DSTATIC_CONCPP -I $(MYSQL_CONCPP_DIR)/include
LDLIBS = $(MYSQL_CONCPP_DIR)/lib64/libmysqlcppconn8-static.a -lssl -lcrypto -lpthread
app : app.c

With that Makefile, the command make app generates the following compiler invocation:

cc -DSTATIC_CONCPP -I .../include app.c
  .../lib64/libmysqlcppconn8-static.a -lssl -lcrypto -lpthread -o app

To build a plain C application that uses the legacy JDBC API, has sources in app.c, and links statically
to the connector library, the Makefile might look like this:

MYSQL_CONCPP_DIR = Connector/C++ installation location
CPPFLAGS = -DCPPCONN_PUBLIC_FUNC= -I $(MYSQL_CONCPP_DIR)/include
LDLIBS = $(MYSQL_CONCPP_DIR)/lib64/libmysqlcppconn-static.a -lssl -lcrypto -lpthread
app : app.c

The library option in this case names libmysqlcppcon-static.a, rather than libmysqlcppcon8-
static.a as for an X DevAPI or X DevAPI for C application.

With that Makefile, the command make app generates the following compiler invocation:

cc -std=c++17 --DCPPCONN_PUBLIC_FUNC= -I .../include app.c
  .../lib64/libmysqlcppconn-static.a -lssl -lcrypto -lpthread -o app

When building plain C code, it is important to take care of connector's dependency on the C++ runtime,
which is introduced by the connector library even though the code that uses it is plain C:

• One approach is to ensure that a C++ linker is used to build the final code. This approach is taken by
the Makefile shown here:

MYSQL_CONCPP_DIR = Connector/C++ installation location
CPPFLAGS = -DSTATIC_CONCPP -I $(MYSQL_CONCPP_DIR)/include
LDLIBS = $(MYSQL_CONCPP_DIR)/lib64/libmysqlcppconn8-static.a -lssl -lcrypto -lpthread
LINK.o = $(LINK.cc) # use C++ linker
app : app.o

With that Makefile, the build process has two steps: first compile the application source in app.c
using a plain C compiler to produce app.o, then link the final executable (app) using the C++ linker,
which takes care of the dependency on the C++ runtime. The commands look something like this:

cc -DSTATIC_CONCPP -I .../include -c -o app.o app.c
g++ -DSTATIC_CONCPP -I .../include app.o
  .../libmysqlcppconn8-static.a -lssl -lcrypto -lpthread -o app

• Another approach is to use a plain C compiler and linker, but add the libstdc++ C++ runtime
library as an explicit option to the linker. This approach is taken by the Makefile shown here:

MYSQL_CONCPP_DIR = Connector/C++ installation location
CPPFLAGS = -DSTATIC_CONCPP -I $(MYSQL_CONCPP_DIR)/include
LDLIBS = $(MYSQL_CONCPP_DIR)/lib64/libmysqlcppconn8-static.a -lssl -lcrypto -lpthread -lstdc++
app : app.c

With that Makefile, the compiler is invoked as follows:

cc -DSTATIC_CONCPP -I .../include app.c
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  .../libmysqlcppconn8-static.a -lssl -lcrypto -lpthread -lstdc++ -o app

Note

Even if the application that uses Connector/C++ is written in plain C, the final
executable depends on the C++ runtime which must be installed on the target
computer on which the application is to run.

5.2 Building Connector/C++ Applications: Platform-Specific
Considerations

This section discusses platform-specific considerations to keep in mind when building Connector/C++
applications. For general considerations that apply on a platform-independent basis, see Section 5.1,
“Building Connector/C++ Applications: General Considerations”.

5.2.1 Windows Notes

This section describes aspects of building Connector/C++ applications that are specific to Microsoft
Windows. For general application-building information, see Section 5.1, “Building Connector/C++
Applications: General Considerations”.

On Windows, applications can be built in different build configurations, which determine the type of the
C++ runtime library that is used by the final executable:

• An application can be built in 32-bit or 64-bit mode.

• An application can be built in release or debug mode.

• You can choose between the dynamic runtime library (/MD linker option) or static runtime library (/
MT linker option). Different versions of the MSVC compiler also use different versions of the runtime
library.

To build Connector/C++ applications, developers using Windows must satisfy these conditions:

• An acceptable version of Microsoft Visual Studio is required.

• Applications should use the same build configuration as that used to build Connector/C++. Build
configuration includes the build mode (release mode or debug mode) and the linker option (for
example, /MD or /MDd).

• Target hosts running client applications must have an acceptable version of the Visual C++
Redistributable for Visual Studio installed.

For information about acceptable versions of Visual Studio and VC++ Redistributable, see Platform
Support and Prerequisites.

The following sections provide additional detail about several aspects of building Connector/C++
applications:

• Application Build Configuration Must Match Connector/C++

• Linking Connector/C++ to Applications

• Building Connector/C++ Applications with Microsoft Visual Studio

Application Build Configuration Must Match Connector/C++

It is important to use a compatible compiler version to build applications and Connector/C++. It is also
important to build applications using the same build configuration as that used to build Connector/C+
+. That is, applications should use the same build mode and linker option, to ensure that the connector
and the application use the same runtime library.
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The following table shows the linker option appropriate for each combination of build mode and runtime
library. It also shows for each combination whether a Connector/C++ binary package is available from
Oracle. (If not, you must build Connector/C++ from source yourself.)

Table 5.1 Connector/C++ Linker Option Per Build Mode and Runtime Library

Build Mode Runtime Library Linker Option Binary Package
Available

Release Dynamic /MD Yes

Debug Dynamic /MDd Yes

Release Static /MT No (build from source)

Debug Static /MTd No (build from source)

Standard Connector/C++ binary packages available from Oracle are built in release mode. If you
install such a package, build applications in release mode to match. Oracle packages built in debug
mode are available as well. To build applications in debug mode, you must either install an Oracle-built
Connector/C++ package that was built in debug mode, or build Connector/C++ from source yourself
using debug mode.

Linking Connector/C++ to Applications

Connector/C++ binary distributions are available as 64-bit or 32-bit packages, which store libraries
under a directory named lib64 or lib, respectively. Package names and certain library file and
directory names also include vsNN. The vsNN value in these names depends on the MSVC toolchain
version used to build the libraries. This convention enables using libraries built with different versions of
MSVC on the same system.

Note

The vsNN value represents the major version of the MSVC toolchain used to
build the libraries. Currently it is vs14, which is the toolchain used by MSVC
2015 through 2019.

Connector/C++ binary packages include libraries built using the dynamic runtime library in either
release mode (/MD) or debug mode (/MDd). The Connector/C++ libraries are compatible with MSVC
2019 and 2017, and code that uses these libraries can be built with either MSVC 2019 or 2017 using
the appropriate linker option (that is, /MD for release mode or /MDd for debug mode). To build code
with a different linker option (/MT or /MTd), first build Connector/C++ from source with that option (see
Section 4.3, “Installing Connector/C++ from Source”), then build applications using the same option.

Note

One exception for compiler version compatibility is that to build applications
using the static JDBC legacy connector, MSVC 2019 is required; 2017 does not
work.

Connector/C++ is available as a dynamic or static library to use with your application. Which library
you choose determines the library files needed, and the location of those files within a Connector/C
++ package depends on whether the package was built in release or debug mode. Library files are
located under the library directory, which, as previously mentioned, is lib64 for 64-bit packages or
lib for 32-bit packages. Denote this directory as LIB. The following table shows the directory in which
to find library files for each type of library (including import libraries, which are used in conjunction with
dynamic libraries).

Table 5.2 Connector/C++ Library File Directories

Library Type Library File Directory (Release
Build)

Library File Directory (Debug
Build)

Dynamic Library LIB LIB/debug

32



Windows Notes

Library Type Library File Directory (Release
Build)

Library File Directory (Debug
Build)

Import Library LIB/vs14 LIB/vs14/debug

Static Library LIB/vs14 LIB/vs14/debug

For dynamic linking, the following table indicates which dynamic and import library files to use.

Table 5.3 Connector/C++ Dynamic and Import Library Files Per Connector

Connector Dynamic Library File Import Library File

X DevAPI, X DevAPI for C mysqlcppconn8-2-vs14.dll mysqlcppconn8.lib

JDBC mysqlcppconn-7-vs14.dll mysqlcppconn.lib

For the X DevAPI or X DevAPI for C connector, use the dynamic library file named
mysqlcppconn8-2-vs14.dll, together with with the import library file named
mysqlcppconn8.lib from the import library directory. The 2 in the dynamic library name is the major
ABI version number. (This helps when using compatibility libraries with an old ABI together with new
libraries having a different ABI.) The libraries installed on your system may have a different ABI version
in their file names.

For the legacy JDBC connector, use the dynamic library file named mysqlcppconn-7-vs14.dll,
together with the import library file named mysqlcppconn.lib from the import library directory.

For static linking, the following table indicates which static library file to use.

Table 5.4 Connector/C++ Static Library File Per Connector

Connector Static Library File

X DevAPI, X DevAPI for C mysqlcppconn8-static.lib

JDBC mysqlcppconn-static.lib

For the X DevAPI or X DevAPI for C connector, use the static library file named mysqlcppconn8-
static.lib from the static library directory.

For the legacy JDBC connector, use the static library file named mysqlcppconn-static.lib from
the static library directory.

When building code that uses Connector/C++ libraries, use these guidelines for setting build options in
the project configuration:

• As an additional include directory, specify $MYSQL_CPPCONN_DIR/include.

• As an additional library directory, specify the directory containing the libraries the application must
link to, as indicated in Table 5.2, “Connector/C++ Library File Directories”. For example, to specify
the import or static library directory for building in release mode, use $MYSQL_CONCPP_DIR/
lib64/vs14 (for 64-bit libraries) or $MYSQL_CONCPP_DIR/lib/vs14 (for 32-bit libraries). For
building in debug mode, change vs14 to vs14/debug.

• To use a dynamic library file (.dll extension), link your application with a .lib import library:
mysqlcppconn8.lib to the linker options, or mysqlcppconn.lib for legacy code.

• To use a static library file (.lib extension), link your application with the library: mysqlcppconn8-
static.lib, or mysqlcppconn-static.lib for legacy code.

For static linking, the application must also be linked with import libraries for the required OpenSSL
libraries. If the connector was installed from a binary package provided by Oracle, these are
present in the vs14 subdirectory under the main library directory ($MYSQL_CONCPP_DIR/lib64 or
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$MYSQL_CONCPP_DIR/lib), and the corresponding OpenSSL .dll libraries are present in the main
library directory.

Note

A Windows application that uses the connector dynamic library must be able
to locate it at runtime, as well as its dependencies such as OpenSSL. The
common way of arranging this is to copy all the required DLLs to the same
location as the application executable.

Building Connector/C++ Applications with Microsoft Visual Studio

To build a Connector/C++ application with Microsoft Visual Studio, follow this procedure:

1. Start a new Visual C++ project in Visual Studio.

2. Set the required include paths.

From the main menu, select Project, Properties. This can also be accessed using the hot key
ALT + F7. Under Configuration Properties, open the tree view. Select C/C++, General in the tree
view.

In the Additional Include Directories text field:

• Add the include/ directory of Connector/C++. This directory should be located within the
Connector/C++ installation directory.

• If Boost is required to build the application, also add the Boost library root directory. (See
Section 5.1, “Building Connector/C++ Applications: General Considerations”.)

3. Set the library locations.

In the tree view, open Linker, General, Additional Library Directories.

In the Additional Library Directories text field, add the Connector/C++ import or static library
directory as specified in Table 5.2, “Connector/C++ Library File Directories”. Set appropriate paths
for release and debug builds.

Note

For building in debug mode, the Connector/C++ debug package must be
installed.

4. Set the connector library to use.

Open Linker, Input in the Property Pages dialog.

For building with the Connector/C++ dynamic library, enter the import library name:
mysqlcppconn8.lib, or mysqlcppconn.lib for legacy applications.

For building with the Connector/C++ static library, enter the static library name: mysqlcppconn8-
static.lib, or mysqlcppconn-static.lib for legacy applications.

Note

Generic Linux packages do not contain Connector/C++ static libraries.

5. Define macros for static linking.

To compile code that is linked statically with the connector library, you must define a macro that
adjusts API declarations in the header files for usage with the static library. By default, the macro is
undefined to declare functions to be compatible with an application that calls a DLL.
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In the Project, Properties tree view, under C++, Preprocessor, enter the appropriate macro into
the Preprocessor Definitions text field:

• For applications that use X DevAPI, X DevAPI for C, or (as of Connector/C++ 8.0.16) the legacy
JDBC API, define the STATIC_CONCPP macro. All that matters is that you define it; the value
does not matter. For example: -DSTATIC_CONCPP

• Prior to Connector/C++ 8.0.16, for applications that use the legacy JDBC API, define the
CPPCONN_PUBLIC_FUNC macro as an empty string. To ensure this, define the macro as
CPPCONN_PUBLIC_FUNC=, not as CPPCONN_PUBLIC_FUNC.

Notes

• Target hosts running the client application must have the Visual C++
Redistributable for Visual Studio installed. For information about which
VC++ Redistributable versions are acceptable, see Platform Support and
Prerequisites.

• If your code uses the Connector/C++ dynamic library, it must be present on
the target host where the application is run. Copy the appropriate Connector/
C++ dynamic library to the same directory as the application executable
(see Linking Connector/C++ to Applications). Alternatively, extend the PATH
environment variable using SET PATH=%PATH%;C:\path\to\cpp, or
copy the dynamic library to the Windows installation directory, typically C:
\windows.

• If your code uses the Connector/C++ static library, the required OpenSSL
libraries must be found on the target host where the application is run.
For Connector/C++ binary distributions, the OpenSSL .dll libraries are
present in the main library directory ($MYSQL_CONCPP_DIR/lib64 or
$MYSQL_CONCPP_DIR/lib). Copy them to the same location as the
application executable or to some directory listed in the system PATH.

5.2.2 macOS Notes

This section describes aspects of building Connector/C++ applications that are specific to macOS.
For general application-building information, see Section 5.1, “Building Connector/C++ Applications:
General Considerations”.

The binary distribution of Connector/C++ for macOS is compiled using the macOS native clang
compiler. For that reason, an application that uses Connector/C++ should be built with the same clang
compiler.

The clang compiler can use two different implementations of the C++ runtime library: either the native
libc++ or the GNU libstdc++ library. It is important that an application uses the same runtime
implementation as Connector/C++ that is, the native libc++. To ensure that, the -stdlib=libc++
option should be passed to the compiler and the linker invocations.

To build a Connector/C++ application that uses X DevAPI, has sources in app.cc, and links
dynamically to the connector library, the Makefile for building on macOS might look like this:

MYSQL_CONCPP_DIR = Connector/C++ installation location
CPPFLAGS = -I $(MYSQL_CONCPP_DIR)/include -L $(MYSQL_CONCPP_DIR)/lib64
LDLIBS = -lmysqlcppconn8
CXX = clang++ -stdlib=libc++
CXXFLAGS = -std=c++17
app : app.cc

Binary packages for macOS include OpenSSL libraries that are required by code linked with the
connector. These libraries are installed in the same location as the connector libraries and should be
found there by the dynamic linker.
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5.2.3 Generic Linux Notes

This section describes aspects of building Connector/C++ applications that are specific to Linux.
Generic Linux packages do not contain Connector/C++ static libraries. For general application-building
information, see Section 5.1, “Building Connector/C++ Applications: General Considerations”.

Note

Connector/C++ 8.0.32 provides generic Linux packages for ARM architecture
(64 bit). All Connector/C++ versions provide generic Linux packages for Intel
architecture (both 32 and 64 bits).

Previously, generic Linux packages were built on the EL7 platform and on that platform GCC is
configured to use an older ABI of libstdc++. Some of the symbols exported by the library include
standard library types in their names, and consequently, are not compatible with the new CXX11 ABI,
which is the default for modern GCC on most platforms (EL7 being an exception). So, unless you
build your code on EL7, and use GCC6 or later compiler, it defaults to new CXX11 ABI and looks for
Connector/C++ symbols that have new ABI names in them.

As of Connector/C++ 8.0.30, Connector/C++ uses the new CXX11 ABI. With this change, you might
encounter following problems when using Connector/C++ installed from a generic Linux package:

• An upgrade from Connector/C++ 8.0.29 (or earlier) to 8.0.30 (or later) could produce runtime errors
after the upgrade, even if the previous version of Connector/C++ ran successfully.

• It will not work with GCC5 or earlier, because the old compiler uses the old ABI and cannot link to
code that uses new the ABI.

• It will not work on EL6, EL7, or any other platform that modifies GCC settings to use
the old ABI by default. However, in this situation a workaround is to build code under -
D_GLIBCXX_USE_CXX11_ABI=1.

For a majority of platforms, including EL8, the GCC default was changed to the new ABI.

5.3 Authentication Support

For connections to the server made using the legacy JDBC API (that is, not made using X DevAPI or X
DevAPI for C), Connector/C++ supports different client-side authentication plugins and authentication
methods for:

• LDAP Authentication

• Kerberos Authentication

• OpenID Connect Authentication

• OCI Authentication

• Multifactor Authentication

• WebAuthn (FIDO) Authentication

LDAP Authentication

LDAP authentication enables Connector/C++ (8.0.22 and later) application programs to connect to
MySQL servers using simple LDAP authentication, or SASL LDAP authentication using the SCRAM-
SHA-1 authentication method. LDAP authentication requires use of a server from a MySQL Enterprise
Edition distribution. For more information about the LDAP authentication plugins, see LDAP Pluggable
Authentication.
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Kerberos Authentication

Connector/C++ binary distributions include the libraries that provide the client-side LDAP authentication
plugins, as well as any dependent libraries required by the plugins.

Note

In Connector/C++ 8.0.23, a dependency on the mysql-client-plugins
package was removed. This package now is required only on hosts where
Connector/C++ applications make connections using commercial MySQL
server accounts with LDAP authentication. In that case, additional libraries
must also be installed: cyrus-sasl-scram for installations that use RPM
packages and libsasl2-modules-gssapi-mit for installations that use
Debian packages. These SASL packages provide the support required to use
the SCRAM-SHA-256 and GSSAPI/Kerberos authentication methods for LDAP.

If Connector/C++ was installed from a compressed tar file or Zip archive, the application program will
need to set the OPT_PLUGIN_DIR connection option to the appropriate directory so that the bundled
plugin library can be found. (Alternatively, copy the required plugin library to the default directory
expected by the client library.)

For example:

sql::ConnectOptionsMap connection_properties;

// To use simple LDAP authentication ...

connection_properties["userName"] = "simple_ldap_user_name";
connection_properties["password"] = "simple_ldap_password";
connection_properties[OPT_ENABLE_CLEARTEXT_PLUGIN]=true;

// To use SASL LDAP authentication using SCRAM-SHA-1 ...

connection_properties["userName"] = "sasl_ldap_user_name";
connection_properties["password"] = "sasl_ldap_scram_password";

// Needed if Connector/C++ was installed from tar file or Zip archive ...

connection_properties[OPT_PLUGIN_DIR] = "${INSTALL_DIR}/lib{64}/plugin";

auto *driver = get_driver_instance();
auto *con = driver->connect(connection_properties);

// Execute statements ...

con->close();

Kerberos Authentication

Kerberos authentication enables Connector/C++ application programs to establish connections for
accounts that use the authentication_kerberos server-side authentication plugin, provided that
the correct Kerberos tickets are available or can be obtained from Kerberos. This capability is available
on client hosts running Linux (starting with 8.0.26).

On Windows (starting with 8.0.32), the OPT_AUTHENTICATION_KERBEROS_CLIENT_MODE
connection option can be set to either SSPI (default) or GSSAPI. The option permits choosing between
SSPI and GSSAPI at runtime for the authentication_kerberos_client authentication plugin on
Windows. Connector/C++ implements GSSAPI mode through the MIT kerberos library and this mode is
compatible with the Java SE security tools (for example, klist and kinit commands) on Windows.
In this mode, the ticket search on Windows hosts is restricted to the MIT Kerberos cache only. If the
cache has no ticket, the connection fails even if the Windows ticket is valid

Previously, Connector/C++ supported Kerberos authentication through the Windows SSPI Kerberos
library only (starting with 8.0.27). SSPI is not capable of acquiring cached credentials that were
generated using the kinit command. In SSPI mode, the Windows single sign-on ticket is used for
authentication if the client user provides no password and the authentication method considers the
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Windows ticket exclusively. If the ticket is missing or invalid, the connection fails even if the Kerberos
cache contains a valid ticket. For more information, see Commands for Windows Clients in SSPI Mode.

It is possible to connect to Kerberos-authenticated accounts without giving a user name under these
conditions:

• The user has a Kerberos principal name assigned, a MySQL Kerberos account for that principal
name exists, and the user has the required tickets.

• The default authentication method must be set to the authentication_kerberos_client client-
side authentication plugin using the OPT_DEFAULT_AUTH connection option.

It is possible to connect without giving a password, provided that the user has the required tickets in the
Kerberos cache on Linux or the MIT Kerberos cache on Windows (for example, created by kinit or a
similar command).

Note

The SSPI Kerberos library is not compatible with Java SE security
tools. To use the kinit command, the client application must set the
OPT_AUTHENTICATION_KERBEROS_CLIENT_MODE connection option to
GSSAPI.

If the required tickets are not present in the Kerberos cache (or the MIT Kerberos cache) and a
password was given, Connector/C++ obtains the tickets from Kerberos using that password. If the
required tickets are found in the cache, any password given is ignored and the connection might
succeed even if the password is incorrect.

On client hosts running Windows, you can override the default location of the MIT Kerberos
configuration file by setting the KRB5_CONFIG environment variable and the default MIT Kerberos
credential cache name with the KRB5CCNAME environment variable (for example, KRB5CCNAME=DIR:/
mydir/).

For details about using the MIT Kerberos configuration and cache, see:

• KRB5_CONFIG: https://web.mit.edu/kerberos/krb5-devel/doc/admin/conf_files/krb5_conf.html

• KRB5CCNAME: https://web.mit.edu/kerberos/krb5-1.12/doc/basic/ccache_def.html

For more information about Kerberos authentication, see Kerberos Pluggable Authentication.

OpenID Connect Authentication

OpenID Connect is supported by leveraging the authentication_openid_connect_client
client-side authentication plugin. OpenID Connect functionality is supported by MySQL Enterprise
Edition Server 9.1.0 and later.

The required OPT_OPENID_TOKEN_FILE connection option defines a path to a file containing the JWT
formatted identity token. TLS, socket, and shared memory connection methods are supported.

Support was added in Connector/C++ 9.1.0.

OCI Authentication

OCI authentication enables Connector/C++ application programs to make connections without
passwords for accounts that use the authentication_oci server-side authentication plugin,
provided that the correct configuration entries are available to map to one unique user in a specific
Oracle Cloud Infrastructure tenancy. This supported was added in the Connector/C++ 8.0.27 release.

To ensure correct account mapping, the client-side Oracle Cloud Infrastructure configuration
must contain a fingerprint of the API key to use for authentication (fingerprint entry)
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and the location of a PEM file with the private part of the API key (key_file entry).
Both entries should be specified in the [DEFAULT] profile of the configuration file. In
Connector/C++ 8.0.33, the OPT_OCI_CLIENT_CONFIG_PROFILE connection option permits
selecting a profile in the configuration file to use for authentication. By default, the value of
OPT_OCI_CLIENT_CONFIG_PROFILE is the [DEFAULT] profile.

Unless an alternative path to the configuration file is specified with the OPT_OCI_CONFIG_FILE
connection option, the following default locations are used:

• ~/.oci/config on Linux or Posix host types

• %HOMEDRIVE%%HOMEPATH%/.oci/config on Windows host types

If the MySQL user name is not provided as a connection option, then the operating system user name
is substituted. Specifically, if the private key and correct Oracle Cloud Infrastructure configuration are
present on the client side, then a connection can be made without giving any options.

To support Oracle Cloud Infrastructure ephemeral key-based authentication, Connector/C++ 8.0.33
(and later) obtains the location of the token file from the security_token_file entry. For example:

[DEFAULT]
fingerprint=59:8a:0b[...]
key_file=~/.oci/sessions/DEFAULT/oci_api_key.pem
tenancy=ocid1.tenancy.oc1.[...]
region=us-ashburn-1
security_token_file=~/.oci/sessions/DEFAULT/token

Connector/C++ sends to the server a JSON attribute (named "token") with the value extracted from
the security_token_file field. If the target file referenced in the profile does not exist, or if the
file exceeds a specified maximum value, then Connector/C++ terminates the action and returns an
exception with the cause.

Connector/C++ sends an empty token value in the JSON payload if:

• The security-token file is empty.

• The configuration option security_token_file is found but the value in the configuration file is
empty.

In all other cases, Connector/C++ adds the content of the security-token file intact to the JSON
document.

Multifactor Authentication

Starting with Connector/C++ 8.0.28, applications can establish connections using multifactor
authentication, such that up to three passwords can be specified at connect time. The
OPT_PASSWORD1, OPT_PASSWORD2, and OPT_PASSWORD3 connection options are available for
specifying the first, second, and third multifactor authentication passwords, respectively.

OPT_PASSWORD1 is an alias for the existing OPT_PASSWORD option; if both are provided,
OPT_PASSWORD is ignored. For more information about this authentication option, see Multifactor
Authentication.

WebAuthn (FIDO) Authentication

WebAuthn authentication to MySQL Server supports using devices such as web browsers, smart
cards, security keys, and biometric readers. WebAuthn authentication supports both the FIDO and
FIDO2 standards. To ensure client applications using the legacy JBDC API are notified when a user
is expected to interact with the FIDO/FIDO2 device, Connector/C++ 8.2.0 (and later) adds a callback
argument named WebAuthn_Callback to the setCallback() method in the MySQL_Driver class.
The WebAuthn_Callback class has a callback method named ActionRequested().
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class WebAuthn_Callback
{
public:

  WebAuthn_Callback(std::function<void(SQLString)>);

  /**
  * Override this message to receive WebAuthn Action Requests
  */
  virtual void ActionRequested(sql::SQLString msg);

};

Set the WebAuthn_Callback callback explicitly for authentication to accounts that use WebAuthn
authentication.

Note

On Windows, the client application must run as administrator. The
is a requirement of the fido2.dll library, which is used by the
authentication_webauthn plugin.

A client application has two options for obtaining a callback from the connector:

• By passing a function or lambda to WebAuthn_Callback.

driver->setCallBack(WebAuthn_Callback([](SQLString msg) {...}));

• By implementing the virtual method ActionRequested.

class MyWindow : public WebAuthn_Callback
{
  void ActionRequested(sql::SQLString msg) override;
};

MyWindow window;
driver->setCallBack(window); 

Setting a new callback always removes the previous callback. To disable the active callback and
restore the default behavior, pass nullptr as a function callback. Example:

driver->setCallBack(WebAuthn_Callback(nullptr));

For more information about WebAuthn authentication, see WebAuthn Pluggable Authentication.

Note

Connector/C++ 8.0.29 added authentication_fido support, deprecated
it in 8.2.0 in favor of authentication_webauthn, and removed
authentication_fido support in 8.4.0. For backward-compatibility,
the Fido_Callback callback argument remains but it invokes WebAuthn
authentication.

5.4 OpenTelemetry Tracing Support
For applications that use the legacy JDBC API (that is, not X DevAPI or X DevAPI for C) on Linux
systems and use OpenTelemetry (OTel) instrumentation, the connector adds query and connection
spans to the trace generated by application code and forwards the current OpenTelemetry context to
the server. OpenTelemetry tracing was introduced in the Connector/C++ 8.1.0 release.

Note

OTel context forwarding works only with MySQL Enterprise Edition, a
commercial product. To learn more about commercial products, see https://
www.mysql.com/products/.
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Enabling and Disabling Tracing

By default, the connector generates spans only when an instrumented application links with the
required OpenTelemetry SDK libraries and configures the trace exporter to send trace data to some
destination. If the application code does not use instrumentation, then the legacy connector does not
use it either.

Connector/C++ supports a connection property option, OPT_OPENTELEMETRY, which has these values:

• OTEL_DISABLED: The connector does not create OpenTelemetry spans or forward the
OpenTelemetry context to the server.

• OTEL_PREFERRED: Default. Use instrumentation in the connection if the required OpenTelemetry
instrumentation is available. Otherwise, permit the connection to operate without any OpenTelemetry
instrumentation.

The OPT_OPENTELEMETRY option also accepts a Boolean value in which false corresponds to
OTEL_DISABLED. false is the only accepted Boolean value for this option; setting it to true has no
meaning and emits an error.

For example, an application can specify OPT_OPENTELEMETRY in either form using the connect()
syntax that takes an option map argument:

connection_properties["OPT_OPENTELEMETRY"] = false;
connection_properties["OPT_OPENTELEMETRY"] = OTEL_DISABLED;

When you build code that links to Connector/C++ and uses OTel instrumentation, the additional spans
generated by the connector appear in the traces generated by your code. Spans generated by the
connector are sent to the same destination (trace exporter) where other spans generated by the user
code are sent as configured by user code. It is not possible to send spans generated by the connector
to any other destination.

This implementation is distinct from the implementation provided through the MySQL client library (or
the related telemetry_client client-side plugin).
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Chapter 6 Connector/C++ Known Issues
To report bugs, use the MySQL Bug System. See How to Report Bugs or Problems.

For notes detailing the changes in each release of Connector/C++, see MySQL Connector/C++
Release Notes.

• Generally speaking, C++ library binaries are less portable than C library binaries. Issues can be
caused by name mangling, different Standard Template Library (STL) versions, and using different
compilers and linkers for linking against the libraries than were used for building the library itself.

Even a small change in the compiler version can cause problems. If you obtain error messages that
you suspect are related to binary incompatibilities, build Connector/C++ from source, using the same
compiler and linker that you use to build and link your application.

Due to variations between Linux distributions, compiler versions, linker versions, and STL versions, it
is not possible to provide binaries for every possible configuration. However, Connector/C++ binary
distributions include an INFO_BIN file that describes the environment and configuration options used
to build the binary versions of the connector libraries. Binary distributions also include an INFO_SRC
file that provides information about the product version and the source repository from which the
distribution was produced. (Prior to Connector/C++ 8.0.14, look for BUILDINFO.txt rather than
INFO_BIN and INFO_SRC.)

• To avoid potential crashes, the build configuration of Connector/C++ should match the build
configuration of the application using it. For example, do not use a release build of Connector/C++
with a debug build of the client application.
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Chapter 7 Connector/C++ Support
For general discussion of Connector/C++, please use the C/C++ community forum.

To report bugs, use the MySQL Bug System. See How to Report Bugs or Problems.

For notes detailing the changes in each release of Connector/C++, see MySQL Connector/C++
Release Notes.

For Licensing questions, and to purchase MySQL Products and Services, please see http://
www.mysql.com/buy-mysql/.
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