MySQL Connector/C++ 9.5 Developer Guide

Abstract

This manual describes how to install and configure MySQL Connector/C++ 9.5, which provides C++ and plain C
interfaces for communicating with MySQL servers, and how to use Connector/C++ to develop database applications.

Connector/C++ 9.5 is highly recommended for use with all active MySQL server versions, such as MySQL 8.0 and
8.4.

For notes detailing the changes in each release of Connector/C++, see MySQL Connector/C++ Release Notes.
For legal information, see the Legal Notices.

For help with using MySQL, please visit the MySQL Forums, where you can discuss your issues with other MySQL
users.

Licensing information. This product may include third-party software, used under license. If you are using

a Commercial release of MySQL Connector/C++, see the MySQL Connector/C++ Commercial Release License
Information User Manual for licensing information, including licensing information relating to third-party software that
may be included in this Commercial release. If you are using a Community release of MySQL Connector/C++, see
the MySQL Connector/C++ Community Release License Information User Manual for licensing information, including
licensing information relating to third-party software that may be included in this Community release.

Document generated on: 2025-10-20 (revision: 83819)

https://dev.mysql.com/doc/relnotes/connector-cpp/en/
http://forums.mysql.com
https://downloads.mysql.com/docs/licenses/connector-cpp-9.5-com-en.pdf
https://downloads.mysql.com/docs/licenses/connector-cpp-9.5-com-en.pdf
https://downloads.mysql.com/docs/licenses/connector-cpp-9.5-gpl-en.pdf

Table of Contents

Preface and Legal NOTICESccouuiiiiiiiiieiiii ettt ettt e et e e et et e e e e et e e e ee bt e e e eebaaeeees v
1 INtroduction 10 CONNECIOICH ..uui ittt et e e e et e e et e e e e s 1
2 ODtaiNING CONNECIOICH ..ui ittt ettt et r e et et e e et et e e e e b e e e e naa s 5
3 Installing Connector/C++ from a Binary DiStriDULIONcoouuiiiiiiiiiiei e 7
4 Installing ConNECTOr/CH+ frOM SOUICEuiiiiiiii ettt 11
4.1 Source Installation SyStem PrereqUISIESccoeuuiiiiiiiiieiiii et 11

4.2 Obtaining and Unpacking a Connector/C++ Source Distributionccccooeviiniiiiiiiieiiinnnn. 12

4.3 Installing ConNector/C++ frOM SOUICEcoeuuuieiiiiee ettt 13

4.4 Connector/C++ Source-Configuration OPLIONSveiiiiiieiiiiieeie e 17

5 Building ConNector/C++ APPLICALIONScceeuiieiiiii ettt e et e e e e eeaans 23
5.1 Building Connector/C++ Applications: General Considerationscccoovveviiiinneiiiiinneeeiiinnnn. 23

5.2 Building Connector/C++ Applications: Platform-Specific Considerationscccc.occevvinerenne. 31
5.2.1 WINAOWS NOTES ...ooitiiiiiitiee ittt ettt e et e et et e et e ra e e enees 31

5.2.2 MACOS NOESiitiiiiiiieiii ittt e et et e e e e e neta e e en e e era e 36

5.2.3 GENENIC LINUX NOES .. .ottt ettt e e et e e e e e e e e eeees 36

5.3 AUNENTICALION SUPPOIT ...ttt ettt et e et e et e e e e eeaen s 37

5.4 OpenTelemetry TraCing SUPPOIToeiiutiieiiit ettt e e e et e et eeene s 41

6 CONNECIOIN/CHt KNOWN ISSUESiiiiiiieiiiii ettt ettt e e et e et e e e et eeeana s 43
7 CONNECTIONCrH SUPPOIT ..ttt ettt ettt ettt et ettt et e e e et b e et et e et e b e e e e b eeeeba s 45
a0 = ST PPPTPRSPPPTT 47

Preface and Legal Notices

This manual describes how to install and configure MySQL Connector/C++ 9.5, and how to use it to
develop database applications.

Legal Notices

Copyright © 2008, 2025, Oracle and/or its affiliates.
License Restrictions

This software and related documentation are provided under a license agreement containing restrictions
on use and disclosure and are protected by intellectual property laws. Except as expressly permitted

in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast,
modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

Warranty Disclaimer

The information contained herein is subject to change without notice and is not warranted to be error-free.
If you find any errors, please report them to us in writing.

Restricted Rights Notice

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or
related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications

of such programs) and Oracle computer documentation or other Oracle data delivered to or accessed

by U.S. Government end users are "commercial computer software,” "commercial computer software
documentation," or "limited rights data" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, the use, reproduction, duplication, release, display,
disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle programs (including
any operating system, integrated software, any programs embedded, installed, or activated on delivered
hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract.
The terms governing the U.S. Government's use of Oracle cloud services are defined by the applicable
contract for such services. No other rights are granted to the U.S. Government.

Hazardous Applications Notice

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Trademark Notice

Oracle, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names
may be trademarks of their respective owners.

Documentation Accessibility

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Epyc, and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a
registered trademark of The Open Group.

Third-Party Content, Products, and Services Disclaimer

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

Use of This Documentation

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the
following terms:

You may create a printed copy of this documentation solely for your own personal use. Conversion to other
formats is allowed as long as the actual content is not altered or edited in any way. You shall not publish

or distribute this documentation in any form or on any media, except if you distribute the documentation in
a manner similar to how Oracle disseminates it (that is, electronically for download on a Web site with the
software) or on a CD-ROM or similar medium, provided however that the documentation is disseminated
together with the software on the same medium. Any other use, such as any dissemination of printed
copies or use of this documentation, in whole or in part, in another publication, requires the prior written
consent from an authorized representative of Oracle. Oracle and/or its affiliates reserve any and all rights
to this documentation not expressly granted above.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website
at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support for Accessibility

Oracle customers that have purchased support have access to electronic support through My Oracle
Support. For information, visit

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit ht t p: / / www. or acl e. cont pl s/ t opi c/
| ookup?ct x=acc&i d=t r s if you are hearing impaired.

Vi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Chapter 1 Introduction to Connector/C++

MySQL Connector/C++ is a MySQL database connector for C++ applications that connect to MySQL
servers. Connector/C++ can be used to access MySQL servers that implement a document store, or in a
traditional way using SQL statements. The preferred development environment for Connector/C++ is to
enable development of C++ applications using X DevAPI, or plain C applications using X DevAPI for C, but
Connector/C++ also enables development of C++ applications that use the legacy JDBC-based API from
Connector/C++ 1.1.

Connector/C++ applications that use X DevAPI or X DevAPI for C require a MySQL server that has X
Plugin enabled. Connector/C++ applications that use the legacy JDBC-based API neither require nor
support X Plugin.

For more detailed requirements about required MySQL versions for Connector/C++ applications, see
Platform Support and Prerequisites.

For notes detailing the changes in each release of Connector/C++, see MySQL Connector/C++ Release
Notes.

» Connector/C++ Benefits
» X DevAPI and X DevAPI for C
» Legacy JDBC API and JDBC Compatibility

» Platform Support and Prerequisites

Connector/C++ Benefits

MySQL Connector/C++ offers the following benefits for C++ users compared to the MySQL C API provided
by the MySQL client library:

» Convenience of pure C++.

Support for these application programming interfaces:
* X DevAPI

* X DevAPI for C

* Legacy JDBC 4.0-based API

» Support for the object-oriented programming paradigm.

Reduced development time.
 Licensed under the GPL with the FLOSS License Exception.

 Available under a commercial license upon request.

X DevAPI and X DevAPI for C

Connector/C++ implements X DevAPI, which enables connecting to MySQL servers that implement a
document store with X Plugin. X DevAPI also enables applications to execute SQL statements.

Connector/C++ also implements a similar interface called X DevAPI for C for use by applications written in
plain C.

https://dev.mysql.com/doc/refman/9.5/en/document-store.html
https://dev.mysql.com/doc/refman/9.5/en/x-plugin.html
https://dev.mysql.com/doc/refman/9.5/en/x-plugin.html
https://dev.mysql.com/doc/relnotes/connector-cpp/en/
https://dev.mysql.com/doc/relnotes/connector-cpp/en/
https://dev.mysql.com/doc/refman/9.5/en/document-store.html
https://dev.mysql.com/doc/refman/9.5/en/x-plugin.html

Legacy JDBC APl and JDBC Compatibility

For general information about X DevAPI, see X DevAPI User Guide. For reference information specific
to the Connector/C++ implementation of X DevAPI and X DevAPI for C, see MySQL Connector/C++ X
DevAPI Reference in the X DevAPI section of MySQL Documentation.

Legacy JDBC APl and JDBC Compatibility

Connector/C++ implements the JDBC 4.0 API, if built to include the legacy JDBC connector:
» Connector/C++ binary distributions include the JDBC connector.

* If you build Connector/C++ from source, the JDBC connector is not built by default, but can be included
by enabling the W TH_JDBC CVake option. See Chapter 4, Installing Connector/C++ from Source.

The Connector/C++ JDBC API is compatible with the JDBC 4.0 API. Connector/C++ does not implement
the entire JDBC 4.0 API, but does feature these classes: Connect i on, Dat abaseMet aDat a, Dri ver,
Pr epar edSt at enent , Resul t Set, Resul t Set Met aDat a, Savepoi nt, St at enent .

The JDBC 4.0 API defines approximately 450 methods for the classes just mentioned. Connector/C++
implements approximately 80% of these.

Platform Support and Prerequisites

To see which platforms are supported, visit the Connector/C++ downloads page.

On Windows platforms, Commercial and Community Connector/C++ distributions require the Visual

C++ Redistributable for Visual Studio. The Redistributable is available at the Visual Studio Download
Center; install it before installing Connector/C++. The acceptable Redistributable versions depend on your
Connector/C++ version:

» Connector/C++ 8.0.19 and higher: VC++ Redistributable 2017 or higher.
e Connector/C++ 8.0.14 to 8.0.18: VC++ Redistributable 2015 or higher.

The following requirements apply to building and running Connector/C++ applications, and to building
Connector/C++ itself if you build it from source:

» To run Connector/C++ applications, the MySQL server requirements depend on the API the application
uses:

¢ Connector/C++ applications that use X DevAPI or X DevAPI for C require a server from MySQL 8.0.11
or later with X Plugin enabled (default).

« Applications that use the JDBC API support MySQL 8.0 or higher. X Plugin is neither required nor
supported.

» To build Connector/C++ applications:
e The MySQL version does not apply.

« On Windows, Microsoft Visual Studio is required. The acceptable MSVC versions depend on your
Connector/C++ version and the type of linking you use:

» Connector/C++ 8.0.20 and higher: Same as Connector/C++ 8.0.19, with the addition that binary
distributions are also compatible with MSVC 2017 using the static X DevAPI connector library. This
means that binary distributions are fully compatible with MSVC 2019, and fully compatible with
MSVC 2017 with the exception of the static legacy (JDBC) connector library.

https://dev.mysql.com/doc/x-devapi-userguide/en/
https://dev.mysql.com/doc/
https://dev.mysql.com/downloads/connector/cpp/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/

Platform Support and Prerequisites

« Connector/C++ 8.0.19: Connector/C++ binary distributions are compatible with projects built using
MSVC 2019 (using either dynamic or static connector libraries) or MSVC 2017 (using dynamic
connector libraries).

» Connector/C++ 8.0.14 to 8.0.18: MSVC 2017 or 2015.
« Connector/C++ prior to 8.0.14: MSVC 2015.
* To build Connector/C++ from source:
e The MySQL C API client library may be required:

» For Connector/C++ built without the JDBC connector (which is the default), the client library is not
needed.

e To build Connector/C++ with the JDBC connector, configure Connector/C++ with the W TH_JDBC
CWVake option enabled. In this case, the JDBC connector requires a client library from MySQL 8.0 or
later.

¢ On Windows, Microsoft Visual Studio is required. The acceptable MSVC versions depend on your
Connector/C++ version:

» Connector/C++ 8.0.19 and higher: MSVC 2019 or 2017.
+ Connector/C++ 8.0.14 to 8.0.18: MSVC 2017 or 2015.

« Connector/C++ prior to 8.0.14: MSVC 2015.

Chapter 2 Obtaining Connector/C++

Connector/C++ binary and source distributions are available, in platform-specific packaging formats. To
obtain a distribution, visit the Connector/C++ downloads page. It is also possible to clone the Connector/C+
+ Git source repository.

» Connector/C++ binary distributions are available for Microsoft Windows, and for Unix and Unix-like
platforms. See Chapter 3, Installing Connector/C++ from a Binary Distribution.

» Connector/C++ source distributions are available as compressed t ar files or Zip archives and can be
used on any supported platform. See Chapter 4, Installing Connector/C++ from Source.

» The Connector/C++ source code repository uses Git and is available at GitHub. See Chapter 4, Installing
Connector/C++ from Source.

https://dev.mysql.com/downloads/connector/cpp/

Chapter 3 Installing Connector/C++ from a Binary Distribution

To obtain a Connector/C++ binary distribution, visit the Connector/C++ downloads page.

For some platforms, Connector/C++ binary distributions are available in platform-specific packaging
formats. Binary distributions are also available in more generic format, in the form of compressed t ar files
or Zip archives.

Note

Generic Linux packages do not contain Connector/C++ static libraries. If you intend
to link your application to a static library, consider installing a package that is
specific to the platform on which you build your final application.

For descriptions here that refer to documentation files, those files have names such as

CONTRI BUTI NG. nd, READMVE. nd, README. t xt , READVE, LI CENSE. t xt , LI CENSE, | NFO _BI N, and

I NFO_SRC. (Prior to Connector/C++ 8.0.14, the information file is BUI LDI NFO. t xt rather than | NFO BI N
and | NFO _SRC))

 [Installation on Windows

Installation on Linux

Installation on macOS

Installation on Solaris

Installation Using a tar or Zip Package

Installation on Windows

Important

On Windows platforms, Commercial and Community Connector/C++ distributions
require the Visual C++ Redistributable for Visual Studio. The Redistributable

is available at the Visual Studio Download Center; install it before installing
Connector/C++. For information about which VC++ Redistributable versions are
acceptable, see Platform Support and Prerequisites.

These methods of installing binary distributions are available on Windows:

* Windows MSI Installer. As of Connector/C++ 8.0.12, an MSI Installer is available for Windows. To
use the MSI Installer (. nsi file), launch it and follow the prompts in the screens it presents. The MSI
Installer can install components for these connectors:

¢ The connector for X DevAPI (including X DevAPI for C).
e The connector for the legacy JDBC API.
For each connector, there are two components:

¢ The DLL component includes the connector DLLs and libraries to satisfy runtime dependencies. The
DLL component is required to run Connector/C++ application binaries that use the connector.

» The Developer component includes header files, static libraries, and import libraries for DLLs. The
Developer component is required to build from source Connector/C++ applications that use the
connector.

https://dev.mysql.com/downloads/connector/cpp/
https://visualstudio.microsoft.com/downloads/

Installation on Linux

The MSI Installer requires administrative privileges. It begins by presenting a welcome screen that
enables you to continue the installation or cancel it. If you continue the installation, the MSI Installer
overview screen enables you to select the type of installation to perform:

e The Complete installation installs the DLL and Developer components for both connectors.
* The Typical installation installs the DLL component for both connectors.

« The Custom installation enables you to specify the installation location and select which components
to install. The DLL and Developer components for the X DevAPI connector are preselected, but you
can override the selection. The Developer component for a connector cannot be selected without also
selecting the connector DLL component.

The MSI Installer performs these actions:

« It checks whether the required Visual C++ Redistributable for Visual Studio is present. If not, the
installer asks you to install it and exits with an error. For information about which VC++ Redistributable
versions are acceptable, see Platform Support and Prerequisites.

* |t installs documentation files.

To install Connector/C++ from the command line in batch mode, use a command similar to:

nmsi exec. exe /i packages\ nysql - connect or - cpp- conmrerci al - 8. X. X-wi nx64. nsi /qn /| vx*
msi _install.log ALLUSERS=1 | NSTALLDI R=C: \t np\ c- cpp-unpacked | NSTALLLEVEL=4

To uninstall Connector/C++ from the command line in batch mode, use a command similar to:

nsi exec. exe /x packages\ nysqgl - connect or - cpp- commer ci al - 8. X. X-wi nx64. nsi /qgn /| vx*
nsi _uninstall.log

» Zip archive package without installer. To install from a Zip archive package (. zi p file), see
Installation Using a tar or Zip Package.

In addition to the standard Zip archive packages, packages are available that were built in debug mode.
However, applications should use the same build mode as Connector/C++. If you install Connector/C++
packages built in debug mode, build applications in debug mode. If you install Connector/C++ packages
built in release mode, build applications in release mode.

Installation on Linux

These methods of installing binary distributions are available on Linux:

» RPM package. RPM packages are available for Linux (as of Connector/C++ 8.0.12). The packages
are distinguished by their base names (the full names include the Connector/C++ version and suffixes):

e mysgl - connect or - c++: This package provides the shared connector library implementing X
DevAPI and X DevAPI for C.

e mysqgl - connect or - c++-] dbc: This package provides the shared legacy connector library
implementing the JDBC API.

e nmysgl - connect or - c++- devel : This package installs development files required for building
applications that use Connector/C++ libraries provided by the other packages, and static connector
libraries. This package depends on the shared libraries provided by the other packages. It cannot be
installed by itself without the other two packages.

https://visualstudio.microsoft.com/downloads/

Installation on macOS

» Debian package. Debian packages are available for Linux (as of Connector/C++ 8.0.14). The
packages are distinguished by their base names (the full names include the Connector/C++ version and
suffixes):

e i bmysgl cppconn8- 1: This package provides the shared connector library implementing X DevAPI
and X DevAPI for C.

* |1 bmysql cppconn?: This package provides the shared legacy connector library implementing the
JDBC API.

e |i bnmysql cppconn-dev: This package installs development files required for building applications
that use Connector/C++ libraries provided by the other packages, and static connector libraries. This
package depends on the shared libraries provided by the other packages. It cannot be installed by
itself without the other two packages.

» Compressed tar file. To install from a compressed t ar file (. t ar. gz file), see Installation Using a
tar or Zip Package.

Installation on macOS
These methods of installing binary distributions are available on macOS:

» DMG package. DMG (disk image) packages for macOS are available as of Connector/C++ 8.0.12. A
DMG package provides shared and static connector libraries implementing X DevAPI and X DevAPI for
C, and the legacy connector library implementing the JDBC API. The package also includes OpenSSL
libraries, public header files, and documentation files.

» Compressed tar file. To install from a compressed t ar file (. t ar . gz file), see Installation Using a
tar or Zip Package.

Installation on Solaris
These methods of installing binary distributions are available on Solaris:

» Compressed tar file. To install from a compressed t ar file (. t ar . gz file), see Installation Using a
tar or Zip Package.

Installation Using a tar or Zip Package

Connector/C++ binary distributions are available for several platforms, packaged in the form of
compressed t ar files or Zip archives, denoted here as PACKAGE. t ar . gz or PACKAGE. zi p.

Note
Generic Linux packages do not contain Connector/C++ static libraries.

To unpack a compressed t ar file, use this command in the intended installation directory:

tar zxvf PACKACE.tar.gz

To install from a Zip archive package (. zi p file), use W nZi p or another tool that can read . zi p files to
unpack the file into the location of your choosing.

10

Chapter 4 Installing Connector/C++ from Source

Table of Contents

4.1 Source Installation SyStemM Prer@qUISILESoivueiiii i e ee e e e e e e e e e e et e e e eaneees 11
4.2 Obtaining and Unpacking a Connector/C++ Source Distributioncccocoiiiiiiivii i 12
4.3 Installing ConnNectOr/C++ fTOM SOUICEcvuuiiiii it e e e e e e e e et e e e e e e e eeanaees 13
4.4 Connector/C++ Source-Configuration OPLIONSc.uiiiiiiiii e e e ees 17

This chapter describes how to install Connector/C++ using a source distribution or a copy of the Git source
repository.

4.1 Source Installation System Prerequisites

To install Connector/C++ from source, the following system requirements must be satisfied:
 Build Tools

* MySQL Client Library

» Boost C++ Libraries

e SSL Support

Build Tools

You must have the cross-platform build tool CVake (3.0 or higher).

You must have a C++ compiler that supports C++17 (as of Connector/C++ 8.0.33).

MySQL Client Library

To build Connector/C++ from source, the MySQL C API client library may be required:

 Building the JDBC connector requires a client library from MySQL 8.0 or later. This occurs when
Connector/C++ is configured with the W TH_JDBC CVake option enabled to include the JDBC connector.

» For Connector/C++ built without the JDBC connector, the client library is not needed.

Typically, the MySQL client library is installed when MySQL is installed. However, check your operating
system documentation for other installation options.

To specify where to find the client library, set the MYSQL_DI R C\Vake option appropriately at configuration
time as necessary (see Section 4.4, “Connector/C++ Source-Configuration Options”).

Boost C++ Libraries

To compile Connector/C++ the Boost C++ libraries are needed only if you build the legacy JDBC API
or if the version of the C++ standard library on your system does not implement the UTF8 converter
(codecvt _utf 8).

If the Boost C++ libraries are needed, Boost 1.59.0 or newer must be installed. To obtain Boost and its
installation instructions, visit the official Boost site.

After Boost is installed, use the W TH_BOOST ClVake option to indicate where the Boost files are located
(see Section 4.4, “Connector/C++ Source-Configuration Options”):

11

http://www.boost.org

SSL Support

crmake [other_options] -DW TH BOOST=/usr/| ocal /boost_1_59_0

Adjust the path as necessary to match your installation.

SSL Support

Use the W TH_SSL CVake option to specify which SSL library to use when compiling Connector/C++.
OpenSSL 1.0.x or higher is required. Your other options are:

» As of Connector/C++ 8.0.18, it is possible to compile against OpenSSL 1.1.
» As of Connector/C++ 8.0.30, it is possible to compile against OpenSSL 3.0.

For more information about W TH_SSL and SSL libraries, see Section 4.4, “Connector/C++ Source-
Configuration Options”.

4.2 Obtaining and Unpacking a Connector/C++ Source Distribution

To obtain a Connector/C++ source distribution, visit the Connector/C++ downloads page. Alternatively,
clone the Connector/C++ Git source repository.

A Connector/C++ source distribution is packaged as a compressed t ar file or Zip archive, denoted here as
PACKAGE. t ar . gz or PACKACE. zi p. A source distribution in t ar file or Zip archive format can be used on
any supported platform.

The distribution when unpacked includes an | NFO_SRCfile that provides information about the product
version and the source repository from which the distribution was produced. The distribution also includes
other documentation files such as those listed in Chapter 3, Installing Connector/C++ from a Binary
Distribution.

To unpack a compressed t ar file, use this command in the intended installation directory:

tar zxvf PACKAGE.tar.gz

After unpacking the distribution, build it using the appropriate instructions for your platform later in this
chapter.

To install from a Zip archive package (. zi p file), use W nZi p or another tool that can read . zi p files
to unpack the file into the location of your choosing. After unpacking the distribution, build it using the
appropriate instructions for your platform later in this chapter.

To clone the Connector/C++ code from the source code repository located on GitHub at https://github.com/
mysql/mysql-connector-cpp, use this command:

git clone https://github. com nysql/nysql -connector-cpp.git

That command should create a mysql - connect or - cpp directory containing a copy of the entire
Connector/C++ source tree.

The gi t cl one command sets the sources to the nast er branch, which is the branch that contains the
latest sources. Released code is in the 8. 0 branche (the 8. 0 branch contains the same sources as the
mast er branch). If necessary, use gi t checkout in the source directory to select the desired branch.
For example, to build Connector/C++ 8.0:

cd nysql - connect or - cpp
git checkout 8.0

After cloning the repository, build it using the appropriate instructions for your platform later in this chapter.

12

https://dev.mysql.com/downloads/connector/cpp/
https://github.com/mysql/mysql-connector-cpp
https://github.com/mysql/mysql-connector-cpp

Installing Connector/C++ from Source

After the initial checkout operation to get the source tree, run gi t pul | periodically to update your source
to the latest version.

4.3 Installing Connector/C++ from Source

To install Connector/C++ from source, verify that your system satisfies the requirements outlined in
Section 4.1, “Source Installation System Prerequisites”.

» Configuring Connector/C++

» Specifying External Dependencies

Building Connector/C++

Installing Connector/C++

 Verifying Connector/C++ Functionality

Configuring Connector/C++

Use CMake to configure and build Connector/C++. Only out-of-source-builds are supported, so create a
directory to use for the build and change location into it. Then configure the build using this command,
where concpp_sour ce is the directory containing the Connector/C++ source code:

cmake concpp_source
It may be necessary to specify other options on the configuration command. Some examples:
» By default, these installation locations are used:
e /usr/local/nysql/connector-c++-8. 0 (Unix and Unix-like systems)
e User_hone/ \ySQL/"MySQL Connect or C++ 8.0" (Windows)
To specify the installation location explicitly, use the CVAKE | NSTALL_PREFI X option:
- DCMAKE_| NSTALL_PREFI X=pat h_nane
« On Windows, you can use the - Gand - A options to select a particular generator:
e -G "Visual Studio 16" -A x64 (64-bit builds)
e -G "Visual Studio 16" -A W n32 (32-bit builds)

Consult the Cvake manual or check crmake - - hel p to find out which generators are supported by your
Chake version. (However, it may be that your version of C\Vake supports more generators than can
actually be used to build Connector/C++.)

« If the Boost C++ libraries are needed, use the W TH_BOOST option to specify their location:
- DW TH_BOOST=pat h_nane

» By default, the build creates dynamic (shared) libraries. To build static libraries, enable the
BUI LD_STATI Coption:

- DBUI LD_STATI C=ON

» By default, the legacy JDBC connector is not built. To include the JDBC connector in the build, enable
the W TH_JDBC option:

13

Specifying External Dependencies

- DW TH_JDBC=ON
Note

If you configure and build the test programs later, use the same CVake options to
configure them as the ones you use to configure Connector/C++ (- G W TH_BOOST,
BUI LD_STATI C, and so forth). Exceptions: Path name arguments will differ, and
you need not specify CVAKE | NSTALL_PREFI X.

For information about C\Vake configuration options, see Section 4.4, “Connector/C++ Source-Configuration
Options”.

Specifying External Dependencies

Use CMake options to configure and build Connector/C++ with external sources that you can substitute
for the required third-party dependencies currently bundled with the connector. If the dependency is an
external library, then the library is linked dynamically to the connector. In contrast, bundled third-party
libraries used by connector are linked statically to it.

Note

Using an external third-party library that cannot be linked to the connector
dynamically causes the build to fail, even when the static library is available.

The supported options are:
« W TH_BOOST

« WTH LZ4

« W TH MYSQL

* WTH_PROTOBUF

« WTH_SSL

e WTH ZLI B
 WTH_ZSTD

For example, to use an external installation of Protobuf, instead of building it from bundled sources,
specify the W TH_PROTOBUF option and provide the path name to the location where CVake can find the
alternative dependency.

Note

If an external dependency cannot be found (or is unusable), then the build fails. No
attempt is made to locate the bundled source.

crmake [ot her_options] -DW TH PROTOBUF=pat h_nane_t o_pr ot obuf _i nst al |

To configure the standard system-wide location for an external dependency, use the literal value syst em
rather than providing a path name. For example:

- DW TH_SSL=syst em

For information about CMVake configuration options, see Section 4.4, “Connector/C++ Source-Configuration
Options”.

14

Building Connector/C++

External dependencies make it possible to use shared third-party libraries that are linked dynamically to
the connector. This can be an advantage because, for example, you cannot use the connector static library
with an application that also links to a Protobuf library.

When running an application that is linked to the connector dynamic library, the third-party libraries on
which the connector depends should be correctly found if they are placed in the file system next to the
connector library. The application should also work when the libraries are installed at the standard system-
wide locations. This assumes that the external third-party dependency version is expected by Connector/C
++.

Except for Windows, it should be possible to run an application linked to the connector dynamic library
when the connector library and the third-party libraries are placed in a nonstandard location, provided that
these locations were stored as runtime paths when building the application (gcc - r pat h option).

For Windows, an application that is linked to the connector shared library can be run only if the connector
library and the libraries are stored either:

* In the Windows system folder
* In the same folder as the application
 In afolder listed in the PATH environment variable

If the application is linked to the connector static library, it remains true that the required libraries must be
found in one of the preceding locations.

Building Connector/C++

After configuring the Connector/C++ distribution, build it using this command:

cmake --build . --config build_type

The - - conf i g option is optional. It specifies the build configuration to use, such as Rel ease or Debug. If
you omit - - conf i g, the default is Debug.

Important

If you specify the - - conf i g option on the preceding command, specify the same
- - confi g option for later steps, such as the steps that install Connector/C++ or
that build test programs.

If the build is successful, it creates the connector libraries in the build directory. (For Windows, look for
the libraries in a subdirectory with the same name as the bui | d_t ype value specified for the - - conf i g
option.)

« If you build dynamic libraries, they have these names:
e |ibmysql cppconn8. so. 1 (Unix)
e i bmysgl cppconn8. 3. dyl i b (macOS)
e mysqgl cppconn8-1-vsl14. dl | (Windows)
« If you build static libraries, they have these names:
e i bmysgl cppconn8-stati c. a (Unix, macOS)

e mysqgl cppconn8-static.|ib (Windows)

15

Installing Connector/C++

If you enabled the W TH_JDBC option to include the legacy JDBC connector in the build, the following
additional library files are created.

* If you build legacy dynamic libraries, they have these names:
e i bmysgl cppconn. so. 7 (Unix)
e i bmysqgl cppconn. 7. dyl i b (macOS)
e mysql cppconn-7-vs14. dl | (Windows)
« If you build legacy static libraries, they have these names:
e i bmysqgl cppconn-stati c. a (Unix, macOS)

e nmysgl cppconn-static.lib (Windows)

Installing Connector/C++

To install Connector/C++, use this command:

cmake --build . --target install --config build_type

Verifying Connector/C++ Functionality

To verify connector functionality, build and run one or more of the test programs included in the t est app
directory of the source distribution. Create a directory to use and change location into it. Then issue the
following commands:

cmake [ot her_options] -DW TH CONCPP=concpp_i nstall concpp_source/testapp
cmake --build . --config=build type

W TH_CONCPP is an option used only to configure the test application. ot her _opt i ons consists of the
options that you used to configure Connector/C++ itself (- G, W TH_BOOCST, BUI LD_STATI C, and so forth).
concpp_sour ce is the directory containing the Connector/C++ source code, and concpp_i nstal | is
the directory where Connector/C++ is installed:

The preceding commands should create the devapi _t est and xapi _t est programs in the r un
directory of the build location. If you enable W TH_JDBC when configuring the test programs, the build also
creates the | dbc_t est program.

Before running test programs, ensure that a MySQL server instance is running with X Plugin enabled. The
easiest way to arrange this is to use the mysql -t est - run. pl script from the MySQL distribution. For
MySQL 8.0, X Plugin is enabled by default, so invoke this command in the nysql - t est directory of that
distribution:

perl nysql-test-run.pl --start-and-exit

The command should start a test server instance with X Plugin enabled and listening on port 13009 instead
of its standard port (33060).

Now you can run one of the test programs. They accept a connection-string argument, so if the server was
started as just described, you can run them like this:

run/ devapi _test nysql x://root @27.0.0.1: 13009
run/ xapi _test nysql x://root @27.0.0.1: 13009

The connection string assumes availability of a r oot user account without any password and the programs
assume that there is at est schema available (assumptions that hold for a server started using nysql -
test-run.pl).

16

Connector/C++ Source-Configuration Options

Totest | dbc_t est, you need a MySQL server, but X Plugin is not required. Also, the connection options

must be in the form specified by the JDBC API. Pass the user name as the second argument. For

example:

run/jdbc_test tcp://127.0.0.1: 13009 root

Connector/C++ recognizes the CVake options described in this section.

Table 4.1 Connector/C++ Source-Configuration Option Reference

4.4 Connector/C++ Source-Configuration Options

MySQL client library

Formats Description Default
BU LD _STATIC Whether to build a static librarty |OFF
BUNDLE_DEPENDENCI ES Whether to bundle external OFF
dependency libraries with the
connector
CVMAKE_BUI LD _TYPE Type of build to produce Debug
CMAKE | NSTALL_DOCDI R Documentation installation
directory
CVAKE | NSTALL | NCLUDEDI R |Header file installation directory
CVAKE_| NSTALL_LI BDI R Library installation directory
CMAKE | NSTALL_PREFI X Installation base directory /usr/| ocal
MAI NTAI NER_MODE For internal use only OFF
MYSQLCLI ENT_STATI C_BI NDI NGWhether to link to the shared ON
MySQL client library
MYSQLCLI ENT_STATI C_LI NKI NGWhether to statically link to the COFF

MYSQL_CONFI G_EXECUTABLE

Path to the mysql_config program

${MYSQL_DI R}/ bi n/

nmysqgl _config
MYSQL_DI R MySQL Server installation
directory
STATI C_NMBVCRT Use the static runtime library
W TH_BOOST The Boost source directory system
W TH_DOC Whether to generate Doxygen OFF
documentation
W TH_JDBC Whether to build legacy JDBC OFF
library
W TH LZ4 The LZ4 source directory
W TH_MYSQL The MySQL Server source system
directory
W TH_PROTOBUF The Protobuf source directory
W TH_SSL The SSL source directory system
WTH ZLI B The ZLIB source directory
W TH ZSTD The ZSTD source directory

» -DBUI LD_STATI C=bool

17

Connector/C++ Source-Configuration Options

By default, dynamic (shared) libraries are built. If this option is enabled, static libraries are built instead.
- DBUNDLE_DEPENDENCI ES=bool

This is an internal option used for creating Connector/C++ distribution packages.

- DOVAKE_BUI LD _TYPE=t ype

The type of build to produce:

e Debug: Disable optimizations and generate debugging information. This is the default.

* Rel ease: Enable optimizations.

* Rel Wt hDebl nf o: Enable optimizations and generate debugging information.

- DCMAKE_| NSTALL_DOCDI R=di r _nane

The documentation installation directory, relative to CVAKE | NSTALL_PREFI X. If not specified, the
default is to install in CVAKE | NSTALL PREFI X.

This option requires that W TH_DOC be enabled.
This option was added in Connector/C++ 8.0.14.

- DCVAKE_| NSTALL_I NCLUDEDI R=di r _nan®e

The header file installation directory, relative to CVAKE | NSTALL_PREFI X. If not specified, the default is

i ncl ude.
This option was added in Connector/C++ 8.0.14.
- DCVAKE_| NSTALL_LI BDI R=di r _nane

The library installation directory, relative to CVAKE_| NSTALL_PREFI X. If not specified, the default is
i b64orlib.

This option was added in Connector/C++ 8.0.14.

- DOMAKE_| NSTALL_PREFI X=di r _nane

The installation base directory (where to install Connector/C++).
- DVAI NTAI NER_MODE=bool

This is an internal option used for creating Connector/C++ distribution packages. It was added in
Connector/C++ 8.0.12.

- DWSQLCLI ENT_STATI C_BI NDI NG=bool

Whether to link to the shared MySQL client library. This option is used only if

MYSQLCLI ENT_STATI C_LI NKI NGis disabled to enable dynamic linking of the MySQL client library.
In that case, if MYSQLCLI ENT_STATI C _BI NDI NGis enabled (the default), Connector/C++ is linked to
the shared MySQL client library. Otherwise, the shared MySQL client library is loaded and mapped at
runtime.

This option applies only if you are building the legacy JDBC connector (that is, only if W TH_JDBC s
enabled). It was added in Connector/C++ 8.0.16.

18

Connector/C++ Source-Configuration Options

* - DMYSQLCLI ENT_STATI C_LI NKI NG=bool

Whether to link statically to the MySQL client library. The default depends on the legacy JDBC connector
that you are building:

« From Connector/C++ 8.0.33, the default is OFF (use dynamic linking to the client library). Enabling this
option disables dynamic linking to the client library.

¢ For Connector/C++ 8.0.16 to 8.0.32, the default is ON (use static linking to the client library). Disabling
this option enables dynamic linking to the client library. C\Vake verifies that the current compiler and
standard libraries can build without errors at configuration time.

This option applies only if you are building the legacy JDBC connector (that is, only if W TH_JDBCis
enabled). It was added in Connector/C++ 8.0.16.

e - DMYSQL_CONFI G_EXECUTABLE=fi | e_nane
The path to the nysqgl _confi g program.

On non-Windows systems, CVake checks to see whether MYSQL_CONFI G_EXECUTABLE is set. If not,
CMake tries to locate mysql _confi g in the default locations.

This option applies only if you are building the legacy JDBC connector (that is, only if W TH_JDBCis
enabled).

e -DMWYSQL_DI R=di r _nane
The directory where MySQL is installed.

This option applies only if you are building the legacy JDBC connector (that is, only if W TH_JDBCis
enabled).

» - DSTATI C_MsVCRT=bool

(Windows only) Use the static runtime library (the / MT* compiler option). This option might be necessary
if code that uses Connector/C++ also uses the static runtime library.

e - DW TH BOOST={syst en| pat h_nane}

This option specifies which BOOST header file to use when compiling Connector/C++ with an external
dependency. The option value to use:

e syst em Use the system BOOST header file.
e pat h_nane is the path name to the file to use.

For consistency with C\Vake conventions, BOOST DI Ror BOOST _ROOT_DI R can be used instead

of W TH_BQOOCST to indicate the base location of the dependency. As an alternative that implies the

W TH_BOOST option (without specifying it), use BOOST | NCLUDE_DI Rto provide the header file location
instead of deriving it from the BOOST_ROOT_DI R value.

This option applies only if you are building the legacy JDBC connector (that is, only if W TH_JDBCis
enabled).

* - DW TH_DOC=bool

Whether to enable generating the Doxygen documentation. As of Connector/C++ 8.0.16, enabling this
option also causes the Doxygen documentation to be built by the al | target.

19

Connector/C++ Source-Configuration Options

» - DW TH_JDBC=bool

Whether to build the legacy JDBC connector. This option is disabled by default. If it is enabled,
Connector/C++ 8.0 applications can use the legacy JDBC API, just like Connector/C++ 1.1 applications.

-DW TH_LzZ4={syst enj pat h_namne}

This option specifies which LZ4 installation to use when compiling Connector/C++ with an external
dependency. The option value to use:

« syst em Use the system LZ4 location.
e pat h_nane is the path name to the installation location to use.

For consistency with CVake conventions, LZ4 DI Ror LZ4 ROOT_DI R can be used instead of
W TH_LZ4 to indicate the base location of the dependency.

To imply the W TH_LZ4 option but with more fine-grained specification of installation directories, use
LZ4 | NCLUDE_DI Ror LZ4_LI B_DI Rto indicate the header file (or library) location instead of deriving
it from the LZ4 ROOT DI Rvalue. To specify a list of external libraries to link to, use LZ4 LI BRARY
instead of the W TH_LZ4 option.

If you specify both LZ4 LI BRARY and LZ4 LI B DI R, thenLZ4 LI B DI Ris used as an additional
prefix when finding the library file and LZ4 LI BRARY should be relative to that prefix. On Windows,
LZ4 LI BRARY should point at the import library of the DLL.

- DW TH_MYSQL={ syst en] pat h_nane}

The location where the MySQL sources are installed. The client library is linked statically when you
specify this option unless you also request MYSQLCLI ENT_STATI C_LI NKI NG=OFF. The option value to
use:

¢ syst em Use the system MYSQL location.
e pat h_nane is the path name to the installation location to use.

This option applies only if you are building the legacy JDBC connector (that is, only if W TH_JDBCis
enabled).

For consistency with C\ake conventions, MYSQL_DI Ror MYSQL_ROOT_DI R can be used instead of
W TH_MYSQL to indicate the base location of the dependency.

To imply the W TH_MYSQL option but with more fine-grained specification of installation directories,
use MYSQL_| NCLUDE_DI Ror MYySQL_LI B_DI Rto indicate the header file (or library) location instead
of deriving it from the MYSQL_ROOT_DI R value. To specify a list of external libraries to link to, use
MYSQL_LI BRARY instead of the W TH_MYSQL option.

If you specify both MYSQL_LI BRARY and MYSQL_LI B_DI R, then MYSQL_LI B_DI Ris used as an
additional prefix when finding the library file and MYSQL_ LI BRARY should be relative to that prefix. On
Windows, MYSQL_ LI BRARY should point at the import library of the DLL.

- DW TH_PROTOBUF={ syst emn] pat h_nane}

This option specifies which Protobuf installation to use when compiling Connector/C++ with an external
dependency. Although the library in Connector/C++ binary packages still links in Protobuf statically,
using this option makes it possible to build from external sources a variant that links in Protobuf
dynamically.

20

Connector/C++ Source-Configuration Options

The option value to use:
¢ syst em Use the system Protobuf location.

e pat h_nane is the path name to the installation location to use.

For consistency with CVake conventions, PROTOBUF_DI R or PROTOBUF_ROOT_DI R can be used
instead of W TH_PROTOBUF to indicate the base location of the dependency.

To imply the W TH_PROTOBUF option but with more fine-grained specification of installation directories,
use PROTOBUF_| NCLUDE_ DI Ror PROTOBUF_LI B_DI Rto indicate the header file (or library) location

instead of deriving it from the PROTOBUF_ROOT_DI R value. To specify a list of external libraries to link

to, use PROTOBUF_ LI BRARY instead of the W TH_PROTOBUF option.

If you specify both PROTOBUF_ LI BRARY and PROTOBUF_LI B DI R, then PROTOBUF_LI B_DI Ris used
as an additional prefix when finding the library file and PROTOBUF_ LI BRARY should be relative to that
prefix. On Windows, PROTOBUF_ LI BRARY should point at the import library of the DLL.

Similarly, specifying PROTOBUF_BI N_DI R makes it possible to locate the binaries required to use the
dependency and find the compiler.

- DW TH_SSL={ syst en| pat h_nane}
This option specifies which SSL library to use when compiling Connector/C++. The option value to use:
e syst em Use the system OpenSSL library.

e pat h_nane is the path name to the SSL installation to use. It should be the path to the installed
OpenSSL library, and must point to a directory containing a | i b subdirectory with OpenSSL libraries
that are already built. Specifying a path name for the OpenSSL installation can be preferable to using
syst embecause it can prevent CVake from detecting and using an older or incorrect OpenSSL
version installed on the system.

For consistency with C\Vake conventions, SSL_DI Ror SSL_ROOT_DI R (OPENSSL_ROOT_DI R) can be
used instead of W TH_SSL to indicate the base location of the dependency.

To imply the W TH_SSL option but with more fine-grained specification of installation directories,

use OPENSSL | NCLUDE_DI Ror OPENSSL_ LI B_DI Rto indicate the header file (or library) location
instead of deriving it from the SSL_ROOT DI Rvalue. To specify a list of external libraries to link to, use
SSL_LI BRARY instead of the W TH_SSL option.

If you specify both SSL_ LI BRARY and OPENSSL_LI B DI R, then OPENSSL_LI B _DI Ris used as an
additional prefix when finding the library file and SSL_ LI BRARY should be relative to that prefix. On
Windows, SSL_ LI BRARY should point at the import library of the DLL.

21

Connector/C++ Source-Configuration Options

e -DW TH _ZLI B={ syst em pat h_nane}

This option specifies which ZLIB installation to use when compiling Connector/C++ with an external
dependency. The option value to use:

e syst em Use the system ZLIB location.
e pat h_nane is the path name to the installation location to use.

For consistency with Cvake conventions, ZLI1 B_DI Ror ZLI B_ROOT_DI R can be used instead of
W TH_ZLI| B to indicate the base location of the dependency.

To imply the W TH_ZL 1| B option but with more fine-grained specification of installation directories,
use ZLI B | NCLUDE DI Ror ZLI B_LI B_DI Rto indicate the header file (or library) location instead
of deriving it from the ZLI B_ROOT_DI Rvalue. To specify a list of external libraries to link to, use
ZL1 B_LI BRARY instead of the W TH_ZL| B option.

If you specify both ZLI B LI BRARY and ZLI B LI B DI R, then ZLI B_LI B DI Ris used as an additional
prefix when finding the library file and ZLI B_LI BRARY should be relative to that prefix. On Windows,
ZL1 B_LI BRARY should point at the import library of the DLL,

-DW TH _ZSTD={ syst en{ pat h_nane}

This option specifies which ZSTD installation to use when compiling Connector/C++ with an external
dependency. The option value to use:

e syst em Use the system ZSTD location.
e pat h_nane is the path name to the installation location to use.

For consistency with C\Vake conventions, ZSTD DI Ror ZSTD_ROOT_DI R can be used instead of
W TH_ZSTDto indicate the base location of the dependency.

To imply the W TH_ZSTD option but with more fine-grained specification of installation directories,
use ZSTD | NCLUDE DI Ror ZSTD LI B_DI Rto indicate the header file (or library) location instead
of deriving it from the ZSTD_ROOT DI Rvalue. To specify a list of external libraries to link to, use
ZSTD LI BRARY instead of the W TH_ZSTD option.

If you specify both ZSTD_L| BRARY and ZSTD_LI B_DI R, then ZSTD_LI B_DI Ris used as an additional
prefix when finding the library file and ZSTD LI BRARY should be relative to that prefix. On Windows,
ZSTD_LI BRARY should point at the import library of the DLL.

22

Chapter 5 Building Connector/C++ Applications

Table of Contents

5.1 Building Connector/C++ Applications: General Considerationsc.ooiviiiiiiiinieiiieii e 23
5.2 Building Connector/C++ Applications: Platform-Specific Considerationsccoovveiviiiniiineeennn. 31
5.2.1 WINUAOWS NOTES ..ottt ettt e e e et et e et e et e et e e et e e et e e e an e e et eeeaneaeenaes 31
5.2.2 MACOS NOLES ...ttt et ettt et et et ettt e et e e e et e e e et e eaaenns 36
5.2.3 GENEIIC LINUX NOLES .. euiiiiiieiii ettt e et et e e e e et e e e e e e ean e e et eaeannns 36
5.3 AULNENTICALION SUPPOIT ...ttt ettt ettt e et e et et e et et e e et et e e e e et e e e e ebaes 37
5.4 OpenTelemetry TraCing SUPPOIToeieut et e ettt e e ettt e et e et e et e e e e e e e e enen s 41

This chapter provides guidance on building Connector/C++ applications:

» General considerations for building Connector/C++ applications successfully. See Section 5.1, “Building
Connector/C++ Applications: General Considerations”.

 Information about building Connector/C++ applications that applies to specific platforms such as
Windows, macOS, generic Linux, and Solaris. See Section 5.2, “Building Connector/C++ Applications:
Platform-Specific Considerations”.

For discussion of the programming interfaces available to Connector/C++ applications, see Chapter 1,
Introduction to Connector/C++.

5.1 Building Connector/C++ Applications: General Considerations

This section discusses general considerations to keep in mind when building Connector/C++ applications.
For information that applies to particular platforms, see the section that applies to your platform in
Section 5.2, “Building Connector/C++ Applications: Platform-Specific Considerations”.

Commands shown here are as given from the command line (for example, as invoked from a Makefi | e).
The commands apply to any platform that supports nake and command-line build tools such as g++, cc,
or cl ang, but may need adjustment for your build environment.

 Build Tools and Configuration Settings

e C++17 Support

» Connector/C++ Header Files

» Connector/C++ Version Macros

» Boost Header Files

 Link Libraries

* Runtime Libraries

 Using the Connector/C++ Dynamic Library

 Using the Connector/C++ Static Library

Build Tools and Configuration Settings

It is important that the tools you use to build your Connector/C++ applications are compatible with the tools
used to build Connector/C++ itself. Ideally, build your applications with the same tools that were used to
build the Connector/C++ binaries.

23

C++17 Support

To avoid issues, ensure that these factors are the same for your applications and Connector/C++ itself:
» Compiler version.
* Runtime library.

* Runtime linker configuration settings.

To avoid potential crashes, the build configuration of Connector/C++ should match the build configuration
of the application using it. For example, do not use a release build of Connector/C++ with a debug build of
the client application.

To use a different compiler version, release configuration, or runtime library, first build Connector/C++ from
source using your desired settings (see Chapter 4, Installing Connector/C++ from Source), then build your
applications using those same settings.

Connector/C++ binary distributions include an | NFO_BI N file that describes the environment and
configuration options used to build the distribution. If you installed Connector/C++ from a binary distribution
and experience build-related issues on a platform, it may help to check the settings that were used to

build the distribution on that platform. Binary distributions also include an | NFO_SRC file that provides
information about the product version and the source repository from which the distribution was produced.
(Prior to Connector/C++ 8.0.14, look for BUI LDI NFO. t xt rather than | NFO_BI Nand | NFO_SRC.)

C++17 Support

X DevAPI uses C++17 language features (as of Connector/C++ 8.0.33). To compile Connector/C++
applications that use X DevAPI, enable C++17 support in the compiler using the - st d=c++17 option. This
option is not needed for applications that use X DevAPI for C (which is a plain C API) or the legacy JDBC
API (which is based on plain C++), unless the application code uses C++17.

Connector/C++ Header Files

The API an application uses determines which Connector/C++ header files it should include. The following
include directives work under the assumption that the include path contains $MYSQL_CPPCONN_DI R/

i ncl ude, where $MYSQL_CPPCONN_DI R is the Connector/C++ installation location. Pass an - |
$MYSQL_CPPCONN_DI R/i ncl ude option on the compiler invocation command to ensure this.

» For applications that use X DevAPI:
#i ncl ude <mysql x/ xdevapi . h>
» For applications that use X DevAPI for C:
#i ncl ude <nmysql x/ xapi . h>
» For applications that use the legacy JDBC API, the header files are version dependent:
« As of Connector/C++ 8.0.16, a single #i ncl ude directive suffices:
#i ncl ude <mysql/j dbc. h>
» Prior to Connector/C++ 8.0.16, use this set of #i ncl ude directives:

#i ncl ude <jdbc/nysql _driver. h>
#i ncl ude <j dbc/ nysql _connecti on. h>
#i ncl ude <j dbc/cppconn/*. h>

24

Connector/C++ Version Macros

The notation <j dbc/ cppconn/ *. h> means that you should include all header files from the j dbc/
cppconn directory that are needed by your application. The particular files needed depend on the

application.

e Legacy code that uses Connector/C++ 1.1 has #i ncl ude directives of this form:

#i ncl ude <nysql _driver. h>
#i ncl ude <nysql _connecti on. h>
#i ncl ude <cppconn/*. h>

To build such code with Connector/C++ 8.0 without modifying it, add $MYSQL_CPPCONN_DI R/

i ncl ude/ j dbc to the include path.

To compile code that you intend to link statically against Connector/C++, define a macro that adjusts API
declarations in the header files for usage with the static library. For details, see Using the Connector/C++

Static Library.

Connector/C++ Version Macros

Starting with Connector/C++ 8.0.30, version-related macros are defined in public header files. The intent
of the macros is to provide a way to systematically and predictably maintain version numbering of the
Connector/C++ product. The following table describes the version-related macros.

Macro Name

Description

MYSQL_CONCPP_VERS| ON_MAJOR

Major number of the product version; currently 8.

MYSQL_CONCPP_VERSI ON_M NOR

Minor number of the product version; currently 00.

MYSQL_CONCPP_VERSI ON_M CRO

Micro number of the product version; initially 30.

MYSQL_CONCPP_VERSI ON_NUVBER

Full Connector/C++ version number, which
combines the major, minor, and micro numbers. For
example, the combined version number 8000030
represents Connector/C++ 8.0.30.

Note

The version numbers maintained by these macros apply to the Connector/C
++ product only and are unrelated to API or ABI versions, which are handled

separately.

Connector/C++ applications that use X DevAPI, X DevAPI for C, or the legacy JDBC API can specify
the MYSQL_ CONCPP_VERSI ON_NUVMBER macro to add conditional tests that determine the inclusion or
exclusion of feature dependencies, based on which Connector/C++ version introduced the dependency.
For example, it is possible to use the MYSQL_CONCPP_VERSI ON_NUVBER macro in the following cases:

* When a Connector/C++ application needs a guard that checks for features introduced after the specified
version. The following example specifies version 8.0.32, which has the macro defined in public header
files. The same conditional-compilation directive also works when the macro is not defined (with
pre-8.0.30 header files), because the value is treated as 0.

#i f MYSQL_CONCPP_VERSI ON_NUVBER > 8000032

/] use some 8.0.32+ feature
#endi f

* When a Connector/C++ application requires all features introduced before the specified version.

#i f MYSQL_CONCPP_VERSI ON_NUVBER < 8000032

// this usage is OK; it conpiles with 8.0.31 and all previous versions

25

Boost Header Files

#endi f

* When a Connector/C++ application that uses X DevAPI also uses the Char act er Set : : ut f 8nb3
enumeration constant or any of the new ut f 8nb4 collation members. If the application compiles with the
pre-8.0.30 connector, then it is possible to guard the use of these new API elements.

#i f MYSQL_CONCPP_VERSI ON_NUMBER >= 8000030
if (CharacterSet::utf8mh3 == cs)

#el se
if (CharacterSet::utf8 == cs)

#endi f

/Il cs is the id of the utf8 character set

}

* When a Connector/C++ application that uses X DevAPI needs to check the name of the ut f 8nb3
character set or any of its collations, and it must also be compiled with the pre-8.0.30 connector.

#i f MYSQL_CONCPP_VERSI ON_NUMBER >= 8000030

if ("utf8mb3" == character Set Name(cs))
#el se

if ("utf8" == characterSet Nane(cs))
#endi f

{

/]l cs is the id of the utf8 character set
}
Note

Alternatively, you can compare against numeric enumeration constant value,
which should work regardless of the connector version.

* When a Connector/C++ application that uses the legacy JDBC API needs to check the name of
the ut f 8nb3 character set or any of its collations, and it must also be compiled with the pre-8.0.30

connector.
#i f MYSQL_CONCPP_VERSI ON_NUMBER >= 8000030

if ("utf8nmb3" == netadata->get Col unmChar set (col unm))
#el se

if ("utf8" == netadata->get Col umCharset (col um))
#endi f

/1 colum is the columm index using the utf8 character set

}

Do not use the MYSQL_ CONCPP_VERSI ON_NUMBER macro to check against versions earlier than
Connector/C++ 8.0.30, which can produce unreliable results. For example:

#i f MYSQL_CONCPP_VERSI ON_NUMBER > 8000028
/'l this does not conpile the with 8.0.29 connector
#endi f

#i f MYSQL_CONCPP_VERSI ON_ NUMBER < 8000028

/'l this conpiles with the 8.0.29 connector
#endi f

Boost Header Files
The Boost header files are needed under these circumstances:

* Prior to Connector/C++ 8.0.16, on Unix and Unix-like platforms for applications that use X DevAPI or X
DeVvAPI for C, if you build using gcc and the version of the C++ standard library on your system does not
implement the UTF8 converter (codecvt _ut f 8).

26

Link Libraries

 Prior to Connector/C++ 8.0.23, to compile Connector/C++ applications that use the legacy JDBC API.

If the Boost header files are needed, Boost 1.59.0 or newer must be installed, and the location of the
headers must be added to the include path. To obtain Boost and its installation instructions, visit the official
Boost site.

Link Libraries

When running an application that uses the shared Connector/C++ library, the library and its runtime
dependencies must be found by the dynamic linker. The dynamic linker must be properly configured to find
Connector/C++ libraries and their dependencies. This includes adding - | r esol v explicitly to the compile/
link command.

Building Connector/C++ using OpenSSL makes the connector library dependent on OpenSSL dynamic
libraries. In that case:

* When linking an application to Connector/C++ dynamically, this dependency is relevant only at runtime.

* When linking an application to Connector/C++ statically, link to the OpenSSL libraries as well. On Linux,
this means adding - | ssl - | crypt o explicitly to the compile/link command. On Windows, this is
handled automatically.

On Windows, link to the dynamic version of the C++ Runtime Library.
Runtime Libraries

X DeVvAPI for C applications need | i bst dc++ at runtime. Depending on your platform or build tools, a
different library may apply. For example, the library is | i bc++ on macOS; see Section 5.2.2, “macOS
Notes”.

If an application is built using dynamic link libraries, those libraries must be present not just on the build
host, but on target hosts where the application runs. The dynamic linker must be properly configured to find
those libraries and their runtime dependencies, as well as to find Connector/C++ libraries and their runtime
dependencies.

Connector/C++ libraries built by Oracle depend on the OpenSSL libraries. The latter must be installed on
the system in order to run code that links against Connector/C++ libraries. Another option is to put the
OpenSSL libraries in the same location as Connector/C++, in which case, the dynamic linker should find
them next to the connector library. See also Section 5.2.1, “Windows Notes”, and Section 5.2.2, “macOS
Notes”.

Note

The TLSv1 and TLSv1.1 connection protocols are no longer supported as of
Connector/C++ 8.0.28, making TLSv1.2 the earliest supported connection protocol.

Using the Connector/C++ Dynamic Library

The Connector/C++ dynamic library name depends on the platform. These libraries implement X DevAPI
and X DevAPI for C, where A in the library name represents the ABI version:

e | i bmysgl cppconn8. so. A (Unix)
e libnysgl cppconn8. A. dyl i b (macOS)

* nysql cppconn8- A-vsNN. dI |, with import library vsNN/ nmysql cppconn8. | i b (Windows)

27

https://www.boost.org
https://www.boost.org

Using the Connector/C++ Dynamic Library

For the legacy JDBC API, the dynamic libraries are named as follows, where B in the library name
represents the ABI version:

e i bnmysqgl cppconn. so. B (Unix)
e |ibnysqgl cppconn. B. dyl i b (macOS)
e nysql cppconn-B-vsNN. dl |, with import library vsNN/ nysql cppconn-static.|i b (Windows)

On Windows, the vsNN value in library names depends on the MSVC toolchain version used to build the
libraries. (Connector/C++ libraries provided by Oracle use vs14, and they are compatible with MSVC
2019 and 2017.) This convention enables using libraries built with different versions of MSVC on the same
system. See also Section 5.2.1, “Windows Notes”.

To build code that uses X DevAPI or X DevAPI for C, add - | mysql cppconn8 to the linker options. To
build code that uses the legacy JDBC API, add - | mysql cppconn.

You must also indicate whether to use the 64-bit or 32-bit libraries by specifying the appropriate
library directory. Use an - L linker option to specify $MyYSQL_CONCPP_DI R/ | i b64 (64-bit libraries) or
$MYSQL_CONCPP_DI R/ I i b (32-bit libraries), where $MYSQL_CPPCONN_DI Ris the Connector/C++
installation location. On FreeBSD, / | i b64 is not used. The library name always ends with / | i b.

To build a Connector/C++ application that uses X DevAPI, has sources in app. cc, and links dynamically
to the connector library, the Makef i | e might look like this:

MYSQL_CONCPP_DI R = Connector/C++ installation |ocation

CPPFLAGS = -1 $(MYSQL_CONCPP_DIR)/include -L $(MYSQL_CONCPP_DI R)/|i b64
LDLI BS = -1 mysqgl cppconn8

CXXFLAGS = -std=c++17

app : app.cc

With that Makef i | e, the command make app generates the following compiler invocation:

g++ -std=c++17 -1 .../include -L .../lib64 app.cc -|nysqgl cppconn8 -0 app

To build a plain C application that uses X DevAPI for C, has sources in app. ¢, and links dynamically to the
connector library, the Makef i | e might look like this:

MYSQL_CONCPP_DI R = Connector/C++ installation |ocation

CPPFLAGS = -1 $(MYSQL_CONCPP_DI R)/include -L $(MYSQL_CONCPP_DIR)/|i b64
LDLI BS = -1 mysqgl cppconn8
app :© app.c

With that Makef i | e, the command nmake app generates the following compiler invocation:

cc -1 .../include -L .../lib64 app.c -l nmysqgl cppconn8 -0 app
Note

The resulting code, even though it is compiled as plain C, depends on the C++
runtime (typically | i bst dc++, though this may differ depending on platform or build
tools; see Runtime Libraries).

To build a plain C++ application that uses the legacy JDBC API, has sources in app. ¢, and links
dynamically to the connector library, the Makef i | e might look like this:

MYSQL_CONCPP_DI R = Connector/C++ installation |ocation
CPPFLAGS = -1 $(MYSQL_CONCPP_DIR)/include -L $(MYSQL_CONCPP_DIR)/|i b64

28

Using the Connector/C++ Static Library

LDLI BS = -1 mysqgl cppconn
app @ app.c

The library option in this case is - | mysql cppcon, rather than - | mysql cppcon8 as for an X DevAPI or X
DevAPI for C application.

With that Makefi | e, the command nake app generates the following compiler invocation:
cc -1 .../include -L .../lib64 app.c -l mysql cppconn -0 app
Note

When running an application that uses the Connector/C++ dynamic library, the
library and its runtime dependencies must be found by the dynamic linker. See
Runtime Libraries.

Using the Connector/C++ Static Library

It is possible to link your application with the Connector/C++ static library. This way there is no runtime
dependency on the connector, and the resulting binary can run on systems where Connector/C++ is not
installed.

Note

Even when linking statically, the resulting code still depends on all runtime
dependencies of the Connector/C++ library. For example, if Connector/C++ is built
using OpenSSL, the code has a runtime dependency on the OpenSSL libraries.
See Runtime Libraries.

The Connector/C++ static library name depends on the platform. These libraries implement X DevAPI and
X DevAPI for C:

e |ibrmysqgl cppconn8-stati c. a (Unix, macOS)
* VsN\/ nysql cppconn8-static.|ib (Windows)
For the legacy JDBC API, the static libraries are named as follows:
e |ibnysgl cppconn-static. a (Unix, macOS)
* VvsN\/ nysql cppconn-static.|ib (Windows)
Note

Generic Linux packages do not contain any Connector/C++ static libraries. If you
intend to link your application to a static library, consider installing a package that is
specific to the platform on which you build your final application.

On Windows, the vsNN value in library names depends on the MSVC toolchain version used to build the
libraries. (Connector/C++ libraries provided by Oracle use vs14, and they are compatible with MSVC
2019 and 2017.) This convention enables using libraries built with different versions of MSVC on the same
system. See also Section 5.2.1, “Windows Notes”.

To compile code that you intend to link statically against Connector/C++, define a macro that adjusts API
declarations in the header files for usage with the static library. One way to define the macro is by passing
a - D option on the compiler invocation command:

29

Using the Connector/C++ Static Library

» For applications that use X DevAPI, X DevAPI for C, or (as of Connector/C++ 8.0.16) the legacy JDBC
API, define the STATI C_CONCPP macro. All that matters is that you define it; the value does not matter.
For example: - DSTATI C_CONCPP

 Prior to Connector/C++ 8.0.16, for applications that use the legacy JDBC API, define
the CPPCONN_PUBLI C_FUNC macro as an empty string. To ensure this, define the
macro as CPPCONN_PUBLI C_FUNC=, not as CPPCONN_PUBLI C_FUNC. For example: -
DCPPCONN_PUBLI C_FUNC=

To build a Connector/C++ application that uses X DevAPI, has sources in app. cc, and links statically to
the connector library, the Makef i | e might look like this:

MYSQL_CONCPP_DI R = Connector/C++ installation |ocation

CPPFLAGS = - DSTATI C_ CONCPP -1 $(MYSQL_CONCPP_DI R)/i ncl ude

LDLI BS = $(MYSQL_CONCPP_DI R)/ | i b64/ | i brrysql cppconn8-static.a -Issl -lcrypto -Ipthread
CXXFLAGS = -std=c++17

app : app.cc
With that Makefi | e, the command nake app generates the following compiler invocation:

g++ -std=c++17 - DSTATI C_CONCPP -| .../include app.cc
...11ib64/libnysql cppconn8-static.a -Issl -lcrypto -Ipthread -o app

Note

To avoid having the linker report unresolved symbols, the compile line must include
the OpenSSL libraries and the pt hr ead library on which Connector/C++ code
depends.

OpenSSL libraries are not needed if Connector/C++ is built without them, but
Connector/C++ distributions built by Oracle do depend on OpenSSL.

The exact list of libraries required by Connector/C++ library depends on the
platform. For example, on Solaris, the socket, rt, and nsl libraries might be
needed.

To build a plain C application that uses X DevAPI for C, has sources in app. ¢, and links statically to the
connector library, the Makef i | e might look like this:

MYSQL_CONCPP_DI R = Connector/C++ installation | ocation
CPPFLAGS = - DSTATI C_CONCPP -1 $(MYSQL_CONCPP_DI R)/ i ncl ude
LDLI BS = $(MYSQL_CONCPP_DI R)/ | i b64/ i brrysql cppconn8-static.a -I1ssl -lcrypto -I pthread

app : app.c
With that Makefi | e, the command nake app generates the following compiler invocation:

cc - DSTATIC_ CONCPP -1 .../include app.c
...11ib64/libnysql cppconn8-static.a -Issl -lcrypto -Ipthread -o app

To build a plain C application that uses the legacy JDBC API, has sources in app. ¢, and links statically to
the connector library, the Makef i | e might look like this:

MYSQ._CONCPP_DI R = Connector/ C++ installation |ocation
CPPFLAGS = - DCPPCONN_PUBLI C FUNC= -| $(MYSQL_CONCPP_DI R)/i ncl ude
LDLI BS = $(MYSQL_CONCPP_DI R)/ | i b64/ 1 i brysql cppconn-static.a -Issl -lcrypto -Ipthread

app : app.c

The library option in this case names | i bnysql cppcon-stati c. a, ratherthan | i brrysql cppcon8-
stati c. a as for an X DevAPI or X DevAPI for C application.

30

Building Connector/C++ Applications: Platform-Specific Considerations

With that Makefi | e, the command nake app generates the following compiler invocation:

cc -std=c++17 --DCPPCONN_PUBLI C FUNC= -I .../include app.c
.../1ib64/1ibnysqgl cppconn-static.a -1ssl -lcrypto -lpthread -o app

When building plain C code, it is important to take care of connector's dependency on the C++ runtime,
which is introduced by the connector library even though the code that uses it is plain C:

» One approach is to ensure that a C++ linker is used to build the final code. This approach is taken by the
Makef i | e shown here:

MYSQL_CONCPP_DI R = Connector/ C++ installation |ocation

CPPFLAGS = - DSTATI C_CONCPP -1 $(MYSQL_CONCPP_DI R)/i ncl ude

LDLI BS = $(MYSQL_CONCPP_DI R)/ | i b64/ i brrysql cppconn8-static.a -Issl -lcrypto -Ipthread
LINK. o = $(LINK. cc) # use C++ |inker

app : app.o

With that Makef i | e, the build process has two steps: first compile the application source in app. ¢
using a plain C compiler to produce app. o, then link the final executable (app) using the C++ linker,
which takes care of the dependency on the C++ runtime. The commands look something like this:

cc -DSTATIC CONCPP -1 .../include -c -0 app.o app.cC
g++ - DSTATI C_CONCPP -1 .../include app.o
.../1ibnysqgl cppconn8-static.a -l1ssl -lcrypto -Ipthread -o app

» Another approach is to use a plain C compiler and linker, but add the | i bst dc++ C++ runtime library as
an explicit option to the linker. This approach is taken by the Makef i | e shown here:
MYSQ._CONCPP_DI R = Connector/C++ installation |ocation
CPPFLAGS = - DSTATI C_CONCPP -1 $(MYSQL_CONCPP_DI R)/ i ncl ude

LDLI BS = $(MYSQ._CONCPP_DI R)/|i b64/1i bnysql cppconn8-static.a -Issl -lcrypto -Ipthread -Istdc++
app : app.c

With that Makef i | e, the compiler is invoked as follows:

cc -DSTATIC CONCPP -1 .../include app.c
.../1ibnysqgl cppconn8-static.a -l1ssl -lcrypto -Ipthread -1stdc++ -0 app

Note

Even if the application that uses Connector/C++ is written in plain C, the final
executable depends on the C++ runtime which must be installed on the target
computer on which the application is to run.

5.2 Building Connector/C++ Applications: Platform-Specific
Considerations

This section discusses platform-specific considerations to keep in mind when building Connector/C++
applications. For general considerations that apply on a platform-independent basis, see Section 5.1,
“Building Connector/C++ Applications: General Considerations”.

5.2.1 Windows Notes

This section describes aspects of building Connector/C++ applications that are specific to Microsoft
Windows. For general application-building information, see Section 5.1, “Building Connector/C++
Applications: General Considerations”.

On Windows, applications can be built in different build configurations, which determine the type of the C++
runtime library that is used by the final executable:

31

Windows Notes

» An application can be built in 32-bit or 64-bit mode.
» An application can be built in release or debug mode.

* You can choose between the dynamic runtime library (/ VD linker option) or static runtime library (/ MI'
linker option). Different versions of the MSVC compiler also use different versions of the runtime library.

To build Connector/C++ applications, developers using Windows must satisfy these conditions:
» An acceptable version of Microsoft Visual Studio is required.

» Applications should use the same build configuration as that used to build Connector/C++. Build
configuration includes the build mode (release mode or debug mode) and the linker option (for example,
/ NDor / MDd).

» Target hosts running client applications must have an acceptable version of the Visual C++
Redistributable for Visual Studio installed.

For information about acceptable versions of Visual Studio and VC++ Redistributable, see Platform
Support and Prerequisites.

The following sections provide additional detail about several aspects of building Connector/C++
applications:

» Application Build Configuration Must Match Connector/C++
» Linking Connector/C++ to Applications

 Building Connector/C++ Applications with Microsoft Visual Studio

Application Build Configuration Must Match Connector/C++

It is important to use a compatible compiler version to build applications and Connector/C++. It is also
important to build applications using the same build configuration as that used to build Connector/C++.
That is, applications should use the same build mode and linker option, to ensure that the connector and
the application use the same runtime library.

The following table shows the linker option appropriate for each combination of build mode and runtime

library. It also shows for each combination whether a Connector/C++ binary package is available from
Oracle. (If not, you must build Connector/C++ from source yourself.)

Table 5.1 Connector/C++ Linker Option Per Build Mode and Runtime Library

Build Mode Runtime Library Linker Option Binary Package
Available

Release Dynamic / ND Yes

Debug Dynamic / Md Yes

Release Static / Mr No (build from source)

Debug Static / Mrd No (build from source)

Standard Connector/C++ binary packages available from Oracle are built in release mode. If you install
such a package, build applications in release mode to match. Oracle packages built in debug mode are
available as well. To build applications in debug mode, you must either install an Oracle-built Connector/C+
+ package that was built in debug mode, or build Connector/C++ from source yourself using debug mode.

32

https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/

Windows Notes

Linking Connector/C++ to Applications

Connector/C++ binary distributions are available as 64-bit or 32-bit packages, which store libraries under a
directory named | i b64 or | i b, respectively. Package names and certain library file and directory names
also include vsNN. The vsNN value in these names depends on the MSVC toolchain version used to build
the libraries. This convention enables using libraries built with different versions of MSVC on the same
system.

Note

The vsNN value represents the major version of the MSVC toolchain used to
build the libraries. Currently it is vs 14, which is the toolchain used by MSVC 2015
through 2019.

Connector/C++ binary packages include libraries built using the dynamic runtime library in either release
mode (/ VD) or debug mode (/ Mdd). The Connector/C++ libraries are compatible with MSVC 2019 and
2017, and code that uses these libraries can be built with either MSVC 2019 or 2017 using the appropriate
linker option (that is, / VD for release mode or / MDd for debug mode). To build code with a different linker
option (/ MT or / Mrd), first build Connector/C++ from source with that option (see Section 4.3, “Installing
Connector/C++ from Source”), then build applications using the same option.

Note

One exception for compiler version compatibility is that to build applications using
the static JDBC legacy connector, MSVC 2019 is required; 2017 does not work.

Connector/C++ is available as a dynamic or static library to use with your application. Which library you
choose determines the library files needed, and the location of those files within a Connector/C++ package
depends on whether the package was built in release or debug mode. Library files are located under the
library directory, which, as previously mentioned, is | i b64 for 64-bit packages or | i b for 32-bit packages.
Denote this directory as LI B. The following table shows the directory in which to find library files for each
type of library (including import libraries, which are used in conjunction with dynamic libraries).

Table 5.2 Connector/C++ Library File Directories

Library Type

Library File Directory (Release
Build)

Library File Directory (Debug
Build)

Dynamic Library LI B LI B/ debug
Import Library LI B/ vs14 LI B/ vs14/ debug
Static Library LI B/vs14 LI B/ vs14/ debug

For dynamic linking, the following table indicates which dynamic and import library files to use.

Table 5.3 Connector/C++ Dynamic and Import Library Files Per Connector

Connector Dynamic Library File Import Library File
X DevAPI, X DevAPI for C nmysql cppconn8- 2-vsi14. dl | nmysql cppconn8. lib
JDBC nysql cppconn-7-vsi4. dl | nysgl cppconn. lib

For the X DevAPI or X DevAPI for C connector, use the dynamic library file named nysql cppconn8- 2-
vs14. dl |, together with with the import library file named nysql cppconn8. | i b from the import library
directory. The 2 in the dynamic library name is the major ABI version number. (This helps when using
compatibility libraries with an old ABI together with new libraries having a different ABI.) The libraries
installed on your system may have a different ABI version in their file names.

33

Windows Notes

For the legacy JDBC connector, use the dynamic library file named nysql cppconn- 7-vs14. dl |,
together with the import library file named nysql cppconn. | i b from the import library directory.

For static linking, the following table indicates which static library file to use.

Table 5.4 Connector/C++ Static Library File Per Connector

Connector Static Library File
X DevAPI, X DevAPI for C nysql cppconn8-static.lib
JDBC nysql cppconn-static.lib

For the X DevAPI or X DevAPI for C connector, use the static library file named nmysql cppconn8-
static.|ib from the static library directory.

For the legacy JDBC connector, use the static library file named nysql cppconn-stati c. | i b from the
static library directory.

When building code that uses Connector/C++ libraries, use these guidelines for setting build options in the
project configuration:

As an additional include directory, specify $MYSQL_CPPCONN_DI R/ i ncl ude.

As an additional library directory, specify the directory containing the libraries the application must link to,
as indicated in Table 5.2, “Connector/C++ Library File Directories”. For example, to specify the import or

static library directory for building in release mode, use $MYSQ._CONCPP_DI R/ | i b64/ vs14 (for 64-bit

libraries) or $MYSQL_CONCPP_DI R/ | i b/ vs14 (for 32-bit libraries). For building in debug mode, change
vsl4 to vs1l4/ debug.

To use a dynamic library file (. dI | extension), link your application with a . | i b import library:
nysql cppconn8. | i b to the linker options, or nysql cppconn. | i b for legacy code.

To use a static library file (. | i b extension), link your application with the library: mysql cppconn8-
static.lib,ornysql cppconn-static.|ib forlegacy code.

For static linking, the application must also be linked with import libraries for the required OpenSSL
libraries. If the connector was installed from a binary package provided by Oracle, these are

present in the vs14 subdirectory under the main library directory ($MYSQL_CONCPP_DI R/ | i b64 or
$MYSQL_CONCPP_DI R/ | i b), and the corresponding OpenSSL . dl | libraries are present in the main
library directory.

Note

A Windows application that uses the connector dynamic library must be able to
locate it at runtime, as well as its dependencies such as OpenSSL. The common
way of arranging this is to copy all the required DLLs to the same location as the
application executable.

Building Connector/C++ Applications with Microsoft Visual Studio

To build a Connector/C++ application with Microsoft Visual Studio, follow this procedure:

1. Start a new Visual C++ project in Visual Studio.

2. Set the required include paths.

From the main menu, select Project, Properties. This can also be accessed using the hot key ALT +
F7. Under Configuration Properties, open the tree view. Select C/C++, General in the tree view.

34

Windows Notes

In the Additional Include Directories text field:

e Add the i ncl ude/ directory of Connector/C++. This directory should be located within the
Connector/C++ installation directory.

 If Boost is required to build the application, also add the Boost library root directory. (See Section 5.1,
“Building Connector/C++ Applications: General Considerations”.)

Set the library locations.
In the tree view, open Linker, General, Additional Library Directories.

In the Additional Library Directories text field, add the Connector/C++ import or static library directory
as specified in Table 5.2, “Connector/C++ Library File Directories”. Set appropriate paths for release
and debug builds.

Note

For building in debug mode, the Connector/C++ debug package must be
installed.

Set the connector library to use.
Open Linker, Input in the Property Pages dialog.

For building with the Connector/C++ dynamic library, enter the import library name:
nysql cppconn8. |i b, ornysql cppconn. | i b for legacy applications.

For building with the Connector/C++ static library, enter the static library name: nysql cppconn8-
static.lib,ornysql cppconn-static.!|ib forlegacy applications.

Note
Generic Linux packages do not contain Connector/C++ static libraries.
Define macros for static linking.

To compile code that is linked statically with the connector library, you must define a macro that adjusts
API declarations in the header files for usage with the static library. By default, the macro is undefined
to declare functions to be compatible with an application that calls a DLL.

In the Project, Properties tree view, under C++, Preprocessor, enter the appropriate macro into the
Preprocessor Definitions text field:

» For applications that use X DevAPI, X DevAPI for C, or (as of Connector/C++ 8.0.16) the legacy
JDBC API, define the STATI C_CONCPP macro. All that matters is that you define it; the value does
not matter. For example: - DSTATI C_CONCPP

¢ Prior to Connector/C++ 8.0.16, for applications that use the legacy JDBC API, define the
CPPCONN_PUBLI C_FUNC macro as an empty string. To ensure this, define the macro as
CPPCONN_PUBLI C_FUNC=, not as CPPCONN_PUBLI C_FUNC.

Notes

¢ Target hosts running the client application must have the Visual C++
Redistributable for Visual Studio installed. For information about which VC++
Redistributable versions are acceptable, see Platform Support and Prerequisites.

35

https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/

macOS Notes

« If your code uses the Connector/C++ dynamic library, it must be present on the
target host where the application is run. Copy the appropriate Connector/C++
dynamic library to the same directory as the application executable (see Linking
Connector/C++ to Applications). Alternatively, extend the PATH environment
variable using SET PATH=%ATH% C: \ pat h\'t o\ cpp, or copy the dynamic
library to the Windows installation directory, typically C: \ wi ndows.

« If your code uses the Connector/C++ static library, the required OpenSSL
libraries must be found on the target host where the application is run.
For Connector/C++ binary distributions, the OpenSSL . dl | libraries are
present in the main library directory ($MYSQL_CONCPP_DI R/ | i b64 or
$MYSQL_CONCPP_DI R/ 11 b). Copy them to the same location as the application
executable or to some directory listed in the system PATH.

5.2.2 macOS Notes

This section describes aspects of building Connector/C++ applications that are specific to macOS. For
general application-building information, see Section 5.1, “Building Connector/C++ Applications: General
Considerations”.

The binary distribution of Connector/C++ for macOS is compiled using the macOS native cl ang compiler.
For that reason, an application that uses Connector/C++ should be built with the same cl ang compiler.

The cl ang compiler can use two different implementations of the C++ runtime library: either the native
[i bc++ orthe GNU | i bst dc++ library. It is important that an application uses the same runtime
implementation as Connector/C++ that is, the native | i bc++. To ensure that, the - st dl i b=l i bc++
option should be passed to the compiler and the linker invocations.

To build a Connector/C++ application that uses X DevAPI, has sources in app. cc, and links dynamically
to the connector library, the Makef i | e for building on macOS might look like this:

MYSQL_CONCPP_DI R = Connector/C++ installation | ocation

CPPFLAGS = -1 $(MYSQL_CONCPP_DIR)/include -L $(MYSQL_CONCPP_DI R)/ | i b64
LDLI BS = -1 mysqgl cppconn8

CXX = cl ang++ -stdlib=libc++

CXXFLAGS = -std=c++17

app : app.cc

Binary packages for macOS include OpenSSL libraries that are required by code linked with the connector.
These libraries are installed in the same location as the connector libraries and should be found there by
the dynamic linker.

5.2.3 Generic Linux Notes

This section describes aspects of building Connector/C++ applications that are specific to Linux. Generic
Linux packages do not contain Connector/C++ static libraries. For general application-building information,
see Section 5.1, “Building Connector/C++ Applications: General Considerations”.

Note

Connector/C++ 8.0.32 provides generic Linux packages for ARM architecture
(64 bit). All Connector/C++ versions provide generic Linux packages for Intel
architecture (both 32 and 64 bits).

Previously, generic Linux packages were built on the EL7 platform and on that platform GCC is configured
to use an older ABI of | i bst dc++. Some of the symbols exported by the library include standard library

36

Authentication Support

types in their names, and consequently, are not compatible with the new CXX11 ABI, which is the default
for modern GCC on most platforms (EL7 being an exception). So, unless you build your code on EL7, and
use GCCE6 or later compiler, it defaults to new CXX11 ABI and looks for Connector/C++ symbols that have
new ABI names in them.

As of Connector/C++ 8.0.30, Connector/C++ uses the new CXX11 ABI. With this change, you might
encounter following problems when using Connector/C++ installed from a generic Linux package:

» An upgrade from Connector/C++ 8.0.29 (or earlier) to 8.0.30 (or later) could produce runtime errors after
the upgrade, even if the previous version of Connector/C++ ran successfully.

« It will not work with GCC5 or earlier, because the old compiler uses the old ABI and cannot link to code
that uses new the ABI.

« It will not work on EL6, EL7, or any other platform that modifies GCC settings to use
the old ABI by default. However, in this situation a workaround is to build code under -
D GLI BCXX_USE_CXX11_ABI =1.

For a majority of platforms, including EL8, the GCC default was changed to the new ABI.

5.3 Authentication Support

For connections to the server made using the legacy JDBC API (that is, not made using X DevAPI or X
DevAPI for C), Connector/C++ supports different client-side authentication plugins and authentication
methods for:

* LDAP Authentication

» Kerberos Authentication

OpenlD Connect Authentication

OCI Authentication

Multifactor Authentication

WebAuthn (FIDO) Authentication
LDAP Authentication

LDAP authentication enables Connector/C++ (8.0.22 and later) application programs to connect to
MySQL servers using simple LDAP authentication, or SASL LDAP authentication using the SCRAM-
SHA-1 authentication method. LDAP authentication requires use of a server from a MySQL Enterprise
Edition distribution. For more information about the LDAP authentication plugins, see LDAP Pluggable
Authentication.

Connector/C++ binary distributions include the libraries that provide the client-side LDAP authentication
plugins, as well as any dependent libraries required by the plugins.

Note

In Connector/C++ 8.0.23, a dependency on the nysql - cl i ent - pl ugi ns
package was removed. This package now is required only on hosts where
Connector/C++ applications make connections using commercial MySQL server
accounts with LDAP authentication. In that case, additional libraries must also
be installed: cyr us- sasl - scr amfor installations that use RPM packages and

37

https://dev.mysql.com/doc/refman/9.5/en/ldap-pluggable-authentication.html
https://dev.mysql.com/doc/refman/9.5/en/ldap-pluggable-authentication.html

Kerberos Authentication

I i bsasl 2- nodul es- gssapi - m t for installations that use Debian packages.
These SASL packages provide the support required to use the SCRAM-SHA-256
and GSSAPI/Kerberos authentication methods for LDAP.

If Connector/C++ was installed from a compressed t ar file or Zip archive, the application program will
need to set the OPT_PLUG N_DI R connection option to the appropriate directory so that the bundled plugin
library can be found. (Alternatively, copy the required plugin library to the default directory expected by the
client library.)

For example:

sql : : Connect Opti onsMap connecti on_properti es;

/1 To use sinple LDAP authentication ...

connecti on_properties["user Nane"] "sinpl e_| dap_user _nane";

connecti on_properties["password"] "si npl e_| dap_passwor d";
connecti on_properties[OPT_ENABLE CLEARTEXT_PLUG N] =t r ue;

/] To use SASL LDAP aut hentication using SCRAM SHA-1 ...

connecti on_properties["user Nane"]
connecti on_properties["password"]

"sasl _| dap_user _nane";
"sasl _| dap_scram password";

/'l Needed if Connector/Ct++ was installed fromtar file or Zip archive ...
connection_properties[OPT_PLUG N.DIR] = "${I NSTALL_DI R}/ 1i b{64}/pl ugi n";

auto *driver = get_driver_instance();
auto *con = driver->connect (connection_properties);

/] Execute statenents ...

con->cl ose();

Kerberos Authentication

Kerberos authentication enables Connector/C++ application programs to establish connections for
accounts that use the aut hent i cati on_ker ber os server-side authentication plugin, provided that the
correct Kerberos tickets are available or can be obtained from Kerberos. This capability is available on
client hosts running Linux (starting with 8.0.26).

On Windows (starting with 8.0.32), the OPT_AUTHENTI CATI ON_KERBEROS CLI ENT_MODE connection
option can be set to either SSPI (default) or GSSAPI . The option permits choosing between SSPI and
GSSAPI at runtime for the aut hent i cati on_ker beros_cl i ent authentication plugin on Windows.
Connector/C++ implements GSSAPI mode through the MIT kerberos library and this mode is compatible
with the Java SE security tools (for example, ki i st and ki ni t commands) on Windows. In this mode, the
ticket search on Windows hosts is restricted to the MIT Kerberos cache only. If the cache has no ticket, the
connection fails even if the Windows ticket is valid

Previously, Connector/C++ supported Kerberos authentication through the Windows SSPI Kerberos library
only (starting with 8.0.27). SSPI is not capable of acquiring cached credentials that were generated using
the ki ni t command. In SSPI mode, the Windows single sign-on ticket is used for authentication if the
client user provides no password and the authentication method considers the Windows ticket exclusively.
If the ticket is missing or invalid, the connection fails even if the Kerberos cache contains a valid ticket. For
more information, see Commands for Windows Clients in SSPI Mode.

It is possible to connect to Kerberos-authenticated accounts without giving a user name under these
conditions:

38

https://dev.mysql.com/doc/refman/9.5/en/kerberos-pluggable-authentication.html#kerberos-usage-win-sspi-client-commands

OpenlD Connect Authentication

e The user has a Kerberos principal name assigned, a MySQL Kerberos account for that principal name
exists, and the user has the required tickets.

» The default authentication method must be set to the aut henti cati on_ker beros_cl i ent client-
side authentication plugin using the OPT_DEFAULT_AUTH connection option.

It is possible to connect without giving a password, provided that the user has the required tickets in the
Kerberos cache on Linux or the MIT Kerberos cache on Windows (for example, created by ki ni t or a
similar command).

Note

The SSPI Kerberos library is not compatible with Java SE security
tools. To use the ki ni t command, the client application must set the
OPT_AUTHENTI CATI ON_KERBERGCS CLI ENT_MODE connection option to GSSAPI .

If the required tickets are not present in the Kerberos cache (or the MIT Kerberos cache) and a password
was given, Connector/C++ obtains the tickets from Kerberos using that password. If the required tickets
are found in the cache, any password given is ignored and the connection might succeed even if the
password is incorrect.

On client hosts running Windows, you can override the default location of the MIT Kerberos configuration
file by setting the KRB5_ _CONFI G environment variable and the default MIT Kerberos credential cache
name with the KRB5CCNAME environment variable (for example, KRB5CCNAVE=DI R: / nydi r /).

For details about using the MIT Kerberos configuration and cache, see:
» KRB5_CONFI G https://web.mit.edu/kerberos/krb5-devel/doc/admin/conf_files/krb5_conf.html
» KRB5CCNANME: https://web.mit.edu/kerberos/krb5-1.12/doc/basic/ccache_def.html

For more information about Kerberos authentication, see Kerberos Pluggable Authentication.

OpenlID Connect Authentication

OpenlID Connect is supported by leveraging the aut henti cati on_openi d_connect cli ent client-
side authentication plugin. OpenlID Connect functionality is supported by MySQL Enterprise Edition Server
9.1.0 and later.

The required OPT_OPENI D_TOKEN_FI LE connection option defines a path to a file containing the JWT
formatted identity token. TLS, socket, and shared memory connection methods are supported.

Support was added in Connector/C++ 9.1.0.

OCI Authentication

OCI authentication enables Connector/C++ application programs to make connections without passwords
for accounts that use the aut hent i cat i on_oci server-side authentication plugin, provided that

the correct configuration entries are available to map to one unique user in a specific Oracle Cloud
Infrastructure tenancy. This supported was added in the Connector/C++ 8.0.27 release.

To ensure correct account mapping, the client-side Oracle Cloud Infrastructure configuration must contain
a fingerprint of the API key to use for authentication (f i nger pri nt entry) and the location of a PEM file
with the private part of the APl key (key_fi | e entry). Both entries should be specified in the [DEFAULT]
profile of the configuration file. In Connector/C++ 8.0.33, the OPT_OCI _CLI ENT_CONFI G_PROFI LE
connection option permits selecting a profile in the configuration file to use for authentication. By default,
the value of OPT_OCI _CLI ENT_CONFI G_PROFI LE is the [DEFAULT] profile.

39

https://web.mit.edu/kerberos/krb5-devel/doc/admin/conf_files/krb5_conf.html
https://web.mit.edu/kerberos/krb5-1.12/doc/basic/ccache_def.html
https://dev.mysql.com/doc/refman/9.5/en/kerberos-pluggable-authentication.html

Multifactor Authentication

Unless an alternative path to the configuration file is specified with the OPT_OCI _CONFI G FI LE
connection option, the following default locations are used:

e ~/.oci/configon Linux or Posix host types
* %1OVEDRI VEY®4HOVEPATHY . oci / confi g on Windows host types

If the MySQL user name is not provided as a connection option, then the operating system user name is
substituted. Specifically, if the private key and correct Oracle Cloud Infrastructure configuration are present
on the client side, then a connection can be made without giving any options.

To support Oracle Cloud Infrastructure ephemeral key-based authentication, Connector/C++ 8.0.33 (and
later) obtains the location of the token file from the security_t oken_fi | e entry. For example:

[DEFAULT]

fingerprint=59:8a:0b[...]

key fil e=~/.oci/sessi ons/ DEFAULT/ oci _api _key. pem
t enancy=oci d1. tenancy.ocl.[...]

regi on=us- ashburn-1

security_token_fil e=~/.oci/sessions/ DEFAULT/t oken

Connector/C++ sends to the server a JSON attribute (hamed " t oken") with the value extracted from the
security_token_fil e field. If the target file referenced in the profile does not exist, or if the file exceeds
a specified maximum value, then Connector/C++ terminates the action and returns an exception with the
cause.

Connector/C++ sends an empty token value in the JSON payload if:
e The security-token file is empty.

e The configuration option security_token fil e is found but the value in the configuration file is
empty.

In all other cases, Connector/C++ adds the content of the security-token file intact to the JSON document.

Multifactor Authentication

Starting with Connector/C++ 8.0.28, applications can establish connections using multifactor
authentication, such that up to three passwords can be specified at connect time. The OPT_PASSWORDL1,
OPT_PASSWORD2, and OPT_PASSWORD3 connection options are available for specifying the first, second,
and third multifactor authentication passwords, respectively.

OPT_PASSWORDL is an alias for the existing OPT_PASSWORD option; if both are provided, OPT_PASSWORD
is ignored. For more information about this authentication option, see Multifactor Authentication.

WebAuthn (FIDO) Authentication

WebAuthn authentication to MySQL Server supports using devices such as web browsers, smart cards,
security keys, and biometric readers. WebAuthn authentication supports both the FIDO and FIDO2
standards. To ensure client applications using the legacy JBDC API are notified when a user is expected
to interact with the FIDO/FIDO2 device, Connector/C++ 8.2.0 (and later) adds a callback argument
named WWebAut hn_Cal | back to the set Cal | back() method in the MySQL_Dri ver class. The
WebAut hn_Cal | back class has a callback method named Act i onRequest ed() .

cl ass WebAut hn_Cal | back

{

publi c:

WebAut hn_Cal | back(std: : functi on<voi d(SQLStri ng)>);

40

https://dev.mysql.com/doc/refman/9.5/en/multifactor-authentication.html

OpenTelemetry Tracing Support

/**
* Qverride this nessage to recei ve WebAut hn Acti on Requests
*
/
virtual void ActionRequested(sql::SQString nmsg);
ik

Set the WebAut hn_Cal | back callback explicitly for authentication to accounts that use WebAuthn
authentication.

Note

On Windows, the client application must run as administrator. The is a requirement
of the fi do2. dl | library, which is used by the aut hent i cati on_webaut hn

plugin.
A client application has two options for obtaining a callback from the connector:

» By passing a function or lambda to \ebAut hn_Cal | back.

driver->set Cal | Back(WebAut hn_Cal | back([] (SQ.String msg) {...}));

e By implementing the virtual method Act i onRequest ed.
cl ass MyW ndow : public WebAut hn_Cal | back

{
voi d ActionRequested(sql::SQString nsg) override;
i

M/W ndow wi ndow;
driver->set Cal | Back(w ndow) ;

Setting a new callback always removes the previous callback. To disable the active callback and restore
the default behavior, pass nul | pt r as a function callback. Example:

driver->set Cal | Back(WebAut hn_Cal | back(nul | ptr));
For more information about WebAuthn authentication, see WebAuthn Pluggable Authentication.
Note

Connector/C++ 8.0.29 added aut hent i cati on_fi do support, deprecated
it in 8.2.0 in favor of aut hent i cati on_webaut hn, and removed

aut henti cation_fi do supportin 8.4.0. For backward-compatibility,

the Fi do_Cal | back callback argument remains but it invokes WebAuthn
authentication.

5.4 OpenTelemetry Tracing Support

For applications that use the legacy JDBC API (that is, not X DevAPI or X DevAPI for C) on Linux systems

and use OpenTelemetry (OTel) instrumentation, the connector adds query and connection spans to
the trace generated by application code and forwards the current OpenTelemetry context to the server.
OpenTelemetry tracing was introduced in the Connector/C++ 8.1.0 release.

Note

OTel context forwarding works only with MySQL Enterprise Edition, a commercial
product. To learn more about commercial products, see https://www.mysqgl.com/
products/.

41

https://dev.mysql.com/doc/refman/9.5/en/webauthn-pluggable-authentication.html
https://www.mysql.com/products/
https://www.mysql.com/products/

Enabling and Disabling Tracing

Enabling and Disabling Tracing

By default, the connector generates spans only when an instrumented application links with the required
OpenTelemetry SDK libraries and configures the trace exporter to send trace data to some destination. If
the application code does not use instrumentation, then the legacy connector does not use it either.

Connector/C++ supports a connection property option, OPT_OPENTELENMETRY, which has these values:

e OTEL_DI SABLED: The connector does not create OpenTelemetry spans or forward the OpenTelemetry
context to the server.

» OTEL_PREFERRED: Default. Use instrumentation in the connection if the required OpenTelemetry
instrumentation is available. Otherwise, permit the connection to operate without any OpenTelemetry
instrumentation.

The OPT_OPENTELEMETRY option also accepts a Boolean value in which f al se corresponds to
OTEL_DI SABLED. f al se is the only accepted Boolean value for this option; setting it to t r ue has no
meaning and emits an error.

For example, an application can specify OPT_OPENTELEMETRY in either form using the connect () syntax
that takes an option map argument:

connecti on_properties["OPT_OPENTELEMETRY"]
connecti on_properties["OPT_OPENTELEMETRY"]

fal se;
OTEL_DI SABLED;

When you build code that links to Connector/C++ and uses OTel instrumentation, the additional spans
generated by the connector appear in the traces generated by your code. Spans generated by the
connector are sent to the same destination (trace exporter) where other spans generated by the user code
are sent as configured by user code. It is not possible to send spans generated by the connector to any
other destination.

This implementation is distinct from the implementation provided through the MySQL client library (or the
related t el enetry_cl i ent client-side plugin).

42

Chapter 6 Connector/C++ Known Issues

To report bugs, use the MySQL Bug System. See How to Report Bugs or Problems.

For notes detailing the changes in each release of Connector/C++, see MySQL Connector/C++ Release
Notes.

» Generally speaking, C++ library binaries are less portable than C library binaries. Issues can be caused
by name mangling, different Standard Template Library (STL) versions, and using different compilers
and linkers for linking against the libraries than were used for building the library itself.

Even a small change in the compiler version can cause problems. If you obtain error messages that
you suspect are related to binary incompatibilities, build Connector/C++ from source, using the same
compiler and linker that you use to build and link your application.

Due to variations between Linux distributions, compiler versions, linker versions, and STL versions, it

is not possible to provide binaries for every possible configuration. However, Connector/C++ binary
distributions include an | NFO_BI Nfile that describes the environment and configuration options used

to build the binary versions of the connector libraries. Binary distributions also include an | NFO_SRCfile
that provides information about the product version and the source repository from which the distribution
was produced. (Prior to Connector/C++ 8.0.14, look for BUI LDI NFO. t xt rather than | NFO_BI Nand

| NFO_SRC.)

» To avoid potential crashes, the build configuration of Connector/C++ should match the build
configuration of the application using it. For example, do not use a release build of Connector/C++ with a
debug build of the client application.

43

https://dev.mysql.com/doc/refman/9.5/en/bug-reports.html
https://dev.mysql.com/doc/relnotes/connector-cpp/en/
https://dev.mysql.com/doc/relnotes/connector-cpp/en/

44

Chapter 7 Connector/C++ Support

For general discussion of Connector/C++, please use the C/C++ community forum.

To report bugs, use the MySQL Bug System. See How to Report Bugs or Problems.

For notes detailing the changes in each release of Connector/C++, see MySQL Connector/C++ Release

Notes.

For Licensing questions, and to purchase MySQL Products and Services, please see http://
www.mysgl.com/buy-mysql/.

45

http://forums.mysql.com/list.php?167
https://dev.mysql.com/doc/refman/9.5/en/bug-reports.html
https://dev.mysql.com/doc/relnotes/connector-cpp/en/
https://dev.mysql.com/doc/relnotes/connector-cpp/en/
http://www.mysql.com/buy-mysql/
http://www.mysql.com/buy-mysql/

46

Index

B

BUILD_STATIC option
CMake, 18
BUNDLE_DEPENDENCIES option
CMake, 18

C

CMake
BUILD_STATIC option, 18
BUNDLE_DEPENDENCIES option, 18
CMAKE_BUILD_TYPE option, 18
CMAKE_INSTALL_DOCDIR option, 18
CMAKE_INSTALL_INCLUDEDIR option, 18
CMAKE_INSTALL_LIBDIR option, 18
CMAKE_INSTALL_PREFIX option, 18
MAINTAINER_MODE option, 18
MYSQLCLIENT_STATIC_BINDING option, 18
MYSQLCLIENT_STATIC_LINKING option, 19
MYSQL_CONFIG_EXECUTABLE option, 19
MYSQL_DIR option, 19
STATIC_MSVCRT option, 19
WITH_BOOST option, 19
WITH_DOC option, 19
WITH_JDBC option, 20
WITH_LZ4 option, 20
WITH_MYSQL option, 20
WITH_PROTOBUF option, 20
WITH_SSL option, 21
WITH_ZLIB option, 22
WITH_ZSTD option, 22
CMAKE_BUILD_TYPE option
CMake, 18
CMAKE_INSTALL_DOCDIR option
CMake, 18
CMAKE_INSTALL_INCLUDEDIR option
CMake, 18
CMAKE_INSTALL_LIBDIR option
CMake, 18
CMAKE_INSTALL_PREFIX option
CMake, 18
Connector/C++, 1

M

MAINTAINER_MODE option
CMake, 18
MYSQLCLIENT_STATIC_BINDING option
CMake, 18
MYSQLCLIENT_STATIC_LINKING option
CMake, 19
mysqlcppconn-static.lib, 31

mysqlcppconn.dil, 31
MYSQL_CONCPP_VERSION_NUMBER
version macros, 25
MYSQL_CONFIG_EXECUTABLE option
CMake, 19
MYSQL_DIR option
CMake, 19

S

STATIC_MSVCRT option
CMake, 19

Vv

version macros
MYSQL_CONCPP_VERSION_MAJOR, 25
MYSQL_CONCPP_VERSION_MICRO, 25
MYSQL_CONCPP_VERSION_MINOR, 25
MYSQL_CONCPP_VERSION_NUMBER, 25

W

WITH_BOOST option
CMake, 19
WITH_DOC option
CMake, 19
WITH_JDBC option
CMake, 20
WITH_LZ4 option
CMake, 20
WITH_MYSQL option
CMake, 20
WITH_PROTOBUF option
CMake, 20
WITH_SSL option
CMake, 21
WITH_ZLIB option
CMake, 22
WITH_ZSTD option
CMake, 22

47

48

	MySQL Connector/C++ 9.5 Developer Guide
	Table of Contents
	Preface and Legal Notices
	Chapter 1 Introduction to Connector/C++
	Chapter 2 Obtaining Connector/C++
	Chapter 3 Installing Connector/C++ from a Binary Distribution
	Chapter 4 Installing Connector/C++ from Source
	4.1 Source Installation System Prerequisites
	4.2 Obtaining and Unpacking a Connector/C++ Source Distribution
	4.3 Installing Connector/C++ from Source
	4.4 Connector/C++ Source-Configuration Options

	Chapter 5 Building Connector/C++ Applications
	5.1 Building Connector/C++ Applications: General Considerations
	5.2 Building Connector/C++ Applications: Platform-Specific Considerations
	5.2.1 Windows Notes
	5.2.2 macOS Notes
	5.2.3 Generic Linux Notes

	5.3 Authentication Support
	5.4 OpenTelemetry Tracing Support

	Chapter 6 Connector/C++ Known Issues
	Chapter 7 Connector/C++ Support
	Index

