MySQL 9.6 C API Developer Guide

Abstract
This is the MySQL 9.6 C API Developer Guide. This document accompanies MySQL 9.6 Reference Manual.

The C API provides low-level access to the MySQL client/server protocol and enables C programs to access
database contents. The C API code is distributed with MySQL and implemented in the | i bnysql cl i ent library.

For legal information, see the Legal Notices.

For help with using MySQL, please visit the MySQL Forums, where you can discuss your issues with other
MySQL users.

Document generated on: 2026-01-20 (revision: 84288)

https://dev.mysql.com/doc/refman/9.6/en/
http://forums.mysql.com

Table of Contents

Preface and Legal NOUICESccouuuiiiiiiie ettt e e et ettt e e e e e e e eebanaaeees vii
1 THE MYSQL € AP i e ettt e et ettt e e et et eeeeba s 1
2 MySQL C API IMPIEMENTALIONSueiiieieieii ettt ettt e et e e e e e ene s 3
3 Writing C API-Based Client APPlICALIONSuuuiiiiiiieiiii ettt 5
3.1 Example C API ClIeNt PrOQIaIMSccouuiiiiiiiiieeeiii ettt ettt e eeani e eenanns 5

3.2 Building C API CHENt PrOgramSeiiiiiieiiiiiie ettt ettt e et e e e e eeens 5

3.3 Building C API Client Programs Using pKg-CONIgcoevuiiiiiiiiieiiiieee e 8

3.4 Writing C APl Threaded Client Programsco.. oo e e 9

3.5 RUNNING C API ClieNt PrOQIramScoouuieiiiiiieieiii ettt ettt e e 10

3.6 USING C API FEALUIES ...ttt et e et e e e e et e e et e e et e e e e eennns 10
3.6.1 Support for Encrypted CONNECTIONSuuiiiiiiiieiiiii et 11

3.6.2 SSL SESSION REUSE . .cetiiiiiiit ettt 12

3.6.3 Multiple Statement EXECULION SUPPOITccvevunieiiiiiieiiiiie e 13

3.6.4 Prepared Statement Handling of Date and Time Valuesccccoovveiiiinieeinnnnnn. 15

3.6.5 Prepared CALL Statement SUPPOITviiiiiieeiiii e 16

3.6.6 Prepared Statement ProblIems ... 20

3.6.7 Optional Result Set Metadatacccuuiiiiiiiiiiiei e 20

3.6.8 Automatic Reconnection CONLroloveiiiiiiiiiii e 21

3.6.9 NULL mysqgl_store_result() Return After mysql_query() SUCCESScccvvnveerrrnnnnn. 22

3.6.10 Results Available from @ QUETYiiiiiiiieiiii e 22

3.6.11 Obtaining the Unique ID for the Last Inserted ROWccoveviiiiiiiiiiiinieieiiieees 22

3.6.12 Obtaining the Server Version and Client Library VErsioncccoceveevevineeeennnnnn. 23

4 C APl FUNCHON RETEIENCE ...t e e 25
5 C API BASIC INTEITACE ... ittt ettt e e et e e 31
5.1 Overview of the C API BasiC INtEIfacCeooeiiiiiiiiii e 32

5.2 C API BaSIC Data SIMUCIUIEScccuuuiiiiiiiei ittt 34

5.3 C API Basic FUNCHON RETEIENCEcoouiiiiiiiiii e 39

5.4 C API Basic FUNCLION DESCIPLIONScccuuiiiiiiiiiiee ettt ettt e e e e e 43
5.4.1 mysql_affeCted_FOWS() . ..u it 43

5.4.2 MySql_autOCOMIMIL() ..oeeniiinieii et e e e e e e e e e e eannas 44

5.4.3 mysql_bind_Parami()coouuiiiii e 44

5.4.4 MySOI_CRaNGE _USEI() ... eeieiiieeiiiii ettt e e 46

5.4.5 mysql_character_Set_NameE()c.u i a7

5.4.6 MYSHI_CIOSE() - nteeniieiieii ettt a7

5.4.7 MYSOI_COMMIL() evernneiiiit ettt ettt e e et e e e e e ena s 48

5.4.8 MYSOI_CONNECT() .. eevruieiiiiii ettt ettt ettt ettt ettt e e e e eane e eeneas 48

5.4.9 mysql_create_db()cuuuiiiiiiii 48

5.4.10 MySql_data_SEEK() ...vuuiiiieiiieiii e 49

o B 01V To | e (=] o 18 o | USRS 49

5.4.12 MYSOl_Arop_AD() - eeeneeeee e 50

5.4.13 mysqgl_dump_debug_infO()coouuuieiiiiei e 50

o 01V To | I T) I PPN 51

5.4.15 MYSOI_EITNO() +rtueiiiii ettt et e 52

5.4.16 MYSOI_BITON() oirruieiiiii ettt et 52

5.4.17 mMySQl_eSCaPE_SIING() - eevnneeeneeiteieiee et e e e aaans 53

5.4.18 mysql_fetCh_field()couuiii e 53

5.4.19 mysql_fetch_field_dir€Ct()uieiimmiieiii e 54

5.4.20 mysql_fetCh_fieldS()cuvuiiiiiie e 54

5.4.21 mysqgl_fetch_lengths()ooooieii 55

5.4.22 MySql_fEICh_TOW()uueiiiii e 56

5.4.23 MySQI_field_COUNT() ...uniiieiieeiii et 57

5.4.24 MySql_field_SEEK() ...eerrnieiiiii e 58

5.4.25 MySQI_fIeld_telI() . ..n e 58

5.4.26 MySQI_free_reSUI()ooeeeeiieei e 58

5.4.27 mysqgl_free_ssl_sSession_data()oveeeuiiiiiiiiee e 59

MySQL 9.6 C API Developer Guide

5.4.28 mysqgl_get_character_set iNfo()cooveuiiiiiiiiiii e 59
5.4.29 mysql_get Client iNfO()oeeeeiiiiiei e 60
5.4.30 mysql_get _Client_VErsion()ccueieunieiie e 60
5.4.31 mysqgl_get hoSt iNfO() ..uoivuniiiiiii e 60
5.4.32 MySOl_ gt OPLION() wvuniirnieiii et 61
5.4.33 mysqgl_get proto iNfO() ..oveuieieiei i 62
5.4.34 mysql_get _Server_iNfO()ooeuieiiiiii e 62
5.4.35 MySQl_get _SEIVEr_VEISION() ...uueeunieiiiieiiieeie et e e e e e e e e e e e e e e e e e e eaens 63
5.4.36 Mysqgl_get SSI_CIPNEI() ..vuuiiieiii i 63
5.4.37 mysqgl_get _ssl_SesSioN_data()ccceuiiiiiiiiiiei 63
5.4.38 mysql_get SS|_SeSSION_TeUSEA() ...cvvvueierniiiii e 64
5.4.39 MYSOl_NEX_SING() oevvneiinieiii e e 64
5.4.40 MYSAL INFO() 1orrrniiiiiiii e 65
Lo 5 401V | L1 P 66
5.4.42 MYSAl_INSEIT IA() 1ovvvneirii i e e 66
o0 o B 401V | 1 68
5.4.44 mysql_library_ €nd()cooviiiiii i 69
5.4.45 mysql_liBrary INit()ooueioriiiei e 69
5.4.46 MYSOl_LIST ADS() ovvvneiiiiiii e 70
5.4.47 MySOl_lISt_fIEldS() .vuvvvnieiii e 70
5.4.48 MYSQl_lISt_ PrOCESSES() ovvuueiineiiiieiiii ettt e e 72
5.4.49 mysql_liSt tableS() ...vuiiiiiiiii e 72
5.4.50 MYySQl_MOIE_TESUIS() «evuniirreiiieeii e e e e e e e e e e eaes 73
5.4.51 MySOl_NEXE FESUI() «.evvueeiii e e e 73
5.4.52 mysgl_nUM_FIEIAS() ..evuiiiiiii e 75
5.4.53 MYSOlL NUM_TOWS() «.eetuiiinieiiiee e et e e e e e e e e e e e e e e e e e e et e e e e e eanaas 76
5.4.54 MYSOlL_OPLONS() covvneiinieiii et e 76
5.4.55 MYSOl_OPLONSA() 1ovvuniiiiieiiiee e 84
5.4.56 MYSHl _PING() oevnneiiiieiiiee ettt e e e 86
S A 101 V£To | e (U= Y/ 86
5.4.58 Mysqgl_real CONNECL() .. covvniiiiiiii i e e e 87
5.4.59 mysqgl_real_connect dNS_SIV() ...ccuuiiiiiieiiiieii e 91
5.4.60 mysql_real _eScape _StNG() «.uoevruieiriiiii e 92
5.4.61 mysql_real_escape_String_qUOLE()uviiuniiiiieiiie e 94
5.4.62 MYSAl_real _QUEIY() oevuneeiiie e 95
5.4.63 MYSOl reffE@SN() ..oevniii i 96
5.4.64 MYSAl_FEI0AA() +vuuevvreiii et 97
5.4.65 mMysql_reset_CONNECHON() . .ivvuiiiiieii e e e e e e e 98
5.4.66 mysql_reset_server_public_KeY()coovuuiiiiiiiii 98
5.4.67 mysql_result_metadatal)ooeviiieiiii e 99
5.4.68 MYSAl_TOlDACK() ..nuceeniiii e 99
5.4.69 MYSOl TOW_SEEK() +evuneeeniiiiiieiie ettt e e e e e e e e e e e e e e e aaas 99
5.4.70 MYSOlL_TOW_TEII() wvvneieneiii e e e 100
5.4.71 mysql_Select db() ..uuoeeeniiii i 100
5.4.72 MYySQl_SEIVEI_ENA() ..eevniiiiiieii i 101
5.4.73 MYSOl_SEIVEL INMI() . .evvtieiieeii i e e e e e e e e e e e e e 101
5.4.74 mysqgl_session_track _get first()covevuiiiiiiiiiiii e 102
5.4.75 mysqgl_session_track get NeXI()ccueriiiiiiiiieiie e 107
5.4.76 mysql_set _character _SE()ooveirieiiiieiii e 107
5.4.77 mysql_set_local_infile_default()c.coiiriiiiiii 108
5.4.78 mysql_set_local_infile_handler()ccccooviiiriiiii 108
5.4.79 mysql_set _Server_OptioN()cc.ueieiunieiiiei e 109
5.4.80 MySql_SHULAOWN() .vuiieeniii e e e e e e 110
5.4.81 MYSOl_SOISTAE() +vuuevvneiiiieiii et 111
5.4.82 MYSOL SSI SEI() ivvniiiiiiiiii e 112
oS3 T 401V To |) = L S 113
5.4.84 MySQl_StOre FESUIL() «.vuueeeeeiiiieiiie e e e e e e e e e e e e e e e e eaes 113
5.4.85 MySql_thread Qd()oeveiiiiiei e 115

MySQL 9.6 C API Developer Guide

5.4.86 MYSOl_USE_TESUI() «.evvvniiiiiiiii it e e e e e e e e e e e e eaaeees 115
5.4.87 mysql_Warning_COUNT()uueiiiieiiiieii e e e e e e e e e e e e e e e e aan s 116

6 C API Prepared Statement INtEIrfaCeuviiiiiiiiii e 117
6.1 Overview of the C API Prepared Statement Interfacecccoveviiiiiiiiiii i 118
6.2 C API Prepared Statement Data StrUCLUIESuuiiiiiieiiieiii e e e eeaaes 119
6.2.1 C API Prepared Statement TYpe COUESevviiiiiiiieiiiicii e e e e e 123
6.2.2 C API Prepared Statement Type CONVEISIONSuveivuieiinieiiieeiiieeiiieeeineeeaneenns 125

6.3 C API Prepared Statement Function REeferenceccoeeiviiiiiiiiii i, 126
6.4 C API Prepared Statement Function DeSCHPtioNScoovvvieiiiiiiiiiiii e e 127
6.4.1 mysql_stmt_affected _rOWS()ieiiieiii e 128
6.4.2 Mysql_StME_attr EL() «oevvniiii e 128
6.4.3 MYSOl_SIME_ALr SEL() vovuiieiieii et 128
6.4.4 mysql_stmt_bind_named_param()cccoieiiiiiiiiiie 129
6.4.5 mysqgl_stmt_bind_parami()ccouiiiiiiiii 132
6.4.6 mysgl_sStMt_biNd_reSUIt()ovieiii e 133
6.4.7 MYSOl_SIME CIOSE() +unvvvniiiii e e e e e e e 134
6.4.8 Mysqgl_sStMt_data SEEK() ...c.uueiiiiiiii e 134
6.4.9 MYSOl_SIME EITNO() +nniiiniiii et e e e e e et e e e e e eaaen 135
6.4.10 MYSOl_SIME BITOI() covuneiiei e e e e e e e e e e e anas 135
6.4.11 MySQgl_SIME EXECULE() orvvuieii et e e e e e e e aaas 136
6.4.12 mMysgl_SIME FEICN() ..ovvvniei e 139
6.4.13 mysql_stmt_fetch_ColuMN()coovniiiiei e 144
6.4.14 mysql_stmt_field _COUNL()uoeerneiei e e e 145
6.4.15 mysql_Stmt_free_reSUIt()oeerniii e 145
6.4.16 MySOl_ SIME INIT() oounereeiieii e e e 145
6.4.17 mysql_StMt INSErt_id() .oovueeinieiiiee e 145
6.4.18 mysqgl_Stmt_NeXt reSUI() ...ccvniiiiei e 146
6.4.19 MySqgl_SIME NUM_FOWS() «.ivvniiiieii e e e e e e e e e e aaaas 147
6.4.20 mysql_sStmt_param_COUNL() ...c.uuiiiiieiii e e e e e e e e 147
6.4.21 mysqgl_stmt_param_metadata()cocoeieiiiiiiiiie e 148
6.4.22 MySQl_SIME PrEPArE() «ovuneeenieiii et e e e 148
6.4.23 MYSOl SIME TESEL() 1vuniiinieiiii e e e e e 149
6.4.24 mysql_stmt_result._metadatal)ccoevviieiiiiiii 149
6.4.25 MySQl_SIME_TOW_SEEK() «rvvneieniiiii et e e e e e e e e 150
6.4.26 MySql_StME_TOW_tEII() covnniirnieeii e 151
6.4.27 mysqgl_stmt_send_1ong_data()ccoeevuieiiiiiii 151
6.4.28 MySgl_StME_SISIALE() +.vuueveneiiii e 153
6.4.29 mysqgl_StMt_StOre _reSUIL()cvveneieiiei e e 153

7 C API ASYNCHhIronOUS INTEIACEuuiiiiiiiii i e e e e e e e e e aens 155
7.1 Overview of the C APl Asynchronous Interfaceccoovviiiiiiiiiii i 155
7.2 C API Asynchronous Interface Data StrUCIUIEScoeuviiiiiiiiiieeii e 160
7.3 C API Asynchronous FUnCtion REfEIENCEcccuuiiiiiiiii e 161
7.4 C APl Asynchronous FUunction DEeSCHPLIONSiiiiiiiiiiieiiiecie e ee e e e 161
7.4.1 mysql_fetch_row_nonblocking()covveveioiii e 161
7.4.2 mysqgl_free_result_nonblocking()c.oveeeiiiiic 162
7.4.3 mysqgl_get_connect_nonblocking _Stage()c.oeevrieiiiiieiii e 163
7.4.4 mysql_next_result_nonbIOCKING() «...cvvneiiiiiiie e 163
7.4.5 mysqgl_real_connect_nonblocKiNg()cuoeverieiiieii e 163
7.4.6 mysqgl_real_query_nonblocking()ccuveeeieiiiiei e 164
7.4.7 mysqgl_reset_connection_nonblocking()coceueeiiiiiiiii i 165
7.4.8 mysqgl_store_result_nonblockiNg()oovuieiiiiiiie e 165

8 C API Thread INTEITACEouuiiiieii et e et e e et e e e et eeeeaens 167
8.1 C API Thread FUNCtion REfErENCEiiiiiiiiieiii e 167
8.2 C API Threaded FUNCLioN DESCIIPLIONS .. .cuuuiiiieeiiieeii e e e e e e eaaas 167
8.2.1 mysql_thread eNd() ...ccoueiiiiiii i 167
8.2.2 mysql_thread INIt()oieiiieiiiir e 168
8.2.3 mysql_thread _Safe()coeuiiiiiiii i 168

9 C API Client PIUgIN INtEITACEciiieieii i e e e e e e e e eees 169

MySQL 9.6 C API Developer Guide

9.1 C API Plugin FUNCLiON REFEIENCEuiiiiiieii e e e s 169

9.2 C API Plugin FUNCtioN DESCIIPLIONSiiiiiiiiieiii e e e e e e e e e 169
9.2.1 mysql_client_find_pluging)ccoeviiii 169

9.2.2 mysqgl_client_register_PIUGIN() «....covuereiieii e e 170

9.2.3 mysql_plugin_get_ OptioN() ...oeeuiii i 171

9.2.4 mysql_load _PIUGIN() «.eueeenieiiieee e e 171

9.2.5 mysql_load PIUGIN_ V() c.uueieeeeieei e e 172

9.2.6 MySl_PIUGIN_OPLIONS() +evnrerrnieiiiieiie e e e e e e e e e e e e e 172

10 C API Binary LOg INtEITACEcvii it e e e e e e eeen 175
10.1 Overview of the C API Binary Log Interfaceccccviiiiiiiiiiiiis e, 175

10.2 C API Binary Log Data StTUCIUMESc.uuiiiiiieii e e e e et e e e e e e eens 176

10.3 C API Binary Log Function REfEIrENCEccuuiiiiiiiiiii e 177

10.4 C API Binary Log FUNction DEeSCHPLIONSccuuiiiiiieiie e e e e e e e 178
10.4.1 mysql_biNlog _ClOSE() ..ucvvvnieiiieii e 178

10.4.2 mysql_binlog fEtCh()ooiiii i 178

10.4.3 mysqgl_binlog OPEN() cevniiei i 179

0 = ST 181

Vi

Preface and Legal Notices

This is the MySQL 9.6 C API Developer Guide. This document accompanies MySQL 9.6 Reference
Manual.

The C API provides low-level access to the MySQL client/server protocol and enables C programs
to access database contents. The C API code is distributed with MySQL and implemented in the
i brrysqgl cli ent library.

Legal Notices

Copyright © 1997, 2026, Oracle and/or its affiliates.
License Restrictions

This software and related documentation are provided under a license agreement containing
restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly
permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,
broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any
form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless
required by law for interoperability, is prohibited.

Warranty Disclaimer

The information contained herein is subject to change without notice and is not warranted to be error-
free. If you find any errors, please report them to us in writing.

Restricted Rights Notice

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or
related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the
U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications
of such programs) and Oracle computer documentation or other Oracle data delivered to or accessed
by U.S. Government end users are "commercial computer software," "commercial computer software
documentation,” or "limited rights data" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, the use, reproduction, duplication, release, display,
disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle programs
(including any operating system, integrated software, any programs embedded, installed, or activated
on delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/
or iii) other Oracle data, is subject to the rights and limitations specified in the license contained in

the applicable contract. The terms governing the U.S. Government's use of Oracle cloud services

are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

Hazardous Applications Notice

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Trademark Notice

Oracle, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other
names may be trademarks of their respective owners.

Vii

https://dev.mysql.com/doc/refman/9.6/en/
https://dev.mysql.com/doc/refman/9.6/en/

Documentation Accessibility

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC
trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. AMD, Epyc, and the AMD logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

Third-Party Content, Products, and Services Disclaimer

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible

for and expressly disclaim all warranties of any kind with respect to third-party content, products,

and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to
your access to or use of third-party content, products, or services, except as set forth in an applicable
agreement between you and Oracle.

Use of This Documentation

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the
following terms:

You may create a printed copy of this documentation solely for your own personal use. Conversion

to other formats is allowed as long as the actual content is not altered or edited in any way. You shall
not publish or distribute this documentation in any form or on any media, except if you distribute the
documentation in a manner similar to how Oracle disseminates it (that is, electronically for download
on a Web site with the software) or on a CD-ROM or similar medium, provided however that the
documentation is disseminated together with the software on the same medium. Any other use, such
as any dissemination of printed copies or use of this documentation, in whole or in part, in another
publication, requires the prior written consent from an authorized representative of Oracle. Oracle and/
or its affiliates reserve any and all rights to this documentation not expressly granted above.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program
website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support for Accessibility

Oracle customers that have purchased support have access to electronic support through My Oracle
Support. For information, visit

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit ht t p: / / www. or acl e. cont pl s/

t opi ¢/ | ookup?ct x=acc& d=tr s if you are hearing impaired.

viii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Chapter 1 The MySQL C API

The C API provides low-level access to the MySQL client/server protocol and enables C programs
to access database contents. The C API code is distributed with MySQL and implemented in the
I'i bnysqgl client library. See Chapter 2, MySQL C API Implementations.

Most other client APIs use the | i brrysql cl i ent library to communicate with the MySQL server.
(Exceptions are Connector/J and Connector/NET.) This means that, for example, you can take
advantage of many of the same environment variables that are used by other client programs because
they are referenced from the library. For a list of these variables, see Overview of MySQL Programs.

For instructions on building client programs using the C API, see Section 3.2, “Building C API Client
Programs”. For programming with threads, see Section 3.4, “Writing C API Threaded Client Programs”.

Note

If, after an upgrade, you experience problems with compiled client programs,
such as Conmands out of sync or unexpected core dumps, the programs
were probably compiled using old header or library files. In this case, check
the date of the nysql . h fileand | i bnysqgl cl i ent . a library used for
compilation to verify that they are from the new MySQL distribution. If not,
recompile the programs with the new headers and libraries. Recompilation
might also be necessary for programs compiled against the shared client
library if the library major version number has changed (for example, from
[ibrysglclient.so.17tolibnysql client. so. 18). For additional
compatibility information, see Section 3.5, “Running C API Client Programs”.

Clients have a maximum communication buffer size. The size of the buffer that is allocated initially
(16KB) is automatically increased up to the maximum size (16MB by default). Because buffer sizes
are increased only as demand warrants, simply increasing the maximum limit does not in itself cause
more resources to be used. This size check is mostly a precaution against erroneous statements and
communication packets.

The communication buffer must be large enough to contain a single SQL statement (for client-to-
server traffic) and one row of returned data (for server-to-client traffic). Each session's communication
buffer is dynamically enlarged to handle any query or row up to the maximum limit. For example, if
you have BLOB values that contain up to 16MB of data, you must have a communication buffer limit
of at least 16MB (in both server and client). The default maximum built into the client library is 1GB,
but the default maximum in the server is 1MB. You can increase this by changing the value of the
max_al | owed packet parameter at server startup. See Configuring the Server.

The MySQL server shrinks each communication buffer to net _buf f er _| engt h bytes after each
query. For clients, the size of the buffer associated with a connection is not decreased until the
connection is closed, at which time client memory is reclaimed.

https://dev.mysql.com/doc/refman/9.6/en/programs-overview.html
https://dev.mysql.com/doc/refman/9.6/en/blob.html
https://dev.mysql.com/doc/refman/9.6/en/server-system-variables.html#sysvar_max_allowed_packet
https://dev.mysql.com/doc/refman/9.6/en/server-configuration.html
https://dev.mysql.com/doc/refman/9.6/en/server-system-variables.html#sysvar_net_buffer_length

Chapter 2 MySQL C API Implementations

The MySQL C APl is a C-based API that client applications written in C can use to communicate with
MySQL Server. Client programs refer to C API header files at compile time and link to a C API library
file, I i brrysql cli ent, at link time.

To obtain the C API header and library files required to build C API client programs, install a MySQL
Server distribution.

You can install a binary distribution that contains the C API files pre-built, or you can use a MySQL
Server source distribution and build the C API files yourself. Building MySQL Server also builds

i bmysgl cli ent; see Installing MySQL from Source. It cannot be built alone, but configuring with the
optional -DWITHOUT_SERVER=0ON CMake option is related.

The names of the library files to use when linking C API client applications depend on the library type
and platform for which a distribution is built:

» On Unix (and Unix-like) systems, the static library is | i bnysqgl cl i ent . a. The dynamic library is
i brmysgl cli ent. soonmost Unix systems and | i brrysql cl i ent. dyl i b on macOS.

e On Windows, the static library is mysql cl i ent. | i b and the dynamic library is | i bnysql . dl | .
Windows distributions also include | i bnysql . | i b, a static import library needed for using the
dynamic library.

Windows distributions also include a set of debug libraries. These have the same names as the
nondebug libraries, but are located in the | i b/ debug library. You must use the debug libraries when
compiling clients built using the debug C runtime.

On Unix, you may also see libraries that include _r in the names. Before MySQL 5.5, these were
built as thread-safe (re-entrant) libraries separately from the non-_r libraries. As of 5.5, both libraries
are the same and the _r names are symbolic links to the corresponding non-_r names. There is

no need to use the _r libraries. For example, if you use nysql _conf i g to obtain linker flags, you
canuse nysqgl _config --1ibs inall cases, even for threaded clients. There is no need to use
mysql _config --libs_r.

https://dev.mysql.com/doc/refman/9.6/en/source-installation.html
https://dev.mysql.com/doc/refman/9.6/en/source-configuration-options.html#option_cmake_without_server

Chapter 3 Writing C API-Based Client Applications

Table of Contents

3.1 Example C API ClI@Nt PrOQraAMS ... ocuuiiiiieiieeii e e et e e e et e et e et e e et e aeanaaeens
3.2 BUilding C API CHENE PrOQIaAIMS ...ttt e et e e et e e et e e e e e et e e eba e eanaaeens
3.3 Building C API Client Programs Using pKg-CONIQc.uiiiiiiiiiiie e
3.4 Writing C APl Threaded Client Programsooeu i e e e e e eaa e eees
3.5 RUNNING C API ClHENE PrOGIAIMScuiiiiieiii ettt et e e et e e e e e et e e et e eanaaeees
3.6 USING € API FEALUIES ...uiiiiiit ettt e e et et e e et e e et e e et e e et e etn e eenaaes
3.6.1 Support for Encrypted CONNECLIONScouuiiiiiiiiiiei e
3.6.2 SSL SESSION REUSE ..ottt ettt ettt
3.6.3 Multiple Statement EXECULION SUPPOIT ... couuniieiiiiieei e e e e eens
3.6.4 Prepared Statement Handling of Date and Time Valuesccoooiiiiiiiiiiiiiiiiiieeeeennn.
3.6.5 Prepared CALL Statement SUPPOITiieuniii et e e e e et e e eeees
3.6.6 Prepared Statement Problems ...
3.6.7 Optional Result Set Metadatalc.uiiiuniiiii e
3.6.8 Automatic Reconnection CONIIOluiiiiiiiiiiii e
3.6.9 NULL mysqgl_store_result() Return After mysql_query() SUCCESScc.oveevniiiiineeenneaennn.
3.6.10 Results Available from a QUENYc.uniiiiii e e
3.6.11 Obtaining the Unique ID for the Last Inserted ROWcc.oveiiiiiiiiiiiiiii e,
3.6.12 Obtaining the Server Version and Client Library Versioncccooviiiiiiiiiiiinieineeennn.

The following sections provide information on building client applications that use the C API. Topics
include compiling and linking clients, writing threaded clients, and troubleshooting runtime problems.

3.1 Example C API Client Programs

Many of the clients in MySQL source distributions are written in C, such as nysql , nysql admi n, and
nmysqgl show. If you are looking for examples that demonstrate how to use the C API, take a look at
those clients: Obtain a source distribution and look in its cl i ent directory. See How to Get MySQL.

For information about individual C API functions, the sections for most functions include usage

examples.

3.2 Building C API Client Programs

This section provides guidelines for compiling C programs that use the MySQL C API.
e Compiling MySQL Clients on Unix
» Compiling MySQL Clients on Microsoft Windows

» Troubleshooting Problems Linking to the MySQL Client Library

Compiling MySQL Clients on Unix

The examples here use gcc as the compiler. A different compiler might be appropriate on some
systems (for example, cl ang on macOS or FreeBSD, or Sun Studio on Solaris). Adjust the examples

as necessary.

You may need to specify an - | option when you compile client programs that use MySQL header
files, so that the compiler can find them. For example, if the header files are installed in / usr/ | ocal /

nmysql /i ncl ude, use this option in the compile command:

-1 /usr/local /mysqgl/incl ude

https://dev.mysql.com/doc/refman/9.6/en/getting-mysql.html

Compiling MySQL Clients on Microsoft Windows

You can link your code with either the dynamic or static MySQL C client library. The dynamic library
base nameis | i brysql cl i ent and the suffix differs by platform (for example, . so for Linux, . dyl i b
for macOS). The static library is named | i bnysqgl cl i ent . a on all platforms.

MySQL clients must be linked using the - | nysql cl i ent option in the link command. You may also
need to specify a - L option to tell the linker where to find the library. For example, if the library is
installed in / usr /| ocal / nysql /| i b, use these options in the link command:

-L/usr/local /nysqgl/lib -1nysqlclient
The path names may differ on your system. Adjust the - | and - L options as necessary.

To make it simpler to compile MySQL programs on Unix, use the nysql _confi g script. See
mysql_config — Display Options for Compiling Clients.

nmysql _confi g displays the options needed for compiling or linking:

nysql _config --cfl ags
nmysql _config --1ibs

You can invoke those commands at the command line to get the proper options and add them
manually to compilation or link commands. Alternatively, include the output from nmysql _confi g
directly within command lines using backticks:

gcc -c¢ “nysqgl _config --cflags™ prognane.c
gcc -0 prognane prognane.o ~nysqgl_config --1ibs’

On Unix, linking uses dynamic libraries by default. To link to the static client library instead, add its path
name to the link command. For example, if the library is located in / usr /| ocal / nysql /| i b, link like
this:

gcc -o prognane prognane.o /usr/local/nysqgl/lib/libnysqglclient.a

Or use mysgl _confi g to provide the path to the library:

gcc -0 prognanme prognane.o nysql_config --variabl e=pkglibdir /libnysqglclient.a

nmysql _confi g does not currently provide a way to list all libraries needed for static linking, so

it might be necessary to name additional libraries on the link command (for example, - | nsl -

| socket on Solaris). To get an idea which libraries to add, use nysql config --1ibs and| dd
['ibnysqglclient.so(orotool -L Iibnysglclient.dylibonmacOS).

pkg- conf i g can be used as an alternative to nysql _conf i g for obtaining information such as
compiler flags or link libraries required to compile MySQL applications. For example, the following pairs
of commands are equivalent:

nysqgl _config --cflags
pkg-config --cflags nysqlclient

nysqgl _config --1ibs
pkg-config --1ibs nysqlclient

To produce flags for static linking, use this command:

pkg-config --static --1ibs nysqlclient
For more information, see Section 3.3, “Building C API Client Programs Using pkg-config”.
Compiling MySQL Clients on Microsoft Windows

To specify header and library file locations, use the facilities provided by your development
environment.

To build C API clients on Windows, you must link in the C client library, as well as the Windows ws2_32
sockets library and Secur32 security library.

https://dev.mysql.com/doc/refman/9.6/en/mysql-config.html

Troubleshooting Problems Linking to the MySQL Client Library

You can link your code with either the dynamic or static MySQL C client library:

e The dynamic library is named | i bnysql . dl | . In addition, the | i brrysql . | i b static import library
is needed for using the dynamic library.

* The static library is named nysql cl i ent. | i b. To link with the static C client library, the client
application must be compiled with the same version of Visual Studio used to compile the C client
library (which is Visual Studio 2015 for the static C client library built by Oracle).

When using the Oracle-built MySQL C client library, follow these rules when it comes to linking the C
runtime for your client application:

» For the MySQL C client library from a Community distribution of MySQL:

« Always link dynamically to the C runtime (use the / MD compiler option), whether you are linking to
the static or dynamic C client library. Also, target hosts running the client application must have the
Visual C++ Redistributable for Visual Studio 2015 installed.

» For the MySQL C client library from a Commercial distribution of MySQL.:
« If linking to the static C client library, link statically to the C runtime (use the / MI compiler option).

« If linking to the dynamic C client library, link either statically or dynamically to the C runtime (use
either / MT or / ND compiler option).

In general, when linking to a static MySQL C client library, the client library and the client application
must use the same compiler options when it comes to linking the C runtime—that is, if your C client
library is compiled with the / MTI" option, your client application should also be compiled with the / M
option, and so on (see the MSDN page describing the C library linking options for more details). Follow
this rule when you build your own static MySQL C client library from a source distribution of MySQL
and link your client application to it.

Note

Debug Mode: Because of the just-mentioned linking rule, you cannot build your
application in debug mode (with the / MI'd or / MDd compiler option) and link

it to a static C client library built by Oracle, which is not built with the debug
options. Instead, you must build the static client library from source with the
debug options.

Troubleshooting Problems Linking to the MySQL Client Library

The MySQL client library includes SSL support built in. It is unnecessary to specify either - | ssl or -
| crypt o at link time. Doing so may in fact result in problems at runtime.

If the linker cannot find the MySQL client library, you might get undefined-reference errors for symbols
that start with nysql _, such as those shown here:

/tnp/ ccFKsdPa. o: In function "nain'

/t mp/ ccFKsdPa. o(. t ext +Oxb) : undefined reference to “nysql _init

/t mp/ ccFKsdPa. o(. t ext +0x31): undefined reference to "nysqgl _real _connect
/t mp/ ccFKsdPa. o(. t ext +0x69) : undefi ned reference to "nysqgl _error

/t mp/ ccFKsdPa. o(. t ext +0x9a): undefi ned reference to "nysql _cl ose

You should be able to solve this problem by adding - Ldi r _path -1 nysqgl cl i ent atthe end of your
link command, where di r _pat h represents the path name of the directory where the client library is
located. To determine the correct directory, try this command:

nysqgl _config --1ibs

The output from nysql _conf i g might indicate other libraries that should be specified on the link
command as well. You can include mysqgl _conf i g output directly in your compile or link command
using backticks. For example:

https://www.microsoft.com/en-us/download/details.aspx?id=48145
http://msdn.microsoft.com/en-us/library/2kzt1wy3.aspx

Building C API Client Programs Using pkg-config

gcc -0 prognanme prognanme.o nysql _config --1libs’

If an error occurs at link time that the f | oor symbol is undefined, link to the math library by adding -

| mto the end of the compile/link line. Similarly, if you get undefined-reference errors for other functions
that should exist on your system, such as connect (), check the manual page for the function in
guestion to determine which libraries you should add to the link command.

If you get undefined-reference errors such as the following for functions that do not exist on your
system, it usually means that your MySQL client library was compiled on a system that is not 100%
compatible with yours:

nf_format.o(.text+0x201): undefined reference to ~_ | xstat

In this case, you should download a source distribution for the latest version of MySQL and compile the
MySQL client library yourself. See Installing MySQL from Source.

3.3 Building C API Client Programs Using pkg-config

MySQL distributions contain a mysql cl i ent . pc file that provides information about MySQL
configuration for use by the pkg- confi g command. This enables pkg- confi g to be used as an
alternative to nysql _conf i g for obtaining information such as compiler flags or link libraries required
to compile MySQL applications. For example, the following pairs of commands are equivalent:

nmysql _config --cfl ags
pkg-config --cflags nysqlclient

nysqgl _config --1ibs
pkg-config --1ibs nysqlclient

The last pkg- conf i g command produces flags for dynamic linking. To produce flags for static linking,
use this command:

pkg-config --static --libs mysqglclient
On some platforms, the output with and without - - st at i ¢ might be the same.
Note

If pkg- confi g does not find MySQL information, it might be necessary to
set the PKG_CONFI G_PATH environment variable to the directory in which the
nysql cl i ent. pc file is located, which by default is usually the pkgconfi g
directory under the MySQL library directory. For example (adjust the location
appropriately):

For sh, bash,

export PKG CONFlI G PATH=/ usr /| ocal / mysql /| i b/ pkgconfi g
For csh, tcsh, ...

set env PKG_CONFI G PATH /usr /| ocal / mysql /i b/ pkgconfi g

The nysql confi g. pc installation location can be controlled using the
| NSTALL_PKGCONFI GDI R C\vake option. See MySQL Source-Configuration
Options.

The - - vari abl e option takes a configuration variable name and displays the variable value:

installation prefix directory

pkg-config --variabl e=prefix nysql client

header file directory

pkg-config --vari abl e=i ncl udedir mnysql client
library directory

pkg-config --variabl e=libdir nysqlclient

To see which variable values pkg- conf i g can display using the - - var i abl e option, use this
command:

https://dev.mysql.com/doc/refman/9.6/en/source-installation.html
https://dev.mysql.com/doc/refman/9.6/en/source-configuration-options.html#option_cmake_install_pkgconfigdir
https://dev.mysql.com/doc/refman/9.6/en/source-configuration-options.html
https://dev.mysql.com/doc/refman/9.6/en/source-configuration-options.html

Writing C API Threaded Client Programs

pkg-config --print-variabl es nysqlclient

You can use pkg- conf i g within a command line using backticks to include the output that it produces
for particular options. For example, to compile and link a MySQL client program, use pkg- confi g as
follows:

gcc -c " pkg-config --cflags mysqglclient™ prognane.c
gcc -o prognanme prognane.o ~pkg-config --libs nmysqglclient®

3.4 Writing C API Threaded Client Programs

This section provides guidance for writing client programs that use the thread-related functions in

the MySQL C API. For further information about these functions, see Section 8.2, “C API Threaded
Function Descriptions”. For examples of source code that uses them, look in the cl i ent directory of a
MySQL source distribution:

» The source for mysql i nport uses threading in the code associated with the - - use-t hr eads
option.

» The source for mysql sl ap uses threads to set up simultaneous workloads, to test server operation
under high load.

As an alternative to thread programming, applications may find the asynchronous (nonblocking) C API
functions useful. These functions enable applications to submit multiple outstanding requests to the
server and determine when each has finished using polling. For more information, see Chapter 7, C
API Asynchronous Interface.

If undefined-reference errors occur when linking a threaded program against the MySQL client library,
the most likely cause is that you did not include the thread libraries on the link/compile command.

The client library is almost thread-safe. The biggest problem is that the subroutines in sql /

net _serv. cc that read from sockets are not interrupt-safe. This was done with the thought that
you might want to have your own alarm that can break a long read to a server. If you install interrupt
handlers for the SI GPI PE interrupt, socket handling should be thread-safe.

To avoid aborting the program when a connection terminates, MySQL blocks S| GPI PE on the first call
tonysql _library_init(),nysqgl _init(),ornysql_connect (). To use yourown Sl GPl PE
handler, first call nysqgl _Ii brary_i nit (), then install your handler.

The client library is thread-safe per connection. Two threads can share the same connection with the
following caveats:

» Unless you are using the asynchronous C API functions mentioned previously, multiple threads
cannot send a query to the MySQL server at the same time on the same connection. In particular,
you must ensure that between calls to mysqgl _real query() (ornysqgl query())and
nysql _store_resul t() inone thread, no other thread uses the same connection. To do
this, use a mutex lock around your pair of mysql _real query() (ornysqgl query()) and
nysql _store_result() calls. After mysql _store_resul t () returns, the lock can be released
and other threads may query the same connection.

If you use POSIX threads, you can use pt hread_nut ex_| ock() and
pt hr ead_nut ex_unl ock() to establish and release a mutex lock.

Note

If you examine programs in a MySQL source distribution, instead of calls to

pt hread_mnut ex | ock() and pt hread _nut ex_unl ock() , you will see
callstonative mutex | ock() andnative nutex_unl ock(). The latter
functions are defined in the t hr _nut ex. h header file and map to platform-
specific mutex functions.

» Multiple threads can access different result sets that are retrieved with mysqgl _store_result().

https://dev.mysql.com/doc/refman/9.6/en/mysqlimport.html#option_mysqlimport_use-threads

Running C API Client Programs

e Touse nysql use_result(),you mustensure that no other thread uses the same connection
until the result set is closed. However, it really is best for threaded clients that share the same
connectionto use nysql _store_result().

If a thread does not create the connection to the MySQL database but calls MySQL functions, take the
following into account:

When you call nysql _init (), MySQL creates a thread-specific variable for the thread that is used

by the debug library (among other things). If you call a MySQL function before the thread has called
nysqgl _init(),the thread does not have the necessary thread-specific variables in place and you are
likely to end up with a core dump sooner or later. To avoid problems, you must do the following:

1. Callnysqgl _I'ibrary_init() before any other MySQL functions. It is not thread-safe, so call it
before threads are created, or protect the call with a mutex.

2. Arrange for nysql _thread init() tobe called early in the thread handler before calling any
MySQL function. (If you call nysqgl _init(),itcallsnysql thread_ init () foryou.)

3. Inthe thread, call nysql _t hread_end() before calling pt hr ead_exi t () . This frees the
memory used by MySQL thread-specific variables.

The preceding notes regarding mysql _i ni t () also apply to nysql _connect (), which calls
mysql _init().

3.5 Running C API Client Programs

If, after an upgrade, you experience problems with compiled client programs, such as Commands out
of sync or unexpected core dumps, the programs were probably compiled using old header or library
files. In this case, check the date of the nysql . h header file and | i bnysqgl cl i ent . a library used
for compilation to verify that they are from the new MySQL distribution. If not, recompile the programs
with the new headers and libraries. Recompilation might also be necessary for programs compiled
against the shared client library if the library major version number has changed (for example, from
[ibmysglclient.so.17tolibnysqlclient. so. 18).

The major shared client library version determines compatibility. (For example, for

i bnysqgl client.so.18. 1.0, the major version is 18.) Libraries shipped with newer versions of
MySQL are drop-in replacements for older versions that have the same major number. As long as the
major library version is the same, you can upgrade the library and old applications should continue to
work with it.

Undefined-reference errors might occur at runtime when you try to execute a MySQL program. If these
errors specify symbols that start with mysql _ or indicate that the | i brrysqgl cl i ent library cannot be
found, it means that your system cannot find the shared | i bnysql cl i ent . so library. The solution
to this problem is to tell your system to search for shared libraries in the directory where that library is
located. Use whichever of the following methods is appropriate for your system:

» Add the path of the directory where | i brysql cl i ent. so is located to the LD LI BRARY PATH or
LD _LI BRARY environment variable.

* On macOS, add the path of the directory where | i bnysql cl i ent. dyl i b is located to the
DYLD LI BRARY_ PATH environment variable.

» Copy the shared-library files (such as | i brysql cl i ent . so) to some directory that is searched
by your system, such as /| i b, and update the shared library information by executing | dconfi g.
Be sure to copy all related files. A shared library might exist under several names, using symlinks to
provide the alternate names.

3.6 Using C API Features

The following sections discuss techniques for working with several features of the C API into your
applications. It also covers some restrictions and troubleshooting topics.

10

Support for Encrypted Connections

3.6.1 Support for Encrypted Connections

This section describes how C applications use the C API capabilities for encrypted connections.
By default, MySQL programs attempt to connect using encryption if the server supports encrypted
connections, falling back to an unencrypted connection if an encrypted connection cannot be
established (see Configuring MySQL to Use Encrypted Connections). For applications that require
control beyond the default behavior over how encrypted connections are established, the C API
provides these capabilities:

The mysql _options() function enables applications to set the appropriate SSL/TLS options
before calling mysql real connect (). For example, to require the use of an encrypted
connection, see Enforcing an Encrypted Connection.

The nysql _get _ssl _ci pher () function enables applications to determine, after a connection
has been established, whether the connection uses encryption. A NULL return value indicates that
encryption is not being used. A non-NULL return value indicates an encrypted connection and names
the encryption cipher. See Section 5.4.36, “mysql_get_ssl_cipher()”.

Options for Encrypted Connections
Enforcing an Encrypted Connection

Improving Security of Encrypted Connections

Options for Encrypted Connections

nmysqgl _options() provides the following options for control over use of encrypted connections. For
option details, see Section 5.4.54, “mysql_options()”.

MYSQL_OPT_SSL_ CA: The path name of the Certificate Authority (CA) certificate file. This option, if
used, must specify the same certificate used by the server.

MYSQL_OPT_SSL_CAPATH: The path name of the directory that contains trusted SSL CA certificate
files.

MYSQL_OPT_SSL_CERT: The path name of the client public key certificate file.

MYSQL_OPT_SSL_CI PHER: The list of encryption ciphers the client permits for connections that use
TLS protocols up through TLSv1.2.

MYSQL_OPT_SSL_CRL: The path name of the file containing certificate revocation lists.

MYSQL_OPT_SSL_CRLPATH: The path name of the directory that contains certificate revocation list
files.

MYSQL_OPT_SSL_KEY: The path name of the client private key file.
MYSQL_OPT_SSL_MODE: The connection security state.

MYSQL_OPT_SSL_SESSI ON_DATA : Serialized session data from an encrypted connection that was
returned by a call to the nysql get ssl _sessi on_dat a() function while the connection was
active.

MYSQL_OPT_TLS CI PHERSUI TES: The list of encryption ciphersuites the client permits for
connections that use TLSv1.3.

MYSQL_OPT_TLS VERSI ON: The encryption protocols the client permits.

The deprecated nysql _ssl _set () function can be used as a convenience routine that is equivalent
toasetof mysql options() calls that specify certificate and key files, encryption ciphers, and so
forth. See Section 5.4.82, “mysql_ssl_set()".

11

https://dev.mysql.com/doc/refman/9.6/en/using-encrypted-connections.html

SSL Session Reuse

Enforcing an Encrypted Connection

nysql _opti ons() options for information such as SSL certificate and key files are used to establish
an encrypted connection if such connections are available, but do not enforce any requirement that the
connection obtained be encrypted. To require an encrypted connection, use the following technique:

1. Callnmysqgl options() as necessary supply the appropriate SSL parameters (certificate and key
files, encryption ciphers, and so forth).

2. Callnmysql _options() to passthe MYSQL_OPT_SSL_MODE option with a value of
SSL_MODE_REQUI RED or one of the more-restrictive option values.

3. Callnysqgl _real _connect () to connect to the server. The call fails if an encrypted connection
cannot be obtained; exit with an error.

Improving Security of Encrypted Connections

For additional security relative to that provided by the default encryption, clients can supply a CA
certificate matching the one used by the server and enable host name identity verification. In this way,
the server and client place their trust in the same CA certificate and the client verifies that the host to
which it connected is the one intended:

» To specify the CA certificate, call mysqgl opti ons() to pass the M\vSQL_OPT_SSL_CA
(or MYSQL_OPT_SSL_CAPATH) option, and call nysql _opti ons() to pass the
MYSQL_OPT_SSL_MODE option with a value of SSL_ MODE_VERI FY_CA.

» To enable host name identity verification as well, call mysql _opti ons() to pass the
MYSQL_OPT_SSL_MODE option with a value of SSL_MODE_VERI FY_| DENTI TY rather than
SSL_MODE_VERI FY_CA.

Note

Host name identity verification with SSL_MODE_VERI FY_| DENTI TY does
not work with self-signed certificates created automatically by the server,

or manually using nysqgl _ssl _rsa_set up (see Creating SSL and RSA
Certificates and Keys using MySQL). Such self-signed certificates do not

contain the server name as the Common Name value.

Host name identity verification also does not work with certificates that specify
the Common Name using wildcards because that name is compared verbatim
to the server name.

3.6.2 SSL Session Reuse

As of MySQL 8.0.29, the server supports SSL session reuse by default, but only within a configurable
timeout period after a user enables the feature. All MySQL client applications support session reuse.
For a description of server-side and client-side operations, see Reusing SSL Sessions.

This section describes how C applications can use the C API capabilities to enable session reuse for
encrypted connections.

SSL session reuse works as follows:

1. With an active SSL connection ongoing, your application can request the current SSL session data
by calling mysql _get _ssl _sessi on_dat a() . The call returns a pointer to an in-memory object,
which is currently the PEM serialization of the session as an ASCII string.

2. Your application then passes the pointer to nysql _opti ons() with the
MYSQL_OPT_SSL_SESSI ON_DATA option for use in the new connection it is building (during the
pre-connect phase).

3. Atruntime, the application connects as it normally does. At this point the prior session has to
potential to be reused. Your application can determine whether a session is being reused for the

12

https://dev.mysql.com/doc/refman/9.6/en/creating-ssl-rsa-files-using-mysql.html
https://dev.mysql.com/doc/refman/9.6/en/creating-ssl-rsa-files-using-mysql.html
https://dev.mysql.com/doc/refman/9.6/en/reusing-ssl-sessions.html

Multiple Statement Execution Support

new connection by calling nysql get ssl sessi on_reused() . The call returns TRUE if there
was a session and it was reused.

4. After your application no longer needs the pointer, it is important to free it with a call to
nysql _free_ssl_session_data().

MySQL uses a random TLS context-related context ID, which also applies to session reuse. With TLS
1.3, when the previously described call sequence occurs, OpenSSL uses pre-shared keys for session
reuse. In contrast, with TLS 1.2, OpenSSL uses session tickets.

3.6.3 Multiple Statement Execution Support

By default, mysqgl real query() and nysqgl _query() interpret their statement string argument
as a single statement to be executed, and you process the result according to whether the statement
produces a result set (a set of rows, as for SELECT) or an affected-rows count (as for | NSERT,
UPDATE, and so forth).

MySQL also supports the execution of a string containing multiple statements separated by
semicolon (;) characters. This capability is enabled by special options that are specified either
when you connect to the server with mysql _real connect () or after connecting by calling
mysql _set _server_option().

Executing a multiple-statement string can produce multiple result sets or row-count indicators.
Processing these results involves a different approach than for the single-statement case: After
handling the result from the first statement, it is necessary to check whether more results exist

and process them in turn if so. To support multiple-result processing, the C API includes the

nysql _nore_resul ts() andnysql _next_resul t () functions. These functions are used at the
end of a loop that iterates as long as more results are available. Failure to process the result this way
may result in a dropped connection to the server.

Multiple-result processing also is required if you execute CALL statements for stored procedures.
Results from a stored procedure have these characteristics:

» Statements within the procedure may produce result sets (for example, if it executes SELECT
statements). These result sets are returned in the order that they are produced as the procedure
executes.

In general, the caller cannot know how many result sets a procedure will return. Procedure execution
may depend on loops or conditional statements that cause the execution path to differ from one call
to the next. Therefore, you must be prepared to retrieve multiple results.

« The final result from the procedure is a status result that includes no result set. The status indicates
whether the procedure succeeded or an error occurred.

The multiple statement and result capabilities can be used only with nysql _real _query() or
nysql _query() . They cannot be used with the prepared statement interface. Prepared statement
handlers are defined to work only with strings that contain a single statement. See Chapter 6, C API
Prepared Statement Interface.

To enable multiple-statement execution and result processing, the following options may be used:

 Themysqgl _real connect () function has a f | ags argument for which two option values are
relevant:

e CLI ENT_MULTI RESULTS enables the client program to process multiple results. This option
must be enabled if you execute CALL statements for stored procedures that produce result sets.
Otherwise, such procedures result in an error Error 1312 (0A000): PROCEDURE proc_namne
can't return a result set in the given context.CLI ENT_MILTI _RESULTSIis
enabled by default.

e CLI ENT_MULTI _STATEMENTS enables nysql _real _query() and nysql _query()
to execute statement strings containing multiple statements separated by semicolons.

13

https://dev.mysql.com/doc/refman/9.6/en/select.html
https://dev.mysql.com/doc/refman/9.6/en/insert.html
https://dev.mysql.com/doc/refman/9.6/en/update.html
https://dev.mysql.com/doc/refman/9.6/en/call.html
https://dev.mysql.com/doc/refman/9.6/en/select.html
https://dev.mysql.com/doc/refman/9.6/en/call.html

Multiple Statement Execution Support

This option also enables CLI ENT_MJULTI _RESULTS implicitly, so a f | ags argument

of CLI ENT_MULTI STATEMENTSto nysql real connect () is equivalentto an

argument of CLI ENT_MULTI _STATEMENTS | CLI ENT_MULTI _RESULTS. That is,

CLI ENT_MULTI _STATEMENTS is sufficient to enable multiple-statement execution and all multiple-
result processing.

 After the connection to the server has been established, you can use the
nysql set server _option() function to enable or disable multiple-statement
execution by passing it an argument of MYSQL_OPTI ON_MULTI _STATEMENTS ON or
MYSQL_OPTI ON_MULTI _STATEMENTS OFF. Enabling multiple-statement execution with this
function also enables processing of “simple” results for a multiple-statement string where each
statement produces a single result, but is not sufficient to permit processing of stored procedures
that produce result sets.

The following procedure outlines a suggested strategy for handling multiple statements:

1. Pass CLI ENT_MJLTI STATEMENTSto nmysql real connect (), to fully enable multiple-
statement execution and multiple-result processing.

2. After calling mysql _real _query() ornysqgl _query() and verifying that it succeeds, enter a
loop within which you process statement results.

3. For each iteration of the loop, handle the current statement result, retrieving either a result set or an
affected-rows count. If an error occurs, exit the loop.

4. Atthe end of the loop, call mysql _next result () to check whether another result exists and
initiate retrieval for it if so. If no more results are available, exit the loop.

One possible implementation of the preceding strategy is shown following. The final part of the loop
can be reduced to a simple test of whether nysql _next resul t () returns nonzero. The code as
written distinguishes between no more results and an error, which enables a message to be printed for
the latter occurrence.

/* connect to server with the CLI ENT_MJLTI _STATEMENTS option */
if (nysqgl _real _connect (nysqgl, host_nane, user_nane, password,
db_nane, port_num socket_nane, CLI ENT_MULTI _STATEMENTS) == NULL)
{
printf("mysqgl _real _connect() failed\n");
nmysql _cl ose(nysql);
exit(1);
}

/* execute multiple statements */
status = nysql _query(nysql,
"DROP TABLE | F EXI STS test_table;\
CREATE TABLE test_table(id INT);\
I NSERT | NTO test_tabl e VALUES(10);\
UPDATE test _table SET i d=20 WHERE i d=10;\
SELECT * FROM test _table;\
DROP TABLE test_table");
if (status)
{
printf("Could not execute statement(s)");
nmysql _cl ose(nysql);
exit(0);
}

/* process each statenent result */
do {
/* did current statement return data? */
result = nmysqgl _store_result(mysql);
if (result)
{
/* yes; process rows and free the result set */
process_result_set(nysql, result);
nmysql _free_result(result);

}

14

Prepared Statement Handling of Date and Time Values

el se /* no result set or error */

{
if (nysqgl _field_count(mysqgl) == 0)
{

printf("%Ild rows affected\n",
nysql _affected_rows(nysql));
}
else /* some error occurred */
{
printf("Could not retrieve result set\n");
br eak;
}
}

/* more results? -1 = no, >0 = error, O = yes (keep | ooping) */
if ((status = nysql _next_result(mysql)) > 0)
printf("Could not execute statenent\n");

} while (status == 0);

nmysql _cl ose(nysql);

3.6.4 Prepared Statement Handling of Date and Time Values

The binary (prepared statement) protocol enables you to send and receive date and time values (DATE,
TI VE, DATETI ME, and TI MESTAMP), using the MYSQL_TI VE structure. The members of this structure
are described in Section 6.2, “C API Prepared Statement Data Structures”.

To send temporal data values, create a prepared statement using nysql _stnt _prepare(). Then,
before calling mysql st nt _execut e() to execute the statement, use the following procedure to set
up each temporal parameter:

1. Inthe MYSQL_BI ND structure associated with the data value, set the buf f er _t ype member to
the type that indicates what kind of temporal value you're sending. For DATE, Tl Mg, DATETI ME,
or TI MESTANMP values, set buf f er _t ype to MYSQL_TYPE_DATE, MYSQL_TYPE_TI ME,
MYSQL_TYPE_DATETI ME, or MYSQL_TYPE_TI MESTAMP, respectively.

2. Setthe buf f er member of the MYSQL_BI ND structure to the address of the MYySQL_ TI ME structure
in which you pass the temporal value.

3. Fillin the members of the MYSQL_ Tl IVE structure that are appropriate for the type of temporal value
to pass.

Use nysql _stnt_bind _paranm() ornysqgl stnt_bind naned_paran() to bind the parameter
data to the statement. Then you can call mysql _st nt _execut e().

To retrieve temporal values, the procedure is similar, except that you set the buf f er _t ype member
to the type of value you expect to receive, and the buf f er member to the address of a MYSQL_TI VE
structure into which the returned value should be placed. Use nysqgl _stnt _bi nd_resul t () to bind
the buffers to the statement after calling nysql _st nt _execut e() and before fetching the results.

Here is a simple example that inserts DATE, Tl ME, and TI MESTAMP data. The nysql variable is
assumed to be a valid connection handler.

MYSQL_TI ME ts;

MYSQL_BI ND bi nd[3] ;

MYSQL_STMI' *stnt;

strmov(query, "INSERT | NTO test_table(date field, tinme_field, \
timestanp_field) VALUES(?,?,?");

st = nysql _stnt_init(nmysql);
if (!stnt)

fprintf(stderr, " nysql _stnt_init(), out of nenory\n");
exit(0);

}
if (nysqgl _stnt_prepare(nysqgl, query, strlen(query)))
{

fprintf(stderr, "\n nysql _stnt_prepare(), |NSERT failed");

15

https://dev.mysql.com/doc/refman/9.6/en/datetime.html
https://dev.mysql.com/doc/refman/9.6/en/time.html
https://dev.mysql.com/doc/refman/9.6/en/datetime.html
https://dev.mysql.com/doc/refman/9.6/en/datetime.html
https://dev.mysql.com/doc/refman/9.6/en/datetime.html
https://dev.mysql.com/doc/refman/9.6/en/time.html
https://dev.mysql.com/doc/refman/9.6/en/datetime.html
https://dev.mysql.com/doc/refman/9.6/en/datetime.html
https://dev.mysql.com/doc/refman/9.6/en/datetime.html
https://dev.mysql.com/doc/refman/9.6/en/time.html
https://dev.mysql.com/doc/refman/9.6/en/datetime.html

Prepared CALL Statement Support

fprintf(stderr, "\'n %", nysqgl_stnt_error(stnt));
exit(0);
}

/* set up input buffers for all 3 paraneters */
bi nd[0] . buf fer _t ype= MYSQL_TYPE_DATE;

bi nd[0] . buf fer= (char *)&ts;

bind[0].is_null= 0;

bi nd[0] . | engt h= 0O;

bi nd[1] = bi nd[2] = bi nd[0] ;

nmysql _stmt _bi nd_naned_paran(stnt, bind, 3, NULL);

/* supply the data to be sent in the ts structure */
ts.year= 2002,

ts. nont h= 02;

ts. day= 03;

ts. hour= 10;
ts. m nute= 45;
ts.second= 20;

nmysql _stmt _execute(stnt);

3.6.5 Prepared CALL Statement Support

This section describes prepared-statement support in the C API for stored procedures executed using
CALL statements:

Stored procedures executed using prepared CALL statements can be used in the following ways:

* A stored procedure can produce any number of result sets. The number of columns and the data
types of the columns need not be the same for all result sets.

» The final values of OUT and | NOUT parameters are available to the calling application after the
procedure returns. These parameters are returned as an extra single-row result set following any
result sets produced by the procedure itself. The row contains the values of the OUT and | NOUT
parameters in the order in which they are declared in the procedure parameter list.

For information about the effect of unhandled conditions on procedure parameters, see Condition
Handling and OUT or INOUT Parameters.

The following discussion shows how to use these capabilities through the C API for prepared
statements. To use prepared CALL statements through the PREPARE and EXECUTE statements, see
CALL Statement.

An application that executes a prepared CALL statement should use a loop that fetches a result and
then invokes mysql stnt _next result() to determine whether there are more results. The
results consist of any result sets produced by the stored procedure followed by a final status value that
indicates whether the procedure terminated successfully.

If the procedure has OUT or | NOUT parameters, the result set preceding the final status value
contains their values. To determine whether a result set contains parameter values, test whether
the SERVER PS OUT _PARAMNS bit is set in the ser ver _st at us member of the MYSQL connection
handler:

nmysql - >server _status & SERVER PS_OUT_PARAMS

The following example uses a prepared CALL statement to execute a stored procedure that produces
multiple result sets and that provides parameter values back to the caller by means of OQUT and | NOUT
parameters. The procedure takes parameters of all three types (I N, OUT, | NOUT), displays their initial
values, assigns new values, displays the updated values, and returns. The expected return information
from the procedure therefore consists of multiple result sets and a final status:

16

https://dev.mysql.com/doc/refman/9.6/en/call.html
https://dev.mysql.com/doc/refman/9.6/en/call.html
https://dev.mysql.com/doc/refman/9.6/en/conditions-and-parameters.html
https://dev.mysql.com/doc/refman/9.6/en/conditions-and-parameters.html
https://dev.mysql.com/doc/refman/9.6/en/call.html
https://dev.mysql.com/doc/refman/9.6/en/prepare.html
https://dev.mysql.com/doc/refman/9.6/en/execute.html
https://dev.mysql.com/doc/refman/9.6/en/call.html
https://dev.mysql.com/doc/refman/9.6/en/call.html
https://dev.mysql.com/doc/refman/9.6/en/call.html

Prepared CALL Statement Support

One result set from a SELECT that displays the initial parameter values: 10, NULL, 30. (The OUT
parameter is assigned a value by the caller, but this assignment is expected to be ineffective: OUT
parameters are seen as NULL within a procedure until assigned a value within the procedure.)

One result set from a SELECT that displays the modified parameter values: 100, 200, 300.
One result set containing the final OUT and | NOUT parameter values: 200, 300.
A final status packet.

The code to execute the procedure:

MYSQL_STMT *stnt ;

MYSQL_BIND ps_parans[3]; [/* input paraneter buffers */

i nt int_data[3]; /* input/output values */
bool is_null[3]; /* output value nullability */
int st at us;

/* set up stored procedure */
st at us nmysql _query(nysql, "DROP PROCEDURE | F EXI STS p1");
test_error(nmysqgl, status);

st at us nmysql _query(nysql,
" CREATE PROCEDURE p1("
IN p_in INT, "
QUT p_out | NT,
I NOUT p_i nout
"BEG N "
SELECT p_in, p_out, p_inout;
SET p_in 100, p_out = 200,
SELECT p_in, p_out, p_inout;
"END") ;
test_error(nmysql,

| NT)

p_i nout = 300;

status);

/* initialize and prepare CALL statement with parameter placehol ders */

stmt = nysql _stmt_init(mysql);
if (!stnt)
{
printf(“Could not initialize statement\n");
exit(1);
}
status = nysql _stnt_prepare(stnt, "CALL pl(?, ?, ?)", 16);
test_stnt_error(stmt, status);
/* initialize parameters: p_in, p_out, p_inout (all INT) */

menset (ps_paranms, 0, sizeof (ps_parans));

ps_parans[0] . buf fer _type = MYSQL_TYPE_LONG

ps_parans[0] . buffer = (char *) & nt_data[O0];
ps_parans[0] .l ength = O;
ps_parans[0] .is_null = O;

ps_par ans[1] .
ps_par ans[1] .
ps_par ans[1] .
ps_par ans[1] .

ps_par ans[2] .
ps_par ans[2] .
ps_par ans[2] .
ps_par ans[2] .

buf fer _type MYSQL_TYPE_LONG
buffer = (char *) & nt_data[1];
I engt h 0
is null =

buf fer_type = MYSQL_TYPE_LONG
buffer = (char *) & nt_datal2];
I engt h 0
is null =

/* bind paraneters */

status = nysq
test_stnt_err

/* assign val
i nt_data[0] =
i nt _data[1]
i nt _dat a[2]

| _stnt_bi nd_paran(stnt,
or(stnt, status);

ues to paraneters and execute statenent

10; /* p_in */
20; /* p_out */
30; /* p_inout */

ps_par ans) ;

https://dev.mysql.com/doc/refman/9.6/en/select.html
https://dev.mysql.com/doc/refman/9.6/en/select.html

Prepared CALL Statement Support

status = nysql _stnt_execute(stnt);
test_stnt_error(stmt, status);

/* process results until there are no nore */

do {
int i;
int numfields; /* number of columms in result */
MYSQL_FI ELD *fields; /[/* for result set netadata */
MYSQL_BIND *rs_bind; /* for output buffers */

/* the colum count is >0 if there is a result set */
/[* 0if the result is only the final status packet */
num fields = nmysql _stmt _field_count(stnt);

if (numfields > 0)
{
/* there is a result set to fetch */
printf("Nunber of colums in result: %\n", (int) numfields);

/* what kind of result set is this? */
printf("Data: ");
i f(nmysql ->server_status & SERVER PS_OUT_PARAMS)
printf("this result set contains OUT/I NOUT paraneters\n");
el se
printf("this result set is produced by the procedure\n");

MYSQL_RES *rs_netadata = nysqgl _stnt_result_netadata(stnt);
test_stnt_error(stm, rs_metadata == NULL);

fields = nmysql _fetch_fiel ds(rs_netadata);

rs_bind = (MYSQL_BIND *) mall oc(sizeof (MYSQL_BIND) * numfields);
if (!rs_bind)
{
printf("Cannot allocate output buffers\n");
exit(1);
}
menset (rs_bind, 0, sizeof (MYSQL_BIND) * numfields);

/* set up and bind result set output buffers */
for (i =0; i < numfields; ++i)
{
rs_bind[i].buffer_type = fields[i].type;
rs_bind[i].is_null = & s_null[i];

switch (fields[i].type)
{
case MYSQL_TYPE_LONG
rs_bind[i].buffer = (char *) &int_data[i]);
rs_bind[i].buffer_length = sizeof (int_data);
br eak;

defaul t:
fprintf(stderr, "ERROR unexpected type: %.\n", fields[i].type);
exit(1);
}
}

status = nysqgl _stnt_bind_result(stnt, rs_bind);
test_stnt_error(stm, status);
/* fetch and display result set rows */
while (1)
{
status = nysql _stmt _fetch(stnt);

if (status == 1 || status == MYSQ._NO _DATA)
br eak;

for (i =0; i < numfields; ++i)

switch (rs_bind[i].buffer_type)

Prepared CALL Statement Support

{
case MYSQL_TYPE_LONG
if (*rs_bind[i].is_null)
printf(" val[%] = NULL;", i);
el se
printf(" val[%] = %d;",
i, (long) *((int *) rs_bind[i].buffer));
br eak;
defaul t:
printf(" unexpected type (%l)\n",
rs_bind[i].buffer_type);
}
}
printf("\n");
}
nmysql _free_result(rs_netadata); /* free netadata */
free(rs_bind); /* free output buffers */
}
el se
{

/* no colums = final status packet */
printf("End of procedure output\n");

}

/* more results? -1 = no, >0 = error, O = yes (keep | ooking) */
status = nysqgl _stnt_next_result(stnt);
if (status > 0)
test_stnt_error(stmt, status);
} while (status == 0);

nmysql _stmt _cl ose(stnt);

Execution of the procedure should produce the following output:

Nunmber of columms in result: 3

Data: this result set is produced by the procedure
val [0] = 10; val[1] = NULL; val[2] = 30;

Nunber of columms in result: 3

Data: this result set is produced by the procedure
val [0] = 100; val[1] = 200; val[2] = 300;

Nunmber of columms in result: 2

Data: this result set contains OUT/INOUT paraneters
val [0] = 200; val[1] = 300;

End of procedure out put

The code uses two utility routines, t est _error () andtest_stnt_error (), to check for errors and
terminate after printing diagnostic information if an error occurred:

static void test_error(MYSQL *nysqgl, int status)
if (status)

fprintf(stderr, "Error: % (errno: %)\n",
nysql _error(nysqgl), nysqgl_errno(nysql));
exit(1);
}
}

static void test_stnmt_error(MYSQL_STMI *stnt, int status)
if (status)

fprintf(stderr, "Error: % (errno: %)\n",
nysql _stnt_error(stnt), nysql_stnt_errno(stnt));
exit(1);
}
}

19

Prepared Statement Problems

3.6.6 Prepared Statement Problems

Here follows a list of the currently known problems with prepared statements:

o TI ME, TI MESTAMP, and DATETI VE do not support parts of seconds (for example, from
DATE_FORMAT()).

» When converting an integer to string, ZEROFI LL is honored with prepared statements in some
cases where the MySQL server does not print the leading zeros. (For example, with M N(nunber -
wi th-zerofill)).

* When converting a floating-point number to a string in the client, the rightmost digits of the converted
value may differ slightly from those of the original value.

» Prepared statements do not support multi-statements (that is, multiple statements within a single
string separated by ; characters).

» The capabilities of prepared CALL statements are described in Section 3.6.5, “Prepared CALL
Statement Support”.

3.6.7 Optional Result Set Metadata

When a client executes a statement that produces a result set, MySQL makes available the data the
result set contains, and by default also result set metadata that provides information about the result
set data. Metadata is contained in the MYSQL_FI ELD structure (see Section 5.2, “C API Basic Data
Structures”), which is returned by the nysql _fetch field(),mysqgl _fetch field direct(),
and nysql _fetch_fields() functions.

Clients can indicate on a per-connection basis that result set metadata is optional and that the client
will indicate to the server whether to return it. Suppression of metadata transfer by the client can
improve performance, particularly for sessions that execute many queries that return few rows each.

There are two ways for a client to indicate that result set metadata is optional for a connection. They
are equivalent, so either one suffices:

 Prior to connect time, enable the M\YSQL_OPT_OPTI ONAL_RESULTSET_METADATA option for
nmysql _options().

» At connect time, enable the CLI ENT_OPTI ONAL_RESULTSET METADATAflag for the cl i ent fl ag
argument of mysqgl real connect ().

For metadata-optional connections, the client sets the r esul t set _net adat a system variable to
control whether the server returns result set metadata. Permitted values are FULL (return all metadata)
and NONE (return no metadata). The default is FULL, so even for metadata-optional connections, the
server by default returns metadata.

For metadata-optional connections, the nysql fetch field(),nysql _fetch field direct(),
and nysqgl fetch fields() functions return NULL whenr esul t set _net adat a is set to NONE.

For connections that are not metadata-optional, setting r esul t set _net adat a to NONE produces an
error.

To check whether a result set has metadata, the client calls the nysql _result _net adat a()
function. This function returns RESULTSET _METADATA FULL or RESULTSET METADATA NONE to
indicate that the result set has full metadata or no metadata, respectively.

nysqgl result netadata() is useful if the client does not know in advance whether a result
set has metadata. For example, if a client executes a stored procedure that returns multiple
result sets and might change the r esul t set _net adat a system variable, the client can invoke
nysqgl result netadata() for each result set to determine whether it has metadata.

20

https://dev.mysql.com/doc/refman/9.6/en/time.html
https://dev.mysql.com/doc/refman/9.6/en/datetime.html
https://dev.mysql.com/doc/refman/9.6/en/datetime.html
https://dev.mysql.com/doc/refman/9.6/en/date-and-time-functions.html#function_date-format
https://dev.mysql.com/doc/refman/9.6/en/aggregate-functions.html#function_min
https://dev.mysql.com/doc/refman/9.6/en/aggregate-functions.html#function_min
https://dev.mysql.com/doc/refman/9.6/en/call.html
https://dev.mysql.com/doc/refman/9.6/en/server-system-variables.html#sysvar_resultset_metadata
https://dev.mysql.com/doc/refman/9.6/en/server-system-variables.html#sysvar_resultset_metadata
https://dev.mysql.com/doc/refman/9.6/en/server-system-variables.html#sysvar_resultset_metadata
https://dev.mysql.com/doc/refman/9.6/en/server-system-variables.html#sysvar_resultset_metadata

Automatic Reconnection Control

3.6.8 Automatic Reconnection Control

The MySQL client library can perform an automatic reconnection to the server if it finds that the
connection is down when you attempt to send a statement to the server to be executed. If auto-
reconnect is enabled, the library tries once to reconnect to the server and send the statement again.

Note

The automatic reconnection feature is deprecated. The related
MYSQL_OPT_RECONNECT option is still available but now returns a
deprecation warning to the standard error output if your application calls the
nysql _get _option() ormysqgl options() function with the option, even
when setting it to false.

Expect automatic reconnection functionality to be removed in a future version of
MySQL.

Auto-reconnect is disabled by default.

If the connection has gone down, the effect of mysql _pi ng() depends on the auto-reconnect state. If
auto-reconnect is enabled, nysql _pi ng() performs a reconnect. Otherwise, it returns an error.

Some client programs might provide the capability of controlling automatic reconnection. For example,
nmysql reconnects by default, but the - - ski p- r econnect option can be used to suppress this
behavior.

If an automatic reconnection does occur (for example, as a result of calling mysql _pi ng()), there
is no explicit indication of it. To check for reconnection, call mysqgl t hread i d() to get the original
connection identifier before calling mysql _pi ng(), then call nysql _t hread_i d() again to see
whether the identifier changed.

Automatic reconnection can be convenient because you need not implement your own reconnect code,
but if a reconnection does occur, several aspects of the connection state are reset on the server side
and your application will not be naotified.

Reconnection affects the connection-related state as follows:

* Rolls back any active transactions and resets autocommit mode.
* Releases all table locks.

* Closes (and drops) all TEMPORARY tables.

» Reinitializes session system variables to the values of the corresponding global system variables,
including system variables that are set implicitly by statements such as SET NANMES.

» Loses user-defined variable settings.

* Releases prepared statements.

» Closes HANDLER variables.

* Resets the value of LAST_| NSERT_I () to 0.
* Releases locks acquired with GET_LOCK() .

» Loses the association of the client with the Performance Schema t hr eads table row that determines
connection thread instrumentation. If the client reconnects after a disconnect, the session is
associated with a new row in the t hr eads table and the thread monitoring state may be different.
See The threads Table.

If reconnection occurs, any SQL statement specified by calling nysqgl _opti ons() with the
MYSQL_| NI T_COVMAND option is re-executed.

21

https://dev.mysql.com/doc/refman/9.6/en/mysql-command-options.html#option_mysql_reconnect
https://dev.mysql.com/doc/refman/9.6/en/set-names.html
https://dev.mysql.com/doc/refman/9.6/en/handler.html
https://dev.mysql.com/doc/refman/9.6/en/information-functions.html#function_last-insert-id
https://dev.mysql.com/doc/refman/9.6/en/locking-functions.html#function_get-lock
https://dev.mysql.com/doc/refman/9.6/en/performance-schema-threads-table.html
https://dev.mysql.com/doc/refman/9.6/en/performance-schema-threads-table.html
https://dev.mysql.com/doc/refman/9.6/en/performance-schema-threads-table.html

NULL mysql_store_result() Return After mysql_query() Success

If the connection drops, it is possible that the session associated with the connection on the server side
will still be running if the server has not yet detected that the client is no longer connected. In this case,
any locks held by the original connection still belong to that session, so you may want to kill it by calling

mysql _kill ().

3.6.9 NULL mysql_store_result() Return After mysql_query() Success

It is possible for nysql store_resul t () toreturn NULL following a successful call to the server
using nysql real query() ornysql _query().When this happens, it means one of the following
conditions occurred:

» There was a el | oc() failure (for example, if the result set was too large).
» The data could not be read (an error occurred on the connection).
» The query returned no data (for example, it was an | NSERT, UPDATE, or DELETE).

You can always check whether the statement should have produced a nonempty result by calling
nysql _field_count().Ifrmysqgl _field_count() returns zero, the result is empty and the

last query was a statement that does not return values (for example, an | NSERT or a DELETE). If
nysql _fiel d_count () returns a nonzero value, the statement should have produced a nonempty
result. See the description of the mysql _fi el d_count () function for an example.

You can test for an error by calling mysql _error () ornysqgl _errno().

3.6.10 Results Available from a Query

In addition to the result set returned by a query, you can also get the following information:

* nysql _affected rows() returns the number of rows affected by the last query when doing an
| NSERT, UPDATE, or DELETE.

For a fast re-create, use TRUNCATE TABLE.

* nysqgl _num rows() returns the number of rows in a result set. With nysql _store result(),
nysqgl _num rows() may be called as soon as nysql _store_result() returns. With
nysqgl _use result(),nysqgl _numrows() may be called only after you have fetched all the
rows with mysqgl _fetch_row().

* nysqgl _insert _id() returns the ID generated by the last query that inserted a row into a table with
an AUTO_| NCREMENT index. See Section 5.4.42, “mysql_insert_id()".

e Some queries (LOAD DATA, | NSERT | NTO ... SELECT, UPDATE) return additional information.
The result is returned by mysql _i nf o() . See the description for nysqgl _i nf o() for the format of
the string that it returns. mysql _i nf o() returns a NULL pointer if there is no additional information.

3.6.11 Obtaining the Unique ID for the Last Inserted Row

If you insert a record into a table that contains an AUTO | NCREMENT column, you can obtain the value
stored into that column by calling the mysqgl i nsert i d() function.

You can check from your C applications whether a value was stored in an AUTO_| NCREMENT column
by executing the following code (which assumes that you've checked that the statement succeeded). It
determines whether the query was an | NSERT with an AUTO_| NCREMENT index:
if ((result = nmysql _store_result(&mysqgl)) == 0 &&

nmysql _field _count(&mwysql) == 0 &&

nmysql _insert _id(&ysql) !'= 0)

used_id = nysql _insert_id(&mysql);

22

https://dev.mysql.com/doc/refman/9.6/en/insert.html
https://dev.mysql.com/doc/refman/9.6/en/update.html
https://dev.mysql.com/doc/refman/9.6/en/delete.html
https://dev.mysql.com/doc/refman/9.6/en/insert.html
https://dev.mysql.com/doc/refman/9.6/en/delete.html
https://dev.mysql.com/doc/refman/9.6/en/insert.html
https://dev.mysql.com/doc/refman/9.6/en/update.html
https://dev.mysql.com/doc/refman/9.6/en/delete.html
https://dev.mysql.com/doc/refman/9.6/en/truncate-table.html
https://dev.mysql.com/doc/refman/9.6/en/load-data.html
https://dev.mysql.com/doc/refman/9.6/en/insert-select.html
https://dev.mysql.com/doc/refman/9.6/en/update.html
https://dev.mysql.com/doc/refman/9.6/en/insert.html

Obtaining the Server Version and Client Library Version

When a new AUTO | NCREMENT value has been generated, you can also obtain it by executing a
SELECT LAST | NSERT |) statement with mysql real query() ornysqgl _query() and
retrieving the value from the result set returned by the statement.

When inserting multiple values, the last automatically incremented value is returned.

For LAST | NSERT | () , the most recently generated ID is maintained in the server on a per-
connection basis. It is not changed by another client. It is not even changed if you update another
AUTO | NCREMENT column with a nonmagic value (that is, a value that is not NULL and not 0). Using
LAST | NSERT_| D() and AUTO_| NCREMENT columns simultaneously from multiple clients is perfectly
valid. Each client will receive the last inserted ID for the last statement that client executed.

If you want to use the ID that was generated for one table and insert it into a second table, you can use
SQL statements like this:

I NSERT | NTO foo (auto,text)

VALUES(NULL, ' text'); # generate ID by inserting NULL
I NSERT | NTO foo2 (id,text)

VALUES(LAST_INSERT_ID(), 'text'); # use IDin second table

nmysqgl _insert _id() returns the value stored into an AUTO_| NCREMENT column, whether

that value is automatically generated by storing NULL or O or was specified as an explicit value.
LAST | NSERT_| D() returns only automatically generated AUTO | NCREMENT values. If you store an
explicit value other than NULL or 0, it does not affect the value returned by LAST | NSERT | IX() .

For more information on obtaining the last ID in an AUTO_| NCREMENT column:

» Forinformation on LAST | NSERT | X), which can be used within an SQL statement, see
Information Functions.

» Forinformation on nmysql _i nsert _i d(), the function you use from within the C API, see
Section 5.4.42, “mysql_insert_id()".

» For information on obtaining the auto-incremented value when using Connector/J, see Retrieving
AUTO | NCREMENT Column Values through JDBC.

» For information on obtaining the auto-incremented value when using Connector/ODBC, see
Obtaining Auto-Increment Values.

3.6.12 Obtaining the Server Version and Client Library Version

The string and numeric forms of the MySQL server version are available at compile time as the values
of the M\YSQL_SERVER VERSI ON and MYSQL_VERSI ON_| D macros, and at runtime as the values of
the mysqgl get server _info() andnysqgl get server_version() functions.

The client library version is the MySQL version. The string and numeric forms of this

version are available at compile time as the values of the MYSQL_SERVER_VERSI ON and
MYSQL_VERSI ON_| D macros, and at runtime as the values of the nysql _get client info() and
nmysqgl get client _version() functions.

23

https://dev.mysql.com/doc/refman/9.6/en/information-functions.html#function_last-insert-id
https://dev.mysql.com/doc/refman/9.6/en/information-functions.html#function_last-insert-id
https://dev.mysql.com/doc/refman/9.6/en/information-functions.html#function_last-insert-id
https://dev.mysql.com/doc/refman/9.6/en/information-functions.html#function_last-insert-id
https://dev.mysql.com/doc/refman/9.6/en/information-functions.html#function_last-insert-id
https://dev.mysql.com/doc/refman/9.6/en/information-functions.html
https://dev.mysql.com/doc/connector-j/en/connector-j-usagenotes-last-insert-id.html
https://dev.mysql.com/doc/connector-j/en/connector-j-usagenotes-last-insert-id.html
https://dev.mysql.com/doc/connector-odbc/en/connector-odbc-usagenotes-functionality-last-insert-id.html

24

Chapter 4 C API Function Reference

The following table summarizes all functions available for the MySQL C API. For greater detail, see the

individual function descriptions.

Table 4.1 C API Functions

result set has been read

Name Description Deprecated
nysql _af fected_rows() Number of rows changed/
deleted/inserted by last UPDATE,
DELETE, or | NSERT statement
mysqgl _aut oconmit () Set autocommit mode
mysql _bi nd_paran() Define query attributes for next
statement executed
mysql _binl og_cl ose() Close replication event stream
mysql _binlog_fetch() Read event from replication
event stream
mysql _bi nl og_open() Open replication event stream
mysqgl _change_user () Change user and database on
an open connection
mysqgl character_set nane(|Default character set name for
current connection
mysqgl _client find_ plugi n()Return pointer to a plugin
mysqgl _client _register pludedister a plugin
mysqgl _cl ose() Close connection to server
mysqgl _commit () Commit transaction
mysql _connect () Connect to MySQL server Yes
mysqgl _create_db() Create database Yes
mysqgl _dat a_seek() Seek to arbitrary row number in
query result set
mysql _debug() Perform DBUG_PUSH with given
string
mysql _drop_db() Drop database Yes
mysqgl _dunp_debug info() |Cause server to write debug
information to error log
mysqgl _eof () Determine whether last row of Yes

mysql _errno()

Error number for most recently
invoked MySQL function

nysql _error()

Error message for most recently
invoked MySQL function

mysqgl _escape_string()

Escape special characters in
string for use in SQL statement

mysqgl _fetch_field()

Type of the next table field

mysql _fetch _field direct(

Table field type for given field
number

mysqgl _fetch fields()

Return array of all field structures

25

https://dev.mysql.com/doc/refman/9.6/en/update.html
https://dev.mysql.com/doc/refman/9.6/en/delete.html
https://dev.mysql.com/doc/refman/9.6/en/insert.html

Name Description Deprecated

mysqgl _fetch_| engths() Return lengths of all columns in
current row

mysqgl _fetch row() Fetch next result set row

mysqgl _fetch_row nonbl ocki [Agynchronously fetch next result
set row

mysqgl _field_count() Number of result columns for
most recent statement

mysql _field_seek() Seek to column within result set
row

mysqgl _field tell() Field position for last
mysqgl _fetch field() call

mysqgl _free result() Free result set memory

mysqgl _free_result_nonbl oclAsynthronously free result set
memory

mysqgl _free_ssl _sessi on_datBispose of session
data handle from last
mysql _get _ssl _session_datfa()
call

mysqgl get character_set i fihfofmation about default
character set

nysql _get _client_info() |Clientversion (string)

mysqgl _get _client _versi on()Client version (integer)

mysql _get connect _nonbl ocHniogmatiagabput the
mysql _real _connect _nonbl ocki ng
state machine

mysqgl get host _info() Information about the connection

mysqgl _get _option() Value of anysql _options()
option

mysqgl _get _proto_info() Protocol version used by the
connection

mysql _get _server _info() |Server version number (string)

mysqgl _get server _versi on()Server version humber (integer)

mysqgl _get _ssl _ci pher () Current SSL cipher

mysqgl _get _ssl _sessi on_dat @geturn session data for SSL-
enabled connection

mysql _get _ssl _sessi on_r eudibéther a session is reused

mysqgl _hex_string() Encode string in hexadecimal
format

mysqgl _info() Information about most recently
executed statement

mysqgl _init() Get or initialize a MYSQL
structure

mysql _insert _id() ID generated for an
AUTO _| NCREMENT column by
previous statement

mysqgl _kill () Kill a thread Yes

26

Name Description Deprecated
mysql _library_end() Finalize MySQL C API library
mysqgl _library init() Initialize MySQL C API library
mysql _|ist_dbs() Return database names
matching regular expression
mysqgl _list_fields() Return field names matching Yes
regular expression
mysql _|ist_processes() List of current server threads Yes
mysqgl _|ist_tables() Return table names matching
regular expression
mysqgl | oad_pl ugi n() Load a plugin
mysql _| oad_pl ugi n_v() Load a plugin
mysql _nore_resul ts() Check whether more results exist
mysqgl _next _result() Return/initiate next result in
multiple-result execution
mysqgl _next result _nonbl oclAsynthronously return/initiate
next result in multiple-result
execution
mysqgl _num fiel ds() Number of columns in result set
mysql _num rows() Number of rows in result set
mysql _options() Set option prior to connecting
mysql _options4() Set option prior to connecting
mysqgl _pi ng() Ping server
mysql _pl ugi n_get _option()|Get plugin option
mysql _pl ugi n_options() Set plugin option
mysqgl _query() Execute statement
mysqgl _real connect () Connect to MySQL server
mysql _real connect _dns_srMQnnect to MySQL server using
DNS SRV record
mysqgl real connect nonbl odsynghjonously connect to
MySQL server
mysqgl real escape_stri ng()Encode special characters in
statement string
nysql _real _escape_stri ng_|&ndoeé)special characters in
statement string accounting for
quoting context
mysql _real _query() Execute statement
mysqgl real query_ nonbl ockjAsyhchronously execute
statement
mysqgl _refresh() Flush or reset tables and caches |Yes
mysqgl _rel oad() Reload grant tables Yes

mysql _reset _connection()

Reset the connection to clear
session state

mysqgl reset _connecti on_no

AdynckrampUsly reset the
connection to clear session state

27

Name Description Deprecated

mysql _reset _server_publ i c|Geal gached RSA public key
from client library

mysqgl result_netadata() |Whether a result set has
metadata

mysql _rol | back() Roll back transaction

mysqgl _row seek() Seek to row offset in result set

mysql _row tell () Current position within result set
row

mysql _sel ect _db() Select database

nysql _server _end() Finalize MySQL C API library Yes

mysqgl _server _init() Initialize MySQL C API library Yes

mysql _session_track_get f|Rirst part of session state-change
information

mysqgl session_track get ngNext)part of session state-
change information

mysqgl set character_set ()|Set current connection default
character set

mysqgl _set _local _infile_ defSatlt@AD DATA LOCAL handler
callbacks to default values

mysql _set | ocal _infile_hapdstall @pplication-specific LOAD
DATA LOCAL handler callbacks

mysqgl set _server _option()|Setoption for current connection

mysql _shut down() Shut down MySQL server Yes

mysqgl _sql state() SQLSTATE value for most
recently invoked MySQL function

mysql _ssl _set () Prepare to establish SSL Yes
connection to server

mysqgl _stat () Server status

mysqgl _stnt _af fected rows()Number of rows changed/
deleted/inserted by last prepared
UPDATE, DELETE, or | NSERT
statement

mysqgl _stnt_attr_get() Get attribute value for prepared
statement

mysql _stmt _attr_set () Set attribute value for prepared
statement

mysqgl _stnt _bind_nanmed_par gkgspciate application data
buffers with named and
unnamed parameter markers in
prepared statement

mysqgl _stnt _bind _paran() |Associate application data Yes

buffers with parameter markers
in prepared statement

mysqgl _stnt_bind_result()

Associate application data
buffers with columns in result set

mysql _stmt _cl ose()

Free memory used by prepared
statement

28

https://dev.mysql.com/doc/refman/9.6/en/load-data.html
https://dev.mysql.com/doc/refman/9.6/en/load-data.html
https://dev.mysql.com/doc/refman/9.6/en/load-data.html
https://dev.mysql.com/doc/refman/9.6/en/update.html
https://dev.mysql.com/doc/refman/9.6/en/delete.html
https://dev.mysql.com/doc/refman/9.6/en/insert.html

Name

Description

Deprecated

mysql _stmt _data_seek()

Seek to arbitrary row number in
prepared statement result set

mysqgl _stmt _errno()

Error number for most recently
invoked MySQL prepared-
statement function

mysqgl _stmt _error()

Error message for most recently
invoked MySQL prepared-
statement function

mysqgl _stnt _execut e()

Execute prepared statement

mysql _stmt _fetch()

Fetch next result set row and
return data for all bound columns

mysqgl _stnmt _fetch _col um()

Fetches data for one column of
current result set row

mysqgl _stnt _field count()

Number of result columns for
most recent prepared statement

mysqgl _stnt_free_ result()

Free resources allocated to
statement handler

mysql _stmt _init()

Allocate and initialize memory for
MYSQL_STMT structure

mysqgl _stnt _insert _id()

ID generated for an
AUTO_| NCREMENT column by
previous prepared statement

mysqgl _stnt _next _result()

Return/initiate next result
in multiple-result prepared
statement execution

mysqgl _stnt_num rows()

Row count from buffered
statement result set

mysql _stmt _param count ()

Number of parameters in
prepared statement

mysqgl _stnt _param net adat a

(Return parameter metadata as
result set

mysqgl _stnt _prepare()

Prepare statement for execution

mysqgl _stmt _reset ()

Reset statement buffers on
server side

mysql _stmt _result_netadat

dReturn prepared statement
metadata as result set

mysqgl _stnt _row seek()

Seek to row offset in prepared
statement result set

mysqgl _stmt _row tell ()

Current position within prepared
statement result set row

mysqgl _stnt _send_| ong_dat a

(Send long data in chunks to
server

mysql _stmt _sql state()

SQLSTATE value for most
recently invoked MySQL
prepared-statement function

mysqgl _stnt _store_result()

Retrieve and store entire result
set

29

Name

Description

Deprecated

mysql _store_result()

Retrieve and store entire result
set

mysqgl store_result _nonbl o

Asynghionously retrieve and
store entire result set

mysqgl _thread_end()

Finalize thread handler

nmysqgl _thread_i d()

Current thread ID

mysql _thread_init()

Initialize thread handler

mysqgl thread_safe()

Whether client is compiled
thread-safe

mysqgl _use result()

Initiate row-by-row result set
retrieval

mysqgl _war ni ng_count ()

Warning count for previous
statement

30

Chapter 5 C API Basic Interface

Table of Contents

5.1 Overview of the C API BasSiC INTEIFACEuiiiiiiiiiie s 32
5.2 C API BASIC DAta SITUCIUIESeiiiiiieeiiiii ettt e e et e et e et e e e e et e e e eran s 34
5.3 C API BasiC FUNCHON REFEIENCEccceviiiiiiiii et eaens 39
5.4 C API Basic FUNCLION DESCIIPLIONS ...civuiiieeeiiii e e ee e e e e e e e e e e e e e et e e e e e e eeenas 43
5.4.1 MySql_affeCted_FOWS() «ovvuiernieii i e e e e e 43
L0 7 401 V2To | = LU (o oo o 0] 0 1) 44
5.4.3 Mysql_biNd_Parami()coeeeiiniii e 44
L O 0\ ViTo | o g = Vg To [T E 1= (P 46
5.4.5 mysql_character_Set NAME() ...c.uuiieinieii e e e e e e a7
L0 T 001V | I (o 1=) a7
Lo A 4112 | o 12 41 48
LTSI 411V | o a1 1Yo 48
5.4.9 MysSql_Create db()ovveniii i 48
o O 0| VATo | e F= = T = 49
LS 5 0 V2T | o 1= 16 o T 49
Lo 2 91V | o 1 0T o N | o) 50
5.4.13 mysql_dump_debug_iNfO() ...ouueieeiri e 50
o 7 0V | =T)) S 51
0 ST 401V | = o) 52
o0 G 40V | = (1 N 52
5.4.17 MySql_€SCAPE_SIING() orvvueeerneeeiieeieet e et e e e e e e e e e e e e e e et e e e e e e e raaae 53
5.4.18 mMysql_fetCh _field()cvvvnieee e 53
5.4.19 mysql_fetch_field _dir€Ct()cvvvnieeeiee i 54
5.4.20 mysql_fetCh _fIeldS() ...ccvveree i 54
5.4.21 mysql_fetCh _18NGINS() c.vvuuiieeee e 55
0 21V To | I (= (o T 0 T 56
o0 N 41V | I 111 o N oo 10 g1 57
5.4.24 MySAl_field_SEEK() .uvvvniiiieii i 58
5.4.25 MySAl_field_teII() ..ovveniee e 58
5.4.26 MYSAl_frE€ _FESUI() .evuuieieeei i e e e e e 58
5.4.27 mysql_free_SS|_SESSION_AALA() +.u.evvuerrniieiiiei i ee e e 59
5.4.28 mysql_get_character_Set iNfO()oevuuieiiiiiiii e 59
5.4.29 mysql_get _Client_iNfO() ...uveeenieiiiii e 60
5.4.30 mysql_get ClIeNt_ VErSION() «.ueeuneei it e e e e e e e e e e 60
5.4.31 mysqgl_get NOSt INFO() ..ueveeeiiiiiii e 60
L0 3 22 91 V2=To | o [= a0 o1 1o 1) PSS 61
5.4.33 mysqgl_get _Proto_iNfO() ..oeeeeieriieii e 62
5.4.34 mysql_get _SEerver_iNfO()ooiuuiiii e 62
5.4.35 MySQl_get _SEIVEr_VEISION() .euuueeeeeeiiieeeiee e e et e e e e e e e e e e e e e et e e e e e et e e aneeennas 63
5.4.36 MySql_get SSI_CIPNEI() 1.vueeeiiei e e 63
5.4.37 mysql_get _SS|_SeSSION_datal)uveveneriieiii e 63
5.4.38 mysql_get SS|_SESSION_FEUSEA() ...evvuierririieeiie et e e e e e e e e e e e e e e e eeanaees 64
5.4.39 MYSAl_NEX_SIING() evvneiiieiii et e e e e e e r e 64
5.4.40 MYSAL_INTO() 1rrrnniieiieiii it e ra e 65
L0 5 01V | L1 66
L b 01V | T Y= ST [66
L0 T 401V | 21 68
5.4.44 MySOl_lIBrary_ €NA() «.ueeeeeeei e 69
5.4.45 MySql_lIBrary INit()oeeeeioeeee e e 69
5.4.46 MYSOL_LIST ADS() . evvniiiiieiii ettt e 70
5.4.47 MySAl_lISt_fIElAS() «.uevvvnieee e 70
5.4.48 MYSQI_lISt_ PrOCESSES() «vvvueeenireinietieetiietet e e e e e e e e e e e e e et e e et e e et e e e e e e et eeanaaeans 72

Overview of the C API Basic Interface

5.4.49 MySOl_lISt tADIES() covvuiiiiiiiiie e 72
5.4.50 MYSQl_MOIE_TESUIIS() «ovuueeiriiei et e e e e e e e e e e e et e e e eanas 73
5.4.51 MYSOlL NEXE FESUI() . .evernieii et e e e e 73
5.4.52 Mysql_NUM_FIEIAS() c.vuniiiiieii e 75
5.4.53 MYSOL NUM_TOWS() - .eettiiiiieiiii et e e e e e e e e et e e e e e et e e et e e et e e e e eat e e et e eeanaaees 76
Y A 491 VETo | o L1 [T T (S 76
5.4.55 MYSOl OPtONSA() oivuniiiiieii et e e e e e 84
5.4.56 MYSOL PING() otvnneritiiiiieiie et e et e e e e e e e a e r e aa e aaa 86
S A 401V To | e 18 1=/ P 86
5.4.58 MySQl_real _CONNECL() ...ivvuiiiiieiii e e e e e e e e e e e e e e eaen 87
5.4.59 mysql_real _conneCt dNS_SIV() ...ccuuiiiiiiiiie e e 91
5.4.60 mysql_real _eSCape _StNG() ..eevrieernieiiiei e 92
5.4.61 mysql_real_escape_String_ QUOLE()uueirreiiiieeii e e e e 94
o Gy 0\ To | I =T Lo [V T=T o TN 95
5.4.63 MYSOl IefTESN() ..ovuiiiii i 96
7 401V | I =1 (o = o 1 PP 97
5.4.65 MySQgl_reSet_CONNECHON() ...ivvuieiii i e e e e e e e e e e e eaaeees 98
5.4.66 mysqgl_reset_server_public_KeY()cocouiiiiiiiii i 98
5.4.67 mysql_result_ metadatal)oeiuiiiiiiie e 99
5.4.68 MYSAl_TOIDACK() ..unieeniiiii i e 99
5.4.69 MYSOlL TOW_SEEK() +evuuiirneiin ettt et e et e et r e e e e e e e e e e et e e e e e e et e e e aaa s 99
L O 401V To | 01 VA (= L 100
5.4.71 MySql_SEIECL dB() «.vuniiiiiii i 100
5.4.72 MYSOl_SEIVET_ENA() oivvuiiieiii et e e 101
0 01V To [ST Y= G 1 P 101
5.4.74 mysql_session_track get firSt()cooviriiiiiiiii 102
5.4.75 mysql_session_track get NEXI()ccuuieiiiiiiiii i 107
5.4.76 mysql_Set _CharacCter_SE()couueiiueiii e e 107
5.4.77 mysql_set_local_infile_default()ccoiimiiiiiii 108
5.4.78 mysqgl_set_local_infile_handler()cooooeieiii e 108
5.4.79 mysSql_Set_SErVer _OPLION() ...u.evuueeiueeiiie e e e e e e e e e e e e e e e e e e r e 109
5.4.80 MySOl_SHULAOWN() 1.vnniiiieii e e e e e e e e e e e e aans 110
S A 01 VAo | =T |55 €= L (=) 111
5.4.82 MYSOL_SSI SEI() orvuniiiiieiii e 112
LS T 40V To | =) = L PP 113
5.4.84 MYSOl_SIOr€ FESUIL() ..vuieeneeiieii et e e e e e e e e e e e e e e et e e et e et 113
5.4.85 MySOl_thread Qd()ueeeneiiiei e e 115
5.4.86 MYSOl_USE_FESUI() evvuieiiieiii et e e e e e e e e e e e et e e e e ean s 115
5.4.87 mMySql_WarNiNg_COUNT() ...euuiirteiiieeie et e e e e e e e e e e e e e et e e et e e et eeaneeaens 116

This chapter describes the set of MySQL C API “basic” interface. For the most part, this interface
comprises the original set of C API data structures and functions to handle client/server interaction,
before others were invented for more specialized purposes (such as prepared-statement handling).
Other chapters describe more those more specialized data structures and functions.

5.1 Overview of the C API Basic Interface

Application programs should use this general outline for interacting with MySQL by means of the client
library:

1. Initialize the MySQL client library by calling nysql i brary_init().

2. Initialize a connection handler by calling nysql _i ni t () and connect to the server by calling a
connection-establishment function such as nysql _real connect ().

3. Issue SQL statements and process their results. (The following discussion provides more
information about how to do this.)

4. Close the connection to the MySQL server by calling nysqgl _cl ose().

32

Overview of the C API Basic Interface

5. End use of the MySQL client library by calling mysqgl |ibrary_end().

The purpose of calling mysqgl _library init() andnysql |ibrary end() isto provide proper
initialization and finalization of the MySQL client library. For applications that are linked with the client
library, they provide improved memory management. If you do not call mysqgl i brary_end(),

a block of memory remains allocated. (This does not increase the amount of memory used by the
application, but some memory leak detectors will complain about it.)

In a nonmultithreaded environment, the callto nysql _|i brary_init () may be omitted, because
nysql _i nit () will invoke it automatically as necessary. However, nysql _library_init() is
not thread-safe in a multithreaded environment, and thus neither is mysql _i ni t (), which calls
nysql _library_init().Youmusteithercallmysql _|ibrary_init() priorto spawning any
threads, or else use a mutex to protect the call, whether you invoke mysql library init() or
indirectly through nmysql _i ni t () . This should be done prior to any other client library call.

To connect to the server, call mysql _i ni t () to initialize a connection handler, then call a connection-
establishment function such as nysql _real connect () with that handler (along with other
information such as the host name, user name, and password). When you are done with the
connection, call mysqgl _cl ose() to terminate it. Do not use the handler after it has been closed.

Upon connection, nysql _real connect () setsthereconnect flag (part of the MYSQL structure)
to a value of 0. You can use the MYSQL_OPT_RECONNECT option (deprecated) to nysql _opti ons()
to control reconnection behavior. Setting the flag to 1 cause the client to attempt reconnecting to the
server before giving up if a statement cannot be performed because of a lost connection.

Note

The automatic reconnection feature (Section 3.6.8, “Automatic Reconnection
Control”) is deprecated and subject to removal in a future release of MySQL.

While a connection is active, the client may send SQL statements to the server using

nysqgl real query() ornysqgl query(). The difference between the two is that nysqgl _query()
expects the query to be specified as a null-terminated string whereas nysql real query() expects
a counted string. If the string contains binary data (which may include null bytes), you must use

nysqgl _real query().

For each non-SELECT query (for example, | NSERT, UPDATE, DELETE), you can find out how many
rows were changed (affected) by calling mysql affected rows().

For SELECT queries, you retrieve the selected rows as a result set. (Note that some statements are
SELECT-like in that they return rows. These include SHOW DESCRI BE, and EXPLAI N. Treat these
statements the same way as SELECT statements.)

There are two ways for a client to process result sets. One way is to retrieve the entire result set all at
once by calling nysql _store_resul t (). This function acquires from the server all the rows returned
by the query and stores them in the client. The second way is for the client to initiate a row-by-row
result set retrieval by calling mysqgl _use_resul t (). This function initializes the retrieval, but does not
actually get any rows from the server.

In both cases, you access rows by calling mysqgl _fetch_row().With mysqgl _store_result(),
nysqgl fetch row() accesses rows that have previously been fetched from the server. With

nysqgl use result(),nysql _fetch row() actually retrieves the row from the server. Information
about the size of the data in each row is available by calling nysql _fetch_I engt hs().

After you are done with a result set, call nysql _free_resul t () to free the memory used for it.

The two retrieval mechanisms are complementary. Choose the approach that is most appropriate for
each client application. In practice, clients tend to use nysql _store_resul t () more commonly.

An advantage of mysql _store_resul t () isthat because the rows have all been fetched to the
client, you not only can access rows sequentially, you can move back and forth in the result set using

33

https://dev.mysql.com/doc/refman/9.6/en/select.html
https://dev.mysql.com/doc/refman/9.6/en/insert.html
https://dev.mysql.com/doc/refman/9.6/en/update.html
https://dev.mysql.com/doc/refman/9.6/en/delete.html
https://dev.mysql.com/doc/refman/9.6/en/select.html
https://dev.mysql.com/doc/refman/9.6/en/select.html
https://dev.mysql.com/doc/refman/9.6/en/show.html
https://dev.mysql.com/doc/refman/9.6/en/describe.html
https://dev.mysql.com/doc/refman/9.6/en/explain.html
https://dev.mysql.com/doc/refman/9.6/en/select.html

C API Basic Data Structures

nysqgl dat a_seek() ornysqgl row seek() to change the current row position within the result set.
You can also find out how many rows there are by calling nysqgl _num r ows() . On the other hand,
the memory requirements for nysql _store_resul t () may be very high for large result sets and you
are more likely to encounter out-of-memory conditions.

An advantage of mysql _use_resul t () is that the client requires less memory for the result

set because it maintains only one row at a time (and because there is less allocation overhead,

nmysqgl _use_resul t () can be faster). Disadvantages are that you must process each row quickly to
avoid tying up the server, you do not have random access to rows within the result set (you can only
access rows sequentially), and the number of rows in the result set is unknown until you have retrieved
them all. Furthermore, you must retrieve all the rows even if you determine in mid-retrieval that you've
found the information you were looking for.

The APl makes it possible for clients to respond appropriately to statements (retrieving rows
only as necessary) without knowing whether the statement is a SELECT. You can do this by
calling nysql _store_resul t () after eachnysql _real _query() (ornysqgl _query()).
If the result set call succeeds, the statement was a SELECT and you can read the rows. If the
result set call fails, call mysqgl _fi el d_count () to determine whether a result was actually
to be expected. If mysql _fi el d_count () returns zero, the statement returned no data
(indicating that it was an | NSERT, UPDATE, DELETE, and so forth), and was not expected to
return rows. If mysql _fi el d_count () is nonzero, the statement should have returned rows,
but did not. This indicates that the statement was a SELECT that failed. See the description for
nysql _fiel d_count () for an example of how this can be done.

Both nysql store result() and mysqgl use result () enable you to obtain information about
the fields that make up the result set (the number of fields, their names and types, and so forth). You
can access field information sequentially within the row by calling nysql _fetch _fiel d() repeatedly,
or by field number within the row by calling nysql _fetch _field direct (). The current field
cursor position may be changed by calling mysqgl _fi el d_seek() . Setting the field cursor affects
subsequent calls to mysql _fetch_fiel d().You can also getinformation for fields all at once by
calling nysqgl _fetch_fields().

For detecting and reporting errors, MySQL provides access to error information by means of the
nysqgl _errno() andnysql error () functions. These return the error code or error message for
the most recently invoked function that can succeed or fail, enabling you to determine when an error
occurred and what it was.

5.2 C API Basic Data Structures

This section describes C API data structures other than those used for prepared statements,

the asynchronous interface, or the replication stream interface. For information about those, see
Section 6.2, “C API Prepared Statement Data Structures”, Section 7.2, “C API Asynchronous Interface
Data Structures”, and Section 10.2, “C API Binary Log Data Structures”.

. MYSQL

This structure represents the handler for one database connection. It is used for almost all MySQL
functions. Do not try to make a copy of a MYSQL structure. There is no guarantee that such a copy
will be usable.

« MYSQL_RES

This structure represents the result of a query that returns rows (SELECT, SHOW DESCRI BE,
EXPLAI N). The information returned from a query is called the result set in the remainder of this
section.

« MYSQL_ROW

This is a type-safe representation of one row of data. It is currently implemented as an array of
counted byte strings. (You cannot treat these as null-terminated strings if field values may contain

34

https://dev.mysql.com/doc/refman/9.6/en/select.html
https://dev.mysql.com/doc/refman/9.6/en/select.html
https://dev.mysql.com/doc/refman/9.6/en/insert.html
https://dev.mysql.com/doc/refman/9.6/en/update.html
https://dev.mysql.com/doc/refman/9.6/en/delete.html
https://dev.mysql.com/doc/refman/9.6/en/select.html
https://dev.mysql.com/doc/refman/9.6/en/select.html
https://dev.mysql.com/doc/refman/9.6/en/show.html
https://dev.mysql.com/doc/refman/9.6/en/describe.html
https://dev.mysql.com/doc/refman/9.6/en/explain.html

C API Basic Data Structures

binary data, because such values may contain null bytes internally.) Rows are obtained by calling
nmysql _fetch_row).

* MYSQL_FI ELD

This structure contains metadata: information about a field, such as the field's name, type, and size.
Its members are described in more detail later in this section. You may obtain the MYSQL_FI ELD
structures for each field by calling nysql _fetch fiel d() repeatedly. Field values are not part of
this structure; they are contained in a MYSQL_ ROWstructure.

» MYSQL_FI ELD_OFFSET

This is a type-safe representation of an offset into a MySQL field list. (Used by
nysql field seek().) Offsets are field numbers within a row, beginning at zero.

* my_ul ongl ong

A type used for 64-bit unsigned integers. The ny_ul ongl ong type was used before MySQL 8.0.18.
As of MySQL 8.0.18, use the ui nt 64_t C type instead.

* mmy_bool

A boolean type, for values that are true (nonzero) or false (zero). The nmy_bool type was used
before MySQL 8.0. As of MySQL 8.0, use the bool ori nt C type instead.

Note

The change from nmy_bool to bool means that the nysql . h header file
requires a C++ or C99 compiler to compile.

The MYSQL_FI ELD structure contains the members described in the following list. The definitions apply
primarily for columns of result sets such as those produced by SELECT statements. MYSQL_FI ELD
structures are also used to provide metadata for OUT and | NOUT parameters returned from stored
procedures executed using prepared CALL statements. For such parameters, some of the structure
members have a meaning different from the meaning for column values.

Tip

To view the MYSQL_FI ELD member values for result sets interactively, start
the nysql client with the - - col unn-t ype- i nf o option, then execute some
sample queries.

e char * nane

The name of the field, as a null-terminated string. If the field was given an alias with an AS clause,
the value of nane is the alias. For a procedure parameter, the parameter name.

e char * org_nane

The name of the field, as a null-terminated string. Aliases are ignored. For expressions, the value is
an empty string. For a procedure parameter, the parameter name.

e char * table

The name of the table containing this field, if it is not a calculated field. For calculated fields, the

t abl e value is an empty string. If the column is selected from a view, t abl e names the view. If the
table or view was given an alias with an AS clause, the value of t abl e is the alias. For a UNI ON, the
value is the empty string. For a procedure parameter, the procedure name.

e char * org_table

The name of the table, as a null-terminated string. Aliases are ignored. If the column is selected from
aview, or g_t abl e names the view. If the column is selected from a derived table, or g_t abl e

35

https://dev.mysql.com/doc/refman/9.6/en/select.html
https://dev.mysql.com/doc/refman/9.6/en/call.html
https://dev.mysql.com/doc/refman/9.6/en/mysql-command-options.html#option_mysql_column-type-info
https://dev.mysql.com/doc/refman/9.6/en/union.html

C API Basic Data Structures

names the base table. If a derived table wraps a view, or g_t abl e still names the base table. If the
column is an expression, or g_t abl e is the empty string. For a UNI ON, the value is the empty string.
For a procedure parameter, the value is the procedure name.

char * db

The name of the database that the field comes from, as a null-terminated string. If the field is a
calculated field, db is an empty string. For a UNI ON, the value is the empty string. For a procedure
parameter, the name of the database containing the procedure.

char * catal og
The catalog name. This value is always " def " .
char * def

The default value of this field, as a null-terminated string. This is set only if you use
mysql _list fields().

unsi gned | ong | ength
The width of the field. This corresponds to the display length, in bytes.

The server determines the | engt h value before it generates the result set, so this is the minimum
length required for a data type capable of holding the largest possible value from the result column,
without knowing in advance the actual values that will be produced by the query for the result set.

For string columns, the | engt h value varies on the connection character set. For example, if the
character setis | ati nl, a single-byte character set, the | engt h value for a SELECT ' abc' query
is 3. If the character set is ut f 8nb4, a multibyte character set in which characters take up to 4 bytes,
the | engt h value is 12.

unsi gned | ong max_| ength

The maximum width of the field for the result set (the length in bytes of the longest field value for the
rows actually in the result set). If you use nysql _store_result() ormysqgl _list_fields(),
this contains the maximum length for the field. If you use nysqgl _use_resul t (), the value of this
variable is zero.

The value of max_| engt h is the length of the string representation of the values in the result set. For
example, if you retrieve a FLOAT column and the “widest” value is - 12. 345, max_| engt h is 7 (the
length of ' - 12. 345").

If you are using prepared statements, nax_| engt h is not set by default because for the binary
protocol the lengths of the values depend on the types of the values in the result set. (See
Section 6.2, “C API Prepared Statement Data Structures”.) If you want the nax_| engt h values
anyway, enable the STMI_ATTR UPDATE_NMAX_ LENGTH option with mysqgl _stnt _attr_set ()
and the lengths will be set when you call mysqgl _stnt _store result().(See Section 6.4.3,
“mysql_stmt_attr_set()”, and Section 6.4.29, “mysql_stmt_store_result()".)

unsi gned int nane_l ength

The length of nane.

unsi gned int org name_| ength
The length of or g_nane.

unsigned int table |length
The length of t abl e.

unsigned int org table length

36

https://dev.mysql.com/doc/refman/9.6/en/union.html
https://dev.mysql.com/doc/refman/9.6/en/union.html
https://dev.mysql.com/doc/refman/9.6/en/floating-point-types.html

C API Basic Data Structures

The length of or g_t abl e.

unsigned int db_length

The length of db.

unsi gned int catal og_l ength

The length of cat al og.

unsigned int def _length

The length of def .

unsigned int flags

Bit-flags that describe the field. The f | ags value may have zero or more of the bits set that are

shown in the following table.

Flag Value

Flag Description

NOT_NULL_FLAG

Field cannot be NULL

PRI _KEY_FLAG

Field is part of a primary key

UNI QUE_KEY_FLAG

Field is part of a unique key

MULTI PLE_KEY_FLAG

Field is part of a nonunique key

UNSI GNED_FLAG

Field has the UNSI GNED attribute

ZERCFI LL_FLAG

Field has the ZEROFI LL attribute

Bl NARY_FLAG Field has the Bl NARY attribute

AUTO | NCREMENT _FLAG Field has the AUTO | NCRENMENT attribute
ENUM_FLAG Field is an ENUM

SET_FLAG Field is a SET

BLOB FLAG Field is a BLOB or TEXT (deprecated)

TI MESTAMP_FLAG Field is a TI MESTAMP (deprecated)
NUM_FLAG Field is numeric; see additional notes following

table

NO DEFAULT_VALUE_FLAG

Field has no default value; see additional notes
following table

Some of these flags indicate data type information and are superseded by or used in conjunction
with the MYSQL_TYPE xxx value in the fi el d- >t ype member described later:

e To check for BLOB or TI MESTAMP values, check whether t ype is MYSQL_TYPE_BLOB or
MYSQL_TYPE_TI MESTAMP. (The BLOB_FLAGand TI MESTAVMP_FLAGflags are unneeded.)

« ENUMand SET values are returned as strings. For these, check that the t ype value is
MYSQL_TYPE_STRI NGand that the ENUM FLAGor SET_FLAGflag is set in the f | ags value.

NUM FLAG indicates that a column is numeric. This includes columns with a type of
MYSQL_TYPE_DECI MAL, MYSQL_TYPE_NEWDECI MAL, MYSQL_TYPE_TI NY, MYSQL_TYPE_SHORT,

37

https://dev.mysql.com/doc/refman/9.6/en/enum.html
https://dev.mysql.com/doc/refman/9.6/en/set.html
https://dev.mysql.com/doc/refman/9.6/en/blob.html
https://dev.mysql.com/doc/refman/9.6/en/blob.html
https://dev.mysql.com/doc/refman/9.6/en/datetime.html
https://dev.mysql.com/doc/refman/9.6/en/blob.html
https://dev.mysql.com/doc/refman/9.6/en/datetime.html
https://dev.mysql.com/doc/refman/9.6/en/enum.html
https://dev.mysql.com/doc/refman/9.6/en/set.html

C API Basic Data Structures

MYSQL_TYPE_LONG, MYSQL_TYPE_FLOAT, MYSQL_TYPE_DOUBLE, MYSQL_TYPE_NULL,
MYSQL_TYPE_LONGLONG, MYSQL_TYPE_I NT24, and MYSQL_TYPE_YEAR.

NO DEFAULT_VALUE FLAGi ndicates that a column has no DEFAULT clause in its definition.
This does not apply to NULL columns (because such columns have a default of NULL), or to
AUTO | NCREMENT columns (which have an implied default value).

The following example illustrates a typical use of the f | ags value:

if (field->flags & NOT_NULL_FLAG
printf("Field cannot be null\n");

You may use the convenience macros shown in the following table to determine the boolean status
of the f | ags value.

Flag Status Description

'S NOT_NULL(fI ags) True if this field is defined as NOT NULL

IS PRI _KEY(fl ags) True if this field is a primary key

IS BLOB(fl ags) True if this field is a BLOB or TEXT (deprecated;
testfi el d- >t ype instead)

unsi gned int decinmals

The number of decimals for numeric fields, and the fractional seconds precision for temporal fields.

unsi gned int charsetnr
An ID number that indicates the character set/collation pair for the field.

Normally, character values in result sets are converted to the character set indicated by the
character_set resul ts system variable. In this case, char set nr corresponds to the
character set indicated by that variable. Character set conversion can be suppressed by setting
character_set resultstoNULL. Inthis case, char set nr corresponds to the character set of
the original table column or expression. See also Connection Character Sets and Collations.

To distinguish between binary and nonbinary data for string data types, check whether the

char set nr value is 63. If so, the character set is bi nar y, which indicates binary rather than
nonbinary data. This enables you to distinguish Bl NARY from CHAR, VARBI NARY from VARCHAR, and
the BLOB types from the TEXT types.

char set nr values are the same as those displayed in the | d column of the SHOW COLLATI ON
statement or the | D column of the | NFORVATI ON_ SCHEMA COLLATI ONS table. You can use those
information sources to see which character set and collation specific char set nr values indicate:

nysqgl > SHOW COLLATI ON WHERE | d = 63;

dfocccooooooo dfcccooocooo dfocccoqmoooooooo dfoccooooooo dfcccooocooo +
| Collation | Charset | Id | Default | Conpiled | Sortlen |
dfocccooooooo dfcccooocooo dfocccoqmoooooooo dfoccooooooo dfcccooocooo +
| binary | binary | 63 | Yes | Yes | 1|
dfocccooooooo dfcccooocooo dfocccoqmoooooooo dfoccooooooo dfcccooocooo +

nysql > SELECT COLLATI ON_NAMVE, CHARACTER SET NAVE
FROM | NFORMATI ON_SCHEMA. COLLATI ONS WHERE | D = 33;

doococcococcooocooo doococcooocococoooooo +
| COLLATI ON_NAME | CHARACTER SET_NAME |
doococcococcooocooo doococcooocococoooooo +
| utf8_general _ci | utf8 |
doococcococcooocooo doococcooocococoooooo +

38

https://dev.mysql.com/doc/refman/9.6/en/blob.html
https://dev.mysql.com/doc/refman/9.6/en/blob.html
https://dev.mysql.com/doc/refman/9.6/en/server-system-variables.html#sysvar_character_set_results
https://dev.mysql.com/doc/refman/9.6/en/server-system-variables.html#sysvar_character_set_results
https://dev.mysql.com/doc/refman/9.6/en/charset-connection.html
https://dev.mysql.com/doc/refman/9.6/en/binary-varbinary.html
https://dev.mysql.com/doc/refman/9.6/en/char.html
https://dev.mysql.com/doc/refman/9.6/en/binary-varbinary.html
https://dev.mysql.com/doc/refman/9.6/en/char.html
https://dev.mysql.com/doc/refman/9.6/en/blob.html
https://dev.mysql.com/doc/refman/9.6/en/blob.html
https://dev.mysql.com/doc/refman/9.6/en/show-collation.html
https://dev.mysql.com/doc/refman/9.6/en/information-schema-collations-table.html

C API Basic Function Reference

e enumenum field_types type

The type of the field. The t ype value may be one of the MYSQL_TYPE _ symbols shown in the

following table.

Type Value Type Description
MYSQL_TYPE_TI NY TI NYI NT field
MYSQL_TYPE_SHORT SMALLI NT field
MYSQL_TYPE_LONG I NTEGER field
MYSQL_TYPE_ | NT24 VEDI UM NT field
MYSQL_TYPE_LONGLONG Bl G NT field

MYSQL_TYPE_DECI MAL

DECI VAL or NUMVERI Cfield

MYSQL_TYPE_NEWDEC! MAL

Precision math DECI MAL or NUVERI C

MYSQL_TYPE_FLOAT FLOAT field
MYSQL_TYPE_DOUBLE DOUBLE or REAL field
MYSQL_TYPE_BI T BI T field
MYSQL_TYPE_TI MESTAMP TI MESTAMP field
MYSQL_TYPE_DATE DATE field
MYSQL_TYPE_TI ME Tl VE field
MYSQL_TYPE_DATETI ME DATETI ME field
MYSQL_TYPE_YEAR YEAR field

MYSQL_TYPE_STRI NG

CHAR or BI NARY field

MYSQL_TYPE_VAR _STRI NG

VARCHAR or VARBI NARY field

MYSQL_TYPE_BLOB

BLOB or TEXT field (use max_I| engt h to
determine the maximum length)

MYSQL_TYPE_SET SET field
MYSQL_TYPE_ENUM ENUMfield
MYSQL_TYPE_GEOVETRY Spatial field

MYSQL_TYPE_NULL

NUL L-type field

The MYSQL_TYPE_TI ME2, M\YSQL_TYPE_DATETI ME2, and MYSQL_TYPE_TI MESTAMP2) type codes

are used only on the server side. Clients see the MYSQL_TYPE_TI ME, M\YSQL_TYPE DATETI ME,
and MYSQL_TYPE_TI MESTAMP codes.

You can use the | S_NUM') macro to test whether a field has a numeric type. Pass the t ype value
tol S NUM) and it evaluates to TRUE if the field is numeric:

if (IS NUMfield->type))

printf("Field is nuneric\n");

ENUMand SET values are returned as strings. For these, check that the t ype value is
MYSQL_TYPE_STRI NGand that the ENUM FLAGor SET_FLAGflag is set in the f | ags value.

5.3 C API Basic Function Reference

The following table summarizes the functions available in the C API basic interface. For greater detalil,
see the descriptions in Section 5.4, “C API Basic Function Descriptions”.

39

https://dev.mysql.com/doc/refman/9.6/en/integer-types.html
https://dev.mysql.com/doc/refman/9.6/en/integer-types.html
https://dev.mysql.com/doc/refman/9.6/en/integer-types.html
https://dev.mysql.com/doc/refman/9.6/en/integer-types.html
https://dev.mysql.com/doc/refman/9.6/en/integer-types.html
https://dev.mysql.com/doc/refman/9.6/en/fixed-point-types.html
https://dev.mysql.com/doc/refman/9.6/en/fixed-point-types.html
https://dev.mysql.com/doc/refman/9.6/en/fixed-point-types.html
https://dev.mysql.com/doc/refman/9.6/en/fixed-point-types.html
https://dev.mysql.com/doc/refman/9.6/en/floating-point-types.html
https://dev.mysql.com/doc/refman/9.6/en/floating-point-types.html
https://dev.mysql.com/doc/refman/9.6/en/floating-point-types.html
https://dev.mysql.com/doc/refman/9.6/en/bit-type.html
https://dev.mysql.com/doc/refman/9.6/en/datetime.html
https://dev.mysql.com/doc/refman/9.6/en/datetime.html
https://dev.mysql.com/doc/refman/9.6/en/time.html
https://dev.mysql.com/doc/refman/9.6/en/datetime.html
https://dev.mysql.com/doc/refman/9.6/en/year.html
https://dev.mysql.com/doc/refman/9.6/en/char.html
https://dev.mysql.com/doc/refman/9.6/en/binary-varbinary.html
https://dev.mysql.com/doc/refman/9.6/en/char.html
https://dev.mysql.com/doc/refman/9.6/en/binary-varbinary.html
https://dev.mysql.com/doc/refman/9.6/en/blob.html
https://dev.mysql.com/doc/refman/9.6/en/blob.html
https://dev.mysql.com/doc/refman/9.6/en/set.html
https://dev.mysql.com/doc/refman/9.6/en/enum.html
https://dev.mysql.com/doc/refman/9.6/en/enum.html
https://dev.mysql.com/doc/refman/9.6/en/set.html

C API Basic Function Reference

Table 5.1 C API Basic Interface Functions

result set has been read

Name Description Deprecated
nysql _af fected_rows() Number of rows changed/
deleted/inserted by last UPDATE,
DELETE, or | NSERT statement
mysql _aut ocommit () Set autocommit mode
mysql _bi nd_paran() Define query attributes for next
statement executed
mysqgl change_user () Change user and database on
an open connection
nysql _char act er _set _nane(|)Default character set name for
current connection
mysql _cl ose() Close connection to server
mysqgl _commit () Commit transaction
mysqgl _connect () Connect to MySQL server Yes
nysql _create_db() Create database Yes
mysql _data_seek() Seek to arbitrary row number in
query result set
mysql _debug() Perform DBUG_PUSH with given
string
mysql _drop_db() Drop database Yes
nysql _dunp_debug_i nfo() |Cause server to write debug
information to error log
mysql _eof () Determine whether last row of Yes

mysqgl _errno()

Error number for most recently
invoked MySQL function

nysql _error()

Error message for most recently
invoked MySQL function

mysqgl _escape_string()

Escape special characters in
string for use in SQL statement

mysql _fetch_field()

Type of the next table field

mysqgl _fetch field direct(

Table field type for given field
number

mysqgl _fetch fields()

Return array of all field structures

mysqgl _fetch_| engths()

Return lengths of all columns in
current row

mysql _fetch_row()

Fetch next result set row

mysqgl field count()

Number of result columns for
most recent statement

nysql _field_seek()

Seek to column within result set
row

mysqgl _field tell()

Field position for last
nysql _fetch_field() call

mysql _free_ result()

Free result set memory

mysqgl _free_ssl _session_da

tRigpose of session

data handle from last

40

https://dev.mysql.com/doc/refman/9.6/en/update.html
https://dev.mysql.com/doc/refman/9.6/en/delete.html
https://dev.mysql.com/doc/refman/9.6/en/insert.html

C API Basic Function Reference

Name Description Deprecated
mysqgl _get ssl _session_datia()
call

mysqgl get character_set i fifhfofiation about default
character set

mysqgl _get _client _info() |Clientversion (string)

mysqgl get client _versi on()Client version (integer)

mysqgl get host i nfo() Information about the connection

mysqgl _get _option() Value of anysql _options()
option

mysqgl _get _proto_info() Protocol version used by the
connection

mysqgl get _server _info() |Serverversion number (string)

mysqgl _get server _versi on()Server version humber (integer)

mysqgl _get _ssl _ci pher () Current SSL cipher

mysqgl _get _ssl _sessi on_dat @geturn session data for SSL-
enabled connection

mysqgl get _ssl _sessi on_r euddtéther a session is reused

mysqgl _hex_string() Encode string in hexadecimal
format

mysqgl _info() Information about most recently
executed statement

mysqgl _init() Get or initialize a MYSQL
structure

mysqgl _insert _id() ID generated for an
AUTO | NCREMENT column by
previous statement

nysql _kill() Kill a thread Yes

nysql _li brary_end() Finalize MySQL C API library

mysqgl _library init() Initialize MySQL C API library

mysqgl _|ist_dbs() Return database names
matching regular expression

mysqgl list fields() Return field names matching Yes
regular expression

mysqgl |ist_processes() List of current server threads Yes

mysqgl _|ist_tables()

Return table names matching
regular expression

mysql _nore_resul ts()

Check whether more results exist

mysqgl _next _result()

Return/initiate next result in
multiple-result execution

nysql _num fiel ds()

Number of columns in result set

mysqgl _num rows()

Number of rows in result set

mysql _options()

Set option prior to connecting

mysql _options4()

Set option prior to connecting

mysql _pi ng()

Ping server

mysql _query()

Execute statement

41

C API Basic Function Reference

Name Description Deprecated
mysql _real connect () Connect to MySQL server
mysqgl real connect dns_srMEgnnect to MySQL server using
DNS SRV record
mysqgl real escape_string()Encode special characters in
statement string
mysqgl real escape_string_ (Enwoeg)special characters in
statement string accounting for
quoting context
mysql _real _query() Execute statement
mysqgl _refresh() Flush or reset tables and caches |Yes
mysqgl _rel oad() Reload grant tables Yes
mysqgl _reset _connection() |Resetthe connection to clear
session state
mysql _reset _server_publ i c|®eal gached RSA public key
from client library
mysqgl result_netadata() |Whether a result set has
metadata
mysql _rol | back() Roll back transaction
mysqgl _row _seek() Seek to row offset in result set
mysql _row tell () Current position within result set
row
mysql _sel ect _db() Select database
nysql _server _end() Finalize MySQL C API library Yes
mysqgl _server _init() Initialize MySQL C API library Yes
mysql _session_track_get f|Rirst part of session state-change
information
mysqgl session_track get ngNext)part of session state-
change information
mysqgl set character_set ()|Set current connection default
character set
mysqgl _set _local _infile_ defSatlt@AD DATA LOCAL handler
callbacks to default values
mysql _set | ocal _infile_hapdstall @pplication-specific LOAD
DATA LOCAL handler callbacks
mysqgl set _server _option()|Setoption for current connection
mysql _shut down() Shut down MySQL server Yes
mysql _sql state() SQLSTATE value for most
recently invoked MySQL function
mysql _ssl _set () Prepare to establish SSL Yes

connection to server

mysqgl _stat ()

Server status

mysqgl _store_result()

Retrieve and store entire result
set

Current thread ID

nmysqgl _thread_id()

42

https://dev.mysql.com/doc/refman/9.6/en/load-data.html
https://dev.mysql.com/doc/refman/9.6/en/load-data.html
https://dev.mysql.com/doc/refman/9.6/en/load-data.html

C API Basic Function Descriptions

Name Description Deprecated
mysql _use_result() Initiate row-by-row result set

retrieval
mysqgl _war ni ng_count () Warning count for previous

statement

5.4 C API Basic Function Descriptions

This section describes C API functions other than those used for prepared statements, the
asynchronous interface, or the replication stream interface. For information about those, see
Section 6.4, “C API Prepared Statement Function Descriptions”, Chapter 7, C APl Asynchronous
Interface, and Chapter 10, C API Binary Log Interface.

In the descriptions here, a parameter or return value of NULL means NULL in the sense of the C
programming language, not a MySQL NULL value.

Functions that return a value generally return a pointer or an integer. Unless specified otherwise,
functions returning a pointer return a non-NULL value to indicate success or a NULL value to indicate
an error, and functions returning an integer return zero to indicate success or nonzero to indicate an
error. Note that “nonzero” means just that. Unless the function description says otherwise, do not test
against a value other than zero:

if (result) /* correct */
. error ...

if (result < 0) /* incorrect */
. error ...

if (result == -1) /* incorrect */

. error ...

When a function returns an error, the Errors subsection of the function description lists the possible
types of errors. You can find out which of these occurred by calling mysql _errno() . A string
representation of the error may be obtained by calling mysql _error ().

5.4.1 mysql_affected_rows()

ui nt 64_t
nmysql _affected_rows(MYSQL *nysql)

Description

nysql _af fect ed_r ows() may be called immediately after executing a statement with

nysql _real _query() ornmysqgl _query(). It returns the number of rows changed, deleted, or
inserted by the last statement if it was an UPDATE, DELETE, or | NSERT. For SELECT statements,
nysql _af fect ed_rows() works like nysqgl _num rows().

For UPDATE statements, the affected-rows value by default is the number of rows actually changed. If
you specify the CLI ENT_FOUND_ROWS flag to mysql _real connect () when connecting to nysql d,
the affected-rows value is the number of rows “found”; that is, matched by the WHERE clause.

For REPLACE statements, the affected-rows value is 2 if the new row replaced an old row, because in
this case, one row was inserted after the duplicate was deleted.

For | NSERT ... ON DUPLI CATE KEY UPDATE statements, the affected-rows value per row is 1 if
the row is inserted as a new row, 2 if an existing row is updated, and O if an existing row is set to its
current values. If you specify the CLI ENT_FOUND_ROWS flag, the affected-rows value is 1 (not 0) if an
existing row is set to its current values.

Following a CALL statement for a stored procedure, nysql _af fected_rows() returns the value
that it would return for the last statement executed within the procedure, or 0 if that statement would

43

https://dev.mysql.com/doc/refman/9.6/en/update.html
https://dev.mysql.com/doc/refman/9.6/en/delete.html
https://dev.mysql.com/doc/refman/9.6/en/insert.html
https://dev.mysql.com/doc/refman/9.6/en/select.html
https://dev.mysql.com/doc/refman/9.6/en/update.html
https://dev.mysql.com/doc/refman/9.6/en/replace.html
https://dev.mysql.com/doc/refman/9.6/en/insert-on-duplicate.html
https://dev.mysql.com/doc/refman/9.6/en/call.html

mysql_autocommit()

return - 1. Within the procedure, you can use ROW COUNT() at the SQL level to obtain the affected-
rows value for individual statements.

nysqgl _af fected rows() returns a meaningful value for a wide range of statements. For details,
see the description for ROW COUNT() in Information Functions.

Return Values

Errors

An integer greater than zero indicates the number of rows affected or retrieved. Zero indicates that no
records were updated for an UPDATE statement, no rows matched the WHERE clause in the query or
that no query has yet been executed. -1 indicates that the query returned an error or that, for a SELECT
query, nysql _af fected rows() was called prior to calling nysql _store result().

Because nysql _af fect ed_rows() returns an unsigned value, you can check for -1 by comparing
the return value to (ui nt 64_t) -1 (orto (ui nt 64_t) ~0, which is equivalent).

None.

Example

char *stnmt = "UPDATE products SET cost=cost*1. 25
WHERE gr oup=10";
nmysql _query(&rysql ,stnt);
printf("%d products updated",
(long) nysql _affected_rows(&mrysql));

5.4.2 mysql_autocommit()

bool
nysql _aut oconmi t (MYSQ. *nysql ,
bool node)
Description

Sets autocommit mode on if node is 1, off if rode is 0.

Return Values

Errors

Zero for success. Nonzero if an error occurred.

None.

5.4.3 mysql_bind_param()

bool

nmysql _bi nd_param(MYSQL *nysql ,
unsi gned n_par ans,
MYSQL_BI ND *bi nd,
const char **nane)

Description

nysqgl _bi nd_paran{), available as of MySQL 8.0.23, enables defining attributes that apply to the
next query sent to the server. For discussion of the purpose and use of query attributes, see Query
Attributes.

Attributes defined with mysql _bi nd_par am() apply to nonprepared statements executed in

blocking fashion with mysqgl real query() ornysql query(), orin nonblocking fashion with
nysqgl _real query_nonbl ocki ng() . Attributes do not apply to prepared statements executed with
mysql _stnt _execute().

44

https://dev.mysql.com/doc/refman/9.6/en/information-functions.html#function_row-count
https://dev.mysql.com/doc/refman/9.6/en/information-functions.html#function_row-count
https://dev.mysql.com/doc/refman/9.6/en/information-functions.html
https://dev.mysql.com/doc/refman/9.6/en/update.html
https://dev.mysql.com/doc/refman/9.6/en/select.html
https://dev.mysql.com/doc/refman/9.6/en/query-attributes.html
https://dev.mysql.com/doc/refman/9.6/en/query-attributes.html

mysql_bind_param()

If multiple mysql _bi nd_par an{() calls occur prior to query execution, only the last call applies.

Attributes defined with nysql _bi nd_par an{() apply only to the next query executed and are cleared
thereafter. The nysql _reset_connecti on() and nysql _change_user () functions also clear any
currently defined attributes.

nysqgl _bi nd_par an() is backward compatible. For connections to older servers that do not support
query attributes, no attributes are sent.

Arguments:
e nysql : The connection handler returned from nysql _init().
» n_par ans: The number of attributes defined by the bi nd and nane arguments.

» bi nd: The address of an array of MYSQL_BI ND structures. The array should contain n_par ans
elements, one for each attribute.

» nane: The address of an array of character pointers, each pointing to a null-terminated string
defining an attribute name. The array should contain n_par ans elements, one for each
attribute. Query attribute names are transmitted using the character set indicated by the
character_set _client system variable.

Each attribute has a name, a value, and a data type. The nane argument defines attribute names,

and the bi nd argument defines their values and types. For a description of the members of the
MYSQL_BI ND data structure used for the bi nd argument, see Section 6.2, “C API Prepared Statement
Data Structures”.

Each attribute type most be one of the MYSQL_TYPE_xxx types listed in Table 6.1, “Permissible
Input Data Types for MYSQL_BIND Structures”, except that MYSQL_TYPE_BLOB and
MYSQL_TYPE_TEXT are not supported. If an unsupported type is specified for an attribute, a
CR_UNSUPPORTED_PARAM TYPE error occurs.

Return Values
Zero for success. Nonzero if an error occurred.
Errors
* CR_UNSUPPORTED_ PARAM TYPE
The attribute data type is not supported.
Example

This example uses nysql _bi nd_par an() to define string and integer query attributes, then retrieves
and displays their values by name using the nysql _query_attribute string() user-defined

function:

MYSQ._BI ND bi nd[2] ;

const char *nanme[2] = { "nanmel", "nanme2" };
char *char_data = "char val ue";

int int_data = 3;
unsigned long length[2] = { 10, sizeof(int) };
int status;

/* clear and initialize attribute butffers */
nenset (bi nd, 0, sizeof (bind));

bi nd[0] . buf fer _type = MYSQL_TYPE_STRI NG

bi nd[0] . buffer = char_dat a;
bi nd[0] .l ength = & ength[0];
bind[0] .is_null = 0;

bi nd[1] . buffer_type = MYSQ._TYPE_LONG

45

https://dev.mysql.com/doc/refman/9.6/en/server-system-variables.html#sysvar_character_set_client
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_unsupported_param_type
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_unsupported_param_type
https://dev.mysql.com/doc/refman/9.6/en/query-attributes.html#function_mysql-query-attribute-string

mysql_change_user()

bi nd[1] . buf fer (char *) & nt_dat a;
bi nd[1] . | engt h & ength[1] ;
bind[1].is_null = 0;

/* bind attributes */
status = nysql _bi nd_param(&mysqgl, 2, bind, nane);
test_error(&mysqgl, status);
const char *query =
"SELECT nysql _query_attribute_string(' nanel'),"
" nmysql _query_attribute_string(' name2')";
status = nysql _real _query(&mysqgl, query, strlen(query));
test_error(&mysqgl, status);
MYSQL_RES *result = nysqgl _store_result(&ysql);
MYSQL_ROW row = nysql _fetch_row(result);
unsi gned | ong *l engths = nysql _fetch_l engths(result);
for(int i =0; i < 2; i++)

printf("attribute %d: [%*s]\n", i+1, (int) lengths[i],

rowfi] ? rowfi] : "NULL");

}

nmysql _free_result(result);

When executed, the code produces this result:

attribute 1: [char val ue]
attribute 2: [3]

5.4.4 mysqgl_change_user()

bool

nmysql _change_user (MYSQL *nysql ,
const char *user,
const char *password,
const char *db)

Description

Changes the user and causes the database specified by db to become the default (current) database
on the connection specified by mysql . In subsequent queries, this database is the default for table
references that include no explicit database specifier.

mysql _change_user () fails if the connected user cannot be authenticated or does not have
permission to use the database. In this case, the user and database are not changed.

Pass a db parameter of NULL if you do not want to have a default database.

This function resets the session state as if one had done a new connect and reauthenticated. (See
Section 3.6.8, “Automatic Reconnection Control”.) It always performs a ROLLBACK of any active
transactions, closes and drops all temporary tables, and unlocks all locked tables. It resets session
system variables to the values of the corresponding global system variables, releases prepared
statements, closes HANDLER variables, and releases locks acquired with GET_LOCK() . Clears any
current query attributes defined as a result of calling mysql _bi nd_par an() . These effects occur
even if the user did not change.

To reset the connection state in a more lightweight manner without changing the user, use
nysql _reset _connection().

Return Values
Zero for success. Nonzero if an error occurred.
Errors
The same that you can get from nysql real connect (), plus:

« CR_COWANDS_OUT_OF_SYNC

46

https://dev.mysql.com/doc/refman/9.6/en/commit.html
https://dev.mysql.com/doc/refman/9.6/en/handler.html
https://dev.mysql.com/doc/refman/9.6/en/locking-functions.html#function_get-lock
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_commands_out_of_sync

mysql_character_set_name()

Commands were executed in an improper order.
« CR_SERVER GONE_ERROR
The MySQL server has gone away.
« CR_SERVER LOST
The connection to the server was lost during the query.
¢ CR_UNKNOM_ERROR
An unknown error occurred.
« ER_UNKNOWN_COM ERROR
The MySQL server does not implement this command (probably an old server).
« ER_ACCESS DENI ED ERROR
The user or password was wrong.
« ER BAD DB ERROR
The database did not exist.
« ER_DBACCESS DENI ED_ERROR
The user did not have access rights to the database.
« ER_WRONG DB_NAME
The database name was too long.
Example

if (nysqgl _change_user (&ysql, "user", "password", "new database"))

fprintf(stderr, "Failed to change user. Error: %\n",
nysql _error (&ysql));
}

5.4.5 mysql_character_set_name()

const char *
nmysql _character_set _nanme(MYSQL *nysql)

Description

Returns the default character set name for the current connection.
Return Values

The default character set name
Errors

None.

5.4.6 mysql_close()

voi d
nmysql _cl ose(MYSQL *nysql)

47

https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_server_gone_error
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_server_lost
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_unknown_error
https://dev.mysql.com/doc/mysql-errors/9.6/en/server-error-reference.html#error_er_unknown_com_error
https://dev.mysql.com/doc/mysql-errors/9.6/en/server-error-reference.html#error_er_access_denied_error
https://dev.mysql.com/doc/mysql-errors/9.6/en/server-error-reference.html#error_er_bad_db_error
https://dev.mysql.com/doc/mysql-errors/9.6/en/server-error-reference.html#error_er_dbaccess_denied_error
https://dev.mysql.com/doc/mysql-errors/9.6/en/server-error-reference.html#error_er_wrong_db_name

mysql_commit()

Description

Closes a previously opened connection. mysql _cl ose() also deallocates the connection
handler pointed to by mysql if the handler was allocated automatically by mysql _init() or
mysql _connect () . Do not use the handler after it has been closed.

Return Values
None.
Errors
None.

5.4.7 mysql_commit()

bool
nmysql _conmi t (MYSQL *nysql)

Description
Commits the current transaction.

The action of this function is subject to the value of the conpl et i on_t ype system variable. In
particular, if the value of conpl eti on_t ype is RELEASE (or 2), the server performs a release after
terminating a transaction and closes the client connection. Call nysqgl _cl ose() from the client
program to close the connection from the client side.

Return Values

Zero for success. Nonzero if an error occurred.
Errors

None.

5.4.8 mysql_connect()

MYSQL *

nysql _connect (MYSQ *nysql ,
const char *host,
const char *user,
const char *passwd)

Description
This function is deprecated. Use nysql real connect () instead.

5.4.9 mysqgl_create_db()

i nt
nysql _create_db(MYSQ *nysql,
const char *db)

Description
Creates the database named by the db parameter.

This function is deprecated. Use nysql _real _query() ornysqgl _query() toissue an SQL
CREATE DATABASE statement instead.

Return Values

Zero for success. Nonzero if an error occurred.

48

https://dev.mysql.com/doc/refman/9.6/en/server-system-variables.html#sysvar_completion_type
https://dev.mysql.com/doc/refman/9.6/en/server-system-variables.html#sysvar_completion_type
https://dev.mysql.com/doc/refman/9.6/en/create-database.html

mysql_data_seek()

Errors
« CR_COMVANDS OQUT_OF SYNC

Commands were executed in an improper order.

CR_SERVER _GONE_ERRCR

The MySQL server has gone away.

CR_SERVER LOST

The connection to the server was lost during the query.

CR_UNKNOWN_ERROR

An unknown error occurred.

Example
i f(nysqgl _create_db(&ysqgl, "ny_database"))
fprintf(stderr, "Failed to create new database. Error: %\n",

nmysql _error (&mysql));
}

5.4.10 mysql_data_seek()
voi d

nysql _data_seek(MYSQL_RES *resul t,
uint64_t offset)

Description

Seeks to an arbitrary row in a query result set. The of f set value is a row number. Specify a value in
the range from 0 to nysql _num rows(resul t)-1.

This function requires that the result set structure contains the entire result of the query, so
nysqgl dat a_seek() may be used only in conjunction with nysql _store_resul t (), not with
nysqgl _use result().

Return Values

None.
Errors

None.
5.4.11 mysql_debug()

voi d

nysqgl _debug(const char *debug)
Description

Does a DBUG_PUSH with the given string. nysql _debug() uses the Fred Fish debug library. To use
this function, you must compile the client library to support debugging. See The DBUG Package.

Return Values

None.

49

https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_commands_out_of_sync
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_server_gone_error
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_server_lost
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_unknown_error
https://dev.mysql.com/doc/refman/9.6/en/dbug-package.html

mysql_drop_db()

Errors
None.
Example

The call shown here causes the client library to generate a trace file in/ t np/ cl i ent . tr ace on the
client machine:

nysql _debug("d:t: O /tnp/client.trace");

5.4.12 mysql_drop_db()

i nt
nysql _drop_db(MYSQ *nysql,
const char *db)

Description
Drops the database named by the db parameter.

This function is deprecated. Use nysql _real _query() ornysql _query() toissue an SQL DROP
DATABASE statement instead.

Return Values
Zero for success. Nonzero if an error occurred.

Errors
« CR_COMVANDS QUT_OF SYNC

Commands were executed in an improper order.

CR_SERVER GONE_ERRCR

The MySQL server has gone away.

CR_SERVER LOST

The connection to the server was lost during the query.

CR_UNKNOWN ERRCR
An unknown error occurred.

Example

i f (nysql _drop_db(&nysql, "ny_database"))
fprintf(stderr, "Failed to drop the database: Error: %\n",

nysql _error (&rysql));

5.4.13 mysqgl_dump_debug_info()

i nt
nysql _dunp_debug_i nf o(\YSQL *nysql)

Description

Instructs the server to write debugging information to the error log. The connected user must have the
SUPER privilege.

50

https://dev.mysql.com/doc/refman/9.6/en/drop-database.html
https://dev.mysql.com/doc/refman/9.6/en/drop-database.html
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_commands_out_of_sync
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_server_gone_error
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_server_lost
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_unknown_error
https://dev.mysql.com/doc/refman/9.6/en/privileges-provided.html#priv_super

mysql_eof()

Return Values

Zero for success. Nonzero if an error occurred.
Errors

« CR_COVWWANDS_OUT_OF SYNC

Commands were executed in an improper order.

CR_SERVER _GONE_ERRCR

The MySQL server has gone away.

CR_SERVER LOST
The connection to the server was lost during the query.
* CR_UNKNOWN_ERROR

An unknown error occurred.

5.4.14 mysql_eof()

bool
nysql _eof (MYSQL_RES *resul t)

Description
This function is deprecated. nysql _errno() ornysqgl _error () may be used instead.
nysgl _eof () determines whether the last row of a result set has been read.

If you acquire a result set from a successful call to mysql _store_resul t (), the client receives the
entire set in one operation. In this case, a NULL return from nysql _fetch_row() always means the
end of the result set has been reached and it is unnecessary to call mysql _eof () . When used with
mysql _store_result(),nysgl eof () always returns true.

On the other hand, if you use nmysql _use_resul t () to initiate a result set retrieval, the rows of

the set are obtained from the server one by one as you call nysql _fetch_row() repeatedly.
Because an error may occur on the connection during this process, a NULL return value from

nysqgl _fetch_row() does not necessarily mean the end of the result set was reached normally. In
this case, you can use nysql _eof () to determine what happened. nysql _eof () returns a nonzero
value if the end of the result set was reached and zero if an error occurred.

Historically, mysql _eof () predates the standard MySQL error functions mysql _errno()

and nysql _error () .Because those error functions provide the same information, their use is
preferred over nysql _eof (), which is deprecated. (In fact, they provide more information, because
nmysql _eof () returns only a boolean value whereas the error functions indicate a reason for the error
when one occurs.)

Return Values

Zero for success. Nonzero if the end of the result set has been reached.
Errors

None.
Example

The following example shows how you might use nysql _eof () :

51

https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_commands_out_of_sync
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_server_gone_error
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_server_lost
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_unknown_error

mysql_errno()

nysql _query(&mysql, " SELECT * FROM sone_t abl e");
result = nysqgl _use_result(&rysql);
whi l e((row = nysql _fetch_row(result)))

/1 do sonmething with data

}
if(!nmysql _eof(result)) // nysql_fetch_row() failed due to an error

fprintf(stderr, "Error: %\n", nysql _error(&mysql));
}

However, you can achieve the same effect with the standard MySQL error functions:
nysql _query(&nysql, " SELECT * FROM sone_t abl e");
result = nysql _use_result(&mysql);
whi l e((row = nysql _fetch_row(result)))
/1 do sonething with data

}
if(nysqgl _errno(&ysqgl)) // nysqgl _fetch_row() failed due to an error
{

fprintf(stderr, "Error: 9%\n", nysql _error(&ysql));
}

5.4.15 mysql_errno()

unsi gned i nt
nmysql _errno(MYSQL *nysql)

Description

For the connection specified by nysql , nysqgl _errno() returns the error code for the most recently
invoked API function that can succeed or fail. A return value of zero means that no error occurred.
Client error message numbers are listed in the MySQL er r nsg. h header file. Server error message
numbers are listed in nysql d_error. h. Errors also are listed at Error Messages and Common
Problems.

Note
Some functions such as nmysqgl _fetch row() donotsetnysqgl errno() if
they succeed. A rule of thumb is that all functions that have to ask the server for
information reset mysql _errno() if they succeed.
MySQL-specific error numbers returned by nysql _errno() differ from SQLSTATE values
returned by nysql _sql st at e() . For example, the nysql client program displays errors using

the following format, where 1146 is the nysql _errno() value and' 42S02" is the corresponding
nysql _sql state() value:

$> SELECT * FROM no_such_t abl e;
ERROR 1146 (42S02): Table 'test.no_such_table' doesn't exist

Return Values

An error code value for the last mysql _xxx() call, if it failed. zero means no error occurred.
Errors

None.

5.4.16 mysql_error()

const char *
nysql _error (MYSQL *nysql)

52

https://dev.mysql.com/doc/refman/9.6/en/error-handling.html
https://dev.mysql.com/doc/refman/9.6/en/error-handling.html

mysql_escape_string()

Description

For the connection specified by mysql , mysql _error () returns a null-terminated string containing
the error message for the most recently invoked API function that failed. If a function did not fail, the
return value of nysql _error () may be the previous error or an empty string to indicate no error.

A rule of thumb is that all functions that have to ask the server for information reset nysql _error () if
they succeed.

For functions that reset nysql _error (), either of these two tests can be used to check for an error:

i f(*nysqgl _error(&mysql))
{

/! an error occurred

}
i f(nmysqgl _error(&rysqgl)[0])

/! an error occurred

}

The language of the client error messages may be changed by recompiling the MySQL client library.
You can choose error messages in several different languages. See Setting the Error Message
Language.

Return Values

A null-terminated character string that describes the error. An empty string if no error occurred.

Errors

None.

5.4.17 mysql_escape_string()
Note

Do not use this function. nysql _escape_string() does not have arguments
that enable it to respect the current character set or the quoting context. Use
nysqgl real escape_string quote() instead.

5.4.18 mysql_fetch_field()

MYSQL_FI ELD *
nysql _fetch_fiel d(MYSQL_RES *result)

Description

Returns the definition of one column of a result set as a MYSQL_ FI ELD structure. Call this function
repeatedly to retrieve information about all columns in the result set. nysql _fetch fiel d() returns
NULL when no more fields are left.

For metadata-optional connections, this function returns NULL when the r esul t set _net adat a
system variable is set to NONE. To check whether a result set has metadata, use the

nmysqgl _result netadata() function. For details about managing result set metadata transfer, see
Section 3.6.7, “Optional Result Set Metadata”.

nmysqgl _fetch_field() isresetto return information about the first field each time you execute
a new SELECT query. The field returned by nysql _fetch_fiel d() is also affected by calls to
nmysql _field seek().

If you've called nysql real query() ornysqgl _query() to perform a SELECT on a table
but have not called nmysql _store_resul t (), MySQL returns the default blob length (8KB) if

53

https://dev.mysql.com/doc/refman/9.6/en/error-message-language.html
https://dev.mysql.com/doc/refman/9.6/en/error-message-language.html
https://dev.mysql.com/doc/refman/9.6/en/server-system-variables.html#sysvar_resultset_metadata
https://dev.mysql.com/doc/refman/9.6/en/select.html
https://dev.mysql.com/doc/refman/9.6/en/select.html

mysql_fetch_field_direct()

you callnysql _fetch field() toask forthe length of a BLOB field. (The 8KB size is chosen
because MySQL does not know the maximum length for the BLOB. This should be made configurable
sometime.) Once you've retrieved the result set, f i el d- >max_| engt h contains the length of the
largest value for this column in the specific query.

Return Values

The MYSQL_ FI ELD structure for the current column. NULL if no columns are left or the result set has no

metadata.
Errors
None.
Example
MYSQL_FI ELD *fi el d;
while((field = nysql _fetch_field(result)))
printf("field name %\ n", field->nane);
}
5.4.19 mysql _fetch_field _direct()
MYSQL_FI ELD *
nysql _fetch_field_direct(MYSQL_RES *resul t,
unsigned int fieldnr)
Description

Given a field number f i el dnr for a column within a result set, returns that column's field definition as
a MYSQL_FI ELD structure. Use this function to retrieve the definition for an arbitrary column. Specify a
value for f i el dnr in the range from O to nysql _num fi el ds(result)-1.

For metadata-optional connections, this function returns NULL when the r esul t set _net adat a
system variable is set to NONE. To check whether a result set has metadata, use the

nmysqgl _result_netadat a() function. For details about managing result set metadata transfer, see
Section 3.6.7, “Optional Result Set Metadata”.

Return Values

The MYSQL_FI ELD structure for the specified column. NULL if the result set has no metadata.
Errors

None.

Example

unsi gned int numfields;
unsigned int i;
MYSQL_FI ELD *fi el d;

num fields = nysql _numfields(result);
for(i =0; i < numfields; i++)

field = nysql _fetch_field direct(result, i);

printf("Field %u is %\n", i, field->nane);

}
5.4.20 mysql_fetch_fields()

MYSQL_FI ELD *

54

https://dev.mysql.com/doc/refman/9.6/en/blob.html
https://dev.mysql.com/doc/refman/9.6/en/blob.html
https://dev.mysql.com/doc/refman/9.6/en/server-system-variables.html#sysvar_resultset_metadata

mysql_fetch_lengths()

nmysql _fetch_fiel ds(MYSQL_RES *resul t)
Description

Returns an array of all MYySQL_FI ELD structures for a result set. Each structure provides the field
definition for one column of the result set.

For metadata-optional connections, this function returns NULL when the r esul t set _net adat a
system variable is set to NONE. To check whether a result set has metadata, use the

nysql _resul t _netadat a() function. For details about managing result set metadata transfer, see
Section 3.6.7, “Optional Result Set Metadata”.

Return Values

An array of M\YSQL_ FI ELD structures for all columns of a result set. NULL if the result set has no

metadata.
Errors

None.
Example

unsi gned int numfields
unsi gned int i
MYSQL_FI ELD *fi el ds

num fields = nysql _numfields(result);
fields = nysql _fetch_fields(result);
for(i =0; i < numfields; i++)

{

printf("Field %u is %\n", i, fields[i].nane);

5.4.21 mysql_fetch_lengths()

unsi gned | ong *
nysqgl _fetch_| engt hs(MYSQL_RES *resul t)

Description

Returns the lengths of the columns of the current row within a result set. If you plan to copy field
values, this length information is also useful for optimization, because you can avoid calling st rl en() .
In addition, if the result set contains binary data, you must use this function to determine the size of the
data, because st rl en() returns incorrect results for any field containing null characters.

The length for empty columns and for columns containing NULL values is zero. To see how to
distinguish these two cases, see the description for nysql _fetch_row().

Return Values

An array of unsigned long integers representing the size of each column (not including any terminating
null bytes). NULL if an error occurred.

Errors

nmysqgl _fetch_ | engths() isvalid only for the current row of the result set. It returns NULL if you call
it before calling mysql _fetch_row() or after retrieving all rows in the result.

Example

MYSQ._ROW r ow;

55

https://dev.mysql.com/doc/refman/9.6/en/server-system-variables.html#sysvar_resultset_metadata

mysql_fetch_row()

unsi gned | ong *I engt hs;
unsi gned int numfields;
unsigned int i;

row = nysql _fetch_rowmresult);
if (row
{
num fields = nmysql _numfields(result);
I engths = nysql _fetch_l engths(result);
for(i =0; i < numfields; i++)
{
printf("Colum % is %u bytes in |length.\n",
i, lengths[i]);

}

5.4.22 mysql_fetch_row()

MYSQL_ROW
nysql _fetch_row MYSQL_RES *resul t)

Description

Note

nysqgl _fetch_row() isa synchronous function. Its asynchronous counterpart
isnmysql _fetch_row nonbl ocki ng(), for use by applications that

require asynchronous communication with the server. See Chapter 7, C API
Asynchronous Interface.

nysql _fetch_row() retrieves the next row of a result set:

e When used after nysql _store _result() ornysql _store_result_nonbl ocking(),
nysql _fetch row() returns NULL if there are no more rows to retrieve.

» When used after nysql _use result(),nysql _fetch_row() returns NULL if there are no more
rows to retrieve or an error occurred.

The number of values in the row is given by nysql _num fi el ds(resul t). If r owholds the
return value from a call to nysql _fetch row(), pointers to the values are accessed as r owf 0] to
row mnysql _numfields(result)-1].NULL values in the row are indicated by NULL pointers.

The lengths of the field values in the row may be obtained by calling nysql _fetch_ | engt hs().
Empty fields and fields containing NULL both have length O; you can distinguish these by checking the
pointer for the field value. If the pointer is NULL, the field is NULL; otherwise, the field is empty.

Return Values

Errors

A MYSQL_ROWSstructure for the next row, or NULL. The meaning of a NULL return depends on which
function was called preceding nysql _fetch row():

* When used after nysql _store result() ornysql _store result _nonbl ocking(),
nysql _fetch row() returns NULL if there are no more rows to retrieve.

* When used after nysql _use_resul t (), nmysql _fetch_row() returns NULL if there are no
more rows to retrieve or an error occurred. To determine whether an error occurred, check whether
nysql _error () returns a nonempty string or mysql _errno() returns nonzero.

Errors are not reset between calls to nysql _fetch_row()

« CR_SERVER LOST

56

https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_server_lost

mysq|l_field_count()

The connection to the server was lost during the query.
¢ CR_UNKNOWN_ERROR

An unknown error occurred.

Example

MYSQ._ROW r ow;
unsi gned int numfields;
unsigned int i;

num fields = nmysql _numfields(result);
while ((row = nysqgl _fetch_row(result)))

{
unsi gned | ong *I engt hs
| engths = nysqgl _fetch_|l engths(result)
for(i =0; i < numfields; i++)
printf("[%*s] ", (int) lengths[i],
rowi] ? rowfi] : "NULL");
}
printf("\n");
}

5.4.23 mysql_field_count()

unsi gned i nt
nmysql _field_count(MYSQL *nysql)

Description
Returns the number of columns for the most recent query on the connection.

The normal use of this function is when nysql _store_resul t () returned NULL (and thus you
have no result set pointer). In this case, you can call nysql _fi el d_count () to determine whether
nmysqgl _store_result() should have produced a nonempty result. This enables the client program
to take proper action without knowing whether the query was a SELECT (or SELECT-like) statement.
The example shown here illustrates how this may be done.

See Section 3.6.9, “NULL mysqgl_store_result() Return After mysql_query() Success”.

Return Values

An unsigned integer representing the number of columns in a result set.

Errors

None.

Example

MYSQL_RES *resul t;
unsigned int numfields
unsi gned i nt numrows;

if (nysqgl _query(&nysql, query_string))
{
/'l error

el se // query succeeded, process any data returned by it
{

result = nysqgl _store_result(&mysql)

if (result) // there are rows

{

57

https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_unknown_error
https://dev.mysql.com/doc/refman/9.6/en/select.html
https://dev.mysql.com/doc/refman/9.6/en/select.html

mysq|l_field_seek()

num fields = nmysql _numfields(result);
Il retrieve rows, then call nysql _free_result(result)

else // nysqgl _store_result() returned nothing; should it have?

{
i f(nmysqgl _field_count(&rmysqgl) == 0)
{
/'l query does not return data
/1 (it was not a SELECT)
numrows = nysql _affected_rows(&rysql);
el se // nysqgl _store_result() should have returned data
{
fprintf(stderr, "Error: %\n", nysql _error(&mysql));
}
}

}

An alternative is to replace the nysql _fiel d_count (&ysql) call with mysqgl _errno(&rysql).
In this case, you are checking directly for an error from nysql st ore_resul t () rather than inferring
from the value of nysql _fiel d_count () whether the statement was a SELECT.

5.4.24 mysql _field _seek()

MYSQL_FI ELD_OFFSET
nysql _field_seek(MYSQ_RES *result,
MYSQL_FI ELD OFFSET of f set)

Description

Sets the field cursor to the given offset. The next call to nysql _fetch_fi el d() retrieves the field
definition of the column associated with that offset.

To seek to the beginning of a row, pass an of f set value of zero.
Return Values

The previous value of the field cursor.
Errors

None.

5.4.25 mysql_field_tell()

MYSQL_FI ELD_OFFSET
nysql _field_ tell (MYSQL_RES *resul t)

Description

Returns the position of the field cursor used for the last nysql _fetch fiel d(). This value can be
used as an argumentto nysql _field seek().

Return Values

The current offset of the field cursor.
Errors

None.

5.4.26 mysql_free_result()

voi d

58

https://dev.mysql.com/doc/refman/9.6/en/select.html

mysql_free_ssl_session_data()

nmysql _free_resul t (MYSQL_RES *resul t)

Description
Note

nysql _free result() isasynchronous function. Its asynchronous
counterpartis nysql free result _nonbl ocki ng(), for use by applications
that require asynchronous communication with the server. See Chapter 7, C
API Asynchronous Interface.

nysql free result() frees the memory allocated for a result set by nysqgl _store result(),
nysqgl _use result(),nysql _|ist_dbs(), and so forth. When you are done with a result set, you
must free the memory it uses by calling mysql _free result().

Do not attempt to access a result set after freeing it.
Return Values

None.
Errors

None.

5.4.27 mysql _free_ssl _session_data()

bool
nysql _free_ssl_session_data(MYSQ. *, void *data)

Description

nysqgl free_ ssl _session_dat a() disposes of a session data handle that was obtained
previously by calling mysqgl get ssl session_dat a() . It frees the memory that was allocated.
Never call this function for any session that is still in use or if the handle was not obtained with
nysqgl get ssl _session_data(). The call you make to nysql _get ssl _session_data()
should match exactly the call to nysql free ssl _session_data().

Do not attempt to use the session data handle after freeing it.
Return Values

FALSE on success. TRUE on failure.
Errors

None.

5.4.28 mysql_get_character_set_info()

voi d
nysql _get _character_set_i nfo(MYSQL *nysql,
MY_CHARSET_| NFO *cs)
Description

This function provides information about the default client character set. The default character set may
be changed with the mysqgl set character_set () function.

Example

This example shows the fields that are available in the MY _CHARSET | NFO structure:

59

mysql_get_client_info()

if (!'nysql _set_character_set(&mysql, "utf8"))

MY_CHARSET_| NFO cs

nmysql _get _character_set _i nfo(&ysqgl, &cs)

printf("character set information:\n")

printf("character set+collation nunber: %\n", cs.nunber)
printf(“collation name: %\n", cs.nane)

printf("character set nane: %\n", cs.csnane)
printf("coment: %\n", cs.comment)

printf("directory: %\n", cs.dir)

printf("multi byte character min. length: %\ n", cs.nbm nlen)
printf("multi byte character nmax. |ength: %\ n", cs. nbmax| en)

}

5.4.29 mysql_get_client_info()

const char *
nmysql _get _client_i nfo(voi d)

Description
Returns a string that represents the MySQL client library version (for example, " 9. 6. 0").

The function value is the version of MySQL that provides the client library. For more information, see
Section 3.6.12, “Obtaining the Server Version and Client Library Version”.

Return Values

A character string that represents the MySQL client library version.
Errors

None.

5.4.30 mysql_get_client_version()

unsi gned | ong
nmysql _get _client_version(voi d)

Description
Returns an integer that represents the MySQL client library version. The value has the format XXYYZZ,

where XX is the major version, YY is the release level (or minor version), and ZZ is the sub-version
within the release level:

maj or _versi on*10000 + rel ease_| evel *100 + sub_version
For example, " 09. 6. 0" is returned as 090600.

The function value is the version of MySQL that provides the client library. For more information, see
Section 3.6.12, “Obtaining the Server Version and Client Library Version”.

Return Values

An integer that represents the MySQL client library version.
Errors

None.

5.4.31 mysql_get_host_info()

const char *

60

mysql_get_option()

nmysql _get _host _i nfo(MYSQL *nysql)
Description
Returns a string describing the type of connection in use, including the server host name.
Return Values
A character string representing the server host name and the connection type.
Errors
None.
5.4.32 mysql_get_option()
i nt
nysql _get _opti on(MYSQL *nysql,

enum nysql _opti on option,
const void *arg)

Description

Returns the current value of an option settable using nysql _opti ons() . The value should be treated
as read only.

The opt i on argument is the option for which you want its value. The ar g argument is a pointer to a
variable in which to store the option value. ar g must be a pointer to a variable of the type appropriate
for the opt i on argument. The following table shows which variable type to use for each opt i on value.

For M\ySQL_OPT_NMAX ALLOWED PACKET, it is possible to set a session or global maximum buffer
size, depending on whether the nysql argument to nysql _opti ons() is non-NULL or NULL,
nmysqgl _get option() similarly returns the session or global value depending on its mysq|l
argument.

arg Type Applicable opti on Values

unsi gned i nt MYSQL_OPT_CONNECT_TI MEQUT,
MYSQL_OPT_PROTOCOL,
MYSQL_OPT_READ TI MEQUT,
MYSQL_OPT_RETRY_COUNT,
MYSQL_OPT_SSL_FI PS_MODE,
MYSQL_OPT_SSL_ MODE,

MYSQL_OPT_WRI TE_TI MECQUT,
MYSQL_OPT_ZSTD COVPRESSI ON_LEVEL

unsi gned | ong MYSQL_OPT_MAX ALLOWED PACKET,
MYSQL_OPT_NET_BUFFER_LENGTH

bool MYSQL_ENABLE_CLEARTEXT_PLUG N,
MYSQL_OPT_CAN_HANDLE_EXPI RED_PASSWORDS,
MYSQL_OPT_GET_SERVER PUBLI C _KEY,
MYSQL_OPT_LOCAL_I NFI LE,

MYSQL_OPT_OPTI ONAL_RESULTSET_METADATA,
MYSQL_OPT_RECONNECT (deprecated),
MYSQL_REPORT_DATA_ TRUNCATI ON

const char * MYSQL_DEFAULT_AUTH, MYSQL_OPT_BI ND,
MYSQL_OPT_COVPRESSI ON_ALGORI THVS,
MYSQL_OPT_LOAD DATA LOCAL_DI R,
MYSQL_OPT_SSL_CA,

61

mysql_get_proto_info()

arg Type Applicable opti on Values

MYSQL_OPT_SSL_CAPATH,
MYSQL_OPT_SSL_CERT,
MYSQL_OPT_SSL_Cl PHER,
MYSQL_OPT_SSL_CRL,
MYSQL_OPT_SSL_CRLPATH,
MYSQL_OPT_SSL_KEY,
MYSQL_OPT_TLS_Cl PHERSUI TES,
MYSQL_OPT_TLS_SNI _SERVERNAME,
MYSQL_OPT_TLS_VERSI ON,
MYSQL_PLUG N DI R,
MYSQL_READ_DEFAULT_FI LE,
MYSQL_READ_DEFAULT_GROUP,
MYSQL_SERVER_PUBLI C_KEY,
MYSQL_SET_CHARSET DI R,
MYSQL_SET_CHARSET _NANE,
MYSQL_SHARED MEMORY_BASE_NANME

voi d MYSQL_OPT_SSL_SESSI ON_DATA
argument not used MYSQL_OPT_COVPRESS
cannot be queried (error is returned) MYSQL_| NI T_COVMAND,

MYSQL_OPT_CONNECT _ATTR_DELETE,
MYSQL_OPT_CONNECT _ATTR_RESET,
MYSQL_OPT_NAMED Pl PE

Return Values
Zero for success. Nonzero if an error occurred; this occurs for opt i on values that cannot be queried.
Example

The following call tests the MYSQL_OPT_LOCAL | NFI LE option. After the call returns successfully, the
value of i nfi | e is true or false to indicate whether local_infile is enabled.

bool infile;

if (nysql _get_option(mysqgl, MyYSQ._OPT_LOCAL_I NFILE, & nfile))
fprintf(stderr, "nysql _get_option() failed\n");

5.4.33 mysql_get_proto_info()

unsi gned i nt
nysql _get _proto_i nfo(MYSQL *nysql)

Description

Returns the protocol version used by current connection.
Return Values

An unsigned integer representing the protocol version used by the current connection.
Errors

None.

5.4.34 mysql_get_server_info()

const char *

62

mysql_get_server_version()

nmysql _get _server_i nfo(MYSQL *nysql)
Description

Returns a string that represents the MySQL server version (for example, " 9. 6. 0").
Return Values

A character string that represents the MySQL server version.
Errors

None.

5.4.35 mysql_get_server_version()

unsi gned | ong
nysql _get _server_versi on(MYSQ. *nysql)

Description
Returns an integer that represents the MySQL server version. The value has the format XXYYZZ,

where XX is the major version, YY is the release level (or minor version), and ZZ is the sub-version
within the release level:

maj or _versi on*10000 + rel ease_| evel *100 + sub_version
For example, " 9. 6. 0" is returned as 90600.

This function is useful in client programs for determining whether some version-specific server
capability exists.

Return Values

An integer that represents the MySQL server version.
Errors

None.

5.4.36 mysql _get_ssl cipher()

const char *
nysql _get _ssl _ci pher (MYSQL *nysql)

Description

nysqgl _get ssl _ci pher () returns the encryption cipher used for the given connection to the server.
nysqgl is the connection handler returned from nysqgl _init().

Return Values

A string naming the encryption cipher used for the connection, or NULL if the connection is not
encrypted.

5.4.37 mysql_get_ssl session_data()

void *
nysql _get _ssl _sessi on_dat a(MYSQL *,
unsigned int n_ticket,

63

mysql_get_ssl_session_reused()

unsi gned int *out_| en)

Description

nysqgl get ssl _session_data() permits SSL session reuse by extracting a ticket from an
established session and submitting that ticket when connecting, provided the server still has the
session in its runtime cache. This function returns a session data string and provides the length of

the string in out _| en (if non-NULL). Otherwise, it returns nul | pt r to indicate the expected session
data is not possible or the connection is not in the right state. To prevent leaks, you must release the
session data handle by calling nysql free _ssl _sessi on_dat a() when your application is finished
with the pointer.

The format of the data is PEM serialization of the session. A session can be reused only if it was
fetched from a prior session to the same nmysql d server on the same port. In addition, the SSL version
of the new session must match the SSL version of the original session.

n_ti cket specifies which ticket or tickets to returned. For TLS 1.3, the server generates two session
tickets by default for new sessions and one when a session is reused. For TLS 1.2, the server
generates one session ticket by default. This should be considered when deciding on the size of the
SSL session cache on the server.

Note

Currently, only the last transmitted session is returned. Specifically, anything
other than O for n_t i cket causes an error. OpenSSL version 1.0.2 imposes
this limitation.

Avoid reusing SSL sessions more than one time.

Return Values

Errors

None.

None.

5.4.38 mysqgl_get_ssl _session_reused()

bool
nysql _get _ssl _sessi on_reused(M\YSQL *nysql)

Description

Indicates whether the currently connected session is reusing a prior session.

Return Values

Errors

TRUE if a session was reused when establishing the TLS connection. FALSE if the session is not
connected, is not a TLS session, or there is insufficient memory.

None.

5.4.39 mysql_hex_string()

unsi gned | ong
nmysql _hex_string(char *to
const char *from

64

mysql_info()

unsi gned | ong | engt h)
Description

This function creates a legal SQL string for use in an SQL statement. See String Literals.

The string in the f r omargument is encoded in hexadecimal format, with each character encoded as
two hexadecimal digits. The result is placed in the t o argument, followed by a terminating null byte.

The string pointed to by f r ommust be | engt h bytes long. You must allocate the t o buffer to be at
least | engt h*2+1 bytes long. When nysql _hex_string() returns, the contents of t o is a null-

terminated string. The return value is the length of the encoded string, not including the terminating null

byte.

The return value can be placed into an SQL statement using either X' val ue' or Oxval ue format.
However, the return value does not include the X' . . . ' or Ox. The caller must supply whichever of
those is desired.

Example

char query[1000], *end;

end = strnov(query, "I NSERT | NTO test_table val ues(");
end = strnov(end, "X ");

end += nysql _hex_string(end, "Wat is this", 12);

end = strnmov(end, "', X ");

end += nysqgl _hex_string(end, "binary data: \0O\r\n", 16);
end = strnov(end,"')");

if (nysql _real _query(&nysql, query, (unsigned int) (end - query)))

fprintf(stderr, "Failed to insert row, Error: %\n",
nysql _error (&ysql));
}

The st rnov () function used in the example is included in the | i bnysql cl i ent library and works
like st rcpy() butreturns a pointer to the terminating null of the first parameter.
Return Values
The length of the encoded string that is placed into t o, not including the terminating null character.
Errors
None.

5.4.40 mysql_info()

const char *
nysql _i nf o(MYSQL *nysql)

Description

Retrieves a string providing information about the most recently executed statement, but only for the
statements listed here. For other statements, nysql _i nf o() returns NULL. The format of the string
varies depending on the type of statement, as described here. The numbers are illustrative only; the
string contains values appropriate for the statement.

e | NSERT I NTO ... SELECT ...
String format: Records: 100 Duplicates: 0 Warnings: O

« INSERT INTO ... VALUES (...),(...),(...)...

65

https://dev.mysql.com/doc/refman/9.6/en/string-literals.html
https://dev.mysql.com/doc/refman/9.6/en/insert-select.html

mysql_init()

String format: Records: 3 Duplicates: 0 Warnings: O
« LOAD DATA

String format: Records: 1 Deleted: 0 Skipped: 0 Warnings: O
* ALTER TABLE

String format: Records: 3 Duplicates: 0 Warnings: O
* UPDATE

String format: Rows nmat ched: 40 Changed: 40 Warnings: O

nmysql i nfo() returns a non-NULL value for | NSERT ... VALUES only for the multiple-row form of
the statement (that is, only if multiple value lists are specified).

Return Values

A character string representing additional information about the most recently executed statement.
NULL if no information is available for the statement.

Errors

None.
5.4.41 mysql_init()

MYSQL *

nysql _i ni t (MYSQL *nysql)
Description

Allocates or initializes a MYSQL object suitable for mysql _real _connect (). If nysql isa NULL
pointer, the function allocates, initializes, and returns a new object. Otherwise, the object is initialized
and the address of the object is returned. If mysql _i ni t () allocates a new object, it is freed when
nmysqgl _cl ose() is called to close the connection.

In a nonmultithreaded environment, nysqgl i ni t() invokesnysql library init()
automatically as necessary. However, nysql _|ibrary_init() is notthread-safe in a
multithreaded environment, and thus neither is nysql _i ni t (). Before calling nysqgl __init(),
either callnysql |ibrary_init() priorto spawning any threads, or use a mutex to protect the
nysgl _library init() call This should be done prior to any other client library call.

Return Values

An initialized MYSQL* handler. NULL if there was insufficient memory to allocate a new object.
Errors

In case of insufficient memory, NULL is returned.
5.4.42 mysql_insert_id()

ui nt 64 _t
nysql _insert_i d(MYSQ *nysql)

Description

Returns the value generated for an AUTO | NCREMENT column by the previous | NSERT or UPDATE
statement. Use this function after you have performed an | NSERT statement into a table that

66

https://dev.mysql.com/doc/refman/9.6/en/load-data.html
https://dev.mysql.com/doc/refman/9.6/en/alter-table.html
https://dev.mysql.com/doc/refman/9.6/en/update.html
https://dev.mysql.com/doc/refman/9.6/en/insert.html
https://dev.mysql.com/doc/refman/9.6/en/insert.html
https://dev.mysql.com/doc/refman/9.6/en/update.html
https://dev.mysql.com/doc/refman/9.6/en/insert.html

mysql_insert_id()

contains an AUTO | NCREMENT field, or have used | NSERT or UPDATE to set a column value with
LAST | NSERT_| D(expr) .

The return value of nysql _i nsert _i d() is always zero unless explicitly updated under one of the
following conditions:

» | NSERT statements that store a value into an AUTO | NCREMENT column. This is true whether the
value is automatically generated by storing the special values NULL or O into the column, or is an
explicit nonspecial value.

* In the case of a multiple-row | NSERT statement, nysql _i nsert i d() returns the first
automatically generated AUTO_| NCREMENT value that was successfully inserted.

If no rows are successfully inserted, mysql i nsert _id() returnsO.

e Ifan | NSERT ... SELECT statement is executed, and no automatically generated value is
successfully inserted, mysql _i nsert i d() returns the ID of the last inserted row.

o Ifan | NSERT ... SELECT statement uses LAST_| NSERT_I D(expr), nmysql _insert _id()
returns expr .

» | NSERT statements that generate an AUTO_| NCREMENT value by inserting
LAST | NSERT | D(expr) into any column or by updating any column to
LAST | NSERT_| D(expr).

« If the previous statement returned an error, the value of nysql _i nsert i d() is undefined.
The return value of nysql _i nsert _i d() can be simplified to the following sequence:

1. Ifthere is an AUTO | NCREMENT column, and an automatically generated value was successfully
inserted, return the first such value.

2. If LAST_I NSERT_I D(expr) occurred in the statement, return expr , even if there was an
AUTO | NCREMENT column in the affected table.

3. The return value varies depending on the statement used. When called after an | NSERT statement:

« If there is an AUTO | NCREMENT column in the table, and there were some explicit values for this
column that were successfully inserted into the table, return the last of the explicit values.

When called after an | NSERT ... ON DUPLI CATE KEY UPDATE statement:

« If there is an AUTO_| NCREMENT column in the table and there were some explicit successfully
inserted values or some updated values, return the last of the inserted or updated values.

nmysqgl i nsert id() returns O if the previous statement does not use an AUTO | NCREMENT value.
If you must save the value for later, be sure to call mysql _i nsert _i d() immediately after the
statement that generates the value.

The value of nysqgl _i nsert i d() is affected only by statements issued within the current client
connection. It is not affected by statements issued by other clients.

The LAST | NSERT | D() SQL function will contain the value of the first automatically generated value
that was successfully inserted. LAST | NSERT | D() is not reset between statements because the
value of that function is maintained in the server. Another difference from nysql _i nsert _i d() is that
LAST_I NSERT_I () is not updated if you set an AUTO_| NCREMENT column to a specific nonspecial
value. See Information Functions.

nysqgl i nsert _id() returns O following a CALL statement for a stored procedure that generates
an AUTO | NCREMENT value because in this case mysqgl i nsert i d() appliesto CALL and not the
statement within the procedure. Within the procedure, you can use LAST | NSERT | () at the SQL
level to obtain the AUTO | NCREMENT value.

67

https://dev.mysql.com/doc/refman/9.6/en/insert.html
https://dev.mysql.com/doc/refman/9.6/en/update.html
https://dev.mysql.com/doc/refman/9.6/en/information-functions.html#function_last-insert-id
https://dev.mysql.com/doc/refman/9.6/en/insert.html
https://dev.mysql.com/doc/refman/9.6/en/insert.html
https://dev.mysql.com/doc/refman/9.6/en/insert-select.html
https://dev.mysql.com/doc/refman/9.6/en/insert-select.html
https://dev.mysql.com/doc/refman/9.6/en/information-functions.html#function_last-insert-id
https://dev.mysql.com/doc/refman/9.6/en/insert.html
https://dev.mysql.com/doc/refman/9.6/en/information-functions.html#function_last-insert-id
https://dev.mysql.com/doc/refman/9.6/en/information-functions.html#function_last-insert-id
https://dev.mysql.com/doc/refman/9.6/en/information-functions.html#function_last-insert-id
https://dev.mysql.com/doc/refman/9.6/en/insert.html
https://dev.mysql.com/doc/refman/9.6/en/insert-on-duplicate.html
https://dev.mysql.com/doc/refman/9.6/en/information-functions.html#function_last-insert-id
https://dev.mysql.com/doc/refman/9.6/en/information-functions.html#function_last-insert-id
https://dev.mysql.com/doc/refman/9.6/en/information-functions.html#function_last-insert-id
https://dev.mysql.com/doc/refman/9.6/en/information-functions.html
https://dev.mysql.com/doc/refman/9.6/en/call.html
https://dev.mysql.com/doc/refman/9.6/en/call.html
https://dev.mysql.com/doc/refman/9.6/en/information-functions.html#function_last-insert-id

mysql_Kkill()

The reason for the differences between LAST | NSERT | D() and nysql _insert _id() isthat
LAST | NSERT | D() is made easy to use in scripts while mysql i nsert i d() triesto provide more
exact information about what happens to the AUTO_| NCREMENT column.

Note

The OK packet used in the client/server protocol holds information such

as is used for session state tracking. When clients read the OK packet to
know whether there is a session state change, this resets values such as

the last insert ID and the number of affected rows. Such changes cause
nysqgl _insert id() toreturn O after execution of commands including but
not necessarily limited to COM Pl NG, COM REFRESH, and COM | NI T_DB.

Return Values

Described in the preceding discussion.
Errors

« ER_AUTO | NCREMENT _CONFLI CT

A user-specified AUTO | NCREMENT value in a multi | NSERT statement falls within the range
between the current AUTO | NCREMENT value and the sum of the current and number of rows
affected values.

5.4.43 mysql_kill()
i nt

nysql _ki |l (MYSQ *nysql
unsi gned | ong pid)

Description
Note

nysqgl _kill () is deprecated and is subject to removal in a future version of
MySQL. Instead, use nysql real query() ornysql _query() toexecute a
KI' LL statement.

Asks the server to kill the thread specified by pi d.

nysql _ki |l () cannot handle values larger than 32 bits; to guard against killing the wrong thread, the
function raises CR_| NVALI D_CONN_HANDLE if given an ID larger than 32 bits.

Return Values
Zero for success. Nonzero if an error occurred.
Errors
* CR_COMVANDS_QUT_OF_SYNC
Commands were executed in an improper order.
« CR_| NVALI D_CONN_HANDLE
The pi d was larger than 32 bits.
« CR_SERVER GONE_ERROR

The MySQL server has gone away.

68

https://dev.mysql.com/doc/refman/9.6/en/information-functions.html#function_last-insert-id
https://dev.mysql.com/doc/refman/9.6/en/information-functions.html#function_last-insert-id
https://dev.mysql.com/doc/mysql-errors/9.6/en/server-error-reference.html#error_er_auto_increment_conflict
https://dev.mysql.com/doc/refman/9.6/en/insert.html
https://dev.mysql.com/doc/refman/9.6/en/kill.html
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_invalid_conn_handle
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_commands_out_of_sync
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_invalid_conn_handle
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_server_gone_error

mysql_library_end()

« CR_SERVER LOST

The connection to the server was lost during the query.

« CR_UNKNOWN_ERROR

An unknown error occurred.

5.4.44 mysql_library_end()

voi d

nmysql _|library_end(voi d)

Description

This function finalizes the MySQL client library. Call it when you are done using the library (for
example, after disconnecting from the server).

Note

To avoid memory leaks after the application is done using the library

(for example, after closing the connection to the server), be sure to call
nysqgl _|I'ibrary_end() explicitly. This enables memory managment to be
performed to clean up and free resources used by the library.

For usage information, see Chapter 4, C API Function Reference, and Section 5.4.45,
“mysql_library_init()".

5.4.45 mysql_library_init()

i nt

nmysql _library_init(int argc

Description

Call this function to initialize the MySQL client library before you call any other MySQL function.

In a nonmultithreaded environment, the callto nysql _|i brary_init () may be omitted, because
nmysqgl _i nit() invokes it automatically as necessary. However, nysql _library_init() is

not thread-safe in a multithreaded environment, and thus neither is mysql _i ni t (), which calls
nmysqgl _library init().Youmusteithercall nysqgl |ibrary init() priorto spawning any
threads, or else use a mutex to protect the call, whether you invoke mysql _library init() or

char **argv,
char **groups)

Note

To avoid memory leaks after the application is done using the library
(for example, after closing the connection to the server), be sure to call
nysqgl _|ibrary _end() explicitly. This enables memory managment
to be performed to clean up and free resources used by the library. See
Section 5.4.44, “mysql_library_end()".

indirectly through nysqgl _i ni t (). Do this prior to any other client library call.

The ar gc, ar gv, and gr oups arguments are unused. In older MySQL versions, they were used for

applications linked against the embedded server, which is no longer supported. The call now should be

written as mysql

[ibrary_init(0, NULL, NULL).

#i ncl ude <nysql . h>
#i ncl ude <stdlib. h>

int main(void) {

69

https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_server_lost
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_unknown_error

mysql_list_dbs()

if (nysqgl _library_init(0, NULL, NULL)) {
fprintf(stderr, "could not initialize M/SQL client library\n");
exit(1);

}

/* Use any MySQ. APl functions here */
nmysql _Iibrary_end();

return EXI T_SUCCESS;
}

Return Values
Zero for success. Nonzero if an error occurred.

5.4.46 mysql_list_dbs()

MYSQL_RES *
nysql _|ist_dbs(MYSQL *nysql,
const char *w | d)

Description
Returns a result set consisting of database names on the server that match the simple regular
expression specified by the wi | d parameter. wi | d may contain the wildcard characters %or _, or may
be a NULL pointer to match all databases. Calling nysql _|i st _dbs() is similar to executing the
query SHOW DATABASES [LI KE wi | d].
You must free the result set with nysql _free_result().
Return Values
A MYSQL_RES result set for success. NULL if an error occurred.
Errors
+ CR_COVMANDS_OUT_OF_SYNC
Commands were executed in an improper order.
« CR_QUT_OF MEMORY

Out of memory.

CR_SERVER GONE_ERRCR
The MySQL server has gone away.
* CR_SERVER LOST

The connection to the server was lost during the query.

CR_UNKNOWN_ERROR

An unknown error occurred.

5.4.47 mysql_list_fields()

MYSQL_RES *

nysqgl _|list_fields(MYSQL *nysql,
const char *table,
const char *w | d)

70

https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_commands_out_of_sync
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_out_of_memory
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_server_gone_error
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_server_lost
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_unknown_error

mysql_list_fields()

Description
Note

nysqgl _|ist_fields() isdeprecated and is subject to removal in a future
version of MySQL. Instead, use nysql _real query() ornysqgl query() to
execute a SHON COLUMNS statement.

Returns an empty result set for which the metadata provides information about the columns in

the given table that match the simple regular expression specified by the wi | d parameter. wi | d

may contain the wildcard characters %or _, or may be a NULL pointer to match all fields. Calling

nmysqgl _|ist_fields() issimilarto executing the query SHON COLUVWNS FROM t bl _nane [LI KE
wi | d].

The information obtained is roughly equivalent to that produced by executing the statement shown here
using the mysqgl client, like this:

$> nysql test --colum-type-info -e "SELECT * FROMt LIMT 0"
Field 1: “cl°

Cat al og: “def”
Dat abase: “test®
Tabl e: i
Og_table: °t°
Type: LONG
Col l ation: binary (63)
Lengt h: 11
Max_| ength: O

Deci nal s: 0

Fl ags: NUM
Field 2: “c2
Cat al og: “def”
Dat abase: “test®
Tabl e: i
Og_table: °t°
Type: LONG
Col l ation: binary (63)
Lengt h: 11
Max_| ength: O

Deci nal s: 0

Fl ags: NUM
$>

It is preferable to use SHOW COLUWNS FROM t bl _nane instead of nysql _l i st _fiel ds().
You must free the result set with nysqgl _free_resul t ().
Return Values
A MYSQL_RES result set for success. NULL if an error occurred.
Errors
« CR_COWANDS_OUT_OF SYNC
Commands were executed in an improper order.
« CR_SERVER GONE_ERROR
The MySQL server has gone away.
« CR _SERVER LOST

The connection to the server was lost during the query.

71

https://dev.mysql.com/doc/refman/9.6/en/show-columns.html
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_commands_out_of_sync
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_server_gone_error
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_server_lost

mysql_list_processes()

« CR_UNKNOWN_ERROR

An unknown error occurred.

Example

int i;
MYSQL_RES *tbl _cols = nysql _|list_fields(nysqgl, "nmytbhl", "f%);

unsigned int field cnt = nysql _numfields(tbl_cols);
printf("Nunber of columms: %\n", field_cnt);

for (i=0; i < field cnt; ++i)

/* col describes i-th colum of the table */
MYSQL_FI ELD *col = nysql _fetch_field direct(thl _cols, i);
printf ("Colum %: %\n", i, col->nane);

}

nysql _free_result(tbl_cols);

5.4.48 mysql_list_processes()

MYSQL_RES *
nysql _|ist_processes(MYSQ *nysql)

Description

Note

nysqgl _|ist_processes() is deprecated and is subject to removal
in a future version of MySQL. Instead, use nysql real query() or
nysqgl _query() to execute a SHOW PROCESSLI ST statement.

Returns a result set describing the current server threads. This is the same kind of information as that
reported by nysql admi n processli st or a SHOWV PROCESSLI ST query.

You must free the result set with mysql _free_result().

Return Values

Errors

A MYSQL_RES result set for success. NULL if an error occurred.

+ CR_COVMANDS_QUT_OF_SYNC

Commands were executed in an improper order.

CR_SERVER GONE_ERROR

The MySQL server has gone away.

CR_SERVER LOST

The connection to the server was lost during the query.

CR_UNKNOMN_ERROR

An unknown error occurred.

5.4.49 mysql_list_tables()

MYSQL_RES *

72

https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_unknown_error
https://dev.mysql.com/doc/refman/9.6/en/show-processlist.html
https://dev.mysql.com/doc/refman/9.6/en/show-processlist.html
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_commands_out_of_sync
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_server_gone_error
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_server_lost
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_unknown_error

mysql_more_results()

nmysql _Iist_tabl es(MYSQL *nysql ,
const char *w | d)

Description

Returns a result set consisting of table names in the current database that match the simple regular
expression specified by the wi | d parameter. wi | d may contain the wildcard characters %or , or
may be a NULL pointer to match all tables. Calling nysql |i st _tabl es() is similar to executing the
query SHOW TABLES [LIKE wi | d].

You must free the result set with mnysql _free result().
Return Values
A MYSQL_RES result set for success. NULL if an error occurred.
Errors
« CR_COWANDS OUT_OF SYNC
Commands were executed in an improper order.
« CR_SERVER GONE_ERRCR

The MySQL server has gone away.

CR_SERVER LOST

The connection to the server was lost during the query.

CR_UNKNOWN_ERROR
An unknown error occurred.

5.4.50 mysqgl_more_results()

bool
nmysql _nore_resul t s(MYSQL *nysql)

Description

This function is used when you execute multiple statements specified as a single statement string, or
when you execute CALL statements, which can return multiple result sets.

nysql _nore_resul t s() true if more results exist from the currently executed statement, in which
case the application must call mysql _next _resul t () to fetch the results.

Return Values
TRUE (1) if more results exist. FALSE (0) if no more results exist.

In most cases, you can call mysqgl _next result () instead to test whether more results exist and
initiate retrieval if so.

See Section 3.6.3, “Multiple Statement Execution Support”, and Section 5.4.51, “mysql_next_result()”.
Errors

None.

5.4.51 mysql_next_result()

73

https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_commands_out_of_sync
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_server_gone_error
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_server_lost
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_unknown_error
https://dev.mysql.com/doc/refman/9.6/en/call.html

mysql_next_result()

int
nmysqgl _next _result (MYSQL *nysql)

Description

Note

nysql _next _resul t () is asynchronous function. Its asynchronous
counterpart is mysql _next _resul t _nonbl ocki ng() , for use by applications
that require asynchronous communication with the server. See Chapter 7, C
API Asynchronous Interface.

nysql _next _resul t () is used when you execute multiple statements specified as a single
statement string, or when you use CALL statements to execute stored procedures, which can return
multiple result sets.

nysql _next _resul t () reads the next statement result and returns a status to indicate whether
more results exist. If nysql _next _resul t () returns an error, there are no more results.

Before each call to nysql _next _resul t (), you mustcall mysql _free_result() forthe current
statement if it is a statement that returned a result set (rather than just a result status).

After calling mysql next result () the state of the connection is as if you had called
nysql _real _query() ornysqgl _query() for the next statement. This means that you can call
nysql _store_result(),nysqgl _warning_count(),nysql _affected_rows(), and so forth.

If your program uses CALL statements to execute stored procedures, the CLI ENT_MULTI _RESULTS
flag must be enabled. This is because each CALL returns a result to indicate the call status, in addition
to any result sets that might be returned by statements executed within the procedure. Because CALL
can return multiple results, process them using a loop that calls nysql _next resul t () to determine
whether there are more results.

CLI ENT_MULTI _RESULTS can be enabled when you call nysqgl _real connect (),
either explicitly by passing the CLI ENT_MJLTI _RESULTS flag itself, or implicitly by
passing CLI ENT_MULTI _STATENMENTS (which also enables CLI ENT_MULTI _RESULTS).
CLI ENT_MULTI _RESULTS is enabled by default.

It is also possible to test whether there are more results by calling mysql _nore_resul ts().
However, this function does not change the connection state, so if it returns true, you must still call
nmysqgl _next result() toadvance to the next result.

For an example that shows how to use nysqgl _next result(), see Section 3.6.3, “Multiple
Statement Execution Support”.

Return Values

Errors

Return Value Description

0 Successful and there are more results

-1 Successful and there are no more results
>0 An error occurred

« CR_COVWANDS_OUT_OF_SYNC

Commands were executed in an improper order. For example, if you did not call
nysqgl use_resul t() fora previous result set.

« CR_SERVER GONE_ERROR

74

https://dev.mysql.com/doc/refman/9.6/en/call.html
https://dev.mysql.com/doc/refman/9.6/en/call.html
https://dev.mysql.com/doc/refman/9.6/en/call.html
https://dev.mysql.com/doc/refman/9.6/en/call.html
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_commands_out_of_sync
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_server_gone_error

mysql_num_fields()

The MySQL server has gone away.
« CR_SERVER LOCST

The connection to the server was lost during the query.
« CR_UNKNOMN ERROR

An unknown error occurred.

5.4.52 mysql_num_fields()

unsi gned i nt
nysqgl _num fiel ds(MYSQL_RES *resul t)

To pass a MYSQL* argument instead, use unsi gned int nysql field count(MYSQL *nysql).
Description
Returns the number of columns in a result set.

You can get the number of columns either from a pointer to a result set or to a connection handler. You
would use the connection handler if mysql _store result() ornysql use result() returned
NULL (and thus you have no result set pointer). In this case, you can call nysql field _count() to
determine whether nysql store resul t () should have produced a nonempty result. This enables
the client program to take proper action without knowing whether the query was a SELECT (or SELECT-
like) statement. The example shown here illustrates how this may be done.

See Section 3.6.9, “NULL mysql_store_result() Return After mysql_query() Success”.

Return Values

An unsigned integer representing the number of columns in a result set.

Errors
None.

Example

MYSQL_RES *resul t;
unsigned int numfields
unsi gned i nt num.rows;

if (nysql _query(&nmysql, query_string))
{
/Il error

el se // query succeeded, process any data returned by it

{
result = nysql _store_result(&mysql);
if (result) // there are rows

{
num fields = nysql _numfields(result);
/Il retrieve rows, then call nysql _free_result(result)

else // nysql _store_result() returned nothing; should it have?

{
if (nysql _errno(&nmysql))
{

fprintf(stderr, "Error: %\n", nysql_error(&mysql))
}
else if (nysql_field_count(&nysql) == 0)
{

/'l query does not return data

75

https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_server_lost
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_unknown_error
https://dev.mysql.com/doc/refman/9.6/en/select.html
https://dev.mysql.com/doc/refman/9.6/en/select.html

mysqgl_num_rows()

/1 (it was not a SELECT)
numrows = nysql _affected_rows(&mysql);

}

An alternative (if you know that your query should have returned a result set) is to replace the
nysql _errno(&rysql) call with a check whether mysql _fi el d_count (&ysql) returns 0. This
happens only if something went wrong.

5.4.53 mysql_num_rows()

ui nt 64 _t
nysqgl _num rows(MYSQL_RES *resul t)

Description

Returns the number of rows in the result set.

The use of nysql _num rows() depends on whether you use nmysql store resul t()
ornysql use_result() toreturn the result set. If you use nysql store result(),

nmysqgl _num rows() may be called immediately. If you use nysql use result(),

nmysqgl _num rows() does not return the correct value until all the rows in the result set have been
retrieved.

nysgl _num rows() isintended for use with statements that return a result set, such as SELECT. For
statements such as | NSERT, UPDATE, or DELETE, the number of affected rows can be obtained with
mysql _affected _rows().

Return Values

Errors

The number of rows in the result set.

None.

5.4.54 mysql_options()

i nt

nmysql _opti ons(MYSQL *mnysql,
enum nysql _option opti on,
const void *arg)

Description

Can be used to set extra connect options and affect behavior for a connection. This function may be
called multiple times to set several options. To retrieve option values, use nysql _get option().

Call mysql _options() afternysqgl _init() and before nysql connect () or
nmysql real connect ().

The opt i on argument is the option that you want to set; the ar g argument is the value for the option.
If the option is an integer, specify a pointer to the value of the integer as the ar g argument.

Options for information such as SSL certificate and key files are used to establish an encrypted
connection if such connections are available, but do not enforce any requirement that the connection
obtained be encrypted. To require an encrypted connection, use the technique described in

Section 3.6.1, “Support for Encrypted Connections”.

The following list describes the possible options, their effect, and how ar g is used for each option. For
option descriptions that indicate ar g is unused, its value is irrelevant; it is conventional to pass 0.

76

https://dev.mysql.com/doc/refman/9.6/en/select.html
https://dev.mysql.com/doc/refman/9.6/en/insert.html
https://dev.mysql.com/doc/refman/9.6/en/update.html
https://dev.mysql.com/doc/refman/9.6/en/delete.html

mysql_options()

MYSQL_DEFAULT_AUTH (argument type: char *)
The name of the authentication plugin to use.
MYSQL_ENABLE CLEARTEXT PLUG N (argument type: bool *)

Enable the nysql _cl ear _passwor d cleartext authentication plugin. See Client-Side Cleartext
Pluggable Authentication.

MYSQL_I NI T_COWVIVAND (argument type: char *)

SQL statement to execute when connecting to the MySQL server. Automatically re-executed if
reconnection occurs.

MYSQL_OPT_BI ND (argument: char *)

The network interface from which to connect to the server. This is used when the client host has
multiple network interfaces. The argument is a host name or IP address (specified as a string).

MYSQL_OPT_CAN_HANDLE_EXPI RED_PASSWORDS (argument type: bool *)

Indicate whether the client can handle expired passwords. See Server Handling of Expired
Passwords.

MYSQL_OPT_COVPRESS (argument: not used)

Compress all information sent between the client and the server if possible. See Connection
Compression Control.

As of MySQL 8.0.18, M\ySQL_OPT_COVPRESS becomes a legacy option, due to the introduction of
the MYSQL_OPT_COVPRESSI ON_ALGORI THVS option for more control over connection compression
(see Configuring Connection Compression). The meaning of M\YSQL_OPT_COVPRESS depends on
whether MYSQL_OPT_COVPRESSI ON_ALGORI THVS is specified:

* When MYSQL_OPT_COVPRESSI ON_ALGORI THVS is not specified, enabling
MYSQL_OPT_COVPRESS is equivalent to specifying a client-side algorithm set of
zl i b, unconpr essed.

e When MYSQL_OPT_COVPRESSI ON_ALGORI THVES is specified, enabling MYSQL_ OPT_COVPRESS
is equivalent to specifying an algorithm set of zI i b and the full client-side algorithm set is the
union of zI i b plus the algorithms specified by MYSQL_OPT_COVPRESSI ON_ALGORI THVS. For
example, with MYSQL_OPT_COVPRESS enabled and MYSQL_OPT_COVPRESSI ON_AL GORI THVS
setto zIl i b, zst d, the permitted-algorithm setis zI i b plus zI i b, zst d; that s, zl i b, zst d.
With MYySQL_ OPT_COVPRESS enabled and MYSQL_ OPT_COVPRESSI ON_ALGORI THVS set to
zst d, unconpr essed, the permitted-algorithm setis zI i b plus zst d, unconpr essed; that is,
zli b, zstd, unconpr essed.

As of MySQL 8.0.18, M\YySQL_OPT_COVPRESS is deprecated. It is subject to removal in a future
MySQL version. See Configuring Legacy Connection Compression.

MYSQL_OPT_COVPRESSI ON_ALGORI THVS (argument type: const char *)

The permitted compression algorithms for connections to the server. The available algorithms are
the same as for the pr ot ocol _conpr essi on_al gori t hns system variable. If this option is not
specified, the default value is unconpr essed.

For more information, see Connection Compression Control.

This option was added in MySQL 8.0.18. For asynchronous operations, the option has no effect until
MySQL 8.0.21.

MYSQL_OPT_CONNECT_ATTR_DELETE (argument type: char *)

77

https://dev.mysql.com/doc/refman/9.6/en/cleartext-pluggable-authentication.html
https://dev.mysql.com/doc/refman/9.6/en/cleartext-pluggable-authentication.html
https://dev.mysql.com/doc/refman/9.6/en/expired-password-handling.html
https://dev.mysql.com/doc/refman/9.6/en/expired-password-handling.html
https://dev.mysql.com/doc/refman/9.6/en/connection-compression-control.html
https://dev.mysql.com/doc/refman/9.6/en/connection-compression-control.html
https://dev.mysql.com/doc/refman/9.6/en/connection-compression-control.html#connection-compression-configuration
https://dev.mysql.com/doc/refman/9.6/en/connection-compression-control.html#connection-compression-legacy-configuration
https://dev.mysql.com/doc/refman/9.6/en/server-system-variables.html#sysvar_protocol_compression_algorithms
https://dev.mysql.com/doc/refman/9.6/en/connection-compression-control.html

mysql_options()

Given a key name, this option deletes a key-value pair from the current set of connection attributes to
pass to the server at connect time. The argument is a pointer to a null-terminated string naming the
key. Comparison of the key name with existing keys is case-sensitive.

See also the description for the MYSQL_OPT_CONNECT _ATTR_RESET option, as well as
the description for the MYSQL_OPT_CONNECT _ATTR _ADD option in the description of the
nysql _options4() function. That function description also includes a usage example.

The Performance Schema exposes connection attributes through the sessi on_connect _attrs
and sessi on_account _connect _attrs tables. See Performance Schema Connection Attribute
Tables.

MYSQL_OPT_CONNECT ATTR RESET (argument not used)

This option resets (clears) the current set of connection attributes to pass to the server at connect
time.

See also the description for the MYSQL_OPT_CONNECT_ATTR_DELETE option, as well as
the description for the MYSQL_OPT_CONNECT_ATTR_ADD option in the description of the
nysql _options4() function. That function description also includes a usage example.

The Performance Schema exposes connection attributes through the sessi on_connect _attrs
and sessi on_account _connect attrs tables. See Performance Schema Connection Attribute
Tables.

MYSQL_OPT_CONNECT_TI MEQUT (argument type: unsi gned i nt *)
The connect timeout in seconds.
MYSQL_OPT_GET_SERVER PUBLI C_KEY (argument type: bool *)

Enables the client to request from the server the public key required for RSA key pair-

based password exchange. This option applies to clients that authenticate with the

cachi ng_sha2_passwor d authentication plugin. For that plugin, the server does not send the
public key unless requested. This option is ignored for accounts that do not authenticate with that
plugin. It is also ignored if RSA-based password exchange is not used, as is the case when the client
connects to the server using a secure connection.

If MYSQL_SERVER PUBLI C_KEY is given and specifies a valid public key file, it takes precedence
over MYSQL_OPT_GET_SERVER_PUBLI C_KEY.

For information about the cachi ng_sha2 passwor d plugin, see Caching SHA-2 Pluggable
Authentication.

MYSQL_OPT_LOAD DATA LOCAL_DI R (argument type: char *)

This option affects the client-side LOCAL capability for LOAD DATA operations. It specifies the
directory in which files named in LOAD DATA LOCAL statements must be located. The effect of
MYSQL_OPT_LOAD_DATA LOCAL_DI R depends on whether LOCAL data loading is enabled or
disabled:

« If LOCAL data loading is enabled, either by default in the MySQL client library or by explicitly
enabling MYSQL_OPT_LOCAL_ | NFI LE, the MYSQL_OPT_LOAD DATA LOCAL_DI R option has no
effect.

« If LOCAL data loading is disabled, either by default in the MySQL client library or by explicitly
disabling MYSQL_OPT LOCAL_| NFI LE, the MYSQL_OPT _LOAD DATA LOCAL DI R option
can be used to designate a permitted directory for locally loaded files. In this case, LOCAL data
loading is permitted but restricted to files located in the designated directory. Interpretation of the
MYSQL_OPT_LOAD _DATA LOCAL_DI Rvalue is as follows:

78

https://dev.mysql.com/doc/refman/9.6/en/performance-schema-session-connect-attrs-table.html
https://dev.mysql.com/doc/refman/9.6/en/performance-schema-session-account-connect-attrs-table.html
https://dev.mysql.com/doc/refman/9.6/en/performance-schema-connection-attribute-tables.html
https://dev.mysql.com/doc/refman/9.6/en/performance-schema-connection-attribute-tables.html
https://dev.mysql.com/doc/refman/9.6/en/performance-schema-session-connect-attrs-table.html
https://dev.mysql.com/doc/refman/9.6/en/performance-schema-session-account-connect-attrs-table.html
https://dev.mysql.com/doc/refman/9.6/en/performance-schema-connection-attribute-tables.html
https://dev.mysql.com/doc/refman/9.6/en/performance-schema-connection-attribute-tables.html
https://dev.mysql.com/doc/refman/9.6/en/caching-sha2-pluggable-authentication.html
https://dev.mysql.com/doc/refman/9.6/en/caching-sha2-pluggable-authentication.html
https://dev.mysql.com/doc/refman/9.6/en/load-data.html
https://dev.mysql.com/doc/refman/9.6/en/load-data.html

mysql_options()

« If the value is the null pointer (the default), it names no directory, with the result that no files are
permitted for LOCAL data loading.

* If the value is a directory path name, LOCAL data loading is permitted but restricted to files
located in the named directory. Comparison of the directory path name and the path name
of files to be loaded is case-sensitive regardless of the case-sensitivity of the underlying file
system.

For example, to explicitly disable local data loading except for files located in the / my/ | ocal / dat a
directory, invoke nysql _options() like this:
unsigned int i = 0;

nysql _options(&ysql , MYSQL_OPT_LOCAL_I NFI LE, &);
nysql _options(&ysql , MYSQL_OPT_LOAD DATA LOCAL_DI R, "/ y/| ocal / data");

The MYSQL_OPT_LOAD DATA LOCAL_DI R option can be set any time during the life of the nmysq|l
connection handler. Once set, the value applies to all subsequent LOCAL load operations until such
time as the value is changed.

The ENABLED LOCAL_| NFI LE Cake option controls the client library default for local data loading
(see MySQL Source-Configuration Options).

Successful use of LOCAL load operations by a client also requires that the server permits local
loading; see Security Considerations for LOAD DATA LOCAL

The MYSQL_OPT_LOAD_DATA LOCAL_DI R option was added in MySQL 8.0.21.
o MYSQL_OPT_LOCAL_I NFI LE (argument type: optional pointer to unsi gned i nt)

This option affects client-side LOCAL capability for LOAD DATA operations. By default,
LOCAL capability is determined by the default compiled into the MySQL client library.
To control this capability explicitly, invoke mysqgl opti ons() to enable or disable the
MYSQL_OPT_LOCAL_I| NFI LE option:

* To enable LOCAL data loading, set the pointer to point to an unsi gned i nt that has a nonzero
value, or omit the pointer argument.

e To disable LOCAL data loading, set the pointer to point to an unsi gned i nt that has a zero
value.

If LOCAL capability is disabled, the MYySQL_OPT_LOAD DATA LOCAL_DI R option can be used to
permit restricted local loading of files located in a designated directory.

The ENABLED_LCOCAL_I NFI LE Cvake option controls the client library default for local data loading
(see MySQL Source-Configuration Options).

Successful use of LOCAL load operations by a client also requires that the server permits local
loading; see Security Considerations for LOAD DATA LOCAL

o MYSQL_OPT_NMAX _ALLOWED PACKET (argument: unsi gned | ong *)

This option sets the client-side maximum size of the buffer for client/server communication. If the
nysql argument is non-NULL, the call sets the option value for that session. If mysql is NULL, the
call sets the option value globally for all subsequent sessions for which a session-specific value is
not specified.

Because it is possible to set a session or global maximum buffer size, depending on whether the
mysql argumentis non-NULL or NULL, mysql _get _opti on() similarly returns the session or
global value depending on its mysqgl argument.

e MYSQ._OPT_NAMED PI PE (argument: not used)

79

https://dev.mysql.com/doc/refman/9.6/en/source-configuration-options.html#option_cmake_enabled_local_infile
https://dev.mysql.com/doc/refman/9.6/en/source-configuration-options.html
https://dev.mysql.com/doc/refman/9.6/en/load-data-local-security.html
https://dev.mysql.com/doc/refman/9.6/en/load-data.html
https://dev.mysql.com/doc/refman/9.6/en/source-configuration-options.html#option_cmake_enabled_local_infile
https://dev.mysql.com/doc/refman/9.6/en/source-configuration-options.html
https://dev.mysql.com/doc/refman/9.6/en/load-data-local-security.html

mysql_options()

Use a named pipe to connect to the MySQL server on Windows, if the server permits named-pipe
connections.

MYSQL_OPT_NET_BUFFER_LENGTH (argument; unsi gned | ong *)
This option sets the client-side buffer size for TCP/IP and socket communication.
MYSQL_OPT_OPTI ONAL_RESULTSET _METADATA (argument type: bool *)

This flag makes result set metadata optional. It is an alternative to setting the

CLI ENT_OPTI ONAL_RESULTSET_METADATA connection flag for the nysql _real _connect ()
function. For details about managing result set metadata transfer, see Section 3.6.7, “Optional Result
Set Metadata”.

MYSQL_OPT_PROTOCOL (argument type: unsi gned int *)

Transport protocol to use for connection. Specify one of the enum values of
nysql _protocol _type definedin mysqgl . h.

MYSQL_OPT_READ TI MEQUT (argument type: unsi gned i nt *)

The timeout in seconds for each attempt to read from the server. There are retries if necessary, so
the total effective timeout value is three times the option value. You can set the value so that a lost
connection can be detected earlier than the TCP/IP Cl ose_Wai t _Ti neout value of 10 minutes.

MYSQL_OPT_RECONNECT (argument type: bool *)
Note

The MYSQL_OPT_RECONNECT option is still available but is deprecated,;
expect it to be removed in a future version of MySQL.

Enable or disable automatic reconnection to the server if the connection is found to have been lost.
Reconnect is off by default; this option provides a way to set reconnection behavior explicitly. See
Section 3.6.8, “Automatic Reconnection Control”.

MYSQL_OPT_RETRY_COUNT (argument type: unsi gned i nt *)

The retry count for 1/O-related system calls that are interrupted while connecting to the server or
communicating with it. If this option is not specified, the default value is 1 (1 retry if the initial call is
interrupted for 2 tries total).

This option can be used only by clients that link against a C client library compiled with NDB Cluster
support.

MYSQL_OPT_SSL_CA (argument type: char *)

The path name of the Certificate Authority (CA) certificate file. This option, if used, must specify the
same certificate used by the server.

MYSQL_OPT_SSL_CAPATH (argument type: char *)

The path name of the directory that contains trusted SSL CA certificate files.
MYSQL_OPT_SSL_CERT (argument type: char *)

The path name of the client public key certificate file.

MYSQL_OPT_SSL_ClI PHER (argument type: char *)

The list of permissible ciphers for SSL encryption.

MYSQL_OPT_SSL_CRL (argument type: char *)

80

mysql_options()

The path name of the file containing certificate revocation lists.
MYSQL_OPT_SSL_CRLPATH (argument type: char *)

The path name of the directory that contains files containing certificate revocation lists.
MYSQL_OPT_SSL_FI PS_MODE (argument type: unsi gned int *)

The MYSQL_OPT_SSL_FI PS_MODE option is deprecated and subject to removal in a future version
of MySQL.

Controls whether to enable FIPS mode on the client side. The M\YySQL_OPT_SSL_FI PS_MODE
option differs from other MYSQL_OPT_SSL_xxx options in that it is not used to establish encrypted
connections, but rather to affect which cryptographic operations to permit. See FIPS Support.

Permitted option values are SSL_FI PS_MODE_OFF, SSL_FI PS_MODE_QN, and
SSL_FI PS_MODE_STRI CT.

Note

If the OpenSSL FIPS Object Module is not available, the only permitted
value for MYSQL_OPT_SSL_FI PS_MODE is SSL_FI PS_MODE_OFF. In this
case, setting M\YySQL_OPT_SSL_FI PS_MODE to SSL_FI PS_MODE_ON or
SSL_FI PS_MODE_STRI CT causes the client to produce a warning at startup
and to operate in non-FIPS mode.

MYSQL_OPT_SSL_KEY (argument type: char *)
The path name of the client private key file.
MYSQL_OPT_SSL_MODE (argument type: unsi gned int *)

The security state to use for the connection to the server: SSL_MODE DI SABLED,
SSL_MODE_PREFERRED, SSL__MODE_REQUI RED, SSL_MODE_VERI FY_CA,

SSL_MODE_VERI FY_| DENTI TY. If this option is not specified, the default is
SSL_MODE_PREFERRED. These modes are the permitted values of the mysqgl _ssl _node
enumeration defined in nysql . h. For more information about the security states, see the description
of - - ssl - rode in Command Options for Encrypted Connections.

MYSQL_OPT_SSL_SESSI ON_DATA (argument type: voi d *)

The session data to use for session reuse when establishing the next encrypted connection. It should
be set before mysqgl real connect () and after nysqgl i nit (). It expects the PEM session data
as returned by nysql get ssl _sessi on_dat a() and copies the result into the MYSQL handle.
Itis resetto nul | ptr (the default) after mysql real connect (), unless specified otherwise
through the CLI ENT_REVENMBER OPTI ONS flag.

If specified, an attempt is made to reuse the session at TLS establishment time.
nysql _get option() returns the handle set by nysql _opti ons(), if any, and it does not
increase the number reference counts.

This option was added in MySQL 8.0.29.
MYSQL_OPT_TLS CI PHERSUI TES (argument type: char *)

Which ciphersuites the client permits for encrypted connections that use TLSv1.3. The value is a
list of one or more colon-separated ciphersuite names. The ciphersuites that can be named for this
option depend on the SSL library used to compile MySQL. For details, see Encrypted Connection
TLS Protocols and Ciphers.

This option was added in MySQL 8.0.16.

81

https://dev.mysql.com/doc/refman/9.6/en/fips-mode.html
https://dev.mysql.com/doc/refman/9.6/en/connection-options.html#option_general_ssl-mode
https://dev.mysql.com/doc/refman/9.6/en/connection-options.html#encrypted-connection-options
https://dev.mysql.com/doc/refman/9.6/en/encrypted-connection-protocols-ciphers.html
https://dev.mysql.com/doc/refman/9.6/en/encrypted-connection-protocols-ciphers.html

mysql_options()

MYSQL_OPT_TLS SNI _SERVERNAME (argument type: char *)

Which server the client is trying to connect to at the start of the TLS handshake. This option must be
set prior to connecting to the server. The server name contains the fully qualified DNS host name of
the server, as understood by the client. The server name is represented as a byte string using ASCII
encoding, without a trailing dot, and it is not case-sensitive.

Server Name Indication (SNI) is an extension to the TLS protocol (OpenSSL must be compiled using
TLS extensions for this option to function). The MySQL implementation of SNI represents the client-
side only.

MYSQL_OPT_TLS VERSI ON (argument type: char *)

Which protocols the client permits for encrypted connections. The value is a list of one or more
comma-separated protocol versions. The protocols that can be named for this option depend on
the SSL library used to compile MySQL. For details, see Encrypted Connection TLS Protocols and
Ciphers.

MYSQL_OPT_USE_RESULT (argument: not used)
This option is unused.
MYSQL_OPT_WRI TE_TI MEQUT (argument type: unsi gned int *)

The timeout in seconds for each attempt to write to the server. There is a retry if necessary, so the
total effective timeout value is two times the option value.

MYSQL_OPT_ZSTD COVPRESSI ON_LEVEL (argument type: unsi gned int *)

The compression level to use for connections to the server that use the zst d compression algorithm.
The permitted levels are from 1 to 22, with larger values indicating increasing levels of compression.
If this option is not specified, the default zst d compression level is 3. The compression level setting
has no effect on connections that do not use zst d compression.

For more information, see Connection Compression Control.

This option was added in MySQL 8.0.18. For asynchronous operations, the option has no effect until
MySQL 8.0.21.

MYSQL_PLUG N DI R (argument type: char *)

The directory in which to look for client plugins.

MYSQL_READ DEFAULT_FI LE (argument type: char *)

Read options from the named option file instead of from ny. cnf .
MYSQL_READ_DEFAULT_GROUP (argument type: char *)

Read options from the named group from my. cnf or the file specified with
MYSQ._READ DEFAULT_FI LE.

MYSQL_REPORT_DATA_ TRUNCATI ON (argument type: bool *)

Enable or disable reporting of data truncation errors for prepared statements using the er r or
member of MYSQL_ Bl ND structures. (Default: enabled.)

MYSQL_SERVER_PUBLI C_KEY (argument type: char *)

The path name to a file in PEM format containing a client-side copy of the public key required by the
server for RSA key pair-based password exchange. This option applies to clients that authenticate
with the sha256_passwor d or cachi ng_sha2_passwor d authentication plugin. This option is

82

https://dev.mysql.com/doc/refman/9.6/en/encrypted-connection-protocols-ciphers.html
https://dev.mysql.com/doc/refman/9.6/en/encrypted-connection-protocols-ciphers.html
https://dev.mysql.com/doc/refman/9.6/en/connection-compression-control.html

mysql_options()

ignored for accounts that do not authenticate with one of those plugins. It is also ignored if RSA-
based password exchange is not used, as is the case when the client connects to the server using a
secure connection.

If MYSQL_SERVER PUBLI C KEY is given and specifies a valid public key file, it takes precedence
over MYSQL_OPT_GET_SERVER_PUBLI C_KEY.

For information about the sha256 passwor d and cachi ng_sha2_ passwor d plugins, see
SHA-256 Pluggable Authentication, and Caching SHA-2 Pluggable Authentication.

e MYSQ._SET CHARSET DI R (argument type: char *)
The path name of the directory that contains character set definition files.
e MYSQL_SET CHARSET NANE (argument type: char *)

The name of the character set to use as the default character set. The argument can be
MYSQL_AUTODETECT CHARSET _NAME to cause the character set to be autodetected based on the
operating system setting (see Connection Character Sets and Collations).

e MYSQL_SHARED NMEMORY BASE NAME (argument type: char *)

The name of the shared-memory object for communication to the server on Windows, if
the server supports shared-memory connections. Specify the same value as used for the
shared_nenory_ base_ nane system variable. of the mysql d server you want to connect to.

The cl i ent group is always read if you use MYSQL_READ DEFAULT FI LE or
MYSQL_READ DEFAULT_ GROUP.

The specified group in the option file may contain the following options.

Option Description
character-sets-dir=dir_nane The directory where character sets are installed.
conpr ess Use the compressed client/server protocol.
connect -ti meout =seconds The connect timeout in seconds. On Linux this

timeout is also used for waiting for the first answer
from the server.

dat abase=db_nane Connect to this database if no database was
specified in the connect command.

debug Debug options.

def aul t - charact er-set =char set _nane The default character set to use.

di sabl e-local -infile Disable use of LOAD DATA LOCAL.

enabl e-cl eartext-plugin Enable the mysql _cl ear _passwor d cleartext
authentication plugin.

host =host _nane Default host name.

i nit-command=st nt Statement to execute when connecting to MySQL
server. Automatically re-executed if reconnection
occurs.

i nteractive-timeout =seconds Same as specifying CLI ENT_| NTERACTI VE to

nmysqgl _real connect (). See Section 5.4.58,
“mysql_real_connect()".

| ocal -infile[={0]1}] If no argument or nonzero argument, enable use
of LOAD DATA LOCAL; otherwise disable.

max_al | oned_packet =byt es Maximum size of packet that client can read from
server.

83

https://dev.mysql.com/doc/refman/9.6/en/sha256-pluggable-authentication.html
https://dev.mysql.com/doc/refman/9.6/en/caching-sha2-pluggable-authentication.html
https://dev.mysql.com/doc/refman/9.6/en/charset-connection.html
https://dev.mysql.com/doc/refman/9.6/en/server-system-variables.html#sysvar_shared_memory_base_name
https://dev.mysql.com/doc/refman/9.6/en/load-data.html
https://dev.mysql.com/doc/refman/9.6/en/load-data.html

mysql_options4()

Option

Description

mul ti-queries,multi-results

Enable multiple result sets from multiple-statement
executions or stored procedures.

nmul ti-statenents

Enable the client to send multiple statements in a
single string (separated by ; characters).

passwor d=password

Default password.

pi pe

Use named pipes to connect to a MySQL server
on Windows.

port=port_num

Default port number.

pr ot ocol ={ TCP| SOCKET| PI PE| MEMORY}

The protocol to use when connecting to the
server.

ret ur n- f ound-r ows

Tell mysql _i nfo() to return found rows instead
of updated rows when using UPDATE.

shar ed- nenor y- base- name=nane

Shared-memory name to use to connect to server.

socket ={fi | e_namne| pi pe_nane}

Default socket file.

ssl-ca=file_nane

Certificate Authority file.

ssl - capat h=di r _nane

Certificate Authority directory.

ssl-cert=file_nane

Certificate file.

ssl - ci pher =ci pher _| i st

Permissible SSL ciphers.

ssl - key=fil e_nane

Key file.

ti meout =seconds

Like connect -t i meout .

user

Default user.

t i meout has been replaced by connect -t i neout, butti neout is still supported for backward

compatibility.

For more information about option files used by MySQL programs, see Using Option Files.

Return Values

Zero for success. Nonzero if you specify an unknown option.

Example

The following mysql _options() calls request the use of compression in the client/server protocol,
cause options to be read from the [odbc] group in option files, and disable transaction autocommit

mode:
MYSQL nysql ;

nysql _init(&rysql);
nysql _opti ons(&ysqgl , \YSQL_OPT_COWPRESS, 0) ;

nmysql _opti ons(&rysqgl , MYSQL_READ DEFAULT_GROUP, "odbc");
nmysql _options(&rysqgl, MYSQL_I NIl T_COMVAND, " SET aut oconmi t =0") ;
if (!'nysqgl _real _connect (&nysql, "host", "user", "passwd", "dat abase", 0, NULL, 0))

{

fprintf(stderr, "Failed to connect to database: Error: %\n",

nmysql _error (&ysql));
}

5.4.55 mysql_options4()

i nt

nysql _opti ons4(MYSQL *nysql ,
enum nysql _opti on option,
const void *argl,
const void *arg2)

84

https://dev.mysql.com/doc/refman/9.6/en/update.html
https://dev.mysql.com/doc/refman/9.6/en/option-files.html

mysql_options4()

Description

nmysql _options4() issimilarto mysql options() but has an extra fourth argument so that two
values can be passed for the option specified in the second argument.

The following list describes the permitted options, their effect, and how ar g1 and ar g2 are used.
e MYSQL._OPT_CONNECT ATTR _ADD (argument types: char *, char *)

This option adds an attribute key-value pair to the current set of connection attributes to pass to the
server at connect time. Both arguments are pointers to null-terminated strings. The first and second
strings indicate the key and value, respectively. If the key is empty or already exists in the current
set of connection attributes, an error occurs. Comparison of the key name with existing keys is case-
sensitive.

Key names that begin with an underscore (_) are reserved for internal use and should not be created
by application programs. This convention permits new attributes to be introduced by MySQL without
colliding with application attributes.

nysql _options4() imposes a limit of 64KB on the aggregate size of connection attribute
data it accepts. For calls that cause this limit to be exceeded, a CR_| NVALI D PARAVETER_NO
error occurs. Attribute size-limit checks also occur on the server side. For details, see
Performance Schema Connection Attribute Tables, which also describes how the Performance
Schema exposes connection attributes through the sessi on_connect _attrs and

sessi on_account _connect attrs tables.

See also the descriptions for the MYSQL_OPT_CONNECT _ATTR_RESET and
MYSQL_OPT_CONNECT_ATTR_DELETE options in the description of the mysqgl _opti ons()
function.

e MYSQL_OPT_USER PASSWORD (argument types: unsi gned int *, char *)

This option specifies the password for a multifactor authentication factor (see Multifactor
Authentication).

The first argument points to an unsi gned i nt variable that should have a value of 1, 2, or 3 to
indicate the factor for which the password is being specified. The second argument points to a
character string that provides the password value.

This option was added in MySQL 8.0.27.
Return Values
Zero for success. Nonzero if you specify an unknown option.
Errors
« CR_DUPLI CATE_CONNECTI ON_ATTR
A duplicate attribute name was specified.
« CR I NVALI D_PARAMETER NO
A key name was empty or the amount of key-value connection attribute data exceeds 64KB limit.
« CR_OUT_OF MEMORY
Out of memory.
Example

This example demonstrates the calls that specify connection attributes:

85

https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_invalid_parameter_no
https://dev.mysql.com/doc/refman/9.6/en/performance-schema-connection-attribute-tables.html
https://dev.mysql.com/doc/refman/9.6/en/performance-schema-session-connect-attrs-table.html
https://dev.mysql.com/doc/refman/9.6/en/performance-schema-session-account-connect-attrs-table.html
https://dev.mysql.com/doc/refman/9.6/en/multifactor-authentication.html
https://dev.mysql.com/doc/refman/9.6/en/multifactor-authentication.html
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_duplicate_connection_attr
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_invalid_parameter_no
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_out_of_memory

mysqgl_ping()

MYSQL nysql ;

nysql _init(&rysql);
nysql _opti ons(&mysqgl , MYSQL_OPT_CONNECT_ATTR_RESET, 0);
nysql _opti ons4(&rysqgl , MYSQL_OPT_CONNECT_ATTR _ADD, "keyl", "val uel");
nysql _opti ons4(&rysqgl , MYSQL_OPT_CONNECT_ATTR _ADD, "key2", "val ue2");
nysql _opti ons4(&rysqgl , MYSQL_OPT_CONNECT_ATTR _ADD, "key3", "val ue3");
nysql _opti ons(&mysqgl , MYSQL_OPT_CONNECT_ATTR DELETE, "keyl");
if (!'nysqgl _real _connect (&nysql, "host", "user", "passwd", "dat abase", 0, NULL, 0))
{

fprintf(stderr, "Failed to connect to database: Error: %\n",

nmysql _error(&ysql));

}

5.4.56 mysql_ping()

int
mysql _pi ng(MYSQL *nysql)

Description

Checks whether the connection to the server is working. If the connection has gone down and auto-
reconnect is enabled an attempt to reconnect is made. If the connection is down and auto-reconnect is
disabled, nysql _pi ng() returns an error.

Auto-reconnect is disabled by default. To enable it, call mysql _opti ons() with the
MYSQL_OPT_RECONNECT option (deprecated). For details, see Section 5.4.54, “mysql_options()”.

nysql _pi ng() can be used by clients that remain idle for a long while, to check whether the server
has closed the connection and reconnect if necessary.

If mysgl _pi ng()) does cause a reconnect, there is no explicit indication of it. To determine whether
a reconnect occurs, call nysql _thread_i d() to getthe original connection identifier before calling
nysql _ping(),thencall mysgl _t hread_i d() again to see whether the identifier has changed.

If reconnect occurs, some characteristics of the connection will have been reset. For details about
these characteristics, see Section 3.6.8, “Automatic Reconnection Control”.

Return Values

Errors

Zero if the connection to the server is active. Nonzero if an error occurred. A nonzero return does not
indicate whether the MySQL server itself is down; the connection might be broken for other reasons
such as network problems.

« CR_COVWWANDS OUT_OF SYNC
Commands were executed in an improper order.
« CR_SERVER GONE_ERROR
The MySQL server has gone away.
« CR_UNKNOMN_ERROR

An unknown error occurred.

5.4.57 mysql_query()

i nt
nysql _query(MYSQ *nysql,
const char *stnt_str)

86

https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_commands_out_of_sync
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_server_gone_error
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_unknown_error

mysql_real_connect()

Description

Executes the SQL statement pointed to by the null-terminated string st nt _st r . Normally, the string
must consist of a single SQL statement without a terminating semicolon (;) or \ g. If multiple-statement
execution has been enabled, the string can contain several statements separated by semicolons. See
Section 3.6.3, “Multiple Statement Execution Support”.

nmysqgl _query() cannot be used for statements that contain binary data; you must use
nmysqgl _real query() instead. (Binary data may contain the \ O character, which nysql _query()
interprets as the end of the statement string.)

To determine whether a statement returns a result set, call nysql _fi el d_count (). See
Section 5.4.23, “mysql_field_count()".

Return Values

Zero for success. Nonzero if an error occurred.
Errors

« CR_COVWANDS OUT_OF SYNC

Commands were executed in an improper order.

CR_SERVER GONE_ERRCR

The MySQL server has gone away.

CR_SERVER _LOST
The connection to the server was lost during the query.
* CR_UNKNOWN_ERROR

An unknown error occurred.

5.4.58 mysql _real _connect()

MYSQL *
nysql _real _connect (MYSQ. *nysql,
const char *host,
const char *user,
const char *passwd,
const char *db,
unsi gned int port,
const char *uni x_socket,
unsi gned |l ong client_flag)

Description
Note

nysgl real connect () is a synchronous function. Its asynchronous
counterpart is nysql _real connect _nonbl ocki ng(), for use by
applications that require asynchronous communication with the server. See
Chapter 7, C API Asynchronous Interface.

To connect using a DNS SRV record, use
nysqgl real connect _dns_srv(). See Section 5.4.59,
“mysql_real_connect_dns_srv()".

nmysqgl _real connect () attempts to establish a connection to a MySQL server running on host .
Client programs must successfully connect to a server before executing any other API functions that
require a valid MYSQL connection handler structure.

87

https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_commands_out_of_sync
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_server_gone_error
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_server_lost
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_unknown_error

mysql_real_connect()

Specify the arguments as follows:

 For the first argument, specify the address of an existing MYSQL structure. Before calling
nysql real connect (), callmysqgl _init() toinitialize the MYSQL structure. You can change a
lot of connect options with the nysql _opti ons() call. See Section 5.4.54, “mysql_options()”.

e The value of host may be either a host name or an IP address. The client attempts to connect as
follows:

e If host is NULL or the string " | ocal host ", a connection to the local host is assumed:

« On Windows, the client connects using a shared-memory connection, if the server has shared-
memory connections enabled.

* On Unix, the client connects using a Unix socket file. The uni x_socket argument or the
MYSQL_UNI X PORT environment variable may be used to specify the socket name.

¢ On Windows, if host is". ", or TCP/IP is not enabled and no uni x_socket is specified or the
host is empty, the client connects using a named pipe, if the server has named-pipe connections
enabled. If named-pipe connections are not enabled, an error occurs.

* Otherwise, TCP/IP is used.

You can also influence the type of connection to use with the M\YSQL_OPT_PROTOCOL or
MYSQL_OPT_NAMED PI PE options to mysql _opti ons() . The type of connection must be
supported by the server.

» The user argument contains the user's MySQL login ID. If user is NULL or the empty string " ",
the current user is assumed. Under Unix, this is the current login name. Under Windows ODBC, the
current user name must be specified explicitly. See the Connector/ODBC section of Connectors and
APIs.

* The passwd argument contains the password for user . If passwd is NULL, only entries in the user
table for the user that have a blank (empty) password field are checked for a match. This enables the
database administrator to set up the MySQL privilege system in such a way that users get different
privileges depending on whether they have specified a password.

Note

Do not attempt to encrypt the password before calling
mysqgl real connect () ; password encryption is handled automatically by
the client API.

e The user and passwd arguments use whatever character set has been configured for the MYSQL
object. By default, this is ut f 8nb4, but can be changed by calling mysql _opti ons(nysql,
MYSQL_SET CHARSET NANME, "charset nane") prior to connecting.

» db is the database name. If db is not NULL, the connection sets the default database to this value.

» If port is not 0, the value is used as the port number for the TCP/IP connection. Note that the host
argument determines the type of the connection.

» Ifuni x_socket is not NULL, the string specifies the socket or named pipe to use. Note that the
host argument determines the type of the connection.

» Thevalue of cl i ent _f| ag is usually 0, but can be set to a combination of the following flags to
enable certain features:

¢« CAN_HANDLE EXPI RED PASSWORDS: The client can handle expired passwords. For more
information, see Server Handling of Expired Passwords.

e CLI ENT_COVPRESS: Use compression in the client/server protocol.

https://dev.mysql.com/doc/refman/9.6/en/connectors-apis.html
https://dev.mysql.com/doc/refman/9.6/en/connectors-apis.html
https://dev.mysql.com/doc/refman/9.6/en/expired-password-handling.html

mysql_real_connect()

e CLI ENT_FOUND_ROWS5: Return the number of found (matched) rows, not the number of changed
rows.

e CLI ENT_I GNORE_SI GPI PE: Prevents the client library from installing a SI GPI PE signal handler.
This can be used to avoid conflicts with a handler that the application has already installed.

e CLI ENT_I GNORE_SPACE: Permit spaces after function names. Makes all functions names
reserved words.

e CLI ENT_I NTERACTI VE: Permiti nteracti ve_ti neout seconds of inactivity (rather than
wai t _ti nmeout seconds) before closing the connection. The client's session wai t _ti neout
variable is set to the value of the session i nt eracti ve_ti meout variable.

e CLI ENT_LOCAL_FI LES: Enable LOAD DATA LOCAL handling.

e CLI ENT_MULTI _RESULTS: Tell the server that the client can handle multiple result sets
from multiple-statement executions or stored procedures. This flag is automatically enabled if
CLI ENT_MULTI _STATEMENTS is enabled. See the note following this table for more information
about this flag.

e CLI ENT_MULTI _STATEMENTS: Tell the server that the client may send multiple statements in
a single string (separated by ; characters). If this flag is not set, multiple-statement execution is
disabled. See the note following this table for more information about this flag.

e CLI ENT_NO SCHEMA: Do not permit db_nan®e. t bl _nane. col _nane syntax. This is for ODBC.
It causes the parser to generate an error if you use that syntax, which is useful for trapping bugs in
some ODBC programs.

From MySQL 8.0.32, the CLI ENT_NO_SCHEMA flag is deprecated. Client programs can omit this
flag and the db argument to have the connection set the database value to the current (or default)
database.

e CLI ENT_ODBC: Unused.

e CLI ENT_OPTI ONAL_RESULTSET_ METADATA: This flag makes result set metadata optional.
Suppression of metadata transfer can improve performance, particularly for sessions that execute
many queries that return few rows each. For details about managing result set metadata transfer,
see Section 3.6.7, “Optional Result Set Metadata”.

e CLI ENT_SSL: Use SSL (encrypted protocol). Do not set this option within an application
program; it is set internally in the client library. Instead, use nysql _opti ons() before calling
mysqgl _real connect ().

e CLI ENT_REMEMBER_OPTI ONS: Remember options specified by calls to nysql _options().
Without this option, if mysql _real connect () fails, you must repeat the nysql _opti ons()
calls before trying to connect again. With this option, the nysqgl _opti ons() calls need not be
repeated.

If your program uses CALL statements to execute stored procedures, the CLI ENT_MJULTI _RESULTS
flag must be enabled. This is because each CALL returns a result to indicate the call status, in addition
to any result sets that might be returned by statements executed within the procedure. Because CALL
can return multiple results, process them using a loop that calls nysqgl _next _resul t () to determine
whether there are more results.

CLI ENT_MULTI _RESULTS can be enabled when you call nysgl _real connect (),
either explicitly by passing the CLI ENT_MJLTI _RESULTS flag itself, or implicitly by
passing CLI ENT_MJULTI _STATENMENTS (which also enables CLI ENT_MULTI _RESULTS).
CLI ENT_MULTI _RESULTS is enabled by default.

89

https://dev.mysql.com/doc/refman/9.6/en/server-system-variables.html#sysvar_interactive_timeout
https://dev.mysql.com/doc/refman/9.6/en/server-system-variables.html#sysvar_wait_timeout
https://dev.mysql.com/doc/refman/9.6/en/server-system-variables.html#sysvar_wait_timeout
https://dev.mysql.com/doc/refman/9.6/en/server-system-variables.html#sysvar_interactive_timeout
https://dev.mysql.com/doc/refman/9.6/en/load-data.html
https://dev.mysql.com/doc/refman/9.6/en/call.html
https://dev.mysql.com/doc/refman/9.6/en/call.html
https://dev.mysql.com/doc/refman/9.6/en/call.html

mysql_real_connect()

If you enable CLI ENT_MULTI _STATEMENTS or CLI ENT_MULTI _RESULTS, process the
result for every call to mysql _real query() ornysql query() by using a loop that calls
nysgl next _resul t () todetermine whether there are more results. For an example, see
Section 3.6.3, “Multiple Statement Execution Support”.

For some arguments, it is possible to have the value taken from an option file rather than from

an explicit value in the nysql _real connect () call. To do this, call nysql _opti ons() with

the MYSQL_READ DEFAULT FI LE or MYSQL_READ DEFAULT GROUP option before calling

nysqgl real connect (). Then,inthe nysql real connect () call, specify the “no-value” value
for each argument to be read from an option file:

« For host , specify a value of NULL or the empty string (" ").
» For user, specify a value of NULL or the empty string.

» For passwd, specify a value of NULL. (For the password, a value of the empty string in the
nysql real connect () call cannot be overridden in an option file, because the empty string
indicates explicitly that the MySQL account must have an empty password.)

» For db, specify a value of NULL or the empty string.
» For port, specify a value of 0.
» Foruni x_socket , specify a value of NULL.

If no value is found in an option file for an argument, its default value is used as indicated in the
descriptions given earlier in this section.

Return Values

Errors

A MYSQL* connection handler if the connection was successful, NULL if the connection was
unsuccessful. For a successful connection, the return value is the same as the value of the first
argument.

« CR_CONN_HOST_ERROR
Failed to connect to the MySQL server.
« CR_CONNECTI ON_ERRCR
Failed to connect to the local MySQL server.
« CR | PSOCK_ERROR
Failed to create an IP socket.
« CR_OUT_OF MEMORY
Out of memory.
« CR_SOCKET CREATE_ERRCR
Failed to create a Unix socket.
« CR_UNKNOMN_ HOST
Failed to find the IP address for the host name.
« CR_VERSI ON_ERROR

A protocol mismatch resulted from attempting to connect to a server with a client library that uses a
different protocol version.

90

https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_conn_host_error
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_connection_error
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_ipsock_error
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_out_of_memory
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_socket_create_error
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_unknown_host
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_version_error

mysql_real_connect_dns_srv()

CR_NAMEDPI PEOPEN_ERROR
Failed to create a named pipe on Windows.
« CR_NAMEDPI PEWAI T_ERROR

Failed to wait for a named pipe on Windows.
* CR_NAMEDPI PESETSTATE_ERROR

Failed to get a pipe handler on Windows.
« CR_SERVER LOST

If connect _ti meout >0 and it took longer than connect _t i meout seconds to connect to the
server or if the server died while executing the i ni t - conmand.

* CR_ALREADY_CONNECTED

The MYSQL connection handler is already connected.

Example
MYSQL nysql ;

nysql _init(&ysql);
nysql _opti ons(&ysqgl , MYSQL_READ DEFAULT_GROUP, "your _prog_nane");
if (!nysql _real _connect(&ysql, "host", "user", "passwd", "dat abase", 0, NULL, 0))

fprintf(stderr, "Failed to connect to database: Error: %\n",
nysql _error (&ysql));
}

By using nysql _opti ons() the MySQL client library reads the [cl i ent] and [your prog_nane]
sections in the my. cnf file. This enables you to add options to the [your _prog_nane] section to
ensure that your program works, even if someone has set up MySQL in some nonstandard way.

5.4.59 mysql _real _connect_dns_srv()

MYSQL *
nysql _real _connect _dns_srv(MSQ *nysql,
const char *dns_srv_nane,
const char *user,
const char *passwd,
const char *db,
unsi gned long client_flag)

Description
Note

nysqgl _real _connect _dns_srv() is asynchronous function. Unlike
nysqgl _real _connect (), it has no asynchronous counterpart.

nmysqgl _real _connect _dns_srv() issimilarto nysql _real _connect (), except that the
argument list does not specify the particular host of the MySQL server to connect to. Instead, it names
a DNS SRV record that specifies a group of servers. For information about DNS SRV support in
MySQL, see Connecting to the Server Using DNS SRV Records.

The dns_srv_nane argument for nysql _real connect _dns_srv() takes the place of the host ,
port,and uni x_socket arguments for nysql real connect().The dns_srv_nanme argument
names a DNS SRV record that determines the candidate hosts to use for establishing a connection to a
MySQL server.

91

https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_namedpipeopen_error
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_namedpipewait_error
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_namedpipesetstate_error
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_server_lost
https://dev.mysql.com/doc/refman/9.6/en/server-system-variables.html#sysvar_connect_timeout
https://dev.mysql.com/doc/refman/9.6/en/server-system-variables.html#sysvar_connect_timeout
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_already_connected
https://dev.mysql.com/doc/refman/9.6/en/connecting-using-dns-srv.html

mysql_real_escape_string()

The nysql , user, passwd, db, and cl i ent _f| ag arguments to
nysgl real connect dns_srv() have the same meanings as for mysqgl real connect (). For
descriptions of their meanings, see Section 5.4.58, “mysql_real_connect()".

Suppose that DNS is configured with this SRV information for the exanpl e. comdomain:

Nane TTL d ass Priority Weight Port Target

_nysqgl . _tcp. exanpl e.com 86400 IN SRV 0 5 3306 host 1. exanpl e. com
_nysqgl . _tcp. exanpl e.com 86400 IN SRV 0 10 3306 host 2. exanpl e. com
_nysqgl . _tcp. exanpl e.com 86400 IN SRV 10 5 3306 host 3. exanpl e. com
_nysqgl . _tcp. exanpl e.com 86400 IN SRV 20 5 3306 host 4. exanpl e. com

To use that DNS SRV record, pass " _nysql . _tcp. exanpl e. cont' asthe dns_srv_nane
argumentto nysqgl real connect dns_srv(), which then attempts a connection to each server in
the group until a successful connection is established. A failure to connect occurs only if a connection
cannot be established to any of the servers. The priority and weight values in the DNS SRV record
determine the order in which servers should be tried.

nysqgl real connect _dns_srv() attempts to establish TCP connections only.

The client library performs a DNS SRV lookup for each call to nysqgl _real connect _dns_srv().
The client library does no caching of lookup results.

Return Values

A MYSQL* connection handler if the connection was successful, NULL if the connection was
unsuccessful. For a successful connection, the return value is the same as the value of the first

argument.
Errors
The same that you can get from nysql real connect (), plus:
« CR_DNS_SRV_LOOKUP_FAI LED
DNS SRV lookup failed.
Example

The following example uses the name of the DNS SRV record shown previously as the source of
candidate servers for establishing a connection.

MYSQL nysql ;
const char *dns_srv_nane = "_nysql._tcp. exanpl e. cont

nmysql _i nit(&ysql);
if (!nysqgl _real _connect_dns_srv(&mysql, dns_srv_nane, "user", "passwd", "dat abase", 0))
{
fprintf(stderr, "Failed to connect to database: Error: %s\n"
nmysql _error (&ysql));
}

5.4.60 mysql_real _escape_string()

unsi gned | ong
nysql _real _escape_string(MYSQ *nysql
char *to,
const char *from
unsi gned | ong | engt h)

Description

This function creates a legal SQL string for use in an SQL statement. See String Literals.

92

https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_dns_srv_lookup_failed
https://dev.mysql.com/doc/refman/9.6/en/string-literals.html

mysql_real_escape_string()

Note

nysql _real _escape_string() fails and produces an

CR_| NSECURE_API _ERR error if the NO BACKSLASH_ESCAPES SQL

mode is enabled. In this case, the function cannot escape quote characters
except by doubling them, and to do this properly, it must know more
information about the quoting context than is available. Instead, use

nysql _real _escape_string_quote(), which takes an extra argument for
specifying the quoting context.

The nysql argument must be a valid, open connection because character escaping depends on the
character set in use by the server.

The string in the f r omargument is encoded to produce an escaped SQL string, taking into account
the current character set of the connection. The result is placed in the t o argument, followed by a
terminating null byte.

Characters encoded are \ , ', ", NUL (ASCII 0), \ n, \ r, and Control+Z. Strictly speaking, MySQL
requires only that backslash and the quote character used to quote the string in the query be escaped.
nmysqgl real escape_string() quotes the other characters to make them easier to read in log
files. For comparison, see the quoting rules for literal strings and the QUOTE() SQL function in String
Literals, and String Functions and Operators.

The string pointed to by f r ommust be | engt h bytes long. You must allocate the t o buffer

to be at least | engt h* 2+1 bytes long. (In the worst case, each character may need to be

encoded as using two bytes, and there must be room for the terminating null byte.) When

nysqgl real escape_string() returns, the contents of t 0 is a null-terminated string. The return
value is the length of the encoded string, not including the terminating null byte.

If you must change the character set of the connection, use the nysql _set _character _set ()
function rather than executing a SET NAMES (or SET CHARACTER SET) statement.

nysql _set _character_set () works like SET NAMES but also affects the character set used by
nysql _real _escape_string(), which SET NAMES does not.

Example

The following example inserts two escaped strings into an | NSERT statement, each within single quote
characters:

char query[1000], *end;

end = ny_stpcpy(query, "I NSERT | NTO test_table VALUES('");

end += nysql _real _escape_string(&mysql, end, "Wat is this", 12);

end = ny_stpcpy(end,"',"'");

end += nysql _real _escape_string(&mysql, end, "binary data: \0\r\n", 16);
end = nmy_stpcpy(end,"')");

if (nysql _real _query(&nysql, query, (unsigned int) (end - query)))
{

fprintf(stderr, "Failed to insert row, Error: %\n",
nysql _error (&ysql));
}

The my_st pcpy() function used in the example is included in the | i bnysql cl i ent library and
works like st r cpy() but returns a pointer to the terminating null of the first parameter.
Return Values

The length of the encoded string that is placed into the t 0 argument, not including the terminating null
byte, or -1 if an error occurs.

Because nysql real escape_string() returns an unsigned value, you can check for -1
by comparing the return value to (unsi gned | ong) -1 (orto (unsi gned | ong) ~0, which is
equivalent).

93

https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_insecure_api_err
https://dev.mysql.com/doc/refman/9.6/en/sql-mode.html#sqlmode_no_backslash_escapes
https://dev.mysql.com/doc/refman/9.6/en/string-functions.html#function_quote
https://dev.mysql.com/doc/refman/9.6/en/string-literals.html
https://dev.mysql.com/doc/refman/9.6/en/string-literals.html
https://dev.mysql.com/doc/refman/9.6/en/string-functions.html
https://dev.mysql.com/doc/refman/9.6/en/set-names.html
https://dev.mysql.com/doc/refman/9.6/en/set-character-set.html
https://dev.mysql.com/doc/refman/9.6/en/set-names.html
https://dev.mysql.com/doc/refman/9.6/en/set-names.html

mysql_real_escape_string_quote()

Errors

« CR_| NSECURE_API _ERR

This error occurs if the NO BACKSLASH ESCAPES SQL mode is enabled because, in that case,
nysql _real escape_string() cannot be guaranteed to produce a properly encoded result. To
avoid this error, use nysql _real _escape_string_quot e() instead.

5.4.61 mysqgl _real escape_string_quote()

unsi gned | ong

nysql _real _escape_string_quote(MYSQL *nysql,
char *to,
const char *from
unsi gned | ong | engt h,
char quot e)

Description

This function creates a legal SQL string for use in an SQL statement. See String Literals.

The mysql argument must be a valid, open connection because character escaping depends on the
character set in use by the server.

The string in the f r omargument is encoded to produce an escaped SQL string, taking into account
the current character set of the connection. The result is placed in the t o argument, followed by a
terminating null byte.

Characters encoded are \, ' , ", NUL (ASCII 0),\ n,\r, Control+Z, and " . Strictly speaking, MySQL
requires only that backslash and the quote character used to quote the string in the query be escaped.
nysqgl real escape_string quote() quotes the other characters to make them easier to read
in log files. For comparison, see the quoting rules for literal strings and the QUOTE() SQL function in
String Literals, and String Functions and Operators.

Note

If the ANSI _ QUOTES SQL mode is enabled,

nysqgl real escape_string _quote() cannot be used to escape double
guote characters for use within double-quoted identifiers. (The function cannot
tell whether the mode is enabled to determine the proper escaping character.)

The string pointed to by f r ommust be | engt h bytes long. You must allocate the t o buffer

to be at least | engt h* 2+1 bytes long. (In the worst case, each character may need to be

encoded as using two bytes, and there must be room for the terminating null byte.) When

nysqgl _real _escape_string_quote() returns, the contents of t o is a null-terminated string. The
return value is the length of the encoded string, not including the terminating null byte.

The quot e argument indicates the context in which the escaped string is to be placed. Suppose that
you intend to escape the f r omargument and insert the escaped string (designated here by st r) into
one of the following statements:

1) SELECT * FROM tabl e WHERE nane = 'str'
2) SELECT * FROM tabl e WHERE nane = "str"
3) SELECT * FROM “str° WHERE id = 103

To perform escaping properly for each statement, call mysql real escape_string _quote() as
follows, where the final argument indicates the quoting context:

1) len = nysql _real _escape_string_quote(&mysql,to,fromfromlen,'\"'");
2) len = nysql _real _escape_string_quote(&rysqgl,to,fromfromlen,'"");
3) len = nysqgl _real _escape_string_quote(&mysqgl,to,fromfromlen,' ");

If you must change the character set of the connection, use the mysql _set character _set ()
function rather than executing a SET NAMES (or SET CHARACTER SET) statement.

94

https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_insecure_api_err
https://dev.mysql.com/doc/refman/9.6/en/sql-mode.html#sqlmode_no_backslash_escapes
https://dev.mysql.com/doc/refman/9.6/en/string-literals.html
https://dev.mysql.com/doc/refman/9.6/en/string-functions.html#function_quote
https://dev.mysql.com/doc/refman/9.6/en/string-literals.html
https://dev.mysql.com/doc/refman/9.6/en/string-functions.html
https://dev.mysql.com/doc/refman/9.6/en/sql-mode.html#sqlmode_ansi_quotes
https://dev.mysql.com/doc/refman/9.6/en/set-names.html
https://dev.mysql.com/doc/refman/9.6/en/set-character-set.html

mysql_real_query()

nysqgl set character_set () works like SET NAMES but also affects the character set used by
nysql _real _escape_string_quote(),which SET NAVES does not.

Example

The following example inserts two escaped strings into an | NSERT statement, each within single quote
characters:

char query[1000], *end;

end = nmy_stpcpy(query, "I NSERT | NTO test_table VALUES('");

end += nysql _real _escape_string_quote(&mysql, end, "Wiat is this", 12,"'\"'");

end = ny_stpcpy(end,"',"");

end += nysql _real _escape_string_quote(&mysql, end, "binary data: \0\r\n",16,'\"'");
end = ny_stpcpy(end, "')");

if (nysql _real _query(&nysql, query, (unsigned int) (end - query)))

fprintf(stderr, "Failed to insert row, Error: %\n",
nysql _error (&ysql));
}

The ny_st pcpy() function used in the example is included in the | i bnysql cl i ent library and
works like st r cpy() but returns a pointer to the terminating null of the first parameter.

Return Values

The length of the encoded string that is placed into the t o argument, not including the terminating null
byte.

Errors

None.

5.4.62 mysql_real_query()

int

nmysql _real _query(MYSQ *nysql,
const char *stmt_str,
unsi gned | ong | engt h)

Description
Note

nysqgl real query() isasynchronous function. Its asynchronous
counterpart is nysql _real query_nonbl ocki ng(), for use by applications
that require asynchronous communication with the server. See Chapter 7, C
API Asynchronous Interface.

nysqgl real query() executes the SQL statement pointed to by st nt _str, a string | engt h bytes
long. Normally, the string must consist of a single SQL statement without a terminating semicolon (;)
or \ g. If multiple-statement execution has been enabled, the string can contain several statements
separated by semicolons. See Section 3.6.3, “Multiple Statement Execution Support”.

nmysqgl _query() cannot be used for statements that contain binary data; you must use

mysql _real query() instead. (Binary data may contain the \ O character, which mysql _query()
interprets as the end of the statement string.) In addition, nysql _real _query() is faster than
mysql _query() because it does not call st rl en() on the statement string.

To determine whether a statement returns a result set, call nysql _fi el d count (). See
Section 5.4.23, “mysql_field_count()".

95

https://dev.mysql.com/doc/refman/9.6/en/set-names.html
https://dev.mysql.com/doc/refman/9.6/en/set-names.html

mysql_refresh()

Return Values

Errors

Zero for success. Nonzero if an error occurred.

« CR_COVWMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

CR_SERVER GONE_ERROR
The MySQL server has gone away.
* CR_SERVER LOST

The connection to the server was lost during the query.

CR_UNKNOWN_ERROR

An unknown error occurred.

5.4.63 mysql_refresh()

i nt
nysql _refresh(MYSQL *nysql,
unsi gned i nt options)

Description

Note

nysqgl _refresh() is deprecated and is subject to removal in a future version
of MySQL. Instead, use nysql real query() ornysql _query() to
execute a FLUSH statement.

This function flushes tables or caches, or resets replication server information. The connected user
must have the RELOAD privilege.

The opt i ons argument is a bitmask composed from any combination of the following values. Multiple
values can be OR'ed together to perform multiple operations with a single call.

» REFRESH_GRANT
Refresh the grant tables, like FLUSH PRI VI LEGES.
» REFRESH_LOG
Flush the logs, like FLUSH LOGS.
* REFRESH TABLES
Flush the table cache, like FLUSH TABLES.
* REFRESH_STATUS
Reset status variables, like FLUSH STATUS.
* REFRESH_SLAVE

On a replica server, reset the source server information and restart the replica, like RESET
REPLI| CA.

96

https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_commands_out_of_sync
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_server_gone_error
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_server_lost
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_unknown_error
https://dev.mysql.com/doc/refman/9.6/en/flush.html
https://dev.mysql.com/doc/refman/9.6/en/privileges-provided.html#priv_reload
https://dev.mysql.com/doc/refman/9.6/en/flush.html#flush-privileges
https://dev.mysql.com/doc/refman/9.6/en/flush.html#flush-logs
https://dev.mysql.com/doc/refman/9.6/en/flush.html#flush-tables
https://dev.mysql.com/doc/refman/9.6/en/flush.html#flush-status
https://dev.mysql.com/doc/refman/9.6/en/reset-replica.html
https://dev.mysql.com/doc/refman/9.6/en/reset-replica.html

mysql_reload()

* REFRESH_MASTER

On a source server, remove the binary log files listed in the binary log index and truncate the index
file, like RESET BI NARY LOGS AND GTI DS.

Return Values
Zero for success. Nonzero if an error occurred.

Errors
+ CR_COVMMANDS OUT OF SYNC

Commands were executed in an improper order.

CR_SERVER_GONE_ERRCR
The MySQL server has gone away.
* CR_SERVER LOST

The connection to the server was lost during the query.

CR_UNKNOWN ERRCR
An unknown error occurred.

5.4.64 mysql_reload()

int
nysql _rel oad(M\YSQL *nysql)

Description

Asks the MySQL server to reload the grant tables. The connected user must have the RELOAD or
FLUSH_PRI VI LEGES privilege.

This function is deprecated. Use nysql _real query() ornysqgl _query() toissue an SQL FLUSH

PRI VI LEGES statement instead.
Return Values
Zero for success. Nonzero if an error occurred.

Errors
« CR_COVVANDS_QUT_OF SYNC

Commands were executed in an improper order.

CR_SERVER GONE_ERROR
The MySQL server has gone away.
e CR_SERVER LOST

The connection to the server was lost during the query.

CR_UNKNOWN_ERROR

An unknown error occurred.

97

https://dev.mysql.com/doc/refman/9.6/en/reset-binary-logs-and-gtids.html
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_commands_out_of_sync
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_server_gone_error
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_server_lost
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_unknown_error
https://dev.mysql.com/doc/refman/9.6/en/privileges-provided.html#priv_reload
https://dev.mysql.com/doc/refman/9.6/en/privileges-provided.html#priv_flush-privileges
https://dev.mysql.com/doc/refman/9.6/en/flush.html#flush-privileges
https://dev.mysql.com/doc/refman/9.6/en/flush.html#flush-privileges
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_commands_out_of_sync
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_server_gone_error
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_server_lost
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_unknown_error

mysql_reset_connection()

5.4.65 mysql_reset_connection()

i nt
nysql _reset _connecti on(MYSQ *nysql)

Description
Resets the connection to clear the session state.

nmysqgl reset connecti on() has effects similar to nysqgl change_user () or an auto-reconnect
except that the connection is not closed and reopened, and reauthentication is not done. The write
set session history is reset. See Section 5.4.4, “mysql_change_user()”, and Section 3.6.8, “Automatic
Reconnection Control”.

mysql _reset connecti on() affects the connection-related state as follows:
» Rolls back any active transactions and resets autocommit mode.

* Releases all table locks.

* Closes (and drops) all TEMPORARY tables.

» Reinitializes session system variables to the values of the corresponding global system variables,
including system variables that are set implicitly by statements such as SET NANMES.

» Loses user-defined variable settings.

* Releases prepared statements.

» Closes HANDLER variables.

* Resets the value of LAST | NSERT | () to O.
» Releases locks acquired with GET_LOCK() .

» Clears any current query attributes defined as a result of calling nysql _bi nd_paran().
Return Values

Zero for success. Nonzero if an error occurred.

5.4.66 mysql _reset_server_public_key()

voi d
nmysql _reset _server_public_key(void)

Description

Clears from the client library any cached copy of the public key required by the server for RSA

key pair-based password exchange. This might be necessary when the server has been restarted
with a different RSA key pair after the client program had called nysql _opti ons() with the
MYSQL_SERVER PUBLI C_KEY option to specify the RSA public key. In such cases, connection
failure can occur due to key mismatch. To fix this problem, the client can use either of the following
approaches:

» The client can call nysqgl _reset _server_public_key() to clear the cached key and try again,
after the public key file on the client side has been replaced with a file containing the new public key.

e Theclientcan call nysqgl reset server public_key() to clear the cached key, then
call mysql options() withthe MYySQL_OPT_CET SERVER PUBLI C KEY option (instead of
MYSQL_SERVER PUBLI C KEY) to request the required public key from the server Do not use both

98

https://dev.mysql.com/doc/refman/9.6/en/set-names.html
https://dev.mysql.com/doc/refman/9.6/en/handler.html
https://dev.mysql.com/doc/refman/9.6/en/information-functions.html#function_last-insert-id
https://dev.mysql.com/doc/refman/9.6/en/locking-functions.html#function_get-lock

mysql_result_metadata()

MYSQL_OPT_GET_SERVER _PUBLI C_KEY and MYSQL_SERVER_PUBLI C_KEY because in that case,
MYSQL_SERVER PUBLI C_KEY takes precedence.

Return Values
None.
Errors
None.

5.4.67 mysqgl_result_metadata()

enum enum resul t set _net adat a
nmysql _result_net adat a(MYSQL_RES *resul t)

Description

mysql _result _netadat a() returns a value that indicates whether a result set has metadata. It
can be useful for metadata-optional connections when the client does not know in advance whether
particular result sets have metadata. For example, if a client executes a stored procedure that returns
multiple result sets and might change the r esul t set _net adat a system variable, the client can
invoke nysqgl result _net adat a() for each result set to determine whether it has metadata.

For details about managing result set metadata transfer, see Section 3.6.7, “Optional Result Set
Metadata”.

Return Values

nysqgl result netadata() returns one of these values:

enum enum resul t set _nmet adata {
RESULTSET_METADATA_NONE= 0,
RESULTSET_METADATA FULL= 1

b
5.4.68 mysql_rollback()

bool
nysql _rol | back(MYSQL *nysql)

Description
Rolls back the current transaction.
The action of this function is subject to the value of the conpl et i on_t ype system variable. In
particular, if the value of conpl et i on_t ype is RELEASE (or 2), the server performs a release after
terminating a transaction and closes the client connection. Call nysqgl _cl ose() from the client
program to close the connection from the client side.

Return Values
Zero for success. Nonzero if an error occurred.

Errors
None.

5.4.69 mysql _row_seek()

MYSQL_ROW OFFSET

99

https://dev.mysql.com/doc/refman/9.6/en/server-system-variables.html#sysvar_resultset_metadata
https://dev.mysql.com/doc/refman/9.6/en/server-system-variables.html#sysvar_completion_type
https://dev.mysql.com/doc/refman/9.6/en/server-system-variables.html#sysvar_completion_type

mysql_row_tell()

mysql _row_seek(MYSQL_RES *resul t,
MYSQL_ROW OFFSET of f set)

Description
Sets the row cursor to an arbitrary row in a query result set. The of f set value is a row offset, typically
a value returned from nysql _row_tel | () or from nysql _r ow_seek() . This value is not a row
number; to seek to a row within a result set by number, use nysql dat a_seek() instead.
This function requires that the result set structure contains the entire result of the query, so
nysqgl _row _seek() may be used only in conjunction with nysql _store_resul t (), not with
mysql _use result().

Return Values

The previous value of the row cursor. This value may be passed to a subsequent call to
nysqgl _row seek().

Errors
None.

5.4.70 mysql_row_tell()

MYSQL_ROW OFFSET
nysqgl _row tel |l (MYSQL_RES *result)

Description

Returns the current position of the row cursor for the last mysql _f et ch_row() . This value can be
used as an argument to nysql _row_seek().

Use nysql _row tell () onlyafter nysql _store result(), notaftermysqgl use result().
Return Values

The current offset of the row cursor.
Errors

None.

5.4.71 mysql_select_db()

i nt
nmysql _sel ect _db(MYSQ. *nysql,
const char *db)

Description
Causes the database specified by db to become the default (current) database on the connection
specified by nysql . In subsequent queries, this database is the default for table references that include
no explicit database specifier.

nysql _sel ect _db() fails unless the connected user can be authenticated as having permission to
use the database or some object within it.

Return Values

Zero for success. Nonzero if an error occurred.

100

mysql_server_end()

Errors
« CR_COMVANDS OQUT_OF SYNC

Commands were executed in an improper order.

CR_SERVER GONE_ERRCR

The MySQL server has gone away.

CR_SERVER LOST

The connection to the server was lost during the query.

CR_UNKNOWN_ERROR

An unknown error occurred.

5.4.72 mysql_server_end()

voi d
nmysql _server _end(voi d)

Description

This function finalizes the MySQL client library, which should be done when you are done using the
library. However, nysql _server _end() is deprecated and nysqgl _|i brary_end() should be used
instead. See Section 5.4.44, “mysql_library_end()".

Note

To avoid memory leaks after the application is done using the library

(for example, after closing the connection to the server), be sure to call

nysqgl _server_end() (ornysql _|ibrary_end()) explicitly. This enables
memory managment to be performed to clean up and free resources used by
the library.

Return Values

None.

5.4.73 mysql_server_init()

i nt

nysql _server_init(int argc,
char **argv,
char **groups)

Description

This function initializes the MySQL client library, which must be done before you call any
other MySQL function. However, nysql _server i nit () is deprecated and you should call
nysqgl _library init() instead. See Section 5.4.45, “mysql_library_init()".

Note

To avoid memory leaks after the application is done using the library

(for example, after closing the connection to the server), be sure to call

nysql _server_end() (ornysql _Iibrary_end()) explicitly. This enables
memory managment to be performed to clean up and free resources used by
the library. See Section 5.4.44, “mysql_library_end()".

101

https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_commands_out_of_sync
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_server_gone_error
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_server_lost
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_unknown_error

mysql_session_track get first()

Return Values

Zero for success. Nonzero if an error occurred.

5.4.74 mysqgl_session_track_get_first()

i nt

nysql _session_track_get_first(MSQ *nysql,
enum enum sessi on_st ate_type type,
const char **data,
size_t *|ength)

Description

MySQL implements a session tracker mechanism whereby the server returns information

about session state changes to clients. To control which notifications the server provides

about state changes, client applications set system variables having names of the form

sessi on_track xxx, such as sessi on_track_state_change, sessi on_track_schens, and
session_track _system vari abl es. See Server Tracking of Client Session State.

Change notification occurs in the MySQL client/server protocol, which includes tracker information in
OK packets so that session state changes can be detected. To enable client applications to extract
state-change information from OK packets, the MySQL C API provides a pair of functions:

e nysqgl _session_track get first() fetches the first part of the state-change information
received from the server.

* nysql _session_track get next () fetches any remaining state-change information received
from the server. Following a successful call to mysql session_track get first(), callthis
function repeatedly as long as it returns success.

The nmysql _session_track_get _first() parameters are used as follows. These descriptions
also apply to nysql _session_track get next (), which takes the same parameters.

* nysql : The connection handler.

» type: The tracker type indicating what kind of information to retrieve. Permitted tracker values are
the members of the enum sessi on_st at e_t ype enumeration defined in mysql _com h:

enum enum sessi on_st ate_t ype

{

SESSI ON_TRACK_SYSTEM VARI ABLES, /* Session system variables */
SESSI ON_TRACK_SCHEMA, /* Current schema */

SESSI ON_TRACK_STATE_CHANGE, /* Session state changes */

SESSI ON_TRACK_GTI DS, /* GIIDs */

SESSI ON_TRACK_TRANSACTI ON_CHARACTERI STI CS, /* Transaction characteristics */
SESSI ON_TRACK_TRANSACTI ON_STATE /* Transaction state */

b

The members of that enumeration may change over time as MySQL implements additional session-
information trackers. To make it easy for applications to loop over all possible tracker types
regardless of the number of members, the SESSI ON_TRACK BEG Nand SESSI ON_ TRACK_END
symbols are defined to be equal to the first and last members of the enum sessi on_state_t ype
enumeration. The example code shown later in this section demonstrates this technique. (Of course,
if the enumeration members change, you must recompile your application to enable it to take
account of new trackers.)

» dat a: The address of aconst char * variable. Following a successful call, this variable points to
the returned data, which should be considered read only.

e | engt h: The address of a si ze_t variable. Following a successful call, this variable contains the
length of the data pointed to by the dat a parameter.

The following discussion describes how to interpret the dat a and | engt h values according to the
t ype value. It also indicates which system variable enables notifications for each tracker type.

102

https://dev.mysql.com/doc/refman/9.6/en/server-system-variables.html#sysvar_session_track_state_change
https://dev.mysql.com/doc/refman/9.6/en/server-system-variables.html#sysvar_session_track_schema
https://dev.mysql.com/doc/refman/9.6/en/server-system-variables.html#sysvar_session_track_system_variables
https://dev.mysql.com/doc/refman/9.6/en/session-state-tracking.html

mysql_session_track get first()

e SESSI ON TRACK SCHEMA: This tracker type indicates that the default schema has been set. dat a
is a string containing the new default schema name. | engt h is the string length.

To enable notifications for this tracker type, enable the sessi on_t rack_schena system variable.

o SESSI ON_TRACK_SYSTEM VARI ABLES: This tracker type indicates that one or more tracked
session system variables have been assigned a value. When a session system variable is assigned,
two values per variable are returned (in separate calls). For the first call, dat a is a string containing
the variable name and | engt h is the string length. For the second call, dat a is a string containing
the variable value and | engt h is the string length.

By default, notification is enabled for these session system variables:
e autocomi t

e character_set _client

e character_set _connection

e« character_set results

e tinme_zone

To change the default notification for this tracker type, set the sessi on_track _schena

system variable to a list of comma-separated variables for which to track changes, or * to

track changes for all variables. To disable notification of session variable assignments, set
session_track_system vari abl es to the empty string.

e SESSI ON_TRACK STATE_CHANGE: This tracker type indicates a change to some tracked attribute of
session state. dat a is a byte containing a boolean flag that indicates whether session state changes
occurred. | engt h should be 1. The flag is represented as an ASCII value, not a binary (for example,
"1',not 0x01).

To enable notifications for this tracker type, enable the sessi on_t rack_st at e_change system
variable.

This tracker reports changes for these attributes of session state:
¢ The default schema (database).

» Session-specific values for system variables.

» User-defined variables.

e Temporary tables.

» Prepared statements.

e SESSI ON_TRACK GTI DS: This tracker type indicates that GTIDs are available. dat a contains the
GTID string. | engt h is the string length. The GTID string is in the standard format for specifying a
set of GTID values; see GTID Sets.

To enable notifications for this tracker type, set the sessi on_t rack_gti ds system variable.

o SESSI ON_TRACK_TRANSACTI ON_CHARACTERI STI CS: This tracker type indicates that transaction
characteristics are available. dat a is a string containing the characteristics data. | engt h is the
string length. The characteristics tracker data string may be empty, or it may contain one or more
SQL statements, each terminated by a semicolon:

« If no characteristics apply, the string is empty. The session defaults apply. (For isolation level and
access mode, these defaults are given by the session values of the t ransacti on_i sol ati on
andtransacti on_read_only system variables.)

103

https://dev.mysql.com/doc/refman/9.6/en/server-system-variables.html#sysvar_session_track_schema
https://dev.mysql.com/doc/refman/9.6/en/server-system-variables.html#sysvar_autocommit
https://dev.mysql.com/doc/refman/9.6/en/server-system-variables.html#sysvar_character_set_client
https://dev.mysql.com/doc/refman/9.6/en/server-system-variables.html#sysvar_character_set_connection
https://dev.mysql.com/doc/refman/9.6/en/server-system-variables.html#sysvar_character_set_results
https://dev.mysql.com/doc/refman/9.6/en/server-system-variables.html#sysvar_time_zone
https://dev.mysql.com/doc/refman/9.6/en/server-system-variables.html#sysvar_session_track_schema
https://dev.mysql.com/doc/refman/9.6/en/server-system-variables.html#sysvar_session_track_system_variables
https://dev.mysql.com/doc/refman/9.6/en/server-system-variables.html#sysvar_session_track_state_change
https://dev.mysql.com/doc/refman/9.6/en/replication-gtids-concepts.html#replication-gtids-concepts-gtid-sets
https://dev.mysql.com/doc/refman/9.6/en/server-system-variables.html#sysvar_session_track_gtids
https://dev.mysql.com/doc/refman/9.6/en/server-system-variables.html#sysvar_transaction_isolation
https://dev.mysql.com/doc/refman/9.6/en/server-system-variables.html#sysvar_transaction_read_only

mysql_session_track get first()

 If a transaction was explicitly started, the string contains the statement or statements required
to restart the transaction with the same characteristics. As a general rule, this is a START
TRANSACTI ON statement (possibly with one or more of READ ONLY, READ WRI TE, and
W TH CONSI STENT SNAPSHOT). If any characteristics apply that cannot be passed to START
TRANSACTI ON, such as | SOLATI ON LEVEL, a suitable SET TRANSACTI| ON statement is
prepended (for example, SET TRANSACTI ON | SOLATI ON LEVEL SERI ALI ZABLE; START
TRANSACTI ON READ WRI TE;).

« If a transaction was not explicitly started, but one-shot characteristics that apply only to the next
transaction were set up, a SET TRANSACTI ON statement suitable for replicating that setup is
generated (for example, SET TRANSACTI ON READ ONLY;).

Next-transaction characteristics can be set using SET TRANSACTI ON without any GLOBAL or
SESSI ON keyword, or by setting the t ransacti on_i sol ati onandtransacti on_read only
system variables using the syntax that applies only to the next transaction:

SET @@ransaction_i sol ati on
SET @@ransaction_read_only

val ue;
val ue;

For more information about transaction characteristic scope levels and how they are set, see
Transaction Characteristic Scope.

To enable natifications for this tracker type, set the sessi on_track transacti on_i nf o system
variable to CHARACTERI STI CS (which also enables the SESSI ON. TRACK _TRANSACTI ON_STATE
tracker type).

Transaction characteristics tracking enables the client to determine how to restart a transaction in
another session so it has the same characteristics as in the original session.

Because characteristics may be set using SET TRANSACTI ON before a transaction is started, it
is not safe for the client to assume that there are no transaction characteristics if no transaction is
active. It is therefore unsafe not to track transaction characteristics and just switch the connection
when no transaction is active (whether this is detected by the transaction state tracker or

the traditional SERVER_STATUS | N _TRANS flag). A client must subscribe to the transaction
characteristics tracker if it may wish to switch its session to another connection at some point and
transactions may be used.

The characteristics tracker tracks changes to the one-shot characteristics that apply only to the next
transaction. It does not track changes to the session variables. Therefore, the client additionally must
track the t ransaction_i sol ati onandtransacti on_read_only system variables to correctly
determine the session defaults that apply when next-transaction characteristic values are empty. (To
track these variables, list them in the value of the sessi on_track _system vari abl es system
variable.)

104

https://dev.mysql.com/doc/refman/9.6/en/commit.html
https://dev.mysql.com/doc/refman/9.6/en/commit.html
https://dev.mysql.com/doc/refman/9.6/en/commit.html
https://dev.mysql.com/doc/refman/9.6/en/commit.html
https://dev.mysql.com/doc/refman/9.6/en/set-transaction.html
https://dev.mysql.com/doc/refman/9.6/en/set-transaction.html
https://dev.mysql.com/doc/refman/9.6/en/set-transaction.html
https://dev.mysql.com/doc/refman/9.6/en/server-system-variables.html#sysvar_transaction_isolation
https://dev.mysql.com/doc/refman/9.6/en/server-system-variables.html#sysvar_transaction_read_only
https://dev.mysql.com/doc/refman/9.6/en/set-transaction.html#set-transaction-scope
https://dev.mysql.com/doc/refman/9.6/en/server-system-variables.html#sysvar_session_track_transaction_info
https://dev.mysql.com/doc/refman/9.6/en/set-transaction.html
https://dev.mysql.com/doc/refman/9.6/en/server-system-variables.html#sysvar_transaction_isolation
https://dev.mysql.com/doc/refman/9.6/en/server-system-variables.html#sysvar_transaction_read_only
https://dev.mysql.com/doc/refman/9.6/en/server-system-variables.html#sysvar_session_track_system_variables

mysql_session_track get first()

e SESSI ON_TRACK TRANSACTI ON_STATE: This tracker type indicates that transaction state
information is available. dat a is a string containing ASCII characters, each of which indicates some
aspect of the transaction state. | engt h is the string length (always 8).

To enable natifications for this tracker type, set the sessi on_track transacti on_i nf o system
variable to STATE.

Transaction state tracking enables the client to determine whether a transaction is in progress and
whether it could be moved to a different session without being rolled back.

The scope of the tracker item is the transaction. All state-indicating flags persist until the transaction
is committed or rolled back. As statements are added to the transaction, additional flags may be set
in successive tracker data values. However, no flags are cleared until the transaction ends.

Transaction state is reported as a string containing a sequence of ASCII characters. Each active
state has a unique character assigned to it as well as a fixed position in the sequence. The following
list describes the permitted values for positions 1 through 8 of the sequence:

» Position 1: Whether an active transaction is ongoing.
e T: An explicitly started transaction is ongoing.
« | : An implicitly started transaction (aut oconmi t =0) is ongoing.
e _:There is no active transaction.
« Position 2: Whether nontransactional tables were read in the context of the current transaction.
 r: One or more nontransactional tables were read.
« _: No nontransactional tables were read so far.
« Position 3: Whether transactional tables were read in the context of the current transaction.
* R: One or more transactional tables were read.
« _: No transactional tables were read so far.

« Position 4: Whether unsafe writes (writes to nontransactional tables) were performed in the context
of the current transaction.

» w: One or more nontransactional tables were written.
< _: No nontransactional tables were written so far.
« Position 5: Whether any transactional tables were written in the context of the current transaction.
» W One or more transactional tables were written.
e . No transactional tables were written so far.

¢ Position 6: Whether any unsafe statements were executed in the context of the current transaction.
Statements containing nondeterministic constructs such as RAND() or UUl () are unsafe for
statement-based replication.

* s: One or more unsafe statements were executed.
* _: No unsafe statements were executed so far.
« Position 7: Whether a result set was sent to the client during the current transaction.

* S: Aresult set was sent.

105

https://dev.mysql.com/doc/refman/9.6/en/server-system-variables.html#sysvar_session_track_transaction_info
https://dev.mysql.com/doc/refman/9.6/en/server-system-variables.html#sysvar_autocommit
https://dev.mysql.com/doc/refman/9.6/en/mathematical-functions.html#function_rand
https://dev.mysql.com/doc/refman/9.6/en/miscellaneous-functions.html#function_uuid

mysql_session_track get first()

e _: No result sets were sent so far.

» Position 8: Whether a LOCK TABLES statement is in effect.
e L: Tables are explicitly locked with LOCK TABLES.
e« :LOCK TABLES s not active in the session.

Consider a session consisting of the following statements, including one to enable the transaction
state tracker:

SET @OBESSI ON. sessi on_track_transacti on_i nf o=" STATE' ;
START TRANSACTI ON,;

SELECT 1;

INSERT INTOt1 () VALUES();

INSERT INTOt1 () VALUES(1l, RAND());

COW T;

& G s 69 Y [=

With transaction state tracking enabled, the following dat a values result from those statements:

— —

—|‘—|
L@@

oorwNe
&<

Return Values

Errors

Zero for success. Nonzero if an error occurred.

None.

Example

The following example shows how to call mysqgl _session_track_get _first() and

nmysqgl session_track get next () to retrieve and display all available session state-change
information following successful execution of an SQL statement string (represented by st nt _str). It
is assumed that the application has set the sessi on_t rack_xxx system variables that enable the
notifications it wishes to receive.

printf("Execute: %\n", stnt_str);

if (nysqgl _query(nysqgl, stnt_str) != 0)
{

fprintf(stderr, "Error %: %\n",
nmysql _errno(nysqgl), mnysql _error(nysql));
return;

}

MYSQL_RES *result = nysql _store_result(nysql);
if (result) /* there is a result set to fetch */
{
[* ... process rows here ... */
printf("Nunber of rows returned: % u\n",
(unsi gned | ong) nysgl _numrows(result));
nmysql _free_result(result);
}

el se /* there is no result set */

{
if (nysqgl _field_count(nmysqgl) == 0)
{

printf("Nunber of rows affected: % u\n",
(unsi gned | ong) nysqgl _affected_rows(nysql));

106

https://dev.mysql.com/doc/refman/9.6/en/lock-tables.html
https://dev.mysql.com/doc/refman/9.6/en/lock-tables.html
https://dev.mysql.com/doc/refman/9.6/en/lock-tables.html

mysql_session_track_get next()

}
el se /* an error occurred */
fprintf(stderr, "Error %: %\n",
nmysql _errno(nysqgl), mnysql _error(nysql));
}
}

/* extract any avail abl e session state-change information */
enum enum sessi on_state_type type;
for (type = SESSI ON TRACK BEG N; type <= SESSI ON_TRACK END; type++)

const char *dat a;
size_t |ength;

if (nysqgl _session_track_get_first(mysqgl, type, &data, & ength) == 0)

/* print info type and initial data */

printf("Type=%l:\n", type);

printf("mysql _session_track_get _first(): |ength=%; data=%.*s\n",
(int) length, (int) length, (int) length, data);

/* check for nore data */
whi | e (nysqgl _session_track_get_next (mysql, type, &data, & ength) == 0)

printf("mysql _session_track_get_next(): |ength=%; data=%.*s\n",
(int) length, (int) length, (int) length, data);
}

}
}

5.4.75 mysql_session_track_get_next()

i nt

nysql _sessi on_track_get_next (MYSQL *nysql,
enum enum sessi on_st ate_type type,
const char **data,
size_t *length)

Description

This function fetches additional session state-change information received from
the server, following that retrieved by nysql session track get first().
The parameters for nysql session_track get next () are the same as for
nysqgl session_track get first().

Following a successful call to mysql _sessi on_track_get _first(), call
nysql _sessi on_track_get _next () repeatedly until it returns nonzero to indicate no more
information is available. The calling sequence for nysql _sessi on_track_get _next () is similar
to that for mysql sessi on_track get first().Formoreinformation and an example that
demonstrates both functions, see Section 5.4.74, “mysql_session_track_get_first()".

Return Values
Zero for success. Nonzero if an error occurred.

Errors

None.

5.4.76 mysql_set_character_set()

i nt
nysql _set_character_set (MYSQL *nysql,
const char *csnane)

107

mysql_set_local_infile_default()

Description

This function is used to set the default character set for the current connection. The string csnane
specifies a valid character set name. The connection collation becomes the default collation of the
character set. This function works like the SET NAMES statement, but also sets the value of nysql -
>char set , and thus affects the character set used by nysql _real _escape_string()

Return Values

Zero for success. Nonzero if an error occurred.

Example
MYSQL nysql ;

nmysql _i ni t (&ysql);
if (!'nysqgl _real _connect(&nysql, "host", "user", "passwd", "dat abase", 0, NULL, 0))

{

fprintf(stderr, "Failed to connect to database: Error: %\n",
nmysql _error(&ysql));
}

if (!nysqgl _set_character_set(&nysqgl, "utf8"))

printf("New client character set: %\n",
nmysql _charact er_set _name(&rysql));
}

5.4.77 mysql_set_local_infile_default()

voi d
nysql _set _local _infile_defaul t(MYSQL *nysql);

Description

Sets the LOAD DATA LOCAL callback functions to the defaults used internally by the C client library.
The library calls this function automatically if nysql _set | ocal _i nfil e_handl er () has not been
called or does not supply valid functions for each of its callbacks.

Return Values
None.
Errors

None.

5.4.78 mysql_set_local_infile_handler()

voi d

nmysql _set _| ocal _i nfil e_handl er (MYSQL *nysql ,
int (*local _infile_init)(void **, const char *, void *),
int (*local _infile_read)(void *, char *, unsigned int),
void (*local _infile_end)(void *),
int (*local _infile_error)(void *, char*, unsigned int),
voi d *userdata);

Description

This function installs callbacks to be used during the execution of LOAD DATA LOCAL statements. It
enables application programs to exert control over local (client-side) data file reading. The arguments
are the connection handler, a set of pointers to callback functions, and a pointer to a data area that the
callbacks can use to share information.

108

https://dev.mysql.com/doc/refman/9.6/en/set-names.html
https://dev.mysql.com/doc/refman/9.6/en/load-data.html
https://dev.mysql.com/doc/refman/9.6/en/load-data.html

mysql_set_server_option()

Touse nysqgl _set _local infile_handler(),you mustwrite the following callback functions:

i nt
local _infile_init(void **ptr, const char *filenanme, void *userdata);

The initialization function. This is called once to do any setup necessary, open the data file, allocate
data structures, and so forth. The first voi d** argument is a pointer to a pointer. You can set the
pointer (that is, * pt r) to a value that will be passed to each of the other callbacks (as a voi d*). The
callbacks can use this pointed-to value to maintain state information. The user dat a argument is the
same value that is passed to mysql _set | ocal infile_handler().

Make the initialization function return zero for success, nonzero for an error.

int
local _infile read(void *ptr, char *buf, unsigned int buf_Ilen);

The data-reading function. This is called repeatedly to read the data file. buf points to the buffer where
the read data is stored, and buf _| en is the maximum number of bytes that the callback can read and
store in the buffer. (It can read fewer bytes, but should not read more.)

The return value is the number of bytes read, or zero when no more data could be read (this indicates
EOF). Return a value less than zero if an error occurs.

voi d
local _infile_end(void *ptr)

The termination function. This is called once after | ocal i nfile_read() has returned zero (EOF)
or an error. Within this function, deallocate any memory allocated by | ocal _infile_init() and
perform any other cleanup necessary. It is invoked even if the initialization function returns an error.

i nt

local _infile_error(void *ptr

char *error_nsg
unsigned int error_nsg_|l en);

The error-handling function. This is called to get a textual error message to return to the user in case
any of your other functions returns an error. er r or _nsg points to the buffer into which the message is
written, and er r or _nsg_| en is the length of the buffer. Write the message as a null-terminated string,
at mosterror _nsg_| en-1 bytes long.

The return value is the error number.

Typically, the other callbacks store the error message in the data structure pointed to by pt r, so that
[ocal _infile_error() can copythe message from there into err or _nsg.

After calling mysql _set | ocal _infile_handl er () inyour C code and passing pointers to

your callback functions, you can then issue a LOAD DATA LOCAL statement (for example, by using
nysqgl _real _query() ormysql _query()). The client library automatically invokes your callbacks.
The file name specified in LOAD DATA LOCAL will be passed as the second parameter to the

I ocal _infile_init() callback.

Return Values

Errors

None.

None.

5.4.79 mysql_set_server_option()

i nt

109

https://dev.mysql.com/doc/refman/9.6/en/load-data.html
https://dev.mysql.com/doc/refman/9.6/en/load-data.html

mysql_shutdown()

nmysql _set _server_opti on(MYSQL *nysqgl, enum

enum_nysql _set _opti on opti on)

Description

Enables or disables an option for the connection. opt i on can have one of the following values.

Option

Description

MYSQL_OPTI ON_MULTI _STATEMENTS_ON

Enable multiple-statement support

MYSQL_OPTI ON_MULTI _STATEMENTS_OFF

Disable multiple-statement support

If you enable multiple-statement support, you should retrieve results from calls to
nysql _real _query() ornysqgl _query() by using a loop that calls mysqgl _next _result() to
determine whether there are more results. For an example, see Section 3.6.3, “Multiple Statement

Execution Support”.

Enabling multiple-statement support with MYSQL_OPTI ON_MJULTI _ STATEMENTS_ON does not

have quite the same effect as enabling it by passing the CLI ENT_MULTI _ STATEMENTS flag to

nmysqgl _real _connect (): CLI ENT_MJLTI _STATEMENTS also enables CLI ENT_MULTI _RESULTS.
If you are using the CALL SQL statement in your programs, multiple-result support must be enabled,;
this means that MYSQL_OPTI ON_MULTI _STATENMENTS_ON by itself is insufficient to permit the use of

CALL.

Return Values

Errors

Zero for success. Nonzero if an error occurred.

CR_COVMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

* CR_SERVER GONE_ERROR
The MySQL server has gone away.

« CR_SERVER LOST

The connection to the server was lost during the query.

« ER_UNKNOWN_COM ERROR

The server did not support nysql _set _server _opti on() (which is the case that the server is
older than 4.1.1) or the server did not support the option one tried to set.

5.4.80 mysql_shutdown()

i nt
nysql _shut down(M\YSQ. *nysql ,

enum nysql _enum shut down_| evel shutdown_| evel)

Description

Note

nysql _shut down() is deprecated and will be removed in a future version of
MySQL. Instead, use nysql real query() ornysql _query() toexecute a

SHUTDOV\N statement.

110

https://dev.mysql.com/doc/refman/9.6/en/call.html
https://dev.mysql.com/doc/refman/9.6/en/call.html
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_commands_out_of_sync
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_server_gone_error
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_server_lost
https://dev.mysql.com/doc/mysql-errors/9.6/en/server-error-reference.html#error_er_unknown_com_error
https://dev.mysql.com/doc/refman/9.6/en/shutdown.html

mysql_sqlstate()

Asks the database server to shut down. The connected user must have the SHUTDOWN privilege.
MySQL servers support only one type of shutdown; shut down_| evel must be equal to
SHUTDOWN _DEFAULT. Dynamically linked executables that have been compiled with older versions
ofthe | i bnysql cl i ent headers and call mysgl _shut down() must be used with the old

I'i brysqgl cli ent dynamic library.

An alternative to nysql _shut down() is to use the SHUTDOWN SQL statement.
The shutdown process is described in The Server Shutdown Process.
Return Values
Zero for success. Nonzero if an error occurred.
Errors
« CR_COWANDS OUT_OF SYNC
Commands were executed in an improper order.
« CR_SERVER GONE_ERROR

The MySQL server has gone away.

CR_SERVER LOST

The connection to the server was lost during the query.

CR_UNKNOWN_ERROR

An unknown error occurred.

5.4.81 mysql_sqlstate()

const char *
nysql _sql stat e(MYSQ *nysql)

Description

Returns a null-terminated string containing the SQLSTATE error code for the most recently executed
SQL statement. The error code consists of five characters. ' 00000 means “no error.” The values are
specified by ANSI SQL and ODBC. For a list of possible values, see Error Messages and Common
Problems.

SQLSTATE values returned by nysql _sql st at e() differ from MySQL-specific error numbers
returned by nysql _errno() . For example, the nysql client program displays errors using the
following format, where 1146 is the mysql _errno() value and' 42S02" is the corresponding
nysql _sql state() value:

$> SELECT * FROM no_such_t abl e;
ERROR 1146 (42S02): Table 'test.no_such_table' doesn't exist

Not all MySQL error numbers are mapped to SQLSTATE error codes. The value ' HY000' (general
error) is used for unmapped error numbers.

If you call nysql _sql state() afternysgl _real connect () fails, mysql _sql st at e() might not
return a useful value. For example, this happens if a host is blocked by the server and the connection is
closed without any SQLSTATE value being sent to the client.

Return Values

A null-terminated character string containing the SQLSTATE error code.

111

https://dev.mysql.com/doc/refman/9.6/en/privileges-provided.html#priv_shutdown
https://dev.mysql.com/doc/refman/9.6/en/shutdown.html
https://dev.mysql.com/doc/refman/9.6/en/server-shutdown.html
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_commands_out_of_sync
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_server_gone_error
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_server_lost
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_unknown_error
https://dev.mysql.com/doc/refman/9.6/en/error-handling.html
https://dev.mysql.com/doc/refman/9.6/en/error-handling.html

mysql_ssl_set()

See Also

See Section 5.4.15, “mysqgl_errno()”, Section 5.4.16, “mysgl_error()”, and Section 6.4.28,
“mysqgl_stmt_sqlstate()”.

5.4.82 mysql_ssl _set()

bool

nysql _ssl _set (MYSQL *nysql,
const char *key,
const char *cert,
const char *ca,
const char *capath,
const char *ci pher)

Description

Note

As of MySQL 8.0.35, nysql _ssl _set () is deprecated and subject to removal
in a future MySQL release. There are equivalent nysql _opti ons() TLS
options for all nysql _ssl _set () parameters.

nysgl _ssl _set () is used for establishing encrypted connections using SSL. The nysgl argument
must be a valid connection handler. Any unused SSL arguments may be given as NULL.

If used, nysql _ssl _set () must be called before nysql real connect().nysql _ssl _set()
does nothing unless SSL support is enabled in the client library.

It is optional to call mysqgl _ssl _set () to obtain an encrypted connection because by default, MySQL
programs attempt to connect using encryption if the server supports encrypted connections, falling
back to an unencrypted connection if an encrypted connection cannot be established (see Configuring
MySQL to Use Encrypted Connections). nysql _ssl _set () may be useful to applications that must
specify particular certificate and key files, encryption ciphers, and so forth.

nysqgl ssl _set () specifies SSL information such as certificate and key files for establishing an
encrypted connection if such connections are available, but does not enforce any requirement that the
connection obtained be encrypted. To require an encrypted connection, use the technique described in
Section 3.6.1, “Support for Encrypted Connections”.

For additional security relative to that provided by the default encryption, clients can supply a CA
certificate matching the one used by the server and enable host name identity verification. In this
way, the server and client place their trust in the same CA certificate and the client verifies that the
host to which it connected is the one intended. For details, see Section 3.6.1, “Support for Encrypted
Connections”.

nysqgl _ssl _set () is a convenience function that is essentially equivalent to this set of
nmysql _options() calls:

nmysql _options(mysqgl, MySQ._OPT_SSL_KEY, key) ;
nmysql _options(nmysql, MySQL_OPT_SSL_CERT, cert);
nmysql _options(mysql, MYSQL_OPT_SSL_CA, ca);

nmysql _options(mysql, MYSQL_OPT_SSL_CAPATH, capath);
nmysql _options(mysql, MYSQL_OPT_SSL_Cl PHER, ci pher);

Because of that equivalence, applications can, instead of calling nysql _ssl _set (), call

nmysqgl _options() directly, omitting calls for those options for which the option value is

NULL. Moreover, mysqgl _opti ons() offers encrypted-connection options not available using

nmysqgl _ssl _set (), such as MYSQL_OPT_SSL_MODE to specify the security state of the connection,
and MYSQL_OPT_TLS_ VERSI ONto specify the protocols the client permits for encrypted connections.

Arguments:

112

https://dev.mysql.com/doc/refman/9.6/en/using-encrypted-connections.html
https://dev.mysql.com/doc/refman/9.6/en/using-encrypted-connections.html

mysql_stat()

e nysql : The connection handler returned from nysql _init().
» key: The path name of the client private key file.
» cert: The path name of the client public key certificate file.

» ca: The path name of the Certificate Authority (CA) certificate file. This option, if used, must specify
the same certificate used by the server.

» capat h: The path name of the directory that contains trusted SSL CA certificate files.
» ci pher: The list of permissible ciphers for SSL encryption.
Return Values

This function returns f al se if the operation is successful, else it returns t r ue. If SSL setup is
incorrect, a subsequent mysql _real connect () call returns an error when you attempt to connect.

5.4.83 mysql_stat()

const char *
nysql _stat (MYSQL *nysql)

Description

Returns a character string containing information similar to that provided by the nmysql adm n st at us
command. This includes uptime in seconds and the number of running threads, questions, reloads, and
open tables.

Return Values
A character string describing the server status. NULL if an error occurred.
Errors
« CR_COWANDS OUT_OF SYNC
Commands were executed in an improper order.
« CR_SERVER GONE_ERROR

The MySQL server has gone away.

CR_SERVER _LOST

The connection to the server was lost during the query.
¢ CR_UNKNOMN ERROR

An unknown error occurred.

5.4.84 mysql_store_result()

MYSQL_RES *
nysql _store_result (MYSQL *nysql)

Description
Note

nysqgl store_result() isasynchronous function. Its asynchronous
counterpartis nysql _store_result_nonbl ocki ng(), for use by

113

https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_commands_out_of_sync
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_server_gone_error
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_server_lost
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_unknown_error

mysql_store_result()

applications that require asynchronous communication with the server. See
Chapter 7, C API Asynchronous Interface.

After invoking mysql real query() ormnysql _query(),youmustcall mysql store result()
ornysql use_result() for every statement that successfully produces a result set (SELECT, SHOW
DESCRI BE, EXPLAI N, CHECK TABLE, and so forth). You must also call nysql _free result() after
you are done with the result set.

You need not call nysqgl _store_result() ornysql use_result() forother statements,
but it does not do any harm or cause any notable performance degradation if you call

nysqgl _store_result() inall cases. You can detect whether the statement has a result set by
checking whether nysqgl _store_resul t () returns a nonzero value (more about this later).

If you enable multiple-statement support, you should retrieve results from calls to

nysqgl real query() ornysql query() by using aloop that calls nysql _next result() to
determine whether there are more results. For an example, see Section 3.6.3, “Multiple Statement
Execution Support”.

To determine whether a statement returns a result set, call nysql _fi el d_count (). See
Section 5.4.23, “mysq|l_field_count()”.

nysqgl store_resul t() reads the entire result of a query to the client, allocates a MYSQL_RES
structure, and places the result into this structure.

nmysqgl _store_result() returns NULL if the statement did not return a result set (for example, if it
was an | NSERT statement), or an error occurred and reading of the result set failed.

An empty result set is returned if there are no rows returned. (An empty result set differs from a null
pointer as a return value.)

After you have called nysqgl store _resul t() and gotten back a result that is not a null pointer, you
can call mysqgl _num rows() to find out how many rows are in the result set.

You can call nysql _fetch_row() to fetch rows from the result set, or nysqgl _r ow_seek() and
nmysqgl _row tell () to obtain or set the current row position within the result set.

See Section 3.6.9, “NULL mysql_store_result() Return After mysql_query() Success”.

Return Values

Errors

A pointer to a MYSQL_RES result structure with the results. NULL if the statement did not return a result
set or an error occurred. To determine whether an error occurred, check whether mysql _error ()
returns a nonempty string, mysql _errno() returns nonzero, or mysql _fi el d_count () returns
zero.

nmysqgl _store_result() resetsnysql _error() and mysqgl _errno() ifit succeeds.
« CR_COVWWANDS_OUT_OF SYNC
Commands were executed in an improper order.
« CR_OUT_OF MEMORY
Out of memory.
« CR_SERVER GONE_ERROR
The MySQL server has gone away.

« CR SERVER LOST

114

https://dev.mysql.com/doc/refman/9.6/en/select.html
https://dev.mysql.com/doc/refman/9.6/en/show.html
https://dev.mysql.com/doc/refman/9.6/en/describe.html
https://dev.mysql.com/doc/refman/9.6/en/explain.html
https://dev.mysql.com/doc/refman/9.6/en/check-table.html
https://dev.mysql.com/doc/refman/9.6/en/insert.html
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_commands_out_of_sync
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_out_of_memory
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_server_gone_error
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_server_lost

mysql_thread_id()

The connection to the server was lost during the query.
¢ CR_UNKNOWN_ERROR

An unknown error occurred.

5.4.85 mysql_thread id()

unsi gned | ong
nysql _thread_i d(MYSQ *nysql)

Description

Returns the thread ID of the current connection. This value can be used as an argument to
nmysql kil () to kill the thread.

If the connection is lost and you reconnect with mysql _pi ng() , the thread ID changes. This means
you should not get the thread ID and store it for later. You should get it when you need it.

Note

This function does not work correctly if thread IDs become larger than

32 bits, which can occur on some systems. To avoid problems with

nysql _thread_i d(), do not use it. To get the connection ID, execute a
SELECT CONNECTI ON_I D() query and retrieve the result.

Return Values
The thread ID of the current connection.
Errors

None.

5.4.86 mysql_use result()

MYSQL_RES *
nysqgl _use_result (MYSQL *nysql)

Description

After invoking mysql real query() ornysql _query(),youmustcall mysql store result()
ornysql use_result() forevery statement that successfully produces a result set (SELECT, SHOW
DESCRI BE, EXPLAI N, CHECK TABLE, and so forth). You must also call mnysql _free result() after
you are done with the result set.

nysqgl _use_resul t () initiates a result set retrieval but does not actually read the result set into the
client like nysqgl store_resul t() does. Instead, each row must be retrieved individually by making
callsto nysql fetch _row(). This reads the result of a query directly from the server without storing
it in a temporary table or local buffer, which is somewhat faster and uses much less memory than
nysqgl store_result (). The client allocates memory only for the current row and a communication
buffer that may grow up to max_al | owed_packet bytes.

On the other hand, you should not use nmysql _use_resul t () for locking reads if you are doing a lot
of processing for each row on the client side, or if the output is sent to a screen on which the user may
type a S (stop scroll). This ties up the server and prevent other threads from updating any tables from
which the data is being fetched.

When using nysql _use_resul t (), you must execute nysql _fetch_row() until a NULL value is
returned, otherwise, the unfetched rows are returned as part of the result set for your next query. The C

115

https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_unknown_error
https://dev.mysql.com/doc/refman/9.6/en/select.html
https://dev.mysql.com/doc/refman/9.6/en/show.html
https://dev.mysql.com/doc/refman/9.6/en/describe.html
https://dev.mysql.com/doc/refman/9.6/en/explain.html
https://dev.mysql.com/doc/refman/9.6/en/check-table.html
https://dev.mysql.com/doc/refman/9.6/en/server-system-variables.html#sysvar_max_allowed_packet

mysql_warning_count()

API gives the error Commands out of sync; you can't run this command nowif you forget
to do this!

You may not use nysql data_seek(),nysql _row seek(),nysql _row tell (),

mysgl _numrows(),ornysql affected rows() with aresult returned from

nmysqgl _use_resul t (), nor may you issue other queries until mysql use_resul t () has finished.
(However, after you have fetched all the rows, mysql _num r ows() accurately returns the number of
rows fetched.)

You must call mysql _free_resul t() once you are done with the result set.

Return Values

Errors

A MYSQL_RES result structure. NULL if an error occurred.

nysqgl use resul t() resetsnysql _error() and nysql _errno() ifitsucceeds.
» CR_COMVANDS_QUT_OF_SYNC

Commands were executed in an improper order.
« CR_OUT_OF_MEMORY

Out of memory.

CR_SERVER _GONE_ERRCR

The MySQL server has gone away.

CR_SERVER LOST

The connection to the server was lost during the query.

CR_UNKNOWN_ERROR

An unknown error occurred.

5.4.87 mysql_warning_count()

unsi gned i nt
nysql _war ni ng_count (MYSQ *nysql)

Description

Returns the number of errors, warnings, and notes generated during execution of the previous SQL
statement.

Return Values

Errors

The warning count.

None.

116

https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_commands_out_of_sync
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_out_of_memory
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_server_gone_error
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_server_lost
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_unknown_error

Chapter 6 C API Prepared Statement Interface

Table of Contents

6.1 Overview of the C API Prepared Statement Interfacecccooeviiiiiiiiiiii e 118
6.2 C API Prepared Statement Data StrUCIUMESoieuuiiiiiciiii e ee e e e e e e e e eaaes 119
6.2.1 C API Prepared Statement TYPe COUEScvvviiiiiiiiiie e e e 123
6.2.2 C API Prepared Statement TYpe CONVEISIONSocvvuneeiiieiiiieiiieeeiieeiineeaneesineeenneeenns 125
6.3 C API Prepared Statement FUNCtion REfEreNCeccovviiiiiiiiiii e, 126
6.4 C API Prepared Statement FUNCHION DESCIIPLIONScc.uuiiiiniiiiiieiiiieiie e e e e e e e 127
6.4.1 mysql_stmt_affected _rOWS()viiuniiii e 128
6.4.2 MySOl_SIME_Attr GEL() oevvniii i 128
6.4.3 MYSAl_SIME_Ar SEL() tvvuiirnieiii i e e e e e e e e r e aas 128
6.4.4 mysql_stmt_bind_named_param()cccceiiiiiiiiiii e 129
6.4.5 mysqgl_stmt_biNd_Parami()cocoueeiii i 132
6.4.6 Mysgl_StMt_BINA_reSUI() ..oovvniei e e 133
6.4.7 MYSOl_SIME_CIOSE() ..ivvniiiii i e e e e e e e e e et 134
6.4.8 Mysql_StMt_data SEEK()uiiireieiii e 134
(o I 401 VeTo | IS (0L A=) 1 T) TP 135
Lo O 012 To [) (L =1 e) N 135
6.4.11 MySQl_SIME EXECULE() ovvrniiii ettt e et e e e e e e e e e e e e et e e et e e et eeaneees 136
6.4.12 MySql_SIME EICN() .ovveii e e 139
6.4.13 mysql_stmt_fetch _COIUMN()uiiiniii e 144
6.4.14 mysql_stmt_field COUNT() ...uuiirneii e e e e eaen 145
6.4.15 mysqgl_StMt_fre€ _reSUIL() . ..uuiiiii et 145
6.4.16 MYSOl_SIME INIT() ovuniirniiii e e e r e 145
6.4.17 mysgl_SIME INSEIt IA() .oovvneiiiiii e 145
6.4.18 Mysgl_StME NEXE FESUI() «.ovvvniiii e e e 146
6.4.19 MySgl_SIME NUM_TOWS() «.eivneiiiiiiii e e e e e e e e e e e e e et e e e eeees 147
6.4.20 mysql_StmMt_param_COUNL() ...couueiiieiiiee e e e e e e e e e e e e e et e e e eaneees 147
6.4.21 mysqgl_stmt_param_metadatal)cooeeuieeiiiiei 148
6.4.22 MYSOl_SIME PrEPArE() «vuueeeriiiiie e et e e e e e e e e e e e e e e e e e et e e aaas 148
6.4.23 MYSOl SIME TESEL() 1uvniiiiiiiii e e e e e e e e e e e et e e et e e et e et e eanaee 149
6.4.24 mysql_stmt_result._metadatal)cooeiriiiiiii i 149
6.4.25 MYSQl_SIME TOW_SEEK() «rvvuiiiiieiiiie e e e e e e e e e aaa s 150
6.4.26 MySgl_SIME TOW_TEII() +.unreeiiii e e 151
6.4.27 mysql_stmt_send_1ong_data()coeeeriiiiiiiiiiie e 151
6.4.28 MySgl_SIME _SOISTAE() +.vurvriiiii e e e e e e 153
6.4.29 mMysqgl_StME _STOre FESUIL() ...u.ivvnieiii e e e e e e e e aens 153

The MySQL client/server protocol provides for the use of prepared statements. This capability uses

the MYSQL_STMT statement handler data structure returned by the nysql _stnt _i ni t () initialization
function. Prepared execution is an efficient way to execute a statement more than once. The statement
is first parsed to prepare it for execution. Then it is executed one or more times at a later time, using
the statement handler returned by the initialization function.

Prepared execution is faster than direct execution for statements executed more than once, primarily
because the query is parsed only once. In the case of direct execution, the query is parsed every time
it is executed. Prepared execution also can provide a reduction of network traffic because for each
execution of the prepared statement, it is necessary only to send the data for the parameters.

Prepared statements might not provide a performance increase in some situations. For best results,
test your application both with prepared and nonprepared statements and choose whichever yields
best performance.

Another advantage of prepared statements is that it uses a binary protocol that makes data transfer
between client and server more efficient.

117

Overview of the C API Prepared Statement Interface

For a list of SQL statements that can be used as prepared statements, see Prepared Statements.

Metadata changes to tables or views referred to by prepared statements are detected and cause
automatic repreparation of the statement when it is next executed. For more information, see Caching
of Prepared Statements and Stored Programs.

6.1 Overview of the C API Prepared Statement Interface

To prepare and execute a statement, an application follows these steps:

1.

Create a prepared statement handler with mysql _stnt _ini t (). To prepare the statement on the
server, call nysql _stnt_prepare() and pass it a string containing the SQL statement.

Set the values of any parameters using nmysql _stmt _bi nd_par an() or
nysql _stnt _bi nd_naned_par ant() . All parameters must be set. Otherwise, statement
execution returns an error or produces unexpected results.

If there are large text or binary data values to be sent, you can send them in chunks to the server
using nysql _stnt_send | ong data().

Callmysqgl st execut e() to execute the statement.

If the statement is a SELECT or any other statement that produces a result set, call

nysql stnt _result netadata() ifitis desired to obtain the result set metadata. This
metadata is itself in the form of a MYSQL_RES result set, albeit a separate one from the one that
contains the rows returned by the query. The metadata result set indicates the number of columns
in the result and contains information about each one.

If the statement produces a result set, bind the data buffers to use for retrieving the row values by
calling nysqgl _stm _bind result().

Fetch the data into the buffers row by row by calling nysql _stnt _fetch() repeatedly until no
more rows are found.

Repeat steps 3 through 6 as necessary. You can repeat the nysql _stnt _execut e() to re-
execute the statement by changing parameter values in the respective buffers supplied through
nysql _stmt _bi nd_param() ornysqgl stnt _bi nd _named_param().

When statement execution has been completed, close the statement handler using
nysql _stnt_cl ose() so that all resources associated with it can be freed. At that point the
handler becomes invalid and should no longer be used.

If you obtained a SELECT statement's result set metadata by calling
nysql _stnt _result netadata(), you should also free the metadata using
nysql _free result().

When nysql _stnt_prepare() is called, the MySQL client/server protocol performs these actions:

The server parses the statement and sends the okay status back to the client by assigning a
statement ID. It also sends total number of parameters, a column count, and its metadata if it is a
result set oriented statement. All syntax and semantics of the statement are checked by the server
during this call.

The client uses this statement ID for the further operations, so that the server can identify the
statement from among its pool of statements.

When nysql _stnmt _execut e() is called, the MySQL client/server protocol performs these actions:

The client uses the statement handler and sends the parameter data to the server.

The server identifies the statement using the ID provided by the client, replaces the parameter
markers with the newly supplied data, and executes the statement. If the statement produces a result

118

https://dev.mysql.com/doc/refman/9.6/en/sql-prepared-statements.html
https://dev.mysql.com/doc/refman/9.6/en/statement-caching.html
https://dev.mysql.com/doc/refman/9.6/en/statement-caching.html
https://dev.mysql.com/doc/refman/9.6/en/select.html
https://dev.mysql.com/doc/refman/9.6/en/select.html

Prepared Statement Logging

set, the server sends the data back to the client. Otherwise, it sends an okay status and the number
of rows changed, deleted, or inserted.

When nysql _stnt_fetch() is called, the MySQL client/server protocol performs these actions:

» The client reads the data from the current row of the result set and places it into the application data
buffers by doing the necessary conversions. If the application buffer type is same as that of the field
type returned from the server, the conversions are straightforward.

If an error occurs, you can get the statement error number, error message, and SQLSTATE code using
nysql _stnt_errno(), mysql _stnt_error(),andnysql _stnt_sql state(), respectively.

Prepared Statement Logging

For prepared statements that are executed with the mysql _stnt _prepare() and
nysql _stnt_execut e() C API functions, the server writes Pr epar e and Execut e lines to the
general query log so that you can tell when statements are prepared and executed.

Suppose that you prepare and execute a statement as follows:
1. Callnmysqgl _stnt _prepare() to prepare the statement string " SELECT ?".

2. Callnysql stnt _bind paran() ornysql _stnt bi nd nanmed_paran() to bind the value 3
to the parameter in the prepared statement.

3. Callnysqgl stm execute() to execute the prepared statement.

As a result of the preceding calls, the server writes the following lines to the general query log:

Prepare [1] SELECT ?
Execute [1] SELECT 3

Each Pr epar e and Execut e line in the log is tagged with a [N] statement identifier so that you can
keep track of which prepared statement is being logged. Nis a positive integer. If there are multiple
prepared statements active simultaneously for the client, N may be greater than 1. Each Execut e lines
shows a prepared statement after substitution of data values for ? parameters.

6.2 C API Prepared Statement Data Structures

Prepared statements use several data structures:

» To obtain a statement handler, pass a MYSQL connection handler to nysql _stnt _i ni t (), which
returns a pointer to a MYSQL_ STMT data structure. This structure is used for further operations with
the statement. To specify the statement to prepare, pass the MYSQL_STMT pointer and the statement
string to mysql _stnt _prepare().

» To provide input parameters for a prepared statement, set up MYSQL_BI ND structures and pass
them to mysqgl _stnt _bind _paran{) ornysql stnt _bind nanmed_paran() . To receive output
column values, set up MYSQL_BI ND structures and pass them to nysql stnt_bind result().

MYSQL_BI ND structures are also used with nysql _bi nd_par ant() , which enables defining
attributes that apply to the next query sent to the server.

e The MYSQL_TI ME structure is used to transfer temporal data in both directions.

The following discussion describes the prepared statement data types in detail. For examples
that show how to use them, see Section 6.4.11, “mysql_stmt_execute()”, and Section 6.4.12,
“mysql_stmt_fetch()".

e MYSQL_STMI

This structure is a handler for a prepared statement. A handler is created by calling
nysql _stnt _init (), which returns a pointer to a MYSQL_STMT. The handler is used for all

119

C API Prepared Statement Data Structures

subsequent operations with the statement until you close it with nysql _stnt _cl ose(), at which
point the handler becomes invalid and should no longer be used.

The MYSQL_STM structure has no members intended for application use. Applications should not try
to copy a MYSQL_ STM structure. There is no guarantee that such a copy will be usable.

Multiple statement handlers can be associated with a single connection. The limit on the number of
handlers depends on the available system resources.

MYSQL_BI ND

This structure is used both for statement input (data values sent to the server) and output (result
values returned from the server):

e For input, use MYSQL_BI ND structures with mysql _bi nd_par an() to define attributes for
a query. (In the following discussion, treat any mention of statement parameters for prepared
statements as also applying to query attributes.)

« For output, use MYSQL_BI ND structures with nysql _stnt_bi nd_resul t () to bind buffers to
result set columns, for use in fetching rows with nysqgl _stnt _fetch().

To use a MYSQL_ Bl ND structure, zero its contents to initialize it, then set its members appropriately.
For example, to declare and initialize an array of three MYSQL_BI ND structures, use this code:

MYSQL_BI ND bi nd[3] ;
menset (bi nd, 0, sizeof(bind));

The MYSQL_ Bl ND structure contains the following members for use by application programs. For
several of the members, the manner of use depends on whether the structure is used for input or
output.

e« enumenum field types buffer_type

The type of the buffer. This member indicates the data type of the C language variable bound
to a statement parameter or result set column. For input, buf f er _t ype indicates the type

of the variable containing the value to be sent to the server. For output, it indicates the type
of the variable into which a value received from the server should be stored. For permissible
buf f er _type values, see Section 6.2.1, “C API Prepared Statement Type Codes”.

e void *buffer
A pointer to the buffer to be used for data transfer. This is the address of a C language variable.

For input, buf f er is a pointer to the variable in which you store the data value for a statement
parameter. When you call mysqgl st nt _execut e(), MySQL use the value stored in the variable
in place of the corresponding parameter marker in the statement (specified with ? in the statement
string).

For output, buf f er is a pointer to the variable in which to return a result set column value. When
you call nysql _stnt _fetch(), MySQL stores a column value from the current row of the result
set in this variable. You can access the value when the call returns.

To minimize the need for MySQL to perform type conversions between C language values on the
client side and SQL values on the server side, use C variables that have types similar to those of
the corresponding SQL values:

» For numeric data types, buf f er should point to a variable of the proper numeric C type.
For integer variables (which can be char for single-byte values or an integer type for larger

120

C API Prepared Statement Data Structures

values), you should also indicate whether the variable has the unsi gned attribute by setting the
i s_unsi gned member, described later.

« For character (nonbinary) and binary string data types, buf f er should point to a character
buffer.

» For date and time data types, buf f er should point to a MYSQL_TI IVE structure.

For guidelines about mapping between C types and SQL types and notes about type conversions,
see Section 6.2.1, “C API Prepared Statement Type Codes”, and Section 6.2.2, “C API Prepared
Statement Type Conversions”.

unsi gned | ong buffer_Iength

The actual size of * buf f er in bytes. This indicates the maximum amount of data that
can be stored in the buffer. For character and binary C data, the buf f er _| engt h value
specifies the length of * buf f er when used with mysqgl _stnt _bi nd_paran() or

121

C API Prepared Statement Data Structures

mysqgl _stnt _bind_named_par an() to specify input values, or the maximum number of output
data bytes that can be fetched into the buffer when used with nysqgl stnt _bind result().

unsigned |l ong *length

A pointer to an unsi gned | ong variable that indicates the actual number of bytes of data stored
in *buf f er . | engt h is used for character or binary C data.

For input parameter data binding, set *| engt h to indicate the actual length of the parameter value
stored in * buf f er. This is used by nysql _st nt _execute().

For output value binding, MySQL sets *| engt h when you call nysql _stnt _fetch(). The
mysqgl stnt _fetch() return value determines how to interpret the length:

« If the return value is 0, *| engt h indicates the actual length of the parameter value.

« If the return value is MYSQL_DATA TRUNCATED, * | engt h indicates the nontruncated length of
the parameter value. In this case, the minimum of *| engt h and buf f er _| engt h indicates the
actual length of the value.

| engt h is ignored for numeric and temporal data types because the buf f er _t ype value
determines the length of the data value.

If you must determine the length of a returned value before fetching it, see Section 6.4.12,
“mysgl_stmt_fetch()”, for some strategies.

bool *is_null

This member points to a bool variable that is true if a value is NULL, false if it is not NULL.
Forinput, set *i s_nul | to true to indicate that you are passing a NULL value as a statement
parameter.

i s_nul |l is a pointer to a boolean scalar, not a boolean scalar, to provide flexibility in how you
specify NULL values:

« If your data values are always NULL, use MYSQL_TYPE_NULL as the buf f er _t ype value when
you bind the column. The other MYSQL_BI ND members, including i s_nul | , do not matter.

« If your data values are always NOT NULL, setis _null = (bool*) 0, and setthe other
members appropriately for the variable you are binding.

« In all other cases, set the other members appropriately and seti s_nul | to the address of a
bool variable. Set that variable's value to true or false appropriately between executions to
indicate whether the corresponding data value is NULL or NOT NULL, respectively.

For output, when you fetch a row, MySQL sets the value pointed to by i s _nul | to true or false
according to whether the result set column value returned from the statement is or is not NULL.

bool is_unsigned

This member applies for C variables with data types that can be unsi gned (char, short
int,int,long long int).Setis_unsigned to true if the variable pointed to by buf f er is
unsi gned and false otherwise. For example, if you bind a si gned char variable to buf f er,
specify a type code of MYSQL_TYPE_TI NY and seti s_unsi gned to false. If you bind an

unsi gned char instead, the type code is the same buti s_unsi gned should be true. (For

char , it is not defined whether it is signed or unsigned, so it is best to be explicit about signedness
by using si gned char orunsi gned char.)

i s_unsi gned applies only to the C language variable on the client side. It indicates nothing
about the signedness of the corresponding SQL value on the server side. For example, if you use
an i nt variable to supply a value for a Bl G NT UNSI GNED column, i s_unsi gned should be

122

C API Prepared Statement Type Codes

false because i nt is a signed type. If you use an unsi gned i nt variable to supply a value for
a Bl G NT column, i s_unsi gned should be true because unsi gned i nt is an unsigned type.
MySQL performs the proper conversion between signed and unsigned values in both directions,
although a warning occurs if truncation results.

bool *error

For output, set this member to point to a bool variable to have truncation information for the
parameter stored there after a row fetching operation. When truncation reporting is enabled,
mysqgl stnt _fetch() returns M\YSQL_DATA TRUNCATED and *er r or is true in the
MYSQL_BI ND structures for parameters in which truncation occurred. Truncation indicates
loss of sign or significant digits, or that a string was too long to fit in a column. Truncation
reporting is enabled by default, but can be controlled by calling mysql _opti ons() with the
MYSQL_REPORT _DATA TRUNCATI ON option.

e MYSQL_TIME

This structure is used to send and receive DATE, TI ME, DATETI ME, and TI MESTAVP data

directly to and from the server. Set the buf f er member to point to a MYSQL_ Tl IVE structure,

and set the buf f er _t ype member of a MYSQL_ Bl ND structure to one of the temporal types
(MYSQL_TYPE_TI ME, MYSQL_TYPE_DATE, MYSQL_TYPE_DATETI ME, MYSQL_TYPE_TI MESTAMP).

The MYSQL_TI IVE structure contains the members listed in the following table.

Member

Description

unsi gned int year

The year

unsi gned int nonth

The month of the year

unsi gned int day

The day of the month

unsi gned i nt hour

The hour of the day

unsigned int mnute

The minute of the hour

unsi gned i nt second

The second of the minute

bool neg

A boolean flag indicating whether the time is
negative

unsi gned | ong second_part

The fractional part of the second in microseconds

Only those parts of a MYSQL_ Tl ME structure that apply to a given type of temporal value are used.
The year, nont h, and day elements are used for DATE, DATETI MVE, and TI MESTAMP values. The
hour, m nut e, and second elements are used for TI ME, DATETI ME, and TI MESTAMP values. See
Section 3.6.4, “Prepared Statement Handling of Date and Time Values”.

6.2.1 C API Prepared Statement Type Codes

The buf f er _t ype member of MYSQL_BI ND structures indicates the data type of the C language
variable bound to a statement parameter or result set column. For input, buf f er _t ype indicates the
type of the variable containing the value to be sent to the server. For output, it indicates the type of the
variable into which a value received from the server should be stored.

The following table shows the permissible values for the buf f er _t ype member of MYSQL_BI ND
structures for input values sent to the server. The table shows the C variable types that you can use,
the corresponding type codes, and the SQL data types for which the supplied value can be used
without conversion. Choose the buf f er _t ype value according to the data type of the C language
variable that you are binding. For the integer types, you should also set the i s_unsi gned member to

indicate whether the variable is signed or unsigned.

123

https://dev.mysql.com/doc/refman/9.6/en/integer-types.html
https://dev.mysql.com/doc/refman/9.6/en/datetime.html
https://dev.mysql.com/doc/refman/9.6/en/time.html
https://dev.mysql.com/doc/refman/9.6/en/datetime.html
https://dev.mysql.com/doc/refman/9.6/en/datetime.html
https://dev.mysql.com/doc/refman/9.6/en/datetime.html
https://dev.mysql.com/doc/refman/9.6/en/datetime.html
https://dev.mysql.com/doc/refman/9.6/en/datetime.html
https://dev.mysql.com/doc/refman/9.6/en/time.html
https://dev.mysql.com/doc/refman/9.6/en/datetime.html
https://dev.mysql.com/doc/refman/9.6/en/datetime.html

C API Prepared Statement Type Codes

Table 6.1 Permissible Input Data Types for MYSQL_BIND Structures

Input Variable C Type buf f er _type Value SQL Type of Destination Value

si gned char MYSQL_TYPE_TI NY TI NYI NT

short int MYSQL_TYPE_SHORT SMALLI NT

i nt MYSQL_TYPE_LONG I NT

long long int MYSQL_TYPE LONGLONG Bl G NT

f1 oat MYSQL_TYPE_FLOAT FLOAT

doubl e MYSQL_TYPE_DOUBLE DOUBLE

MYSQL_TI ME MYSQL_TYPE_TI MVE TI ME

MYSQL_TI ME MYSQL_TYPE_DATE DATE

MYSQL_TI ME MYSQL_TYPE_DATETI ME DATETI ME

MYSQL_TI ME MYSQL_TYPE_TI MESTAMP TI MESTAMP

char[] MYSQL_TYPE_STRI NG TEXT, CHAR, VARCHAR

char[] MYSQL_TYPE_BLOB BLOB, Bl NARY, VARBI NARY
MYSQL_TYPE_NULL NULL

Use MYSQL_TYPE_NULL as indicated in the description for the i s_nul | member in Section 6.2, “C
API Prepared Statement Data Structures”.

For input string data, use MYSQL_TYPE_STRI NGor MYSQL_TYPE_ BLOB depending on whether the
value is a character (nonbinary) or binary string:

e MYSQL_TYPE_STRI NGindicates character input string data. The value is assumed to be in the
character set indicated by the char act er _set cl i ent system variable. If the server stores the
value into a column with a different character set, it converts the value to that character set.

* MYSQL_TYPE_BLOB indicates binary input string data. The value is treated as having the bi nary
character set. That is, it is treated as a byte string and no conversion occurs.

The following table shows the permissible values for the buf f er _t ype member of MYSQL_BI ND
structures for output values received from the server. The table shows the SQL types of received
values, the corresponding type codes that such values have in result set metadata, and the
recommended C language data types to bind to the MYSQL_ Bl ND structure to receive the SQL values
without conversion. Choose the buf f er _t ype value according to the data type of the C language
variable that you are binding. For the integer types, you should also set the i s_unsi gned member to
indicate whether the variable is signed or unsigned.

Table 6.2 Permissible Output Data Types for MYSQL_BIND Structures

SQL Type of Received Value |buffer_type Value Output Variable C Type
TI NYI NT MYSQL_TYPE_TI NY si gned char
SMALLI NT MYSQL_TYPE_SHORT short int
MEDI UM NT MYSQL_TYPE_| NT24 i nt

| NT MYSQL_TYPE_LONG i nt

Bl G NT MYSQL_TYPE_LONGLONG | ong I ong int
FLOAT MYSQL_TYPE_FLOAT fl oat

DOUBLE MYSQL_TYPE_DOUBLE doubl e

DECI MAL MYSQL_TYPE_NEWDEC!I MAL char[]

YEAR MYSQL_TYPE_SHORT short int

TI VE MYSQL_TYPE_TI ME MYSQL_TI ME

124

https://dev.mysql.com/doc/refman/9.6/en/integer-types.html
https://dev.mysql.com/doc/refman/9.6/en/integer-types.html
https://dev.mysql.com/doc/refman/9.6/en/integer-types.html
https://dev.mysql.com/doc/refman/9.6/en/integer-types.html
https://dev.mysql.com/doc/refman/9.6/en/floating-point-types.html
https://dev.mysql.com/doc/refman/9.6/en/floating-point-types.html
https://dev.mysql.com/doc/refman/9.6/en/time.html
https://dev.mysql.com/doc/refman/9.6/en/datetime.html
https://dev.mysql.com/doc/refman/9.6/en/datetime.html
https://dev.mysql.com/doc/refman/9.6/en/datetime.html
https://dev.mysql.com/doc/refman/9.6/en/blob.html
https://dev.mysql.com/doc/refman/9.6/en/char.html
https://dev.mysql.com/doc/refman/9.6/en/char.html
https://dev.mysql.com/doc/refman/9.6/en/blob.html
https://dev.mysql.com/doc/refman/9.6/en/binary-varbinary.html
https://dev.mysql.com/doc/refman/9.6/en/binary-varbinary.html
https://dev.mysql.com/doc/refman/9.6/en/server-system-variables.html#sysvar_character_set_client
https://dev.mysql.com/doc/refman/9.6/en/integer-types.html
https://dev.mysql.com/doc/refman/9.6/en/integer-types.html
https://dev.mysql.com/doc/refman/9.6/en/integer-types.html
https://dev.mysql.com/doc/refman/9.6/en/integer-types.html
https://dev.mysql.com/doc/refman/9.6/en/integer-types.html
https://dev.mysql.com/doc/refman/9.6/en/floating-point-types.html
https://dev.mysql.com/doc/refman/9.6/en/floating-point-types.html
https://dev.mysql.com/doc/refman/9.6/en/fixed-point-types.html
https://dev.mysql.com/doc/refman/9.6/en/year.html
https://dev.mysql.com/doc/refman/9.6/en/time.html

C API Prepared Statement Type Conversions

SQL Type of Received Value |buffer_type Value Output Variable C Type
DATE MYSQL_TYPE_DATE MYSQL_TI ME
DATETI ME MYSQL_TYPE_DATETI ME MYSQL_TI ME
TI MESTAMP MYSQL_TYPE_TI MESTAMP MYSQL_TI ME
CHAR, Bl NARY MYSQL_TYPE_STRI NG char[]
VARCHAR, VARBI NARY MYSQ._TYPE_VAR_STRI NG char[]

TI NYBLOB, TI NYTEXT MYSQL_TYPE_TI NY_BLOB char[]
BLOB, TEXT MYSQL_TYPE_BLOB char[]

MEDI UVBLOB, MEDI UMTEXT MYSQ._TYPE_MEDI UM BLOB char[]
LONGBL OB, LONGTEXT MYSQL_TYPE_LONG BLOB char[]

BIT MYSQL_TYPE BIT char[]

6.2.2 C API Prepared Statement Type Conversions

Prepared statements transmit data between the client and server using C language variables on the
client side that correspond to SQL values on the server side. If there is a mismatch between the C
variable type on the client side and the corresponding SQL value type on the server side, MySQL
performs implicit type conversions in both directions.

MySQL knows the type code for the SQL value on the server side. The buf f er _t ype value in the
MYSQL_ Bl ND structure indicates the type code of the C variable that holds the value on the client
side. The two codes together tell MySQL what conversion must be performed, if any. Here are some
examples:

» If you use M\YSQL_TYPE_LONGwith an i nt variable to pass an integer value to the server that is to
be stored into a FLOAT column, MySQL converts the value to floating-point format before storing it.

« If you fetch an SQL MEDI UM NT column value, but specify a buf f er _t ype value of
MYSQL_TYPE_ LONGLONGand use a C variable of type | ong | ong i nt as the destination buffer,
MySQL converts the MEDI UM NT value (which requires less than 8 bytes) for storage into the | ong
| ong i nt (an 8-byte variable).

« If you fetch a numeric column with a value of 255 into a char [4] character array and specify a
buf f er _type value of MYSQL_TYPE_STRI NG the resulting value in the array is a 4-byte string
' 255\ 0'.

» MySQL returns DECI MAL values as the string representation of the original server-side value,
which is why the corresponding C type is char [] . For example, 12. 345 is returned to the client as
'12. 345" . If you specify MYSQL_TYPE_NEWDECI MAL and bind a string buffer to the MYSQL_BI ND
structure, nysql _stnt _fetch() stores the value in the buffer as a string without conversion. If
instead you specify a numeric variable and type code, mysqgl stnt fetch() converts the string-
format DECI MAL value to numeric form.

» Forthe MYSQL_TYPE_BI T type code, Bl T values are returned into a string buffer, which is why the
corresponding C type is char [] . The value represents a bit string that requires interpretation on the
client side. To return the value as a type that is easier to deal with, you can cause the value to be
cast to integer using either of the following types of expressions:

SELECT bit_col + 0 FROM t
SELECT CAST(bit_col AS UNSI GNED) FROM t

To retrieve the value, bind an integer variable large enough to hold the value and specify the
appropriate corresponding integer type code.

Before binding variables to the MYSQL_ Bl ND structures that are to be used for fetching column
values, you can check the type codes for each column of the result set. This might be desirable

125

https://dev.mysql.com/doc/refman/9.6/en/datetime.html
https://dev.mysql.com/doc/refman/9.6/en/datetime.html
https://dev.mysql.com/doc/refman/9.6/en/datetime.html
https://dev.mysql.com/doc/refman/9.6/en/char.html
https://dev.mysql.com/doc/refman/9.6/en/binary-varbinary.html
https://dev.mysql.com/doc/refman/9.6/en/char.html
https://dev.mysql.com/doc/refman/9.6/en/binary-varbinary.html
https://dev.mysql.com/doc/refman/9.6/en/blob.html
https://dev.mysql.com/doc/refman/9.6/en/blob.html
https://dev.mysql.com/doc/refman/9.6/en/blob.html
https://dev.mysql.com/doc/refman/9.6/en/blob.html
https://dev.mysql.com/doc/refman/9.6/en/blob.html
https://dev.mysql.com/doc/refman/9.6/en/blob.html
https://dev.mysql.com/doc/refman/9.6/en/blob.html
https://dev.mysql.com/doc/refman/9.6/en/blob.html
https://dev.mysql.com/doc/refman/9.6/en/bit-type.html
https://dev.mysql.com/doc/refman/9.6/en/floating-point-types.html
https://dev.mysql.com/doc/refman/9.6/en/integer-types.html
https://dev.mysql.com/doc/refman/9.6/en/integer-types.html
https://dev.mysql.com/doc/refman/9.6/en/fixed-point-types.html
https://dev.mysql.com/doc/refman/9.6/en/fixed-point-types.html
https://dev.mysql.com/doc/refman/9.6/en/bit-type.html

C API Prepared Statement Function Reference

if you want to determine which variable types would be best to use to avoid type conversions. To
get the type codes, call nysqgl _stnt _result netadat a() after executing the statement with
nysqgl stnt _execut e(). The metadata provides access to the type codes for the result set as
described in Section 6.4.24, “mysql_stmt_result_metadata()”, and Section 5.2, “C API Basic Data
Structures”.

To determine whether output string values in a result set returned from the server contain binary or
nonbinary data, check whether the char set nr value of the result set metadata is 63 (see Section 5.2,
“C API Basic Data Structures”). If so, the character set is bi nar y, which indicates binary rather than
nonbinary data. This enables you to distinguish Bl NARY from CHAR, VARBI NARY from VARCHAR, and
the BLOB types from the TEXT types.

If you cause the max_| engt h member of the MYSQL_FI ELD column metadata structures to be set
(by calling nysql _stnt _attr_set()), be aware that the max_| engt h values for the result set
indicate the lengths of the longest string representation of the result values, not the lengths of the
binary representation. That is, max_| engt h does not necessarily correspond to the size of the buffers
needed to fetch the values with the binary protocol used for prepared statements. Choose the size

of the buffers according to the types of the variables into which you fetch the values. For example,

a TI NYI NT column containing the value -128 might have a max_| engt h value of 4. But the binary
representation of any Tl NYI NT value requires only 1 byte for storage, so you can supply a si gned
char variable in which to store the value and seti s_unsi gned to indicate that values are signed.

Metadata changes to tables or views referred to by prepared statements are detected and cause
automatic repreparation of the statement when it is next executed. For more information, see Caching
of Prepared Statements and Stored Programs.

6.3 C API Prepared Statement Function Reference

The following table summarizes the functions available for prepared statement processing. For greater
detail, see the descriptions in Section 6.4, “C API Prepared Statement Function Descriptions”.

Table 6.3 C API Prepared Statement Functions

Name Description Deprecated

mysqgl _stnt _af fect ed_r ows()Number of rows changed/
deleted/inserted by last prepared
UPDATE, DELETE, or | NSERT

statement

mysqgl _stnt_attr_get() Get attribute value for prepared
statement

mysqgl _stmt_attr_set() Set attribute value for prepared
statement

mysqgl _stnt _bi nd_nanmed_par gkgspciate application data
buffers with named and
unnamed parameter markers in
prepared statement

mysqgl _stnt _bind_paran() |Associate application data Yes
buffers with parameter markers
in prepared statement

mysqgl stnt _bind result() |Associate application data
buffers with columns in result set

mysqgl _stmt _cl ose() Free memory used by prepared
statement
nysql _stnt _dat a_seek() Seek to arbitrary row number in

prepared statement result set

126

https://dev.mysql.com/doc/refman/9.6/en/binary-varbinary.html
https://dev.mysql.com/doc/refman/9.6/en/char.html
https://dev.mysql.com/doc/refman/9.6/en/binary-varbinary.html
https://dev.mysql.com/doc/refman/9.6/en/char.html
https://dev.mysql.com/doc/refman/9.6/en/blob.html
https://dev.mysql.com/doc/refman/9.6/en/blob.html
https://dev.mysql.com/doc/refman/9.6/en/statement-caching.html
https://dev.mysql.com/doc/refman/9.6/en/statement-caching.html
https://dev.mysql.com/doc/refman/9.6/en/update.html
https://dev.mysql.com/doc/refman/9.6/en/delete.html
https://dev.mysql.com/doc/refman/9.6/en/insert.html

C API Prepared Statement Function Descriptions

Name

Description

Deprecated

mysql _stmt _errno()

Error number for most recently
invoked MySQL prepared-
statement function

nysql _stnt_error()

Error message for most recently
invoked MySQL prepared-
statement function

mysqgl _stnt _execute()

Execute prepared statement

mysqgl _stmt _fetch()

Fetch next result set row and
return data for all bound columns

mysql _stm _fetch_col um()

Fetches data for one column of
current result set row

mysqgl _stnt _field count()

Number of result columns for
most recent prepared statement

mysqgl _stnt _free result()

Free resources allocated to
statement handler

mysqgl _stnt _init()

Allocate and initialize memory for
MYSQL_STMT structure

mysql _stmt _insert _id()

ID generated for an
AUTO _| NCREMENT column by
previous prepared statement

mysqgl _stnt _next _result()

Return/initiate next result
in multiple-result prepared
statement execution

mysqgl _stmt_num rows()

Row count from buffered
statement result set

mysqgl _stnt _param count ()

Number of parameters in
prepared statement

mysql _stnt _param net adat a

(Return parameter metadata as
result set

mysqgl _stnt_prepare()

Prepare statement for execution

nysql _stnt_reset ()

Reset statement buffers on
server side

mysqgl _stmt _result_netadat

ddturn prepared statement
metadata as result set

mysql _stmt _row seek()

Seek to row offset in prepared
statement result set

nysql _stnt_row_tell ()

Current position within prepared
statement result set row

mysqgl _stnt _send_| ong_dat a

(Send long data in chunks to
server

mysqgl _stnt_sql state()

SQLSTATE value for most
recently invoked MySQL
prepared-statement function

mysql _stmt _store_result()

Retrieve and store entire result

set

6.4 C API Prepared Statement Function Descriptions

127

mysql_stmt_affected_rows()

To prepare and execute queries, use the functions described in detail in the following sections.
All functions that operate with a MYSQL_ STMT structure begin with the prefix nysqgl _stnt .
To create a MYSQL_STMT handler, use the nysql stnt _init() function.

6.4.1 mysqgl_stmt_affected _rows()

ui nt 64_t
nmysql _stmt _affected_rows(MYSQL_STMI *st nt)

Description

nysqgl _stnt_affected rows() may be called immediately after executing a statement with
nysqgl _stnt_execute().Itislike nysqgl affected rows() butfor prepared statements. For
a description of what the affected-rows value returned by this function means, See Section 5.4.1,
“mysql_affected_rows()”.

Errors
None.
Example
See the Example in Section 6.4.11, “mysql_stmt_execute()".

6.4.2 mysqgl_stmt_attr_get()

bool

mysql _stmt _attr_get (MYSQL_STMI *stnt,
enum enum stnt_attr_type option,
voi d *ar Q)

Description

Can be used to get the current value for a statement attribute.

The opt i on argument is the option that you want to get; the ar g should point to a variable that should

contain the option value. If the option is an integer, ar g should point to the value of the integer.
See Section 6.4.3, “mysql_stmt_attr_set()”, for a list of options and option types.
Return Values
Zero for success. Nonzero if opt i on is unknown.
Errors
None.

6.4.3 mysqgl_stmt_attr_set()

bool

nysqgl _stnt_attr_set (MYSQL_STMI *stnt,
enum enum stnt _attr_type option,
const void *arg)

Description

Can be used to affect behavior for a prepared statement. This function may be called multiple times to

set several options.

The opt i on argument is the option that you want to set. The ar g argument is the value for the option.
ar g should point to a variable that is set to the desired attribute value. The variable type is as indicated

in the following table.

128

mysql_stmt_bind_named_param()

The following table shows the possible opt i on values.

Option

Argument Type

Function

STMI_ATTR_UPDATE_MAX_LENGHeol *

If setto 1, causes

mysqgl _stmt _store_result()
to update the metadata
MYSQ._FI ELD- >nmax_| engt h
value.

STMI_ATTR_CURSOR_TYPE

unsi gned | ong *

Type of cursor to open

for statement when

nmysql _stnt _execute()

is invoked. * ar g can be
CURSOR_TYPE_NO_CURSOR
(the default) or
CURSOR_TYPE_READ _ONLY.

STMI_ATTR_PREFETCH_RO/S

unsi gned | ong *

Number of rows to fetch from
server at a time when using a
cursor. *ar g can be in the range
from 1 to the maximum value of
unsi gned | ong. The default is
1.

If you use the STMI_ ATTR_CURSOR_TYPE option with CURSOR_TYPE_READ_ ONLY, a cursor is
opened for the statement when you invoke nysql _stnt _execut e() . If there is already an open
cursor from a previous nysql _stnt _execut e() call, it closes the cursor before opening a new one.
nmysqgl _stnt_reset () also closes any open cursor before preparing the statement for re-execution.
nmysqgl _stnt _free_result() closes any open cursor.

If you open a cursor for a prepared statement, mysql _stnt _store_resul t () isunnecessary,
because that function causes the result set to be buffered on the client side.

Return Values

Zero for success. Nonzero if opt i on is unknown.

Errors
None.

Example

The following example opens a cursor for a prepared statement and sets the number of rows to fetch at
atime to 5:

MYSQL_STMT *stmt ;

int rc;

unsi gned | ong type
unsi gned | ong prefetch_rows = 5

st
type
rc =
[* ...
rc =

[* ...

nysqgl _stnt_init(ny

sql);

(unsi gned | ong) CURSOR TYPE_READ ONLY;

check return value ...

*/

(voi d*) &prefetch_rows);
*
/

6.4.4 mysqgl_stmt_bind_named_param()

bool

nysql _stnt _bi nd_nanmed_par an(M\YSQL_STMI' *st nt

nysql _stnt_attr_set(stnt, STMI_ATTR CURSOR TYPE, (void*) &type);
check return value ...
nysql _stnt_attr_set(stnmt, STMI_ATTR PREFETCH ROAS,

129

mysql_stmt_bind_named_param()

MYSQL_BI ND *bi nds,
unsi gned n_par ans,
const char **nanes)

Description

nmysqgl _stnt _bi nd_naned_par an() sets up unnamed and named (query attributes) bind
parameters for prepared statements.

This function supersedes the old nysql _stnt _bi nd_par an() function, which supported only
unnamed parameters, and which has since been removed.

Arguments:
» st nt: The statement handler. Statements must be prepared with nysql _stnt _prepare().

» bi nds: An array of named and unnamed bind parameters. In the absence of named parameters,
pass in NULL as the array of bind parameter names.

* n_par ans: Number of items within arrays.
» nanes: An array of bind parameter names.

nysqgl _stnt _bi nd_naned_paran{() requires an input of array MYySQL_BI ND structures and the
matching names array. It succeeds without any effect (in corner cases) if the bind argument count
parameter is zero or if the bind array pointer is NULL. It fails if an invalid M\YSQL_BI ND type is used for
any bind parameter arguments.

To store both named and unnamed bind user variables, call nysql _stnt _bi nd_naned_param()
after mysql _stm _prepare(). Subsequent to binding the variables, you can set and change them
repeatedly.

Additional actions to consider are:
» Execute the statement using nysql _stnt _execute().

» Reset the statement using nysql _stnt _reset () or reprepare it with another query using
nmysql _stnt_prepare().

» Close the statement with nysql stnt _cl ose().

For a description of the members of the MYSQL_STMT and MYSQL_BI ND structure and how they should
be set to provide input values, see Section 6.2, “C API Prepared Statement Data Structures”.

Return Values

Errors

Zero for success. Nonzero if an error occurred.

« CR_UNSUPPORTED_PARAM TYPE

The conversion is not supported. Possibly the buf f er _t ype value is invalid or is not one of the
supported types.

+ CR_QUT_OF_MEMORY
Out of memory.
* CR_UNKNOWN_ERROR

An unknown error occurred.

130

https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_unsupported_param_type
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_out_of_memory
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_unknown_error

mysql_stmt_bind_named_param()

Example

The following example demonstrates binding one unnamed and one named parameter. The unnamed
parameter has NULL in a matching names array slot:.

/| Conpile exanple on Linux with a command similar to:
/'l gcc exanple.c --std=c99 -1/usr/local /nysqgl/include -L/usr/local/nysqgl/lib -lInysqglclient -o exanple

#i ncl ude <nysql . h>
#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>
#i ncl ude <string. h>
int main(int argc, char *argv[]) {

/'l variabl e decl arati ons

MYSQL *nysql ;
MYSQ._STMT *stnt ;
int int_data = 4; /'l unnaned input paraneter val ue

int int_parentid = 1329494394; // naned ('traceparent') input paraneter val ue
MYSQL_BI ND par ans|[2] ;

const char *nanmes[2] = {NULL, "traceparent"};

int rc;

MYSQL_BI ND r bi nd[1] ;
int result_val;

/1l connect to the database server
nmysql = mysql _i ni t (NULL);

if (nysgl == NULL) {
fprintf(stderr, "%\n", mysql _error(mysql));
return 1;
if (nysqgl _real _connect(nysqgl, "127.0.0.1", "root", "password", NULL, O, NULL,

0) == NULL) {
fprintf(stderr, "%\n", mysql _error(mnmysqgl));
nmysql _cl ose(nysql);
return 1;

}

/] create a prepared statenent
stmt = nmysql _stnt _init(nysql);
if (stnmt == NULL) {
fprintf(stderr, "%\n", nmysql _error(mysql));
nmysql _cl ose(nysql);
return 1;
}
const char *query = "SELECT PON ?,2) AS square";
if (nysqgl _stnt_prepare(stnt, query, strlen(query))) {
nmysql _stmt _cl ose(stnt);
nmysql _cl ose(nysql);
return 1;

}

/1 bind the prepared statenent paraneters
menset (parans, 0, sizeof(parans));

parans[0] . buffer_type = MYSQL_TYPE_LONG
parans[0] . buffer = (char *)& nt_dat a;
parans[0] . | engt h = NULL;

parans[0] .is_null = NULL;

parans[1] . buffer_type = MYSQL_TYPE_LONG
parans[1] . buffer = (char *)& nt_parentid;
parans[1] .l ength = NULL;

parans[1] .is_null = NULL;

rc = nysql _stnt_bi nd_naned_paran(stnt, parans,
si zeof (parans) / sizeof (parans[0]), nanes);
if (rc!=0) {
fprintf(stderr, "%\n", nmysql _error(mnmysql));
nmysql _stmt _cl ose(stnt);

131

mysql_stmt_bind_param()

nmysql _cl ose(nysql);
return 1;

}

/| execute the prepared statenent
rc = nysqgl _stnt_execute(stnt);
if (rc!'=0) {
fprintf(stderr, "[%l] %\n", nysql _stnmt_errno(stnt),
mysql _stmt _error(stnt));
nmysql _stmt _cl ose(stnt);
nmysql _cl ose(nysql);
return 1;

}

/1 bind and fetch the result paraneter
menset (rbind, 0, sizeof(rbind));
rbi nd[0] . buf fer_type = MYSQL_TYPE_LONG
rbind[0] . buffer = (char *)&result_val;
rc = nysql _stnt_bind_result(stnt, rbind);
if (rc!'=0) {

fprintf(stderr, "[%l] %\n", nysql _stmt_errno(stnt),

mysql _stmt _error(stnt));

nmysql _stmt _cl ose(stnt);

nmysql _cl ose(nysql);

return 1;

}

rc = nysql _stnt_fetch(stnt);
if (rc !'=0) {
fprintf(stderr, "[%l] %\n", nysql _stnmt_errno(stnt),
mysql _stmt _error(stnt));
nmysql _stmt _cl ose(stnt);
nmysql _cl ose(nysql);

return 1;
}
/] expect PON4, 2), i.e. 4 squared being 16
if (result_val != 16) {
printf("Unexpected result!\n");
} else {
printf("Success!\n");
}

nmysql _stmt _cl ose(stnt);
nmysql _cl ose(nysql);
return O;

}

After executing, binding the results, and fetching data, the result of the statement on success is 16 (that
is, 4 squared).

See Also

See nysqgl _stnt _send_ | ong_dat a() for sending long text or blob data in pieces. Refer to the file
tests/ nysql _client test.c for complete examples. This file can be obtained from a MySQL
source distribution or from the source repository (see Installing MySQL from Source).

6.4.5 mysqgl_stmt_bind_param()

bool
nmysql _stnt _bi nd_par am(MYSQL_STMTI *st nt,
MYSQL_BI ND *bi nd)

Description

nysqgl _stnt_bi nd_paran() is used to bind input data for the parameter markers in the SQL
statement that was passed to nysql _stnt_prepare(). It uses MYSQL_BI ND structures to supply the
data. bi nd is the address of an array of MYSQL_ Bl ND structures. The client library expects the array to
contain one element for each ? parameter marker that is present in the query.

132

https://dev.mysql.com/doc/refman/9.6/en/source-installation.html

mysql_stmt_bind_result()

Suppose that you prepare the following statement:

| NSERT | NTO nytbl VALUES(?, 2, ?)

When you bind the parameters, the array of MYSQL_BI ND structures must contain three elements, and
can be declared like this:

MYSQL_BI ND bi nd[3] ;

For a description of the members of the MYSQL_ Bl ND structure and how they should be set to provide
input values, see Section 6.2, “C API Prepared Statement Data Structures”.

Return Values

Zero for success. Nonzero if an error occurred.
Errors

* CR_UNSUPPORTED PARAM TYPE

The conversion is not supported. Possibly the buf f er _t ype value is invalid or is not one of the
supported types.

+ CR_QUT_OF_MEMORY
Out of memory.
¢ CR_UNKNOWN_ERROR

An unknown error occurred.
Example

See the Example in Section 6.4.11, “mysql_stmt_execute()".

6.4.6 mysql_stmt_bind_result()

bool
nmysql _stmt _bind_resul t (MYSQL_STMI *stnt,
MYSQL_BI ND *bi nd)

Description

nysqgl _stnt _bind result() isused to associate (that is, bind) output columns in the result set
to data buffers and length buffers. When nysql st nt fetch() is called to fetch data, the MySQL
client/server protocol places the data for the bound columns into the specified buffers.

All columns must be bound to buffers prior to calling mysqgl _stmt _fetch().bi ndisthe

address of an array of MYSQL_ BI ND structures. The client library expects the array to contain one
element for each column of the result set. If you do not bind columns to MYSQL_ Bl ND structures,
mysql sttt _fetch() simply ignores the data fetch. The buffers should be large enough to hold the
data values, because the protocol does not return data values in chunks.

A column can be bound or rebound at any time, even after a result set has been partially retrieved.
The new binding takes effect the next time nysql _stnt_fetch() is called. Suppose that an
application binds the columns in a result set and calls nysql _stnt _fetch() . The client/server
protocol returns data in the bound buffers. Then suppose that the application binds the columns to a
different set of buffers. The protocol places data into the newly bound buffers when the next call to
mysql _stmt fetch() occurs.

To bind a column, an application calls nysql _stnt _bi nd_resul t () and passes the type, address,
and length of the output buffer into which the value should be stored. Section 6.2, “C API Prepared
Statement Data Structures”, describes the members of each MYSQL_ Bl ND element and how they
should be set to receive output values.

133

https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_unsupported_param_type
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_out_of_memory
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_unknown_error

mysql_stmt_close()

Return Values

Zero for success. Nonzero if an error occurred.
Errors

« CR_UNSUPPORTED PARAM TYPE

The conversion is not supported. Possibly the buf f er _t ype value is invalid or is not one of the
supported types.

» CR_QUT_OF_MEMORY
Out of memory.
« CR_UNKNOMN ERRCR
An unknown error occurred.
Example

See the Example in Section 6.4.12, “mysql_stmt_fetch()”.

6.4.7 mysqgl_stmt_close()

bool
nysql _stnt_cl ose(MYSQL_STMI' *st nt)

Description

Closes the prepared statement. nysql _stnt _cl ose() also deallocates the statement handler
pointed to by st nt , which at that point becomes invalid and should no longer be used. For a failed
nmysqgl _stnt _cl ose() call, donotcall mysgl _stnt _error(),ornysql _stmnmt _errno(), or
nmysqgl _stnt _sql state() to obtain error information because nysql _stnt _cl ose() makes the
statement handler invalid. Call nysql _error (), nysql _errno(),ormysqgl sql state() instead.

If the current statement has pending or unread results, this function cancels them so that the next
guery can be executed.

Return Values

Zero for success. Nonzero if an error occurred.

Errors
« CR_SERVER GONE_ERROR
The MySQL server has gone away.
« CR_UNKNOAN ERROR
An unknown error occurred.
Example

See the Example in Section 6.4.11, “mysql_stmt_execute()”.

6.4.8 mysqgl_stmt_data_seek()

voi d
nmysql _stnt _data_seek(MYSQL_STMI *stnt,
uint64_t of fset)

134

https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_unsupported_param_type
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_out_of_memory
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_unknown_error
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_server_gone_error
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_unknown_error

mysql_stmt_errno()

Description

Seeks to an arbitrary row in a statement result set. The of f set value is a row number and should be
in the range from O to nysql _stnmt _num rows(stnt)-1.

This function requires that the statement result set structure contains the entire result of the
last executed query, so nysql _stnt _dat a_seek() may be used only in conjunction with
nysqgl _stnt _store_ result().

Return Values
None.
Errors

None.

6.4.9 mysqgl_stmt_errno()

unsi gned i nt
nysql _stnt_errno(MYSQL_STMI *st nt)

Description

For the statement specified by st nt, nysql _stnt _errno() returns the error code for the most
recently invoked statement API function that can succeed or fail. A return value of zero means that no
error occurred. Client error message numbers are listed in the MySQL er r nsg. h header file. Server
error message numbers are listed in nysql d_error . h. Errors also are listed at Error Messages and
Common Problems.

If the failed statement API function was nysql _st it _cl ose(), do not call or mysqgl _stnt _errno()
to obtain error information because nysql _stnt _cl ose() makes the statement handler invalid. Call
nysql _errno() instead.

Return Values

An error code value. Zero if no error occurred.
Errors

None.

6.4.10 mysql_stmt_error()

const char *
nysql _stnt_error (MYSQL_STMI *stnt)

Description

For the statement specified by st nt , nysql _stnt_error () returns a null-terminated string
containing the error message for the most recently invoked statement API function that can succeed or
fail. An empty string (" ") is returned if no error occurred. Either of these two tests can be used to check
for an error:

if(*nmysqgl _stnt_errno(stnt))

/'l an error occurred

}
if (nmysqgl _stnt_error(stnt)[0])

/'l an error occurred

}

135

https://dev.mysql.com/doc/refman/9.6/en/error-handling.html
https://dev.mysql.com/doc/refman/9.6/en/error-handling.html

mysql_stmt_execute()

If the failed statement API function was nysql stnt _cl ose(), donotcall nysqgl _stnt _error()
to obtain error information because nysql stnt _cl ose() makes the statement handler invalid. Call
nysqgl _error () instead.

The language of the client error messages may be changed by recompiling the MySQL client library.
You can choose error messages in several different languages.

Return Values

A character string that describes the error. An empty string if no error occurred.

Errors

None.

6.4.11 mysqgl_stmt_execute()

int
nmysql _stmt _execut e(MYSQL_STMI' *st nt)

Description

nmysqgl _stnt _execut e() executes the prepared query associated with the statement handler. The
currently bound parameter marker values are sent to server during this call, and the server replaces the
markers with this newly supplied data.

Statement processing following mysql st _execut e() depends on the type of statement:

» For an UPDATE, DELETE, or | NSERT, the number of changed, deleted, or inserted rows can be found
by calling nysql _stm _affected rows().

» For a statement such as SELECT that generates a result set, you must call mysql _stnt _fetch()
to fetch the data prior to calling any other functions that result in query processing. For more
information on how to fetch the results, refer to Section 6.4.12, “mysql_stmt_fetch()".

Do not follow invocation of mysql _stnt _execut e() withacallto mysqgl store result() or
nysql _use_resul t (). Those functions are not intended for processing results from prepared
statements.

For statements that generate a result set, you can request that nysql _stnt _execut e() opena
cursor for the statement by calling nysql _stnt _attr_set () before executing the statement. If you
execute a statement multiple times, nysqgl _stnt _execut e() closes any open cursor before opening
a new one.

Metadata changes to tables or views referred to by prepared statements are detected and cause
automatic repreparation of the statement when it is next executed. For more information, see Caching
of Prepared Statements and Stored Programs.

Return Values
Zero for success. Nonzero if an error occurred.
Errors
« CR_COWANDS OUT_OF SYNC
Commands were executed in an improper order.
« CR_OUT_OF MEMORY
Out of memory.

« CR_SERVER GONE_ERROR

136

https://dev.mysql.com/doc/refman/9.6/en/update.html
https://dev.mysql.com/doc/refman/9.6/en/delete.html
https://dev.mysql.com/doc/refman/9.6/en/insert.html
https://dev.mysql.com/doc/refman/9.6/en/select.html
https://dev.mysql.com/doc/refman/9.6/en/statement-caching.html
https://dev.mysql.com/doc/refman/9.6/en/statement-caching.html
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_commands_out_of_sync
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_out_of_memory
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_server_gone_error

mysql_stmt_execute()

The MySQL server has gone away.
* CR_SERVER LOST

The connection to the server was lost during the query.
« CR_UNKNOMAN_ERROR

An unknown error occurred.
Example

The following example demonstrates how to create and populate a table using nysqgl _stnt _init (),
nysqgl _stnt_prepare(), nysql _stnt _param count (), nysql _stnt_bi nd_nanmed_param(),
nmysqgl _stnt _execute(),andnysql _stnt_affected_rows().The nysql variable is assumed
to be a valid connection handler. For an example that shows how to retrieve data, see Section 6.4.12,
“mysql_stmt_fetch()”".

#def i ne STRI NG_S| ZE 50

#defi ne DROP_SAMPLE TABLE "DROP TABLE | F EXI STS test_tabl e"
#defi ne CREATE_SAMPLE_TABLE " CREATE TABLE test_tabl e(col 1 INT,\
col 2 VARCHAR(40), \
col 3 SMALLI NT, \
col 4 TI MESTAWP) "
#defi ne | NSERT_SAMPLE "| NSERT | NTO \
test_table(col 1, col 2,col 3) \
VALUES(?, 2, ?) "

MYSQL_STMI *stnmt;
MYSQL_BIND bind[3];

ui nt 64_t af f ect ed_r ows;

i nt par am count ;

short snmal | _dat a;

i nt i nt_data;

char str_dat a[STRI NG_SI ZE] ;
unsi gned | ong str_I ength;

bool is_null;

if (nysql _query(nysql, DROP_SAMPLE TABLE))
{

fprintf(stderr, " DROP TABLE failed\n");
fprintf(stderr, " %\n", nysqgl _error(mysql));
exit(0);

}

if (nysql _query(nysql, CREATE SAMPLE TABLE))
{

fprintf(stderr, " CREATE TABLE failed\n");
fprintf(stderr, " %\n", nysqgl _error(mysqgl));
exit(0);

}

/* Prepare an |INSERT query with 3 paraneters */

/* (the TI MESTAMP columm is not naned; the server */
/* sets it to the current date and tine) */

stnmt = nysql _stnt _init(nysql);

if (!stnt)

fprintf(stderr, " nysql_stnt_init(), out of nenory\n");
exit(0);

}
if (nysql _stnt_prepare(stnt, |NSERT_SAMPLE, strlen(lNSERT_SAMPLE)))

fprintf(stderr, " nysqgl_stnt_prepare(), |INSERT failed\n");
fprintf(stderr, " %\n", nysqgl_stnt_error(stnt));
exit(0);

}

fprintf(stdout, " prepare, |NSERT successful\n");

137

https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_server_lost
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_unknown_error

mysql_stmt_execute()

/* Get the paranmeter count fromthe statenent */
par am count = nysql _stmt _param count (stnt);

fprintf(stdout, " total parameters in INSERT: %\ n", param count);

if (paramcount != 3) /* validate paraneter count */
fprintf(stderr, " invalid parameter count returned by MySQ.\n");
exit(0);

}

/* Bind the data for all 3 paraneters */
menset (bi nd, 0, sizeof (bind));

/* | NTEGER PARAM */

/* This is a nunber type, so there is no need
to specify buffer_length */

bi nd[0] . buf fer _t ype= MYSQL_TYPE_LONG

bi nd[0] . buf fer= (char *)& nt_dat a;

bind[0] .is_null= 0;

bi nd[0] . | engt h= O;

/* STRI NG PARAM */

bi nd[1] . buf fer _t ype= MYSQL_TYPE_STRI NG
bi nd[1] . buf fer= (char *)str_dat a;

bi nd[1] . buf fer _| engt h= STRI NG_SI ZE;
bind[1].is_null= 0;

bi nd[1] . | engt h= &str_| engt h;

/* SMALLI NT PARAM */

bi nd[2] . buf fer _t ype= MYSQL_TYPE_SHORT;
bi nd[2] . buf fer= (char *)&smal | _dat a;
bind[2].is_null= & s_null;

bi nd[2] . | engt h= 0;

/* Bind the buffers */
if (nysql _stnt_bind_named_paran(stmt, bind, 3, NULL))

fprintf(stderr, " nysqgl_stnt_bind_paran() failed\n");
fprintf(stderr, " %\n", nysqgl_stnt_error(stnt));
exit(0);

}

/* Specify the data values for the first row */

i nt _data= 10; /* integer */
strncpy(str_data, "MySQ", STRING SIZE); /* string */
str_length= strlen(str_data);

/* | NSERT SMALLINT data as NULL */
is_null=1;

/* Execute the | NSERT statenent - 1*/
if (nysqgl _stnt_execute(stnt))

fprintf(stderr, " nysqgl_stnt_execute(), 1 failed\n");
fprintf(stderr, " %\n", nysqgl_stnt_error(stnt));
exit(0);

}

/* Cet the nunber of affected rows */

af fected_rows= nysqgl _stnt_affected_rows(stnt);

fprintf(stdout, " total affected rows(insert 1): % u\n",
(unsigned | ong) affected_rows);

if (affected_rows != 1) /* validate affected rows */
fprintf(stderr, " invalid affected rows by MySQ\n");
exit(0);

}

/* Specify data values for second row,

138

mysql_stmt_fetch()

then re-execute the statenment */
i nt _data= 1000;
strncpy(str_data,
The nost popul ar Open Sour ce dat abase",

STRI NG_SI ZE) ;
str_length= strlen(str_data);
smal | _dat a= 1000; /[* smallint */
is_null=0; /* reset */

/* Execute the | NSERT statenent - 2*/
if (nysqgl _stnt_execute(stnt))

fprintf(stderr, " nysqgl_stnt_execute, 2 failed\n");
fprintf(stderr, " %\n", nysqgl_stnt_error(stnt));
exit(0);

}

/* Cet the total rows affected */

af fected_rows= nysqgl _stnt_affected_rows(stnt);

fprintf(stdout, " total affected rows(insert 2): % u\n",
(unsigned | ong) affected_rows);

if (affected_rows != 1) /* validate affected rows */
fprintf(stderr, " invalid affected rows by MySQ\n");
exit(0);

}

/* Cd ose the statenent */
if (nysqgl _stnt_cl ose(stnt))

/* mysql _stmt _close() invalidates stnt, so call */
/* nysql _error(nysql) rather than nysqgl _stnt_error(stnt) */
fprintf(stderr, " failed while closing the statement\n");
fprintf(stderr, " %\n", nysqgl_error(mysql));

exit(0);

Note

For complete examples on the use of prepared statement functions, refer to the
filetests/ nmysql _client _test.c. This file can be obtained from a MySQL
source distribution or from the source repository (see Installing MySQL from
Source).

6.4.12 mysql_stmt_fetch()

int
nmysql _stmt _fetch(MYSQL_STMI *stnt)

Description

nysql _stnt_fetch() returns the next row in the result set. It can be called only while the result set
exists; that is, after a call to nysql _stnmt _execut e() for a statement such as SELECT that produces
a result set.

nmysqgl _stnt _fetch() returns row data using the buffers bound by mysqgl _stnt_bind_result().
It returns the data in those buffers for all the columns in the current row set and the lengths are
returned to the | engt h pointer. All columns must be bound by the application before it calls

mysql _stmt _fetch().

nysqgl _stnt _fetch() typically occurs within a loop, to ensure that all result set rows are fetched. For
example:

int status;

while (1)

139

https://dev.mysql.com/doc/refman/9.6/en/source-installation.html
https://dev.mysql.com/doc/refman/9.6/en/source-installation.html
https://dev.mysql.com/doc/refman/9.6/en/select.html

mysql_stmt_fetch()

{
status = nysqgl _stnt_fetch(stnt);

if (status == 1 || status == MYSQ._NO _DATA)
br eak;

/* handl e current row here */

}

/* if desired, handle status == 1 case and di splay error here */

By default, result sets are fetched unbuffered a row at a time from the server. To buffer the entire result
set on the client, call nysql _stnt _store_result() after binding the data buffers and before calling
nysqgl _stnt _fetch().

If a fetched data value is a NULL value, the *i s_nul | value of the corresponding MYSQL_BI ND
structure contains TRUE (1). Otherwise, the data and its length are returned in the * buf f er and

*| engt h elements based on the buffer type specified by the application. Each numeric and temporal
type has a fixed length, as listed in the following table. The length of the string types depends on the
length of the actual data value, as indicated by dat a_| engt h.

Type Length
MYSQL_TYPE_TI NY 1
MYSQL_TYPE_SHORT 2

MYSQL_TYPE_LONG 4
MYSQL_TYPE_LONGLONG 8

MYSQL_TYPE_FLOAT 4
MYSQ._TYPE_DOUBLE 8

MYSQL_TYPE_TI ME si zeof (MYSQL_TI ME)
MYSQL_TYPE_DATE si zeof (MYSQL_TI ME)
MYSQL_TYPE_DATETI ME si zeof (MYSQL_TI MVE)
MYSQL_TYPE_STRI NG data | ength
MYSQL_TYPE_BLOB data_l ength

In some cases, you might want to determine the length of a column value before fetching it with
nysqgl _stnt _fetch().Forexample, the value might be a long string or BLOB value for which you
want to know how much space must be allocated. To accomplish this, use one of these strategies:

» Before invoking mysql _stnt _fetch() to retrieve individual rows, pass
STMI_ATTR _UPDATE MAX LENGTHto mysqgl stnt _attr_set (), theninvoke
nysql _stnt_store result() to buffer the entire result on the client side. Setting
the STMI_ATTR_UPDATE NMAX_ LENGTH attribute causes the maximal length of column
values to be indicated by the max_| engt h member of the result set metadata returned by
nysql _stnt _result netadata().

* Invoke mysql _stnt _fetch() with a zero-length buffer for the column in question and a pointer in
which the real length can be stored. Then use the real length with mysqgl _stnt _fetch_col um().

real _| ength= 0;

bi nd[0] . buf fer= 0;

bi nd[0] . buf f er _| engt h= 0;

bi nd[0] . | engt h= &real _| ength

nmysql _stnt _bind_result(stnt, bind);

nmysql _stmt_fetch(stnt);
if (real_length > 0)
{

140

https://dev.mysql.com/doc/refman/9.6/en/blob.html

mysql_stmt_fetch()

data= mal | oc(real _| ength);

bi nd[0] . buf f er = dat a;

bi nd[0] . buf f er _| engt h= real _| engt h;

nmysql _stmt _fetch_col um(stnt, bind, 0, 0);
}

Return Values

Return Value

Description

0 Success, the data has been fetched to application
data buffers.
1 Error occurred. Error code and message can be

obtained by calling mysqgl _stnt _errno() and
nmysqgl _stnt_error().

MYSQL_NO_DATA

Success, no more data exists

MYSQL_DATA_ TRUNCATED

Data truncation occurred

MYSQL_DATA TRUNCATED is returned when truncation reporting is enabled. To determine which
column values were truncated when this value is returned, check the er r or members of the

MYSQL_BI ND structures used for fetching values. Truncation reporting is enabled by default, but can be
controlled by calling nysql _opti ons() with the MYSQL_REPORT_ DATA TRUNCATI ON option.

Errors
« CR_COVWANDS OUT_OF SYNC
Commands were executed in an improper order.
Although nysql _stnt _fetch() can produce this error, it is more likely to occur for the following
C APl callif mysgl _stnt _fetch() is not called enough times to read the entire result set (that is,
enough times to return M\YSQL_NO_DATA).
¢ CR_QUT_OF_MEMORY
Out of memory.
« CR_SERVER GONE_ERROR
The MySQL server has gone away.
« CR_SERVER LOST
The connection to the server was lost during the query.
« CR_UNKNOM_ ERROR
An unknown error occurred.
« CR_UNSUPPORTED PARAM TYPE
The buffer type is MYSQL_TYPE_DATE, \YSQL_TYPE_TI ME, \YSQL_TYPE_DATETI ME, or
MYSQL_TYPE_TI MESTANP, but the data type is not DATE, TI ME, DATETI MVE, or TI MESTANP.
 All other unsupported conversion errors are returned from nmysqgl stnt _bind result().
Example

The following example demonstrates how to fetch data from a table using
nysql _stnt_result_netadata(),nysql _stnt_bind_result(),andnysql _stnt_fetch().

141

https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_commands_out_of_sync
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_out_of_memory
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_server_gone_error
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_server_lost
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_unknown_error
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_unsupported_param_type
https://dev.mysql.com/doc/refman/9.6/en/datetime.html
https://dev.mysql.com/doc/refman/9.6/en/time.html
https://dev.mysql.com/doc/refman/9.6/en/datetime.html
https://dev.mysql.com/doc/refman/9.6/en/datetime.html

mysql_stmt_fetch()

(This example expects to retrieve the two rows inserted by the example shown in Section 6.4.11,
“mysqgl_stmt_execute()”.) The mysql variable is assumed to be a valid connection handler.

#defi ne STRI NG_SI ZE 50

#defi ne SELECT_SAMPLE " SELECT col 1, col 2, col 3, col4 \
FROM t est _t abl e"

MYSQL_STMT *stnt;

MYSQL_BI ND bi nd[4] ;

MYSQL_RES *prepare_neta_result;
MYSQL_TI ME ts;

unsi gned | ong | engt h[4] ;

i nt param count, col urm_count, row_count;
short shmal | _dat a;

i nt i nt _dat a;

char str_dat a[STRI NG_SI ZE] ;

bool is_null[4];

bool error[4];

/* Prepare a SELECT query to fetch data fromtest_table */
stmt = nmysql _stnt _init(nysql);
if (!stnt)

fprintf(stderr, " nysqgl_stnt_init(), out of menory\n");
exit(0);

}
if (nysqgl _stnt_prepare(stnt, SELECT_SAMPLE, strlen(SELECT_SAMPLE)))

fprintf(stderr, " mysqgl _stnt_prepare(), SELECT failed\n");
fprintf(stderr, " %\n", nysqgl_stnt_error(stnt));
exit(0);

}

fprintf(stdout, " prepare, SELECT successful\n");

/* Get the paraneter count fromthe statenent */
param count = nysql _stmt _param count (stnt);

fprintf(stdout, " total parameters in SELECT: %\n", param count);

if (paramcount != 0) /* validate paraneter count */
fprintf(stderr, " invalid parameter count returned by MySQ.\n");
exit(0);

}

/* Execute the SELECT query */
if (nysqgl _stnt_execute(stnt))

fprintf(stderr, " nysqgl_stnt_execute(), failed\n");
fprintf(stderr, " %\n", nysqgl_stnt_error(stnt));
exit(0);

}

/* Fetch result set meta information */
prepare_meta_result = mysqgl _stnt_result_netadata(stnt);
if (!prepare_neta_result)

fprintf(stderr,
nmysql _stmt _result_netadata(), \
returned no neta information\n");
fprintf(stderr, " %\n", nysqgl_stnt_error(stnt));
exit(0);
}

/* Get total colums in the query */
col um_count = nysqgl _num fi el ds(prepare_neta_result);
fprintf(stdout,
" total colums in SELECT statenent: %l\n",
col um_count) ;

if (colum_count != 4) /* validate columm count */

{

142

mysql_stmt_fetch()

fprintf(stderr, " invalid colum count returned by MySQ\n");

exit(0);
}

/* Bind the result buffers for all 4 colums before fetching them */

menset (bi nd, 0, sizeof (bind));

/* | NTEGER COLUWN */

bi nd[0] . buf fer _type= MYSQL_TYPE_LONG
bi nd[0] . buf fer= (char *)& nt_dat a;
bind[0].is_null= & s_null[0];

bi nd[0] . | engt h= &l engt h[0] ;

bind[0] . error= &error[0];

/* STRI NG COLUWN */

bi nd[1] . buf fer _t ype= MYSQ._TYPE_STRI NG
bi nd[1] . buf fer= (char *)str_dat a;

bi nd[1] . buf fer _| engt h= STRI NG_SI ZE;
bind[1].is_null= & s_nul I [1];

bi nd[1] . | engt h= & engt h[1] ;

bind[1] .error= &error[1];

/* SMALLI NT COLUWN */

bi nd[2] . buf fer _t ype= MYSQL_TYPE_SHORT;
bi nd[2] . buf fer= (char *)&smal | _dat a;
bind[2].is_null= & s_null[2];

bi nd[2] . | engt h= &l engt h[2] ;

bind[2] .error= &error[2];

/* TI MESTAMP COLUWN */

bi nd[3] . buf fer _t ype= MYSQL_TYPE_TI MESTAVP;
bi nd[3] . buf fer= (char *)&ts;
bind[3].is_null= & s_null[3];

bi nd[3] . | engt h= &l engt h[3] ;

bind[3].error= &error[3];

/* Bind the result buffers */
if (nysqgl _stnt_bind_result(stmt, bind))

fprintf(stderr, " mysqgl_stnt_bind_result() failed\n");
fprintf(stderr, " %\n", nysqgl_stnt_error(stnt));
exit(0);

}

/* Now buffer all results to client (optional step) */
if (nysqgl _stnt_store_result(stnt))

fprintf(stderr, " nmysqgl_stnt_store_result() failed\n");
fprintf(stderr, " %\n", nysqgl_stnt_error(stnt));
exit(0);

}

/* Fetch all rows */
row_count = O;
fprintf(stdout, "Fetching results ...\n");
while (!nysqgl _stnt_fetch(stnt))
{
row_count ++;
fprintf(stdout, " row %l\n", row count);

/* colum 1 */

fprintf(stdout, " columl (integer) : ");
if (is_null[0])

fprintf(stdout, " NULL\n");
el se

fprintf(stdout, " %(%d)\n", int_data, length[0]);

/* colum 2 */

fprintf(stdout, " colum2 (string) ")
if (is_null[1])
fprintf(stdout, " NULL\n");

143

mysql_stmt_fetch_column()

el se
fprintf(stdout, " %(%d)\n", str_data, length[1]);

/* columm 3 */

fprintf(stdout, " colum3 (smallint) : ");
if (is_null[2])

fprintf(stdout, " NULL\n");
el se

fprintf(stdout, " %(%d)\n", small_data, |length[2]);

/* columm 4 */

fprintf(stdout, " colum4 (timestanp): ");
if (is_null[3])

fprintf(stdout, " NULL\n");
el se

fprintf(stdout, " %4d-%92d-%92d %92d: 992d: %92d (% d)\n",
ts.year, ts.nonth, ts.day,
ts.hour, ts.mnute, ts.second,

I ength[3]);
fprintf(stdout, "\n");
}
/* Validate rows fetched */
fprintf(stdout, " total rows fetched: %\ n", row count);
if (row_count != 2)
fprintf(stderr, " M/SQ failed to return all rows\n");
exit(0);
}

/* Free the prepared result netadata */
nmysql _free_resul t(prepare_neta_result);

/* C ose the statenent */
if (nysqgl _stnt_cl ose(stnt))

/* mysql _stmt _close() invalidates stnt, so call */
/* nysql _error(nysql) rather than nysqgl _stnt_error(stnt) */
fprintf(stderr, " failed while closing the statement\n");
fprintf(stderr, " %\n", nysqgl _error(mysql));
exit(0);

}

6.4.13 mysqgl_stmt_fetch_column()

i nt

nysql _stnt_fetch_col um(MYSQ_STMI *stnt,
MYSQL_BI ND *bi nd,
unsi gned i nt col um,
unsi gned | ong of f set)

Description

Fetches one column from the current result set row. bi nd provides the buffer where data should be
placed. It should be set up the same way as for nysql _stnt _bind resul t().col um indicates
which column to fetch. The first column is numbered 0. of f set is the offset within the data value at
which to begin retrieving data. This can be used for fetching the data value in pieces. The beginning of

the value is offset 0.
Return Values

Zero for success. Nonzero if an error occurred.
Errors

« CR_I NVALI D_PARAMETER_NO

Invalid column number.

144

https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_invalid_parameter_no

mysql_stmt_field_count()

« CR_NO DATA
The end of the result set has already been reached.

6.4.14 mysqgl_stmt_field count()

unsi gned i nt
nmysql _stmt _field_count (MYSQL_STMI *stnt)

Description

Returns the number of columns for the most recent statement for the statement handler. This value is
zero for statements such as | NSERT or DELETE that do not produce result sets.

nysqgl _stnt _field count() can be called after you have prepared a statement by invoking
mysql _stmnt _prepare().

Return Values

An unsigned integer representing the number of columns in a result set.
Errors

None.

6.4.15 mysqgl_stmt_free_result()

bool
nysqgl _stnt_free_resul t (MYSQL_STMI *stnt)

Description

Releases memory associated with the result set produced by execution of the prepared statement. If
there is a cursor open for the statement, mysqgl _stnt _free result() closesit.

Return Values
Zero for success. Nonzero if an error occurred.
6.4.16 mysql_stmt_init()

MYSQL_STMT *
mysql _stmt _init(MSQ *nysql)

Description

Creates and returns a MYSQL_ STMT handler. The handler should be freed with
nysqgl _stnt _cl ose(), at which point the handler becomes invalid and should no longer be used.

See also Section 6.2, “C API Prepared Statement Data Structures”, for more information.
Return Values
A pointer to a MYSQL_ STMT structure in case of success. NULL if out of memory.
Errors
« CR_OUT_OF MEMORY
Out of memory.

6.4.17 mysql_stmt_insert_id()

145

https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_no_data
https://dev.mysql.com/doc/refman/9.6/en/insert.html
https://dev.mysql.com/doc/refman/9.6/en/delete.html
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_out_of_memory

mysql_stmt_next_result()

ui nt 64_t
nmysql _stnt_insert_id(MYSQL_STMI *stnt)

Description

Returns the value generated for an AUTO_| NCREMENT column by the prepared | NSERT or UPDATE
statement. Use this function after you have executed a prepared | NSERT statement on a table which
contains an AUTO | NCRENMENT field.

See Section 5.4.42, “mysql_insert_id()", for more information.
Return Values

Value for AUTO | NCREMENT column which was automatically generated or explicitly set during
execution of prepared statement, or value generated by LAST | NSERT | D(expr) function. Return
value is undefined if statement does not set AUTO | NCREMENT value.

Errors

None.

6.4.18 mysql_stmt_next_result()

i nt
nysqgl _stnt_next_resul t (MYSQL_STMI *nysql)

Description

This function is used when you use prepared CALL statements to execute stored procedures, which
can return multiple result sets. Use a loop that calls nysql _stnt _next resul t () to determine
whether there are more results. If a procedure has OUT or | NOUT parameters, their values will be
returned as a single-row result set following any other result sets. The values will appear in the order in
which they are declared in the procedure parameter list.

For information about the effect of unhandled conditions on procedure parameters, see Condition
Handling and OUT or INOUT Parameters.

nmysqgl _stnt _next _result() returns a status to indicate whether more results exist. If
nmysqgl _stnt _next _result() returns an error, there are no more results.

Before each call to mysqgl _stnt _next _result(),youmustcallmysql stnt free result() for
the current result if it produced a result set (rather than just a result status).

After calling nysql stnt _next resul t() the state of the connection is as if you had called
nysqgl _stnt _execut e(). This means that you can call nysql _stm _bind result(),
nysqgl _stnt _affected rows(), and so forth.

It is also possible to test whether there are more results by calling nysql _nore_resul ts().
However, this function does not change the connection state, so if it returns true, you must still call
nmysqgl _stnt_next _result () toadvance to the next result.

For an example that shows how to use nmysqgl stnt next result(), see Section 3.6.5, “Prepared
CALL Statement Support”.

Return Values

Return Value Description

0 Successful and there are more results

-1 Successful and there are no more results
>0 An error occurred

146

https://dev.mysql.com/doc/refman/9.6/en/insert.html
https://dev.mysql.com/doc/refman/9.6/en/update.html
https://dev.mysql.com/doc/refman/9.6/en/insert.html
https://dev.mysql.com/doc/refman/9.6/en/information-functions.html#function_last-insert-id
https://dev.mysql.com/doc/refman/9.6/en/call.html
https://dev.mysql.com/doc/refman/9.6/en/conditions-and-parameters.html
https://dev.mysql.com/doc/refman/9.6/en/conditions-and-parameters.html

mysql_stmt_num_rows()

Errors
« CR_COMVANDS OQUT_OF SYNC

Commands were executed in an improper order.

CR_SERVER GONE_ERRCR

The MySQL server has gone away.

CR_SERVER LOST

The connection to the server was lost during the query.

CR_UNKNOWN_ ERRCR
An unknown error occurred.

6.4.19 mysql_stmt_num_rows()

ui nt 64 _t
nmysql _stmt _num rows(MYSQL_STMI' *st nt)

Description
Returns the number of rows in the result set.
The use of nysqgl _stnt_num rows() depends on whether you used
nysqgl stnt_store_result() to buffer the entire result set in the statement handler. If you use
nysqgl _stnt_store_ result(),nysql _stnt _numrows() may be called immediately. Otherwise,
the row count is unavailable unless you count the rows as you fetch them.
nmysqgl _stnt_num rows() isintended for use with statements that return a result set, such as
SELECT. For statements such as | NSERT, UPDATE, or DELETE, the number of affected rows can be
obtained with nysql _stnt_affected rows().

Return Values
The number of rows in the result set.

Errors
None.

6.4.20 mysql_stmt_param_count()

unsi gned | ong
nysql _stmt _param count (MYSQL_STMI *stnt)

Description

Returns the number of parameter markers present in the prepared statement.
Return Values

An unsigned long integer representing the number of parameters in a statement.
Errors

None.

147

https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_commands_out_of_sync
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_server_gone_error
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_server_lost
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_unknown_error
https://dev.mysql.com/doc/refman/9.6/en/select.html
https://dev.mysql.com/doc/refman/9.6/en/insert.html
https://dev.mysql.com/doc/refman/9.6/en/update.html
https://dev.mysql.com/doc/refman/9.6/en/delete.html

mysql_stmt_param_metadata()

Example

See the Example in Section 6.4.11, “mysql_stmt_execute()".

6.4.21 mysqgl_stmt_param_metadata()

MYSQL_RES *
nmysql _stnt _param net adat a(MYSQL_STMI' *st nt)

This function currently does nothing.

6.4.22 mysql_stmt_prepare()

int

nysql _stnt_prepare(MYSQL_STMI' *st nt,
const char *stmt_str,
unsi gned | ong | engt h)

Description

Given the statement handler returned by nysql _stnt _init (), prepares the SQL statement pointed
to by the string st nt _st r and returns a status value. The string length should be given by the | engt h
argument. The string must consist of a single SQL statement. You should not add a terminating
semicolon (;) or\ g to the statement.

The application can include one or more parameter markers in the SQL statement by embedding
question mark (?) characters into the SQL string at the appropriate positions.

The markers are legal only in certain places in SQL statements. For example, they are permitted in
the VALUES() list of an | NSERT statement (to specify column values for a row), or in a comparison
with a column in a WHERE clause to specify a comparison value. However, they are not permitted for
identifiers (such as table or column names), or to specify both operands of a binary operator such
as the = equal sign. The latter restriction is necessary because it would be impossible to determine
the parameter type. In general, parameters are legal only in Data Manipulation Language (DML)
statements, and not in Data Definition Language (DDL) statements.

The parameter markers must be bound to application variables using nysql _stnt _bi nd_paran() or
nysqgl _stnt _bi nd_naned_par an() before executing the statement.

Metadata changes to tables or views referred to by prepared statements are detected and cause
automatic repreparation of the statement when it is next executed. For more information, see Caching
of Prepared Statements and Stored Programs.

Return Values

Errors

Zero for success. Nonzero if an error occurred.

« CR_COWANDS OUT_OF SYNC
Commands were executed in an improper order.
« CR_OUT_OF_MEMORY
Out of memory.
« CR_SERVER GONE_ERROR

The MySQL server has gone away.

CR_SERVER LOST

148

https://dev.mysql.com/doc/refman/9.6/en/insert.html
https://dev.mysql.com/doc/refman/9.6/en/statement-caching.html
https://dev.mysql.com/doc/refman/9.6/en/statement-caching.html
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_commands_out_of_sync
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_out_of_memory
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_server_gone_error
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_server_lost

mysql_stmt_reset()

The connection to the server was lost during the query
e CR_UNKNOWN_ERROR
An unknown error occurred.

If the prepare operation was unsuccessful (that is, mysql _stnt _prepar e() returns nonzero), the
error message can be obtained by calling nysql _stnt_error ().

Example

See the Example in Section 6.4.11, “mysql_stmt_execute()”.

6.4.23 mysql_stmt_reset()

bool
nmysql _stmt _reset (MYSQL_STMI *stnt)

Description

Resets a prepared statement on client and server to state after prepare. It resets the statement on the
server, data sent using nysqgl _stnt _send_| ong_dat a(), unbuffered result sets and current errors.
It does not clear bindings or stored result sets. Stored result sets will be cleared when executing the
prepared statement (or closing it).

To re-prepare the statement with another query, use nysql stnt _prepare().

Return Values

Errors

Zero for success. Nonzero if an error occurred.

« CR_COVWMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

CR_SERVER GONE_ERRCR

The MySQL server has gone away.

CR_SERVER LOST

The connection to the server was lost during the query

CR_UNKNOWN_ERROR

An unknown error occurred.

6.4.24 mysql_stmt_result_metadata()

MYSQL_RES *
nysql _stnt_result_netadata(MYSQL_STMI' *st nt)

Description

nmysqgl _stnt_result_ netadata() is used to obtain result set metadata for a prepared statement.
Its use requires that the statement when executed by mysqgl st nt _execut e() does produce a result
set.

nysqgl _stnt _result netadata() may be called after preparing the statement with
nysqgl _stnt_prepare() and before closing the statement handler. The result set metadata returned

149

https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_unknown_error
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_commands_out_of_sync
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_server_gone_error
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_server_lost
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_unknown_error

mysql_stmt_row_seek()

by mysqgl stnt _result netadata() isinthe form of a pointer to a MYSQL_ RES structure that can
be used to process the meta information such as number of fields and individual field information. This
result set pointer can be passed as an argument to any of the field-based API functions that process
result set metadata, such as:

* nysqgl _num fields()

* nysql _fetch _field()

e nysql _fetch field direct()
 nysql _fetch fields()

« mysql _field _count()

 nysql _field seek()

« nysql _field tell()

e mysql _free result()

If the client has suppressed metadata (as described in Section 3.6.7, “Optional Result Set Metadata”),
the MYSQL_RES structure has the field count filled in but is no field information.

When you are done with the metadata result set structure, free it by passing it to
nysql _free_resul t (). Thisis similar to the way you free a result set structure obtained from a call
tonysql _store_result().

If you callnysql _stnt _result _netadata() afternysql _stnt _prepare() but before

nysgl _stnt _execut e(), the column types in the metadata are as determined by the optimizer. If
you callnysql _stnt _result netadata() afternysql _stnt_execute(), the column types in
the metadata are as actually present in the result set. In most cases, these should be the same.

If the executed statement is a CALL statement, it may produce multiple result sets. In this case, do
not call nysql _stnt _result netadata() immediately after mysqgl stnt _prepare() . Instead,
check the metadata for each result set separately after calling nysql _stnt _execut e(). For an
example of this technique, see Section 3.6.5, “Prepared CALL Statement Support”.

The result set returned by nysql _stnt _resul t _net adat a() contains only metadata. It

does not contain any row results. To obtain the row results, use the statement handler with

nysql _stnt_fetch() after executing the statement with nysql _st nt _execut e(), as usual.
Return Values

A MYSQL_RES result structure. NULL if no meta information exists for the prepared statement.

Errors
« CR_OUT_OF_MEMORY
Out of memory.
« CR_UNKNOAN ERROR
An unknown error occurred.
Example

See the Example in Section 6.4.12, “mysql_stmt_fetch()".

6.4.25 mysql_stmt_row_seek()

150

https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_out_of_memory
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_unknown_error

mysql_stmt_row_tell()

MYSQL_ROW OFFSET
nysql _stnt_row seek(MYSQL_STMI' *st nt,
MYSQL_ROW OFFSET of f set)

Description

Sets the row cursor to an arbitrary row in a statement result set. The of f set value is a row offset that
should be a value returned from nysql _stnt _row tell () orfromnysqgl stnt _row seek().
This value is not a row number; if you want to seek to a row within a result set by number, use

nysgl stnt _data_seek() instead.

This function requires that the result set structure contains the entire result of the query, so
nysql _stnt_row _seek() may be used only in conjunction with nysql _stnt _store_result().

Return Values

The previous value of the row cursor. This value may be passed to a subsequent call to
mysql _stmt _row seek().

Errors
None.

6.4.26 mysql_stmt_row _tell()

MYSQL_ROW OFFSET
nysqgl _stnt_row tell (MYSQL_STMI *stnt)

Description

Returns the current position of the row cursor for the last nysql _stnt _fet ch(). This value can be
used as an argument to nysql _stnt_row _seek().

You should use nysql _stnt _row tell () onlyaftermysql _stnt _store result().
Return Values

The current offset of the row cursor.
Errors

None.

6.4.27 mysqgl_stmt_send_long_data()

bool

nysql _stnt_send_| ong_dat a(MYSQL_STMI' *st nt,
unsi gned i nt paraneter_nunber,
const char *data,
unsi gned | ong | ength)

Description

Enables an application to send parameter data to the server in pieces (or “chunks”). Call this
function after mysql _stnt _bi nd_paran() or nysqgl _stnt _bi nd_naned_par an() and before
nysql _stnt_execut e() . It can be called multiple times to send the parts of a character or binary
data value for a column, which must be one of the TEXT or BLOB data types.

par anmet er _nunber indicates which parameter to associate the data with. Parameters are numbered
beginning with 0. dat a is a pointer to a buffer containing data to be sent, and | engt h indicates the
number of bytes in the buffer.

151

https://dev.mysql.com/doc/refman/9.6/en/blob.html
https://dev.mysql.com/doc/refman/9.6/en/blob.html

mysql_stmt_send_long_data()

Note

The next nysql _stnt _execut e() call ignores the bind buffer for all
parameters that have been used with nysql _stnt _send_| ong_dat a()
since last nysql _stnt _execute() ornmysql _stnt _reset ().

To reset/forget the sent data, call nysqgl _stnt _reset (). See Section 6.4.23, “mysql_stmt_reset()".

The nax_al | owed_packet system variable controls the maximum size of parameter values that can

be sent with nysql _stnt_send_| ong_dat a() .

Return Values

Errors

Zero for success. Nonzero if an error occurred.

CR | NVALI D_BUFFER USE
The parameter does not have a string or binary type.
« CR_I NVALI D_PARAMETER NO
Invalid parameter number.
« CR_COVWANDS_OUT_OF SYNC
Commands were executed in an improper order.
« CR_SERVER GONE_ERROR
The MySQL server has gone away.
» CR_QUT_OF_MEMORY
Out of memory.
« CR_UNKNOAN ERROR

An unknown error occurred.

Example

The following example demonstrates how to send the data for a TEXT column in chunks. It inserts the
data value' MySQL - The nost popul ar Qpen Source dat abase' intothetext col um
column. The nysql variable is assumed to be a valid connection handler.

#def i ne | NSERT_QUERY " | NSERT | NTO \
test _| ong_dat a(t ext _col um) VALUES(?)"

MYSQL_BI ND bi nd[1] ;
| ong | engt h;

stmt = nysql _stnt_init(nysql);
if (!stnt)

fprintf(stderr, " nysqgl_stnt_init(), out of menory\n");
exit(0);

if (nysqgl _stnt_prepare(stnt, |NSERT_QUERY, strlen(|NSERT_QUERY)))
fprintf(stderr, "\'n nysql _stnt_prepare(), |INSERT failed");

fprintf(stderr, "\n %", nysqgl_stnt_error(stnt));
exit(0);

152

https://dev.mysql.com/doc/refman/9.6/en/server-system-variables.html#sysvar_max_allowed_packet
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_invalid_buffer_use
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_invalid_parameter_no
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_commands_out_of_sync
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_server_gone_error
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_out_of_memory
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_unknown_error
https://dev.mysql.com/doc/refman/9.6/en/blob.html

mysql_stmt_sqlstate()

menset (bi nd, 0, sizeof (bind));

bi nd[0] . buf fer _t ype= MYSQ._TYPE_STRI NG
bi nd[0] . | engt h= &l engt h;

bind[0] .is_null= 0;

/* Bind the buffers */
if (nysqgl _stnt_bind_named_paran(stnt, bind, 1, NULL))

fprintf(stderr, "\'n param bind failed");
fprintf(stderr, "\'n %", nysqgl_stnt_error(stnt));
exit(0);

}

/* Supply data in chunks to server */
if (nysqgl_stnt_send_| ong_data(stnt,0,"M/SQ",5))
{

fprintf(stderr, "\n send_|l ong_data failed");
fprintf(stderr, "\'n %", nysqgl_stnt_error(stnt));
exit(0);

}

/* Supply the next piece of data */
if (nysqgl _stnt_send_| ong_data(stnt, O,

" - The nobst popul ar Open Source database", 40))
{

fprintf(stderr, "\n send_|l ong_data failed");
fprintf(stderr, "\'n %", nysqgl_stnt_error(stnt));
exit(0);

}

/* Now, execute the query */

if (nysqgl _stnt_execute(stnt))

{
fprintf(stderr, "\n nysql_stnt_execute failed");
fprintf(stderr, "\'n %", nysqgl_stnt_error(stnt));
exit(0);

}

6.4.28 mysql_stmt_sqlstate()

const char *
nysql _stnt_sql stat e(MYSQL_STMI' *st nt)

Description

For the statement specified by st nt , mysql _st nt _sql st at e() returns a null-terminated string
containing the SQLSTATE error code for the most recently invoked prepared statement API function
that can succeed or fail. The error code consists of five characters. " 00000" means “no error.” The
values are specified by ANSI SQL and ODBC. For a list of possible values, see Error Messages and
Common Problems.

Not all MySQL errors are mapped to SQLSTATE codes. The value " HY000" (general error) is used for
unmapped errors.

If the failed statement API function was nysql stnt _cl ose(), do not call
mysql _stmt _sql st at e() to obtain error information because nysqgl stnt _cl ose() makes the
statement handler invalid. Call mysql _sql st at e() instead.

Return Values
A null-terminated character string containing the SQLSTATE error code.

6.4.29 mysql_stmt_store_result()

int
nysql _stnt_store_result (MYSQL_STMI *stnt)

153

https://dev.mysql.com/doc/refman/9.6/en/error-handling.html
https://dev.mysql.com/doc/refman/9.6/en/error-handling.html

mysql_stmt_store_result()

Description

Result sets are produced by calling mysql _stm execut e() to executed prepared

statements for SQL statements such as SELECT, SHOW DESCRI BE, and EXPLAI N. By default,
result sets for successfully executed prepared statements are not buffered on the client and

nmysqgl stnt fetch() fetches them one at a time from the server. To cause the complete result
set to be buffered on the client, call nysql st _store resul t () after binding data buffers with
nmysqgl _stnt _bind result() and before calling nysqgl _stnt _fetch() tofetch rows. (For an
example, see Section 6.4.12, “mysql_stmt_fetch()".)

nmysqgl _stnt _store_result() is optional for result set processing, unless you will call
nysqgl _stnt_data_seek(), nmysql _stnmt _row seek(),ornysql _stnt_row tell (). Those
functions require a seekable result set.

Itis unnecessary to call mysql stnt _store_resul t () after executing an SQL statement that
does not produce a result set, but if you do, it does not harm or cause any notable performance
problem. You can detect whether the statement produced a result set by checking whether

nysqgl _stnt _result netadata() returns NULL. For more information, refer to Section 6.4.24,
“mysqgl_stmt_result_metadata()”.

Note

MySQL does not by default calculate MYSQL_FI ELD- >max_| engt h for
all columns innysql _stnt_store_result() because calculating this
would slow down mysqgl _stnt _store_result() considerably and
most applications do not need max_| engt h. If you want mex_| engt h
to be updated, you can call nysql _stnt_attr_set (MYSQL_STM,
STMI_ATTR_UPDATE_NMAX_ LENGTH, &fl ag) to enable this. See
Section 6.4.3, “mysqgl_stmt_attr_set()".

Return Values

Errors

Zero for success. Nonzero if an error occurred.

+ CR_COMMANDS_OUT_OF_SYNC
Commands were executed in an improper order.
» CR_OUT_OF_MEMORY

Out of memory.

CR_SERVER GONE_ERRCR

The MySQL server has gone away.

CR_SERVER LOST

The connection to the server was lost during the query.

CR_UNKNOWN_ERROR

An unknown error occurred.

154

https://dev.mysql.com/doc/refman/9.6/en/select.html
https://dev.mysql.com/doc/refman/9.6/en/show.html
https://dev.mysql.com/doc/refman/9.6/en/describe.html
https://dev.mysql.com/doc/refman/9.6/en/explain.html
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_commands_out_of_sync
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_out_of_memory
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_server_gone_error
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_server_lost
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_unknown_error

Chapter 7 C API Asynchronous Interface

Table of Contents

7.1 Overview of the C API Asynchronous INterfacecoouieiiiiiiiiiiie e 155
7.2 C API Asynchronous Interface Data StrUCIUIEScc.iviuiiiiiiiiiie e 160
7.3 C APl Asynchronous FUNCLION REFEIENCEccouiiiniiiii e 161
7.4 C APl Asynchronous FUNCtion DEeSCHPLIONSviniiieiiiei e e e e e e e e e eaas 161
7.4.1 mysql_fetch_row_nonblocking()ooueiiiiii 161
7.4.2 mysql_free_result_nonbloCKING()ovviiriiiii e 162
7.4.3 mysqgl_get_connect_nonblocking_stage()cccuveviiiiiiii 163
7.4.4 mysqgl_next_result_NonbIOCKING()uovvniiiieiii e 163
7.4.5 mysqgl_real_connect_NonbloCKING()oveuiiiniiiiiii e 163
7.4.6 mysql_real_query_nonblOoCKING() «....ueeriiuiiiii e 164
7.4.7 mysgl_reset_connection_nonbloCKING()ceviiniiiiii e 165
7.4.8 mysql_store_result_nonblOCKING()vveiiiiie e 165

As of MySQL 8.0.16, the C API includes asynchronous functions that enable nonblocking
communication with the MySQL server. Asynchronous functions enable development of applications
that differ from the query processing model based on synchronous functions that block if reads from or
writes to the server connection must wait. Using the asynchronous functions, an application can check
whether work on the server connection is ready to proceed. If not, the application can perform other
work before checking again later.

For example, an application might open multiple connections to the server and use them to submit
multiple statements for execution. The application then can poll the connections to see which of them
have results to be fetched, while doing other work.

Note

As just indicated, execution of multiple simultaneous statements should be done
using multiple connections and executing one statement per connection. The
asynchronous interface is not intended for executing multiple simultaneous
statements per connection. What it enables is that applications can do other
work rather than waiting for server operations to complete.

7.1 Overview of the C API Asynchronous Interface

This section describes how to use the C API asynchronous interface. In this discussion, asynchronous
and nonblocking are used as synonyms, as are synchronous and blocking.

The asynchronous C API functions cover operations that might otherwise block when reading to or
writing from the server connection: The initial connection operation, sending a query, reading the result,
and so forth. Each asynchronous function has the same name as its synchronous counterpart, plus a
_nonbl ocki ng suffix:

e nysql fetch_row nonbl ocki ng() : Asynchronously fetches the next row from the result set.
 nysql _free result nonbl ocki ng() : Asynchronously frees memory used by a result set.

* nysql _get _connect _nonbl ocki ng_st age() : Information about the
nysql _real _connect _nonbl ocki ng state machine.

* nysqgl _next _result_nonbl ocki ng() : Asynchronously returns/initiates the next result in
multiple-result executions.

e nysqgl real connect _nonbl ocki ng() : Asynchronously connects to a MySQL server.

155

Asynchronous Function Calling Conventions

e nysql real query nonbl ocki ng() : Asynchronously executes an SQL query specified as a
counted string.

e nysql _store_result_nonbl ocki ng() : Asynchronously retrieves a complete result set to the
client.

Applications can mix asynchronous and synchronous functions if there are operations that need not be
done asynchronously or for which the asynchronous functions do not apply.

The following discussion describes in more detail how to use asynchronous C API functions.
» Asynchronous Function Calling Conventions
» Example Program

» Asynchronous Function Restrictions

Asynchronous Function Calling Conventions

All asynchronous C API functions return an enum net _async_st at us value. The return value can be
one of the following values to indicate operation status:

* NET_ASYNC_NOT_READY: The operation is still in progress and not yet complete.
* NET_ASYNC_COVPLETE: The operation completed successfully.
* NET_ASYNC_ ERROR: The operation terminated in error.

* NET_ASYNC_COVPLETE_NO MORE_RESULTS: The operation completed successfully and no more
results are available. This status applies only to nysql _next _resul t _nonbl ocki ng() .

In general, to use an asynchronous function, do this:
« Call the function repeatedly until it no longer returns a status of NET_ASYNC_NOT _READY.

» Check whether the final status indicates successful completion (NET_ASYNC COVPLETE) or an error
(NET_ASYNC_ERROR).

The following examples illustrate some typical calling patterns. f uncti on(ar gs) represents an
asynchronous function and its argument list.

« Ifitis desirable to perform other processing while the operation is in progress:

enum net _async_st at us st at us;

status = function(args);

whil e (status == NET_ASYNC NOT_READY) {
/* perform other processing */
ot her _processing ();
/* invoke same function and arguments again */
status = function(args);

}

if (status == NET_ASYNC_ERROR) {
[* call failed; handle error */

} else {
/* call successful; handle result */

}

« If there is no need to perform other processing while the operation is in progress:

enum net _async_st at us st at us;

while ((status = function(args)) == NET_ASYNC_NOT_READY)
; /* enpty |oop */

if (status == NET_ASYNC ERROR) ({
/* call failed; handle error */

} else {
/* call successful; handle result */

156

Example Program

}

* If the function success/failure result does not matter and you want to ensure only that the operation
has completed:

while (function (args) != NET_ASYNC COWPLETE)
; [* enpty | oop */

For nysql next result _nonbl ocki ng(), itis also necessary to account for the
NET_ASYNC COVPLETE NO MORE_RESULTS status, which indicates that the operation completed
successfully and no more results are available. Use it like this:

while ((status = nysql _next_resul t _nonbl ocking()) != NET_ASYNC COWPLETE) ({
if (status == NET_ASYNC COMPLETE NO MORE RESULTS) {
/* no nore results */
}
else if (status == NET_ASYNC ERROR) {
/* handle error by calling nysql _error(); */
br eak;
}
}

In most cases, arguments for the asynchronous functions are the same as for the corresponding
synchronous functions. Exceptions are nysql fetch_row nonbl ocki ng() and

nysqgl store_result _nonbl ocki ng(), each of which takes an extra argument compared to
its synchronous counterpart. For details, see Section 7.4.1, “mysql_fetch_row_nonblocking()”, and
Section 7.4.8, “mysqgl_store_result_nonblocking()”.

Example Program
This section shows an example C++ program that illustrates use of asynchronous C API functions.

To set up the SQL objects used by the program, execute the following statements. Substitute a
different database or user as desired; in this case, you will need to make some adjustments to the
program as well.

CREATE DATABASE db;

USE db;

CREATE TABLE test table (id | NT NOT NULL);

I NSERT | NTO test table VALUES (10), (20), (30);

CREATE USER 'testuser' @I ocal host' | DENTIFIED BY 'testpass';
GRANT ALL ON db.* TO 'testuser' @Il ocal host';

Create a file named async_app. cc containing the following program. Adjust the connection
parameters as necessary.

#i ncl ude <stdi o. h>
#i ncl ude <string. h>
#i ncl ude <i ostreanr
#i ncl ude <nysql . h>
#i ncl ude <nysqld_error. h>

usi ng nanespace st d;

/* change fol |l owi ng connecti on paraneters as necessary */

static const char * c_host = "l ocal host";

static const char * c_user = "testuser";

static const char * c_auth = "testpass";

static int c_port = 3306;

static const char * c_sock = "/usr/local /nmysqgl/nmysql.sock";
static const char * c_dbnm = "db";

void performarithnetic() {
cout <<"dummy function invoked\n";
for (int i =0; i < 1000; i++)

P
I

157

Example Program

int main(int argc, char ** argv)

{

MYSQL *nysql _I| ocal ;
MYSQL_RES *resul t;
MYSQL_ROW r ow,

net _async_st at us st at us;
const char *stnt_text;

if (!(mysqgl _Iocal = nmysql _init(NULL))) {
cout <<"nysql _init() failed\n";
exit(1);

}

while ((status = nmysql _real _connect_nonbl ocki ng(nmysql _I ocal, c_host, c_user,

c_auth, c_dbnm c_port,
c_sock, 0))
== NET_ASYNC_NOT_READY)
; [* enpty | oop */
if (status == NET_ASYNC ERROR) {
cout <<"nysqgl _real _connect _nonbl ocki ng() failed\n";

exit(1);
}
/* run query asynchronously */
stnt_text = "SELECT * FROM test_table ORDER BY id";

status = nysql _real _query_nonbl ocki ng(nmysql _I| ocal, stnt_text,
(unsigned long)strlen(stnt_text));
/* do sone other task before checking function result */
performarithmetic();
whil e (status == NET_ASYNC_NOT_READY) {
status = nysql _real _query_nonbl ocki ng(nmysql _I| ocal, stnt_text,
(unsigned long)strlen(stnt_text));
performarithmetic();
}
if (status == NET_ASYNC ERROR) {
cout <<"mysql _real _query_nonbl ocki ng() failed\n";
exit(1);
}

/* retrieve query result asynchronously */
status = nysql _store_result_nonbl ocki ng(nysqgl _| ocal, &esult);
/* do sone other task before checking function result */
performarithmetic();
whil e (status == NET_ASYNC_NOT_READY) {
status = nysql _store_result_nonbl ocki ng(nysqgl _| ocal, &esult);
performarithmetic();
}
if (status == NET_ASYNC ERROR) {
cout <<"mysql _store_resul t _nonbl ocking() failed\n";
exit(1);

if (result == NULL) {
cout <<"nmysqgl _store_resul t_nonbl ocking() found O records\n";
exit(1);

}

/* fetch a row synchronously */

row = nysql _fetch_rowmresult);

if (row!= NULL && strcnp(rowf 0], "10") == 0)
cout<<"ROW " << row 0] << "\n";

el se
cout <<"incorrect result fetched\n";

/* fetch a row asynchronously, but w thout doing other work */

whi | e (nysql _fetch_row_nonbl ocki ng(result, & ow) != NET_ASYNC COWLETE)
; [* enpty | oop */

/* 2nd row fetched */

if (row!= NULL && strcnp(row 0], "20") == 0)
cout<<"ROW " << row 0] << "\n";

el se
cout <<"incorrect result fetched\n";

/* fetch a row asynchronously, doing other work while waiting */

158

Asynchronous Function Restrictions

status = nysql _fetch_row _nonbl ocki ng(result, & ow);
/* do sone other task before checking function result */
performarithmetic();
while (status ! = NET_ASYNC COWPLETE) {
status = nysql _fetch_row _nonbl ocki ng(result, & ow);
performarithmetic();

}
/* 3rd row fetched */

if (row!= NULL && strcnp(rowf 0], "30") == 0)
Cout<<"ROW " << row[0] << "\n";

el se
cout<<"incorrect result fetched\n";

/* fetch a row asynchronously (no nore rows expected) */
while ((status = nysql _fetch_row_nonbl ocki ng(result, & ow))
I = NET_ASYNC_COWPLETE)
; [* enpty | oop */
if (row == NULL)
cout <<"No nmore rows to process.\n";
el se
cout <<"Mdre rows found than expected.\n";

/* free result set nenory asynchronously */
whi l e (nysql _free_result_nonbl ocking(result) != NET_ASYNC COVPLETE)
; [* enpty | oop */

nmysql _cl ose(nysql _I ocal);
}

Compile the program using a command similar to this; adjust the compiler and options as necessary:

gcc -g async_app. cc -std=c++11 \
-1/ usr/local /nysqgl/include \
-0 async_app -L/usr/lib64/ -lstdc++ \
-L/usr/local /nysqgl/lib/l -1nysqlclient

Run the program. The results should be similar to what you see here, although you might see a varying
number of dunmry functi on i nvoked instances.

dummy function invoked
dummy function invoked
ROW 10

ROW 20

dummy function invoked
ROW 30

No nobre rows to process.

To experiment with the program, add and remove rows from t est _t abl e, running the program again
after each change.

Asynchronous Function Restrictions

These restrictions apply to the use of asynchronous C API functions:

* nysql _real _connect_nonbl ocki ng() can be used only for accounts that authenticate with
sha256_passwor d or cachi ng_sha2 password.

 nysql real connect _nonbl ocki ng() can be used only to establish TCP/IP or Unix socket file
connections.

» These statements are not supported and must be processed using synchronous C API functions:
LOAD DATA, LOAD XM..

* Input arguments passed to an asynchronous C API call that initiates a nonblocking operation may
remain in use until the operation terminates later, and should not be reused until termination occurs.

» Protocol compression is not supported for asynchronous C API functions.

159

https://dev.mysql.com/doc/refman/9.6/en/load-data.html
https://dev.mysql.com/doc/refman/9.6/en/load-xml.html

C API Asynchronous Interface Data Structures

7.2 C APl Asynchronous Interface Data Structures

« enum connect _st age

This section describes data structures specific to asynchronous C API functions. For information about
general-purpose C API data structures, see Section 5.2, “C API Basic Data Structures”.

Stage of an asynchronous connection. The value may be one of the CONNECT_STAGE_ symbols

shown in the following table.

Enumeration Stage Value

Description

CONNECT_STAGE_INVALID = 0

MYSQL not valid or an unknown state

CONNECT_STAGE_NOT_STARTED

Not connected

CONNECT_STAGE_NET_BEG N_CONNECT

Begin connection to the server

CONNECT_STAGE_NET_WAI T_CONNECT

Wait for connection to be established

CONNECT_STAGE_NET_COVPLETE_CONNECT

Initialize the local data structures post connect

CONNECT_STAGE_READ_GREETI NG

Read the first packet

CONNECT STAGE_PARSE HANDSHAKE

Parse the first packet

CONNECT_STAGE_ESTABLI SH_SSL

TLS establishment

CONNECT_STAGE_AUTHENTI CATE

Authentication phase

CONNECT_STAGE_AUTH_BEG N

Determine the plugin to use

CONNECT_STAGE_AUTH_RUN_FI RST_AUTHENT]

®urHirstaih plugin

CONNECT _STAGE_AUTH_HANDLE_FI RST_AUTHEH

IMElncheT thel I8iSEIt of the first authentication plugin
run

CONNECT_STAGE_AUTH_READ CHANGE_USER R

IRelddTthe implied changed user authentication (if
any)

CONNECT_STAGE_AUTH_HANDLE_CHANGE _USER

 GrieQKHEServer asked to use a different
authentication plugin

CONNECT_STAGE_AUTH_RUN_SECOND_AUTHENT

ISTaT EheJaEfRentication process again with the
plugin requested by the server

CONNECT_STAGE_AUTH_I NI T_MULTI _AUTH

Start multifactor authentication

CONNECT_STAGE_AUTH_FI NI SH_AUTH

Final cleanup

CONNECT_STAGE_AUTH_HANDLE_SECOND AUTHRGW fefeaicEthigSeRults of the second plugin run

CONNECT_STAGE_AUTH_DO MULTI _PLUG N_AU

ITivoke client plugins multi-auth authentication
method

CONNECT _STAGE_AUTH_HANDLE_MULTI _AUTH |

RepiaE\&EISponse from client plugins
authentication method

CONNECT_STAGE_PREP_SELECT_DATABASE

Authenticated, set initial database if specified

CONNECT_STAGE_PREP_| NI T_COMMVANDS

Prepare to send a sequence of i ni t commands

CONNECT_STAGE_SEND_ONE_I NI T_COVVAND

Send ani ni t command, which is called once
for each i ni t command until they all run (or a
failure occurs)

CONNECT_STAGE_COVPLETE

Connected or no asynchronous connect is in

progress

* enum net _async_st at us

The enumeration type used to express the return status of asynchronous C API functions. The

following table shows the permitted status values.

160

C API Asynchronous Function Reference

Enumeration Status Value Description

NET_ASYNC_ COWVPLETE Asynchronous operation is complete

NET_ASYNC NOT_READY Asynchronous operation is still in progress

NET_ASYNC ERROR Asynchronous operation terminated in error

NET_ASYNC COMPLETE _NO MORE RESULTS For nysql _next _result_nonbl ocki ng();
indicates no more results available

For more information, see Chapter 7, C APl Asynchronous Interface.

7.3 C APl Asynchronous Function Reference

The following table summarizes the functions available for asynchronous interaction with the MySQL
server. For greater detail, see the descriptions in Section 7.4, “C APl Asynchronous Function
Descriptions”.

Table 7.1 C APl Asynchronous Functions

Name Description
mysqgl _fetch_row nonbl ocki ng() Asynchronously fetch next result set row
mysqgl _free_result_nonbl ocki ng() Asynchronously free result set memory

nysql _get _connect _nonbl ocki ng_st age() |Information about the
nysql _real _connect _nonbl ocki ng state

machine
mysql _next _result_nonbl ocki ng() Asynchronously return/initiate next result in
multiple-result execution
mysqgl _real connect nonbl ocki ng() Asynchronously connect to MySQL server
mysqgl _real _query_nonbl ocki ng() Asynchronously execute statement

nysql _reset _connecti on_nonbl ocki ng() |Asynchronously reset the connection to clear
session state

mysql _store_result_nonbl ocki ng() Asynchronously retrieve and store entire result set

7.4 C APl Asynchronous Function Descriptions

To interact asynchronously with the MySQL server, use the functions described in the following
sections. For descriptions of their synchronous counterparts, see Section 5.4, “C API Basic Function
Descriptions”.

7.4.1 mysqgl_fetch_row_nonblocking()

enum net _async_st at us
nysql _fetch_row_nonbl ocki ng(MYSQL_RES *resul t,
MYSQL_ROW * r ow)

Description

Note

nysqgl fetch _row nonbl ocki ng() is an asynchronous function. It is
the counterpart of the nysql _fetch_row() synchronous function, for use
by applications that require asynchronous communication with the server.
For general information about writing asynchronous C API applications, see
Chapter 7, C API Asynchronous Interface.

161

mysql_free_result_nonblocking()

nysqgl _fetch row nonbl ocki ng() is used similarly to nysql fetch row(). For details about
the latter, see Section 5.4.22, “mysql_fetch_row()". The two functions differ as follows:

 nysql _fetch row) returns a MYSQL_ROWvalue containing the next row, or NULL. The meaning
of a NULL return depends on which function was called preceding mysql _fetch_row():

* When used after mysql store result() ornmysgl store result_nonbl ocking(),
mysqgl _fetch row() returns NULL if there are no more rows to retrieve.

¢ When used after mysqgl _use _result(),nysql _fetch_row() returns NULL if there are no
more rows to retrieve or an error occurred.

« mysql _fetch_row nonbl ocki ng() returns an enum net _async_st at us status indicator
and takes a second r ow argument that provides a pointer to a MYSQL_ ROMvalue. When the return
status is NET_ASYNC_COVPLETE, the r owargument is a pointer to a MYSQL_ ROMvalue containing
the next row, or NULL. The meaning of NULL depends on which function was called preceding
nmysql _fetch_row nonbl ocking():

* When used after mysqgl store result() ormysqgl store_result _nonbl ocki ng(), the
r owargument is NULL if there are no more rows to retrieve.

« When used after mysql use resul t (), therowargumentis NULL if there are no more rows to
retrieve or an error occurred.

nysql _fetch_row_nonbl ocki ng() was added in MySQL 8.0.16.
Return Values

Returns an enum net _async_st at us value. See the description in Section 7.2, “C API
Asynchronous Interface Data Structures”. A NET_ASYNC_ERROR return status indicates an error.

Example

See Chapter 7, C API Asynchronous Interface.

7.4.2 mysql_free_result_nonblocking()

enum net _async_st at us
nysql _free_result_nonbl ocki ng(MYSQL_RES *resul t)

Description
Note

nysql _free result _nonbl ocki ng() is an asynchronous function. It is
the counterpart of the nysql _free resul t () synchronous function, for
use by applications that require asynchronous communication with the server.
For general information about writing asynchronous C API applications, see
Chapter 7, C API Asynchronous Interface.

nmysqgl _free result _nonbl ocki ng() is used similarly to nysql free result (). For details
about the latter, see Section 5.4.26, “mysql_free_result()". The two functions differ as follows:

* nysql _free_result() does notreturn a value.
« mysql _free_result _nonbl ocki ng() returns an enum net _async_st at us status indicator.
nysqgl _free result nonbl ocki ng() was added in MySQL 8.0.16.

Return Values

Returns an enum net _async_st at us value. See the description in Section 7.2, “C API
Asynchronous Interface Data Structures”. A NET_ASYNC_ ERROR return status indicates an error.

162

mysql_get_connect_nonblocking_stage()

Example

See Chapter 7, C API Asynchronous Interface.

7.4.3 mysqgl_get_connect_nonblocking_stage()

enum connect _st age
nysql _get _connect _nonbl ocki ng_st age(MYSQL *nysql)

Description

nmysqgl _get _connect _nonbl ocki ng_st age() provides a function to determine which stage

of the nysql _real _connect _nonbl ocki ng state machine is in currently. This function permits

an application to monitor and take appropriate actions based on the progress of an asynchronous
connection. For general information about writing asynchronous C API applications, see Chapter 7, C
API Asynchronous Interface.

nysql _get _connect _nonbl ocki ng_st age() was added in MySQL 8.1.0.
Return Values

Returns an enum connect _st age value. See the description in Section 7.2, “C API Asynchronous
Interface Data Structures”.

7.4.4 mysqgl_next_result_nonblocking()

enum net _async_st at us
nmysql _next _resul t _nonbl ocki ng(MYSQL *nysql)

Description

Note

nysqgl _next _result_nonbl ocki ng() is an asynchronous function. It is
the counterpart of the nysql _next resul t () synchronous function, for
use by applications that require asynchronous communication with the server.
For general information about writing asynchronous C API applications, see
Chapter 7, C API Asynchronous Interface.

nysql _next _resul t _nonbl ocki ng() is used similarly to mysql _next _resul t (). For details
about the latter, see Section 5.4.51, “mysqgl_next_result()". The two functions differ as follows:

* nysqgl _next _result() returns an integer status indicator.
* nysql _next _result _nonbl ocki ng() returns an enum net _async_st at us status indicator.

nysgl _next _result _nonbl ocki ng() was added in MySQL 8.0.16.

Return Values
Returns an enum net _async_st at us value. See the description in Section 7.2, “C API
Asynchronous Interface Data Structures”. A NET_ASYNC COVPLETE _NO MORE RESULTS return

status indicates there are no more results available. A NET_ASYNC ERROR return status indicates an
error.

Example

See Chapter 7, C API Asynchronous Interface.

7.4.5 mysql_real_connect_nonblocking()

163

mysql_real_query_nonblocking()

enum net _async_st at us

nysql _real _connect _nonbl ocki ng(MYSQL *nysql ,
const char *host,
const char *user,
const char *passwd,
const char *db,
unsi gned int port,
const char *uni x_socket,
unsi gned | ong
client_flag)

Description
Note

nysqgl _real _connect _nonbl ocki ng() is an asynchronous function. It is
the counterpart of the nysql _real _connect () synchronous function, for
use by applications that require asynchronous communication with the server.
For general information about writing asynchronous C API applications, see
Chapter 7, C API Asynchronous Interface.

nysqgl real connect nonbl ocki ng() is used similarly to mysqgl real connect (). For details
about the latter, see Section 5.4.58, “mysql_real_connect()”. The two functions differ as follows:

* nysql real connect () returns a connection handler or NULL.
e mysql _real connect _nonbl ocki ng() returns an enum net _async_st at us status indicator.

nysqgl real connect nonbl ocki ng() was added in MySQL 8.0.16.

Return Values

Returns an enum net _async_st at us value. See the description in Section 7.2, “C API
Asynchronous Interface Data Structures”. A NET_ASYNC ERROR return status indicates an error.

Example

See Chapter 7, C API Asynchronous Interface.

7.4.6 mysql_real_query_nonblocking()
enum net _async_st at us
nmysql _real _query_nonbl ocki ng(MYSQL *nysql ,

const char *stmt_str,
unsi gned | ong | ength)

Description
Note

nysqgl _real _query_nonbl ocki ng() is an asynchronous function. It is
the counterpart of the nysql _real _query() synchronous function, for use
by applications that require asynchronous communication with the server.
For general information about writing asynchronous C API applications, see
Chapter 7, C API Asynchronous Interface.

nysqgl real query_nonbl ocki ng() is used similarly to nysql real query(). For details about
the latter, see Section 5.4.62, “mysql_real_query()”. The two functions differ as follows:

* nysql _real _query() returns an integer status indicator.
 mysql _real query_nonbl ocki ng() returns an enum net _async_st at us status indicator.

nysql _real _query_nonbl ocki ng() was added in MySQL 8.0.16.

164

mysql_reset_connection_nonblocking()

Return Values

Returns an enum net _async_st at us value. See the description in Section 7.2, “C API
Asynchronous Interface Data Structures”. A NET_ASYNC_ERROR return status indicates an error.

Example

See Chapter 7, C API Asynchronous Interface.

7.4.7 mysqgl_reset_connection_nonblocking()

enum net _async_st at us
nysql _reset_connecti on_nonbl ocki ng(MYSQL *nysql)

Description
Note

nysqgl reset connecti on_nonbl ocki ng() is an asynchronous function. It
is the counterpart of the nysql _reset connecti on() synchronous function,
for use by applications that require asynchronous communication with the
server. For general information about writing asynchronous C API applications,
see Chapter 7, C API Asynchronous Interface.

nysqgl reset connecti on_nonbl ocki ng() is used similarly to nysql reset connection().
For details about the latter, see Section 5.4.65, “mysql_reset_connection()”. The two functions differ as
follows:

e nysqgl reset _connection() returns a zero for success or a nonzero if an error occurred.

* mysql _reset _connecti on_nonbl ocki ng() returns an enum net _async_st at us status
indicator.

If mysqgl _reset _connecti on_nonbl ocki ng() returns NET_ASYNC_COVPLETE,

then connection state has cleared successfully. Otherwise, continue to call

nysql _reset_connecti on_nonbl ocki ng() from the client application until the function returns
status NET_ASYNC COVPLETE. A NET_ASYNC ERROR return status indicates an error.

nmysqgl _reset _connecti on_nonbl ocki ng() was added in MySQL 8.1.0.
Return Values

Returns an enum net _async_st at us value. See the description in Section 7.2, “C API
Asynchronous Interface Data Structures”.

Example
See Chapter 7, C API Asynchronous Interface.

7.4.8 mysql_store_result_nonblocking()

enum net _async_st at us
nysql _store_result_nonbl ocki ng(MYSQ *nysql,
MYSQL_RES **resul t)

Description
Note

nysql _store_result_nonbl ocki ng() is an asynchronous function. It is
the counterpart of the nysql _store_resul t () synchronous function, for

165

mysql_store_result_nonblocking()

use by applications that require asynchronous communication with the server.
For general information about writing asynchronous C API applications, see
Chapter 7, C API Asynchronous Interface.

nmysqgl store_result _nonbl ocki ng() is used similarly to mysqgl store_result (). For details
about the latter, see Section 5.4.84, “mysql_store_result()”. The two functions differ as follows:

* nysql _store_result() returns a pointer to a MYSQL_RESULT value that contains the result set,
or NULL if there is no result set or an error occurred.

e nysql store_result_nonbl ocki ng() returns an enum net _async_st at us status indicator
and takes a second r esul t argument that is the address of a pointer to a MYSQL_RESULT into
which to store the result set. When the return status is NET_ASYNC COVPLETE, the r esul t
argument is NULL if there is no result set or an error occurred.

nmysqgl store result _nonbl ocki ng() was added in MySQL 8.0.16.

Return Values

Returns an enum net _async_st at us value. See the description in Section 7.2, “C API
Asynchronous Interface Data Structures”. A NET_ASYNC ERROR return status indicates an error.

When the return status is NET_ASYNC_COVPLETE, the r esul t argument is NULL if there is no result
set or an error occurred. To determine whether an error occurred, check whether nysql _error ()
returns a nonempty string, mysql _errno() returns nonzero, or mysql fi el d _count () returns
zero.

Example

See Chapter 7, C API Asynchronous Interface.

166

Chapter 8 C API Thread Interface

Table of Contents

8.1 C API Thread FUNCLION REFEIENCEuuiiiiiiiiiiiiii e e e e e eees 167
8.2 C API Threaded FUNCLION DESCHPLIONSuuiiiiiiiiieee e e e e e e e e e e e e e e e e e eeas 167
8.2.1 MySql_thread ENa() ...ccvuiiiii i 167
8.2.2 Mysql_thread INIt()oiiieeei i 168
8.2.3 Mysql_thread _Safe()couuiiiiiiiii s 168

The MySQL C API includes functions enabling threaded client applications to be written. These
functions provide control over thread initialization and termination with the client. See also Section 3.4,
“Writing C API Threaded Client Programs”.

Another C API function, nysql _thread_i d(), has “thread” in its name but is not used for client
threading purposes. Instead, it returns the ID of the server thread associated with the client, much like
the CONNECTI ON_I D() SQL function. See Section 5.4.85, “mysql_thread_id()".

8.1 C API Thread Function Reference

The following table summarizes the functions available for the thread control within the client. For
greater detail, see the descriptions in Section 8.2, “C API Threaded Function Descriptions”.

Table 8.1 C API Thread Functions

Name Description

mysqgl _thread_end() Finalize thread handler

mysqgl thread_init() Initialize thread handler

nysql _thread_safe() Whether client is compiled thread-safe

8.2 C API Threaded Function Descriptions

To create a threaded client, use the functions described in the following sections. See also Section 3.4,
“Writing C API Threaded Client Programs”.

8.2.1 mysql_thread_end()

voi d
nmysql _t hread_end(voi d)

Description

Call this function as necessary before calling pt hr ead_exi t () to free memory allocated by
nysql _thread_init():

» For release/production builds without debugging support enabled, nysql t hread _end() need not
be called.

» For debug builds, mysqgl thread i nit() allocates debugging information for the DBUG
package (see The DBUG Package). nysql t hread_end() must be called for each
nysql thread init() calltoavoida memory leak.

nysqgl _thread_end() is notinvoked automatically by the client library.
Return Values

None.

167

https://dev.mysql.com/doc/refman/9.6/en/information-functions.html#function_connection-id
https://dev.mysql.com/doc/refman/9.6/en/dbug-package.html

mysql_thread_init()

8.2.2 mysql_thread_init()

bool
nysql _thread_init(void)

Description
This function must be called early within each created thread to initialize thread-specific variables.
However, it may be unnecessarily to invoke it explicitly. Calling mysql _thread init() is
automatically handled by nysqgl init(),nysql library init(),nmysql _server _init(),and
nysgl _connect (). If you invoke any of those functions, nysql t hread i nit () is called for you.
Return Values
Zero for success. Nonzero if an error occurred.

8.2.3 mysql_thread_safe()

unsi gned
int nysqgl _thread_safe(void)

Description
This function indicates whether the client library is compiled as thread-safe.
Return Values

1 if the client library is thread-safe, O otherwise.

168

Chapter 9 C API Client Plugin Interface

Table of Contents

9.1 C API Plugin FUNCON REFEIENCEiiiiii e 169
9.2 C API Plugin FUNCLION DESCIPLIONSiuiiiiiieiit et et e e e et e e e eaa s 169
9.2.1 mysql_client_find_pIUuging) ... e 169
9.2.2 mysql_client_register_PIUGIN() ... c..oeeuniee e 170
9.2.3 mysqgl_plugin_get_OPLION() «.ceuniiei e 171
9.2.4 MySql_l0ad_PIUGIN() ..eneeeeeiie e e a e 171
9.2.5 mMysql_load_PIUGIN_ V() «..eeeneeineii e e 172
9.2.6 MYSAl_PIUGIN_OPLONS() +.uueeneietnieei ettt et e e e e e e eaas 172

This section describes functions used for the client-side plugin API. They enable management of client
plugins. For a description of the st _nmysql _cl i ent _pl ugi n structure used by these functions, see
Client Plugin Descriptors.

It is unlikely that a client program needs to call the functions in this section. For example, a client
that supports the use of authentication plugins normally causes a plugin to be loaded by calling
nysqgl _options() tosetthe MYSQL_DEFAULT_ AUTHand MYSQL_PLUG N DI R options:

char *plugin_dir = "path_to_plugin_dir";
char *default_auth = "plugi n_nanme";

/* ... process command-|ine options ... */

nysqgl _options(&ysqgl, MYSQ_PLUG N DR, plugin_dir);
nysql _options(&ysqgl, MYSQ._DEFAULT_AUTH, default_auth);

Typically, the program will also accept - - pl ugi n-di r and - - def aul t - aut h options that enable
users to override the default values.

9.1 C API Plugin Function Reference

The following table summarizes the functions available for the client-side plugin API. For greater detalil,
see the descriptions in Section 9.2, “C API Plugin Function Descriptions”.

Table 9.1 C API Plugin Functions

Name Description

mysql _client _find_plugin()

Return pointer to a plugin

nysql _client _register_plugin()

Register a plugin

mysqgl | oad_pl ugi n()

Load a plugin

mysql _| oad_pl ugi n_v()

Load a plugin

mysql _pl ugi n_get _option()

Get plugin option

nysql _pl ugi n_options()

Set plugin option

9.2 C API Plugin Function Descriptions

The following sections provide detailed descriptions of the functions that enable management of client

plugins.

9.2.1 mysql_client_find_plugin()

struct st_mysqgl _client_plugin *
nysql _client_find_plugi n(MYSQL *nysql,

169

https://dev.mysql.com/doc/extending-mysql/9.6/en/client-plugin-descriptors.html
https://dev.mysql.com/doc/refman/9.6/en/connection-options.html#option_general_plugin-dir
https://dev.mysql.com/doc/refman/9.6/en/connection-options.html#option_general_default-auth

mysql_client_register_plugin()

const char *nane,
int type)

Description

Returns a pointer to a loaded plugin, loading the plugin first if necessary. An error occurs if the type is
invalid or the plugin cannot be found or loaded.

Specify the arguments as follows:

* nysql : A pointer to a MYSQL structure. The plugin API does not require a connection to a MySQL
server, but this structure must be properly initialized. The structure is used to obtain connection-
related information.

* nane: The plugin name.
e type: The plugin type.
Return Values

A pointer to the plugin for success. NULL if an error occurred.

Errors

To check for errors, call the mysql _error () ornysgl _errno() function. See Section 5.4.16,
“mysql_error()”, and Section 5.4.15, “mysqgl_errno()”.

Example

MYSQL nysql ;
struct st_mnysqgl _client_plugin *p;

if ((p = nysqgl_client_find_plugin(&ysqgl, "myplugin",
MYSQL_CLI ENT_AUTHENTI CATI ON_PLUG N, 0)))
{

}

printf("Plugin version: %l. %l. %\ n", p->version[0], p->version[1l], p->version[2]);

9.2.2 mysql_client_register_plugin()

struct st_nysqgl _client_plugin *
nysql _client _register_plugi n(MYSQ. *nysql,
struct st_nysql _client_plugin *plugin)

Description
Adds a plugin structure to the list of loaded plugins. An error occurs if the plugin is already loaded.

Specify the arguments as follows:

» nysql : A pointer to a MYSQL structure. The plugin API does not require a connection to a MySQL
server, but this structure must be properly initialized. The structure is used to obtain connection-
related information.

* pl ugi n: A pointer to the plugin structure.
Return Values

A pointer to the plugin for success. NULL if an error occurred.
Errors

To check for errors, call the nysql _error () ornysqgl _errno() function. See Section 5.4.16,
“mysqgl_error()”, and Section 5.4.15, “mysqgl_errno()”.

170

mysql_plugin_get_option()

9.2.3 mysql_plugin_get_option()
int
nysql _pl ugi n_get _option(struct st_mysqgl _client_plugin *plugin,

const char *option,
voi d *val ue)

Description

Given a plugin structure and an option name, returns the option value. If the plugin does not have an
option handler, an error occurs.

Specify the arguments as follows:

e pl ugi n: A pointer to the plugin structure.

» opti on: The name of the option for which the value is to be returned.

» val ue: A pointer to the option value.

nysql _pl ugi n_get _option() was added in MySQL 8.0.27.
Return Values

Zero for success, 1 if an error occurred.
9.2.4 mysql_load _plugin()

struct st_nysqgl _client_plugin *
nysql _| oad_pl ugi n(MYSQ. *nysql ,
const char *nane,
int type,
int argc,

o)
Description

Loads a MySQL client plugin, specified by name and type. An error occurs if the type is invalid or the
plugin cannot be loaded.

It is not possible to load multiple plugins of the same type. An error occurs if you try to load a plugin of
a type already loaded.

Specify the arguments as follows:

* nysql : A pointer to a MYSQL structure. The plugin API does not require a connection to a MySQL
server, but this structure must be properly initialized. The structure is used to obtain connection-
related information.

e nane: The name of the plugin to load.

» type: The type of plugin to load, or -1 to disable type checking. If type is not —1, only plugins
matching the type are considered for loading.

» ar gc: The number of following arguments (O if there are none). Interpretation of any following
arguments depends on the plugin type.

Another way to cause plugins to be loaded is to set the LI BMYSQL_PLUG NS environment variable to a
list of semicolon-separated plugin names. For example:

export LIBMYSQ._PLUG NS="nypl ugi n1; nypl ugi n2"

171

mysql_load_plugin_v()

Plugins named by LI BMWSQL_PLUG NS are loaded when the client program calls
nysqgl _library init().Noerroris reported if problems occur loading these plugins.

The LI BWSQL_PLUG N _DI R environment variable can be set to the path name of the directory in
which to look for client plugins. This variable is used in two ways:

 During client plugin preloading, the value of the - - pl ugi n- di r option is not available, so client
plugin loading fails unless the plugins are located in the hardwired default directory. If the plugins are
located elsewhere, LI BMWSQL_PLUG N_DI R environment variable can be set to the proper directory
to enable plugin preloading to succeed.

» For explicit client plugin loading, the mysql | oad _pl ugi n() and nysql | oad plugin v() C
API functions use the LI BMYSQL_PLUG N_DI Rvalue if it exists and the - - pl ugi n- di r option was

not given. If - - pl ugi n-di r is given, nysql _| oad_pl ugi n() and nysql _| oad_pl ugi n_v()
ignore L1 BMWSQL_PLUG N_DI R.

Return Values

A pointer to the plugin if it was loaded successfully. NULL if an error occurred.

Errors
To check for errors, call the mysql _error () ornysgl _errno() function. See Section 5.4.16,
“mysql_error()”, and Section 5.4.15, “mysql_errno()”.
Example
MYSQL nysql ;
i f(!'nysqgl _| oad_pl ugi n(&ysql, "nyplugin",
MYSQL_CLI ENT_AUTHENTI CATI ON_PLUG N, 0))
{
fprintf(stderr, "Error: %\n", nysql _error(&mysql));
exit(-1);
}
See Also

See also Section 9.2.4, “mysq|_load_plugin()”, Section 5.4.16, “mysql_error()”, Section 5.4.15,
“mysql_errno()”.

9.2.5 mysql_load_plugin_v()
struct st_nysqgl _client_plugin *
nmysql _| oad_pl ugi n_v(MYSQL *nysql,
const char *nane,
int type,
int argc,
va_list args)

Description

This function is equivalent to nysql _| oad_pl ugi n(), butit accepts ava_I i st instead of a variable
list of arguments.

See Also
See also Section 9.2.4, “mysql_load_plugin()”.

9.2.6 mysqgl_plugin_options()

i nt
nysql _pl ugi n_options(struct st_nysqgl _client_plugin *plugin,

172

https://dev.mysql.com/doc/refman/9.6/en/connection-options.html#option_general_plugin-dir
https://dev.mysql.com/doc/refman/9.6/en/connection-options.html#option_general_plugin-dir
https://dev.mysql.com/doc/refman/9.6/en/connection-options.html#option_general_plugin-dir

mysql_plugin_options()

const char *opti on,
const void *val ue)

Description

Passes an option type and value to a plugin. This function can be called multiple times to set several
options. If the plugin does not have an option handler, an error occurs.

Specify the arguments as follows:

e pl ugi n: A pointer to the plugin structure.

* opti on: The name of the option to be set.

» val ue: A pointer to the option value.
Return Values

Zero for success, 1 if an error occurred. If the plugin has an option handler, that handler should also
return zero for success and 1 if an error occurred.

173

174

Chapter 10 C API Binary Log Interface

Table of Contents

10.1 Overview of the C API Binary LOg INTEIfACEc..oiviiiiiiii e 175
10.2 C API Binary LOg Data SIIUCIUIEScivuniiiiiiiiii e e e et e e e e e e e e e e e e et e e et e eaaneeeees 176
10.3 C API Binary Log FUNCLON REEIENCEccvviiiiii e e 177
10.4 C API Binary Log FUNCHION DESCIIPLIONSccuuiiiiiiiiii e e e e et e e e e e e e et e e eeaens 178
O 1)<Yo | I o] o TR od [0 £=T= T) I RN 178
10.4.2 mysql_binlog fEtCN() ..ocuun i 178
10.4.3 MySgl_biNIog OPEN() wvuniieiieii i e 179

The MySQL client/server protocol includes a client interface for reading a stream of replication events
from a MySQL server binary log. This capability uses the MYSQL_RPL data structure and a small set of
functions to manage communication between a client program and the server from which the binary log
is to be read. The following sections describe aspects of this interface in more detail.

10.1 Overview of the C API Binary Log Interface

The following simple example program demonstrates the binary log C API functions. Program notes:
* nysql is assumed to be a valid connection handler.

e The initial SET statement sets the @ our ce_bi nl og_checksumuser-defined variable that the
server takes as an indication that the client is checksum-aware. This client does nothing with
checksums, but without this statement, a server that includes checksums in binary log events will
return an error for the first attempt to read an event containing a checksum. The value assigned to
the variable is immaterial; what matters is that the variable exist.

if (nysqgl _query(nysgl, "SET @ource_binl og_checksun¥' ALL' "))

fprintf(stderr, "nmysqgl _query() failed\n");
fprintf(stderr, "Error %: %\n",
nmysql _errno(nysqgl), mnysql _error(nysql));
exit(1);
}

MYSQL_RPL rpl ;

rpl.file_nane_|l ength = O;
rpl.file_nane = NULL;
rpl.start_position = 4;
rpl.server_id = O;
rpl.flags = 0;

if (nysql _binl og_open(nysqgl, &pl))
{
fprintf(stderr, "mysql _binlog_open() failed\n");

fprintf(stderr, "Error %: %\n",
nmysql _errno(nysqgl), mnysql _error(nysql));

exit(1);
}
for (;;) [/* read events until error or EOF */
{

if (nysqgl _binlog_fetch(nysqgl, &pl))
{

fprintf(stderr, "nmysql _binlog_fetch() failed\n");
fprintf(stderr, "Error %: %\n",

nmysql _errno(nysqgl), mnysql _error(nysql));
br eak;

if (rpl.size == 0) [/* EOF */
{

175

https://dev.mysql.com/doc/refman/9.6/en/set-variable.html

C API Binary Log Data Structures

fprintf(stderr, "ECF event received\n");
br eak;
}
fprintf(stderr, "Event received of size %u.\n", rpl.size);
nmysql _bi nl og_cl ose(nysqgl, & pl);

For additional examples that show how to use these functions, look in a MySQL source distribution for
these source files:

e nysql bi nl 0og. cc inthecli ent directory

e nysql _client test.cinthetestclients directory

10.2 C API Binary Log Data Structures

C API functions for processing a replication event stream from a server require a connection handler
(a MYSQL * pointer) and a pointer to a MYSQL_ RPL structure that describes the steam of replication
events to read from the server binary log. For example:

MYSQL *nysql = nysql _real _connect(...);
MYSQL_RPL rpl ;

... initialize MYSQL_RPL nenbers ...

int result = nysql _binlog_open(nysql, &rpl);

This section describes the MYSQL RPL structure members. Connection handlers are described in
Section 5.2, “C API Basic Data Structures”.

The applicable MYSQL_RPL members depend on the binary log operation to be performed:

» Before calling mysql _bi nl og_open(), the caller must set the MYSQL_RPL members from
file_nanme_| engt h through f | ags. In addition, if f | ags has the MYSQL_RPL_GTI Dflag set, the
caller must set the members from gt i d_set encoded_si ze through gti d_set arg.

» After a successful nysql _bi nl og fetch() call, the caller examines the si ze and buf f er
members.

MYSQL_RPL structure member descriptions:
« file_nane_l ength

The length of the name of the binary log file to read. This member is used in conjunction with
file_nane;seethefil e_nane description.

e file_nane
The name of the binary log file to read:

« Iffile_naneis NULL, the client library sets it to the empty string and setsfi |l e nane | ength
to 0.

« Iffile_nanmeisnotNULL, file nane_ | engt h must either be the length of the name or 0.
Iffile _name_| engthis 0, the client library sets it to the length of the name, in which case,
file_name must be given as a null-terminated string.

To read from the beginning of the binary log without having to know the name of the oldest binary log
file, setfi | e_name to NULL or the empty string, and st art _posi ti on to 4.

e start_position

The position at which to start reading the binary log. The position of the first event in any given binary
log file is 4.

176

C API Binary Log Function Reference

e server_id

The server ID to use for identifying to the server from which the binary log is read.

» flags

The union of flags that affect binary log reading, or 0 if no flags are set. These flag values are

permitted:

« MYSQL_RPL_SKI P_HEARTBEAT

Set this flag to cause nmysql _bi nl og_fetch() to skip heartbeat events.

« MYSQL_RPL_GTI D

Set this flag to read GTID (global transaction ID) data. If set, you must initialize the MYSQL_RPL

structure GTID-related members fromgti d_set _encoded_si zetogti d _set ar g before

calling mysql _bi nl og_open().

It is beyond the scope of this documentation to describe in detail how client programs use those

GTID-related members. For more information, examine the nmysql bi nl og. cc source file. For

information about GTID-based replication, see Replication with Global Transaction Identifiers.

» gtid_set_encoded_si ze
The size of GTID set data, or 0.

e fix gtid_set

The address of a callback function for mysql _bi nl og_open() to call to fill the command packet

GTID set, or NULL if there is no such function. The callback function, if used, should have this calling

signature:

void my_cal | back(MYSQL_RPL *rpl, unsigned char *packet_gtid_set);

e gtid set _arg

Either a pointer to GTID set data (if f i x_gti d_set is NULL), or a pointer to a value to be made

available for use within the callback function (if fi x_gtid_set isnotNULL).gtid _set _argisa
generic pointer, so it can point to any kind of value (for example, a string, a structure, or a function).
Its interpretation within the callback depends on how the callback intends to use it.

e sjze

After a successful nysql _bi nl og fetch() call, the size of the returned binary log event. The
value is 0 for an EOF event, greater than O for a non-EOF event.

e buffer

After a successful nysql _bi nl og_fetch() call, a pointer to the binary log event contents.

10.3 C API Binary Log Function Reference

The following table summarizes the functions available for reading a replication event stream from
a binary log. For greater detail, see the descriptions in Section 10.4, “C API Binary Log Function

Descriptions”.

Table 10.1 C API Binary Log Functions

Name

Description

mysql _bi nl og_cl ose()

Close replication event stream

177

https://dev.mysql.com/doc/refman/9.6/en/replication-gtids.html

C API Binary Log Function Descriptions

Name Description
mysql _binlog_fetch() Read event from replication event stream
mysql _bi nl og_open() Open replication event stream

10.4 C API Binary Log Function Descriptions

The following sections provide detailed descriptions of the functions that enable reading the stream of
replication events from a MySQL server binary log.

10.4.1 mysqgl_binlog_close()
voi d
nmysql _bi nl og_cl ose(MYSQL *nysql ,
MYSQL_RPL *rpl)
Description
Close a replication event stream.
Arguments:

* nysqgl : The connection handler returned from nysql _i ni t () . The handler remains open after the
nysql _bi nl og_cl ose() call.

» rpl : The replication stream structure. After calling mysqgl _bi nl og_cl ose(), this structure should
not be used further without reinitializing it and calling mysql _bi nl og_open() again.

Errors
None.
Example
See Section 10.4, “C API Binary Log Function Descriptions”.

10.4.2 mysql_binlog_fetch()
i nt
nysql _bi nl og_fetch(MYSQL *nysql,
MYSQL_RPL *rpl)
Description
Fetch one event from the replication event stream.
Arguments:

* mmysql : The connection handler returned from nysql _init().

e rpl : The replication stream structure. After a successful call, the si ze member indicates the event
size, which is 0 for an EOF event. For a non-EOF event, si ze is greater than 0 and the buf f er
member points to the event contents.

Return Values

Zero for success. Nonzero if an error occurred.
Errors
Example

See Section 10.4, “C API Binary Log Function Descriptions”.

178

mysql_binlog_open()

10.4.3 mysqgl_binlog_open()
int
nmysql _bi nl og_open(MYSQL *nysql ,
MYSQL_RPL *rpl)
Description
Open a new replication event stream, to read a MySQL server binary log.
Arguments:

» nysql : The connection handler returned from nmysql _init().

e rpl: AMYSQL_RPL structure that has been initialized to indicate the replication event stream source.
For a description of the structure members and how to initialize them, see Section 10.2, “C API
Binary Log Data Structures”.
Return Values

Zero for success. Nonzero if an error occurred.

Errors
« CR_FILE_NAVE_TOO LONG
The specified binary log file name was too long.
« CR_OUT_OF MEMORY
Out of memory.
Example

See Section 10.4, “C API Binary Log Function Descriptions”.

179

https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_file_name_too_long
https://dev.mysql.com/doc/mysql-errors/9.6/en/client-error-reference.html#error_cr_out_of_memory

180

Index

Symbols

@source_binlog_checksum user-defined variable, 175

A

asynchronous C API
data structures, 160
function descriptions, 161
function reference, 161
asynchronous interface
C API, 155
asynchronous interface usage
C API, 155

B

basic
C API, 32
basic data structures
C API, 34
basic function descriptions
C API, 43
basic function reference
C API, 39
basic interface usage
C API, 32
binary log
C API, 175
binary log C API
data structures, 176
function descriptions, 178
function reference, 177
binary log interface usage
C API, 175
building
client programs, 5

C

C API
asynchronous interface, 155
asynchronous interface usage, 155
basic, 32
basic data structures, 34
basic function descriptions, 43
basic function reference, 39
basic interface usage, 32
binary log, 175
binary log interface usage, 175
client version, 23
data types, 1
encrypted connections, 11
example programs, 5
function reference, 25
linking problems, 7
multiple statement execution, 13
optional result set metadata, 20

prepared CALL statement, 16
prepared statement interface usage, 118
prepared statements and temporal values, 15
reconnection control, 21
server version, 23
SSL session reuse, 12
C API functions
mysql_bind_param(), 44
client programs
building, 5
client version
C API, 23
clients
threaded, 9
compiling clients
on Unix, 5
on Windows, 6

D

data structures
asynchronous C API, 160
binary log C API, 176
prepared statement C API, 119
data types
CAPI, 1
DNS SRV records, 91
DYLD_LIBRARY_PATH environment variable, 10

E

encrypted connections
CAPI, 11

environment variable
DYLD_LIBRARY_PATH, 10
LD LIBRARY_PATH, 10
LIBMYSQL_PLUGINS, 171
LIBMYSQL_PLUGIN_DIR, 172
PKG_CONFIG_PATH, 8

errors
linking, 7

example programs
CAPI, 5

F

function descriptions
asynchronous C API, 161
binary log C API, 178
plugin C API, 169
prepared statement C API, 127
thread C API, 167

function reference
asynchronous C API, 161
binary log C API, 177
C API, 25
plugin C API, 169
prepared statement C API, 126
thread C API, 167

functions

181

prepared statement C API, 125 mysql_free_result(), 58
mysql_free_result_nonblocking(), 162
| mysql_free_ssl_session_data(), 59
D mysql_get character_set_info(), 59
mysql_get_client_info(), 60

unique, 22 mysql_get_client_version(), 60

L mysql_get_connect_nonblocking_stage, 163
mysql_get_host_info(), 60

last row mysql_get_option(), 61

unique ID, 22 mysql_get_proto_info(), 62
LAST_INSERT_ID(), 22 mysql_get_server_info(), 62
LD_LIBRARY_PATH environment variable, 10 mysql_get_server_version(), 63
LIBMYSQL_PLUGINS environment variable, 171 mysgql_get_ssl_cipher(), 63
LIBMYSQL_PLUGIN_DIR environment variable, 172 mysql_get_ssl|_session_data(), 63
linking, 5 mysql_get_ssl_session_reused(), 64

errors, 7 mysql_hex_string(), 64
I problems, 7 mysql_info(), 22, 65
ogging mysql_init(), 66

prepared statement C API, 119 mysql_insert_id(), 22, 22, 66

mysql_kill(), 68

M mysql_library_end(), 69
multiple statement execution mysql_library_init(), 69

C API, 13 mysql_list_dbs(), 70
MYSQL C type, 34 mysq_list_fields(), 70
mysql_affected_rows(), 22, 43 mysq|l_list_processes(), 72
mysql_autocommit(), 44 mysql_list_tables(), 72
MYSQL_BIND C type, 120 mysql_load_plugin(), 171
mysql_bind_param() C API function, 44 mysql_load_plugin_v(), 172
mysql_binlog_close(), 178 mysqgl_more_results(), 73
mysql_binlog_fetch(), 178 mysql_next_result(), 73
mysqgl_binlog_open(), 179 mysql_next_result_nonblocking(), 163
mysql_change_user(), 46 mysqgl_num_fields(), 75
mysqgl_character_set_name(), 47 mysql_num_rows(), 22, 76
mysqgl_client_find_plugin(), 169 mysql_options(), 76
mysql_client_register_plugin(), 170 mysql_options4(), 84
mysql_close(), 47 mysql_ping(), 86
mysql_commit(), 48 mysql_plugin_get_option(), 171
mysql_connect(), 48 mysql_plugin_options(), 172
mysql_create_db(), 48 mysql_query(), 22, 86
mysql_data_seek(), 49 mysql_real_connect(), 87
mysql_debug(), 49 mysql_real_connect_dns_srv(), 91
mysqgl_drop_db(), 50 mysgl_real_connect_nonblocking(), 163
mysql_dump_debug_info(), 50 mysql_real_escape_string(), 92
mysql_eof(), 51 mysql_real_escape_string_quote(), 94
mysql_errno(), 52 mysgl_real_query(), 22, 95
mysql_error(), 52 mysql_real_query_nonblocking(), 164
mysql_escape_string(), 53 mysgql_refresh(), 96
mysql_fetch_field(), 53 mysql_reload(), 97
mysql_fetch_fields(), 54 MYSQL_RES C type, 34
mysql_fetch_field_direct(), 54 mysql_reset_connection(), 98
mysql_fetch_lengths(), 55 mysgl_reset_connection_nonblocking(), 165
mysql_fetch_row(), 56 mysgl_reset_server_public_key(), 98
mysq|_fetch_row_nonblocking(), 161 mysql_result_metadata(), 99
MYSQL_FIELD C type, 35 mysql_rollback(), 99
mysql_field_count(), 57, 75 MYSQL_ROW C type, 34
MYSQL_FIELD_OFFSET C type, 35 mysql_row_seek(), 99
mysql_field_seek(), 58 mysql_row_tell(), 100
mysq|l_field_tell(), 58 mysql_select_db(), 100

182

mysql_server_end(), 101
mysql_server_init(), 101
mysql_session_track_get first(), 102
mysql_session_track_get next(), 107
mysql_set_character_set(), 107
mysql_set_local_infile_default(), 108, 108
mysql_set_server_option(), 109
mysql_shutdown(), 110
mysql_sqlstate(), 111
mysql_ssl_set(), 112

mysql_stat(), 113

MYSQL_STMT C type, 119
mysql_stmt_affected rows(), 128
mysql_stmt_attr_get(), 128
mysql_stmt_attr_set(), 128
mysql_stmt_bind_named_param(), 129
mysql_stmt_bind_param(), 132
mysql_stmt_bind_result(), 133
mysql_stmt_close(), 134
mysql_stmt_data_seek(), 134
mysql_stmt_errno(), 135
mysql_stmt_error(), 135
mysql_stmt_execute(), 136
mysql_stmt_fetch(), 139
mysql_stmt_fetch_column(), 144
mysql_stmt_field_count(), 145
mysql_stmt_free_result(), 145
mysql_stmt_init(), 145
mysql_stmt_insert_id(), 145
mysql_stmt_next_result(), 146
mysql_stmt_num_rows(), 147
mysql_stmt_param_count(), 147
mysql_stmt_param_metadata(), 148
mysql_stmt_prepare(), 148
mysql_stmt_reset(), 149
mysql_stmt_result_metadata, 149
mysql_stmt_row_seek(), 150
mysql_stmt_row_tell(), 151
mysql_stmt_send_long_data(), 151
mysql_stmt_sqlstate(), 153
mysql_stmt_store_result(), 153
mysql_store_result(), 22, 113
mysql_store_result_nonblocking(), 165
mysql_thread_end(), 167
mysql_thread_id(), 115
mysql_thread_init(), 168
mysql_thread_safe(), 168
MYSQL_TIME C type, 123
mysql_use_result(), 115
mysql_warning_count(), 116
my_bool C type, 35

my_ulonglong C type, 35

O

optional result set metadata
C API, 20

P

PKG_CONFIG_PATH environment variable, 8

plugin C API
function descriptions, 169
function reference, 169
prepared CALL statement
C API, 16
prepared statement C API
data structures, 119
function descriptions, 127
function reference, 126
functions, 125
logging, 119
type codes, 123
prepared statement interface usage
C API, 118
prepared statements
C API, 117
prepared statements and temporal values
C API, 15
problems
linking, 7
programs
client, 5

Q

QUOTE(), 93, 94

R

reconnection
automatic, 21

reconnection control
C API, 21

result set metadata
suppression, 20

S
server version
C API, 23
session state information, 102, 107
SIGPIPE signal
client response, 9, 89

@source_binlog_checksum user-defined variable, 175

SSL session reuse
C API, 12

T

tables
unique ID for last row, 22
thread C API
function descriptions, 167
function reference, 167
threaded clients, 9
type codes
prepared statement C API, 123

183

U

unique ID, 22
Unix
compiling clients on, 5

W

Windows
compiling clients on, 6

Z
ZEROFILL, 20

184

	MySQL 9.6 C API Developer Guide
	Table of Contents
	Preface and Legal Notices
	Chapter 1 The MySQL C API
	Chapter 2 MySQL C API Implementations
	Chapter 3 Writing C API-Based Client Applications
	3.1 Example C API Client Programs
	3.2 Building C API Client Programs
	3.3 Building C API Client Programs Using pkg-config
	3.4 Writing C API Threaded Client Programs
	3.5 Running C API Client Programs
	3.6 Using C API Features
	3.6.1 Support for Encrypted Connections
	3.6.2 SSL Session Reuse
	3.6.3 Multiple Statement Execution Support
	3.6.4 Prepared Statement Handling of Date and Time Values
	3.6.5 Prepared CALL Statement Support
	3.6.6 Prepared Statement Problems
	3.6.7 Optional Result Set Metadata
	3.6.8 Automatic Reconnection Control
	3.6.9 NULL mysql_store_result() Return After mysql_query() Success
	3.6.10 Results Available from a Query
	3.6.11 Obtaining the Unique ID for the Last Inserted Row
	3.6.12 Obtaining the Server Version and Client Library Version

	Chapter 4 C API Function Reference
	Chapter 5 C API Basic Interface
	5.1 Overview of the C API Basic Interface
	5.2 C API Basic Data Structures
	5.3 C API Basic Function Reference
	5.4 C API Basic Function Descriptions
	5.4.1 mysql_affected_rows()
	5.4.2 mysql_autocommit()
	5.4.3 mysql_bind_param()
	5.4.4 mysql_change_user()
	5.4.5 mysql_character_set_name()
	5.4.6 mysql_close()
	5.4.7 mysql_commit()
	5.4.8 mysql_connect()
	5.4.9 mysql_create_db()
	5.4.10 mysql_data_seek()
	5.4.11 mysql_debug()
	5.4.12 mysql_drop_db()
	5.4.13 mysql_dump_debug_info()
	5.4.14 mysql_eof()
	5.4.15 mysql_errno()
	5.4.16 mysql_error()
	5.4.17 mysql_escape_string()
	5.4.18 mysql_fetch_field()
	5.4.19 mysql_fetch_field_direct()
	5.4.20 mysql_fetch_fields()
	5.4.21 mysql_fetch_lengths()
	5.4.22 mysql_fetch_row()
	5.4.23 mysql_field_count()
	5.4.24 mysql_field_seek()
	5.4.25 mysql_field_tell()
	5.4.26 mysql_free_result()
	5.4.27 mysql_free_ssl_session_data()
	5.4.28 mysql_get_character_set_info()
	5.4.29 mysql_get_client_info()
	5.4.30 mysql_get_client_version()
	5.4.31 mysql_get_host_info()
	5.4.32 mysql_get_option()
	5.4.33 mysql_get_proto_info()
	5.4.34 mysql_get_server_info()
	5.4.35 mysql_get_server_version()
	5.4.36 mysql_get_ssl_cipher()
	5.4.37 mysql_get_ssl_session_data()
	5.4.38 mysql_get_ssl_session_reused()
	5.4.39 mysql_hex_string()
	5.4.40 mysql_info()
	5.4.41 mysql_init()
	5.4.42 mysql_insert_id()
	5.4.43 mysql_kill()
	5.4.44 mysql_library_end()
	5.4.45 mysql_library_init()
	5.4.46 mysql_list_dbs()
	5.4.47 mysql_list_fields()
	5.4.48 mysql_list_processes()
	5.4.49 mysql_list_tables()
	5.4.50 mysql_more_results()
	5.4.51 mysql_next_result()
	5.4.52 mysql_num_fields()
	5.4.53 mysql_num_rows()
	5.4.54 mysql_options()
	5.4.55 mysql_options4()
	5.4.56 mysql_ping()
	5.4.57 mysql_query()
	5.4.58 mysql_real_connect()
	5.4.59 mysql_real_connect_dns_srv()
	5.4.60 mysql_real_escape_string()
	5.4.61 mysql_real_escape_string_quote()
	5.4.62 mysql_real_query()
	5.4.63 mysql_refresh()
	5.4.64 mysql_reload()
	5.4.65 mysql_reset_connection()
	5.4.66 mysql_reset_server_public_key()
	5.4.67 mysql_result_metadata()
	5.4.68 mysql_rollback()
	5.4.69 mysql_row_seek()
	5.4.70 mysql_row_tell()
	5.4.71 mysql_select_db()
	5.4.72 mysql_server_end()
	5.4.73 mysql_server_init()
	5.4.74 mysql_session_track_get_first()
	5.4.75 mysql_session_track_get_next()
	5.4.76 mysql_set_character_set()
	5.4.77 mysql_set_local_infile_default()
	5.4.78 mysql_set_local_infile_handler()
	5.4.79 mysql_set_server_option()
	5.4.80 mysql_shutdown()
	5.4.81 mysql_sqlstate()
	5.4.82 mysql_ssl_set()
	5.4.83 mysql_stat()
	5.4.84 mysql_store_result()
	5.4.85 mysql_thread_id()
	5.4.86 mysql_use_result()
	5.4.87 mysql_warning_count()

	Chapter 6 C API Prepared Statement Interface
	6.1 Overview of the C API Prepared Statement Interface
	6.2 C API Prepared Statement Data Structures
	6.2.1 C API Prepared Statement Type Codes
	6.2.2 C API Prepared Statement Type Conversions

	6.3 C API Prepared Statement Function Reference
	6.4 C API Prepared Statement Function Descriptions
	6.4.1 mysql_stmt_affected_rows()
	6.4.2 mysql_stmt_attr_get()
	6.4.3 mysql_stmt_attr_set()
	6.4.4 mysql_stmt_bind_named_param()
	6.4.5 mysql_stmt_bind_param()
	6.4.6 mysql_stmt_bind_result()
	6.4.7 mysql_stmt_close()
	6.4.8 mysql_stmt_data_seek()
	6.4.9 mysql_stmt_errno()
	6.4.10 mysql_stmt_error()
	6.4.11 mysql_stmt_execute()
	6.4.12 mysql_stmt_fetch()
	6.4.13 mysql_stmt_fetch_column()
	6.4.14 mysql_stmt_field_count()
	6.4.15 mysql_stmt_free_result()
	6.4.16 mysql_stmt_init()
	6.4.17 mysql_stmt_insert_id()
	6.4.18 mysql_stmt_next_result()
	6.4.19 mysql_stmt_num_rows()
	6.4.20 mysql_stmt_param_count()
	6.4.21 mysql_stmt_param_metadata()
	6.4.22 mysql_stmt_prepare()
	6.4.23 mysql_stmt_reset()
	6.4.24 mysql_stmt_result_metadata()
	6.4.25 mysql_stmt_row_seek()
	6.4.26 mysql_stmt_row_tell()
	6.4.27 mysql_stmt_send_long_data()
	6.4.28 mysql_stmt_sqlstate()
	6.4.29 mysql_stmt_store_result()

	Chapter 7 C API Asynchronous Interface
	7.1 Overview of the C API Asynchronous Interface
	7.2 C API Asynchronous Interface Data Structures
	7.3 C API Asynchronous Function Reference
	7.4 C API Asynchronous Function Descriptions
	7.4.1 mysql_fetch_row_nonblocking()
	7.4.2 mysql_free_result_nonblocking()
	7.4.3 mysql_get_connect_nonblocking_stage()
	7.4.4 mysql_next_result_nonblocking()
	7.4.5 mysql_real_connect_nonblocking()
	7.4.6 mysql_real_query_nonblocking()
	7.4.7 mysql_reset_connection_nonblocking()
	7.4.8 mysql_store_result_nonblocking()

	Chapter 8 C API Thread Interface
	8.1 C API Thread Function Reference
	8.2 C API Threaded Function Descriptions
	8.2.1 mysql_thread_end()
	8.2.2 mysql_thread_init()
	8.2.3 mysql_thread_safe()

	Chapter 9 C API Client Plugin Interface
	9.1 C API Plugin Function Reference
	9.2 C API Plugin Function Descriptions
	9.2.1 mysql_client_find_plugin()
	9.2.2 mysql_client_register_plugin()
	9.2.3 mysql_plugin_get_option()
	9.2.4 mysql_load_plugin()
	9.2.5 mysql_load_plugin_v()
	9.2.6 mysql_plugin_options()

	Chapter 10 C API Binary Log Interface
	10.1 Overview of the C API Binary Log Interface
	10.2 C API Binary Log Data Structures
	10.3 C API Binary Log Function Reference
	10.4 C API Binary Log Function Descriptions
	10.4.1 mysql_binlog_close()
	10.4.2 mysql_binlog_fetch()
	10.4.3 mysql_binlog_open()

	Index

