C Function Index

my_init()
	Section 20.6.12.1, “my_init()”
	
	Section 20.6.12.3, “mysql_thread_init()”
	
	Section 20.6.6, “C API Function Overview”
	

mysql_affected_rows()
	Section 13.2.1, “CALL Syntax”
	
	Section 13.2.5, “INSERT Syntax”
	
	Section 20.6.7.1, “mysql_affected_rows()”
	
	Section 20.6.7.46, “mysql_next_result()”
	
	Section 20.6.7.48, “mysql_num_rows()”
	
	Section 20.6.11.1, “mysql_stmt_affected_rows()”
	
	Section 20.6.7.71, “mysql_use_result()”
	
	Section 13.2.7, “REPLACE Syntax”
	
	Section 20.6.5, “C API Data Structures”
	
	Section 20.6.6, “C API Function Overview”
	
	Section 12.13, “Information Functions”
	
	Section 20.6.14.2, “What Results You Can Get from a Query”
	

mysql_autocommit()
	Section 20.6.7.2, “mysql_autocommit()”
	
	Section 20.6.6, “C API Function Overview”
	

mysql_change_user()
	Section 20.6.7.3, “mysql_change_user()”
	
	Section 20.6.6, “C API Function Overview”
	

mysql_character_set_name()
	Section 20.6.7.4, “mysql_character_set_name()”
	
	Section 20.6.6, “C API Function Overview”
	

mysql_close()
	Section 20.6.7.5, “mysql_close()”
	
	Section 20.6.7.6, “mysql_commit()”
	
	Section 20.6.7.7, “mysql_connect()”
	
	Section 20.6.7.36, “mysql_init()”
	
	Section 20.6.7.57, “mysql_rollback()”
	
	Section 20.6.6, “C API Function Overview”
	
	Section C.5.2.11, “Communication Errors and Aborted Connections”
	

mysql_commit()
	Section 20.6.7.6, “mysql_commit()”
	
	Section 20.6.6, “C API Function Overview”
	

mysql_connect()
	Section 20.6.12.1, “my_init()”
	
	Section 20.6.7.5, “mysql_close()”
	
	Section 20.6.7.7, “mysql_connect()”
	
	Section 20.6.7.49, “mysql_options()”
	
	Section 20.6.12.3, “mysql_thread_init()”
	
	Section 20.6.6, “C API Function Overview”
	
	Section 20.6.4.2, “Writing C API Threaded Client Programs”
	

mysql_create_db()
	Section 20.6.7.8, “mysql_create_db()”
	
	Section 20.6.6, “C API Function Overview”
	

mysql_data_seek()
	Section 20.6.7.9, “mysql_data_seek()”
	
	Section 20.6.7.58, “mysql_row_seek()”
	
	Section 20.6.7.71, “mysql_use_result()”
	
	Section 20.6.6, “C API Function Overview”
	

mysql_debug()
	Section 20.6.7.10, “mysql_debug()”
	
	Section 20.6.6, “C API Function Overview”
	

mysql_drop_db()
	Section 20.6.7.11, “mysql_drop_db()”
	
	Section 20.6.6, “C API Function Overview”
	

mysql_dump_debug_info()
	Section 20.6.7.12, “mysql_dump_debug_info()”
	
	Section 20.6.6, “C API Function Overview”
	

mysql_eof()
	Section 20.6.7.13, “mysql_eof()”
	
	Section 20.6.6, “C API Function Overview”
	

mysql_errno()
	Section 20.6.7.7, “mysql_connect()”
	
	Section 20.6.7.13, “mysql_eof()”
	
	Section 20.6.7.14, “mysql_errno()”
	
	Section 20.6.7.22, “mysql_field_count()”
	
	Section 20.6.7.47, “mysql_num_fields()”
	
	Section 20.6.7.66, “mysql_sqlstate()”
	
	Section 20.6.7.69, “mysql_store_result()”
	
	Section 20.6.7.71, “mysql_use_result()”
	
	Section 20.6.7, “C API Function Descriptions”
	
	Section 20.6.6, “C API Function Overview”
	
	Section C.2, “Types of Error Values”
	
	Section 20.6.14.1, “Why mysql_store_result() Sometimes
 Returns NULL After
 mysql_query() Returns Success”
	

mysql_error()
	Section 20.6.7.7, “mysql_connect()”
	
	Section 20.6.7.13, “mysql_eof()”
	
	Section 20.6.7.15, “mysql_error()”
	
	Section 20.6.7.69, “mysql_store_result()”
	
	Section 20.6.7.71, “mysql_use_result()”
	
	Section 20.6.7, “C API Function Descriptions”
	
	Section 20.6.6, “C API Function Overview”
	
	Section C.2, “Types of Error Values”
	
	Section 20.6.14.1, “Why mysql_store_result() Sometimes
 Returns NULL After
 mysql_query() Returns Success”
	

mysql_escape_string()
	Section 20.6.7.16, “mysql_escape_string()”
	
	Section 20.6.6, “C API Function Overview”
	
	Section 6.1.7, “Client Programming Security Guidelines”
	

mysql_fetch_field()
	Section 20.6.7.17, “mysql_fetch_field()”
	
	Section 20.6.7.23, “mysql_field_seek()”
	
	Section 20.6.7.24, “mysql_field_tell()”
	
	Section 20.6.11.22, “mysql_stmt_result_metadata()”
	
	Section 20.6.5, “C API Data Structures”
	
	Section 20.6.6, “C API Function Overview”
	

mysql_fetch_field_direct()
	Section 20.6.7.18, “mysql_fetch_field_direct()”
	
	Section 20.6.11.22, “mysql_stmt_result_metadata()”
	
	Section 20.6.6, “C API Function Overview”
	

mysql_fetch_fields()
	Section 20.6.7.19, “mysql_fetch_fields()”
	
	Section 20.6.11.22, “mysql_stmt_result_metadata()”
	
	Section 20.6.6, “C API Function Overview”
	

mysql_fetch_lengths()
	Section 20.6.7.20, “mysql_fetch_lengths()”
	
	Section 20.6.7.21, “mysql_fetch_row()”
	
	Section 20.6.6, “C API Function Overview”
	

mysql_fetch_row()
	Section 20.6.7.13, “mysql_eof()”
	
	Section 20.6.7.14, “mysql_errno()”
	
	Section 20.6.7.20, “mysql_fetch_lengths()”
	
	Section 20.6.7.21, “mysql_fetch_row()”
	
	Section 20.6.7.59, “mysql_row_tell()”
	
	Section 20.6.7.69, “mysql_store_result()”
	
	Section 20.6.7.71, “mysql_use_result()”
	
	Section 20.6.5, “C API Data Structures”
	
	Section 20.6.6, “C API Function Overview”
	
	Section 14.7.1, “Description of the FEDERATED Storage Engine”
	
	Section 20.6.14.2, “What Results You Can Get from a Query”
	

mysql_field_count()
	Section 20.6.7.22, “mysql_field_count()”
	
	Section 20.6.7.47, “mysql_num_fields()”
	
	Section 20.6.7.51, “mysql_query()”
	
	Section 20.6.7.54, “mysql_real_query()”
	
	Section 20.6.11.22, “mysql_stmt_result_metadata()”
	
	Section 20.6.7.69, “mysql_store_result()”
	
	Section 20.6.6, “C API Function Overview”
	
	Section 20.6.14.1, “Why mysql_store_result() Sometimes
 Returns NULL After
 mysql_query() Returns Success”
	

mysql_field_seek()
	Section 20.6.7.17, “mysql_fetch_field()”
	
	Section 20.6.7.23, “mysql_field_seek()”
	
	Section 20.6.7.24, “mysql_field_tell()”
	
	Section 20.6.11.22, “mysql_stmt_result_metadata()”
	
	Section 20.6.5, “C API Data Structures”
	
	Section 20.6.6, “C API Function Overview”
	

mysql_field_tell()
	Section 20.6.7.24, “mysql_field_tell()”
	
	Section 20.6.11.22, “mysql_stmt_result_metadata()”
	
	Section 20.6.6, “C API Function Overview”
	

mysql_free_result()
	Section C.5.2.14, “Commands out of sync”
	
	Section 20.6.7.25, “mysql_free_result()”
	
	Section 20.6.7.41, “mysql_list_dbs()”
	
	Section 20.6.7.42, “mysql_list_fields()”
	
	Section 20.6.7.43, “mysql_list_processes()”
	
	Section 20.6.7.44, “mysql_list_tables()”
	
	Section 20.6.7.46, “mysql_next_result()”
	
	Section 20.6.11.22, “mysql_stmt_result_metadata()”
	
	Section 20.6.7.69, “mysql_store_result()”
	
	Section 20.6.7.71, “mysql_use_result()”
	
	Section 20.6.6, “C API Function Overview”
	
	Section 20.6.10, “C API Prepared Statement Function Overview”
	

mysql_get_character_set_info()
	Section 20.6.7.26, “mysql_get_character_set_info()”
	
	Section 20.6.6, “C API Function Overview”
	
	Section 10.4.2, “Choosing a Collation ID”
	

mysql_get_client_info()
	Section 20.6.7.7, “mysql_connect()”
	
	Section 20.6.7.27, “mysql_get_client_info()”
	
	Section 20.6.6, “C API Function Overview”
	
	Section 20.6.4.4, “C API Server and Client Library Versions”
	

mysql_get_client_version()
	Section 20.6.7.28, “mysql_get_client_version()”
	
	Section 20.6.6, “C API Function Overview”
	
	Section 20.6.4.4, “C API Server and Client Library Versions”
	

mysql_get_host_info()
	Section 20.6.7.29, “mysql_get_host_info()”
	
	Section 20.6.6, “C API Function Overview”
	

mysql_get_proto_info()
	Section 20.6.7.30, “mysql_get_proto_info()”
	
	Section 20.6.6, “C API Function Overview”
	

mysql_get_server_info()
	Section 20.6.7.31, “mysql_get_server_info()”
	
	Section 20.6.6, “C API Function Overview”
	
	Section 20.6.4.4, “C API Server and Client Library Versions”
	

mysql_get_server_version()
	Section 20.6.7.32, “mysql_get_server_version()”
	
	Section 20.6.6, “C API Function Overview”
	
	Section 20.6.4.4, “C API Server and Client Library Versions”
	

mysql_get_ssl_cipher()
	Section 20.6.7.33, “mysql_get_ssl_cipher()”
	
	Section 20.6.6, “C API Function Overview”
	
	Section 6.3.6.3, “Using SSL Connections”
	

mysql_hex_string()
	Section 20.6.7.34, “mysql_hex_string()”
	
	Section 20.6.6, “C API Function Overview”
	

mysql_info()
	Section 13.1.4, “ALTER TABLE Syntax”
	
	Section 13.2.5.2, “INSERT DELAYED Syntax”
	
	Section 13.2.5, “INSERT Syntax”
	
	Section 13.2.6, “LOAD DATA INFILE
 Syntax”
	
	Section 20.6.7.35, “mysql_info()”
	
	Section 20.6.7.49, “mysql_options()”
	
	Section 1.8.3.1, “PRIMARY KEY and UNIQUE Index
 Constraints”
	
	Section 13.2.10, “UPDATE Syntax”
	
	Section 20.6.6, “C API Function Overview”
	
	Section 20.6.14.2, “What Results You Can Get from a Query”
	

mysql_init()
	Section 20.6.12.1, “my_init()”
	
	Section 20.6.7.5, “mysql_close()”
	
	Section 20.6.7.33, “mysql_get_ssl_cipher()”
	
	Section 20.6.7.36, “mysql_init()”
	
	Section 20.6.7.40, “mysql_library_init()”
	
	Section 20.6.7.49, “mysql_options()”
	
	Section 20.6.7.52, “mysql_real_connect()”
	
	Section 20.6.7.67, “mysql_ssl_set()”
	
	Section 20.6.12.3, “mysql_thread_init()”
	
	Section 20.6.6, “C API Function Overview”
	
	Section 20.6.4.2, “Writing C API Threaded Client Programs”
	

mysql_insert_id()
	Section 13.1.10, “CREATE TABLE Syntax”
	
	Section 13.2.5, “INSERT Syntax”
	
	Section 20.6.7.37, “mysql_insert_id()”
	
	Section 20.6.5, “C API Data Structures”
	
	Section 20.6.6, “C API Function Overview”
	
	Section 20.6.14.3, “How to Get the Unique ID for the Last Inserted Row”
	
	Section 12.13, “Information Functions”
	
	Section 5.1.4, “Server System Variables”
	
	Section 1.8.2.3, “Transactions and Atomic Operations”
	
	Section 3.6.9, “Using AUTO_INCREMENT”
	
	Section 20.6.14.2, “What Results You Can Get from a Query”
	

mysql_kill()
	Section 20.6.7.38, “mysql_kill()”
	
	Section 20.6.7.70, “mysql_thread_id()”
	
	Section 20.6.6, “C API Function Overview”
	
	Section 20.6.15, “Controlling Automatic Reconnection Behavior”
	

mysql_library_end()
	Section 20.6.7.39, “mysql_library_end()”
	
	Section 20.6.7.40, “mysql_library_init()”
	
	Section 20.6.13.2, “mysql_server_end()”
	
	Section 20.6.13, “C API Embedded Server Function Descriptions”
	
	Section 20.6.6, “C API Function Overview”
	
	Section 20.5, “libmysqld, the Embedded MySQL Server Library”
	

mysql_library_init()
	Section 20.6.12.1, “my_init()”
	
	Section 20.6.7.40, “mysql_library_init()”
	
	Section 20.6.13.1, “mysql_server_init()”
	
	Section 20.6.12.3, “mysql_thread_init()”
	
	Section 20.6.13, “C API Embedded Server Function Descriptions”
	
	Section 20.6.6, “C API Function Overview”
	
	Section 20.5, “libmysqld, the Embedded MySQL Server Library”
	
	Section 20.6.4.2, “Writing C API Threaded Client Programs”
	

mysql_list_dbs()
	Section 20.6.7.25, “mysql_free_result()”
	
	Section 20.6.7.41, “mysql_list_dbs()”
	
	Section 20.6.6, “C API Function Overview”
	

mysql_list_fields()
	Section 20.6.7.42, “mysql_list_fields()”
	
	Section 20.6.5, “C API Data Structures”
	
	Section 20.6.6, “C API Function Overview”
	

mysql_list_processes()
	Section 20.6.7.43, “mysql_list_processes()”
	
	Section 20.6.6, “C API Function Overview”
	

mysql_list_tables()
	Section 20.6.7.44, “mysql_list_tables()”
	
	Section 20.6.6, “C API Function Overview”
	

mysql_more_results()
	Section 20.6.7.45, “mysql_more_results()”
	
	Section 20.6.7.46, “mysql_next_result()”
	
	Section 20.6.6, “C API Function Overview”
	
	Section 20.6.16, “C API Support for Multiple Statement Execution”
	

mysql_next_result()
	Section 13.2.1, “CALL Syntax”
	
	Section 20.6.7.45, “mysql_more_results()”
	
	Section 20.6.7.46, “mysql_next_result()”
	
	Section 20.6.7.52, “mysql_real_connect()”
	
	Section 20.6.7.64, “mysql_set_server_option()”
	
	Section 20.6.7.69, “mysql_store_result()”
	
	Section 20.6.6, “C API Function Overview”
	
	Section 20.6.16, “C API Support for Multiple Statement Execution”
	

mysql_num_fields()
	Section 20.6.7.18, “mysql_fetch_field_direct()”
	
	Section 20.6.7.21, “mysql_fetch_row()”
	
	Section 20.6.7.47, “mysql_num_fields()”
	
	Section 20.6.11.22, “mysql_stmt_result_metadata()”
	
	Section 20.6.6, “C API Function Overview”
	

mysql_num_rows()
	Section 20.6.7.1, “mysql_affected_rows()”
	
	Section 20.6.7.9, “mysql_data_seek()”
	
	Section 20.6.7.48, “mysql_num_rows()”
	
	Section 20.6.7.69, “mysql_store_result()”
	
	Section 20.6.7.71, “mysql_use_result()”
	
	Section 20.6.5, “C API Data Structures”
	
	Section 20.6.6, “C API Function Overview”
	
	Section 20.6.14.2, “What Results You Can Get from a Query”
	

mysql_options()
	Section C.5.2.9, “MySQL server has gone away”
	
	Section 20.6.7.49, “mysql_options()”
	
	Section 20.6.7.50, “mysql_ping()”
	
	Section 20.6.7.52, “mysql_real_connect()”
	
	Section 20.6.11.11, “mysql_stmt_fetch()”
	
	Section 20.6.6, “C API Function Overview”
	
	Section 20.6.9, “C API Prepared Statement Data Structures”
	
	Section 20.6.15, “Controlling Automatic Reconnection Behavior”
	
	Section 6.1.6, “Security Issues with LOAD
 DATA LOCAL”
	
	Section 6.3.1, “User Names and Passwords”
	
	Section 5.3.4, “Using Client Programs in a Multiple-Server Environment”
	

mysql_ping()
	Section C.5.2.9, “MySQL server has gone away”
	
	Section 20.6.7.50, “mysql_ping()”
	
	Section 20.6.7.70, “mysql_thread_id()”
	
	Section 20.6.6, “C API Function Overview”
	
	Section 20.6.15, “Controlling Automatic Reconnection Behavior”
	

mysql_query()
	Section 13.2.1, “CALL Syntax”
	
	Section 20.6.7.1, “mysql_affected_rows()”
	
	Section 20.6.7.8, “mysql_create_db()”
	
	Section 20.6.7.11, “mysql_drop_db()”
	
	Section 20.6.7.17, “mysql_fetch_field()”
	
	Section 20.6.7.38, “mysql_kill()”
	
	Section 20.6.7.46, “mysql_next_result()”
	
	Section 20.6.7.51, “mysql_query()”
	
	Section 20.6.7.52, “mysql_real_connect()”
	
	Section 20.6.7.54, “mysql_real_query()”
	
	Section 20.6.7.56, “mysql_reload()”
	
	Section 20.6.7.63, “mysql_set_local_infile_handler()”
	
	Section 20.6.7.64, “mysql_set_server_option()”
	
	Section 20.6.7.69, “mysql_store_result()”
	
	Section 20.6.7.71, “mysql_use_result()”
	
	Section 20.6.6, “C API Function Overview”
	
	Section 20.6.16, “C API Support for Multiple Statement Execution”
	
	Section 20.6.14.3, “How to Get the Unique ID for the Last Inserted Row”
	
	Section 20.6.14.1, “Why mysql_store_result() Sometimes
 Returns NULL After
 mysql_query() Returns Success”
	
	Section 20.6.4.2, “Writing C API Threaded Client Programs”
	

mysql_real_connect()
	Section 13.2.1, “CALL Syntax”
	
	Section 20.6.7.1, “mysql_affected_rows()”
	
	Section 20.6.7.3, “mysql_change_user()”
	
	Section 20.6.7.7, “mysql_connect()”
	
	Section 20.6.7.36, “mysql_init()”
	
	Section 20.6.7.46, “mysql_next_result()”
	
	Section 20.6.7.49, “mysql_options()”
	
	Section 20.6.7.52, “mysql_real_connect()”
	
	Section 20.6.7.64, “mysql_set_server_option()”
	
	Section 20.6.7.66, “mysql_sqlstate()”
	
	Section 20.6.7.67, “mysql_ssl_set()”
	
	Section 20.6.6, “C API Function Overview”
	
	Section 20.6.16, “C API Support for Multiple Statement Execution”
	
	Chapter 12, Functions and Operators
	
	Section 12.13, “Information Functions”
	
	Section 5.1.4, “Server System Variables”
	
	Section 13.5, “SQL Syntax for Prepared Statements”
	
	Section 18.2.1, “Stored Routine Syntax”
	
	Section 2.19.1.2, “Upgrading from MySQL 4.1 to 5.0”
	
	Section 5.3.4, “Using Client Programs in a Multiple-Server Environment”
	
	Section 6.3.6.3, “Using SSL Connections”
	

mysql_real_escape_string()
	Section 20.6.7.16, “mysql_escape_string()”
	
	Section 20.6.7.53, “mysql_real_escape_string()”
	
	Section 20.6.7.61, “mysql_set_character_set()”
	
	Section 20.6.6, “C API Function Overview”
	
	Section 6.1.7, “Client Programming Security Guidelines”
	
	Section 12.16.4.4, “Populating Spatial Columns”
	
	Section 9.1.1, “String Literals”
	

mysql_real_query()
	Section 13.2.1, “CALL Syntax”
	
	Section 20.6.7.1, “mysql_affected_rows()”
	
	Section 20.6.7.46, “mysql_next_result()”
	
	Section 20.6.7.51, “mysql_query()”
	
	Section 20.6.7.52, “mysql_real_connect()”
	
	Section 20.6.7.54, “mysql_real_query()”
	
	Section 20.6.7.64, “mysql_set_server_option()”
	
	Section 20.6.7.69, “mysql_store_result()”
	
	Section 20.6.7.71, “mysql_use_result()”
	
	Section 20.6.6, “C API Function Overview”
	
	Section 20.6.16, “C API Support for Multiple Statement Execution”
	
	Section 14.7.1, “Description of the FEDERATED Storage Engine”
	

mysql_refresh()
	Section 20.6.7.55, “mysql_refresh()”
	
	Section 20.6.6, “C API Function Overview”
	

mysql_reload()
	Section 20.6.7.56, “mysql_reload()”
	
	Section 20.6.6, “C API Function Overview”
	

mysql_rollback()
	Section 20.6.7.57, “mysql_rollback()”
	
	Section 20.6.6, “C API Function Overview”
	

mysql_row_seek()
	Section 20.6.7.58, “mysql_row_seek()”
	
	Section 20.6.7.59, “mysql_row_tell()”
	
	Section 20.6.7.69, “mysql_store_result()”
	
	Section 20.6.7.71, “mysql_use_result()”
	
	Section 20.6.6, “C API Function Overview”
	

mysql_row_tell()
	Section 20.6.7.58, “mysql_row_seek()”
	
	Section 20.6.7.59, “mysql_row_tell()”
	
	Section 20.6.7.69, “mysql_store_result()”
	
	Section 20.6.7.71, “mysql_use_result()”
	
	Section 20.6.6, “C API Function Overview”
	

mysql_select_db()
	Section 20.6.7.60, “mysql_select_db()”
	
	Section 20.6.6, “C API Function Overview”
	

mysql_server_end()
	Section 20.6.7.39, “mysql_library_end()”
	
	Section 20.6.13.2, “mysql_server_end()”
	
	Section 20.6.13, “C API Embedded Server Function Descriptions”
	
	Section 20.6.6, “C API Function Overview”
	

mysql_server_init()
	Section 20.6.12.1, “my_init()”
	
	Section 20.6.7.40, “mysql_library_init()”
	
	Section 20.6.13.1, “mysql_server_init()”
	
	Section 20.6.12.3, “mysql_thread_init()”
	
	Section 20.6.13, “C API Embedded Server Function Descriptions”
	
	Section 20.6.6, “C API Function Overview”
	

mysql_set_character_set()
	Section 20.6.7.26, “mysql_get_character_set_info()”
	
	Section 20.6.7.53, “mysql_real_escape_string()”
	
	Section 20.6.7.61, “mysql_set_character_set()”
	
	Section 20.6.6, “C API Function Overview”
	

mysql_set_local_infile_default()
	Section 20.6.7.62, “mysql_set_local_infile_default()”
	
	Section 20.6.6, “C API Function Overview”
	

mysql_set_local_infile_handler()
	Section 20.6.7.62, “mysql_set_local_infile_default()”
	
	Section 20.6.7.63, “mysql_set_local_infile_handler()”
	
	Section 20.6.6, “C API Function Overview”
	

mysql_set_server_option()
	Section 20.6.7.64, “mysql_set_server_option()”
	
	Section 20.6.6, “C API Function Overview”
	
	Section 20.6.16, “C API Support for Multiple Statement Execution”
	

mysql_shutdown()
	Section 20.6.7.65, “mysql_shutdown()”
	
	Section 20.6.6, “C API Function Overview”
	

mysql_sqlstate()
	Section 20.6.7.14, “mysql_errno()”
	
	Section 20.6.7.66, “mysql_sqlstate()”
	
	Section 20.6.6, “C API Function Overview”
	
	Section C.2, “Types of Error Values”
	

mysql_ssl_set()
	Section 20.6.7.52, “mysql_real_connect()”
	
	Section 20.6.7.67, “mysql_ssl_set()”
	
	Section 20.6.6, “C API Function Overview”
	
	Section 6.3.6.3, “Using SSL Connections”
	

mysql_stat()
	Section 20.6.7.68, “mysql_stat()”
	
	Section 20.6.6, “C API Function Overview”
	

mysql_stmt_affected_rows()
	Section 20.6.11.1, “mysql_stmt_affected_rows()”
	
	Section 20.6.11.10, “mysql_stmt_execute()”
	
	Section 20.6.11.17, “mysql_stmt_num_rows()”
	
	Section 20.6.10, “C API Prepared Statement Function Overview”
	

mysql_stmt_attr_get()
	Section 20.6.11.2, “mysql_stmt_attr_get()”
	
	Section 20.6.11.3, “mysql_stmt_attr_set()”
	
	Section 20.6.10, “C API Prepared Statement Function Overview”
	

mysql_stmt_attr_set()
	Section 20.6.11.3, “mysql_stmt_attr_set()”
	
	Section 20.6.11.10, “mysql_stmt_execute()”
	
	Section 20.6.11.11, “mysql_stmt_fetch()”
	
	Section 20.6.11.27, “mysql_stmt_store_result()”
	
	Section 20.6.5, “C API Data Structures”
	
	Section 20.6.10, “C API Prepared Statement Function Overview”
	
	Section 20.6.9.2, “C API Prepared Statement Type Conversions”
	
	Section E.2, “Restrictions on Server-Side Cursors”
	

mysql_stmt_bind_param()
	Section 20.6.11.4, “mysql_stmt_bind_param()”
	
	Section 20.6.11.10, “mysql_stmt_execute()”
	
	Section 20.6.11.20, “mysql_stmt_prepare()”
	
	Section 20.6.11.25, “mysql_stmt_send_long_data()”
	
	Section 20.6.9, “C API Prepared Statement Data Structures”
	
	Section 20.6.10, “C API Prepared Statement Function Overview”
	
	Section 20.6.18, “C API Prepared Statement Handling of Date and Time Values”
	

mysql_stmt_bind_result()
	Section 20.6.11.5, “mysql_stmt_bind_result()”
	
	Section 20.6.11.11, “mysql_stmt_fetch()”
	
	Section 20.6.11.12, “mysql_stmt_fetch_column()”
	
	Section 20.6.11.27, “mysql_stmt_store_result()”
	
	Section 20.6.9, “C API Prepared Statement Data Structures”
	
	Section 20.6.10, “C API Prepared Statement Function Overview”
	
	Section 20.6.18, “C API Prepared Statement Handling of Date and Time Values”
	

mysql_stmt_close()
	Section 20.6.11.6, “mysql_stmt_close()”
	
	Section 20.6.11.15, “mysql_stmt_init()”
	
	Section 20.6.9, “C API Prepared Statement Data Structures”
	
	Section 20.6.10, “C API Prepared Statement Function Overview”
	

mysql_stmt_data_seek()
	Section 20.6.11.7, “mysql_stmt_data_seek()”
	
	Section 20.6.11.23, “mysql_stmt_row_seek()”
	
	Section 20.6.11.27, “mysql_stmt_store_result()”
	
	Section 20.6.10, “C API Prepared Statement Function Overview”
	

mysql_stmt_errno()
	Section 20.6.11.8, “mysql_stmt_errno()”
	
	Section 20.6.11.11, “mysql_stmt_fetch()”
	
	Section 20.6.10, “C API Prepared Statement Function Overview”
	
	Section C.2, “Types of Error Values”
	

mysql_stmt_error()
	Section 20.6.11.9, “mysql_stmt_error()”
	
	Section 20.6.11.11, “mysql_stmt_fetch()”
	
	Section 20.6.11.20, “mysql_stmt_prepare()”
	
	Section 20.6.10, “C API Prepared Statement Function Overview”
	
	Section C.2, “Types of Error Values”
	

mysql_stmt_execute()
	Section 20.6.11.1, “mysql_stmt_affected_rows()”
	
	Section 20.6.11.3, “mysql_stmt_attr_set()”
	
	Section 20.6.11.10, “mysql_stmt_execute()”
	
	Section 20.6.11.11, “mysql_stmt_fetch()”
	
	Section 20.6.11.25, “mysql_stmt_send_long_data()”
	
	Section 20.6.11.27, “mysql_stmt_store_result()”
	
	Section 20.6.9, “C API Prepared Statement Data Structures”
	
	Section 20.6.10, “C API Prepared Statement Function Overview”
	
	Section 20.6.18, “C API Prepared Statement Handling of Date and Time Values”
	
	Section 20.6.9.2, “C API Prepared Statement Type Conversions”
	

mysql_stmt_fetch()
	Section 20.6.11.5, “mysql_stmt_bind_result()”
	
	Section 20.6.11.10, “mysql_stmt_execute()”
	
	Section 20.6.11.11, “mysql_stmt_fetch()”
	
	Section 20.6.11.22, “mysql_stmt_result_metadata()”
	
	Section 20.6.11.24, “mysql_stmt_row_tell()”
	
	Section 20.6.11.27, “mysql_stmt_store_result()”
	
	Section 20.6.9, “C API Prepared Statement Data Structures”
	
	Section 20.6.10, “C API Prepared Statement Function Overview”
	
	Section 20.6.9.2, “C API Prepared Statement Type Conversions”
	

mysql_stmt_fetch_column()
	Section 20.6.11.11, “mysql_stmt_fetch()”
	
	Section 20.6.11.12, “mysql_stmt_fetch_column()”
	
	Section 20.6.10, “C API Prepared Statement Function Overview”
	

mysql_stmt_field_count()
	Section 20.6.11.13, “mysql_stmt_field_count()”
	
	Section 20.6.10, “C API Prepared Statement Function Overview”
	

mysql_stmt_free_result()
	Section 20.6.11.3, “mysql_stmt_attr_set()”
	
	Section 20.6.11.14, “mysql_stmt_free_result()”
	
	Section 20.6.10, “C API Prepared Statement Function Overview”
	

mysql_stmt_init()
	Section 20.6.11.10, “mysql_stmt_execute()”
	
	Section 20.6.11.15, “mysql_stmt_init()”
	
	Section 20.6.11.20, “mysql_stmt_prepare()”
	
	Section 20.6.9, “C API Prepared Statement Data Structures”
	
	Section 20.6.11, “C API Prepared Statement Function Descriptions”
	
	Section 20.6.10, “C API Prepared Statement Function Overview”
	
	Section 20.6.8, “C API Prepared Statements”
	

mysql_stmt_insert_id()
	Section 20.6.11.16, “mysql_stmt_insert_id()”
	
	Section 20.6.10, “C API Prepared Statement Function Overview”
	

mysql_stmt_num_rows()
	Section 20.6.11.7, “mysql_stmt_data_seek()”
	
	Section 20.6.11.17, “mysql_stmt_num_rows()”
	
	Section 20.6.10, “C API Prepared Statement Function Overview”
	

mysql_stmt_param_count()
	Section 20.6.11.10, “mysql_stmt_execute()”
	
	Section 20.6.11.18, “mysql_stmt_param_count()”
	
	Section 20.6.10, “C API Prepared Statement Function Overview”
	

mysql_stmt_param_metadata()
	Section 20.6.11.19, “mysql_stmt_param_metadata()”
	
	Section 20.6.10, “C API Prepared Statement Function Overview”
	

mysql_stmt_prepare()
	Section 20.6.11.4, “mysql_stmt_bind_param()”
	
	Section 20.6.11.10, “mysql_stmt_execute()”
	
	Section 20.6.11.13, “mysql_stmt_field_count()”
	
	Section 20.6.11.20, “mysql_stmt_prepare()”
	
	Section 20.6.11.21, “mysql_stmt_reset()”
	
	Section 20.6.11.22, “mysql_stmt_result_metadata()”
	
	Section 20.6.9, “C API Prepared Statement Data Structures”
	
	Section 20.6.10, “C API Prepared Statement Function Overview”
	
	Section 20.6.18, “C API Prepared Statement Handling of Date and Time Values”
	
	Section 13.5, “SQL Syntax for Prepared Statements”
	

mysql_stmt_reset()
	Section 20.6.11.3, “mysql_stmt_attr_set()”
	
	Section 20.6.11.21, “mysql_stmt_reset()”
	
	Section 20.6.11.25, “mysql_stmt_send_long_data()”
	
	Section 20.6.10, “C API Prepared Statement Function Overview”
	

mysql_stmt_result_metadata()
	Section 20.6.11.11, “mysql_stmt_fetch()”
	
	Section 20.6.11.22, “mysql_stmt_result_metadata()”
	
	Section 20.6.11.27, “mysql_stmt_store_result()”
	
	Section 20.6.10, “C API Prepared Statement Function Overview”
	
	Section 20.6.9.2, “C API Prepared Statement Type Conversions”
	

mysql_stmt_row_seek()
	Section 20.6.11.23, “mysql_stmt_row_seek()”
	
	Section 20.6.11.24, “mysql_stmt_row_tell()”
	
	Section 20.6.11.27, “mysql_stmt_store_result()”
	
	Section 20.6.10, “C API Prepared Statement Function Overview”
	

mysql_stmt_row_tell()
	Section 20.6.11.23, “mysql_stmt_row_seek()”
	
	Section 20.6.11.24, “mysql_stmt_row_tell()”
	
	Section 20.6.11.27, “mysql_stmt_store_result()”
	
	Section 20.6.10, “C API Prepared Statement Function Overview”
	

mysql_stmt_send_long_data()
	Section 20.6.11.21, “mysql_stmt_reset()”
	
	Section 20.6.11.25, “mysql_stmt_send_long_data()”
	
	Section 20.6.10, “C API Prepared Statement Function Overview”
	

mysql_stmt_sqlstate()
	Section 20.6.11.26, “mysql_stmt_sqlstate()”
	
	Section 20.6.10, “C API Prepared Statement Function Overview”
	
	Section C.2, “Types of Error Values”
	

mysql_stmt_store_result()
	Section 20.6.11.3, “mysql_stmt_attr_set()”
	
	Section 20.6.11.7, “mysql_stmt_data_seek()”
	
	Section 20.6.11.11, “mysql_stmt_fetch()”
	
	Section 20.6.11.17, “mysql_stmt_num_rows()”
	
	Section 20.6.11.23, “mysql_stmt_row_seek()”
	
	Section 20.6.11.24, “mysql_stmt_row_tell()”
	
	Section 20.6.11.27, “mysql_stmt_store_result()”
	
	Section 20.6.5, “C API Data Structures”
	
	Section 20.6.10, “C API Prepared Statement Function Overview”
	

mysql_store_result()
	Section C.5.2.14, “Commands out of sync”
	
	Section 20.6.7.1, “mysql_affected_rows()”
	
	Section 20.6.7.9, “mysql_data_seek()”
	
	Section 20.6.7.13, “mysql_eof()”
	
	Section 20.6.7.17, “mysql_fetch_field()”
	
	Section 20.6.7.21, “mysql_fetch_row()”
	
	Section 20.6.7.22, “mysql_field_count()”
	
	Section 20.6.7.25, “mysql_free_result()”
	
	Section 20.6.7.46, “mysql_next_result()”
	
	Section 20.6.7.47, “mysql_num_fields()”
	
	Section 20.6.7.48, “mysql_num_rows()”
	
	Section 20.6.7.58, “mysql_row_seek()”
	
	Section 20.6.7.59, “mysql_row_tell()”
	
	Section 20.6.11.10, “mysql_stmt_execute()”
	
	Section 20.6.11.22, “mysql_stmt_result_metadata()”
	
	Section 20.6.7.69, “mysql_store_result()”
	
	Section 20.6.7.71, “mysql_use_result()”
	
	Section 20.6.5, “C API Data Structures”
	
	Section 20.6.6, “C API Function Overview”
	
	Section 4.5.1, “mysql — The MySQL Command-Line Tool”
	
	Section 14.7.1, “Description of the FEDERATED Storage Engine”
	
	Section 20.6.14.2, “What Results You Can Get from a Query”
	
	Section 20.6.14.1, “Why mysql_store_result() Sometimes
 Returns NULL After
 mysql_query() Returns Success”
	
	Section 20.6.4.2, “Writing C API Threaded Client Programs”
	

mysql_thread_end()
	Section 20.6.12.2, “mysql_thread_end()”
	
	Section 20.6.6, “C API Function Overview”
	
	Section 20.5, “libmysqld, the Embedded MySQL Server Library”
	
	Section 20.6.4.2, “Writing C API Threaded Client Programs”
	

mysql_thread_id()
	Section 20.6.7.50, “mysql_ping()”
	
	Section 20.6.7.70, “mysql_thread_id()”
	
	Section 20.6.6, “C API Function Overview”
	
	Section 20.6.15, “Controlling Automatic Reconnection Behavior”
	

mysql_thread_init()
	Section 20.6.12.1, “my_init()”
	
	Section 20.6.12.2, “mysql_thread_end()”
	
	Section 20.6.12.3, “mysql_thread_init()”
	
	Section 20.6.6, “C API Function Overview”
	
	Section 20.5, “libmysqld, the Embedded MySQL Server Library”
	
	Section 20.6.4.2, “Writing C API Threaded Client Programs”
	

mysql_thread_safe()
	Section 20.6.12.4, “mysql_thread_safe()”
	
	Section 20.6.6, “C API Function Overview”
	

mysql_use_result()
	Section C.5.2.14, “Commands out of sync”
	
	Section 20.6.7.9, “mysql_data_seek()”
	
	Section 20.6.7.13, “mysql_eof()”
	
	Section 20.6.7.21, “mysql_fetch_row()”
	
	Section 20.6.7.25, “mysql_free_result()”
	
	Section 20.6.7.46, “mysql_next_result()”
	
	Section 20.6.7.47, “mysql_num_fields()”
	
	Section 20.6.7.48, “mysql_num_rows()”
	
	Section 20.6.7.58, “mysql_row_seek()”
	
	Section 20.6.7.59, “mysql_row_tell()”
	
	Section 20.6.11.10, “mysql_stmt_execute()”
	
	Section 20.6.7.69, “mysql_store_result()”
	
	Section 20.6.7.71, “mysql_use_result()”
	
	Section C.5.2.8, “Out of memory”
	
	Section 20.6.5, “C API Data Structures”
	
	Section 20.6.6, “C API Function Overview”
	
	Section 4.5.1, “mysql — The MySQL Command-Line Tool”
	
	Section 20.6.14.2, “What Results You Can Get from a Query”
	
	Section 20.6.4.2, “Writing C API Threaded Client Programs”
	

mysql_warning_count()
	Section 20.6.7.46, “mysql_next_result()”
	
	Section 20.6.7.72, “mysql_warning_count()”
	
	Section 13.7.5.37, “SHOW WARNINGS Syntax”
	
	Section 20.6.6, “C API Function Overview”
	
	Section C.2, “Types of Error Values”
	

2.4. Notes for MySQL Community Server

2.4.1. Overview of MySQL Community Server Installation

	Determine whether MySQL runs and is supported on your platform.
 Not all platforms are equally suitable for running MySQL,
 and not all platforms on which MySQL is known to run are
 officially supported by Oracle Corporation.

	Choose which distribution to install.
 Several versions of MySQL are available, and most are
 available in multiple distribution formats. You can choose
 from prepackaged distributions containing binary
 (precompiled) programs or source code. When in doubt, use a
 binary distribution. We also provide public access to our
 current source trees for those who want to see our most
 recent developments and to help us test new code. To
 determine which version and type of distribution you should
 use, see Section 2.4.3, “Choosing Which MySQL Distribution to Install”.

	Download the distribution that you want to install.
 For download instructions, see
 Section 2.5, “How to Get MySQL”. To verify the integrity of
 the distribution, use the instructions in
 Section 2.6, “Verifying Package Integrity Using MD5 Checksums or
 GnuPG”.

	Install the distribution.
 To install MySQL from a binary distribution, use the
 instructions in
 Section 2.9, “Standard MySQL Installation from a Binary Distribution”. To install
 MySQL from a source distribution or from the current
 development source tree, use the instructions in
 Section 2.17, “Installing MySQL from Source”.

 If you encounter installation difficulties, see
 Section 2.20, “Operating System-Specific Notes”, for
 information on solving problems for particular platforms.

	Perform any necessary postinstallation setup.
 After installing MySQL, read
 Section 2.18, “Postinstallation Setup and Testing”, which contains important
 information about making sure the MySQL server is working
 properly. It also describes how to secure the initial MySQL
 user accounts, which have no passwords
 until you assign passwords. The information in this section
 applies whether you install MySQL using a binary or source
 distribution.

	Perform setup for running benchmarks (optional).
 If you want to use the MySQL benchmark scripts, Perl support
 for MySQL must be available. See
 Section 2.22, “Perl Installation Notes”, for more information.

 The sections immediately following this one contain necessary
 information about choosing, downloading, and verifying your
 distribution. The instructions in later sections of the chapter
 describe how to install the distribution that you choose. For
 binary distributions, see the instructions in
 Section 2.9, “Standard MySQL Installation from a Binary Distribution”. To build MySQL from
 source, use the instructions in
 Section 2.17, “Installing MySQL from Source”.

2.4.2. Operating Systems Supported by MySQL Community Server

 MySQL is available on a number of operating systems and platforms.
 For information about those platforms that are officially
 supported, see http://www.mysql.com/support/supportedplatforms/database.html on the
 MySQL Web site.

2.4.3. Choosing Which MySQL Distribution to Install

 When preparing to install MySQL, you should decide which version
 to use. MySQL development occurs in several release series, and
 you can pick the one that best fits your needs. After deciding
 which version to install, you can choose a distribution format.
 Releases are available in binary or source format.

2.4.3.1. Choosing Which Version of MySQL to Install

 The first decision to make is whether you want to use a
 production (stable) release or a development release. In the
 MySQL development process, multiple release series co-exist,
 each at a different stage of maturity.

 Production Releases

	
 MySQL 5.6: Latest General Availability (Production) release

	
 MySQL 5.5: Previous General Availability (Production) release

	
 MySQL 5.1: Older General Availability (Production) release

	
 MySQL 5.0: Older Production release nearing the end of the
 product lifecycle

 MySQL 4.1, 4.0, and 3.23 are old releases that are no longer
 supported.

 See http://www.mysql.com/about/legal/lifecycle/ for information
 about support policies and schedules.

 Normally, if you are beginning to use MySQL for the first time
 or trying to port it to some system for which there is no binary
 distribution, use the most recent General Availability series
 listed in the preceding descriptions. All MySQL releases, even
 those from development series, are checked with the MySQL
 benchmarks and an extensive test suite before being issued.

 If you are running an older system and want to upgrade, but do
 not want to take the chance of having a nonseamless upgrade, you
 should upgrade to the latest version in the same release series
 you are using (where only the last part of the version number is
 newer than yours). We have tried to fix only fatal bugs and make
 only small, relatively “safe” changes to that
 version.

 If you want to use new features not present in the production
 release series, you can use a version from a development series.
 Be aware that development releases are not as stable as
 production releases.

 We do not use a complete code freeze because this prevents us
 from making bugfixes and other fixes that must be done. We may
 add small things that should not affect anything that currently
 works in a production release. Naturally, relevant bugfixes from
 an earlier series propagate to later series.

 If you want to use the very latest sources containing all
 current patches and bugfixes, you can use one of our source code
 repositories (see
 Section 2.17.2, “Installing MySQL Using a Development Source Tree”). These are not
 “releases” as such, but are available as previews
 of the code on which future releases are to be based.

 The naming scheme in MySQL 5.0 uses release names
 that consist of three numbers and a suffix; for example,
 mysql-5.0.14-rc. The numbers
 within the release name are interpreted as follows:

	
 The first number (5) is the
 major version and describes the file format. All MySQL 5
 releases have the same file format.

	
 The second number (0) is
 the release level. Taken together, the major version and
 release level constitute the release series number.

	
 The third number (14) is
 the version number within the release series. This is
 incremented for each new release. Usually you want the
 latest version for the series you have chosen.

 For each minor update, the last number in the version string is
 incremented. When there are major new features or minor
 incompatibilities with previous versions, the second number in
 the version string is incremented. When the file format changes,
 the first number is increased.

 Release names also include a suffix to indicates the stability
 level of the release. Releases within a series progress through
 a set of suffixes to indicate how the stability level improves.
 The possible suffixes are:

	
 alpha indicates that the
 release is for preview purposes only. Known bugs should be
 documented in the
 Release
 Notes. Most alpha releases implement new commands
 and extensions. Active development that may involve major
 code changes can occur in an alpha release. However, we do
 conduct testing before issuing a release.

	
 beta indicates that the
 release is appropriate for use with new development. Within
 beta releases, the features and compatibility should remain
 consistent. However, beta releases may contain numerous and
 major unaddressed bugs.

 No APIs, externally visible structures, or columns for SQL
 statements will change during future beta, release
 candidate, or production releases.

	
 rc indicates a Release
 Candidate. Release candidates are believed to be stable,
 having passed all of MySQL's internal testing, and with all
 known fatal runtime bugs fixed. However, the release has not
 been in widespread use long enough to know for sure that all
 bugs have been identified. Only minor fixes are added. (A
 release candidate is what formerly was known as a gamma
 release.)

	
 If there is no suffix, it indicates that the release is a
 General Availability (GA) or Production release. GA releases
 are stable, having successfully passed through all earlier
 release stages and are believed to be reliable, free of
 serious bugs, and suitable for use in production systems.
 Only critical bugfixes are applied to the release.

 All releases of MySQL are run through our standard tests and
 benchmarks to ensure that they are relatively safe to use.
 Because the standard tests are extended over time to check for
 all previously found bugs, the test suite keeps getting better.

 All releases have been tested at least with these tools:

	An internal test suite.
 The mysql-test directory contains an
 extensive set of test cases. We run these tests for every
 server binary. See Section 21.1.2, “The MySQL Test Suite”, for
 more information about this test suite.

	The MySQL benchmark suite.
 This suite runs a range of common queries. It is also a
 test to determine whether the latest batch of
 optimizations actually made the code faster. See
 Section 8.1.3, “The MySQL Benchmark Suite”.

 We also perform additional integration and nonfunctional testing
 of the latest MySQL version in our internal production
 environment. Integration testing is done with different
 connectors, storage engines, replication modes, backup,
 partitioning, stored programs, and so forth in various
 combinations. Additional nonfunctional testing is done in areas
 of performance, concurrency, stress, high volume, upgrade and
 downgrade.

2.4.3.2. Choosing a Distribution Format

 After choosing which version of MySQL to install, you should
 decide whether to use a binary distribution or a source
 distribution. In most cases, you should probably use a binary
 distribution, if one exists for your platform. Binary
 distributions are available in native format for many platforms,
 such as RPM packages for Linux, DMG packages for Mac OS X, and
 PKG packages for Solaris. Distributions are also available in
 more generic formats such as Zip archives or compressed
 tar files.

 Reasons to choose a binary distribution include the following:

	
 Binary distributions generally are easier to install than
 source distributions.

	
 To satisfy different user requirements, we provide several
 servers in binary distributions. mysqld
 is an optimized server that is a smaller, faster binary.
 mysqld-debug is compiled with debugging
 support.

 Each of these servers is compiled from the same source
 distribution, though with different configuration options.
 All native MySQL clients can connect to servers from either
 MySQL version.

 Under some circumstances, you may be better off installing MySQL
 from a source distribution:

	
 You want to install MySQL at some explicit location. The
 standard binary distributions are ready to run at any
 installation location, but you might require even more
 flexibility to place MySQL components where you want.

	
 You want to configure mysqld to ensure
 that features are available that might not be included in
 the standard binary distributions. Here is a list of the
 most common extra options that you may want to use to ensure
 feature availability:

	
 --with-berkeley-db (not available on
 all platforms)

	
 --with-libwrap

	
 --with-named-z-libs (this is done for
 some of the binaries)

	
 --with-debug[=full]

 For additional information, see
 Section 2.17.3, “MySQL Source-Configuration Options”.

	
 You want to configure mysqld without some
 features that are included in the standard binary
 distributions. For example, distributions normally are
 compiled with support for all character sets. If you want a
 smaller MySQL server, you can recompile it with support for
 only the character sets you need.

	
 You want to use the latest sources from one of the Bazaar
 repositories to have access to all current bugfixes. For
 example, if you have found a bug and reported it to the
 MySQL development team, the bugfix is committed to the
 source repository and you can access it there. The bugfix
 does not appear in a release until a release actually is
 issued.

	
 You want to read (or modify) the C and C++ code that makes
 up MySQL. For this purpose, you should get a source
 distribution, because the source code is always the ultimate
 manual.

	
 Source distributions contain more tests and examples than
 binary distributions.

2.4.3.3. How and When Updates Are Released

 MySQL is evolving quite rapidly and we want to share new
 developments with other MySQL users. We try to produce a new
 release whenever we have new and useful features that others
 also seem to have a need for.

 We also try to help users who request features that are easy to
 implement. We take note of what our licensed users want, and we
 especially take note of what our support customers want and try
 to help them in this regard.

 No one is required to download a new
 release. The
 Release
 Notes help you determine whether the new release has
 something you really want.

 We use the following policy when updating MySQL:

	
 Enterprise Server releases are meant to appear every 18
 months, supplemented by quarterly service packs and monthly
 rapid updates. Community Server releases are meant to appear
 2–3 times per year.

	
 Releases are issued within each series. For each release,
 the last number in the version is one more than the previous
 release within the same series.

	
 Binary distributions for some platforms are made by us for
 major releases. Other people may make binary distributions
 for other systems, but probably less frequently.

	
 We make fixes available as soon as we have identified and
 corrected small or noncritical but annoying bugs. The fixes
 are available in source form immediately from our public
 Bazaar repositories, and are included in the next release.

	
 If by any chance a security vulnerability or critical bug is
 found in a release, our policy is to fix it in a new release
 as soon as possible. (We would like other companies to do
 this, too!)

2.4.3.4. MySQL Binaries Compiled by Oracle Corporation

 Oracle Corporation provides a set of binary distributions of
 MySQL. In addition to binaries provided in platform-specific
 package formats, we offer binary distributions for a number of
 platforms in the form of compressed tar files
 (.tar.gz files). See
 Section 2.9, “Standard MySQL Installation from a Binary Distribution”. For Windows
 distributions, see Section 2.10, “Installing MySQL on Microsoft Windows”.

 If you want to compile MySQL from a source distribution, see
 Section 2.17, “Installing MySQL from Source”. To compile a debug
 version of MySQL, see
 Section 2.17.3, “MySQL Source-Configuration Options” for options that
 enable debugging.

Chapter 3. Tutorial

Table of Contents
	3.1. Connecting to and Disconnecting from the Server
	3.2. Entering Queries
	3.3. Creating and Using a Database
		3.3.1. Creating and Selecting a Database
	3.3.2. Creating a Table
	3.3.3. Loading Data into a Table
	3.3.4. Retrieving Information from a Table

	3.4. Getting Information About Databases and Tables
	3.5. Using mysql in Batch Mode
	3.6. Examples of Common Queries
		3.6.1. The Maximum Value for a Column
	3.6.2. The Row Holding the Maximum of a Certain Column
	3.6.3. Maximum of Column per Group
	3.6.4. The Rows Holding the Group-wise Maximum of a Certain Column
	3.6.5. Using User-Defined Variables
	3.6.6. Using Foreign Keys
	3.6.7. Searching on Two Keys
	3.6.8. Calculating Visits Per Day
	3.6.9. Using AUTO_INCREMENT

	3.7. Using MySQL with Apache

 This chapter provides a tutorial introduction to MySQL by showing
 how to use the mysql client program to create and
 use a simple database. mysql (sometimes referred
 to as the “terminal monitor” or just
 “monitor”) is an interactive program that enables you
 to connect to a MySQL server, run queries, and view the results.
 mysql may also be used in batch mode: you place
 your queries in a file beforehand, then tell
 mysql to execute the contents of the file. Both
 ways of using mysql are covered here.

 To see a list of options provided by mysql,
 invoke it with the --help option:

shell> mysql --help

 This chapter assumes that mysql is installed on
 your machine and that a MySQL server is available to which you can
 connect. If this is not true, contact your MySQL administrator. (If
 you are the administrator, you need to consult
 the relevant portions of this manual, such as
 Chapter 5, MySQL Server Administration.)

 This chapter describes the entire process of setting up and using a
 database. If you are interested only in accessing an existing
 database, you may want to skip over the sections that describe how
 to create the database and the tables it contains.

 Because this chapter is tutorial in nature, many details are
 necessarily omitted. Consult the relevant sections of the manual for
 more information on the topics covered here.

3.1. Connecting to and Disconnecting from the Server

 To connect to the server, you will usually need to provide a MySQL
 user name when you invoke mysql and, most
 likely, a password. If the server runs on a machine other than the
 one where you log in, you will also need to specify a host name.
 Contact your administrator to find out what connection parameters
 you should use to connect (that is, what host, user name, and
 password to use). Once you know the proper parameters, you should
 be able to connect like this:

shell> mysql -h host -u user -p
Enter password: ********

 host and user represent the
 host name where your MySQL server is running and the user name of
 your MySQL account. Substitute appropriate values for your setup.
 The ******** represents your password; enter it
 when mysql displays the Enter
 password: prompt.

 If that works, you should see some introductory information
 followed by a mysql> prompt:

shell> mysql -h host -u user -p
Enter password: ********
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 25338 to server version: 5.0.96-standard

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql>

 The mysql> prompt tells you that
 mysql is ready for you to enter commands.

 If you are logging in on the same machine that MySQL is running
 on, you can omit the host, and simply use the following:

shell> mysql -u user -p

 If, when you attempt to log in, you get an error message such as
 ERROR 2002 (HY000): Can't connect to local MySQL server
 through socket '/tmp/mysql.sock' (2), it means that
 the MySQL server daemon (Unix) or service (Windows) is not
 running. Consult the administrator or see the section of
 Chapter 2, Installing and Upgrading MySQL that is appropriate to your operating
 system.

 For help with other problems often encountered when trying to log
 in, see Section C.5.2, “Common Errors When Using MySQL Programs”.

 Some MySQL installations permit users to connect as the anonymous
 (unnamed) user to the server running on the local host. If this is
 the case on your machine, you should be able to connect to that
 server by invoking mysql without any options:

shell> mysql

 After you have connected successfully, you can disconnect any time
 by typing QUIT (or \q) at
 the mysql> prompt:

mysql> QUIT
Bye

 On Unix, you can also disconnect by pressing Control+D.

 Most examples in the following sections assume that you are
 connected to the server. They indicate this by the
 mysql> prompt.

19.16. The INFORMATION_SCHEMA USER_PRIVILEGES Table

 The USER_PRIVILEGES table provides
 information about global privileges. This information comes from
 the mysql.user grant table.

	INFORMATION_SCHEMA Name	SHOW Name	Remarks
	GRANTEE	 	'user_name'@'host_name'
 value, MySQL extension
	TABLE_CATALOG	 	NULL, MySQL extension
	PRIVILEGE_TYPE	 	MySQL extension
	IS_GRANTABLE	 	MySQL extension

 Notes:

	
 This is a nonstandard table. It takes its values from the
 mysql.user table.

8.7. Locking Issues

 MySQL manages contention for table contents using locking:

	
 Internal locking is performed within the MySQL server itself
 to manage contention for table contents by multiple threads.
 This type of locking is internal because it is performed
 entirely by the server and involves no other programs. See
 Section 8.7.1, “Internal Locking Methods”.

	
 External locking occurs when the server and other programs
 lock MyISAM table files to
 coordinate among themselves which program can access the
 tables at which time. See Section 8.7.4, “External Locking”.

8.7.1. Internal Locking Methods

 This section discusses internal locking; that is, locking
 performed within the MySQL server itself to manage contention
 for table contents by multiple sessions. This type of locking is
 internal because it is performed entirely by the server and
 involves no other programs. External locking occurs when the
 server and other programs lock
 MyISAM table files to coordinate
 among themselves which program can access the tables at which
 time. See Section 8.7.4, “External Locking”.

 MySQL uses table-level locking for MyISAM,
 MEMORY and MERGE tables,
 page-level locking for BDB tables, and
 row-level locking for InnoDB tables.

 In many cases, you can make an educated guess about which
 locking type is best for an application, but generally it is
 difficult to say that a given lock type is better than another.
 Everything depends on the application and different parts of an
 application may require different lock types.

 To decide whether you want to use a storage engine with
 row-level locking, you should look at what your application does
 and what mix of select and update statements it uses. For
 example, most Web applications perform many selects, relatively
 few deletes, updates based mainly on key values, and inserts
 into a few specific tables. The base MySQL
 MyISAM setup is very well tuned for this.

 Table locking in MySQL is deadlock-free for storage engines that
 use table-level locking. Deadlock avoidance is managed by always
 requesting all needed locks at once at the beginning of a query
 and always locking the tables in the same order.

 MySQL grants table write locks as follows:

	
 If there are no locks on the table, put a write lock on it.

	
 Otherwise, put the lock request in the write lock queue.

 MySQL grants table read locks as follows:

	
 If there are no write locks on the table, put a read lock on
 it.

	
 Otherwise, put the lock request in the read lock queue.

 Table updates are given higher priority than table retrievals.
 Therefore, when a lock is released, the lock is made available
 to the requests in the write lock queue and then to the requests
 in the read lock queue. This ensures that updates to a table are
 not “starved” even if there is heavy
 SELECT activity for the table.
 However, if you have many updates for a table,
 SELECT statements wait until
 there are no more updates.

 For information on altering the priority of reads and writes,
 see Section 8.7.2, “Table Locking Issues”.

 You can analyze the table lock contention on your system by
 checking the
 Table_locks_immediate and
 Table_locks_waited status
 variables, which indicate the number of times that requests for
 table locks could be granted immediately and the number that had
 to wait, respectively:

mysql> SHOW STATUS LIKE 'Table%';
+-----------------------+---------+
| Variable_name | Value |
+-----------------------+---------+
| Table_locks_immediate | 1151552 |
| Table_locks_waited | 15324 |
+-----------------------+---------+

 The MyISAM storage engine supports concurrent
 inserts to reduce contention between readers and writers for a
 given table: If a MyISAM table has no free
 blocks in the middle of the data file, rows are always inserted
 at the end of the data file. In this case, you can freely mix
 concurrent INSERT and
 SELECT statements for a
 MyISAM table without locks. That is, you can
 insert rows into a MyISAM table at the same
 time other clients are reading from it. Holes can result from
 rows having been deleted from or updated in the middle of the
 table. If there are holes, concurrent inserts are disabled but
 are enabled again automatically when all holes have been filled
 with new data. This behavior is altered by the
 concurrent_insert system
 variable. See Section 8.7.3, “Concurrent Inserts”.

 If you acquire a table lock explicitly with
 LOCK TABLES, you can request a
 READ LOCAL lock rather than a
 READ lock to enable other sessions to perform
 concurrent inserts while you have the table locked.

 To perform many INSERT and
 SELECT operations on a table
 real_table when concurrent inserts are not
 possible, you can insert rows into a temporary table
 temp_table and update the real table with the
 rows from the temporary table periodically. This can be done
 with the following code:

mysql> LOCK TABLES real_table WRITE, temp_table WRITE;
mysql> INSERT INTO real_table SELECT * FROM temp_table;
mysql> DELETE FROM temp_table;
mysql> UNLOCK TABLES;

 InnoDB uses row locks and
 BDB uses page locks. Deadlocks are possible
 for these storage engines because they automatically acquire
 locks during the processing of SQL statements, not at the start
 of the transaction.

 Advantages of row-level locking:

	
 Fewer lock conflicts when different sessions access
 different rows

	
 Fewer changes for rollbacks

	
 Possible to lock a single row for a long time

 Disadvantages of row-level locking:

	
 Requires more memory than page-level or table-level locks

	
 Slower than page-level or table-level locks when used on a
 large part of the table because you must acquire many more
 locks

	
 Slower than other locks if you often do GROUP
 BY operations on a large part of the data or if
 you must scan the entire table frequently

 Generally, table locks are superior to page-level or row-level
 locks in the following cases:

	
 Most statements for the table are reads

	
 Statements for the table are a mix of reads and writes,
 where writes are updates or deletes for a single row that
 can be fetched with one key read:

UPDATE tbl_name SET column=value WHERE unique_key_col=key_value;
DELETE FROM tbl_name WHERE unique_key_col=key_value;

	
 SELECT combined with
 concurrent INSERT statements,
 and very few UPDATE or
 DELETE statements

	
 Many scans or GROUP BY operations on the
 entire table without any writers

 With higher-level locks, you can more easily tune applications
 by supporting locks of different types, because the lock
 overhead is less than for row-level locks.

 Options other than row-level or page-level locking:

	
 Versioning (such as that used in MySQL for concurrent
 inserts) where it is possible to have one writer at the same
 time as many readers. This means that the database or table
 supports different views for the data depending on when
 access begins. Other common terms for this are “time
 travel,” “copy on write,” or “copy
 on demand.”

	
 Copy on demand is in many cases superior to page-level or
 row-level locking. However, in the worst case, it can use
 much more memory than using normal locks.

	
 Instead of using row-level locks, you can employ
 application-level locks, such as those provided by
 GET_LOCK() and
 RELEASE_LOCK() in MySQL.
 These are advisory locks, so they work only with
 applications that cooperate with each other. See
 Section 12.14, “Miscellaneous Functions”.

8.7.2. Table Locking Issues

 To achieve a very high lock speed, MySQL uses table locking
 (instead of page, row, or column locking) for all storage
 engines except InnoDB,
 BDB, and
 NDBCLUSTER.

 For InnoDB and BDB tables,
 MySQL uses table locking only if you explicitly lock the table
 with LOCK TABLES. For these
 storage engines, avoid using LOCK
 TABLES at all, because InnoDB uses
 automatic row-level locking and BDB uses
 page-level locking to ensure transaction isolation.

 For large tables, table locking is often better than row
 locking, but there are some disadvantages:

	
 Table locking enables many sessions to read from a table at
 the same time, but if a session wants to write to a table,
 it must first get exclusive access. During the update, all
 other sessions that want to access this particular table
 must wait until the update is done.

	
 Table locking causes problems in cases such as when a
 session is waiting because the disk is full and free space
 needs to become available before the session can proceed. In
 this case, all sessions that want to access the problem
 table are also put in a waiting state until more disk space
 is made available.

 Table locking is also disadvantageous under the following
 scenario:

	
 A session issues a SELECT
 that takes a long time to run.

	
 Another session then issues an
 UPDATE on the same table.
 This session waits until the
 SELECT is finished.

	
 Another session issues another
 SELECT statement on the same
 table. Because UPDATE has
 higher priority than SELECT,
 this SELECT waits for the
 UPDATE to finish,
 after waiting for the first
 SELECT to finish.

 The following items describe some ways to avoid or reduce
 contention caused by table locking:

	
 Try to get the SELECT
 statements to run faster so that they lock tables for a
 shorter time. You might have to create some summary tables
 to do this.

	
 Start mysqld with
 --low-priority-updates. For
 storage engines that use only table-level locking (such as
 MyISAM, MEMORY, and
 MERGE), this gives all statements that
 update (modify) a table lower priority than
 SELECT statements. In this
 case, the second SELECT
 statement in the preceding scenario would execute before the
 UPDATE statement, and would
 not need to wait for the first
 SELECT to finish.

	
 To specify that all updates issued in a specific connection
 should be done with low priority, set the
 low_priority_updates server
 system variable equal to 1.

	
 To give a specific INSERT,
 UPDATE, or
 DELETE statement lower
 priority, use the LOW_PRIORITY attribute.

	
 To give a specific SELECT
 statement higher priority, use the
 HIGH_PRIORITY attribute. See
 Section 13.2.8, “SELECT Syntax”.

	
 Start mysqld with a low value for the
 max_write_lock_count system
 variable to force MySQL to temporarily elevate the priority
 of all SELECT statements that
 are waiting for a table after a specific number of inserts
 to the table occur. This permits READ
 locks after a certain number of WRITE
 locks.

	
 If you have problems with
 INSERT combined with
 SELECT, consider switching to
 MyISAM tables, which support concurrent
 SELECT and
 INSERT statements. (See
 Section 8.7.3, “Concurrent Inserts”.)

	
 If you mix inserts and deletes on the same table,
 INSERT DELAYED may be of
 great help. See Section 13.2.5.2, “INSERT DELAYED Syntax”.

	
 If you have problems with mixed
 SELECT and
 DELETE statements, the
 LIMIT option to
 DELETE may help. See
 Section 13.2.2, “DELETE Syntax”.

	
 Using SQL_BUFFER_RESULT with
 SELECT statements can help to
 make the duration of table locks shorter. See
 Section 13.2.8, “SELECT Syntax”.

	
 You could change the locking code in
 mysys/thr_lock.c to use a single queue.
 In this case, write locks and read locks would have the same
 priority, which might help some applications.

 Here are some tips concerning table locks in MySQL:

	
 Concurrent users are not a problem if you do not mix updates
 with selects that need to examine many rows in the same
 table.

	
 You can use LOCK TABLES to
 increase speed, because many updates within a single lock is
 much faster than updating without locks. Splitting table
 contents into separate tables may also help.

	
 If you encounter speed problems with table locks in MySQL,
 you may be able to improve performance by converting some of
 your tables to InnoDB or
 BDB tables. See
 Section 14.2, “The InnoDB Storage Engine”, and
 Section 14.5, “The BDB (BerkeleyDB) Storage
 Engine”.

8.7.3. Concurrent Inserts

 The MyISAM storage engine supports concurrent
 inserts to reduce contention between readers and writers for a
 given table: If a MyISAM table has no holes
 in the data file (deleted rows in the middle), an
 INSERT statement can be executed
 to add rows to the end of the table at the same time that
 SELECT statements are reading
 rows from the table. If there are multiple
 INSERT statements, they are
 queued and performed in sequence, concurrently with the
 SELECT statements. The results of
 a concurrent INSERT may not be
 visible immediately.

 The concurrent_insert system
 variable can be set to modify the concurrent-insert processing.
 By default, the variable is set to 1 and concurrent inserts are
 handled as just described. If
 concurrent_insert is set to 0,
 concurrent inserts are disabled. If the variable is set to 2,
 concurrent inserts at the end of the table are permitted even
 for tables that have deleted rows. See also the description of
 the concurrent_insert system
 variable.

 Under circumstances where concurrent inserts can be used, there
 is seldom any need to use the DELAYED
 modifier for INSERT statements.
 See Section 13.2.5.2, “INSERT DELAYED Syntax”.

 If you are using the binary log, concurrent inserts are
 converted to normal inserts for CREATE ...
 SELECT or
 INSERT ...
 SELECT statements. This is done to ensure that you can
 re-create an exact copy of your tables by applying the log
 during a backup operation. See Section 5.2.3, “The Binary Log”. In
 addition, for those statements a read lock is placed on the
 selected-from table such that inserts into that table are
 blocked. The effect is that concurrent inserts for that table
 must wait as well.

 With LOAD DATA
 INFILE, if you specify CONCURRENT
 with a MyISAM table that satisfies the
 condition for concurrent inserts (that is, it contains no free
 blocks in the middle), other sessions can retrieve data from the
 table while LOAD DATA is
 executing. Use of the CONCURRENT option
 affects the performance of LOAD
 DATA a bit, even if no other session is using the
 table at the same time.

 If you specify HIGH_PRIORITY, it overrides
 the effect of the
 --low-priority-updates option if
 the server was started with that option. It also causes
 concurrent inserts not to be used.

 For LOCK
 TABLE, the difference between READ
 LOCAL and READ is that
 READ LOCAL permits nonconflicting
 INSERT statements (concurrent
 inserts) to execute while the lock is held. However, this cannot
 be used if you are going to manipulate the database using
 processes external to the server while you hold the lock.

8.7.4. External Locking

 External locking is the use of file system locking to manage
 contention for MyISAM database
 tables by multiple processes. External locking is used in
 situations where a single process such as the MySQL server
 cannot be assumed to be the only process that requires access to
 tables. Here are some examples:

	
 If you run multiple servers that use the same database
 directory (not recommended), each server must have external
 locking enabled.

	
 If you use myisamchk to perform table
 maintenance operations on
 MyISAM tables, you must either
 ensure that the server is not running, or that the server
 has external locking enabled so that it locks table files as
 necessary to coordinate with myisamchk
 for access to the tables. The same is true for use of
 myisampack to pack
 MyISAM tables.

 If the server is run with external locking enabled, you can
 use myisamchk at any time for read
 operations such a checking tables. In this case, if the
 server tries to update a table that
 myisamchk is using, the server will wait
 for myisamchk to finish before it
 continues.

 If you use myisamchk for write operations
 such as repairing or optimizing tables, or if you use
 myisampack to pack tables, you
 must always ensure that the
 mysqld server is not using the table. If
 you don't stop mysqld, you should at
 least do a mysqladmin flush-tables before
 you run myisamchk. Your tables
 may become corrupted if the server and
 myisamchk access the tables
 simultaneously.

 With external locking in effect, each process that requires
 access to a table acquires a file system lock for the table
 files before proceeding to access the table. If all necessary
 locks cannot be acquired, the process is blocked from accessing
 the table until the locks can be obtained (after the process
 that currently holds the locks releases them).

 External locking affects server performance because the server
 must sometimes wait for other processes before it can access
 tables.

 External locking is unnecessary if you run a single server to
 access a given data directory (which is the usual case) and if
 no other programs such as myisamchk need to
 modify tables while the server is running. If you only
 read tables with other programs, external
 locking is not required, although myisamchk
 might report warnings if the server changes tables while
 myisamchk is reading them.

 With external locking disabled, to use
 myisamchk, you must either stop the server
 while myisamchk executes or else lock and
 flush the tables before running myisamchk.
 (See Section 8.9.1, “System Factors and Startup Parameter Tuning”.) To avoid this
 requirement, use the CHECK TABLE
 and REPAIR TABLE statements to
 check and repair MyISAM tables.

 For mysqld, external locking is controlled by
 the value of the
 skip_external_locking system
 variable. When this variable is enabled, external locking is
 disabled, and vice versa. From MySQL 4.0 on, external locking is
 disabled by default.

 Use of external locking can be controlled at server startup by
 using the --external-locking or
 --skip-external-locking
 option.

 If you do use external locking option to enable updates to
 MyISAM tables from many MySQL
 processes, you must ensure that the following conditions are
 satisfied:

	
 You should not use the query cache for queries that use
 tables that are updated by another process.

	
 You should not start the server with the
 --delay-key-write=ALL option
 or use the DELAY_KEY_WRITE=1 table option
 for any shared tables. Otherwise, index corruption can
 occur.

 The easiest way to satisfy these conditions is to always use
 --external-locking together with
 --delay-key-write=OFF and
 --query-cache-size=0. (This is
 not done by default because in many setups it is useful to have
 a mixture of the preceding options.)

B.8. MySQL 5.0 FAQ: Migration

Questions
	B.8.1:
 Where can I find information on how to migrate from MySQL
 4.1 to MySQL 5.0?

	B.8.2:
 How has storage engine (table type) support changed in MySQL
 5.0 from previous versions?

Questions and Answers
B.8.1:
 Where can I find information on how to migrate from MySQL
 4.1 to MySQL 5.0?

 For detailed upgrade information, see
 Section 2.19.1, “Upgrading MySQL”. Do not skip a major version when
 upgrading, but rather complete the process in steps, upgrading
 from one major version to the next in each step. This may seem
 more complicated, but it will you save time and trouble—if
 you encounter problems during the upgrade, their origin will be
 easier to identify, either by you or—if you have a MySQL
 Enterprise subscription—by MySQL support.

B.8.2:
 How has storage engine (table type) support changed in MySQL
 5.0 from previous versions?

 Storage engine support has changed as follows:

	
 Support for ISAM tables was removed in
 MySQL 5.0 and you should now use the
 MyISAM storage engine in place of
 ISAM. To convert a table
 tblname from
 ISAM to MyISAM,
 simply issue a statement such as this one:

ALTER TABLE tblname ENGINE=MYISAM;

	
 Internal RAID for
 MyISAM tables was also removed in MySQL
 5.0. This was formerly used to allow large tables in file
 systems that did not support file sizes greater than 2GB.
 All modern file systems allow for larger tables; in
 addition, there are now other solutions such as
 MERGE tables and views.

	
 The VARCHAR column type now
 retains trailing spaces in all storage engines.

	
 MEMORY tables (formerly known as
 HEAP tables) can also contain
 VARCHAR columns.

1.6. MySQL Information Sources

 This section lists sources of additional information that you may
 find helpful, such as the MySQL mailing lists and user forums, and
 Internet Relay Chat.

1.6.1. MySQL Mailing Lists

 This section introduces the MySQL mailing lists and provides
 guidelines as to how the lists should be used. When you subscribe
 to a mailing list, you receive all postings to the list as email
 messages. You can also send your own questions and answers to the
 list.

 To subscribe to or unsubscribe from any of the mailing lists
 described in this section, visit
 http://lists.mysql.com/. For most of them, you can
 select the regular version of the list where you get individual
 messages, or a digest version where you get one large message per
 day.

 Please do not send messages about subscribing
 or unsubscribing to any of the mailing lists, because such
 messages are distributed automatically to thousands of other
 users.

 Your local site may have many subscribers to a MySQL mailing list.
 If so, the site may have a local mailing list, so that messages
 sent from lists.mysql.com to your site are
 propagated to the local list. In such cases, please contact your
 system administrator to be added to or dropped from the local
 MySQL list.

 To have traffic for a mailing list go to a separate mailbox in
 your mail program, set up a filter based on the message headers.
 You can use either the List-ID: or
 Delivered-To: headers to identify list
 messages.

 The MySQL mailing lists are as follows:

	
 announce

 The list for announcements of new versions of MySQL and
 related programs. This is a low-volume list to which all MySQL
 users should subscribe.

	
 mysql

 The main list for general MySQL discussion. Please note that
 some topics are better discussed on the more-specialized
 lists. If you post to the wrong list, you may not get an
 answer.

	
 bugs

 The list for people who want to stay informed about issues
 reported since the last release of MySQL or who want to be
 actively involved in the process of bug hunting and fixing.
 See Section 1.7, “How to Report Bugs or Problems”.

	
 internals

 The list for people who work on the MySQL code. This is also
 the forum for discussions on MySQL development and for posting
 patches.

	
 mysqldoc

 The list for people who work on the MySQL documentation.

	
 benchmarks

 The list for anyone interested in performance issues.
 Discussions concentrate on database performance (not limited
 to MySQL), but also include broader categories such as
 performance of the kernel, file system, disk system, and so
 on.

	
 packagers

 The list for discussions on packaging and distributing MySQL.
 This is the forum used by distribution maintainers to exchange
 ideas on packaging MySQL and on ensuring that MySQL looks and
 feels as similar as possible on all supported platforms and
 operating systems.

	
 java

 The list for discussions about the MySQL server and Java. It
 is mostly used to discuss JDBC drivers such as MySQL
 Connector/J.

	
 win32

 The list for all topics concerning the MySQL software on
 Microsoft operating systems, such as Windows 9x, Me, NT, 2000,
 XP, and 2003.

	
 myodbc

 The list for all topics concerning connecting to the MySQL
 server with ODBC.

	
 gui-tools

 The list for all topics concerning MySQL graphical user
 interface tools such as MySQL Workbench.

	
 cluster

 The list for discussion of MySQL Cluster.

	
 dotnet

 The list for discussion of the MySQL server and the .NET
 platform. It is mostly related to MySQL Connector/Net.

	
 plusplus

 The list for all topics concerning programming with the C++
 API for MySQL.

	
 perl

 The list for all topics concerning Perl support for MySQL with
 DBD::mysql.

 If you're unable to get an answer to your questions from a MySQL
 mailing list or forum, one option is to purchase support from
 Oracle. This puts you in direct contact with MySQL developers.

 The following MySQL mailing lists are in languages other than
 English. These lists are not operated by Oracle.

	
 <mysql-france-subscribe@yahoogroups.com>

 A French mailing list.

	
 <list@tinc.net>

 A Korean mailing list. To subscribe, email subscribe
 mysql your@email.address to this list.

	
 <mysql-de-request@lists.4t2.com>

 A German mailing list. To subscribe, email subscribe
 mysql-de your@email.address to this list. You can
 find information about this mailing list at
 http://www.4t2.com/mysql/.

	
 <mysql-br-request@listas.linkway.com.br>

 A Portuguese mailing list. To subscribe, email
 subscribe mysql-br your@email.address to
 this list.

	
 <mysql-alta@elistas.net>

 A Spanish mailing list. To subscribe, email subscribe
 mysql your@email.address to this list.

1.6.1.1. Guidelines for Using the Mailing Lists

 Please do not post mail messages from your browser with HTML
 mode turned on. Many users do not read mail with a browser.

 When you answer a question sent to a mailing list, if you
 consider your answer to have broad interest, you may want to
 post it to the list instead of replying directly to the
 individual who asked. Try to make your answer general enough
 that people other than the original poster may benefit from it.
 When you post to the list, please make sure that your answer is
 not a duplication of a previous answer.

 Try to summarize the essential part of the question in your
 reply. Do not feel obliged to quote the entire original message.

 When answers are sent to you individually and not to the mailing
 list, it is considered good etiquette to summarize the answers
 and send the summary to the mailing list so that others may have
 the benefit of responses you received that helped you solve your
 problem.

1.6.2. MySQL Community Support at the MySQL Forums

 The forums at http://forums.mysql.com are an
 important community resource. Many forums are available, grouped
 into these general categories:

	
 Migration

	
 MySQL Usage

	
 MySQL Connectors

	
 Programming Languages

	
 Tools

	
 3rd-Party Applications

	
 Storage Engines

	
 MySQL Technology

	
 SQL Standards

	
 Business

1.6.3. MySQL Community Support on Internet Relay Chat (IRC)

 In addition to the various MySQL mailing lists and forums, you can
 find experienced community people on Internet Relay Chat (IRC).
 These are the best networks/channels currently known to us:

 freenode (see
 http://www.freenode.net/ for servers)

	
 #mysql is primarily for MySQL questions,
 but other database and general SQL questions are welcome.
 Questions about PHP, Perl, or C in combination with MySQL are
 also common.

 If you are looking for IRC client software to connect to an IRC
 network, take a look at xChat
 (http://www.xchat.org/). X-Chat (GPL licensed) is
 available for Unix as well as for Windows platforms (a free
 Windows build of X-Chat is available at
 http://www.silverex.org/download/).

1.6.4. MySQL Enterprise

 Oracle offers technical support in the form of MySQL Enterprise.
 For organizations that rely on the MySQL DBMS for
 business-critical production applications, MySQL Enterprise is a
 commercial subscription offering which includes:

	
 MySQL Enterprise Server

	
 MySQL Enterprise Monitor

	
 Monthly Rapid Updates and Quarterly Service Packs

	
 MySQL Knowledge Base

	
 24x7 Technical and Consultative Support

 MySQL Enterprise is available in multiple tiers, giving you the
 flexibility to choose the level of service that best matches your
 needs. For more information, see
 MySQL Enterprise.

19.15. The INFORMATION_SCHEMA TRIGGERS Table

 The TRIGGERS table provides
 information about triggers. You must have the
 SUPER privilege to access this
 table. You can see information only if you have the
 SUPER privilege).

	INFORMATION_SCHEMA Name	SHOW Name	Remarks
	TRIGGER_CATALOG	 	NULL
	TRIGGER_SCHEMA	 	
	TRIGGER_NAME	Trigger	
	EVENT_MANIPULATION	Event	
	EVENT_OBJECT_CATALOG	 	NULL
	EVENT_OBJECT_SCHEMA	 	
	EVENT_OBJECT_TABLE	Table	
	ACTION_ORDER	 	0
	ACTION_CONDITION	 	NULL
	ACTION_STATEMENT	Statement	
	ACTION_ORIENTATION	 	ROW
	ACTION_TIMING	Timing	
	ACTION_REFERENCE_OLD_TABLE	 	NULL
	ACTION_REFERENCE_NEW_TABLE	 	NULL
	ACTION_REFERENCE_OLD_ROW	 	OLD
	ACTION_REFERENCE_NEW_ROW	 	NEW
	CREATED	 	NULL (0)
	SQL_MODE	 	MySQL extension
	DEFINER	 	MySQL extension

 Notes:

	
 The TRIGGERS table was added in
 MySQL 5.0.10.

	
 The names in the “SHOW
 Name” column refer to the SHOW
 TRIGGERS statement, not SHOW
 CREATE TRIGGER. See Section 13.7.5.35, “SHOW TRIGGERS Syntax”.

	
 TRIGGER_SCHEMA and
 TRIGGER_NAME: The name of the database in
 which the trigger occurs and the trigger name, respectively.

	
 EVENT_MANIPULATION: The trigger event. This
 is the type of operation on the associated table for which the
 trigger activates. The value is 'INSERT' (a
 row was inserted), 'DELETE' (a row was
 deleted), or 'UPDATE' (a row was modified).

	
 EVENT_OBJECT_SCHEMA and
 EVENT_OBJECT_TABLE: As noted in
 Section 18.3, “Using Triggers”, every trigger is associated with
 exactly one table. These columns indicate the database in
 which this table occurs, and the table name, respectively.

	
 ACTION_ORDER: The ordinal position of the
 trigger's action within the list of all similar triggers on
 the same table. Currently, this value is always
 0, because it is not possible to have more
 than one trigger with the same
 EVENT_MANIPULATION and
 ACTION_TIMING on the same table.

	
 ACTION_STATEMENT: The trigger body; that
 is, the statement executed when the trigger activates. This
 text uses UTF-8 encoding.

	
 ACTION_ORIENTATION: Always contains the
 value 'ROW'.

	
 ACTION_TIMING: Whether the trigger
 activates before or after the triggering event. The value is
 'BEFORE' or 'AFTER'.

	
 ACTION_REFERENCE_OLD_ROW and
 ACTION_REFERENCE_NEW_ROW: The old and new
 column identifiers, respectively. This means that
 ACTION_REFERENCE_OLD_ROW always contains
 the value 'OLD' and
 ACTION_REFERENCE_NEW_ROW always contains
 the value 'NEW'.

	
 SQL_MODE: The SQL mode in effect when the
 trigger was created, and under which the trigger executes. For
 the permitted values, see Section 5.1.7, “Server SQL Modes”.

	
 DEFINER: The account of the user who
 created the trigger, in
 'user_name'@'host_name'
 format. This column was added in MySQL 5.0.17.

	
 The following columns currently always contain
 NULL: TRIGGER_CATALOG,
 EVENT_OBJECT_CATALOG,
 ACTION_CONDITION,
 ACTION_REFERENCE_OLD_TABLE,
 ACTION_REFERENCE_NEW_TABLE, and
 CREATED.

 Example, using the ins_sum trigger defined in
 Section 18.3, “Using Triggers”:

mysql> SELECT * FROM INFORMATION_SCHEMA.TRIGGERS
 -> WHERE TRIGGER_SCHEMA='test' AND TRIGGER_NAME='ins_sum'\G
*************************** 1. row ***************************
 TRIGGER_CATALOG: NULL
 TRIGGER_SCHEMA: test
 TRIGGER_NAME: ins_sum
 EVENT_MANIPULATION: INSERT
 EVENT_OBJECT_CATALOG: NULL
 EVENT_OBJECT_SCHEMA: test
 EVENT_OBJECT_TABLE: account
 ACTION_ORDER: 0
 ACTION_CONDITION: NULL
 ACTION_STATEMENT: SET @sum = @sum + NEW.amount
 ACTION_ORIENTATION: ROW
 ACTION_TIMING: BEFORE
ACTION_REFERENCE_OLD_TABLE: NULL
ACTION_REFERENCE_NEW_TABLE: NULL
 ACTION_REFERENCE_OLD_ROW: OLD
 ACTION_REFERENCE_NEW_ROW: NEW
 CREATED: NULL
 SQL_MODE:
 DEFINER: me@localhost

A.7. GNU Readline License

 The following software may be included in this product:

 GNU Readline Library

GNU Readline Library
With respect to MySQL Server/Cluster software licensed
under GNU General Public License, you are receiving a
copy of the GNU Readline Library in source code. The
terms of any Oracle license that might accompany the
Oracle programs do NOT apply to the GNU Readline Library;
it is licensed under the following license, separately
from the Oracle programs you receive. Oracle elects to
use GNU General Public License version 2 (GPL) for any
software where a choice of GPL license versions are
made available with the language indicating that GPLv2
or any later version may be used, or where a choice of
which version of the GPL is applied is unspecified.

 This component is licensed under
 Section A.4, “GNU General Public License Version 2.0, June 1991”

Chapter 12. Functions and Operators

Table of Contents
	12.1. Function and Operator Reference
	12.2. Type Conversion in Expression Evaluation
	12.3. Operators
		12.3.1. Operator Precedence
	12.3.2. Comparison Functions and Operators
	12.3.3. Logical Operators
	12.3.4. Assignment Operators

	12.4. Control Flow Functions
	12.5. String Functions
		12.5.1. String Comparison Functions
	12.5.2. Regular Expressions

	12.6. Numeric Functions and Operators
		12.6.1. Arithmetic Operators
	12.6.2. Mathematical Functions

	12.7. Date and Time Functions
	12.8. What Calendar Is Used By MySQL?
	12.9. Full-Text Search Functions
		12.9.1. Natural Language Full-Text Searches
	12.9.2. Boolean Full-Text Searches
	12.9.3. Full-Text Searches with Query Expansion
	12.9.4. Full-Text Stopwords
	12.9.5. Full-Text Restrictions
	12.9.6. Fine-Tuning MySQL Full-Text Search
	12.9.7. Adding a Collation for Full-Text Indexing

	12.10. Cast Functions and Operators
	12.11. Bit Functions
	12.12. Encryption and Compression Functions
	12.13. Information Functions
	12.14. Miscellaneous Functions
	12.15. Functions and Modifiers for Use with GROUP BY Clauses
		12.15.1. GROUP BY (Aggregate) Functions
	12.15.2. GROUP BY Modifiers
	12.15.3. MySQL Extensions to GROUP BY

	12.16. Spatial Extensions
		12.16.1. Introduction to MySQL Spatial Support
	12.16.2. The OpenGIS Geometry Model
	12.16.3. Supported Spatial Data Formats
	12.16.4. Creating a Spatially Enabled MySQL Database
	12.16.5. Spatial Analysis Functions
	12.16.6. Optimizing Spatial Analysis
	12.16.7. MySQL Conformance and Compatibility

	12.17. Precision Math
		12.17.1. Types of Numeric Values
	12.17.2. DECIMAL Data Type Characteristics
	12.17.3. Expression Handling
	12.17.4. Rounding Behavior
	12.17.5. Precision Math Examples

 Expressions can be used at several points in SQL statements, such as
 in the ORDER BY or HAVING
 clauses of SELECT statements, in the
 WHERE clause of a
 SELECT,
 DELETE, or
 UPDATE statement, or in
 SET
 statements. Expressions can be written using literal values, column
 values, NULL, built-in functions, stored
 functions, user-defined functions, and operators. This chapter
 describes the functions and operators that are permitted for writing
 expressions in MySQL. Instructions for writing stored functions and
 user-defined functions are given in
 Section 18.2, “Using Stored Routines (Procedures and Functions)”, and
 Section 21.2, “Adding New Functions to MySQL”. See
 Section 9.2.3, “Function Name Parsing and Resolution”, for the rules describing how
 the server interprets references to different kinds of functions.

 An expression that contains NULL always produces
 a NULL value unless otherwise indicated in the
 documentation for a particular function or operator.

Note

 By default, there must be no whitespace between a function name
 and the parenthesis following it. This helps the MySQL parser
 distinguish between function calls and references to tables or
 columns that happen to have the same name as a function. However,
 spaces around function arguments are permitted.

 You can tell the MySQL server to accept spaces after function names
 by starting it with the
 --sql-mode=IGNORE_SPACE option. (See
 Section 5.1.7, “Server SQL Modes”.) Individual client programs can request
 this behavior by using the CLIENT_IGNORE_SPACE
 option for mysql_real_connect(). In
 either case, all function names become reserved words.

 For the sake of brevity, most examples in this chapter display the
 output from the mysql program in abbreviated
 form. Rather than showing examples in this format:

mysql> SELECT MOD(29,9);
+-----------+
| mod(29,9) |
+-----------+
| 2 |
+-----------+
1 rows in set (0.00 sec)

 This format is used instead:

mysql> SELECT MOD(29,9);
 -> 2

12.1. Function and Operator Reference

Table 12.1. Functions/Operators
	Name	Description
	ABS()	Return the absolute value
	ACOS()	Return the arc cosine
	ADDDATE()	Add time values (intervals) to a date value
	ADDTIME()	Add time
	AES_DECRYPT()	Decrypt using AES
	AES_ENCRYPT()	Encrypt using AES
	AND, &&	Logical AND
	ASCII()	Return numeric value of left-most character
	ASIN()	Return the arc sine
	=	Assign a value (as part of a SET statement, or as part of the SET clause in an UPDATE statement)
	:=	Assign a value
	ATAN2(), ATAN()	Return the arc tangent of the two arguments
	ATAN()	Return the arc tangent
	AVG()	Return the average value of the argument
	BENCHMARK()	Repeatedly execute an expression
	BETWEEN ... AND ...	Check whether a value is within a range of values
	BIN()	Return a string containing binary representation of a number
	BINARY	Cast a string to a binary string
	BIT_AND()	Return bitwise and
	BIT_COUNT()	Return the number of bits that are set
	BIT_LENGTH()	Return length of argument in bits
	BIT_OR()	Return bitwise or
	BIT_XOR()	Return bitwise xor
	&	Bitwise AND
	~	Invert bits
	|	Bitwise OR
	^	Bitwise XOR
	CASE	Case operator
	CAST()	Cast a value as a certain type
	CEIL()	Return the smallest integer value not less than the argument
	CEILING()	Return the smallest integer value not less than the argument
	CHAR_LENGTH()	Return number of characters in argument
	CHAR()	Return the character for each integer passed
	CHARACTER_LENGTH()	Synonym for CHAR_LENGTH()
	CHARSET()	Return the character set of the argument
	COALESCE()	Return the first non-NULL argument
	COERCIBILITY()	Return the collation coercibility value of the string argument
	COLLATION()	Return the collation of the string argument
	COMPRESS()	Return result as a binary string
	CONCAT_WS()	Return concatenate with separator
	CONCAT()	Return concatenated string
	CONNECTION_ID()	Return the connection ID (thread ID) for the connection
	CONV()	Convert numbers between different number bases
	CONVERT_TZ()	Convert from one timezone to another
	CONVERT()	Cast a value as a certain type
	COS()	Return the cosine
	COT()	Return the cotangent
	COUNT(DISTINCT)	Return the count of a number of different values
	COUNT()	Return a count of the number of rows returned
	CRC32()	Compute a cyclic redundancy check value
	CURDATE()	Return the current date
	CURRENT_DATE(), CURRENT_DATE	Synonyms for CURDATE()
	CURRENT_TIME(), CURRENT_TIME	Synonyms for CURTIME()
	CURRENT_TIMESTAMP(), CURRENT_TIMESTAMP	Synonyms for NOW()
	CURRENT_USER(), CURRENT_USER	The authenticated user name and host name
	CURTIME()	Return the current time
	DATABASE()	Return the default (current) database name
	DATE_ADD()	Add time values (intervals) to a date value
	DATE_FORMAT()	Format date as specified
	DATE_SUB()	Subtract a time value (interval) from a date
	DATE()	Extract the date part of a date or datetime expression
	DATEDIFF()	Subtract two dates
	DAY()	Synonym for DAYOFMONTH()
	DAYNAME()	Return the name of the weekday
	DAYOFMONTH()	Return the day of the month (0-31)
	DAYOFWEEK()	Return the weekday index of the argument
	DAYOFYEAR()	Return the day of the year (1-366)
	DECODE()	Decodes a string encrypted using ENCODE()
	DEFAULT()	Return the default value for a table column
	DEGREES()	Convert radians to degrees
	DES_DECRYPT()	Decrypt a string
	DES_ENCRYPT()	Encrypt a string
	DIV	Integer division
	/	Division operator
	ELT()	Return string at index number
	ENCODE()	Encode a string
	ENCRYPT()	Encrypt a string
	<=>	NULL-safe equal to operator
	=	Equal operator
	EXP()	Raise to the power of
	EXPORT_SET()	Return a string such that for every bit set in the value bits, you get an on string and for every unset bit, you get an off string
	EXTRACT()	Extract part of a date
	FIELD()	Return the index (position) of the first argument in the subsequent arguments
	FIND_IN_SET()	Return the index position of the first argument within the second argument
	FLOOR()	Return the largest integer value not greater than the argument
	FORMAT()	Return a number formatted to specified number of decimal places
	FOUND_ROWS()	For a SELECT with a LIMIT clause, the number of rows that would be returned were there no LIMIT clause
	FROM_DAYS()	Convert a day number to a date
	FROM_UNIXTIME()	Format UNIX timestamp as a date
	GET_FORMAT()	Return a date format string
	GET_LOCK()	Get a named lock
	>=	Greater than or equal operator
	>	Greater than operator
	GREATEST()	Return the largest argument
	GROUP_CONCAT()	Return a concatenated string
	HEX()	Return a hexadecimal representation of a decimal or string value
	HOUR()	Extract the hour
	IF()	If/else construct
	IFNULL()	Null if/else construct
	IN()	Check whether a value is within a set of values
	INET_ATON()	Return the numeric value of an IP address
	INET_NTOA()	Return the IP address from a numeric value
	INSERT()	Insert a substring at the specified position up to the specified number of characters
	INSTR()	Return the index of the first occurrence of substring
	INTERVAL()	Return the index of the argument that is less than the first argument
	IS_FREE_LOCK()	Checks whether the named lock is free
	IS NOT NULL	NOT NULL value test
	IS NOT	Test a value against a boolean
	IS NULL	NULL value test
	IS_USED_LOCK()	Checks whether the named lock is in use. Return connection identifier if true.
	IS	Test a value against a boolean
	ISNULL()	Test whether the argument is NULL
	LAST_DAY	Return the last day of the month for the argument
	LAST_INSERT_ID()	Value of the AUTOINCREMENT column for the last INSERT
	LCASE()	Synonym for LOWER()
	LEAST()	Return the smallest argument
	<<	Left shift
	LEFT()	Return the leftmost number of characters as specified
	LENGTH()	Return the length of a string in bytes
	<=	Less than or equal operator
	<	Less than operator
	LIKE	Simple pattern matching
	LN()	Return the natural logarithm of the argument
	LOAD_FILE()	Load the named file
	LOCALTIME(), LOCALTIME	Synonym for NOW()
	LOCALTIMESTAMP, LOCALTIMESTAMP()	Synonym for NOW()
	LOCATE()	Return the position of the first occurrence of substring
	LOG10()	Return the base-10 logarithm of the argument
	LOG2()	Return the base-2 logarithm of the argument
	LOG()	Return the natural logarithm of the first argument
	LOWER()	Return the argument in lowercase
	LPAD()	Return the string argument, left-padded with the specified string
	LTRIM()	Remove leading spaces
	MAKE_SET()	Return a set of comma-separated strings that have the corresponding bit in bits set
	MAKEDATE()	Create a date from the year and day of year
	MAKETIME()	Create time from hour, minute, second
	MASTER_POS_WAIT()	Block until the slave has read and applied all updates up to the specified position
	MATCH	Perform full-text search
	MAX()	Return the maximum value
	MD5()	Calculate MD5 checksum
	MICROSECOND()	Return the microseconds from argument
	MID()	Return a substring starting from the specified position
	MIN()	Return the minimum value
	-	Minus operator
	MINUTE()	Return the minute from the argument
	MOD()	Return the remainder
	% or MOD	Modulo operator
	MONTH()	Return the month from the date passed
	MONTHNAME()	Return the name of the month
	NAME_CONST()	Causes the column to have the given name
	NOT BETWEEN ... AND ...	Check whether a value is not within a range of values
	!=, <>	Not equal operator
	NOT IN()	Check whether a value is not within a set of values
	NOT LIKE	Negation of simple pattern matching
	NOT REGEXP	Negation of REGEXP
	NOT, !	Negates value
	NOW()	Return the current date and time
	NULLIF()	Return NULL if expr1 = expr2
	OCT()	Return a string containing octal representation of a number
	OCTET_LENGTH()	Synonym for LENGTH()
	OLD_PASSWORD()	Return the value of the pre-4.1 implementation of PASSWORD
	||, OR	Logical OR
	ORD()	Return character code for leftmost character of the argument
	PASSWORD()	Calculate and return a password string
	PERIOD_ADD()	Add a period to a year-month
	PERIOD_DIFF()	Return the number of months between periods
	PI()	Return the value of pi
	+	Addition operator
	POSITION()	Synonym for LOCATE()
	POW()	Return the argument raised to the specified power
	POWER()	Return the argument raised to the specified power
	PROCEDURE ANALYSE()	Analyze the results of a query
	QUARTER()	Return the quarter from a date argument
	QUOTE()	Escape the argument for use in an SQL statement
	RADIANS()	Return argument converted to radians
	RAND()	Return a random floating-point value
	REGEXP	Pattern matching using regular expressions
	RELEASE_LOCK()	Releases the named lock
	REPEAT()	Repeat a string the specified number of times
	REPLACE()	Replace occurrences of a specified string
	REVERSE()	Reverse the characters in a string
	>>	Right shift
	RIGHT()	Return the specified rightmost number of characters
	RLIKE	Synonym for REGEXP
	ROUND()	Round the argument
	ROW_COUNT()	The number of rows updated
	RPAD()	Append string the specified number of times
	RTRIM()	Remove trailing spaces
	SCHEMA()	Synonym for DATABASE()
	SEC_TO_TIME()	Converts seconds to 'HH:MM:SS' format
	SECOND()	Return the second (0-59)
	SESSION_USER()	Synonym for USER()
	SHA1(), SHA()	Calculate an SHA-1 160-bit checksum
	SIGN()	Return the sign of the argument
	SIN()	Return the sine of the argument
	SLEEP()	Sleep for a number of seconds
	SOUNDEX()	Return a soundex string
	SOUNDS LIKE	Compare sounds
	SPACE()	Return a string of the specified number of spaces
	SQRT()	Return the square root of the argument
	STD()	Return the population standard deviation
	STDDEV_POP()	Return the population standard deviation
	STDDEV_SAMP()	Return the sample standard deviation
	STDDEV()	Return the population standard deviation
	STR_TO_DATE()	Convert a string to a date
	STRCMP()	Compare two strings
	SUBDATE()	Synonym for DATE_SUB() when invoked with three arguments
	SUBSTR()	Return the substring as specified
	SUBSTRING_INDEX()	Return a substring from a string before the specified number of occurrences of the delimiter
	SUBSTRING()	Return the substring as specified
	SUBTIME()	Subtract times
	SUM()	Return the sum
	SYSDATE()	Return the time at which the function executes
	SYSTEM_USER()	Synonym for USER()
	TAN()	Return the tangent of the argument
	TIME_FORMAT()	Format as time
	TIME_TO_SEC()	Return the argument converted to seconds
	TIME()	Extract the time portion of the expression passed
	TIMEDIFF()	Subtract time
	*	Multiplication operator
	TIMESTAMP()	With a single argument, this function returns the date or datetime expression; with two arguments, the sum of the arguments
	TIMESTAMPADD()	Add an interval to a datetime expression
	TIMESTAMPDIFF()	Subtract an interval from a datetime expression
	TO_DAYS()	Return the date argument converted to days
	TRIM()	Remove leading and trailing spaces
	TRUNCATE()	Truncate to specified number of decimal places
	UCASE()	Synonym for UPPER()
	-	Change the sign of the argument
	UNCOMPRESS()	Uncompress a string compressed
	UNCOMPRESSED_LENGTH()	Return the length of a string before compression
	UNHEX()	Return a string containing hex representation of a number
	UNIX_TIMESTAMP()	Return a UNIX timestamp
	UPPER()	Convert to uppercase
	USER()	The user name and host name provided by the client
	UTC_DATE()	Return the current UTC date
	UTC_TIME()	Return the current UTC time
	UTC_TIMESTAMP()	Return the current UTC date and time
	UUID()	Return a Universal Unique Identifier (UUID)
	VALUES()	Defines the values to be used during an INSERT
	VAR_POP()	Return the population standard variance
	VAR_SAMP()	Return the sample variance
	VARIANCE()	Return the population standard variance
	VERSION()	Returns a string that indicates the MySQL server version
	WEEK()	Return the week number
	WEEKDAY()	Return the weekday index
	WEEKOFYEAR()	Return the calendar week of the date (0-53)
	XOR	Logical XOR
	YEAR()	Return the year
	YEARWEEK()	Return the year and week

9.3. Reserved Words

 Certain words such as SELECT,
 DELETE, or
 BIGINT are reserved and require
 special treatment for use as identifiers such as table and column
 names. This may also be true for the names of built-in functions.

 Reserved words are permitted as identifiers if you quote them as
 described in Section 9.2, “Schema Object Names”:

mysql> CREATE TABLE interval (begin INT, end INT);
ERROR 1064 (42000): You have an error in your SQL syntax ...
near 'interval (begin INT, end INT)'

mysql> CREATE TABLE `interval` (begin INT, end INT);
Query OK, 0 rows affected (0.01 sec)

 Exception: A word that follows a period in a qualified name must
 be an identifier, so it need not be quoted even if it is reserved:

mysql> CREATE TABLE mydb.interval (begin INT, end INT);
Query OK, 0 rows affected (0.01 sec)

 Names of built-in functions are permitted as identifiers but may
 require care to be used as such. For example,
 COUNT is acceptable as a column name. However,
 by default, no whitespace is permitted in function invocations
 between the function name and the following
 “(” character. This requirement
 enables the parser to distinguish whether the name is used in a
 function call or in nonfunction context. For further detail on
 recognition of function names, see
 Section 9.2.3, “Function Name Parsing and Resolution”.

 The words in the following table are explicitly reserved in MySQL
 5.0. At some point, you might upgrade to a higher
 version, so it is a good idea to have a look at future reserved
 words, too. You can find these in the manuals that cover higher
 versions of MySQL. Most of the words in the table are forbidden by
 standard SQL as column or table names (for example,
 GROUP). A few are reserved because MySQL needs
 them and uses a yacc parser. A reserved word
 can be used as an identifier if you quote it.

 For a more detailed list of reserved words, including differences
 between versions, see
 Reserved Words in MySQL 5.0.

Table 9.2. Reserved Words in MySQL 5.0.96
	ADD	ALL	ALTER
	ANALYZE	AND	AS
	ASC	ASENSITIVE	BEFORE
	BETWEEN	BIGINT	BINARY
	BLOB	BOTH	BY
	CALL	CASCADE	CASE
	CHANGE	CHAR	CHARACTER
	CHECK	COLLATE	COLUMN
	CONDITION	CONSTRAINT	CONTINUE
	CONVERT	CREATE	CROSS
	CURRENT_DATE	CURRENT_TIME	CURRENT_TIMESTAMP
	CURRENT_USER	CURSOR	DATABASE
	DATABASES	DAY_HOUR	DAY_MICROSECOND
	DAY_MINUTE	DAY_SECOND	DEC
	DECIMAL	DECLARE	DEFAULT
	DELAYED	DELETE	DESC
	DESCRIBE	DETERMINISTIC	DISTINCT
	DISTINCTROW	DIV	DOUBLE
	DROP	DUAL	EACH
	ELSE	ELSEIF	ENCLOSED
	ESCAPED	EXISTS	EXIT
	EXPLAIN	FALSE	FETCH
	FLOAT	FLOAT4	FLOAT8
	FOR	FORCE	FOREIGN
	FROM	FULLTEXT	GRANT
	GROUP	HAVING	HIGH_PRIORITY
	HOUR_MICROSECOND	HOUR_MINUTE	HOUR_SECOND
	IF	IGNORE	IN
	INDEX	INFILE	INNER
	INOUT	INSENSITIVE	INSERT
	INT	INT1	INT2
	INT3	INT4	INT8
	INTEGER	INTERVAL	INTO
	IS	ITERATE	JOIN
	KEY	KEYS	KILL
	LEADING	LEAVE	LEFT
	LIKE	LIMIT	LINES
	LOAD	LOCALTIME	LOCALTIMESTAMP
	LOCK	LONG	LONGBLOB
	LONGTEXT	LOOP	LOW_PRIORITY
	MATCH	MEDIUMBLOB	MEDIUMINT
	MEDIUMTEXT	MIDDLEINT	MINUTE_MICROSECOND
	MINUTE_SECOND	MOD	MODIFIES
	NATURAL	NOT	NO_WRITE_TO_BINLOG
	NULL	NUMERIC	ON
	OPTIMIZE	OPTION	OPTIONALLY
	OR	ORDER	OUT
	OUTER	OUTFILE	PRECISION
	PRIMARY	PROCEDURE	PURGE
	READ	READS	REAL
	REFERENCES	REGEXP	RELEASE
	RENAME	REPEAT	REPLACE
	REQUIRE	RESTRICT	RETURN
	REVOKE	RIGHT	RLIKE
	SCHEMA	SCHEMAS	SECOND_MICROSECOND
	SELECT	SENSITIVE	SEPARATOR
	SET	SHOW	SMALLINT
	SONAME	SPATIAL	SPECIFIC
	SQL	SQLEXCEPTION	SQLSTATE
	SQLWARNING	SQL_BIG_RESULT	SQL_CALC_FOUND_ROWS
	SQL_SMALL_RESULT	SSL	STARTING
	STRAIGHT_JOIN	TABLE	TERMINATED
	THEN	TINYBLOB	TINYINT
	TINYTEXT	TO	TRAILING
	TRIGGER	TRUE	UNDO
	UNION	UNIQUE	UNLOCK
	UNSIGNED	UPDATE	USAGE
	USE	USING	UTC_DATE
	UTC_TIME	UTC_TIMESTAMP	VALUES
	VARBINARY	VARCHAR	VARCHARACTER
	VARYING	WHEN	WHERE
	WHILE	WITH	WRITE
	XOR	YEAR_MONTH	ZEROFILL

Table 9.3. New Reserved Words in MySQL 5.0
	ASENSITIVE	CALL	CONDITION
	CONNECTION	CONTINUE	CURSOR
	DECLARE	DETERMINISTIC	EACH
	ELSEIF	EXIT	FETCH
	GOTO	INOUT	INSENSITIVE
	ITERATE	LABEL	LEAVE
	LOOP	MODIFIES	OUT
	READS	RELEASE	REPEAT
	RETURN	SCHEMA	SCHEMAS
	SENSITIVE	SPECIFIC	SQL
	SQLEXCEPTION	SQLSTATE	SQLWARNING
	TRIGGER	UNDO	UPGRADE
	WHILE	 	

 MySQL permits some keywords to be used as unquoted identifiers
 because many people previously used them. Examples are those in
 the following list:

	
 ACTION

	
 BIT

	
 DATE

	
 ENUM

	
 NO

	
 TEXT

	
 TIME

	
 TIMESTAMP

7.2. Database Backup Methods

 This section summarizes some general methods for making backups.

 Making Backups with
 mysqldump or
 mysqlhotcopy

 The mysqldump program and the
 mysqlhotcopy script can make backups.
 mysqldump is more general because it can back
 up all kinds of tables. mysqlhotcopy works only
 with some storage engines. (See Section 7.4, “Using mysqldump for Backups”,
 and Section 4.6.9, “mysqlhotcopy — A Database Backup Program”.)

 For InnoDB tables, it is possible to perform an
 online backup that takes no locks on tables using the
 --single-transaction option to
 mysqldump. See Section 7.3.1, “Establishing a Backup Policy”.

 Making Backups by Copying Table
 Files

 For storage engines that represent each table using its own files,
 tables can be backed up by copying those files. For example,
 MyISAM tables are stored as files, so it is
 easy to do a backup by copying files (*.frm,
 *.MYD, and *.MYI files).
 To get a consistent backup, stop the server or lock and flush the
 relevant tables:

LOCK TABLES tbl_list READ;
FLUSH TABLES tbl_list;

 You need only a read lock; this enables other clients to continue
 to query the tables while you are making a copy of the files in
 the database directory. The
 FLUSH TABLES
 statement is needed to ensure that the all active index pages are
 written to disk before you start the backup. See
 Section 13.3.5, “LOCK TABLES and
 UNLOCK
 TABLES Syntax”, and Section 13.7.6.2, “FLUSH Syntax”.

 You can also create a binary backup simply by copying all table
 files, as long as the server isn't updating anything. The
 mysqlhotcopy script uses this method. (But note
 that table file copying methods do not work if your database
 contains InnoDB tables.
 mysqlhotcopy does not work for
 InnoDB tables because InnoDB
 does not necessarily store table contents in database directories.
 Also, even if the server is not actively updating data,
 InnoDB may still have modified data cached in
 memory and not flushed to disk.)

 Making Delimited-Text File
 Backups

 To create a text file containing a table's data, you can use
 SELECT * INTO OUTFILE
 'file_name' FROM
 tbl_name. The file is created
 on the MySQL server host, not the client host. For this statement,
 the output file cannot already exist because permitting files to
 be overwritten constitutes a security risk. See
 Section 13.2.8, “SELECT Syntax”. This method works for any kind of data
 file, but saves only table data, not the table structure.

 Another way to create text data files (along with files containing
 CREATE TABLE statements for the
 backed up tables) is to use mysqldump with the
 --tab option. See
 Section 7.4.3, “Dumping Data in Delimited-Text Format with mysqldump”.

 To reload a delimited-text data file, use
 LOAD DATA
 INFILE or mysqlimport.

 Making Incremental Backups by Enabling the
 Binary Log

 MySQL supports incremental backups: You must start the server with
 the --log-bin option to enable
 binary logging; see Section 5.2.3, “The Binary Log”. The binary log
 files provide you with the information you need to replicate
 changes to the database that are made subsequent to the point at
 which you performed a backup. At the moment you want to make an
 incremental backup (containing all changes that happened since the
 last full or incremental backup), you should rotate the binary log
 by using FLUSH
 LOGS. This done, you need to copy to the backup location
 all binary logs which range from the one of the moment of the last
 full or incremental backup to the last but one. These binary logs
 are the incremental backup; at restore time, you apply them as
 explained in Section 7.5, “Point-in-Time (Incremental) Recovery Using the Binary Log”. The next
 time you do a full backup, you should also rotate the binary log
 using FLUSH LOGS,
 mysqldump --flush-logs, or
 mysqlhotcopy --flushlog. See
 Section 4.5.4, “mysqldump — A Database Backup Program”, and Section 4.6.9, “mysqlhotcopy — A Database Backup Program”.

 Making Backups Using Replication
 Slaves

 If you have performance problems with your master server while
 making backups, one strategy that can help is to set up
 replication and perform backups on the slave rather than on the
 master. See Section 16.3.1, “Using Replication for Backups”.

 If you are backing up a slave replication server, you should back
 up its master.info and
 relay-log.info files when you back up the
 slave's databases, regardless of the backup method you choose.
 These information files are always needed to resume replication
 after you restore the slave's data. If your slave is replicating
 LOAD DATA
 INFILE statements, you should also back up any
 SQL_LOAD-* files that exist in the directory
 that the slave uses for this purpose. The slave needs these files
 to resume replication of any interrupted
 LOAD DATA
 INFILE operations. The location of this directory is the
 value of the --slave-load-tmpdir
 option. If the server was not started with that option, the
 directory location is the value of the
 tmpdir system variable.

 Recovering Corrupt Tables

 If you have to restore MyISAM tables that have
 become corrupt, try to recover them using
 REPAIR TABLE or myisamchk
 -r first. That should work in 99.9% of all cases. If
 myisamchk fails, see
 Section 7.6, “MyISAM Table Maintenance and Crash Recovery”.

 Making Backups Using a File System
 Snapshot

 If you are using a Veritas file system, you can make a backup like
 this:

	
 From a client program, execute
 FLUSH TABLES WITH READ
 LOCK.

	
 From another shell, execute mount vxfs
 snapshot.

	
 From the first client, execute
 UNLOCK
 TABLES.

	
 Copy files from the snapshot.

	
 Unmount the snapshot.

 Similar snapshot capabilities may be available in other file
 systems, such as LVM or ZFS.

5.2. MySQL Server Logs

 MySQL Server has several logs that can help you find out what
 activity is taking place.

	Log Type	Information Written to Log
	Error log	Problems encountered starting, running, or stopping
 mysqld
	General query log	Established client connections and statements received from clients
	Binary log	Statements that change data (also used for replication)
	Relay log	Data changes received from a replication master server
	Slow query log	Queries that took more than
 long_query_time seconds to
 execute

 By default, no logs are enabled (except the error log on Windows).
 The following log-specific sections provide information about the
 server options that enable logging.

 By default, the server writes files for all enabled logs in the data
 directory. You can force the server to close and reopen the log
 files (or in some cases switch to a new log file) by flushing the
 logs. Log flushing occurs when you issue a
 FLUSH LOGS
 statement; execute mysqladmin with a
 flush-logs or refresh
 argument; or execute mysqldump with a
 --flush-logs or
 --master-data option. See
 Section 13.7.6.2, “FLUSH Syntax”, Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”, and
 Section 4.5.4, “mysqldump — A Database Backup Program”. In addition, the binary log is flushed
 when its size reaches the value of the
 max_binlog_size system variable.

 The relay log is used only on slave replication servers, to hold
 data changes from the master server that must also be made on the
 slave. For discussion of relay log contents and configuration, see
 Section 16.2.2.1, “The Slave Relay Log”.

 For information about log maintenance operations such as expiration
 of old log files, see Section 5.2.5, “Server Log Maintenance”.

 For information about keeping logs secure, see
 Section 6.1.2.3, “Passwords and Logging”.

5.2.1. The Error Log

 The error log contains information indicating when
 mysqld was started and stopped and also any
 critical errors that occur while the server is running. If
 mysqld notices a table that needs to be
 automatically checked or repaired, it writes a message to the
 error log.

 On some operating systems, the error log contains a stack trace if
 mysqld dies. The trace can be used to determine
 where mysqld died. See
 Section 21.3, “Debugging and Porting MySQL”.

 In the following discussion, “console” means
 stderr, the standard error output; this is your
 terminal or console window unless the standard error output has
 been redirected.

 On Windows, the --log-error and
 --console options both affect error
 logging:

	
 Without --log-error,
 mysqld writes error messages to
 host_name.err
 in the data directory.

	
 With
 --log-error[=file_name],
 mysqld writes error messages to an error
 log file. The server uses the named file if present, creating
 it in in the data directory unless an absolute path name is
 given to specify a different directory. If no file is named,
 the default name is
 host_name.err
 in the data directory.

	
 If --console is given,
 mysqld writes error messages to the
 console, unless --log-error is
 also given. If both options are present, the last one takes
 precedence.

 In addition, on Windows, events and error messages are written to
 the Windows Event Log within the Application log. Entries marked
 as Warning and Note are
 written to the Event Log, but not informational messages such as
 information statements from individual storage engines. These log
 entries have a source of MySQL. You cannot
 disable writing information to the Windows Event Log.

 On Unix and Unix-like systems, mysqld writes
 error log messages as follows:

	
 Without --log-error,
 mysqld writes error messages to the
 console.

	
 With
 --log-error[=file_name],
 mysqld writes error messages to an error
 log file. The server uses the named file if present, creating
 it in the data directory unless an absolute path name is given
 to specify a different directory. If no file is named, the
 default name is
 host_name.err
 in the data directory.

 At runtime, log_error system
 variable indicates the the error log file name if error output is
 written to a file.

 If you flush the logs using
 FLUSH LOGS or
 mysqladmin flush-logs and
 mysqld is writing the error log to a file (for
 example, if it was started with the
 --log-error option), it renames the
 current log file with the suffix -old, then
 creates a new empty log file. Be aware that a second log-flushing
 operation thus causes the original error log file to be lost
 unless you save it under a different name. For example, you can
 use the following commands to save the file:

shell> mysqladmin flush-logs
shell> mv host_name.err-old backup-directory

 No error log renaming occurs when the logs are flushed if the
 server is not writing to a named file.

 If you use mysqld_safe to start
 mysqld, mysqld_safe arranges
 for mysqld to write error messages to a log
 file. If you specify a file name using
 --log-error to
 mysqld_safe or mysqld, that
 file name is used. Otherwise, mysqld_safe uses
 the default error log file.

 If mysqld_safe is used to start
 mysqld and mysqld dies
 unexpectedly, mysqld_safe notices that it needs
 to restart mysqld and writes a
 restarted mysqld message to the error log.

 The --log-warnings option or
 log_warnings system variable can
 be used to control warning logging to the error log. The default
 value is enabled (1). Warning logging can be disabled using a
 value of 0. If the value is greater than 1, aborted connections
 are written to the error log. See
 Section C.5.2.11, “Communication Errors and Aborted Connections”.

5.2.2. The General Query Log

 The general query log is a general record of what
 mysqld is doing. The server writes information
 to this log when clients connect or disconnect, and it logs each
 SQL statement received from clients. The general query log can be
 very useful when you suspect an error in a client and want to know
 exactly what the client sent to mysqld.

 mysqld writes statements to the query log in
 the order that it receives them, which might differ from the order
 in which they are executed. This logging order is in contrast with
 that of the binary log, for which statements are written after
 they are executed but before any locks are released. (Also, the
 query log contains all statements, whereas the binary log does not
 contain statements that only select data.)

 To enable the general query log, start mysqld
 with the
 --log[=file_name]
 or -l [file_name]
 option.

 If the general query log file is enabled but no name is specified,
 the default name is
 host_name.log and
 the server creates the file in the same directory where it creates
 the PID file. If a name is given, the server creates the file in
 the data directory unless an absolute path name is given to
 specify a different directory.

 Server restarts and log flushing do not cause a new general query
 log file to be generated (although flushing closes and reopens
 it). On Unix, to rename the file and create a new one, use the
 following commands:

shell> mv host_name.log host_name-old.log
shell> mysqladmin flush-logs
shell> mv host_name-old.log backup-directory

 On Windows, you cannot rename a log file while the server has it
 open before MySQL 5.0.17. You must stop the server, rename the
 file, and then restart the server to create a new log file. As of
 5.0.17, this applies only to the error log. However, a stop and
 restart can be avoided by using
 FLUSH LOGS, which
 causes the server to rename the error log with an
 -old suffix and open a new error log.

 The general query log should be protected because logged
 statements might contain passwords. See
 Section 6.1.2.3, “Passwords and Logging”.

5.2.3. The Binary Log

 The binary log contains “events” that describe
 database changes such as table creation operations or changes to
 table data. It also contains events for statements that
 potentially could have made changes (for example, a
 DELETE which matched no rows). The
 binary log also contains information about how long each statement
 took that updated data. The binary log has two important purposes:

	
 For replication, the binary log on a master replication server
 provides a record of the data changes to be sent to slave
 servers. The master server sends the events contained in its
 binary log to its slaves, which execute those events to make
 the same data changes that were made on the master. See
 Section 16.2, “Replication Implementation”.

	
 Certain data recovery operations require use of the binary
 log. After a backup has been restored, the events in the
 binary log that were recorded after the backup was made are
 re-executed. These events bring databases up to date from the
 point of the backup. See
 Section 7.5, “Point-in-Time (Incremental) Recovery Using the Binary Log”.

Note

 The binary log has replaced the old update log, which is no
 longer available as of MySQL 5.0. The binary log contains all
 information that is available in the update log in a more
 efficient format and in a manner that is transaction-safe. If
 you are using transactions, you must use the MySQL binary log
 for backups instead of the old update log.

 The binary log is not used for statements such as
 SELECT or
 SHOW that do not modify data. To
 log all statements (for example, to identify a problem query), use
 the general query log. See Section 5.2.2, “The General Query Log”.

 Running a server with binary logging enabled makes performance
 slightly slower. However, the benefits of the binary log in
 enabling you to set up replication and for restore operations
 generally outweigh this minor performance decrement.

 The binary log should be protected because logged statements might
 contain passwords. See Section 6.1.2.3, “Passwords and Logging”.

 The following discussion describes some of the server options and
 variables that affect the operation of binary logging. For a
 complete list, see
 Section 16.1.2.4, “Binary Log Options and Variables”.

 For detailed information about the format of the binary log, see
 MySQL Internals:
 The Binary Log.

 To enable the binary log, start the server with the
 --log-bin[=base_name]
 option. If no base_name value is given,
 the default name is the value of the pid-file
 option (which by default is the name of host machine) followed by
 -bin. If the basename is given, the server
 writes the file in the data directory unless the basename is given
 with a leading absolute path name to specify a different
 directory. It is recommended that you specify a basename
 explicitly rather than using the default of the host name; see
 Section C.5.8, “Known Issues in MySQL”, for the reason.

Note

 From MySQL 5.0.41 through 5.0.52, “mysql” was used
 when no base_name was specified. Also
 in these versions, a path given as part of the
 --log-bin options was treated as
 absolute rather than relative. The previous behaviors were
 restored in MySQL 5.0.54. (See Bug #28603 and Bug #28597.)

 If you supply an extension in the log name (for example,
 --log-bin=base_name.extension),
 the extension is silently removed and ignored.

 mysqld appends a numeric extension to the
 binary log basename to generate binary log file names. The number
 increases each time the server creates a new log file, thus
 creating an ordered series of files. The server creates a new file
 in the series each time it starts or flushes the logs. The server
 also creates a new binary log file automatically after the current
 log's size reaches
 max_binlog_size. A binary log
 file may become larger than
 max_binlog_size if you are using
 large transactions because a transaction is written to the file in
 one piece, never split between files.

 To keep track of which binary log files have been used,
 mysqld also creates a binary log index file
 that contains the names of all used binary log files. By default,
 this has the same basename as the binary log file, with the
 extension '.index'. You can change the name of
 the binary log index file with the
 --log-bin-index[=file_name]
 option. You should not manually edit this file while
 mysqld is running; doing so would confuse
 mysqld.

 The term “binary log file” generally denotes an
 individual numbered file containing database events. The term
 “binary log” collectively denotes the set of numbered
 binary log files plus the index file.

 A client that has the SUPER
 privilege can disable binary logging of its own statements by
 using a SET sql_log_bin=0 statement. See
 Section 5.1.4, “Server System Variables”.

 The server evaluates the
 --binlog-do-db and
 --binlog-ignore-db options in the
 same way as it does the
 --replicate-do-db and
 --replicate-ignore-db options. For
 information about how this is done, see
 Section 16.2.3.1, “Evaluation of Database-Level Replication and Binary Logging Options”.

 A replication slave server by default does not write to its own
 binary log any data modifications that are received from the
 replication master. To log these modifications, start the slave
 with the --log-slave-updates option
 in addition to the --log-bin option
 (see Section 16.1.2.3, “Replication Slave Options and Variables”). This is done
 when a slave is also to act as a master to other slaves in chained
 replication.

 You can delete all binary log files with the
 RESET MASTER statement, or a subset
 of them with PURGE BINARY LOGS. See
 Section 13.7.6.5, “RESET Syntax”, and Section 13.4.1.1, “PURGE BINARY LOGS Syntax”.

 If you are using replication, you should not delete old binary log
 files on the master until you are sure that no slave still needs
 to use them. For example, if your slaves never run more than three
 days behind, once a day you can execute mysqladmin
 flush-logs on the master and then remove any logs that
 are more than three days old. You can remove the files manually,
 but it is preferable to use PURGE BINARY
 LOGS, which also safely updates the binary log index
 file for you (and which can take a date argument). See
 Section 13.4.1.1, “PURGE BINARY LOGS Syntax”.

 You can display the contents of binary log files with the
 mysqlbinlog utility. This can be useful when
 you want to reprocess statements in the log for a recovery
 operation. For example, you can update a MySQL server from the
 binary log as follows:

shell> mysqlbinlog log_file | mysql -h server_name

 mysqlbinlog also can be used to display
 replication slave relay log file contents because they are written
 using the same format as binary log files. For more information on
 the mysqlbinlog utility and how to use it, see
 Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”. For more information about the
 binary log and recovery operations, see
 Section 7.5, “Point-in-Time (Incremental) Recovery Using the Binary Log”.

 Binary logging is done immediately after a statement or
 transaction completes but before any locks are released or any
 commit is done. This ensures that the log is logged in commit
 order.

 Updates to nontransactional tables are stored in the binary log
 immediately after execution. In MySQL 5.0.53 and earlier versions
 of MySQL 5.0, an
 UPDATE statement using a stored
 function that modified a nontransactional table was not logged if
 it failed, and an
 INSERT ... ON
 DUPLICATE KEY UPDATE statement that encountered a
 duplicate key constraint—but did not actually change any
 data—was not logged. Beginning with MySQL 5.0.54, both of
 these statements are written to the binary log. (Bug #23333)

 Within an uncommitted transaction, all updates
 (UPDATE,
 DELETE, or
 INSERT) that change transactional
 tables such as BDB or InnoDB
 tables are cached until a COMMIT
 statement is received by the server. At that point,
 mysqld writes the entire transaction to the
 binary log before the COMMIT is
 executed.

 Modifications to nontransactional tables cannot be rolled back. If
 a transaction that is rolled back includes modifications to
 nontransactional tables, the entire transaction is logged with a
 ROLLBACK
 statement at the end to ensure that the modifications to those
 tables are replicated.

 When a thread that handles the transaction starts, it allocates a
 buffer of binlog_cache_size to
 buffer statements. If a statement is bigger than this, the thread
 opens a temporary file to store the transaction. The temporary
 file is deleted when the thread ends.

 The Binlog_cache_use status
 variable shows the number of transactions that used this buffer
 (and possibly a temporary file) for storing statements. The
 Binlog_cache_disk_use status
 variable shows how many of those transactions actually had to use
 a temporary file. These two variables can be used for tuning
 binlog_cache_size to a large
 enough value that avoids the use of temporary files.

 The max_binlog_cache_size system
 variable (default 4GB, which is also the maximum) can be used to
 restrict the total size used to cache a multiple-statement
 transaction. If a transaction is larger than this many bytes, it
 fails and rolls back. The minimum value is 4096.

 If you are using the binary log and row based logging, concurrent
 inserts are converted to normal inserts for CREATE ...
 SELECT or
 INSERT ...
 SELECT statements. This is done to ensure that you can
 re-create an exact copy of your tables by applying the log during
 a backup operation. If you are using statement-based logging, the
 original statement is written to the log.

 The binary log format has some known limitations that can affect
 recovery from backups. See Section 16.4.1, “Replication Features and Issues”.

 Binary logging for stored programs is done as described in
 Section 18.6, “Binary Logging of Stored Programs”.

 Note that the binary log format differs in MySQL 5.0
 from previous versions of MySQL, due to enhancements in
 replication. See Section 16.4.2, “Replication Compatibility Between MySQL Versions”.

 Writes to the binary log file and binary log index file are
 handled in the same way as writes to MyISAM
 tables. See Section C.5.4.3, “How MySQL Handles a Full Disk”.

 By default, the binary log is not synchronized to disk at each
 write. So if the operating system or machine (not only the MySQL
 server) crashes, there is a chance that the last statements of the
 binary log are lost. To prevent this, you can make the binary log
 be synchronized to disk after every N
 writes to the binary log, with the
 sync_binlog system variable. See
 Section 5.1.4, “Server System Variables”. 1 is the safest value
 for sync_binlog, but also the
 slowest. Even with sync_binlog
 set to 1, there is still the chance of an inconsistency between
 the table content and binary log content in case of a crash. For
 example, if you are using InnoDB tables and the
 MySQL server processes a COMMIT
 statement, it writes the whole transaction to the binary log and
 then commits this transaction into InnoDB. If
 the server crashes between those two operations, the transaction
 is rolled back by InnoDB at restart but still
 exists in the binary log. This problem can be solved with the
 --innodb-safe-binlog option, which
 adds consistency between the content of InnoDB
 tables and the binary log. (Note:
 --innodb-safe-binlog is unneeded as
 of MySQL 5.0; it was made obsolete by the introduction of XA
 transaction support.)

 For this option to provide a greater degree of safety, the MySQL
 server should also be configured to synchronize the binary log and
 the InnoDB logs to disk at every transaction.
 The InnoDB logs are synchronized by default,
 and sync_binlog=1 can be used to synchronize
 the binary log. The effect of this option is that at restart after
 a crash, after doing a rollback of transactions, the MySQL server
 cuts rolled back InnoDB transactions from the
 binary log. This ensures that the binary log reflects the exact
 data of InnoDB tables, and so, that the slave
 remains in synchrony with the master (not receiving a statement
 which has been rolled back).

 Note that --innodb-safe-binlog can
 be used even if the MySQL server updates other storage engines
 than InnoDB. Only statements and transactions
 that affect InnoDB tables are subject to
 removal from the binary log at InnoDB's crash
 recovery. If the MySQL server discovers at crash recovery that the
 binary log is shorter than it should have been, it lacks at least
 one successfully committed InnoDB transaction.
 This should not happen if sync_binlog=1 and the
 disk/file system do an actual sync when they are requested to
 (some do not), so the server prints an error message The
 binary log file_name is shorter than its
 expected size. In this case, this binary log is not
 correct and replication should be restarted from a fresh snapshot
 of the master's data.

 For MySQL 5.0.46, the session values of the following system
 variables are written to the binary log and honored by the
 replication slave when parsing the binary log:

	
 sql_mode

	
 foreign_key_checks

	
 unique_checks

	
 character_set_client

	
 collation_connection

	
 collation_database

	
 collation_server

	
 sql_auto_is_null

5.2.4. The Slow Query Log

 The slow query log consists of SQL statements that took more than
 long_query_time seconds to
 execute. The minimum and default values of
 long_query_time are 1 and 10,
 respectively.

 By default, administrative statements are not logged, nor are
 queries that do not use indexes for lookups. This behavior can be
 changed using
 --log-slow-admin-statements and
 --log-queries-not-using-indexes, as
 described later.

 The time to acquire the initial locks is not counted as execution
 time. mysqld writes a statement to the slow
 query log after it has been executed and after all locks have been
 released, so log order might differ from execution order.

 To enable the slow query log, start mysqld with
 the
 --log-slow-queries[=file_name]
 option.

 If the slow query log file is enabled but no name is specified,
 the default name is
 host_name-slow.log
 and the server creates the file in the same directory where it
 creates the PID file. If a name is given, the server creates the
 file in the data directory unless an absolute path name is given
 to specify a different directory.

 To include slow administrative statements in the statements
 written to the slow query log, use the
 --log-slow-admin-statements server
 option. Administrative statements include
 ALTER TABLE,
 ANALYZE TABLE,
 CHECK TABLE,
 CREATE INDEX,
 DROP INDEX,
 OPTIMIZE TABLE, and
 REPAIR TABLE.

 To include queries that do not use indexes for row lookups in the
 statements written to the slow query log, use the
 --log-queries-not-using-indexes
 server option. See Section 5.1.3, “Server Command Options”. When such
 queries are logged, the slow query log may grow quickly.

 The server uses the controlling parameters in the following order
 to determine whether to write a query to the slow query log:

	
 The query must either not be an administrative statement, or
 --log-slow-admin-statements
 must have been specified.

	
 The query must have taken at least
 long_query_time seconds, or
 --log-queries-not-using-indexes
 must have been specified and the query used no indexes for row
 lookups.

 The server does not write queries handled by the query cache to
 the slow query log, nor queries that would not benefit from the
 presence of an index because the table has zero rows or one row.

 Replication slaves do not write replicated queries to the slow
 query log, even if the same queries were written to the slow query
 log on the master. This is a known issue. (Bug #23300)

 The slow query log should be protected because logged statements
 might contain passwords. See Section 6.1.2.3, “Passwords and Logging”.

 The slow query log can be used to find queries that take a long
 time to execute and are therefore candidates for optimization.
 However, examining a long slow query log can become a difficult
 task. To make this easier, you can process a slow query log file
 using the mysqldumpslow command to summarize
 the queries that appear in the log. See
 Section 4.6.8, “mysqldumpslow — Summarize Slow Query Log Files”.

5.2.5. Server Log Maintenance

 As described in Section 5.2, “MySQL Server Logs”, MySQL Server can
 create several different log files to help you see what activity
 is taking place. However, you must clean up these files regularly
 to ensure that the logs do not take up too much disk space.

 When using MySQL with logging enabled, you may want to back up and
 remove old log files from time to time and tell MySQL to start
 logging to new files. See Section 7.2, “Database Backup Methods”.

 On a Linux (Red Hat) installation, you can use the
 mysql-log-rotate script for this. If you
 installed MySQL from an RPM distribution, this script should have
 been installed automatically. Be careful with this script if you
 are using the binary log for replication. You should not remove
 binary logs until you are certain that their contents have been
 processed by all slaves.

 On other systems, you must install a short script yourself that
 you start from cron (or its equivalent) for
 handling log files.

 For the binary log, you can set the
 expire_logs_days system variable
 to expire binary log files automatically after a given number of
 days (see Section 5.1.4, “Server System Variables”). If you are
 using replication, you should set the variable no lower than the
 maximum number of days your slaves might lag behind the master. To
 remove binary logs on demand, use the PURGE
 BINARY LOGS statement (see
 Section 13.4.1.1, “PURGE BINARY LOGS Syntax”).

 You can force MySQL to start using new log files by flushing the
 logs. Log flushing occurs when you issue a
 FLUSH LOGS
 statement or execute a mysqladmin flush-logs,
 mysqladmin refresh, mysqldump
 --flush-logs, or mysqldump
 --master-data command. See Section 13.7.6.2, “FLUSH Syntax”,
 Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”, and Section 4.5.4, “mysqldump — A Database Backup Program”. In
 addition, the binary log is flushed when its size reaches the
 value of the max_binlog_size
 system variable.

 A log-flushing operation does the following:

	
 If general query logging
 (--log) or slow query logging
 (--log-slow-queries) to a log
 file is enabled, the server closes and reopens the general
 query log file or slow query log file.

	
 If binary logging (--log-bin)
 is used, the server closes the current log file and opens a
 new log file with the next sequence number.

	
 If the server was started with the
 --log-error option to cause the
 error log to be written to a file, it renames the current log
 file with the suffix -old and creates a new
 empty error log file.

 The server creates a new binary log file when you flush the logs.
 However, it just closes and reopens the general and slow query log
 files. To cause new files to be created on Unix, rename the
 current log files before flushing them. At flush time, the server
 opens new log files with the original names. For example, if the
 general and slow query log files are named
 mysql.log and
 mysql-slow.log, you can use a series of
 commands like this:

shell> cd mysql-data-directory
shell> mv mysql.log mysql.old
shell> mv mysql-slow.log mysql-slow.old
shell> mysqladmin flush-logs

 On Windows, use rename rather than
 mv.

 At this point, you can make a backup of
 mysql.old and
 mysql-slow.old and then remove them from
 disk.

 For older versions of MySQL, you cannot rename certain log files
 on Windows while the server has them open. Before MySQL 5.0.17,
 this restriction applies to all log files. You must stop the
 server, rename the file, then restart the server to create a new
 log file. From 5.0.18 on, the restriction applies only to the
 error log file. To rename the error log file, a stop and restart
 can be avoided by flushing the logs to cause the server to rename
 the current log file with the suffix -old and
 create a new empty error log file.

 To disable or enable general query logging for the current
 connection, set the session
 sql_log_off variable to
 ON or OFF.

B.12. MySQL 5.0 FAQ: Connectors & APIs

 For common questions, issues, and answers relating to the MySQL
 Connectors and other APIs, see the following areas of the Manual:

	
 Section 20.6.14, “Common Questions and Problems When Using the C API”

	
 Common Problems with MySQL and PHP

	
 Connector/ODBC Notes and Tips

	
 Connector/Net Programming

	
 MySQL Connector/J Developer Guide

8.10. Examining Thread Information

 When you are attempting to ascertain what your MySQL server is
 doing, it can be helpful to examine the process list, which is the
 set of threads currently executing within the server. Process list
 information is available from these sources:

	
 The SHOW [FULL] PROCESSLIST statement:
 Section 13.7.5.27, “SHOW PROCESSLIST Syntax”

	
 The SHOW PROFILE statement:
 Section 13.7.5.29, “SHOW PROFILES Syntax”

	
 The mysqladmin processlist command:
 Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”

 You can always view information about your own threads. To view
 information about threads being executed for other accounts, you
 must have the PROCESS privilege.

 Each process list entry contains several pieces of information:

	
 Id is the connection identifier for the
 client associated with the thread.

	
 User and Host indicate
 the account associated with the thread.

	
 db is the default database for the thread,
 or NULL if none is selected.

	
 Command and State
 indicate what the thread is doing.

 Most states correspond to very quick operations. If a thread
 stays in a given state for many seconds, there might be a
 problem that needs to be investigated.

	
 Time indicates how long the thread has been
 in its current state. The thread's notion of the current time
 may be altered in some cases: The thread can change the time
 with SET
 TIMESTAMP = value. For a
 thread running on a slave that is processing events from the
 master, the thread time is set to the time found in the events
 and thus reflects current time on the master and not the
 slave.

	
 Info contains the text of the statement
 being executed by the thread, or NULL if it
 is not executing one. By default, this value contains only the
 first 100 characters of the statement. To see the complete
 statements, use
 SHOW FULL
 PROCESSLIST.

 The following sections list the possible
 Command values, and State
 values grouped by category. The meaning for some of these values
 is self-evident. For others, additional description is provided.

8.10.1. Thread Command Values

 A thread can have any of the following
 Command values:

	

 Binlog Dump

 This is a thread on a master server for sending binary log
 contents to a slave server.

	

 Change user

 The thread is executing a change-user operation.

	

 Close stmt

 The thread is closing a prepared statement.

	

 Connect

 A replication slave is connected to its master.

	

 Connect Out

 A replication slave is connecting to its master.

	

 Create DB

 The thread is executing a create-database operation.

	

 Daemon

 This thread is internal to the server, not a thread that
 services a client connection.

	

 Debug

 The thread is generating debugging information.

	

 Delayed insert

 The thread is a delayed-insert handler.

	

 Drop DB

 The thread is executing a drop-database operation.

	

 Error

	

 Execute

 The thread is executing a prepared statement.

	

 Fetch

 The thread is fetching the results from executing a prepared
 statement.

	

 Field List

 The thread is retrieving information for table columns.

	

 Init DB

 The thread is selecting a default database.

	

 Kill

 The thread is killing another thread.

	

 Long Data

 The thread is retrieving long data in the result of
 executing a prepared statement.

	

 Ping

 The thread is handling a server-ping request.

	

 Prepare

 The thread is preparing a prepared statement.

	

 Processlist

 The thread is producing information about server threads.

	

 Query

 The thread is executing a statement.

	

 Quit

 The thread is terminating.

	

 Refresh

 The thread is flushing table, logs, or caches, or resetting
 status variable or replication server information.

	

 Register Slave

 The thread is registering a slave server.

	

 Reset stmt

 The thread is resetting a prepared statement.

	

 Set option

 The thread is setting or resetting a client
 statement-execution option.

	

 Shutdown

 The thread is shutting down the server.

	

 Sleep

 The thread is waiting for the client to send a new statement
 to it.

	

 Statistics

 The thread is producing server-status information.

	

 Table Dump

 The thread is sending table contents to a slave server.

	

 Time

 Unused.

8.10.2. General Thread States

 The following list describes thread State
 values that are associated with general query processing and not
 more specialized activities such as replication. Many of these
 are useful only for finding bugs in the server.

	

 After create

 This occurs when the thread creates a table (including
 internal temporary tables), at the end of the function that
 creates the table. This state is used even if the table
 could not be created due to some error.

	

 Analyzing

 The thread is calculating a MyISAM table
 key distributions (for example, for
 ANALYZE TABLE).

	

 checking permissions

 The thread is checking whether the server has the required
 privileges to execute the statement.

	

 Checking table

 The thread is performing a table check operation.

	

 cleaning up

 The thread has processed one command and is preparing to
 free memory and reset certain state variables.

	

 closing tables

 The thread is flushing the changed table data to disk and
 closing the used tables. This should be a fast operation. If
 not, you should verify that you do not have a full disk and
 that the disk is not in very heavy use.

	

 converting HEAP to MyISAM

 The thread is converting an internal temporary table from a
 MEMORY table to an on-disk
 MyISAM table.

	

 copy to tmp table

 The thread is processing an ALTER
 TABLE statement. This state occurs after the table
 with the new structure has been created but before rows are
 copied into it.

	

 Copying to group table

 If a statement has different ORDER BY and
 GROUP BY criteria, the rows are sorted by
 group and copied to a temporary table.

	

 Copying to tmp table

 The server is copying to a temporary table in memory.

	

 Copying to tmp table on disk

 The server is copying to a temporary table on disk. The
 temporary result set has become too large (see
 Section 8.8.5, “How MySQL Uses Internal Temporary Tables”). Consequently,
 the thread is changing the temporary table from in-memory to
 disk-based format to save memory.

	

 Creating index

 The thread is processing ALTER TABLE ... ENABLE
 KEYS for a MyISAM table.

	

 Creating sort index

 The thread is processing a
 SELECT that is resolved using
 an internal temporary table.

	

 creating table

 The thread is creating a table. This includes creation of
 temporary tables.

	

 Creating tmp table

 The thread is creating a temporary table in memory or on
 disk. If the table is created in memory but later is
 converted to an on-disk table, the state during that
 operation will be Copying to tmp table on
 disk.

	

 deleting from main table

 The server is executing the first part of a multiple-table
 delete. It is deleting only from the first table, and saving
 columns and offsets to be used for deleting from the other
 (reference) tables.

	

 deleting from reference tables

 The server is executing the second part of a multiple-table
 delete and deleting the matched rows from the other tables.

	

 discard_or_import_tablespace

 The thread is processing an ALTER TABLE ... DISCARD
 TABLESPACE or ALTER TABLE ... IMPORT
 TABLESPACE statement.

	

 end

 This occurs at the end but before the cleanup of
 ALTER TABLE,
 CREATE VIEW,
 DELETE,
 INSERT,
 SELECT, or
 UPDATE statements.

	

 executing

 The thread has begun executing a statement.

	

 Execution of init_command

 The thread is executing statements in the value of the
 init_command system variable.

	

 freeing items

 The thread has executed a command. Some freeing of items
 done during this state involves the query cache. This state
 is usually followed by cleaning up.

	

 Flushing tables

 The thread is executing
 FLUSH
 TABLES and is waiting for all threads to close
 their tables.

	

 FULLTEXT initialization

 The server is preparing to perform a natural-language
 full-text search.

	

 init

 This occurs before the initialization of
 ALTER TABLE,
 DELETE,
 INSERT,
 SELECT, or
 UPDATE statements. Actions
 taken by the server in this state include flushing the
 binary log, the InnoDB log, and some
 query cache cleanup operations.

 For the end state, the following
 operations could be happening:

	
 Removing query cache entries after data in a table is
 changed

	
 Writing an event to the binary log

	
 Freeing memory buffers, including for blobs

	

 Killed

 Someone has sent a KILL
 statement to the thread and it should abort next time it
 checks the kill flag. The flag is checked in each major loop
 in MySQL, but in some cases it might still take a short time
 for the thread to die. If the thread is locked by some other
 thread, the kill takes effect as soon as the other thread
 releases its lock.

	

 Locked

 The query is locked by another query.

	

 logging slow query

 The thread is writing a statement to the slow-query log.

	

 NULL

 This state is used for the SHOW
 PROCESSLIST state.

	

 login

 The initial state for a connection thread until the client
 has been authenticated successfully.

	

 Opening tables, Opening
 table

 The thread is trying to open a table. This is should be very
 fast procedure, unless something prevents opening. For
 example, an ALTER TABLE or a
 LOCK
 TABLE statement can prevent opening a table until
 the statement is finished. It is also worth checking that
 your table_cache value is
 large enough.

	

 optimizing

 The server is performing initial optimizations for a query.

	

 preparing

 This state occurs during query optimization.

	

 Purging old relay logs

 The thread is removing unneeded relay log files.

	

 query end

 This state occurs after processing a query but before the
 freeing items state.

	

 Reading from net

 The server is reading a packet from the network.

	

 Removing duplicates

 The query was using
 SELECT
 DISTINCT in such a way that MySQL could not
 optimize away the distinct operation at an early stage.
 Because of this, MySQL requires an extra stage to remove all
 duplicated rows before sending the result to the client.

	

 removing tmp table

 The thread is removing an internal temporary table after
 processing a SELECT
 statement. This state is not used if no temporary table was
 created.

	

 rename

 The thread is renaming a table.

	

 rename result table

 The thread is processing an ALTER
 TABLE statement, has created the new table, and is
 renaming it to replace the original table.

	

 Reopen tables

 The thread got a lock for the table, but noticed after
 getting the lock that the underlying table structure
 changed. It has freed the lock, closed the table, and is
 trying to reopen it.

	

 Repair by sorting

 The repair code is using a sort to create indexes.

	

 Repair done

 The thread has completed a multi-threaded repair for a
 MyISAM table.

	

 Repair with keycache

 The repair code is using creating keys one by one through
 the key cache. This is much slower than Repair by
 sorting.

	

 Rolling back

 The thread is rolling back a transaction.

	

 Saving state

 For MyISAM table operations such as
 repair or analysis, the thread is saving the new table state
 to the .MYI file header. State includes
 information such as number of rows, the
 AUTO_INCREMENT counter, and key
 distributions.

	

 Searching rows for update

 The thread is doing a first phase to find all matching rows
 before updating them. This has to be done if the
 UPDATE is changing the index
 that is used to find the involved rows.

	
 Sending data

 The thread is reading and processing rows for a
 SELECT statement, and sending
 data to the client. Because operations occurring during this
 this state tend to perform large amounts of disk access
 (reads), it is often the longest-running state over the
 lifetime of a given query.

	

 setup

 The thread is beginning an ALTER
 TABLE operation.

	

 Sorting for group

 The thread is doing a sort to satisfy a GROUP
 BY.

	

 Sorting for order

 The thread is doing a sort to satisfy a ORDER
 BY.

	

 Sorting index

 The thread is sorting index pages for more efficient access
 during a MyISAM table optimization
 operation.

	

 Sorting result

 For a SELECT statement, this
 is similar to Creating sort index, but
 for nontemporary tables.

	

 statistics

 The server is calculating statistics to develop a query
 execution plan. If a thread is in this state for a long
 time, the server is probably disk-bound performing other
 work.

	

 System lock

 The thread is going to request or is waiting for an internal
 or external system lock for the table. If this state is
 being caused by requests for external locks and you are not
 using multiple mysqld servers that are
 accessing the same MyISAM
 tables, you can disable external system locks with the
 --skip-external-locking
 option. However, external locking is disabled by default, so
 it is likely that this option will have no effect. For
 SHOW PROFILE, this state
 means the thread is requesting the lock (not waiting for
 it).

	

 Table lock

 The next thread state after System lock.
 The thread has acquired an external lock and is going to
 request an internal table lock.

	

 update

 The thread is getting ready to start updating the table.

	

 Updating

 The thread is searching for rows to update and is updating
 them.

	

 updating main table

 The server is executing the first part of a multiple-table
 update. It is updating only the first table, and saving
 columns and offsets to be used for updating the other
 (reference) tables.

	

 updating reference tables

 The server is executing the second part of a multiple-table
 update and updating the matched rows from the other tables.

	

 User lock

 The thread is going to request or is waiting for an advisory
 lock requested with a
 GET_LOCK() call. For
 SHOW PROFILE, this state
 means the thread is requesting the lock (not waiting for
 it).

	

 Waiting for release of readlock

 The thread is waiting for a global read lock obtained by
 another thread (with
 FLUSH TABLES WITH
 READ LOCK) to be released.

	

 Waiting for tables, Waiting for
 table

 The thread got a notification that the underlying structure
 for a table has changed and it needs to reopen the table to
 get the new structure. However, to reopen the table, it must
 wait until all other threads have closed the table in
 question.

 This notification takes place if another thread has used
 FLUSH
 TABLES or one of the following statements on the
 table in question: FLUSH TABLES
 tbl_name,
 ALTER TABLE,
 RENAME TABLE,
 REPAIR TABLE,
 ANALYZE TABLE, or
 OPTIMIZE TABLE.

	

 Waiting on cond

 A generic state in which the thread is waiting for a
 condition to become true. No specific state information is
 available.

	

 Waiting to get readlock

 The thread has issued a
 FLUSH TABLES WITH
 READ LOCK statement to obtain a global read lock
 and is waiting to obtain the lock.

	

 Writing to net

 The server is writing a packet to the network.

8.10.3. Delayed-Insert Thread States

 These thread states are associated with processing for
 DELAYED inserts (see
 Section 13.2.5.2, “INSERT DELAYED Syntax”). Some states are associated
 with connection threads that process INSERT
 DELAYED statements from clients. Other states are
 associated with delayed-insert handler threads that insert the
 rows. There is a delayed-insert handler thread for each table
 for which INSERT DELAYED
 statements are issued.

 States associated with a connection thread that processes an
 INSERT DELAYED statement from the
 client:

	

 allocating local table

 The thread is preparing to feed rows to the delayed-insert
 handler thread.

	

 Creating delayed handler

 The thread is creating a handler for
 DELAYED inserts.

	

 got handler lock

 This occurs before the allocating local
 table state and after the waiting for
 handler lock state, when the connection thread
 gets access to the delayed-insert handler thread.

	

 got old table

 This occurs after the waiting for handler
 open state. The delayed-insert handler thread has
 signaled that it has ended its initialization phase, which
 includes opening the table for delayed inserts.

	

 storing row into queue

 The thread is adding a new row to the list of rows that the
 delayed-insert handler thread must insert.

	

 waiting for delay_list

 This occurs during the initialization phase when the thread
 is trying to find the delayed-insert handler thread for the
 table, and before attempting to gain access to the list of
 delayed-insert threads.

	

 waiting for handler insert

 An INSERT DELAYED handler has
 processed all pending inserts and is waiting for new ones.

	

 waiting for handler lock

 This occurs before the allocating local
 table state when the connection thread waits for
 access to the delayed-insert handler thread.

	

 waiting for handler open

 This occurs after the Creating delayed
 handler state and before the got old
 table state. The delayed-insert handler thread has
 just been started, and the connection thread is waiting for
 it to initialize.

 States associated with a delayed-insert handler thread that
 inserts the rows:

	

 insert

 The state that occurs just before inserting rows into the
 table.

	

 reschedule

 After inserting a number of rows, the delayed-insert thread
 sleeps to let other threads do work.

	

 upgrading lock

 A delayed-insert handler is trying to get a lock for the
 table to insert rows.

	

 Waiting for INSERT

 A delayed-insert handler is waiting for a connection thread
 to add rows to the queue (see storing row into
 queue).

8.10.4. Query Cache Thread States

 These thread states are associated with the query cache (see
 Section 8.6.3, “The MySQL Query Cache”).

	

 checking privileges on cached query

 The server is checking whether the user has privileges to
 access a cached query result.

	

 checking query cache for query

 The server is checking whether the current query is present
 in the query cache.

	

 invalidating query cache entries

 Query cache entries are being marked invalid because the
 underlying tables have changed.

	

 sending cached result to client

 The server is taking the result of a query from the query
 cache and sending it to the client.

	

 storing result in query cache

 The server is storing the result of a query in the query
 cache.

8.10.5. Replication Master Thread States

 The following list shows the most common states you may see in
 the State column for the master's
 Binlog Dump thread. If you see no
 Binlog Dump threads on a master server, this
 means that replication is not running—that is, that no
 slaves are currently connected.

	

 Sending binlog event to slave

 Binary logs consist of events, where an
 event is usually an update plus some other information. The
 thread has read an event from the binary log and is now
 sending it to the slave.

	

 Finished reading one binlog; switching to next
 binlog

 The thread has finished reading a binary log file and is
 opening the next one to send to the slave.

	

 Has sent all binlog to slave; waiting for binlog to
 be updated

 The thread has read all outstanding updates from the binary
 logs and sent them to the slave. The thread is now idle,
 waiting for new events to appear in the binary log resulting
 from new updates occurring on the master.

	

 Waiting to finalize termination

 A very brief state that occurs as the thread is stopping.

8.10.6. Replication Slave I/O Thread States

 The following list shows the most common states you see in the
 State column for a slave server I/O thread.
 This state also appears in the Slave_IO_State
 column displayed by SHOW SLAVE
 STATUS, so you can get a good view of what is
 happening by using that statement.

	

 Waiting for master update

 The initial state before Connecting to
 master.

	

 Connecting to master

 The thread is attempting to connect to the master.

	

 Checking master version

 A state that occurs very briefly, after the connection to
 the master is established.

	

 Registering slave on master

 A state that occurs very briefly after the connection to the
 master is established.

	

 Requesting binlog dump

 A state that occurs very briefly, after the connection to
 the master is established. The thread sends to the master a
 request for the contents of its binary logs, starting from
 the requested binary log file name and position.

	

 Waiting to reconnect after a failed binlog dump
 request

 If the binary log dump request failed (due to
 disconnection), the thread goes into this state while it
 sleeps, then tries to reconnect periodically. The interval
 between retries can be specified using the
 CHANGE MASTER TO statement or
 the --master-connect-retry
 option.

	

 Reconnecting after a failed binlog dump
 request

 The thread is trying to reconnect to the master.

	

 Waiting for master to send event

 The thread has connected to the master and is waiting for
 binary log events to arrive. This can last for a long time
 if the master is idle. If the wait lasts for
 slave_net_timeout seconds,
 a timeout occurs. At that point, the thread considers the
 connection to be broken and makes an attempt to reconnect.

	

 Queueing master event to the relay log

 The thread has read an event and is copying it to the relay
 log so that the SQL thread can process it.

	

 Waiting to reconnect after a failed master event
 read

 An error occurred while reading (due to disconnection). The
 thread is sleeping for the number of seconds set by the
 CHANGE MASTER TO statement or
 --master-connect-retry option
 (default 60) before attempting to reconnect.

	

 Reconnecting after a failed master event
 read

 The thread is trying to reconnect to the master. When
 connection is established again, the state becomes
 Waiting for master to send event.

	

 Waiting for the slave SQL thread to free enough
 relay log space

 You are using a nonzero
 relay_log_space_limit
 value, and the relay logs have grown large enough that their
 combined size exceeds this value. The I/O thread is waiting
 until the SQL thread frees enough space by processing relay
 log contents so that it can delete some relay log files.

	

 Waiting for slave mutex on exit

 A state that occurs briefly as the thread is stopping.

8.10.7. Replication Slave SQL Thread States

 The following list shows the most common states you may see in
 the State column for a slave server SQL
 thread:

	

 Waiting for the next event in relay log

 The initial state before Reading event from the
 relay log.

	

 Reading event from the relay log

 The thread has read an event from the relay log so that the
 event can be processed.

	

 Has read all relay log; waiting for the slave I/O
 thread to update it

 The thread has processed all events in the relay log files,
 and is now waiting for the I/O thread to write new events to
 the relay log.

	

 Making temp file

 The thread is executing a
 LOAD DATA
 INFILE statement and is creating a temporary file
 containing the data from which the slave will read rows.

	

 Waiting for slave mutex on exit

 A very brief state that occurs as the thread is stopping.

 The State column for the I/O thread may also
 show the text of a statement. This indicates that the thread has
 read an event from the relay log, extracted the statement from
 it, and is executing it.

8.10.8. Replication Slave Connection Thread States

 These thread states occur on a replication slave but are
 associated with connection threads, not with the I/O or SQL
 threads.

	

 Changing master

 The thread is processing a CHANGE
 MASTER TO statement.

	

 Creating table from master dump

 The slave is creating a table using the
 CREATE TABLE statement
 contained in the dump from the master. Used for
 LOAD TABLE FROM MASTER and
 LOAD DATA FROM MASTER.

	

 Killing slave

 The thread is processing a STOP SLAVE
 statement.

	

 Opening master dump table

 This state occurs after Creating table from master
 dump.

	

 Reading master dump table data

 This state occurs after Opening master dump
 table.

	

 Rebuilding the index on master dump table

 This state occurs after Reading master dump table
 data.

	

 starting slave

 The thread is starting the slave threads after processing a
 successful LOAD DATA FROM
 MASTER load operation.

8.10.9. MySQL Cluster Thread States

	

 Committing events to binlog

	

 Opening mysql.ndb_apply_status

	

 Processing events

 The thread is processing events for binary logging.

	

 Processing events from schema table

 The thread is doing the work of schema replication.

	

 Shutting down

	

 Syncing ndb table schema operation and
 binlog

 This is used to have a correct binary log of schema
 operations for NDB.

	

 Waiting for event from ndbcluster

 The server is acting as an SQL node in a MySQL Cluster, and
 is connected to a cluster management node.

	

 Waiting for first event from ndbcluster

	

 Waiting for ndbcluster binlog update to reach
 current position

	

 Waiting for ndbcluster to start

	

 Waiting for schema epoch

 The thread is waiting for a schema epoch (that is, a global
 checkpoint).

9.4. User-Defined Variables

 You can store a value in a user-defined variable in one statement
 and then refer to it later in another statement. This enables you
 to pass values from one statement to another.
 User-defined variables are session-specific.
 That is, a user variable defined by one client cannot be seen or
 used by other clients. All variables for a given client session
 are automatically freed when that client exits.

 User variables are written as
 @var_name, where the
 variable name var_name consists of
 alphanumeric characters, “.”,
 “_”, and
 “$”. A user variable name can
 contain other characters if you quote it as a string or identifier
 (for example, @'my-var',
 @"my-var", or @`my-var`).

 User variable names are not case sensitive in MySQL 5.0 and up,
 but are case sensitive before MySQL 5.0.

 One way to set a user-defined variable is by issuing a
 SET
 statement:

SET @var_name = expr [, @var_name = expr] ...

 For SET,
 either = or
 := can be
 used as the assignment operator.

 You can also assign a value to a user variable in statements other
 than SET.
 In this case, the assignment operator must be
 := and not
 = because
 the latter is treated as the comparison operator
 = in
 non-SET
 statements:

mysql> SET @t1=1, @t2=2, @t3:=4;
mysql> SELECT @t1, @t2, @t3, @t4 := @t1+@t2+@t3;
+------+------+------+--------------------+
| @t1 | @t2 | @t3 | @t4 := @t1+@t2+@t3 |
+------+------+------+--------------------+
| 1 | 2 | 4 | 7 |
+------+------+------+--------------------+

 User variables can be assigned a value from a limited set of data
 types: integer, decimal, floating-point, binary or nonbinary
 string, or NULL value. Assignment of decimal
 and real values does not preserve the precision or scale of the
 value. A value of a type other than one of the permissible types
 is converted to a permissible type. For example, a value having a
 temporal or spatial data type is converted to a binary string.

 If a user variable is assigned a nonbinary (character) string
 value, it has the same character set and collation as the string.
 The coercibility of user variables is implicit as of MySQL 5.0.3.
 (This is the same coercibility as for table column values.)

 Bit values assigned to user variables are treated as binary
 strings. To assign a bit value as a number to a user variable, use
 CAST() or +0:

mysql> SET @v1 = b'1000001';
mysql> SET @v2 = CAST(b'1000001' AS UNSIGNED), @v3 = b'1000001'+0;
mysql> SELECT @v1, @v2, @v3;
+------+------+------+
| @v1 | @v2 | @v3 |
+------+------+------+
| A | 65 | 65 |
+------+------+------+

 If the value of a user variable is selected in a result set, it is
 returned to the client as a string.

 If you refer to a variable that has not been initialized, it has a
 value of NULL and a type of string.

 User variables may be used in most contexts where expressions are
 permitted. This does not currently include contexts that
 explicitly require a literal value, such as in the
 LIMIT clause of a
 SELECT statement, or the
 IGNORE N LINES
 clause of a LOAD DATA statement.

 As a general rule, other than in
 SET
 statements, you should never assign a value to a user variable and
 read the value within the same statement. For example, to
 increment a variable, this is okay:

SET @a = @a + 1;

 For other statements, such as
 SELECT, you might get the results
 you expect, but this is not guaranteed. In the following
 statement, you might think that MySQL will evaluate
 @a first and then do an assignment second:

SELECT @a, @a:=@a+1, ...;

 However, the order of evaluation for expressions involving user
 variables is undefined.

 Another issue with assigning a value to a variable and reading the
 value within the same
 non-SET
 statement is that the default result type of a variable is based
 on its type at the start of the statement. The following example
 illustrates this:

mysql> SET @a='test';
mysql> SELECT @a,(@a:=20) FROM tbl_name;

 For this SELECT statement, MySQL
 reports to the client that column one is a string and converts all
 accesses of @a to strings, even though @a is
 set to a number for the second row. After the
 SELECT statement executes,
 @a is regarded as a number for the next
 statement.

 To avoid problems with this behavior, either do not assign a value
 to and read the value of the same variable within a single
 statement, or else set the variable to 0,
 0.0, or '' to define its
 type before you use it.

 In a SELECT statement, each select
 expression is evaluated only when sent to the client. This means
 that in a HAVING, GROUP BY,
 or ORDER BY clause, referring to a variable
 that is assigned a value in the select expression list does
 not work as expected:

mysql> SELECT (@aa:=id) AS a, (@aa+3) AS b FROM tbl_name HAVING b=5;

 The reference to b in the
 HAVING clause refers to an alias for an
 expression in the select list that uses @aa.
 This does not work as expected: @aa contains
 the value of id from the previous selected row,
 not from the current row.

 User variables are intended to provide data values. They cannot be
 used directly in an SQL statement as an identifier or as part of
 an identifier, such as in contexts where a table or database name
 is expected, or as a reserved word such as
 SELECT. This is true even if the
 variable is quoted, as shown in the following example:

mysql> SELECT c1 FROM t;
+----+
| c1 |
+----+
| 0 |
+----+
| 1 |
+----+
2 rows in set (0.00 sec)

mysql> SET @col = "c1";
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @col FROM t;
+------+
| @col |
+------+
| c1 |
+------+
1 row in set (0.00 sec)

mysql> SELECT `@col` FROM t;
ERROR 1054 (42S22): Unknown column '@col' in 'field list'

mysql> SET @col = "`c1`";
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @col FROM t;
+------+
| @col |
+------+
| `c1` |
+------+
1 row in set (0.00 sec)

 An exception to this principle that user variables cannot be used
 to provide identifiers is that if you are constructing a string
 for use as a prepared statement to be executed later. In this
 case, user variables can be used to provide any part of the
 statement. The following example illustrates how this can be done:

mysql> SET @c = "c1";
Query OK, 0 rows affected (0.00 sec)

mysql> SET @s = CONCAT("SELECT ", @c, " FROM t");
Query OK, 0 rows affected (0.00 sec)

mysql> PREPARE stmt FROM @s;
Query OK, 0 rows affected (0.04 sec)
Statement prepared

mysql> EXECUTE stmt;
+----+
| c1 |
+----+
| 0 |
+----+
| 1 |
+----+
2 rows in set (0.00 sec)

mysql> DEALLOCATE PREPARE stmt;
Query OK, 0 rows affected (0.00 sec)

 See Section 13.5, “SQL Syntax for Prepared Statements”, for more
 information.

 A similar technique can be used in application programs to
 construct SQL statements using program variables, as shown here
 using PHP 5:

<?php
 $mysqli = new mysqli("localhost", "user", "pass", "test");

 if(mysqli_connect_errno())
 die("Connection failed: %s\n", mysqli_connect_error());

 $col = "c1";

 $query = "SELECT $col FROM t";

 $result = $mysqli->query($query);

 while($row = $result->fetch_assoc())
 {
 echo "<p>" . $row["$col"] . "</p>\n";
 }

 $result->close();

 $mysqli->close();
?>

 Assembling an SQL statement in this fashion is sometimes known as
 “Dynamic SQL”.

12.7. Date and Time Functions

 This section describes the functions that can be used to
 manipulate temporal values. See
 Section 11.3, “Date and Time Types”, for a description of the
 range of values each date and time type has and the valid formats
 in which values may be specified.

Table 12.13. Date/Time Functions
	Name	Description
	ADDDATE()	Add time values (intervals) to a date value
	ADDTIME()	Add time
	CONVERT_TZ()	Convert from one timezone to another
	CURDATE()	Return the current date
	CURRENT_DATE(), CURRENT_DATE	Synonyms for CURDATE()
	CURRENT_TIME(), CURRENT_TIME	Synonyms for CURTIME()
	CURRENT_TIMESTAMP(), CURRENT_TIMESTAMP	Synonyms for NOW()
	CURTIME()	Return the current time
	DATE_ADD()	Add time values (intervals) to a date value
	DATE_FORMAT()	Format date as specified
	DATE_SUB()	Subtract a time value (interval) from a date
	DATE()	Extract the date part of a date or datetime expression
	DATEDIFF()	Subtract two dates
	DAY()	Synonym for DAYOFMONTH()
	DAYNAME()	Return the name of the weekday
	DAYOFMONTH()	Return the day of the month (0-31)
	DAYOFWEEK()	Return the weekday index of the argument
	DAYOFYEAR()	Return the day of the year (1-366)
	EXTRACT()	Extract part of a date
	FROM_DAYS()	Convert a day number to a date
	FROM_UNIXTIME()	Format UNIX timestamp as a date
	GET_FORMAT()	Return a date format string
	HOUR()	Extract the hour
	LAST_DAY	Return the last day of the month for the argument
	LOCALTIME(), LOCALTIME	Synonym for NOW()
	LOCALTIMESTAMP, LOCALTIMESTAMP()	Synonym for NOW()
	MAKEDATE()	Create a date from the year and day of year
	MAKETIME()	Create time from hour, minute, second
	MICROSECOND()	Return the microseconds from argument
	MINUTE()	Return the minute from the argument
	MONTH()	Return the month from the date passed
	MONTHNAME()	Return the name of the month
	NOW()	Return the current date and time
	PERIOD_ADD()	Add a period to a year-month
	PERIOD_DIFF()	Return the number of months between periods
	QUARTER()	Return the quarter from a date argument
	SEC_TO_TIME()	Converts seconds to 'HH:MM:SS' format
	SECOND()	Return the second (0-59)
	STR_TO_DATE()	Convert a string to a date
	SUBDATE()	Synonym for DATE_SUB() when invoked with three arguments
	SUBTIME()	Subtract times
	SYSDATE()	Return the time at which the function executes
	TIME_FORMAT()	Format as time
	TIME_TO_SEC()	Return the argument converted to seconds
	TIME()	Extract the time portion of the expression passed
	TIMEDIFF()	Subtract time
	TIMESTAMP()	With a single argument, this function returns the date or datetime expression; with two arguments, the sum of the arguments
	TIMESTAMPADD()	Add an interval to a datetime expression
	TIMESTAMPDIFF()	Subtract an interval from a datetime expression
	TO_DAYS()	Return the date argument converted to days
	UNIX_TIMESTAMP()	Return a UNIX timestamp
	UTC_DATE()	Return the current UTC date
	UTC_TIME()	Return the current UTC time
	UTC_TIMESTAMP()	Return the current UTC date and time
	WEEK()	Return the week number
	WEEKDAY()	Return the weekday index
	WEEKOFYEAR()	Return the calendar week of the date (0-53)
	YEAR()	Return the year
	YEARWEEK()	Return the year and week

 Here is an example that uses date functions. The following query
 selects all rows with a date_col value
 from within the last 30 days:

mysql> SELECT something FROM tbl_name
 -> WHERE DATE_SUB(CURDATE(),INTERVAL 30 DAY) <= date_col;

 The query also selects rows with dates that lie in the future.

 Functions that expect date values usually accept datetime values
 and ignore the time part. Functions that expect time values
 usually accept datetime values and ignore the date part.

 Functions that return the current date or time each are evaluated
 only once per query at the start of query execution. This means
 that multiple references to a function such as
 NOW() within a single query always
 produce the same result. (For our purposes, a single query also
 includes a call to a stored program (stored routine or trigger)
 and all subprograms called by that program.) This principle also
 applies to CURDATE(),
 CURTIME(),
 UTC_DATE(),
 UTC_TIME(),
 UTC_TIMESTAMP(), and to any of
 their synonyms.

 The CURRENT_TIMESTAMP(),
 CURRENT_TIME(),
 CURRENT_DATE(), and
 FROM_UNIXTIME() functions return
 values in the connection's current time zone, which is available
 as the value of the time_zone
 system variable. In addition,
 UNIX_TIMESTAMP() assumes that its
 argument is a datetime value in the current time zone. See
 Section 10.6, “MySQL Server Time Zone Support”.

 Some date functions can be used with “zero” dates or
 incomplete dates such as '2001-11-00', whereas
 others cannot. Functions that extract parts of dates typically
 work with incomplete dates and thus can return 0 when you might
 otherwise expect a nonzero value. For example:

mysql> SELECT DAYOFMONTH('2001-11-00'), MONTH('2005-00-00');
 -> 0, 0

 Other functions expect complete dates and return
 NULL for incomplete dates. These include
 functions that perform date arithmetic or that map parts of dates
 to names. For example:

mysql> SELECT DATE_ADD('2006-05-00',INTERVAL 1 DAY);
 -> NULL
mysql> SELECT DAYNAME('2006-05-00');
 -> NULL

	

 ADDDATE(date,INTERVAL
 expr
 unit),
 ADDDATE(expr,days)

 When invoked with the INTERVAL form of the
 second argument, ADDDATE() is a
 synonym for DATE_ADD(). The
 related function SUBDATE() is a
 synonym for DATE_SUB(). For
 information on the INTERVAL
 unit argument, see the discussion
 for DATE_ADD().

mysql> SELECT DATE_ADD('2008-01-02', INTERVAL 31 DAY);
 -> '2008-02-02'
mysql> SELECT ADDDATE('2008-01-02', INTERVAL 31 DAY);
 -> '2008-02-02'

 When invoked with the days form of
 the second argument, MySQL treats it as an integer number of
 days to be added to expr.

mysql> SELECT ADDDATE('2008-01-02', 31);
 -> '2008-02-02'

	

 ADDTIME(expr1,expr2)

 ADDTIME() adds
 expr2 to
 expr1 and returns the result.
 expr1 is a time or datetime
 expression, and expr2 is a time
 expression.

mysql> SELECT ADDTIME('2007-12-31 23:59:59.999999', '1 1:1:1.000002');
 -> '2008-01-02 01:01:01.000001'
mysql> SELECT ADDTIME('01:00:00.999999', '02:00:00.999998');
 -> '03:00:01.999997'

	

 CONVERT_TZ(dt,from_tz,to_tz)

 CONVERT_TZ() converts a
 datetime value dt from the time
 zone given by from_tz to the time
 zone given by to_tz and returns the
 resulting value. Time zones are specified as described in
 Section 10.6, “MySQL Server Time Zone Support”. This function returns
 NULL if the arguments are invalid.

 If the value falls out of the supported range of the
 TIMESTAMP type when converted
 from from_tz to UTC, no conversion
 occurs. The TIMESTAMP range is
 described in Section 11.1.2, “Date and Time Type Overview”.

mysql> SELECT CONVERT_TZ('2004-01-01 12:00:00','GMT','MET');
 -> '2004-01-01 13:00:00'
mysql> SELECT CONVERT_TZ('2004-01-01 12:00:00','+00:00','+10:00');
 -> '2004-01-01 22:00:00'

Note

 To use named time zones such as 'MET' or
 'Europe/Moscow', the time zone tables
 must be properly set up. See
 Section 10.6, “MySQL Server Time Zone Support”, for instructions.

 If you intend to use
 CONVERT_TZ() while other tables
 are locked with LOCK TABLES,
 you must also lock the mysql.time_zone_name
 table.

	

 CURDATE()

 Returns the current date as a value in
 'YYYY-MM-DD' or YYYYMMDD
 format, depending on whether the function is used in a string
 or numeric context.

mysql> SELECT CURDATE();
 -> '2008-06-13'
mysql> SELECT CURDATE() + 0;
 -> 20080613

	

 CURRENT_DATE,
 CURRENT_DATE()

 CURRENT_DATE and
 CURRENT_DATE() are synonyms for
 CURDATE().

	

 CURRENT_TIME,
 CURRENT_TIME()

 CURRENT_TIME and
 CURRENT_TIME() are synonyms for
 CURTIME().

	

 CURRENT_TIMESTAMP,
 CURRENT_TIMESTAMP()

 CURRENT_TIMESTAMP and
 CURRENT_TIMESTAMP() are
 synonyms for NOW().

	

 CURTIME()

 Returns the current time as a value in
 'HH:MM:SS' or
 HHMMSS.uuuuuu format, depending on whether
 the function is used in a string or numeric context. The value
 is expressed in the current time zone.

mysql> SELECT CURTIME();
 -> '23:50:26'
mysql> SELECT CURTIME() + 0;
 -> 235026.000000

	

 DATE(expr)

 Extracts the date part of the date or datetime expression
 expr.

mysql> SELECT DATE('2003-12-31 01:02:03');
 -> '2003-12-31'

	

 DATEDIFF(expr1,expr2)

 DATEDIFF() returns
 expr1 –
 expr2 expressed as a value in days
 from one date to the other. expr1
 and expr2 are date or date-and-time
 expressions. Only the date parts of the values are used in the
 calculation.

mysql> SELECT DATEDIFF('2007-12-31 23:59:59','2007-12-30');
 -> 1
mysql> SELECT DATEDIFF('2010-11-30 23:59:59','2010-12-31');
 -> -31

	

 DATE_ADD(date,INTERVAL
 expr
 unit),
 DATE_SUB(date,INTERVAL
 expr
 unit)

 These functions perform date arithmetic. The
 date argument specifies the
 starting date or datetime value.
 expr is an expression specifying
 the interval value to be added or subtracted from the starting
 date. expr is a string; it may
 start with a “-” for negative
 intervals. unit is a keyword
 indicating the units in which the expression should be
 interpreted.

 The INTERVAL keyword and the
 unit specifier are not case
 sensitive.

 The following table shows the expected form of the
 expr argument for each
 unit value.

	unit Value	Expected expr Format
	MICROSECOND	MICROSECONDS
	SECOND	SECONDS
	MINUTE	MINUTES
	HOUR	HOURS
	DAY	DAYS
	WEEK	WEEKS
	MONTH	MONTHS
	QUARTER	QUARTERS
	YEAR	YEARS
	SECOND_MICROSECOND	'SECONDS.MICROSECONDS'
	MINUTE_MICROSECOND	'MINUTES:SECONDS.MICROSECONDS'
	MINUTE_SECOND	'MINUTES:SECONDS'
	HOUR_MICROSECOND	'HOURS:MINUTES:SECONDS.MICROSECONDS'
	HOUR_SECOND	'HOURS:MINUTES:SECONDS'
	HOUR_MINUTE	'HOURS:MINUTES'
	DAY_MICROSECOND	'DAYS HOURS:MINUTES:SECONDS.MICROSECONDS'
	DAY_SECOND	'DAYS HOURS:MINUTES:SECONDS'
	DAY_MINUTE	'DAYS HOURS:MINUTES'
	DAY_HOUR	'DAYS HOURS'
	YEAR_MONTH	'YEARS-MONTHS'

 The return value depends on the arguments:

	
 DATETIME if the first
 argument is a DATETIME (or
 TIMESTAMP) value, or if the
 first argument is a DATE
 and the unit value uses
 HOURS, MINUTES, or
 SECONDS.

	
 String otherwise.

 To ensure that the result is
 DATETIME, you can use
 CAST() to convert the first
 argument to DATETIME.

 MySQL permits any punctuation delimiter in the
 expr format. Those shown in the
 table are the suggested delimiters. If the
 date argument is a
 DATE value and your
 calculations involve only YEAR,
 MONTH, and DAY parts
 (that is, no time parts), the result is a
 DATE value. Otherwise, the
 result is a DATETIME value.

 Date arithmetic also can be performed using
 INTERVAL together with the
 + or
 - operator:

date + INTERVAL expr unit
date - INTERVAL expr unit

 INTERVAL expr
 unit is permitted on
 either side of the
 + operator if
 the expression on the other side is a date or datetime value.
 For the -
 operator, INTERVAL expr
 unit is permitted only on
 the right side, because it makes no sense to subtract a date
 or datetime value from an interval.

mysql> SELECT '2008-12-31 23:59:59' + INTERVAL 1 SECOND;
 -> '2009-01-01 00:00:00'
mysql> SELECT INTERVAL 1 DAY + '2008-12-31';
 -> '2009-01-01'
mysql> SELECT '2005-01-01' - INTERVAL 1 SECOND;
 -> '2004-12-31 23:59:59'
mysql> SELECT DATE_ADD('2000-12-31 23:59:59',
 -> INTERVAL 1 SECOND);
 -> '2001-01-01 00:00:00'
mysql> SELECT DATE_ADD('2010-12-31 23:59:59',
 -> INTERVAL 1 DAY);
 -> '2011-01-01 23:59:59'
mysql> SELECT DATE_ADD('2100-12-31 23:59:59',
 -> INTERVAL '1:1' MINUTE_SECOND);
 -> '2101-01-01 00:01:00'
mysql> SELECT DATE_SUB('2005-01-01 00:00:00',
 -> INTERVAL '1 1:1:1' DAY_SECOND);
 -> '2004-12-30 22:58:59'
mysql> SELECT DATE_ADD('1900-01-01 00:00:00',
 -> INTERVAL '-1 10' DAY_HOUR);
 -> '1899-12-30 14:00:00'
mysql> SELECT DATE_SUB('1998-01-02', INTERVAL 31 DAY);
 -> '1997-12-02'
mysql> SELECT DATE_ADD('1992-12-31 23:59:59.000002',
 -> INTERVAL '1.999999' SECOND_MICROSECOND);
 -> '1993-01-01 00:00:01.000001'

 If you specify an interval value that is too short (does not
 include all the interval parts that would be expected from the
 unit keyword), MySQL assumes that
 you have left out the leftmost parts of the interval value.
 For example, if you specify a unit
 of DAY_SECOND, the value of
 expr is expected to have days,
 hours, minutes, and seconds parts. If you specify a value like
 '1:10', MySQL assumes that the days and
 hours parts are missing and the value represents minutes and
 seconds. In other words, '1:10' DAY_SECOND
 is interpreted in such a way that it is equivalent to
 '1:10' MINUTE_SECOND. This is analogous to
 the way that MySQL interprets
 TIME values as representing
 elapsed time rather than as a time of day.

 Because expr is treated as a
 string, be careful if you specify a nonstring value with
 INTERVAL. For example, with an interval
 specifier of HOUR_MINUTE,
 6/4 evaluates to 1.5000
 and is treated as 1 hour, 5000 minutes:

mysql> SELECT 6/4;
 -> 1.5000
mysql> SELECT DATE_ADD('2009-01-01', INTERVAL 6/4 HOUR_MINUTE);
 -> '2009-01-04 12:20:00'

 To ensure interpretation of the interval value as you expect,
 a CAST() operation may be used.
 To treat 6/4 as 1 hour, 5 minutes, cast it
 to a DECIMAL value with a
 single fractional digit:

mysql> SELECT CAST(6/4 AS DECIMAL(3,1));
 -> 1.5
mysql> SELECT DATE_ADD('1970-01-01 12:00:00',
 -> INTERVAL CAST(6/4 AS DECIMAL(3,1)) HOUR_MINUTE);
 -> '1970-01-01 13:05:00'

 If you add to or subtract from a date value something that
 contains a time part, the result is automatically converted to
 a datetime value:

mysql> SELECT DATE_ADD('2013-01-01', INTERVAL 1 DAY);
 -> '2013-01-02'
mysql> SELECT DATE_ADD('2013-01-01', INTERVAL 1 HOUR);
 -> '2013-01-01 01:00:00'

 If you add MONTH,
 YEAR_MONTH, or YEAR and
 the resulting date has a day that is larger than the maximum
 day for the new month, the day is adjusted to the maximum days
 in the new month:

mysql> SELECT DATE_ADD('2009-01-30', INTERVAL 1 MONTH);
 -> '2009-02-28'

 Date arithmetic operations require complete dates and do not
 work with incomplete dates such as
 '2006-07-00' or badly malformed dates:

mysql> SELECT DATE_ADD('2006-07-00', INTERVAL 1 DAY);
 -> NULL
mysql> SELECT '2005-03-32' + INTERVAL 1 MONTH;
 -> NULL

	

 DATE_FORMAT(date,format)

 Formats the date value according to
 the format string.

 The following specifiers may be used in the
 format string. The
 “%” character is required
 before format specifier characters.

	Specifier	Description
	%a	Abbreviated weekday name
 (Sun..Sat)
	%b	Abbreviated month name (Jan..Dec)
	%c	Month, numeric (0..12)
	%D	Day of the month with English suffix (0th,
 1st, 2nd,
 3rd, …)
	%d	Day of the month, numeric (00..31)
	%e	Day of the month, numeric (0..31)
	%f	Microseconds (000000..999999)
	%H	Hour (00..23)
	%h	Hour (01..12)
	%I	Hour (01..12)
	%i	Minutes, numeric (00..59)
	%j	Day of year (001..366)
	%k	Hour (0..23)
	%l	Hour (1..12)
	%M	Month name (January..December)
	%m	Month, numeric (00..12)
	%p	AM or PM
	%r	Time, 12-hour (hh:mm:ss followed by
 AM or PM)
	%S	Seconds (00..59)
	%s	Seconds (00..59)
	%T	Time, 24-hour (hh:mm:ss)
	%U	Week (00..53), where Sunday is the
 first day of the week;
 WEEK() mode 0
	%u	Week (00..53), where Monday is the
 first day of the week;
 WEEK() mode 1
	%V	Week (01..53), where Sunday is the
 first day of the week;
 WEEK() mode 2; used
 with %X
	%v	Week (01..53), where Monday is the
 first day of the week;
 WEEK() mode 3; used
 with %x
	%W	Weekday name (Sunday..Saturday)
	%w	Day of the week
 (0=Sunday..6=Saturday)
	%X	Year for the week where Sunday is the first day of the week, numeric,
 four digits; used with %V
	%x	Year for the week, where Monday is the first day of the week, numeric,
 four digits; used with %v
	%Y	Year, numeric, four digits
	%y	Year, numeric (two digits)
	%%	A literal “%” character
	%x	x, for any
 “x” not listed
 above

 Ranges for the month and day specifiers begin with zero due to
 the fact that MySQL permits the storing of incomplete dates
 such as '2014-00-00'.

 As of MySQL 5.0.25, the language used for day and month names
 and abbreviations is controlled by the value of the
 lc_time_names system variable
 (Section 10.7, “MySQL Server Locale Support”).

 For the %U, %u,
 %V, and %v specifiers,
 see the description of the
 WEEK() function for information
 about the mode values. The mode affects how week numbering
 occurs.

 As of MySQL 5.0.36,
 DATE_FORMAT() returns a string
 with a character set and collation given by
 character_set_connection and
 collation_connection so that
 it can return month and weekday names containing non-ASCII
 characters. Before 5.0.36, the return value is a binary
 string.

mysql> SELECT DATE_FORMAT('2009-10-04 22:23:00', '%W %M %Y');
 -> 'Sunday October 2009'
mysql> SELECT DATE_FORMAT('2007-10-04 22:23:00', '%H:%i:%s');
 -> '22:23:00'
mysql> SELECT DATE_FORMAT('1900-10-04 22:23:00',
 -> '%D %y %a %d %m %b %j');
 -> '4th 00 Thu 04 10 Oct 277'
mysql> SELECT DATE_FORMAT('1997-10-04 22:23:00',
 -> '%H %k %I %r %T %S %w');
 -> '22 22 10 10:23:00 PM 22:23:00 00 6'
mysql> SELECT DATE_FORMAT('1999-01-01', '%X %V');
 -> '1998 52'
mysql> SELECT DATE_FORMAT('2006-06-00', '%d');
 -> '00'

	

 DATE_SUB(date,INTERVAL
 expr
 unit)

 See the description for
 DATE_ADD().

	

 DAY(date)

 DAY() is a synonym for
 DAYOFMONTH().

	

 DAYNAME(date)

 Returns the name of the weekday for
 date. As of MySQL 5.0.25, the
 language used for the name is controlled by the value of the
 lc_time_names system variable
 (Section 10.7, “MySQL Server Locale Support”).

mysql> SELECT DAYNAME('2007-02-03');
 -> 'Saturday'

	

 DAYOFMONTH(date)

 Returns the day of the month for
 date, in the range
 1 to 31, or
 0 for dates such as
 '0000-00-00' or
 '2008-00-00' that have a zero day part.

mysql> SELECT DAYOFMONTH('2007-02-03');
 -> 3

	

 DAYOFWEEK(date)

 Returns the weekday index for date
 (1 = Sunday, 2 = Monday,
 …, 7 = Saturday). These index values
 correspond to the ODBC standard.

mysql> SELECT DAYOFWEEK('2007-02-03');
 -> 7

	

 DAYOFYEAR(date)

 Returns the day of the year for
 date, in the range
 1 to 366.

mysql> SELECT DAYOFYEAR('2007-02-03');
 -> 34

	

 EXTRACT(unit
 FROM date)

 The EXTRACT() function uses the
 same kinds of unit specifiers as
 DATE_ADD() or
 DATE_SUB(), but extracts parts
 from the date rather than performing date arithmetic.

mysql> SELECT EXTRACT(YEAR FROM '2009-07-02');
 -> 2009
mysql> SELECT EXTRACT(YEAR_MONTH FROM '2009-07-02 01:02:03');
 -> 200907
mysql> SELECT EXTRACT(DAY_MINUTE FROM '2009-07-02 01:02:03');
 -> 20102
mysql> SELECT EXTRACT(MICROSECOND
 -> FROM '2003-01-02 10:30:00.000123');
 -> 123

	

 FROM_DAYS(N)

 Given a day number N, returns a
 DATE value.

mysql> SELECT FROM_DAYS(730669);
 -> '2007-07-03'

 Use FROM_DAYS() with caution on
 old dates. It is not intended for use with values that precede
 the advent of the Gregorian calendar (1582). See
 Section 12.8, “What Calendar Is Used By MySQL?”.

	

 FROM_UNIXTIME(unix_timestamp),
 FROM_UNIXTIME(unix_timestamp,format)

 Returns a representation of the
 unix_timestamp argument as a value
 in 'YYYY-MM-DD HH:MM:SS' or
 YYYYMMDDHHMMSS.uuuuuu format, depending on
 whether the function is used in a string or numeric context.
 The value is expressed in the current time zone.
 unix_timestamp is an internal
 timestamp value such as is produced by the
 UNIX_TIMESTAMP() function.

 If format is given, the result is
 formatted according to the format
 string, which is used the same way as listed in the entry for
 the DATE_FORMAT() function.

mysql> SELECT FROM_UNIXTIME(1196440219);
 -> '2007-11-30 10:30:19'
mysql> SELECT FROM_UNIXTIME(1196440219) + 0;
 -> 20071130103019.000000
mysql> SELECT FROM_UNIXTIME(UNIX_TIMESTAMP(),
 -> '%Y %D %M %h:%i:%s %x');
 -> '2007 30th November 10:30:59 2007'

 Note: If you use
 UNIX_TIMESTAMP() and
 FROM_UNIXTIME() to convert
 between TIMESTAMP values and
 Unix timestamp values, the conversion is lossy because the
 mapping is not one-to-one in both directions. For details, see
 the description of the
 UNIX_TIMESTAMP() function.

	

 GET_FORMAT({DATE|TIME|DATETIME},
 {'EUR'|'USA'|'JIS'|'ISO'|'INTERNAL'})

 Returns a format string. This function is useful in
 combination with the
 DATE_FORMAT() and the
 STR_TO_DATE() functions.

 The possible values for the first and second arguments result
 in several possible format strings (for the specifiers used,
 see the table in the
 DATE_FORMAT() function
 description). ISO format refers to ISO 9075, not ISO 8601.

	Function Call	Result
	GET_FORMAT(DATE,'USA')	'%m.%d.%Y'
	GET_FORMAT(DATE,'JIS')	'%Y-%m-%d'
	GET_FORMAT(DATE,'ISO')	'%Y-%m-%d'
	GET_FORMAT(DATE,'EUR')	'%d.%m.%Y'
	GET_FORMAT(DATE,'INTERNAL')	'%Y%m%d'
	GET_FORMAT(DATETIME,'USA')	'%Y-%m-%d %H.%i.%s'
	GET_FORMAT(DATETIME,'JIS')	'%Y-%m-%d %H:%i:%s'
	GET_FORMAT(DATETIME,'ISO')	'%Y-%m-%d %H:%i:%s'
	GET_FORMAT(DATETIME,'EUR')	'%Y-%m-%d %H.%i.%s'
	GET_FORMAT(DATETIME,'INTERNAL')	'%Y%m%d%H%i%s'
	GET_FORMAT(TIME,'USA')	'%h:%i:%s %p'
	GET_FORMAT(TIME,'JIS')	'%H:%i:%s'
	GET_FORMAT(TIME,'ISO')	'%H:%i:%s'
	GET_FORMAT(TIME,'EUR')	'%H.%i.%s'
	GET_FORMAT(TIME,'INTERNAL')	'%H%i%s'

 TIMESTAMP can also be used as
 the first argument to
 GET_FORMAT(), in which case the
 function returns the same values as for
 DATETIME.

mysql> SELECT DATE_FORMAT('2003-10-03',GET_FORMAT(DATE,'EUR'));
 -> '03.10.2003'
mysql> SELECT STR_TO_DATE('10.31.2003',GET_FORMAT(DATE,'USA'));
 -> '2003-10-31'

	

 HOUR(time)

 Returns the hour for time. The
 range of the return value is 0 to
 23 for time-of-day values. However, the
 range of TIME values actually
 is much larger, so HOUR can return values
 greater than 23.

mysql> SELECT HOUR('10:05:03');
 -> 10
mysql> SELECT HOUR('272:59:59');
 -> 272

	

 LAST_DAY(date)

 Takes a date or datetime value and returns the corresponding
 value for the last day of the month. Returns
 NULL if the argument is invalid.

mysql> SELECT LAST_DAY('2003-02-05');
 -> '2003-02-28'
mysql> SELECT LAST_DAY('2004-02-05');
 -> '2004-02-29'
mysql> SELECT LAST_DAY('2004-01-01 01:01:01');
 -> '2004-01-31'
mysql> SELECT LAST_DAY('2003-03-32');
 -> NULL

	

 LOCALTIME,
 LOCALTIME()

 LOCALTIME and
 LOCALTIME() are synonyms for
 NOW().

	

 LOCALTIMESTAMP,
 LOCALTIMESTAMP()

 LOCALTIMESTAMP and
 LOCALTIMESTAMP() are synonyms
 for NOW().

	

 MAKEDATE(year,dayofyear)

 Returns a date, given year and day-of-year values.
 dayofyear must be greater than 0 or
 the result is NULL.

mysql> SELECT MAKEDATE(2011,31), MAKEDATE(2011,32);
 -> '2011-01-31', '2011-02-01'
mysql> SELECT MAKEDATE(2011,365), MAKEDATE(2014,365);
 -> '2011-12-31', '2014-12-31'
mysql> SELECT MAKEDATE(2011,0);
 -> NULL

	

 MAKETIME(hour,minute,second)

 Returns a time value calculated from the
 hour,
 minute, and
 second arguments.

mysql> SELECT MAKETIME(12,15,30);
 -> '12:15:30'

	

 MICROSECOND(expr)

 Returns the microseconds from the time or datetime expression
 expr as a number in the range from
 0 to 999999.

mysql> SELECT MICROSECOND('12:00:00.123456');
 -> 123456
mysql> SELECT MICROSECOND('2009-12-31 23:59:59.000010');
 -> 10

	

 MINUTE(time)

 Returns the minute for time, in the
 range 0 to 59.

mysql> SELECT MINUTE('2008-02-03 10:05:03');
 -> 5

	

 MONTH(date)

 Returns the month for date, in the
 range 1 to 12 for
 January to December, or 0 for dates such as
 '0000-00-00' or
 '2008-00-00' that have a zero month part.

mysql> SELECT MONTH('2008-02-03');
 -> 2

	

 MONTHNAME(date)

 Returns the full name of the month for
 date. As of MySQL 5.0.25, the
 language used for the name is controlled by the value of the
 lc_time_names system variable
 (Section 10.7, “MySQL Server Locale Support”).

mysql> SELECT MONTHNAME('2008-02-03');
 -> 'February'

	

 NOW()

 Returns the current date and time as a value in
 'YYYY-MM-DD HH:MM:SS' or
 YYYYMMDDHHMMSS.uuuuuu format, depending on
 whether the function is used in a string or numeric context.
 The value is expressed in the current time zone.

mysql> SELECT NOW();
 -> '2007-12-15 23:50:26'
mysql> SELECT NOW() + 0;
 -> 20071215235026.000000

 NOW() returns a constant time
 that indicates the time at which the statement began to
 execute. (Within a stored function or trigger,
 NOW() returns the time at which
 the function or triggering statement began to execute.) This
 differs from the behavior for
 SYSDATE(), which returns the
 exact time at which it executes as of MySQL 5.0.12.

mysql> SELECT NOW(), SLEEP(2), NOW();
+---------------------+----------+---------------------+
| NOW() | SLEEP(2) | NOW() |
+---------------------+----------+---------------------+
| 2006-04-12 13:47:36 | 0 | 2006-04-12 13:47:36 |
+---------------------+----------+---------------------+

mysql> SELECT SYSDATE(), SLEEP(2), SYSDATE();
+---------------------+----------+---------------------+
| SYSDATE() | SLEEP(2) | SYSDATE() |
+---------------------+----------+---------------------+
| 2006-04-12 13:47:44 | 0 | 2006-04-12 13:47:46 |
+---------------------+----------+---------------------+

 In addition, the SET TIMESTAMP statement
 affects the value returned by
 NOW() but not by
 SYSDATE(). This means that
 timestamp settings in the binary log have no effect on
 invocations of SYSDATE().
 Setting the timestamp to a nonzero value causes each
 subsequent invocation of NOW()
 to return that value. Setting the timestamp to zero cancels
 this effect so that NOW() once
 again returns the current date and time.

 See the description for
 SYSDATE() for additional
 information about the differences between the two functions.

	

 PERIOD_ADD(P,N)

 Adds N months to period
 P (in the format
 YYMM or YYYYMM). Returns
 a value in the format YYYYMM. Note that the
 period argument P is
 not a date value.

mysql> SELECT PERIOD_ADD(200801,2);
 -> 200803

	

 PERIOD_DIFF(P1,P2)

 Returns the number of months between periods
 P1 and
 P2. P1
 and P2 should be in the format
 YYMM or YYYYMM. Note
 that the period arguments P1 and
 P2 are not
 date values.

mysql> SELECT PERIOD_DIFF(200802,200703);
 -> 11

	

 QUARTER(date)

 Returns the quarter of the year for
 date, in the range
 1 to 4.

mysql> SELECT QUARTER('2008-04-01');
 -> 2

	

 SECOND(time)

 Returns the second for time, in the
 range 0 to 59.

mysql> SELECT SECOND('10:05:03');
 -> 3

	

 SEC_TO_TIME(seconds)

 Returns the seconds argument,
 converted to hours, minutes, and seconds, as a
 TIME value. The range of the
 result is constrained to that of the
 TIME data type. A warning
 occurs if the argument corresponds to a value outside that
 range.

mysql> SELECT SEC_TO_TIME(2378);
 -> '00:39:38'
mysql> SELECT SEC_TO_TIME(2378) + 0;
 -> 3938

	

 STR_TO_DATE(str,format)

 This is the inverse of the
 DATE_FORMAT() function. It
 takes a string str and a format
 string format.
 STR_TO_DATE() returns a
 DATETIME value if the format
 string contains both date and time parts, or a
 DATE or
 TIME value if the string
 contains only date or time parts. If the date, time, or
 datetime value extracted from str
 is illegal, STR_TO_DATE()
 returns NULL and, as of MySQL 5.0.3,
 produces a warning.

 The server scans str attempting to
 match format to it. The format
 string can contain literal characters and format specifiers
 beginning with %. Literal characters in
 format must match literally in
 str. Format specifiers in
 format must match a date or time
 part in str. For the specifiers
 that can be used in format, see the
 DATE_FORMAT() function
 description.

mysql> SELECT STR_TO_DATE('01,5,2013','%d,%m,%Y');
 -> '2013-05-01'
mysql> SELECT STR_TO_DATE('May 1, 2013','%M %d,%Y');
 -> '2013-05-01'

 Scanning starts at the beginning of
 str and fails if
 format is found not to match. Extra
 characters at the end of str are
 ignored.

mysql> SELECT STR_TO_DATE('a09:30:17','a%h:%i:%s');
 -> '09:30:17'
mysql> SELECT STR_TO_DATE('a09:30:17','%h:%i:%s');
 -> NULL
mysql> SELECT STR_TO_DATE('09:30:17a','%h:%i:%s');
 -> '09:30:17'

 Unspecified date or time parts have a value of 0, so
 incompletely specified values in
 str produce a result with some or
 all parts set to 0:

mysql> SELECT STR_TO_DATE('abc','abc');
 -> '0000-00-00'
mysql> SELECT STR_TO_DATE('9','%m');
 -> '0000-09-00'
mysql> SELECT STR_TO_DATE('9','%s');
 -> '00:00:09'

 Range checking on the parts of date values is as described in
 Section 11.3.1, “The DATE, DATETIME, and
 TIMESTAMP Types”. This means, for example, that
 “zero” dates or dates with part values of 0 are
 permitted unless the SQL mode is set to disallow such values.

mysql> SELECT STR_TO_DATE('00/00/0000', '%m/%d/%Y');
 -> '0000-00-00'
mysql> SELECT STR_TO_DATE('04/31/2004', '%m/%d/%Y');
 -> '2004-04-31'

Note

 You cannot use format "%X%V" to convert a
 year-week string to a date because the combination of a year
 and week does not uniquely identify a year and month if the
 week crosses a month boundary. To convert a year-week to a
 date, you should also specify the weekday:

mysql> SELECT STR_TO_DATE('200442 Monday', '%X%V %W');
 -> '2004-10-18'

	

 SUBDATE(date,INTERVAL
 expr
 unit),
 SUBDATE(expr,days)

 When invoked with the INTERVAL form of the
 second argument, SUBDATE() is a
 synonym for DATE_SUB(). For
 information on the INTERVAL
 unit argument, see the discussion
 for DATE_ADD().

mysql> SELECT DATE_SUB('2008-01-02', INTERVAL 31 DAY);
 -> '2007-12-02'
mysql> SELECT SUBDATE('2008-01-02', INTERVAL 31 DAY);
 -> '2007-12-02'

 The second form enables the use of an integer value for
 days. In such cases, it is
 interpreted as the number of days to be subtracted from the
 date or datetime expression expr.

mysql> SELECT SUBDATE('2008-01-02 12:00:00', 31);
 -> '2007-12-02 12:00:00'

	

 SUBTIME(expr1,expr2)

 SUBTIME() returns
 expr1 –
 expr2 expressed as a value in the
 same format as expr1.
 expr1 is a time or datetime
 expression, and expr2 is a time
 expression.

mysql> SELECT SUBTIME('2007-12-31 23:59:59.999999','1 1:1:1.000002');
 -> '2007-12-30 22:58:58.999997'
mysql> SELECT SUBTIME('01:00:00.999999', '02:00:00.999998');
 -> '-00:59:59.999999'

	

 SYSDATE()

 Returns the current date and time as a value in
 'YYYY-MM-DD HH:MM:SS' or
 YYYYMMDDHHMMSS.uuuuuu format, depending on
 whether the function is used in a string or numeric context.

 As of MySQL 5.0.12, SYSDATE()
 returns the time at which it executes. This differs from the
 behavior for NOW(), which
 returns a constant time that indicates the time at which the
 statement began to execute. (Within a stored function or
 trigger, NOW() returns the time
 at which the function or triggering statement began to
 execute.)

mysql> SELECT NOW(), SLEEP(2), NOW();
+---------------------+----------+---------------------+
| NOW() | SLEEP(2) | NOW() |
+---------------------+----------+---------------------+
| 2006-04-12 13:47:36 | 0 | 2006-04-12 13:47:36 |
+---------------------+----------+---------------------+

mysql> SELECT SYSDATE(), SLEEP(2), SYSDATE();
+---------------------+----------+---------------------+
| SYSDATE() | SLEEP(2) | SYSDATE() |
+---------------------+----------+---------------------+
| 2006-04-12 13:47:44 | 0 | 2006-04-12 13:47:46 |
+---------------------+----------+---------------------+

 In addition, the SET TIMESTAMP statement
 affects the value returned by
 NOW() but not by
 SYSDATE(). This means that
 timestamp settings in the binary log have no effect on
 invocations of SYSDATE().

 Because SYSDATE() can return
 different values even within the same statement, and is not
 affected by SET TIMESTAMP, it is
 nondeterministic and therefore unsafe for replication. If that
 is a problem, you can start the server with the
 --sysdate-is-now option to
 cause SYSDATE() to be an alias
 for NOW(). The nondeterministic
 nature of SYSDATE() also means
 that indexes cannot be used for evaluating expressions that
 refer to it.

	

 TIME(expr)

 Extracts the time part of the time or datetime expression
 expr and returns it as a string.

mysql> SELECT TIME('2003-12-31 01:02:03');
 -> '01:02:03'
mysql> SELECT TIME('2003-12-31 01:02:03.000123');
 -> '01:02:03.000123'

	

 TIMEDIFF(expr1,expr2)

 TIMEDIFF() returns
 expr1 –
 expr2 expressed as a time value.
 expr1 and
 expr2 are time or date-and-time
 expressions, but both must be of the same type.

 The result returned by TIMEDIFF() is
 limited to the range allowed for
 TIME values. Alternatively, you
 can use either of the functions
 TIMESTAMPDIFF() and
 UNIX_TIMESTAMP(), both of which
 return integers.

mysql> SELECT TIMEDIFF('2000:01:01 00:00:00',
 -> '2000:01:01 00:00:00.000001');
 -> '-00:00:00.000001'
mysql> SELECT TIMEDIFF('2008-12-31 23:59:59.000001',
 -> '2008-12-30 01:01:01.000002');
 -> '46:58:57.999999'

	

 TIMESTAMP(expr),
 TIMESTAMP(expr1,expr2)

 With a single argument, this function returns the date or
 datetime expression expr as a
 datetime value. With two arguments, it adds the time
 expression expr2 to the date or
 datetime expression expr1 and
 returns the result as a datetime value.

mysql> SELECT TIMESTAMP('2003-12-31');
 -> '2003-12-31 00:00:00'
mysql> SELECT TIMESTAMP('2003-12-31 12:00:00','12:00:00');
 -> '2004-01-01 00:00:00'

	

 TIMESTAMPADD(unit,interval,datetime_expr)

 Adds the integer expression
 interval to the date or datetime
 expression datetime_expr. The unit
 for interval is given by the
 unit argument, which should be one
 of the following values: FRAC_SECOND
 (microseconds), SECOND,
 MINUTE, HOUR,
 DAY, WEEK,
 MONTH, QUARTER, or
 YEAR.

 Beginning with MySQL 5.0.60, it is possible to use
 MICROSECOND in place of
 FRAC_SECOND with this function, and
 FRAC_SECOND is deprecated.
 FRAC_SECOND is removed in MySQL 5.5.

 The unit value may be specified
 using one of keywords as shown, or with a prefix of
 SQL_TSI_. For example,
 DAY and SQL_TSI_DAY both
 are legal.

mysql> SELECT TIMESTAMPADD(MINUTE,1,'2003-01-02');
 -> '2003-01-02 00:01:00'
mysql> SELECT TIMESTAMPADD(WEEK,1,'2003-01-02');
 -> '2003-01-09'

	

 TIMESTAMPDIFF(unit,datetime_expr1,datetime_expr2)

 Returns datetime_expr2 –
 datetime_expr1, where
 datetime_expr1 and
 datetime_expr2 are date or datetime
 expressions. One expression may be a date and the other a
 datetime; a date value is treated as a datetime having the
 time part '00:00:00' where necessary. The
 unit for the result (an integer) is given by the
 unit argument. The legal values for
 unit are the same as those listed
 in the description of the
 TIMESTAMPADD() function.

mysql> SELECT TIMESTAMPDIFF(MONTH,'2003-02-01','2003-05-01');
 -> 3
mysql> SELECT TIMESTAMPDIFF(YEAR,'2002-05-01','2001-01-01');
 -> -1
mysql> SELECT TIMESTAMPDIFF(MINUTE,'2003-02-01','2003-05-01 12:05:55');
 -> 128885

Note

 The order of the date or datetime arguments for this
 function is the opposite of that used with the
 TIMESTAMP() function when
 invoked with 2 arguments.

	

 TIME_FORMAT(time,format)

 This is used like the
 DATE_FORMAT() function, but the
 format string may contain format
 specifiers only for hours, minutes, seconds, and microseconds.
 Other specifiers produce a NULL value or
 0.

 If the time value contains an hour
 part that is greater than 23, the
 %H and %k hour format
 specifiers produce a value larger than the usual range of
 0..23. The other hour format specifiers
 produce the hour value modulo 12.

mysql> SELECT TIME_FORMAT('100:00:00', '%H %k %h %I %l');
 -> '100 100 04 04 4'

	

 TIME_TO_SEC(time)

 Returns the time argument,
 converted to seconds.

mysql> SELECT TIME_TO_SEC('22:23:00');
 -> 80580
mysql> SELECT TIME_TO_SEC('00:39:38');
 -> 2378

	

 TO_DAYS(date)

 Given a date date, returns a day
 number (the number of days since year 0).

mysql> SELECT TO_DAYS(950501);
 -> 728779
mysql> SELECT TO_DAYS('2007-10-07');
 -> 733321

 TO_DAYS() is not intended for
 use with values that precede the advent of the Gregorian
 calendar (1582), because it does not take into account the
 days that were lost when the calendar was changed. For dates
 before 1582 (and possibly a later year in other locales),
 results from this function are not reliable. See
 Section 12.8, “What Calendar Is Used By MySQL?”, for details.

 Remember that MySQL converts two-digit year values in dates to
 four-digit form using the rules in
 Section 11.3, “Date and Time Types”. For example,
 '2008-10-07' and
 '08-10-07' are seen as identical dates:

mysql> SELECT TO_DAYS('2008-10-07'), TO_DAYS('08-10-07');
 -> 733687, 733687

 In MySQL, the zero date is defined as
 '0000-00-00', even though this date is
 itself considered invalid. This means that, for
 '0000-00-00' and
 '0000-01-01',
 TO_DAYS() returns the values
 shown here:

mysql> SELECT TO_DAYS('0000-00-00');
+-----------------------+
| to_days('0000-00-00') |
+-----------------------+
| NULL |
+-----------------------+
1 row in set, 1 warning (0.00 sec)

mysql> SHOW WARNINGS;
+---------+------+--+
| Level | Code | Message |
+---------+------+--+
| Warning | 1292 | Incorrect datetime value: '0000-00-00' |
+---------+------+--+
1 row in set (0.00 sec)

mysql> SELECT TO_DAYS('0000-01-01');
+-----------------------+
| to_days('0000-01-01') |
+-----------------------+
| 1 |
+-----------------------+
1 row in set (0.00 sec)

 This is true whether or not the
 ALLOW_INVALID_DATES SQL
 server mode (available in MySQL 5.0.2 and later) is enabled.

	

 UNIX_TIMESTAMP(),
 UNIX_TIMESTAMP(date)

 If called with no argument, returns a Unix timestamp (seconds
 since '1970-01-01 00:00:00' UTC) as an
 unsigned integer. If
 UNIX_TIMESTAMP() is called with
 a date argument, it returns the
 value of the argument as seconds since '1970-01-01
 00:00:00' UTC. date may
 be a DATE string, a
 DATETIME string, a
 TIMESTAMP, or a number in the
 format YYMMDD or
 YYYYMMDD. The server interprets
 date as a value in the current time
 zone and converts it to an internal value in UTC. Clients can
 set their time zone as described in
 Section 10.6, “MySQL Server Time Zone Support”.

mysql> SELECT UNIX_TIMESTAMP();
 -> 1196440210
mysql> SELECT UNIX_TIMESTAMP('2007-11-30 10:30:19');
 -> 1196440219

 When UNIX_TIMESTAMP() is used
 on a TIMESTAMP column, the
 function returns the internal timestamp value directly, with
 no implicit “string-to-Unix-timestamp”
 conversion. If you pass an out-of-range date to
 UNIX_TIMESTAMP(), it returns
 0.

 Note: If you use
 UNIX_TIMESTAMP() and
 FROM_UNIXTIME() to convert
 between TIMESTAMP values and
 Unix timestamp values, the conversion is lossy because the
 mapping is not one-to-one in both directions. For example, due
 to conventions for local time zone changes, it is possible for
 two UNIX_TIMESTAMP() to map two
 TIMESTAMP values to the same
 Unix timestamp value.
 FROM_UNIXTIME() will map that
 value back to only one of the original
 TIMESTAMP values. Here is an
 example, using TIMESTAMP values
 in the CET time zone:

mysql> SELECT UNIX_TIMESTAMP('2005-03-27 03:00:00');
+---------------------------------------+
| UNIX_TIMESTAMP('2005-03-27 03:00:00') |
+---------------------------------------+
| 1111885200 |
+---------------------------------------+
mysql> SELECT UNIX_TIMESTAMP('2005-03-27 02:00:00');
+---------------------------------------+
| UNIX_TIMESTAMP('2005-03-27 02:00:00') |
+---------------------------------------+
| 1111885200 |
+---------------------------------------+
mysql> SELECT FROM_UNIXTIME(1111885200);
+---------------------------+
| FROM_UNIXTIME(1111885200) |
+---------------------------+
| 2005-03-27 03:00:00 |
+---------------------------+

 If you want to subtract
 UNIX_TIMESTAMP() columns, you
 might want to cast the result to signed integers. See
 Section 12.10, “Cast Functions and Operators”.

	

 UTC_DATE,
 UTC_DATE()

 Returns the current UTC date as a value in
 'YYYY-MM-DD' or YYYYMMDD
 format, depending on whether the function is used in a string
 or numeric context.

mysql> SELECT UTC_DATE(), UTC_DATE() + 0;
 -> '2003-08-14', 20030814

	

 UTC_TIME,
 UTC_TIME()

 Returns the current UTC time as a value in
 'HH:MM:SS' or
 HHMMSS.uuuuuu format, depending on whether
 the function is used in a string or numeric context.

mysql> SELECT UTC_TIME(), UTC_TIME() + 0;
 -> '18:07:53', 180753.000000

	

 UTC_TIMESTAMP,
 UTC_TIMESTAMP()

 Returns the current UTC date and time as a value in
 'YYYY-MM-DD HH:MM:SS' or
 YYYYMMDDHHMMSS.uuuuuu format, depending on
 whether the function is used in a string or numeric context.

mysql> SELECT UTC_TIMESTAMP(), UTC_TIMESTAMP() + 0;
 -> '2003-08-14 18:08:04', 20030814180804.000000

	

 WEEK(date[,mode])

 This function returns the week number for
 date. The two-argument form of
 WEEK() enables you to specify
 whether the week starts on Sunday or Monday and whether the
 return value should be in the range from 0
 to 53 or from 1 to
 53. If the mode
 argument is omitted, the value of the
 default_week_format system
 variable is used. See
 Section 5.1.4, “Server System Variables”.

 The following table describes how the
 mode argument works.

	Mode	First day of week	Range	Week 1 is the first week …
	0	Sunday	0-53	with a Sunday in this year
	1	Monday	0-53	with 4 or more days this year
	2	Sunday	1-53	with a Sunday in this year
	3	Monday	1-53	with 4 or more days this year
	4	Sunday	0-53	with 4 or more days this year
	5	Monday	0-53	with a Monday in this year
	6	Sunday	1-53	with 4 or more days this year
	7	Monday	1-53	with a Monday in this year

 For mode values with a meaning of
 “with 4 or more days this year,” weeks are
 numbered according to ISO 8601:1988:

	
 If the week containing January 1 has 4 or more days in the
 new year, it is week 1.

	
 Otherwise, it is the last week of the previous year, and
 the next week is week 1.

mysql> SELECT WEEK('2008-02-20');
 -> 7
mysql> SELECT WEEK('2008-02-20',0);
 -> 7
mysql> SELECT WEEK('2008-02-20',1);
 -> 8
mysql> SELECT WEEK('2008-12-31',1);
 -> 53

 Note that if a date falls in the last week of the previous
 year, MySQL returns 0 if you do not use
 2, 3,
 6, or 7 as the optional
 mode argument:

mysql> SELECT YEAR('2000-01-01'), WEEK('2000-01-01',0);
 -> 2000, 0

 One might argue that WEEK()
 should return 52 because the given date
 actually occurs in the 52nd week of 1999.
 WEEK() returns
 0 instead so that the return value is
 “the week number in the given year.” This makes
 use of the WEEK() function
 reliable when combined with other functions that extract a
 date part from a date.

 If you prefer a result evaluated with respect to the year that
 contains the first day of the week for the given date, use
 0, 2,
 5, or 7 as the optional
 mode argument.

mysql> SELECT WEEK('2000-01-01',2);
 -> 52

 Alternatively, use the
 YEARWEEK() function:

mysql> SELECT YEARWEEK('2000-01-01');
 -> 199952
mysql> SELECT MID(YEARWEEK('2000-01-01'),5,2);
 -> '52'

	

 WEEKDAY(date)

 Returns the weekday index for date
 (0 = Monday, 1 =
 Tuesday, … 6 = Sunday).

mysql> SELECT WEEKDAY('2008-02-03 22:23:00');
 -> 6
mysql> SELECT WEEKDAY('2007-11-06');
 -> 1

	

 WEEKOFYEAR(date)

 Returns the calendar week of the date as a number in the range
 from 1 to 53.
 WEEKOFYEAR() is a compatibility
 function that is equivalent to
 WEEK(date,3).

mysql> SELECT WEEKOFYEAR('2008-02-20');
 -> 8

	

 YEAR(date)

 Returns the year for date, in the
 range 1000 to 9999, or
 0 for the “zero” date.

mysql> SELECT YEAR('1987-01-01');
 -> 1987

	

 YEARWEEK(date),
 YEARWEEK(date,mode)

 Returns year and week for a date. The
 mode argument works exactly like
 the mode argument to
 WEEK(). The year in the result
 may be different from the year in the date argument for the
 first and the last week of the year.

mysql> SELECT YEARWEEK('1987-01-01');
 -> 198653

 Note that the week number is different from what the
 WEEK() function would return
 (0) for optional arguments
 0 or 1, as
 WEEK() then returns the week in
 the context of the given year.

C.5. Problems and Common Errors

 This section lists some common problems and error messages that
 you may encounter. It describes how to determine the causes of the
 problems and what to do to solve them.

C.5.1. How to Determine What Is Causing a Problem

 When you run into a problem, the first thing you should do is to
 find out which program or piece of equipment is causing it:

	
 If you have one of the following symptoms, then it is
 probably a hardware problems (such as memory, motherboard,
 CPU, or hard disk) or kernel problem:

	
 The keyboard does not work. This can normally be checked
 by pressing the Caps Lock key. If the Caps Lock light
 does not change, you have to replace your keyboard.
 (Before doing this, you should try to restart your
 computer and check all cables to the keyboard.)

	
 The mouse pointer does not move.

	
 The machine does not answer to a remote machine's pings.

	
 Other programs that are not related to MySQL do not
 behave correctly.

	
 Your system restarted unexpectedly. (A faulty user-level
 program should never be able to take down your system.)

 In this case, you should start by checking all your cables
 and run some diagnostic tool to check your hardware! You
 should also check whether there are any patches, updates, or
 service packs for your operating system that could likely
 solve your problem. Check also that all your libraries (such
 as glibc) are up to date.

 It is always good to use a machine with ECC memory to
 discover memory problems early.

	
 If your keyboard is locked up, you may be able to recover by
 logging in to your machine from another machine and
 executing kbd_mode -a.

	
 Please examine your system log file
 (/var/log/messages or similar) for
 reasons for your problem. If you think the problem is in
 MySQL, you should also examine MySQL's log files. See
 Section 5.2, “MySQL Server Logs”.

	
 If you do not think you have hardware problems, you should
 try to find out which program is causing problems. Try using
 top, ps, Task Manager,
 or some similar program, to check which program is taking
 all CPU or is locking the machine.

	
 Use top, df, or a
 similar program to check whether you are out of memory, disk
 space, file descriptors, or some other critical resource.

	
 If the problem is some runaway process, you can always try
 to kill it. If it does not want to die, there is probably a
 bug in the operating system.

 If after you have examined all other possibilities and you have
 concluded that the MySQL server or a MySQL client is causing the
 problem, it is time to create a bug report for our mailing list
 or our support team. In the bug report, try to give a very
 detailed description of how the system is behaving and what you
 think is happening. You should also state why you think that
 MySQL is causing the problem. Take into consideration all the
 situations in this chapter. State any problems exactly how they
 appear when you examine your system. Use the “copy and
 paste” method for any output and error messages from
 programs and log files.

 Try to describe in detail which program is not working and all
 symptoms you see. We have in the past received many bug reports
 that state only “the system does not work.” This
 provides us with no information about what could be the problem.

 If a program fails, it is always useful to know the following
 information:

	
 Has the program in question made a segmentation fault (did
 it dump core)?

	
 Is the program taking up all available CPU time? Check with
 top. Let the program run for a while, it
 may simply be evaluating something computationally
 intensive.

	
 If the mysqld server is causing problems,
 can you get any response from it with mysqladmin -u
 root ping or mysqladmin -u root
 processlist?

	
 What does a client program say when you try to connect to
 the MySQL server? (Try with mysql, for
 example.) Does the client jam? Do you get any output from
 the program?

 When sending a bug report, you should follow the outline
 described in Section 1.7, “How to Report Bugs or Problems”.

C.5.2. Common Errors When Using MySQL Programs

 This section lists some errors that users frequently encounter
 when running MySQL programs. Although the problems show up when
 you try to run client programs, the solutions to many of the
 problems involves changing the configuration of the MySQL
 server.

C.5.2.1. Access denied

 An Access denied error can have many
 causes. Often the problem is related to the MySQL accounts
 that the server permits client programs to use when
 connecting. See Section 6.2, “The MySQL Access Privilege System”, and
 Section 6.2.7, “Causes of Access-Denied Errors”.

C.5.2.2. Can't connect to [local] MySQL server

 A MySQL client on Unix can connect to the
 mysqld server in two different ways: By
 using a Unix socket file to connect through a file in the file
 system (default /tmp/mysql.sock), or by
 using TCP/IP, which connects through a port number. A Unix
 socket file connection is faster than TCP/IP, but can be used
 only when connecting to a server on the same computer. A Unix
 socket file is used if you do not specify a host name or if
 you specify the special host name
 localhost.

 If the MySQL server is running on Windows, you can connect
 using TCP/IP. If the server is started with the
 --enable-named-pipe option, you
 can also connect with named pipes if you run the client on the
 host where the server is running. The name of the named pipe
 is MySQL by default. If you do not give a
 host name when connecting to mysqld, a
 MySQL client first tries to connect to the named pipe. If that
 does not work, it connects to the TCP/IP port. You can force
 the use of named pipes on Windows by using
 . as the host name.

 The error (2002) Can't connect to ...
 normally means that there is no MySQL server running on the
 system or that you are using an incorrect Unix socket file
 name or TCP/IP port number when trying to connect to the
 server. You should also check that the TCP/IP port you are
 using has not been blocked by a firewall or port blocking
 service.

 The error (2003) Can't connect to MySQL server on
 'server' (10061)
 indicates that the network connection has been refused. You
 should check that there is a MySQL server running, that it has
 network connections enabled, and that the network port you
 specified is the one configured on the server.

 Start by checking whether there is a process named
 mysqld running on your server host. (Use
 ps xa | grep mysqld on Unix or the Task
 Manager on Windows.) If there is no such process, you should
 start the server. See Section 2.18.1.3, “Starting and Troubleshooting the MySQL Server”.

 If a mysqld process is running, you can
 check it by trying the following commands. The port number or
 Unix socket file name might be different in your setup.
 host_ip represents the IP address of the
 machine where the server is running.

shell> mysqladmin version
shell> mysqladmin variables
shell> mysqladmin -h `hostname` version variables
shell> mysqladmin -h `hostname` --port=3306 version
shell> mysqladmin -h host_ip version
shell> mysqladmin --protocol=SOCKET --socket=/tmp/mysql.sock version

 Note the use of backticks rather than forward quotation marks
 with the hostname command; these cause the
 output of hostname (that is, the current
 host name) to be substituted into the
 mysqladmin command. If you have no
 hostname command or are running on Windows,
 you can manually type the host name of your machine (without
 backticks) following the -h option. You can
 also try -h 127.0.0.1 to connect with
 TCP/IP to the local host.

 Make sure that the server has not been configured to ignore
 network connections or (if you are attempting to connect
 remotely) that it has not been configured to listen only
 locally on its network interfaces. If the server was started
 with --skip-networking, it will
 not accept TCP/IP connections at all. If the server was
 started with
 --bind-address=127.0.0.1, it
 will listen for TCP/IP connections only locally on the
 loopback interface and will not accept remote connections.

 Check to make sure that there is no firewall blocking access
 to MySQL. Your firewall may be configured on the basis of the
 application being executed, or the port number used by MySQL
 for communication (3306 by default). Under Linux or Unix,
 check your IP tables (or similar) configuration to ensure that
 the port has not been blocked. Under Windows, applications
 such as ZoneAlarm or the Windows XP personal firewall may need
 to be configured not to block the MySQL port.

 Here are some reasons the Can't connect to local
 MySQL server error might occur:

	
 mysqld is not running on the local
 host. Check your operating system's process list to ensure
 the mysqld process is present.

	
 You're running a MySQL server on Windows with many TCP/IP
 connections to it. If you're experiencing that quite often
 your clients get that error, you can find a workaround
 here:
 Section C.5.2.2.1, “Connection to MySQL Server Failing on Windows”.

	
 Someone has removed the Unix socket file that
 mysqld uses
 (/tmp/mysql.sock by default). For
 example, you might have a cron job that
 removes old files from the /tmp
 directory. You can always run mysqladmin
 version to check whether the Unix socket file
 that mysqladmin is trying to use really
 exists. The fix in this case is to change the
 cron job to not remove
 mysql.sock or to place the socket
 file somewhere else. See
 Section C.5.4.5, “How to Protect or Change the MySQL Unix Socket File”.

	
 You have started the mysqld server with
 the
 --socket=/path/to/socket
 option, but forgotten to tell client programs the new name
 of the socket file. If you change the socket path name for
 the server, you must also notify the MySQL clients. You
 can do this by providing the same
 --socket option when you
 run client programs. You also need to ensure that clients
 have permission to access the
 mysql.sock file. To find out where
 the socket file is, you can do:

shell> netstat -ln | grep mysql

 See Section C.5.4.5, “How to Protect or Change the MySQL Unix Socket File”.

	
 You are using Linux and one server thread has died (dumped
 core). In this case, you must kill the other
 mysqld threads (for example, with
 kill or with the
 mysql_zap script) before you can
 restart the MySQL server. See Section C.5.4.2, “What to Do If MySQL Keeps Crashing”.

	
 The server or client program might not have the proper
 access privileges for the directory that holds the Unix
 socket file or the socket file itself. In this case, you
 must either change the access privileges for the directory
 or socket file so that the server and clients can access
 them, or restart mysqld with a
 --socket option that
 specifies a socket file name in a directory where the
 server can create it and where client programs can access
 it.

 If you get the error message Can't connect to MySQL
 server on some_host, you can try the following
 things to find out what the problem is:

	
 Check whether the server is running on that host by
 executing telnet some_host 3306 and
 pressing the Enter key a couple of times. (3306 is the
 default MySQL port number. Change the value if your server
 is listening to a different port.) If there is a MySQL
 server running and listening to the port, you should get a
 response that includes the server's version number. If you
 get an error such as telnet: Unable to connect to
 remote host: Connection refused, then there is
 no server running on the given port.

	
 If the server is running on the local host, try using
 mysqladmin -h localhost variables to
 connect using the Unix socket file. Verify the TCP/IP port
 number that the server is configured to listen to (it is
 the value of the port
 variable.)

	
 If you are running under Linux and Security-Enhanced Linux
 (SELinux) is enabled, make sure you have disabled SELinux
 protection for the mysqld process.

C.5.2.2.1. Connection to MySQL Server Failing on Windows

 When you're running a MySQL server on Windows with many
 TCP/IP connections to it, and you're experiencing that quite
 often your clients get a Can't connect to MySQL
 server error, the reason might be that Windows
 does not allow for enough ephemeral (short-lived) ports to
 serve those connections.

 The purpose of TIME_WAIT is to keep a
 connection accepting packets even after the connection has
 been closed. This is because Internet routing can cause a
 packet to take a slow route to its destination and it may
 arrive after both sides have agreed to close. If the port is
 in use for a new connection, that packet from the old
 connection could break the protocol or compromise personal
 information from the original connection. The
 TIME_WAIT delay prevents this by ensuring
 that the port cannot be reused until after some time has
 been permitted for those delayed packets to arrive.

 It is safe to reduce TIME_WAIT greatly on
 LAN connections because there is little chance of packets
 arriving at very long delays, as they could through the
 Internet with its comparatively large distances and
 latencies.

 Windows permits ephemeral (short-lived) TCP ports to the
 user. After any port is closed it will remain in a
 TIME_WAIT status for 120 seconds. The
 port will not be available again until this time expires.
 The default range of port numbers depends on the version of
 Windows, with a more limited number of ports in older
 versions:

	
 Windows through Server 2003: Ports in range
 1025–5000

	
 Windows Vista, Server 2008, and newer: Ports in range
 49152–65535

 With a small stack of available TCP ports (5000) and a high
 number of TCP ports being open and closed over a short
 period of time along with the TIME_WAIT
 status you have a good chance for running out of ports.
 There are two ways to address this problem:

	
 Reduce the number of TCP ports consumed quickly by
 investigating connection pooling or persistent
 connections where possible

	
 Tune some settings in the Windows registry (see below)

 IMPORTANT: The following procedure
 involves modifying the Windows registry. Before you modify
 the registry, make sure to back it up and make sure that you
 understand how to restore the registry if a problem occurs.
 For information about how to back up, restore, and edit the
 registry, view the following article in the Microsoft
 Knowledge Base:
 http://support.microsoft.com/kb/256986/EN-US/.

	
 Start Registry Editor
 (Regedt32.exe).

	
 Locate the following key in the registry:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters

	
 On the Edit menu, click Add
 Value, and then add the following registry
 value:

Value Name: MaxUserPort
Data Type: REG_DWORD
Value: 65534

 This sets the number of ephemeral ports available to any
 user. The valid range is between 5000 and 65534
 (decimal). The default value is 0x1388 (5000 decimal).

	
 On the Edit menu, click Add
 Value, and then add the following registry
 value:

Value Name: TcpTimedWaitDelay
Data Type: REG_DWORD
Value: 30

 This sets the number of seconds to hold a TCP port
 connection in TIME_WAIT state before
 closing. The valid range is between 0 (zero) and 300
 (decimal). The default value is 0x78 (120 decimal).

	
 Quit Registry Editor.

	
 Reboot the machine.

 Note: Undoing the above should be as simple as deleting the
 registry entries you've created.

C.5.2.3. Lost connection to MySQL server

 There are three likely causes for this error message.

 Usually it indicates network connectivity trouble and you
 should check the condition of your network if this error
 occurs frequently. If the error message includes “during
 query,” this is probably the case you are experiencing.

 Sometimes the “during query” form happens when
 millions of rows are being sent as part of one or more
 queries. If you know that this is happening, you should try
 increasing net_read_timeout
 from its default of 30 seconds to 60 seconds or longer,
 sufficient for the data transfer to complete.

 More rarely, it can happen when the client is attempting the
 initial connection to the server. In this case, if your
 connect_timeout value is set
 to only a few seconds, you may be able to resolve the problem
 by increasing it to ten seconds, perhaps more if you have a
 very long distance or slow connection. You can determine
 whether you are experiencing this more uncommon cause by using
 SHOW GLOBAL STATUS LIKE 'Aborted_connects'.
 It will increase by one for each initial connection attempt
 that the server aborts. You may see “reading
 authorization packet” as part of the error message; if
 so, that also suggests that this is the solution that you
 need.

 If the cause is none of those just described, you may be
 experiencing a problem with
 BLOB values that are larger
 than max_allowed_packet,
 which can cause this error with some clients. Sometime you may
 see an ER_NET_PACKET_TOO_LARGE
 error, and that confirms that you need to increase
 max_allowed_packet.

C.5.2.4. Client does not support authentication protocol

 The current implementation of the authentication protocol uses
 a password hashing algorithm that is incompatible with that
 used by older (pre-4.1) clients. Attempts to connect to a 4.1
 or newer server with an older client may fail with the
 following message:

shell> mysql
Client does not support authentication protocol requested
by server; consider upgrading MySQL client

 To deal with this problem, the preferred solution is to
 upgrade all client programs to use a 4.1.1 or newer client
 library. If that is not possible, use one of the following
 approaches:

	
 To connect to the server with a pre-4.1 client program,
 use an account that still has a pre-4.1-style password.

	
 Reset the password to pre-4.1 style for each user that
 needs to use a pre-4.1 client program. This can be done
 using the SET PASSWORD
 statement and the
 OLD_PASSWORD() function:

mysql> SET PASSWORD FOR
 -> 'some_user'@'some_host' = OLD_PASSWORD('newpwd');

 Substitute the password you want to use for
 “newpwd” in the
 preceding example. MySQL cannot tell you what the original
 password was, so you'll need to pick a new one.

	
 Tell the server to use the older password hashing
 algorithm by default:

	
 Start mysqld with the
 old_passwords system
 variable set to 1.

	
 Assign an old-format password to each account that has
 had its password updated to the longer 4.1 format. You
 can identify these accounts with the following query:

mysql> SELECT Host, User, Password FROM mysql.user
 -> WHERE LENGTH(Password) > 16;

 For each account record displayed by the query, use
 the Host and
 User values and assign a password
 using one of the methods described previously.

 The Client does not support authentication
 protocol error also can occur if multiple versions
 of MySQL are installed but client programs are dynamically
 linked and link to an older library. Make sure that clients
 use the most recent library version with which they are
 compatible. The procedure to do this will depend on your
 system.

Note

 The mysql extension does not support the
 authentication protocol in MySQL 4.1.1 and higher. This is
 true regardless of the PHP version being used. If you wish
 to use the mysql extension with MySQL 4.1
 or newer, you may need to follow one of the options
 discussed above for configuring MySQL to work with old
 clients. The mysqli extension (stands for
 "MySQL, Improved"; added in PHP 5) is compatible with the
 improved password hashing employed in MySQL 4.1 and higher,
 and no special configuration of MySQL need be done to use
 this MySQL client library. For more information about the
 mysqli extension, see
 http://php.net/mysqli.

 For additional background on password hashing and
 authentication, see Section 6.1.2.4, “Password Hashing in MySQL”.

C.5.2.5. Password Fails When Entered Interactively

 MySQL client programs prompt for a password when invoked with
 a --password or
 -p option that has no following password
 value:

shell> mysql -u user_name -p
Enter password:

 On some systems, you may find that your password works when
 specified in an option file or on the command line, but not
 when you enter it interactively at the Enter
 password: prompt. This occurs when the library
 provided by the system to read passwords limits password
 values to a small number of characters (typically eight). That
 is a problem with the system library, not with MySQL. To work
 around it, change your MySQL password to a value that is eight
 or fewer characters long, or put your password in an option
 file.

C.5.2.6. Host 'host_name' is
 blocked

 If the following error occurs, it means that
 mysqld has received many connection
 requests from the given host that were interrupted in the
 middle:

Host 'host_name' is blocked because of many connection errors.
Unblock with 'mysqladmin flush-hosts'

 The value of the
 max_connect_errors system
 variable determines how many successive interrupted connection
 requests are permitted. (See
 Section 5.1.4, “Server System Variables”.) After
 max_connect_errors failed
 requests without a successful connection,
 mysqld assumes that something is wrong (for
 example, that someone is trying to break in), and blocks the
 host from further connections until you issue a
 FLUSH HOSTS
 statement or execute a mysqladmin
 flush-hosts command.

 By default, mysqld blocks a host after 10
 connection errors. You can adjust the value by setting
 max_connect_errors at server
 startup:

shell> mysqld_safe --max_connect_errors=10000 &

 The value can also be set at runtime:

mysql> SET GLOBAL max_connect_errors=10000;

 If you get the Host
 'host_name' is blocked
 error message for a given host, you should first verify that
 there is nothing wrong with TCP/IP connections from that host.
 If you are having network problems, it does you no good to
 increase the value of the
 max_connect_errors variable.

C.5.2.7. Too many connections

 If you get a Too many connections error
 when you try to connect to the mysqld
 server, this means that all available connections are in use
 by other clients.

 The number of connections permitted is controlled by the
 max_connections system
 variable. Its default value is 100. If you need to support
 more connections, you should set a larger value for this
 variable.

 mysqld actually permits
 max_connections+1
 clients to connect. The extra connection is reserved for use
 by accounts that have the SUPER
 privilege. By granting the
 SUPER privilege to
 administrators and not to normal users (who should not need
 it), an administrator can connect to the server and use
 SHOW PROCESSLIST to diagnose
 problems even if the maximum number of unprivileged clients
 are connected. See Section 13.7.5.27, “SHOW PROCESSLIST Syntax”.

 The maximum number of connections MySQL can support depends on
 the quality of the thread library on a given platform, the
 amount of RAM available, how much RAM is used for each
 connection, the workload from each connection, and the desired
 response time. Linux or Solaris should be able to support at
 500 to 1000 simultaneous connections routinely and as many as
 10,000 connections if you have many gigabytes of RAM available
 and the workload from each is low or the response time target
 undemanding. Windows is limited to (open tables × 2 +
 open connections) < 2048 due to the Posix compatibility
 layer used on that platform.

 Increasing open-files-limit may
 be necessary. Also see
 Section 2.20.1.4, “Linux Postinstallation Notes”, for how to raise the
 operating system limit on how many handles can be used by
 MySQL.

C.5.2.8. Out of memory

 If you issue a query using the mysql client
 program and receive an error like the following one, it means
 that mysql does not have enough memory to
 store the entire query result:

mysql: Out of memory at line 42, 'malloc.c'
mysql: needed 8136 byte (8k), memory in use: 12481367 bytes (12189k)
ERROR 2008: MySQL client ran out of memory

 To remedy the problem, first check whether your query is
 correct. Is it reasonable that it should return so many rows?
 If not, correct the query and try again. Otherwise, you can
 invoke mysql with the
 --quick option. This causes it
 to use the mysql_use_result()
 C API function to retrieve the result set, which places less
 of a load on the client (but more on the server).

C.5.2.9. MySQL server has gone away

 This section also covers the related Lost connection
 to server during query error.

 The most common reason for the MySQL server has gone
 away error is that the server timed out and closed
 the connection. In this case, you normally get one of the
 following error codes (which one you get is operating
 system-dependent).

	Error Code	Description
	CR_SERVER_GONE_ERROR	The client couldn't send a question to the server.
	CR_SERVER_LOST	The client didn't get an error when writing to the server, but it didn't
 get a full answer (or any answer) to the question.

 By default, the server closes the connection after eight hours
 if nothing has happened. You can change the time limit by
 setting the wait_timeout
 variable when you start mysqld. See
 Section 5.1.4, “Server System Variables”.

 If you have a script, you just have to issue the query again
 for the client to do an automatic reconnection. This assumes
 that you have automatic reconnection in the client enabled
 (which is the default for the mysql
 command-line client).

 Some other common reasons for the MySQL server has
 gone away error are:

	
 You (or the db administrator) has killed the running
 thread with a KILL
 statement or a mysqladmin kill command.

	
 You tried to run a query after closing the connection to
 the server. This indicates a logic error in the
 application that should be corrected.

	
 A client application running on a different host does not
 have the necessary privileges to connect to the MySQL
 server from that host.

	
 You got a timeout from the TCP/IP connection on the client
 side. This may happen if you have been using the commands:
 mysql_options(...,
 MYSQL_OPT_READ_TIMEOUT,...) or
 mysql_options(...,
 MYSQL_OPT_WRITE_TIMEOUT,...). In this case
 increasing the timeout may help solve the problem.

	
 You have encountered a timeout on the server side and the
 automatic reconnection in the client is disabled (the
 reconnect flag in the
 MYSQL structure is equal to 0).

	
 You are using a Windows client and the server had dropped
 the connection (probably because
 wait_timeout expired)
 before the command was issued.

 The problem on Windows is that in some cases MySQL does
 not get an error from the OS when writing to the TCP/IP
 connection to the server, but instead gets the error when
 trying to read the answer from the connection.

 Prior to MySQL 5.0.19, even if the
 reconnect flag in the
 MYSQL structure is equal to 1, MySQL
 does not automatically reconnect and re-issue the query as
 it doesn't know if the server did get the original query
 or not.

 The solution to this is to either do a
 mysql_ping() on the
 connection if there has been a long time since the last
 query (this is what Connector/ODBC does) or set
 wait_timeout on the
 mysqld server so high that it in
 practice never times out.

	
 You can also get these errors if you send a query to the
 server that is incorrect or too large. If
 mysqld receives a packet that is too
 large or out of order, it assumes that something has gone
 wrong with the client and closes the connection. If you
 need big queries (for example, if you are working with big
 BLOB columns), you can
 increase the query limit by setting the server's
 max_allowed_packet
 variable, which has a default value of 1MB. You may also
 need to increase the maximum packet size on the client
 end. More information on setting the packet size is given
 in Section C.5.2.10, “Packet Too Large”.

 An INSERT or
 REPLACE statement that
 inserts a great many rows can also cause these sorts of
 errors. Either one of these statements sends a single
 request to the server irrespective of the number of rows
 to be inserted; thus, you can often avoid the error by
 reducing the number of rows sent per
 INSERT or
 REPLACE.

	
 You also get a lost connection if you are sending a packet
 16MB or larger if your client is older than 4.0.8 and your
 server is 4.0.8 and above, or the other way around.

	
 It is also possible to see this error if host name lookups
 fail (for example, if the DNS server on which your server
 or network relies goes down). This is because MySQL is
 dependent on the host system for name resolution, but has
 no way of knowing whether it is working—from MySQL's
 point of view the problem is indistinguishable from any
 other network timeout.

 You may also see the MySQL server has gone
 away error if MySQL is started with the
 --skip-networking option.

 Another networking issue that can cause this error occurs
 if the MySQL port (default 3306) is blocked by your
 firewall, thus preventing any connections at all to the
 MySQL server.

	
 You can also encounter this error with applications that
 fork child processes, all of which try to use the same
 connection to the MySQL server. This can be avoided by
 using a separate connection for each child process.

	
 You have encountered a bug where the server died while
 executing the query.

 You can check whether the MySQL server died and restarted by
 executing mysqladmin version and examining
 the server's uptime. If the client connection was broken
 because mysqld crashed and restarted, you
 should concentrate on finding the reason for the crash. Start
 by checking whether issuing the query again kills the server
 again. See Section C.5.4.2, “What to Do If MySQL Keeps Crashing”.

 You can get more information about the lost connections by
 starting mysqld with the
 --log-warnings=2 option. This
 logs some of the disconnected errors in the
 hostname.err file. See
 Section 5.2.1, “The Error Log”.

 If you want to create a bug report regarding this problem, be
 sure that you include the following information:

	
 Indicate whether the MySQL server died. You can find
 information about this in the server error log. See
 Section C.5.4.2, “What to Do If MySQL Keeps Crashing”.

	
 If a specific query kills mysqld and
 the tables involved were checked with
 CHECK TABLE before you ran
 the query, can you provide a reproducible test case? See
 Section 21.3, “Debugging and Porting MySQL”.

	
 What is the value of the
 wait_timeout system
 variable in the MySQL server? (mysqladmin
 variables gives you the value of this variable.)

	
 Have you tried to run mysqld with the
 general query log enabled to determine whether the problem
 query appears in the log? (See
 Section 5.2.2, “The General Query Log”.)

 See also Section C.5.2.11, “Communication Errors and Aborted Connections”, and
 Section 1.7, “How to Report Bugs or Problems”.

C.5.2.10. Packet Too Large

 A communication packet is a single SQL statement sent to the
 MySQL server, a single row that is sent to the client, or a
 binary log event sent from a master replication server to a
 slave.

 The largest possible packet that can be transmitted to or from
 a MySQL 5.0 server or client is 1GB.

 When a MySQL client or the mysqld server
 receives a packet bigger than
 max_allowed_packet bytes, it
 issues an
 ER_NET_PACKET_TOO_LARGE error
 and closes the connection. With some clients, you may also get
 a Lost connection to MySQL server during
 query error if the communication packet is too
 large.

 Both the client and the server have their own
 max_allowed_packet variable,
 so if you want to handle big packets, you must increase this
 variable both in the client and in the server.

 If you are using the mysql client program,
 its default
 max_allowed_packet variable
 is 16MB. To set a larger value, start mysql
 like this:

shell> mysql --max_allowed_packet=32M

 That sets the packet size to 32MB.

 The server's default
 max_allowed_packet value is
 1MB. You can increase this if the server needs to handle big
 queries (for example, if you are working with big
 BLOB columns). For example, to
 set the variable to 16MB, start the server like this:

shell> mysqld --max_allowed_packet=16M

 You can also use an option file to set
 max_allowed_packet. For
 example, to set the size for the server to 16MB, add the
 following lines in an option file:

[mysqld]
max_allowed_packet=16M

 It is safe to increase the value of this variable because the
 extra memory is allocated only when needed. For example,
 mysqld allocates more memory only when you
 issue a long query or when mysqld must
 return a large result row. The small default value of the
 variable is a precaution to catch incorrect packets between
 the client and server and also to ensure that you do not run
 out of memory by using large packets accidentally.

 You can also get strange problems with large packets if you
 are using large BLOB values but
 have not given mysqld access to enough
 memory to handle the query. If you suspect this is the case,
 try adding ulimit -d 256000 to the
 beginning of the mysqld_safe script and
 restarting mysqld.

C.5.2.11. Communication Errors and Aborted Connections

 If connection problems occur such as communication errors or
 aborted connections, use these sources of information to
 diagnose problems:

	
 The error log. See Section 5.2.1, “The Error Log”.

	
 The general query log. See Section 5.2.2, “The General Query Log”.

	
 The
 Aborted_xxx
 status variables. See
 Section 5.1.6, “Server Status Variables”.

 If you start the server with the
 --log-warnings option, you
 might find messages like this in your error log:

010301 14:38:23 Aborted connection 854 to db:
'users' user: 'josh'

 If a client successfully connects but later disconnects
 improperly or is terminated, the server increments the
 Aborted_clients status
 variable, and logs an Aborted
 connection message to the error log. The cause can
 be any of the following:

	
 The client program did not call
 mysql_close() before
 exiting.

	
 The client had been sleeping more than
 wait_timeout or
 interactive_timeout
 seconds without issuing any requests to the server. See
 Section 5.1.4, “Server System Variables”.

	
 The client program ended abruptly in the middle of a data
 transfer.

 If a client is unable even to connect, the server increments
 the Aborted_connects status
 variable. Unsuccessful connection attempts can occur for the
 following reasons:

	
 A client does not have privileges to connect to a
 database.

	
 A client uses an incorrect password.

	
 A connection packet does not contain the right
 information.

	
 It takes more than
 connect_timeout seconds
 to get a connect packet. See
 Section 5.1.4, “Server System Variables”.

 If these kinds of things happen, it might indicate that
 someone is trying to break into your server! Messages for
 these types of problems are logged to the general query log if
 it is enabled.

 Other reasons for problems with aborted clients or aborted
 connections:

	
 The max_allowed_packet
 variable value is too small or queries require more memory
 than you have allocated for mysqld. See
 Section C.5.2.10, “Packet Too Large”.

	
 Use of Ethernet protocol with Linux, both half and full
 duplex. Many Linux Ethernet drivers have this bug. You
 should test for this bug by transferring a huge file using
 FTP between the client and server machines. If a transfer
 goes in burst-pause-burst-pause mode, you are experiencing
 a Linux duplex syndrome. Switch the duplex mode for both
 your network card and hub/switch to either full duplex or
 to half duplex and test the results to determine the best
 setting.

	
 A problem with the thread library that causes interrupts
 on reads.

	
 Badly configured TCP/IP.

	
 Faulty Ethernets, hubs, switches, cables, and so forth.
 This can be diagnosed properly only by replacing hardware.

 See also Section C.5.2.9, “MySQL server has gone away”.

C.5.2.12. The table is full

 If a table-full error occurs, it may be that the disk is full
 or that the table has reached its maximum size. The effective
 maximum table size for MySQL databases is usually determined
 by operating system constraints on file sizes, not by MySQL
 internal limits. See Section E.7.3, “Limits on Table Size”.

 This error can occur sometimes for MySQL Cluster tables even
 when there appears to be more than sufficient data memory
 available. See the documentation for the
 DataMemory MySQL
 Cluster data node configuration parameter, as well as
 Section 17.1.2, “MySQL Cluster Nodes, Node Groups, Replicas, and Partitions”, for more
 information.

C.5.2.13. Can't create/write to file

 If you get an error of the following type for some queries, it
 means that MySQL cannot create a temporary file for the result
 set in the temporary directory:

Can't create/write to file '\\sqla3fe_0.ism'.

 The preceding error is a typical message for Windows; the Unix
 message is similar.

 One fix is to start mysqld with the
 --tmpdir option or to add the
 option to the [mysqld] section of your
 option file. For example, to specify a directory of
 C:\temp, use these lines:

[mysqld]
tmpdir=C:/temp

 The C:\temp directory must exist and have
 sufficient space for the MySQL server to write to. See
 Section 4.2.3.3, “Using Option Files”.

 Another cause of this error can be permissions issues. Make
 sure that the MySQL server can write to the
 tmpdir directory.

 Check also the error code that you get with
 perror. One reason the server cannot write
 to a table is that the file system is full:

shell> perror 28
OS error code 28: No space left on device

 If you get an error of the following type during startup, it
 indicates that the file system or directory used for storing
 data files is write protected. Provided that the write error
 is to a test file, the error is not serious and can be safely
 ignored.

Can't create test file /usr/local/mysql/data/master.lower-test

C.5.2.14. Commands out of sync

 If you get Commands out of sync; you can't run this
 command now in your client code, you are calling
 client functions in the wrong order.

 This can happen, for example, if you are using
 mysql_use_result() and try to
 execute a new query before you have called
 mysql_free_result(). It can
 also happen if you try to execute two queries that return data
 without calling
 mysql_use_result() or
 mysql_store_result() in
 between.

C.5.2.15. Ignoring user

 If you get the following error, it means that when
 mysqld was started or when it reloaded the
 grant tables, it found an account in the
 user table that had an invalid password.

 Found wrong password for user
 'some_user'@'some_host';
 ignoring user

 As a result, the account is simply ignored by the permission
 system.

 The following list indicates possible causes of and fixes for
 this problem:

	
 You may be running a new version of
 mysqld with an old
 user table. You can check this by
 executing mysqlshow mysql user to see
 whether the Password column is shorter
 than 16 characters. If so, you can correct this condition
 by running the
 scripts/add_long_password script.

	
 The account has an old password (eight characters long).
 Update the account in the user table to
 have a new password.

	

 You have specified a password in the
 user table without using the
 PASSWORD() function. Use
 mysql to update the account in the
 user table with a new password, making
 sure to use the PASSWORD()
 function:

mysql> UPDATE user SET Password=PASSWORD('newpwd')
 -> WHERE User='some_user' AND Host='some_host';

C.5.2.16. Table 'tbl_name' doesn't
 exist

 If you get either of the following errors, it usually means
 that no table exists in the default database with the given
 name:

Table 'tbl_name' doesn't exist
Can't find file: 'tbl_name' (errno: 2)

 In some cases, it may be that the table does exist but that
 you are referring to it incorrectly:

	
 Because MySQL uses directories and files to store
 databases and tables, database and table names are case
 sensitive if they are located on a file system that has
 case-sensitive file names.

	
 Even for file systems that are not case sensitive, such as
 on Windows, all references to a given table within a query
 must use the same lettercase.

 You can check which tables are in the default database with
 SHOW TABLES. See
 Section 13.7.5, “SHOW Syntax”.

C.5.2.17. Can't initialize character set

 You might see an error like this if you have character set
 problems:

MySQL Connection Failed: Can't initialize character set charset_name

 This error can have any of the following causes:

	
 The character set is a multi-byte character set and you
 have no support for the character set in the client. In
 this case, you need to recompile the client by running
 configure with the
 --with-charset=charset_name
 or
 --with-extra-charsets=charset_name
 option. See
 Section 2.17.3, “MySQL Source-Configuration Options”.

 All standard MySQL binaries are compiled with
 --with-extra-charsets=complex
 or (for Windows)
 --with-extra-charsets=complex,
 which enables support for all multi-byte character sets.
 See Section 2.17.3, “MySQL Source-Configuration Options”.

	
 The character set is a simple character set that is not
 compiled into mysqld, and the character
 set definition files are not in the place where the client
 expects to find them.

 In this case, you need to use one of the following methods
 to solve the problem:

	
 Recompile the client with support for the character
 set. See
 Section 2.17.3, “MySQL Source-Configuration Options”.

	
 Specify to the client the directory where the
 character set definition files are located. For many
 clients, you can do this with the
 --character-sets-dir option.

	
 Copy the character definition files to the path where
 the client expects them to be.

C.5.2.18. 'File' Not Found and
 Similar Errors

 If you get ERROR '...' not found (errno:
 23), Can't open file: ... (errno:
 24), or any other error with errno
 23 or errno 24 from MySQL, it
 means that you haven't allocated enough file descriptors for
 the MySQL server. You can use the perror
 utility to get a description of what the error number means:

shell> perror 23
OS error code 23: File table overflow
shell> perror 24
OS error code 24: Too many open files
shell> perror 11
OS error code 11: Resource temporarily unavailable

 The problem here is that mysqld is trying
 to keep open too many files simultaneously. You can either
 tell mysqld not to open so many files at
 once or increase the number of file descriptors available to
 mysqld.

 To tell mysqld to keep open fewer files at
 a time, you can make the table cache smaller by reducing the
 value of the table_cache
 system variable (the default value is 64). This may not
 entirely prevent running out of file descriptors because in
 some circumstances the server may attempt to extend the cache
 size temporarily, as described in
 Section 8.8.3, “How MySQL Opens and Closes Tables”. Reducing the value of
 max_connections also reduces
 the number of open files (the default value is 100).

 To change the number of file descriptors available to
 mysqld, you can use the
 --open-files-limit option
 to mysqld_safe or set the
 open_files_limit system
 variable. See Section 5.1.4, “Server System Variables”. The
 easiest way to set these values is to add an option to your
 option file. See Section 4.2.3.3, “Using Option Files”. If you have
 an old version of mysqld that does not
 support setting the open files limit, you can edit the
 mysqld_safe script. There is a
 commented-out line ulimit -n 256 in the
 script. You can remove the “#”
 character to uncomment this line, and change the number
 256 to set the number of file descriptors
 to be made available to mysqld.

 --open-files-limit and
 ulimit can increase the number of file
 descriptors, but only up to the limit imposed by the operating
 system. There is also a “hard” limit that can be
 overridden only if you start mysqld_safe or
 mysqld as root (just
 remember that you also need to start the server with the
 --user option in this case so
 that it does not continue to run as root
 after it starts up). If you need to increase the operating
 system limit on the number of file descriptors available to
 each process, consult the documentation for your system.

Note

 If you run the tcsh shell,
 ulimit does not work!
 tcsh also reports incorrect values when
 you ask for the current limits. In this case, you should
 start mysqld_safe using
 sh.

C.5.2.19. Table-Corruption Issues

 If you have started mysqld with
 --myisam-recover, MySQL
 automatically checks and tries to repair
 MyISAM tables if they are marked as 'not
 closed properly' or 'crashed'. If this happens, MySQL writes
 an entry in the hostname.err file
 'Warning: Checking table ...' which is
 followed by Warning: Repairing table if the
 table needs to be repaired. If you get a lot of these errors,
 without mysqld having died unexpectedly
 just before, then something is wrong and needs to be
 investigated further.

 See also Section 5.1.3, “Server Command Options”, and
 Section 21.3.1.7, “Making a Test Case If You Experience Table Corruption”.

C.5.3. Installation-Related Issues

C.5.3.1. Problems with File Permissions

 If you have problems with file permissions, the
 UMASK environment variable might be set
 incorrectly when mysqld starts. For
 example, MySQL might issue the following error message when
 you create a table:

ERROR: Can't find file: 'path/with/filename.frm' (Errcode: 13)

 The default UMASK value is
 0660. You can change this behavior by
 starting mysqld_safe as follows:

shell> UMASK=384 # = 600 in octal
shell> export UMASK
shell> mysqld_safe &

 By default, MySQL creates database and RAID
 directories with an access permission value of
 0700. You can modify this behavior by
 setting the UMASK_DIR variable. If you set
 its value, new directories are created with the combined
 UMASK and UMASK_DIR
 values. For example, if you want to give group access to all
 new directories, you can do this:

shell> UMASK_DIR=504 # = 770 in octal
shell> export UMASK_DIR
shell> mysqld_safe &

 MySQL assumes that the value for UMASK or
 UMASK_DIR is in octal if it starts with a
 zero.

 See Section 2.21, “Environment Variables”.

C.5.4. Administration-Related Issues

C.5.4.1. How to Reset the Root Password

 If you have never set a root password for
 MySQL, the server does not require a password at all for
 connecting as root. However, this is
 insecure. For instructions on assigning passwords, see
 Section 2.18.2, “Securing the Initial MySQL Accounts”.

 If you know the root password, but want to
 change it, see Section 13.7.1.6, “SET PASSWORD Syntax”.

 If you set a root password previously, but
 have forgotten it, you can set a new password. The following
 sections provide instructions for Windows and Unix systems, as
 well as generic instructions that apply to any system.

C.5.4.1.1. Resetting the Root Password: Windows Systems

 On Windows, use the following procedure to reset the
 password for all MySQL root accounts:

	
 Log on to your system as Administrator.

	
 Stop the MySQL server if it is running. For a server
 that is running as a Windows service, go to the Services
 manager: From the Start menu, select
 Control Panel, then
 Administrative Tools, then
 Services. Find the MySQL
 service in the list and stop it.

 If your server is not running as a service, you may need
 to use the Task Manager to force it to stop.

	
 Create a text file containing the following statements.
 Replace the password with the password that you want to
 use.

UPDATE mysql.user SET Password=PASSWORD('MyNewPass') WHERE User='root';
FLUSH PRIVILEGES;

 Write the UPDATE and
 FLUSH statements each on
 a single line. The UPDATE
 statement resets the password for all
 root accounts, and the
 FLUSH statement tells the
 server to reload the grant tables into memory so that it
 notices the password change.

	
 Save the file. For this example, the file will be named
 C:\mysql-init.txt.

	
 Open a console window to get to the command prompt: From
 the Start menu, select
 Run, then enter
 cmd as the command to be run.

	
 Start the MySQL server with the special
 --init-file option
 (notice that the backslash in the option value is
 doubled):

C:\> C:\mysql\bin\mysqld-nt --init-file=C:\\mysql-init.txt

 If you installed MySQL to a location other than
 C:\mysql, adjust the command
 accordingly.

 The server executes the contents of the file named by
 the --init-file option at
 startup, changing each root account
 password.

 You can also add the
 --console option to the
 command if you want server output to appear in the
 console window rather than in a log file.

 If you installed MySQL using the MySQL Installation
 Wizard, you may need to specify a
 --defaults-file option:

C:\> "C:\Program Files\MySQL\MySQL Server 5.0\bin\mysqld-nt.exe"
 --defaults-file="C:\\Program Files\\MySQL\\MySQL Server 5.0\\my.ini"
 --init-file=C:\\mysql-init.txt

 The appropriate
 --defaults-file setting
 can be found using the Services Manager: From the
 Start menu, select
 Control Panel, then
 Administrative Tools, then
 Services. Find the MySQL
 service in the list, right-click it, and choose the
 Properties option. The Path
 to executable field contains the
 --defaults-file setting.

	
 After the server has started successfully, delete
 C:\mysql-init.txt.

 You should now be able to connect to the MySQL server as
 root using the new password. Stop the
 MySQL server, then restart it in normal mode again. If you
 run the server as a service, start it from the Windows
 Services window. If you start the server manually, use
 whatever command you normally use.

C.5.4.1.2. Resetting the Root Password: Unix Systems

 On Unix, use the following procedure to reset the password
 for all MySQL root accounts. The
 instructions assume that you will start the server so that
 it runs using the Unix login account that you normally use
 for running the server. For example, if you run the server
 using the mysql login account, you should
 log in as mysql before using the
 instructions. Alternatively, you can log in as
 root, but in this case you
 must start mysqld
 with the --user=mysql option.
 If you start the server as root without
 using --user=mysql, the
 server may create root-owned files in the
 data directory, such as log files, and these may cause
 permission-related problems for future server startups. If
 that happens, you will need to either change the ownership
 of the files to mysql or remove them.

	
 Log on to your system as the Unix user that the
 mysqld server runs as (for example,
 mysql).

	
 Locate the .pid file that contains
 the server's process ID. The exact location and name of
 this file depend on your distribution, host name, and
 configuration. Common locations are
 /var/lib/mysql/,
 /var/run/mysqld/, and
 /usr/local/mysql/data/. Generally,
 the file name has an extension of
 .pid and begins with either
 mysqld or your system's host name.

 You can stop the MySQL server by sending a normal
 kill (not kill -9)
 to the mysqld process, using the path
 name of the .pid file in the
 following command:

shell> kill `cat /mysql-data-directory/host_name.pid`

 Use backticks (not forward quotation marks) with the
 cat command. These cause the output
 of cat to be substituted into the
 kill command.

	
 Create a text file containing the following statements.
 Replace the password with the password that you want to
 use.

UPDATE mysql.user SET Password=PASSWORD('MyNewPass') WHERE User='root';
FLUSH PRIVILEGES;

 Write the UPDATE and
 FLUSH statements each on
 a single line. The UPDATE
 statement resets the password for all
 root accounts, and the
 FLUSH statement tells the
 server to reload the grant tables into memory so that it
 notices the password change.

	
 Save the file. For this example, the file will be named
 /home/me/mysql-init. The file
 contains the password, so it should not be saved where
 it can be read by other users. If you are not logged in
 as mysql (the user the server runs
 as), make sure that the file has permissions that permit
 mysql to read it.

	
 Start the MySQL server with the special
 --init-file option:

shell> mysqld_safe --init-file=/home/me/mysql-init &

 The server executes the contents of the file named by
 the --init-file option at
 startup, changing each root account
 password.

	
 After the server has started successfully, delete
 /home/me/mysql-init.

 You should now be able to connect to the MySQL server as
 root using the new password. Stop the
 server and restart it normally.

C.5.4.1.3. Resetting the Root Password: Generic Instructions

 The preceding sections provide password-resetting
 instructions for Windows and Unix systems. Alternatively, on
 any platform, you can set the new password using the
 mysql client (but this approach is less
 secure):

	
 Stop mysqld and restart it with the
 --skip-grant-tables
 option. This enables anyone to connect without a
 password and with all privileges. Because this is
 insecure, you might want to use
 --skip-grant-tables in
 conjunction with
 --skip-networking to
 prevent remote clients from connecting.

	
 Connect to the mysqld server with
 this command:

shell> mysql

	
 Issue the following statements in the
 mysql client. Replace the password
 with the password that you want to use.

mysql> UPDATE mysql.user SET Password=PASSWORD('MyNewPass')
 -> WHERE User='root';
mysql> FLUSH PRIVILEGES;

 The FLUSH statement tells
 the server to reload the grant tables into memory so
 that it notices the password change.

 You should now be able to connect to the MySQL server as
 root using the new password. Stop the
 server, then restart it normally (without the
 --skip-grant-tables and
 --skip-networking options).

C.5.4.2. What to Do If MySQL Keeps Crashing

 Each MySQL version is tested on many platforms before it is
 released. This does not mean that there are no bugs in MySQL,
 but if there are bugs, they should be very few and can be hard
 to find. If you have a problem, it always helps if you try to
 find out exactly what crashes your system, because you have a
 much better chance of getting the problem fixed quickly.

 First, you should try to find out whether the problem is that
 the mysqld server dies or whether your
 problem has to do with your client. You can check how long
 your mysqld server has been up by executing
 mysqladmin version. If
 mysqld has died and restarted, you may find
 the reason by looking in the server's error log. See
 Section 5.2.1, “The Error Log”.

 On some systems, you can find in the error log a stack trace
 of where mysqld died that you can resolve
 with the resolve_stack_dump program. See
 Section 21.3, “Debugging and Porting MySQL”. Note that the variable values
 written in the error log may not always be 100% correct.

 Many server crashes are caused by corrupted data files or
 index files. MySQL updates the files on disk with the
 write() system call after every SQL
 statement and before the client is notified about the result.
 (This is not true if you are running with
 --delay-key-write, in which
 case data files are written but not index files.) This means
 that data file contents are safe even if
 mysqld crashes, because the operating
 system ensures that the unflushed data is written to disk. You
 can force MySQL to flush everything to disk after every SQL
 statement by starting mysqld with the
 --flush option.

 The preceding means that normally you should not get corrupted
 tables unless one of the following happens:

	
 The MySQL server or the server host was killed in the
 middle of an update.

	
 You have found a bug in mysqld that
 caused it to die in the middle of an update.

	
 Some external program is manipulating data files or index
 files at the same time as mysqld
 without locking the table properly.

	
 You are running many mysqld servers
 using the same data directory on a system that does not
 support good file system locks (normally handled by the
 lockd lock manager), or you are running
 multiple servers with external locking disabled.

	
 You have a crashed data file or index file that contains
 very corrupt data that confused mysqld.

	
 You have found a bug in the data storage code. This isn't
 likely, but it is at least possible. In this case, you can
 try to change the storage engine to another engine by
 using ALTER TABLE on a
 repaired copy of the table.

 Because it is very difficult to know why something is
 crashing, first try to check whether things that work for
 others crash for you. Please try the following things:

	
 Stop the mysqld server with
 mysqladmin shutdown, run
 myisamchk --silent --force */*.MYI from
 the data directory to check all MyISAM
 tables, and restart mysqld. This
 ensures that you are running from a clean state. See
 Chapter 5, MySQL Server Administration.

	
 Start mysqld with the general query log
 enabled (see Section 5.2.2, “The General Query Log”). Then try to
 determine from the information written to the log whether
 some specific query kills the server. About 95% of all
 bugs are related to a particular query. Normally, this is
 one of the last queries in the log file just before the
 server restarts. See Section 5.2.2, “The General Query Log”. If you
 can repeatedly kill MySQL with a specific query, even when
 you have checked all tables just before issuing it, then
 you have been able to locate the bug and should submit a
 bug report for it. See Section 1.7, “How to Report Bugs or Problems”.

	
 Try to make a test case that we can use to repeat the
 problem. See Section 21.3, “Debugging and Porting MySQL”.

	
 Try running the tests in the
 mysql-test directory and the MySQL
 benchmarks. See Section 21.1.2, “The MySQL Test Suite”. They
 should test MySQL rather well. You can also add code to
 the benchmarks that simulates your application. The
 benchmarks can be found in the
 sql-bench directory in a source
 distribution or, for a binary distribution, in the
 sql-bench directory under your MySQL
 installation directory.

	
 Try the fork_big.pl script. (It is
 located in the tests directory of
 source distributions.)

	
 If you configure MySQL for debugging, it is much easier to
 gather information about possible errors if something goes
 wrong. Configuring MySQL for debugging causes a safe
 memory allocator to be included that can find some errors.
 It also provides a lot of output about what is happening.
 Reconfigure MySQL with the
 --with-debug or
 --with-debug=full option
 to configure and then recompile. See
 Section 21.3, “Debugging and Porting MySQL”.

	
 Make sure that you have applied the latest patches for
 your operating system.

	
 Use the
 --skip-external-locking
 option to mysqld. On some systems, the
 lockd lock manager does not work
 properly; the
 --skip-external-locking
 option tells mysqld not to use external
 locking. (This means that you cannot run two
 mysqld servers on the same data
 directory and that you must be careful if you use
 myisamchk. Nevertheless, it may be
 instructive to try the option as a test.)

	
 Have you tried mysqladmin -u root
 processlist when mysqld
 appears to be running but not responding? Sometimes
 mysqld is not comatose even though you
 might think so. The problem may be that all connections
 are in use, or there may be some internal lock problem.
 mysqladmin -u root processlist usually
 is able to make a connection even in these cases, and can
 provide useful information about the current number of
 connections and their status.

	
 Run the command mysqladmin -i 5 status
 or mysqladmin -i 5 -r status in a
 separate window to produce statistics while you run your
 other queries.

	
 Try the following:

	
 Start mysqld from
 gdb (or another debugger). See
 Section 21.3, “Debugging and Porting MySQL”.

	
 Run your test scripts.

	
 Print the backtrace and the local variables at the
 three lowest levels. In gdb, you
 can do this with the following commands when
 mysqld has crashed inside
 gdb:

backtrace
info local
up
info local
up
info local

 With gdb, you can also examine
 which threads exist with info
 threads and switch to a specific thread with
 thread
 N, where
 N is the thread ID.

	
 Try to simulate your application with a Perl script to
 force MySQL to crash or misbehave.

	
 Send a normal bug report. See
 Section 1.7, “How to Report Bugs or Problems”. Be even more detailed than
 usual. Because MySQL works for many people, it may be that
 the crash results from something that exists only on your
 computer (for example, an error that is related to your
 particular system libraries).

	
 If you have a problem with tables containing
 dynamic-length rows and you are using only
 VARCHAR columns (not
 BLOB or
 TEXT columns), you can try
 to change all VARCHAR to
 CHAR with
 ALTER TABLE. This forces
 MySQL to use fixed-size rows. Fixed-size rows take a
 little extra space, but are much more tolerant to
 corruption.

 The current dynamic row code has been in use for several
 years with very few problems, but dynamic-length rows are
 by nature more prone to errors, so it may be a good idea
 to try this strategy to see whether it helps.

	
 Do not rule out your server hardware when diagnosing
 problems. Defective hardware can be the cause of data
 corruption. Particular attention should be paid to your
 memory and disk subsystems when troubleshooting hardware.

C.5.4.3. How MySQL Handles a Full Disk

 This section describes how MySQL responds to disk-full errors
 (such as “no space left on device”), and to
 quota-exceeded errors (such as “write failed” or
 “user block limit reached”).

 This section is relevant for writes to
 MyISAM tables. It also applies for writes
 to binary log files and binary log index file, except that
 references to “row” and “record”
 should be understood to mean “event.”

 When a disk-full condition occurs, MySQL does the following:

	
 It checks once every minute to see whether there is enough
 space to write the current row. If there is enough space,
 it continues as if nothing had happened.

	
 Every 10 minutes it writes an entry to the log file,
 warning about the disk-full condition.

 To alleviate the problem, you can take the following actions:

	
 To continue, you only have to free enough disk space to
 insert all records.

	
 To abort the thread, you must use mysqladmin
 kill. The thread is aborted the next time it
 checks the disk (in one minute).

	
 Other threads might be waiting for the table that caused
 the disk-full condition. If you have several
 “locked” threads, killing the one thread that
 is waiting on the disk-full condition enables the other
 threads to continue.

 Exceptions to the preceding behavior are when you use
 REPAIR TABLE or
 OPTIMIZE TABLE or when the
 indexes are created in a batch after
 LOAD DATA
 INFILE or after an ALTER
 TABLE statement. All of these statements may create
 large temporary files that, if left to themselves, would cause
 big problems for the rest of the system. If the disk becomes
 full while MySQL is doing any of these operations, it removes
 the big temporary files and mark the table as crashed. The
 exception is that for ALTER
 TABLE, the old table is left unchanged.

C.5.4.4. Where MySQL Stores Temporary Files

 On Unix, MySQL uses the value of the TMPDIR
 environment variable as the path name of the directory in
 which to store temporary files. If TMPDIR
 is not set, MySQL uses the system default, which is usually
 /tmp, /var/tmp, or
 /usr/tmp.

 On Windows, Netware and OS2, MySQL checks in order the values
 of the TMPDIR, TEMP, and
 TMP environment variables. For the first
 one found to be set, MySQL uses it and does not check those
 remaining. If none of TMPDIR,
 TEMP, or TMP are set,
 MySQL uses the Windows system default, which is usually
 C:\windows\temp\.

 If the file system containing your temporary file directory is
 too small, you can use the
 --tmpdir option to
 mysqld to specify a directory in a file
 system where you have enough space. On replication slaves, you
 can use --slave-load-tmpdir to
 specify a separate directory for holding temporary files when
 replicating LOAD
 DATA INFILE statements.

 The --tmpdir option can be set
 to a list of several paths that are used in round-robin
 fashion. Paths should be separated by colon characters
 (“:”) on Unix and semicolon
 characters (“;”) on Windows,
 NetWare, and OS/2.

Note

 To spread the load effectively, these paths should be
 located on different physical disks,
 not different partitions of the same disk.

 If the MySQL server is acting as a replication slave, you
 should be sure to set
 --slave-load-tmpdir not to
 point to a directory that is on a memory-based file system or
 to a directory that is cleared when the server host restarts.
 A replication slave needs some of its temporary files to
 survive a machine restart so that it can replicate temporary
 tables or LOAD DATA
 INFILE operations. If files in the slave temporary
 file directory are lost when the server restarts, replication
 fails.

 MySQL arranges that temporary files are removed if
 mysqld is terminated. On platforms that
 support it (such as Unix), this is done by unlinking the file
 after opening it. The disadvantage of this is that the name
 does not appear in directory listings and you do not see a big
 temporary file that fills up the file system in which the
 temporary file directory is located. (In such cases,
 lsof +L1 may be helpful in identifying
 large files associated with mysqld.)

 When sorting (ORDER BY or GROUP
 BY), MySQL normally uses one or two temporary files.
 The maximum disk space required is determined by the following
 expression:

(length of what is sorted + sizeof(row pointer))
* number of matched rows
* 2

 The row pointer size is usually four bytes, but may grow in
 the future for really big tables.

 For some SELECT queries, MySQL
 also creates temporary SQL tables. These are not hidden and
 have names of the form SQL_*.

 ALTER TABLE creates a temporary
 copy of the original table in the same directory as the
 original table.

C.5.4.5. How to Protect or Change the MySQL Unix Socket File

 The default location for the Unix socket file that the server
 uses for communication with local clients is
 /tmp/mysql.sock. (For some distribution
 formats, the directory might be different, such as
 /var/lib/mysql for RPMs.)

 On some versions of Unix, anyone can delete files in the
 /tmp directory or other similar
 directories used for temporary files. If the socket file is
 located in such a directory on your system, this might cause
 problems.

 On most versions of Unix, you can protect your
 /tmp directory so that files can be
 deleted only by their owners or the superuser
 (root). To do this, set the
 sticky bit on the /tmp
 directory by logging in as root and using
 the following command:

shell> chmod +t /tmp

 You can check whether the sticky bit is set
 by executing ls -ld /tmp. If the last
 permission character is t, the bit is set.

 Another approach is to change the place where the server
 creates the Unix socket file. If you do this, you should also
 let client programs know the new location of the file. You can
 specify the file location in several ways:

	
 Specify the path in a global or local option file. For
 example, put the following lines in
 /etc/my.cnf:

[mysqld]
socket=/path/to/socket

[client]
socket=/path/to/socket

 See Section 4.2.3.3, “Using Option Files”.

	
 Specify a --socket option
 on the command line to mysqld_safe and
 when you run client programs.

	
 Set the MYSQL_UNIX_PORT environment
 variable to the path of the Unix socket file.

	
 Recompile MySQL from source to use a different default
 Unix socket file location. Define the path to the file
 with the
 --with-unix-socket-path
 option when you run configure. See
 Section 2.17.3, “MySQL Source-Configuration Options”.

 You can test whether the new socket location works by
 attempting to connect to the server with this command:

shell> mysqladmin --socket=/path/to/socket version

C.5.4.6. Time Zone Problems

 If you have a problem with SELECT NOW()
 returning values in UTC and not your local time, you have to
 tell the server your current time zone. The same applies if
 UNIX_TIMESTAMP() returns the
 wrong value. This should be done for the environment in which
 the server runs; for example, in
 mysqld_safe or
 mysql.server. See
 Section 2.21, “Environment Variables”.

 You can set the time zone for the server with the
 --timezone=timezone_name
 option to mysqld_safe. You can also set it
 by setting the TZ environment variable
 before you start mysqld.

 The permissible values for
 --timezone or
 TZ are system dependent. Consult your
 operating system documentation to see what values are
 acceptable.

C.5.5. Query-Related Issues

C.5.5.1. Case Sensitivity in String Searches

 For nonbinary strings (CHAR,
 VARCHAR,
 TEXT), string searches use the
 collation of the comparison operands. For binary strings
 (BINARY,
 VARBINARY,
 BLOB), comparisons use the
 numeric values of the bytes in the operands; this means that
 for alphabetic characters, comparisons will be case sensitive.

 A comparison between a nonbinary string and binary string is
 treated as a comparison of binary strings.

 Simple comparison operations (>=, >, =, <,
 <=, sorting, and grouping) are based on each
 character's “sort value.” Characters with the
 same sort value are treated as the same character. For
 example, if “e” and
 “é” have the same sort
 value in a given collation, they compare as equal.

 The default character set and collation are
 latin1 and
 latin1_swedish_ci, so nonbinary string
 comparisons are case insensitive by default. This means that
 if you search with
 col_name LIKE
 'a%', you get all column values that start with
 A or a. To make this
 search case sensitive, make sure that one of the operands has
 a case sensitive or binary collation. For example, if you are
 comparing a column and a string that both have the
 latin1 character set, you can use the
 COLLATE operator to cause either operand to
 have the latin1_general_cs or
 latin1_bin collation:

col_name COLLATE latin1_general_cs LIKE 'a%'
col_name LIKE 'a%' COLLATE latin1_general_cs
col_name COLLATE latin1_bin LIKE 'a%'
col_name LIKE 'a%' COLLATE latin1_bin

 If you want a column always to be treated in case-sensitive
 fashion, declare it with a case sensitive or binary collation.
 See Section 13.1.10, “CREATE TABLE Syntax”.

 To cause a case-sensitive comparison of nonbinary strings to
 be case insensitive, use COLLATE to name a
 case-insensitive collation. The strings in the following
 example normally are case sensitive, but
 COLLATE changes the comparison to be case
 insensitive:

mysql> SET @s1 = 'MySQL' COLLATE latin1_bin,
 -> @s2 = 'mysql' COLLATE latin1_bin;
mysql> SELECT @s1 = @s2;
+-----------+
| @s1 = @s2 |
+-----------+
| 0 |
+-----------+
mysql> SELECT @s1 COLLATE latin1_swedish_ci = @s2;
+-------------------------------------+
| @s1 COLLATE latin1_swedish_ci = @s2 |
+-------------------------------------+
| 1 |
+-------------------------------------+

 A binary string is case sensitive in comparisons. To compare
 the string as case insensitive, convert it to a nonbinary
 string and use COLLATE to name a
 case-insensitive collation:

mysql> SET @s = BINARY 'MySQL';
mysql> SELECT @s = 'mysql';
+--------------+
| @s = 'mysql' |
+--------------+
| 0 |
+--------------+
mysql> SELECT CONVERT(@s USING latin1) COLLATE latin1_swedish_ci = 'mysql';
+--+
| CONVERT(@s USING latin1) COLLATE latin1_swedish_ci = 'mysql' |
+--+
| 1 |
+--+

 To determine whether a value will compare as a nonbinary or
 binary string, use the
 COLLATION() function. This
 example shows that VERSION()
 returns a string that has a case-insensitive collation, so
 comparisons are case insensitive:

mysql> SELECT COLLATION(VERSION());
+----------------------+
| COLLATION(VERSION()) |
+----------------------+
| utf8_general_ci |
+----------------------+

 For binary strings, the collation value is
 binary, so comparisons will be case
 sensitive. One context in which you will see
 binary is for compression and encryption
 functions, which return binary strings as a general rule:
 string:

mysql> SELECT COLLATION(ENCRYPT('x')), COLLATION(SHA1('x'));
+-------------------------+----------------------+
| COLLATION(ENCRYPT('x')) | COLLATION(SHA1('x')) |
+-------------------------+----------------------+
| binary | binary |
+-------------------------+----------------------+

C.5.5.2. Problems Using DATE Columns

 The format of a DATE value is
 'YYYY-MM-DD'. According to standard SQL, no
 other format is permitted. You should use this format in
 UPDATE expressions and in the
 WHERE clause of
 SELECT statements. For example:

SELECT * FROM t1 WHERE date >= '2003-05-05';

 As a convenience, MySQL automatically converts a date to a
 number if the date is used in a numeric context and vice
 versa. MySQL also permits a “relaxed” string
 format when updating and in a WHERE clause
 that compares a date to a DATE,
 DATETIME, or
 TIMESTAMP column.
 “Relaxed” format means that any punctuation
 character may be used as the separator between parts. For
 example, '2004-08-15' and
 '2004#08#15' are equivalent. MySQL can also
 convert a string containing no separators (such as
 '20040815'), provided it makes sense as a
 date.

 When you compare a DATE,
 TIME,
 DATETIME, or
 TIMESTAMP to a constant string
 with the <, <=,
 =, >=,
 >, or BETWEEN
 operators, MySQL normally converts the string to an internal
 long integer for faster comparison (and also for a bit more
 “relaxed” string checking). However, this
 conversion is subject to the following exceptions:

	
 When you compare two columns

	
 When you compare a DATE,
 TIME,
 DATETIME, or
 TIMESTAMP column to an
 expression

	
 When you use any comparison method other than those just
 listed, such as IN or
 STRCMP().

 For those exceptions, the comparison is done by converting the
 objects to strings and performing a string comparison.

 To be on the safe side, assume that strings are compared as
 strings and use the appropriate string functions if you want
 to compare a temporal value to a string.

 The special “zero” date
 '0000-00-00' can be stored and retrieved as
 '0000-00-00'. When a
 '0000-00-00' date is used through
 Connector/ODBC, it is automatically converted to
 NULL because ODBC cannot handle that kind
 of date.

 Because MySQL performs the conversions just described, the
 following statements work (assume that
 idate is a
 DATE column):

INSERT INTO t1 (idate) VALUES (19970505);
INSERT INTO t1 (idate) VALUES ('19970505');
INSERT INTO t1 (idate) VALUES ('97-05-05');
INSERT INTO t1 (idate) VALUES ('1997.05.05');
INSERT INTO t1 (idate) VALUES ('1997 05 05');
INSERT INTO t1 (idate) VALUES ('0000-00-00');

SELECT idate FROM t1 WHERE idate >= '1997-05-05';
SELECT idate FROM t1 WHERE idate >= 19970505;
SELECT MOD(idate,100) FROM t1 WHERE idate >= 19970505;
SELECT idate FROM t1 WHERE idate >= '19970505';

 However, the following statement does not work:

SELECT idate FROM t1 WHERE STRCMP(idate,'20030505')=0;

 STRCMP() is a string function,
 so it converts idate to a string in
 'YYYY-MM-DD' format and performs a string
 comparison. It does not convert '20030505'
 to the date '2003-05-05' and perform a date
 comparison.

 If you enable the
 ALLOW_INVALID_DATES SQL
 mode, MySQL permits you to store dates that are given only
 limited checking: MySQL requires only that the day is in the
 range from 1 to 31 and the month is in the range from 1 to 12.
 This makes MySQL very convenient for Web applications where
 you obtain year, month, and day in three different fields and
 you want to store exactly what the user inserted (without date
 validation).

 MySQL permits you to store dates where the day or month and
 day are zero. This is convenient if you want to store a
 birthdate in a DATE column and
 you know only part of the date. To disallow zero month or day
 parts in dates, enable the
 NO_ZERO_IN_DATE SQL mode.

 MySQL permits you to store a “zero” value of
 '0000-00-00' as a “dummy
 date.” This is in some cases more convenient than using
 NULL values. If a date to be stored in a
 DATE column cannot be converted
 to any reasonable value, MySQL stores
 '0000-00-00'. To disallow
 '0000-00-00', enable the
 NO_ZERO_DATE SQL mode.

 To have MySQL check all dates and accept only legal dates
 (unless overridden by IGNORE), set the
 sql_mode system variable to
 "NO_ZERO_IN_DATE,NO_ZERO_DATE".

 Date handling in MySQL 5.0.1 and earlier works like MySQL
 5.0.2 with the
 ALLOW_INVALID_DATES SQL mode
 enabled.

C.5.5.3. Problems with NULL Values

 The concept of the NULL value is a common
 source of confusion for newcomers to SQL, who often think that
 NULL is the same thing as an empty string
 ''. This is not the case. For example, the
 following statements are completely different:

mysql> INSERT INTO my_table (phone) VALUES (NULL);
mysql> INSERT INTO my_table (phone) VALUES ('');

 Both statements insert a value into the
 phone column, but the first inserts a
 NULL value and the second inserts an empty
 string. The meaning of the first can be regarded as
 “phone number is not known” and the meaning of
 the second can be regarded as “the person is known to
 have no phone, and thus no phone number.”

 To help with NULL handling, you can use the
 IS NULL and IS
 NOT NULL operators and the
 IFNULL() function.

 In SQL, the NULL value is never true in
 comparison to any other value, even NULL.
 An expression that contains NULL always
 produces a NULL value unless otherwise
 indicated in the documentation for the operators and functions
 involved in the expression. All columns in the following
 example return NULL:

mysql> SELECT NULL, 1+NULL, CONCAT('Invisible',NULL);

 To search for column values that are NULL,
 you cannot use an expr = NULL test. The
 following statement returns no rows, because expr =
 NULL is never true for any expression:

mysql> SELECT * FROM my_table WHERE phone = NULL;

 To look for NULL values, you must use the
 IS NULL test. The following
 statements show how to find the NULL phone
 number and the empty phone number:

mysql> SELECT * FROM my_table WHERE phone IS NULL;
mysql> SELECT * FROM my_table WHERE phone = '';

 See Section 3.3.4.6, “Working with NULL Values”, for additional
 information and examples.

 You can add an index on a column that can have
 NULL values if you are using the
 MyISAM, InnoDB, or
 BDB, or MEMORY storage
 engine. Otherwise, you must declare an indexed column
 NOT NULL, and you cannot insert
 NULL into the column.

 When reading data with
 LOAD DATA
 INFILE, empty or missing columns are updated with
 ''. To load a NULL value
 into a column, use \N in the data file. The
 literal word “NULL” may also
 be used under some circumstances. See
 Section 13.2.6, “LOAD DATA INFILE
 Syntax”.

 When using DISTINCT, GROUP
 BY, or ORDER BY, all
 NULL values are regarded as equal.

 When using ORDER BY,
 NULL values are presented first, or last if
 you specify DESC to sort in descending
 order.

 Aggregate (summary) functions such as
 COUNT(),
 MIN(), and
 SUM() ignore
 NULL values. The exception to this is
 COUNT(*), which counts rows and
 not individual column values. For example, the following
 statement produces two counts. The first is a count of the
 number of rows in the table, and the second is a count of the
 number of non-NULL values in the
 age column:

mysql> SELECT COUNT(*), COUNT(age) FROM person;

 For some data types, MySQL handles NULL
 values specially. If you insert NULL into a
 TIMESTAMP column, the current
 date and time is inserted. If you insert
 NULL into an integer or floating-point
 column that has the AUTO_INCREMENT
 attribute, the next number in the sequence is inserted.

C.5.5.4. Problems with Column Aliases

 An alias can be used in a query select list to give a column a
 different name. You can use the alias in GROUP
 BY, ORDER BY, or
 HAVING clauses to refer to the column:

SELECT SQRT(a*b) AS root FROM tbl_name
 GROUP BY root HAVING root > 0;
SELECT id, COUNT(*) AS cnt FROM tbl_name
 GROUP BY id HAVING cnt > 0;
SELECT id AS 'Customer identity' FROM tbl_name;

 Standard SQL disallows references to column aliases in a
 WHERE clause. This restriction is imposed
 because when the WHERE clause is evaluated,
 the column value may not yet have been determined. For
 example, the following query is illegal:

SELECT id, COUNT(*) AS cnt FROM tbl_name
 WHERE cnt > 0 GROUP BY id;

 The WHERE clause determines which rows
 should be included in the GROUP BY clause,
 but it refers to the alias of a column value that is not known
 until after the rows have been selected, and grouped by the
 GROUP BY.

 In the select list of a query, a quoted column alias can be
 specified using identifier or string quoting characters:

SELECT 1 AS `one`, 2 AS 'two';

 Elsewhere in the statement, quoted references to the alias
 must use identifier quoting or the reference is treated as a
 string literal. For example, this statement groups by the
 values in column id, referenced using the
 alias `a`:

SELECT id AS 'a', COUNT(*) AS cnt FROM tbl_name
 GROUP BY `a`;

 But this statement groups by the literal string
 'a' and will not work as expected:

SELECT id AS 'a', COUNT(*) AS cnt FROM tbl_name
 GROUP BY 'a';

C.5.5.5. Rollback Failure for Nontransactional Tables

 If you receive the following message when trying to perform a
 ROLLBACK, it
 means that one or more of the tables you used in the
 transaction do not support transactions:

Warning: Some non-transactional changed tables couldn't be rolled back

 These nontransactional tables are not affected by the
 ROLLBACK
 statement.

 If you were not deliberately mixing transactional and
 nontransactional tables within the transaction, the most
 likely cause for this message is that a table you thought was
 transactional actually is not. This can happen if you try to
 create a table using a transactional storage engine that is
 not supported by your mysqld server (or
 that was disabled with a startup option). If
 mysqld does not support a storage engine,
 it instead creates the table as a MyISAM
 table, which is nontransactional.

 You can check the storage engine for a table by using either
 of these statements:

SHOW TABLE STATUS LIKE 'tbl_name';
SHOW CREATE TABLE tbl_name;

 See Section 13.7.5.33, “SHOW TABLE STATUS Syntax”, and
 Section 13.7.5.9, “SHOW CREATE TABLE Syntax”.

 You can check which storage engines your
 mysqld server supports by using this
 statement:

SHOW ENGINES;

 You can also use the following statement, and check the value
 of the variable that is associated with the storage engine in
 which you are interested:

SHOW VARIABLES LIKE 'have_%';

 For example, to determine whether the
 InnoDB storage engine is available, check
 the value of the have_innodb
 variable.

 See Section 13.7.5.13, “SHOW ENGINES Syntax”, and
 Section 13.7.5.36, “SHOW VARIABLES Syntax”.

C.5.5.6. Deleting Rows from Related Tables

 If the total length of the
 DELETE statement for
 related_table is more than 1MB (the default
 value of the
 max_allowed_packet system
 variable), you should split it into smaller parts and execute
 multiple DELETE statements. You
 probably get the fastest DELETE
 by specifying only 100 to 1,000
 related_column values per statement if the
 related_column is indexed. If the
 related_column isn't indexed, the speed is
 independent of the number of arguments in the
 IN clause.

C.5.5.7. Solving Problems with No Matching Rows

 If you have a complicated query that uses many tables but that
 returns no rows, you should use the following procedure to
 find out what is wrong:

	
 Test the query with EXPLAIN
 to check whether you can find something that is obviously
 wrong. See Section 13.8.2, “EXPLAIN Syntax”.

	
 Select only those columns that are used in the
 WHERE clause.

	
 Remove one table at a time from the query until it returns
 some rows. If the tables are large, it is a good idea to
 use LIMIT 10 with the query.

	
 Issue a SELECT for the
 column that should have matched a row against the table
 that was last removed from the query.

	
 If you are comparing FLOAT
 or DOUBLE columns with
 numbers that have decimals, you cannot use equality
 (=) comparisons. This problem is common
 in most computer languages because not all floating-point
 values can be stored with exact precision. In some cases,
 changing the FLOAT to a
 DOUBLE fixes this. See
 Section C.5.5.8, “Problems with Floating-Point Values”.

 Similar problems may be encountered when comparing
 DECIMAL values prior to
 MySQL 5.0.3.

	
 If you still cannot figure out what is wrong, create a
 minimal test that can be run with mysql test <
 query.sql that shows your problems. You can
 create a test file by dumping the tables with
 mysqldump --quick db_name
 tbl_name_1 ...
 tbl_name_n >
 query.sql. Open the file in an editor, remove
 some insert lines (if there are more than needed to
 demonstrate the problem), and add your
 SELECT statement at the end
 of the file.

 Verify that the test file demonstrates the problem by
 executing these commands:

shell> mysqladmin create test2
shell> mysql test2 < query.sql

 Attach the test file to a bug report, which you can file
 using the instructions in Section 1.7, “How to Report Bugs or Problems”.

C.5.5.8. Problems with Floating-Point Values

 Floating-point numbers sometimes cause confusion because they
 are approximate and not stored as exact values. A
 floating-point value as written in an SQL statement may not be
 the same as the value represented internally. Attempts to
 treat floating-point values as exact in comparisons may lead
 to problems. They are also subject to platform or
 implementation dependencies. The
 FLOAT and
 DOUBLE data types are subject
 to these issues. Before MySQL 5.0.3,
 DECIMAL comparison operations
 are approximate as well.

 Prior to MySQL 5.0.3, DECIMAL
 columns store values with exact precision because they are
 represented as strings, but calculations on
 DECIMAL values are done using
 floating-point operations. As of 5.0.6, MySQL performs
 DECIMAL operations with a
 precision of 65 decimal digits (64 digits from 5.0.3 to
 5.0.5), which should solve most common inaccuracy problems
 when it comes to DECIMAL
 columns. (If your server is from MySQL 5.0.3 or higher, but
 you have DECIMAL columns in
 tables that were created before 5.0.3, the old behavior still
 applies to those columns. To convert the tables to the newer
 DECIMAL format, dump them with
 mysqldump and reload them.)

 The following example (for versions of MySQL older than 5.0.3)
 demonstrates the problem. It shows that even for older
 DECIMAL columns, calculations
 that are done using floating-point operations are subject to
 floating-point error. (Were you to replace the
 DECIMAL columns with
 FLOAT, similar problems would
 occur for all versions of MySQL.)

mysql> CREATE TABLE t1 (i INT, d1 DECIMAL(9,2), d2 DECIMAL(9,2));
mysql> INSERT INTO t1 VALUES (1, 101.40, 21.40), (1, -80.00, 0.00),
 -> (2, 0.00, 0.00), (2, -13.20, 0.00), (2, 59.60, 46.40),
 -> (2, 30.40, 30.40), (3, 37.00, 7.40), (3, -29.60, 0.00),
 -> (4, 60.00, 15.40), (4, -10.60, 0.00), (4, -34.00, 0.00),
 -> (5, 33.00, 0.00), (5, -25.80, 0.00), (5, 0.00, 7.20),
 -> (6, 0.00, 0.00), (6, -51.40, 0.00);

mysql> SELECT i, SUM(d1) AS a, SUM(d2) AS b
 -> FROM t1 GROUP BY i HAVING a <> b;
+------+--------+-------+
| i | a | b |
+------+--------+-------+
1	21.40	21.40
2	76.80	76.80
3	7.40	7.40
4	15.40	15.40
5	7.20	7.20
6	-51.40	0.00
+------+--------+-------+

 The result is correct. Although the first five records look
 like they should not satisfy the comparison (the values of
 a and b do not appear to
 be different), they may do so because the difference between
 the numbers shows up around the tenth decimal or so, depending
 on factors such as computer architecture or the compiler
 version or optimization level. For example, different CPUs may
 evaluate floating-point numbers differently.

 As of MySQL 5.0.3, you will get only the last row in the above
 result.

 The problem cannot be solved by using
 ROUND() or similar functions,
 because the result is still a floating-point number:

mysql> SELECT i, ROUND(SUM(d1), 2) AS a, ROUND(SUM(d2), 2) AS b
 -> FROM t1 GROUP BY i HAVING a <> b;
+------+--------+-------+
| i | a | b |
+------+--------+-------+
1	21.40	21.40
2	76.80	76.80
3	7.40	7.40
4	15.40	15.40
5	7.20	7.20
6	-51.40	0.00
+------+--------+-------+

 This is what the numbers in column a look
 like when displayed with more decimal places:

mysql> SELECT i, ROUND(SUM(d1), 2)*1.0000000000000000 AS a,
 -> ROUND(SUM(d2), 2) AS b FROM t1 GROUP BY i HAVING a <> b;
+------+----------------------+-------+
| i | a | b |
+------+----------------------+-------+
1	21.3999999999999986	21.40
2	76.7999999999999972	76.80
3	7.4000000000000004	7.40
4	15.4000000000000004	15.40
5	7.2000000000000002	7.20
6	-51.3999999999999986	0.00
+------+----------------------+-------+

 Depending on your computer architecture, you may or may not
 see similar results. For example, on some machines you may get
 the “correct” results by multiplying both
 arguments by 1, as the following example shows.

Warning

 Never use this method in your applications. It is not an
 example of a trustworthy method!

mysql> SELECT i, ROUND(SUM(d1), 2)*1 AS a, ROUND(SUM(d2), 2)*1 AS b
 -> FROM t1 GROUP BY i HAVING a <> b;
+------+--------+------+
| i | a | b |
+------+--------+------+
| 6 | -51.40 | 0.00 |
+------+--------+------+

 The reason that the preceding example seems to work is that on
 the particular machine where the test was done, CPU
 floating-point arithmetic happens to round the numbers to the
 same value. However, there is no rule that any CPU should do
 so, so this method cannot be trusted.

 The correct way to do floating-point number comparison is to
 first decide on an acceptable tolerance for differences
 between the numbers and then do the comparison against the
 tolerance value. For example, if we agree that floating-point
 numbers should be regarded the same if they are same within a
 precision of one in ten thousand (0.0001), the comparison
 should be written to find differences larger than the
 tolerance value:

mysql> SELECT i, SUM(d1) AS a, SUM(d2) AS b FROM t1
 -> GROUP BY i HAVING ABS(a - b) > 0.0001;
+------+--------+------+
| i | a | b |
+------+--------+------+
| 6 | -51.40 | 0.00 |
+------+--------+------+
1 row in set (0.00 sec)

 Conversely, to get rows where the numbers are the same, the
 test should find differences within the tolerance value:

mysql> SELECT i, SUM(d1) AS a, SUM(d2) AS b FROM t1
 -> GROUP BY i HAVING ABS(a - b) <= 0.0001;
+------+-------+-------+
| i | a | b |
+------+-------+-------+
1	21.40	21.40
2	76.80	76.80
3	7.40	7.40
4	15.40	15.40
5	7.20	7.20
+------+-------+-------+

 Floating-point values are subject to platform or
 implementation dependencies. Suppose that you execute the
 following statements:

CREATE TABLE t1(c1 FLOAT(53,0), c2 FLOAT(53,0));
INSERT INTO t1 VALUES('1e+52','-1e+52');
SELECT * FROM t1;

 On some platforms, the SELECT statement
 returns inf and -inf. On
 others, it returns 0 and
 -0.

 An implication of the preceding issues is that if you attempt
 to create a replication slave by dumping table contents with
 mysqldump on the master and reloading the
 dump file into the slave, tables containing floating-point
 columns might differ between the two hosts.

C.5.6. Optimizer-Related Issues

 MySQL uses a cost-based optimizer to determine the best way to
 resolve a query. In many cases, MySQL can calculate the best
 possible query plan, but sometimes MySQL does not have enough
 information about the data at hand and has to make
 “educated” guesses about the data.

 For the cases when MySQL does not do the "right" thing, tools
 that you have available to help MySQL are:

	
 Use the EXPLAIN statement to
 get information about how MySQL processes a query. To use
 it, just add the keyword
 EXPLAIN to the front of your
 SELECT statement:

mysql> EXPLAIN SELECT * FROM t1, t2 WHERE t1.i = t2.i;

 EXPLAIN is discussed in more
 detail in Section 13.8.2, “EXPLAIN Syntax”.

	
 Use ANALYZE TABLE
 tbl_name to update the
 key distributions for the scanned table. See
 Section 13.7.2.1, “ANALYZE TABLE Syntax”.

	

 Use FORCE INDEX for the scanned table to
 tell MySQL that table scans are very expensive compared to
 using the given index:

SELECT * FROM t1, t2 FORCE INDEX (index_for_column)
WHERE t1.col_name=t2.col_name;

 USE INDEX and IGNORE
 INDEX may also be useful. See
 Section 13.2.8.3, “Index Hint Syntax”.

	
 Global and table-level STRAIGHT_JOIN. See
 Section 13.2.8, “SELECT Syntax”.

	
 You can tune global or thread-specific system variables. For
 example, start mysqld with the
 --max-seeks-for-key=1000
 option or use SET max_seeks_for_key=1000
 to tell the optimizer to assume that no key scan causes more
 than 1,000 key seeks. See
 Section 5.1.4, “Server System Variables”.

C.5.7. Table Definition-Related Issues

C.5.7.1. Problems with ALTER TABLE

 If you get a duplicate-key error when using
 ALTER TABLE to change the
 character set or collation of a character column, the cause is
 either that the new column collation maps two keys to the same
 value or that the table is corrupted. In the latter case, you
 should run REPAIR TABLE on the
 table.

 If ALTER TABLE dies with the
 following error, the problem may be that MySQL crashed during
 an earlier ALTER TABLE
 operation and there is an old table named
 A-xxx or
 B-xxx lying
 around:

Error on rename of './database/name.frm'
to './database/B-xxx.frm' (Errcode: 17)

 In this case, go to the MySQL data directory and delete all
 files that have names starting with A- or
 B-. (You may want to move them elsewhere
 instead of deleting them.)

 ALTER TABLE works in the
 following way:

	
 Create a new table named
 A-xxx with
 the requested structural changes.

	
 Copy all rows from the original table to
 A-xxx.

	
 Rename the original table to
 B-xxx.

	
 Rename
 A-xxx to
 your original table name.

	
 Delete
 B-xxx.

 If something goes wrong with the renaming operation, MySQL
 tries to undo the changes. If something goes seriously wrong
 (although this shouldn't happen), MySQL may leave the old
 table as
 B-xxx. A
 simple rename of the table files at the system level should
 get your data back.

 If you use ALTER TABLE on a
 transactional table or if you are using Windows or OS/2,
 ALTER TABLE unlocks the table
 if you had done a
 LOCK
 TABLE on it. This is done because
 InnoDB and these operating systems cannot
 drop a table that is in use.

C.5.7.2. TEMPORARY Table Problems

 The following list indicates limitations on the use of
 TEMPORARY tables:

	
 A TEMPORARY table can only be of type
 MEMORY, MyISAM,
 MERGE, or InnoDB.

 Temporary tables are not supported for MySQL Cluster.

	
 You cannot refer to a TEMPORARY table
 more than once in the same query. For example, the
 following does not work:

mysql> SELECT * FROM temp_table, temp_table AS t2;
ERROR 1137: Can't reopen table: 'temp_table'

 This error also occurs if you refer to a temporary table
 multiple times in a stored function under different
 aliases, even if the references occur in different
 statements within the function.

	
 The SHOW TABLES statement
 does not list TEMPORARY tables.

	
 You cannot use RENAME to rename a
 TEMPORARY table. However, you can use
 ALTER TABLE instead:

mysql> ALTER TABLE orig_name RENAME new_name;

	
 There are known issues in using temporary tables with
 replication. See Section 16.4.1, “Replication Features and Issues”,
 for more information.

C.5.8. Known Issues in MySQL

 This section lists known issues in recent versions of MySQL.

 For information about platform-specific issues, see the
 installation and porting instructions in
 Section 2.20, “Operating System-Specific Notes”, and
 Section 21.3, “Debugging and Porting MySQL”.

 The following problems are known:

	
 Subquery optimization for IN is not as
 effective as for =.

	
 Even if you use lower_case_table_names=2
 (which enables MySQL to remember the case used for databases
 and table names), MySQL does not remember the case used for
 database names for the function
 DATABASE() or within the
 various logs (on case-insensitive systems).

	
 Dropping a FOREIGN KEY constraint does
 not work in replication because the constraint may have
 another name on the slave.

	
 REPLACE (and
 LOAD DATA with the
 REPLACE option) does not
 trigger ON DELETE CASCADE.

	
 DISTINCT with ORDER BY
 does not work inside
 GROUP_CONCAT() if you do not
 use all and only those columns that are in the
 DISTINCT list.

	
 If one user has a long-running transaction and another user
 drops a table that is updated in the transaction, there is
 small chance that the binary log may contain the
 DROP TABLE statement before
 the table is used in the transaction itself.

	
 When inserting a big integer value (between
 263 and
 264–1) into a decimal or
 string column, it is inserted as a negative value because
 the number is evaluated in a signed integer context.

	
 FLUSH TABLES WITH
 READ LOCK does not block
 COMMIT if the server is
 running without binary logging, which may cause a problem
 (of consistency between tables) when doing a full backup.

	
 ANALYZE TABLE on a
 BDB table may in some cases make the
 table unusable until you restart mysqld.
 If this happens, look for errors of the following form in
 the MySQL error file:

001207 22:07:56 bdb: log_flush: LSN past current end-of-log

	
 Do not execute ALTER TABLE on
 a BDB table on which you are running
 multiple-statement transactions until all those transactions
 complete. (The transaction might be ignored.)

	
 ANALYZE TABLE,
 OPTIMIZE TABLE, and
 REPAIR TABLE may cause
 problems on tables for which you are using
 INSERT DELAYED.

	
 Performing LOCK TABLE ... and
 FLUSH TABLES ... does not guarantee that
 there isn't a half-finished transaction in progress on the
 table.

	
 BDB tables are relatively slow to open.
 If you have many BDB tables in a
 database, it takes a long time to use the
 mysql client on the database if you are
 not using the -A option or if you are
 using rehash. This is especially
 noticeable when you have a large table cache.

	
 Replication uses query-level logging: The master writes the
 executed queries to the binary log. This is a very fast,
 compact, and efficient logging method that works perfectly
 in most cases.

 It is possible for the data on the master and slave to
 become different if a query is designed in such a way that
 the data modification is nondeterministic (generally not a
 recommended practice, even outside of replication).

 For example:

	
 CREATE
 TABLE ... SELECT or
 INSERT
 ... SELECT statements that insert zero or
 NULL values into an
 AUTO_INCREMENT column.

	
 DELETE if you are
 deleting rows from a table that has foreign keys with
 ON DELETE CASCADE properties.

	
 REPLACE ...
 SELECT, INSERT IGNORE ...
 SELECT if you have duplicate key values in the
 inserted data.

 If and only if the preceding queries
 have no ORDER BY clause guaranteeing a
 deterministic order.

 For example, for
 INSERT ...
 SELECT with no ORDER BY, the
 SELECT may return rows in a
 different order (which results in a row having different
 ranks, hence getting a different number in the
 AUTO_INCREMENT column), depending on the
 choices made by the optimizers on the master and slave.

 A query is optimized differently on the master and slave
 only if:

	
 The table is stored using a different storage engine on
 the master than on the slave. (It is possible to use
 different storage engines on the master and slave. For
 example, you can use InnoDB on the
 master, but MyISAM on the slave if
 the slave has less available disk space.)

	
 MySQL buffer sizes
 (key_buffer_size, and
 so on) are different on the master and slave.

	
 The master and slave run different MySQL versions, and
 the optimizer code differs between these versions.

 This problem may also affect database restoration using
 mysqlbinlog|mysql.

 The easiest way to avoid this problem is to add an
 ORDER BY clause to the aforementioned
 nondeterministic queries to ensure that the rows are always
 stored or modified in the same order.

	
 Log file names are based on the server host name if you do
 not specify a file name with the startup option. To retain
 the same log file names if you change your host name to
 something else, you must explicitly use options such as
 --log-bin=old_host_name-bin.
 See Section 5.1.3, “Server Command Options”. Alternatively, rename
 the old files to reflect your host name change. If these are
 binary logs, you must edit the binary log index file and fix
 the binary log file names there as well. (The same is true
 for the relay logs on a slave server.)

	
 mysqlbinlog does not delete temporary
 files left after a
 LOAD DATA
 INFILE statement. See
 Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”.

	
 RENAME does not work with
 TEMPORARY tables or tables used in a
 MERGE table.

	
 Due to the way table format (.frm)
 files are stored, you cannot use character 255
 (CHAR(255)) in table names, column names,
 or enumerations.

	
 When using SET CHARACTER SET, you cannot
 use translated characters in database, table, and column
 names.

	
 You cannot use “_” or
 “%” with
 ESCAPE in
 LIKE ...
 ESCAPE.

	
 Only the first
 max_sort_length bytes are
 used when comparing data values. This means that values
 cannot reliably be used in GROUP BY,
 ORDER BY or DISTINCT
 if they are not distinct in the first
 max_sort_length bytes. To
 work around this, increase the variable value. The default
 value of max_sort_length is
 1024 and can be changed at server startup time or at
 runtime.

	
 Numeric calculations are done with
 BIGINT or
 DOUBLE (both are normally 64
 bits long). Which precision you get depends on the function.
 The general rule is that bit functions are performed with
 BIGINT precision,
 IF() and
 ELT() with
 BIGINT or
 DOUBLE precision, and the
 rest with DOUBLE precision.
 You should try to avoid using unsigned long long values if
 they resolve to be larger than 63 bits (9223372036854775807)
 for anything other than bit fields.

	
 You can have up to 255 ENUM
 and SET columns in one table.

	
 In MIN(),
 MAX(), and other aggregate
 functions, MySQL currently compares
 ENUM and
 SET columns by their string
 value rather than by the string's relative position in the
 set.

	
 mysqld_safe redirects all messages from
 mysqld to the mysqld
 log. One problem with this is that if you execute
 mysqladmin refresh to close and reopen
 the log, stdout and
 stderr are still redirected to the old
 log. If you use the general query log extensively, you
 should edit mysqld_safe to log to
 host_name.err
 instead of
 host_name.log
 so that you can easily reclaim the space for the old log by
 deleting it and executing mysqladmin
 refresh.

	
 In an UPDATE statement,
 columns are updated from left to right. If you refer to an
 updated column, you get the updated value instead of the
 original value. For example, the following statement
 increments KEY by 2,
 not 1:

mysql> UPDATE tbl_name SET KEY=KEY+1,KEY=KEY+1;

	
 You can refer to multiple temporary tables in the same
 query, but you cannot refer to any given temporary table
 more than once. For example, the following does not work:

mysql> SELECT * FROM temp_table, temp_table AS t2;
ERROR 1137: Can't reopen table: 'temp_table'

	
 The optimizer may handle DISTINCT
 differently when you are using “hidden” columns
 in a join than when you are not. In a join, hidden columns
 are counted as part of the result (even if they are not
 shown), whereas in normal queries, hidden columns do not
 participate in the DISTINCT comparison.

 An example of this is:

SELECT DISTINCT mp3id FROM band_downloads
 WHERE userid = 9 ORDER BY id DESC;

 and

SELECT DISTINCT band_downloads.mp3id
 FROM band_downloads,band_mp3
 WHERE band_downloads.userid = 9
 AND band_mp3.id = band_downloads.mp3id
 ORDER BY band_downloads.id DESC;

 In the second case, using MySQL Server 3.23.x, you may get
 two identical rows in the result set (because the values in
 the hidden id column may differ).

 Note that this happens only for queries that do not have the
 ORDER BY columns in the result.

	
 If you execute a PROCEDURE on a query
 that returns an empty set, in some cases the
 PROCEDURE does not transform the columns.

	
 Creation of a table of type MERGE does
 not check whether the underlying tables are compatible
 types.

	
 If you use ALTER TABLE to add
 a UNIQUE index to a table used in a
 MERGE table and then add a normal index
 on the MERGE table, the key order is
 different for the tables if there was an old,
 non-UNIQUE key in the table. This is
 because ALTER TABLE puts
 UNIQUE indexes before normal indexes to
 be able to detect duplicate keys as early as possible.

Operator Index

Symbols | A | B | C | D | E | I | L | N | O | R | X
Symbols
[index top]
	
	

-
	Section 12.6.1, “Arithmetic Operators”
	
	Section 12.10, “Cast Functions and Operators”
	
	Section 12.7, “Date and Time Functions”
	
	Section 11.1.1, “Numeric Type Overview”
	

!
	Section 9.5, “Expression Syntax”
	
	Section 12.3.3, “Logical Operators”
	
	Section 12.3.1, “Operator Precedence”
	

!=
	Section 12.3.2, “Comparison Functions and Operators”
	
	Section 12.3.1, “Operator Precedence”
	
	Section 8.3.1.3.2, “The Range Access Method for Multiple-Part Indexes”
	
	Section 8.3.1.3.1, “The Range Access Method for Single-Part Indexes”
	

%
	Section 12.6.1, “Arithmetic Operators”
	

&
	Section 12.11, “Bit Functions”
	

&&
	Section 12.3.3, “Logical Operators”
	
	Section 1.8.1, “MySQL Extensions to Standard SQL”
	

>
	Section 8.2.2, “EXPLAIN Output Format”
	
	Section 12.3.2, “Comparison Functions and Operators”
	
	Section 8.5.3, “How MySQL Uses Indexes”
	
	Section 1.8.1, “MySQL Extensions to Standard SQL”
	
	Section 12.3.1, “Operator Precedence”
	
	Section 8.3.1.3.2, “The Range Access Method for Multiple-Part Indexes”
	
	Section 8.3.1.3.1, “The Range Access Method for Single-Part Indexes”
	

>>
	Section 12.11, “Bit Functions”
	
	Section 1.8.1, “MySQL Extensions to Standard SQL”
	

>=
	Section 8.2.2, “EXPLAIN Output Format”
	
	Section 12.3.2, “Comparison Functions and Operators”
	
	Section 8.5.3, “How MySQL Uses Indexes”
	
	Section 1.8.1, “MySQL Extensions to Standard SQL”
	
	Section 12.3.1, “Operator Precedence”
	
	Section 8.3.1.3.2, “The Range Access Method for Multiple-Part Indexes”
	
	Section 8.3.1.3.1, “The Range Access Method for Single-Part Indexes”
	

<
	Section 8.2.2, “EXPLAIN Output Format”
	
	Section 12.3.2, “Comparison Functions and Operators”
	
	Section 8.5.3, “How MySQL Uses Indexes”
	
	Section 1.8.1, “MySQL Extensions to Standard SQL”
	
	Section 12.3.1, “Operator Precedence”
	
	Section 8.3.1.3.2, “The Range Access Method for Multiple-Part Indexes”
	
	Section 8.3.1.3.1, “The Range Access Method for Single-Part Indexes”
	
	Section 3.3.4.6, “Working with NULL Values”
	

<>
	Section 8.2.2, “EXPLAIN Output Format”
	
	Section 12.3.2, “Comparison Functions and Operators”
	
	Section 1.8.1, “MySQL Extensions to Standard SQL”
	
	Section 12.3.1, “Operator Precedence”
	
	Section 8.3.1.3.2, “The Range Access Method for Multiple-Part Indexes”
	
	Section 8.3.1.3.1, “The Range Access Method for Single-Part Indexes”
	
	Section 3.3.4.6, “Working with NULL Values”
	

<<
	Section 12.11, “Bit Functions”
	
	Section 1.8.1, “MySQL Extensions to Standard SQL”
	

<=
	Section 8.2.2, “EXPLAIN Output Format”
	
	Section 12.3.2, “Comparison Functions and Operators”
	
	Section 8.5.3, “How MySQL Uses Indexes”
	
	Section 1.8.1, “MySQL Extensions to Standard SQL”
	
	Section 12.3.1, “Operator Precedence”
	
	Section 8.3.1.3.2, “The Range Access Method for Multiple-Part Indexes”
	
	Section 8.3.1.3.1, “The Range Access Method for Single-Part Indexes”
	

<=>
	Section 8.2.2, “EXPLAIN Output Format”
	
	Section 12.3.2, “Comparison Functions and Operators”
	
	Section 1.8.1, “MySQL Extensions to Standard SQL”
	
	Section 12.3.1, “Operator Precedence”
	
	Section 8.3.1.3.2, “The Range Access Method for Multiple-Part Indexes”
	
	Section 8.3.1.3.1, “The Range Access Method for Single-Part Indexes”
	
	Section 12.2, “Type Conversion in Expression Evaluation”
	

*
	Section 12.6.1, “Arithmetic Operators”
	
	Section 11.1.1, “Numeric Type Overview”
	

+
	Section 12.6.1, “Arithmetic Operators”
	
	Section 12.10, “Cast Functions and Operators”
	
	Section 12.7, “Date and Time Functions”
	
	Section 11.1.1, “Numeric Type Overview”
	

/
	Section 12.6.1, “Arithmetic Operators”
	
	Section 5.1.4, “Server System Variables”
	

=
	Section 8.2.2, “EXPLAIN Output Format”
	
	Section 13.7.4, “SET Syntax”
	
	Section 12.3.4, “Assignment Operators”
	
	Section 12.3.2, “Comparison Functions and Operators”
	
	Section 8.5.3, “How MySQL Uses Indexes”
	
	Section 1.8.1, “MySQL Extensions to Standard SQL”
	
	Section 12.3.1, “Operator Precedence”
	
	Section E.3, “Restrictions on Subqueries”
	
	Section 12.5.1, “String Comparison Functions”
	
	Section 8.3.1.3.2, “The Range Access Method for Multiple-Part Indexes”
	
	Section 8.3.1.3.1, “The Range Access Method for Single-Part Indexes”
	
	Section 9.4, “User-Defined Variables”
	
	Section 3.3.4.6, “Working with NULL Values”
	

^
	Section 12.11, “Bit Functions”
	
	Section 9.5, “Expression Syntax”
	
	Section 12.3.1, “Operator Precedence”
	

|
	Section 12.11, “Bit Functions”
	

||
	Section 10.1.7.3, “COLLATE Clause Precedence”
	
	Section 9.5, “Expression Syntax”
	
	Section 12.3.3, “Logical Operators”
	
	Section 1.8.1, “MySQL Extensions to Standard SQL”
	
	Section 12.3.1, “Operator Precedence”
	
	Section 10.1.9.1, “Result Strings”
	
	Section 5.1.7, “Server SQL Modes”
	

~
	Section 12.11, “Bit Functions”
	

A
[index top]
	
	

AND
	Section 8.5.3, “How MySQL Uses Indexes”
	
	Section 8.3.1.4, “Index Merge Optimization”
	
	Section 12.3.3, “Logical Operators”
	
	Section 1.8.1, “MySQL Extensions to Standard SQL”
	
	Section 8.3.1.14, “Optimizing Subqueries with EXISTS Strategy”
	
	Section E.3, “Restrictions on Subqueries”
	
	Section 3.6.7, “Searching on Two Keys”
	
	Section 3.3.4.2, “Selecting Particular Rows”
	
	Section 12.5.1, “String Comparison Functions”
	
	Section 8.3.1.4.1, “The Index Merge Intersection Access Algorithm”
	
	Section 8.3.1.3.2, “The Range Access Method for Multiple-Part Indexes”
	
	Section 8.3.1.3.1, “The Range Access Method for Single-Part Indexes”
	
	Section 18.4.2, “View Processing Algorithms”
	
	Section 1.4, “What Is New in MySQL 5.0”
	

B
[index top]
	
	

BETWEEN
	Section 8.2.2, “EXPLAIN Output Format”
	
	Section 12.3.2, “Comparison Functions and Operators”
	
	Section 8.5.3, “How MySQL Uses Indexes”
	
	Section 8.3.1.3.2, “The Range Access Method for Multiple-Part Indexes”
	
	Section 8.3.1.3.1, “The Range Access Method for Single-Part Indexes”
	
	Section 12.2, “Type Conversion in Expression Evaluation”
	

BINARY
	Section 12.10, “Cast Functions and Operators”
	
	Section 3.3.4.7, “Pattern Matching”
	
	Section 3.3.4.4, “Sorting Rows”
	
	Section 10.1.7.7, “The BINARY Operator”
	

BINARY str
	Section 12.10, “Cast Functions and Operators”
	

C
[index top]
	
	

CASE
	Section 13.6.5.1, “CASE Syntax”
	
	Section 12.4, “Control Flow Functions”
	
	Section 9.5, “Expression Syntax”
	
	Section 1.8.1, “MySQL Extensions to Standard SQL”
	

CASE value WHEN END
	Section 12.4, “Control Flow Functions”
	

CASE WHEN END
	Section 12.4, “Control Flow Functions”
	

CASE WHEN expr1 = expr2 THEN NULL ELSE expr1 END
	Section 12.4, “Control Flow Functions”
	

D
[index top]
	
	

DIV
	Section 12.6.1, “Arithmetic Operators”
	

E
[index top]
	
	

expr BETWEEN min AND max
	Section 12.3.2, “Comparison Functions and Operators”
	

expr LIKE pat
	Section 12.5.1, “String Comparison Functions”
	

expr NOT BETWEEN min AND max
	Section 12.3.2, “Comparison Functions and Operators”
	

expr NOT LIKE pat
	Section 12.5.1, “String Comparison Functions”
	

expr NOT REGEXP pat
	Section 12.5.2, “Regular Expressions”
	

expr NOT RLIKE pat
	Section 12.5.2, “Regular Expressions”
	

expr REGEXP pat
	Section 12.5.2, “Regular Expressions”
	

expr RLIKE pat
	Section 12.5.2, “Regular Expressions”
	

expr1 SOUNDS LIKE expr2
	Section 12.5, “String Functions”
	

I
[index top]
	
	

IS
	Section 12.3.1, “Operator Precedence”
	

IS boolean_value
	Section 12.3.2, “Comparison Functions and Operators”
	

IS NOT boolean_value
	Section 12.3.2, “Comparison Functions and Operators”
	

IS NOT NULL
	Section 12.3.2, “Comparison Functions and Operators”
	
	Section C.5.5.3, “Problems with NULL Values”
	
	Section 8.3.1.3.1, “The Range Access Method for Single-Part Indexes”
	
	Section 3.3.4.6, “Working with NULL Values”
	

IS NULL
	Section 8.2.2, “EXPLAIN Output Format”
	
	Section 8.3.1.6, “IS NULL Optimization”
	
	Section 12.3.2, “Comparison Functions and Operators”
	
	Section 8.3.1.14, “Optimizing Subqueries with EXISTS Strategy”
	
	Section C.5.5.3, “Problems with NULL Values”
	
	Section 5.1.4, “Server System Variables”
	
	Section 8.3.1.3.2, “The Range Access Method for Multiple-Part Indexes”
	
	Section 8.3.1.3.1, “The Range Access Method for Single-Part Indexes”
	
	Section 3.3.4.6, “Working with NULL Values”
	

L
[index top]
	
	

LIKE
	Section 4.5.1.4, “mysql Server-Side Help”
	
	Section 13.8.3, “HELP Syntax”
	
	Section 13.7.5.3, “SHOW CHARACTER SET Syntax”
	
	Section 13.7.5.4, “SHOW COLLATION Syntax”
	
	Section 13.7.5.5, “SHOW COLUMNS Syntax”
	
	Section 13.7.5.11, “SHOW DATABASES Syntax”
	
	Section 13.7.5.23, “SHOW OPEN TABLES Syntax”
	
	Section 13.7.5.26, “SHOW PROCEDURE STATUS Syntax”
	
	Section 13.7.5.32, “SHOW STATUS Syntax”
	
	Section 13.7.5.33, “SHOW TABLE STATUS Syntax”
	
	Section 13.7.5.34, “SHOW TABLES Syntax”
	
	Section 13.7.5.35, “SHOW TRIGGERS Syntax”
	
	Section 13.7.5.36, “SHOW VARIABLES Syntax”
	
	Section 10.1.9.3, “SHOW Statements and
 INFORMATION_SCHEMA”
	
	Section 6.2.5, “Access Control, Stage 2: Request Verification”
	
	Section 12.10, “Cast Functions and Operators”
	
	Section 19.18, “Extensions to SHOW Statements”
	
	Section 8.5.3, “How MySQL Uses Indexes”
	
	Section 1.8.1, “MySQL Extensions to Standard SQL”
	
	Section 12.3.1, “Operator Precedence”
	
	Section 3.3.4.7, “Pattern Matching”
	
	Section 16.1.2.3, “Replication Slave Options and Variables”
	
	Section 6.2.3, “Specifying Account Names”
	
	Section 12.5.1, “String Comparison Functions”
	
	Section 9.1.1, “String Literals”
	
	Section 5.1.5.1, “Structured System Variables”
	
	Section 11.4.1, “The CHAR and VARCHAR Types”
	
	Section 11.4.5, “The SET Type”
	
	Section 8.3.1.3.2, “The Range Access Method for Multiple-Part Indexes”
	
	Section 8.3.1.3.1, “The Range Access Method for Single-Part Indexes”
	
	Section 5.1.5, “Using System Variables”
	

LIKE 'pattern'
	Section 13.7.5, “SHOW Syntax”
	
	Section 8.3.1.3.2, “The Range Access Method for Multiple-Part Indexes”
	

LIKE ... ESCAPE
	Section C.5.8, “Known Issues in MySQL”
	

N
[index top]
	
	

N % M
	Section 12.6.1, “Arithmetic Operators”
	
	Section 12.6.2, “Mathematical Functions”
	

N MOD M
	Section 12.6.1, “Arithmetic Operators”
	
	Section 12.6.2, “Mathematical Functions”
	

NOT
	Section 12.3.3, “Logical Operators”
	
	Section 5.1.7, “Server SQL Modes”
	

NOT LIKE
	Section 3.3.4.7, “Pattern Matching”
	
	Section 12.5.1, “String Comparison Functions”
	

NOT REGEXP
	Section 1.8.1, “MySQL Extensions to Standard SQL”
	
	Section 3.3.4.7, “Pattern Matching”
	
	Section 12.5.1, “String Comparison Functions”
	

NOT RLIKE
	Section 3.3.4.7, “Pattern Matching”
	
	Section 12.5.1, “String Comparison Functions”
	

O
[index top]
	
	

OR
	Section 13.7.1.3, “GRANT Syntax”
	
	Section 9.5, “Expression Syntax”
	
	Section 8.3.1.4, “Index Merge Optimization”
	
	Section 12.3.3, “Logical Operators”
	
	Section 1.8.1, “MySQL Extensions to Standard SQL”
	
	Section 12.3.1, “Operator Precedence”
	
	Section 8.3.1.14, “Optimizing Subqueries with EXISTS Strategy”
	
	Section 3.6.7, “Searching on Two Keys”
	
	Section 3.3.4.2, “Selecting Particular Rows”
	
	Section 5.1.7, “Server SQL Modes”
	
	Section 12.5.1, “String Comparison Functions”
	
	Section 8.3.1.4.3, “The Index Merge Sort-Union Access Algorithm”
	
	Section 8.3.1.4.2, “The Index Merge Union Access Algorithm”
	
	Section 8.3.1.3.2, “The Range Access Method for Multiple-Part Indexes”
	
	Section 8.3.1.3.1, “The Range Access Method for Single-Part Indexes”
	
	Section 1.4, “What Is New in MySQL 5.0”
	

R
[index top]
	
	

REGEXP
	Section 1.8.1, “MySQL Extensions to Standard SQL”
	
	Section 12.3.1, “Operator Precedence”
	
	Section 3.3.4.7, “Pattern Matching”
	
	Section 12.5.2, “Regular Expressions”
	
	Section E.6, “Restrictions on Character Sets”
	

RLIKE
	Section 3.3.4.7, “Pattern Matching”
	
	Section 12.5.2, “Regular Expressions”
	
	Section E.6, “Restrictions on Character Sets”
	

X
[index top]
	
	

XOR
	Section 12.15.1, “GROUP BY (Aggregate) Functions”
	
	Section 12.3.3, “Logical Operators”
	

A.17. RFC 3174 - US Secure Hash Algorithm 1 (SHA1) License

 The following software may be included in this product:

 RFC 3174 - US Secure Hash Algorithm 1 (SHA1)

RFC 3174 - US Secure Hash Algorithm 1 (SHA1)

Copyright (C) The Internet Society (2001). All Rights Reserved.

This document and translations of it may be copied and furnished to
others, and derivative works that comment on or otherwise explain it
or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any
kind, provided that the above copyright notice and this paragraph are
included on all such copies and derivative works. However, this
document itself may not be modified in any way, such as by removing
the copyright notice or references to the Internet Society or other
Internet organizations, except as needed for the purpose of
developing Internet standards in which case the procedures for
copyrights defined in the Internet Standards process must be
followed, or as required to translate it into languages other than
English.

The limited permissions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.

This document and the information contained herein is provided on an
"AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement
Funding for the RFC Editor function is currently provided by the
Internet Society.

18.2. Using Stored Routines (Procedures and Functions)

 Stored routines (procedures and functions) are supported in MySQL
 5.0. A stored routine is a set of SQL statements that
 can be stored in the server. Once this has been done, clients don't
 need to keep reissuing the individual statements but can refer to
 the stored routine instead.

 Stored routines require the proc table in the
 mysql database. This table is created during the
 MySQL 5.0 installation procedure. If you are upgrading
 to MySQL 5.0 from an earlier version, be sure to update
 your grant tables to make sure that the proc
 table exists. See Section 4.4.9, “mysql_upgrade — Check Tables for MySQL Upgrade”.

 Stored routines can be particularly useful in certain situations:

	
 When multiple client applications are written in different
 languages or work on different platforms, but need to perform
 the same database operations.

	
 When security is paramount. Banks, for example, use stored
 procedures and functions for all common operations. This
 provides a consistent and secure environment, and routines can
 ensure that each operation is properly logged. In such a setup,
 applications and users would have no access to the database
 tables directly, but can only execute specific stored routines.

 Stored routines can provide improved performance because less
 information needs to be sent between the server and the client. The
 tradeoff is that this does increase the load on the database server
 because more of the work is done on the server side and less is done
 on the client (application) side. Consider this if many client
 machines (such as Web servers) are serviced by only one or a few
 database servers.

 Stored routines also enable you to have libraries of functions in
 the database server. This is a feature shared by modern application
 languages that enable such design internally (for example, by using
 classes). Using these client application language features is
 beneficial for the programmer even outside the scope of database
 use.

 MySQL follows the SQL:2003 syntax for stored routines, which is also
 used by IBM's DB2. All syntax described here is supported and any
 limitations and extensions are documented where appropriate.

 Additional Resources

	
 You may find the Stored
 Procedures User Forum of use when working with stored
 procedures and functions.

	
 For answers to some commonly asked questions regarding stored
 routines in MySQL, see Section B.4, “MySQL 5.0 FAQ: Stored Procedures and Functions”.

	
 There are some restrictions on the use of stored routines. See
 Section E.1, “Restrictions on Stored Programs”.

	
 Binary logging for stored routines takes place as described in
 Section 18.6, “Binary Logging of Stored Programs”.

18.2.1. Stored Routine Syntax

 A stored routine is either a procedure or a function. Stored
 routines are created with the CREATE
 PROCEDURE and CREATE
 FUNCTION statements (see
 Section 13.1.9, “CREATE PROCEDURE and
 CREATE FUNCTION Syntax”). A procedure is invoked using
 a CALL statement (see
 Section 13.2.1, “CALL Syntax”), and can only pass back values using
 output variables. A function can be called from inside a statement
 just like any other function (that is, by invoking the function's
 name), and can return a scalar value. The body of a stored routine
 can use compound statements (see
 Section 13.6, “MySQL Compound-Statement Syntax”).

 Stored routines can be dropped with the DROP
 PROCEDURE and DROP
 FUNCTION statements (see
 Section 13.1.16, “DROP PROCEDURE and
 DROP FUNCTION Syntax”), and altered with the
 ALTER PROCEDURE and
 ALTER FUNCTION statements (see
 Section 13.1.3, “ALTER PROCEDURE Syntax”).

 As of MySQL 5.0.1, a stored procedure or function is associated
 with a particular database. This has several implications:

	
 When the routine is invoked, an implicit USE
 db_name is performed (and
 undone when the routine terminates).
 USE statements within stored
 routines are not permitted.

	
 You can qualify routine names with the database name. This can
 be used to refer to a routine that is not in the current
 database. For example, to invoke a stored procedure
 p or function f that is
 associated with the test database, you can
 say CALL test.p() or
 test.f().

	
 When a database is dropped, all stored routines associated
 with it are dropped as well.

 (In MySQL 5.0.0, stored routines are global and not associated
 with a database. They inherit the default database from the
 caller. If a USE
 db_name is executed within
 the routine, the original default database is restored upon
 routine exit.)

 Stored functions cannot be recursive.

 Recursion in stored procedures is permitted but disabled by
 default. To enable recursion, set the
 max_sp_recursion_depth server
 system variable to a value greater than zero. Stored procedure
 recursion increases the demand on thread stack space. If you
 increase the value of
 max_sp_recursion_depth, it may be
 necessary to increase thread stack size by increasing the value of
 thread_stack at server startup.
 See Section 5.1.4, “Server System Variables”, for more
 information.

 MySQL supports a very useful extension that enables the use of
 regular SELECT statements (that is,
 without using cursors or local variables) inside a stored
 procedure. The result set of such a query is simply sent directly
 to the client. Multiple SELECT
 statements generate multiple result sets, so the client must use a
 MySQL client library that supports multiple result sets. This
 means the client must use a client library from a version of MySQL
 at least as recent as 4.1. The client should also specify the
 CLIENT_MULTI_RESULTS option when it connects.
 For C programs, this can be done with the
 mysql_real_connect() C API
 function. See Section 20.6.7.52, “mysql_real_connect()”, and
 Section 20.6.16, “C API Support for Multiple Statement Execution”.

18.2.2. Stored Routines and MySQL Privileges

 Beginning with MySQL 5.0.3, the grant system takes stored routines
 into account as follows:

	
 The CREATE ROUTINE privilege is
 needed to create stored routines.

	
 The ALTER ROUTINE privilege is
 needed to alter or drop stored routines. This privilege is
 granted automatically to the creator of a routine if
 necessary, and dropped from the creator when the routine is
 dropped.

	
 The EXECUTE privilege is
 required to execute stored routines. However, this privilege
 is granted automatically to the creator of a routine if
 necessary (and dropped from the creator when the routine is
 dropped). Also, the default SQL SECURITY
 characteristic for a routine is DEFINER,
 which enables users who have access to the database with which
 the routine is associated to execute the routine.

	
 If the
 automatic_sp_privileges
 system variable is 0, the
 EXECUTE and
 ALTER ROUTINE privileges are
 not automatically granted to and dropped from the routine
 creator.

	
 The creator of a routine is the account used to execute the
 CREATE statement for it. This might not be
 the same as the account named as the
 DEFINER in the routine definition.

 The server manipulates the mysql.proc table in
 response to statements that create, alter, or drop stored
 routines. It is not supported that the server will notice manual
 manipulation of this table.

18.2.3. Stored Routine Metadata

 Metadata about stored routines can be obtained as follows:

	
 Query the ROUTINES table of the
 INFORMATION_SCHEMA database. See
 Section 19.8, “The INFORMATION_SCHEMA ROUTINES Table”.

	
 Use the SHOW CREATE PROCEDURE
 and SHOW CREATE FUNCTION
 statements to see routine definitions. See
 Section 13.7.5.8, “SHOW CREATE PROCEDURE Syntax”.

	
 Use the SHOW PROCEDURE STATUS
 and SHOW FUNCTION STATUS
 statements to see routine characteristics. See
 Section 13.7.5.26, “SHOW PROCEDURE STATUS Syntax”.

	
 INFORMATION_SCHEMA does not have a
 PARAMETERS table until MySQL 5.5, so
 applications that need to acquire routine parameter
 information at runtime must use workarounds such as parsing
 the output of SHOW CREATE statements or the
 param_list column of the
 mysql.proc table.
 param_list contents can be processed from
 within a stored routine, unlike the output from
 SHOW.

18.2.4. Stored Procedures, Functions, Triggers, and
 LAST_INSERT_ID()

 Within the body of a stored routine (procedure or function) or a
 trigger, the value of
 LAST_INSERT_ID() changes the same
 way as for statements executed outside the body of these kinds of
 objects (see Section 12.13, “Information Functions”). The effect
 of a stored routine or trigger upon the value of
 LAST_INSERT_ID() that is seen by
 following statements depends on the kind of routine:

	
 If a stored procedure executes statements that change the
 value of LAST_INSERT_ID(), the
 changed value is seen by statements that follow the procedure
 call.

	
 For stored functions and triggers that change the value, the
 value is restored when the function or trigger ends, so
 following statements do not see a changed value. (Before MySQL
 5.0.12, the value is not restored and following statements do
 see a changed value.)

19.8. The INFORMATION_SCHEMA ROUTINES Table

 The ROUTINES table provides
 information about stored routines (both procedures and functions).
 The ROUTINES table does not include
 user-defined functions (UDFs).

 The column named “mysql.proc name”
 indicates the mysql.proc table column that
 corresponds to the
 INFORMATION_SCHEMA.ROUTINES table
 column, if any.

	INFORMATION_SCHEMA Name	mysql.proc Name	Remarks
	SPECIFIC_NAME	specific_name	
	ROUTINE_CATALOG	 	NULL
	ROUTINE_SCHEMA	db	
	ROUTINE_NAME	name	
	ROUTINE_TYPE	type	{PROCEDURE|FUNCTION}
	DTD_IDENTIFIER	 	data type descriptor
	ROUTINE_BODY	 	SQL
	ROUTINE_DEFINITION	body	
	EXTERNAL_NAME	 	NULL
	EXTERNAL_LANGUAGE	language	NULL
	PARAMETER_STYLE	 	SQL
	IS_DETERMINISTIC	is_deterministic	
	SQL_DATA_ACCESS	sql_data_access	
	SQL_PATH	 	NULL
	SECURITY_TYPE	security_type	
	CREATED	created	
	LAST_ALTERED	modified	
	SQL_MODE	sql_mode	MySQL extension
	ROUTINE_COMMENT	comment	MySQL extension
	DEFINER	definer	MySQL extension

 Notes:

	
 MySQL calculates EXTERNAL_LANGUAGE thus:

	
 If mysql.proc.language='SQL',
 EXTERNAL_LANGUAGE is
 NULL

	
 Otherwise, EXTERNAL_LANGUAGE is what is
 in mysql.proc.language. However, we do
 not have external languages yet, so it is always
 NULL.

14.9. The CSV Storage Engine

 The CSV storage engine stores data in text files
 using comma-separated values format. It is unavailable on Windows
 until MySQL 5.1.

 The CSV storage engine is included in MySQL
 binary distributions (except on Windows). To enable this storage
 engine if you build MySQL from source, invoke
 configure with the
 --with-csv-storage-engine option.

 To examine the source for the CSV engine, look in
 the sql/examples directory of a MySQL source
 distribution.

 When you create a CSV table, the server creates a
 table format file in the database directory. The file begins with
 the table name and has an .frm extension. The
 storage engine also creates a data file. Its name begins with the
 table name and has a .CSV extension. The data
 file is a plain text file. When you store data into the table, the
 storage engine saves it into the data file in comma-separated values
 format.

mysql> CREATE TABLE test (i INT NOT NULL, c CHAR(10) NOT NULL)
 -> ENGINE = CSV;
Query OK, 0 rows affected (0.12 sec)

mysql> INSERT INTO test VALUES(1,'record one'),(2,'record two');
Query OK, 2 rows affected (0.00 sec)
Records: 2 Duplicates: 0 Warnings: 0

mysql> SELECT * FROM test;
+------+------------+
| i | c |
+------+------------+
| 1 | record one |
| 2 | record two |
+------+------------+
2 rows in set (0.00 sec)

 If you examine the test.CSV file in the
 database directory created by executing the preceding statements,
 its contents should look like this:

"1","record one"
"2","record two"

 This format can be read, and even written, by spreadsheet
 applications such as Microsoft Excel or StarOffice Calc.

 The CSV storage engine does not support indexing.

19.3. The INFORMATION_SCHEMA
 COLLATION_CHARACTER_SET_APPLICABILITY Table

 The
 COLLATION_CHARACTER_SET_APPLICABILITY
 table indicates what character set is applicable for what
 collation. The columns are equivalent to the first two display
 fields that we get from SHOW
 COLLATION.

	INFORMATION_SCHEMA Name	SHOW Name	Remarks
	COLLATION_NAME	Collation	
	CHARACTER_SET_NAME	Charset	

Preface and Legal Notices

 This is the Reference Manual for the MySQL Database System, version
 5.0, through release 5.0.96. Differences
 between minor versions of MySQL 5.0 are noted in the
 present text with reference to release numbers
 (5.0.x). For license
 information, see the Legal
 Notices. This product may contain third-party code. For
 license information on third-party code, see
 Appendix A, Licenses for Third-Party Components.

 This manual is not intended for use with older versions of the MySQL
 software due to the many functional and other differences between
 MySQL 5.0 and previous versions. If you are using an
 earlier release of the MySQL software, please refer to the
 appropriate manual. For example,
 MySQL 3.23, 4.0, 4.1 Reference Manual
 covers the 4.1 series of MySQL software releases.

 If you are using MySQL 5.1, please refer to the
 MySQL 5.1 Reference Manual.

Legal Notices

 Copyright © 1997, 2014, Oracle and/or its affiliates. All
 rights reserved.

 This software and related documentation are provided under a license
 agreement containing restrictions on use and disclosure and are
 protected by intellectual property laws. Except as expressly
 permitted in your license agreement or allowed by law, you may not
 use, copy, reproduce, translate, broadcast, modify, license,
 transmit, distribute, exhibit, perform, publish, or display any
 part, in any form, or by any means. Reverse engineering,
 disassembly, or decompilation of this software, unless required by
 law for interoperability, is prohibited.

 The information contained herein is subject to change without notice
 and is not warranted to be error-free. If you find any errors,
 please report them to us in writing.

 If this software or related documentation is delivered to the U.S.
 Government or anyone licensing it on behalf of the U.S. Government,
 the following notice is applicable:

 U.S. GOVERNMENT RIGHTS Programs, software, databases, and related
 documentation and technical data delivered to U.S. Government
 customers are "commercial computer software" or "commercial
 technical data" pursuant to the applicable Federal Acquisition
 Regulation and agency-specific supplemental regulations. As such,
 the use, duplication, disclosure, modification, and adaptation shall
 be subject to the restrictions and license terms set forth in the
 applicable Government contract, and, to the extent applicable by the
 terms of the Government contract, the additional rights set forth in
 FAR 52.227-19, Commercial Computer Software License (December 2007).
 Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

 This software is developed for general use in a variety of
 information management applications. It is not developed or intended
 for use in any inherently dangerous applications, including
 applications which may create a risk of personal injury. If you use
 this software in dangerous applications, then you shall be
 responsible to take all appropriate fail-safe, backup, redundancy,
 and other measures to ensure the safe use of this software. Oracle
 Corporation and its affiliates disclaim any liability for any
 damages caused by use of this software in dangerous applications.

 Oracle is a registered trademark of Oracle Corporation and/or its
 affiliates. MySQL is a trademark of Oracle Corporation and/or its
 affiliates, and shall not be used without Oracle's express written
 authorization. Other names may be trademarks of their respective
 owners.

 This software and documentation may provide access to or information
 on content, products, and services from third parties. Oracle
 Corporation and its affiliates are not responsible for and expressly
 disclaim all warranties of any kind with respect to third-party
 content, products, and services. Oracle Corporation and its
 affiliates will not be responsible for any loss, costs, or damages
 incurred due to your access to or use of third-party content,
 products, or services.

 This document in any form, software or printed matter, contains
 proprietary information that is the exclusive property of Oracle.
 Your access to and use of this material is subject to the terms and
 conditions of your Oracle Software License and Service Agreement,
 which has been executed and with which you agree to comply. This
 document and information contained herein may not be disclosed,
 copied, reproduced, or distributed to anyone outside Oracle without
 prior written consent of Oracle or as specifically provided below.
 This document is not part of your license agreement nor can it be
 incorporated into any contractual agreement with Oracle or its
 subsidiaries or affiliates.

 This documentation is NOT distributed under a GPL license. Use of
 this documentation is subject to the following terms:

 You may create a printed copy of this documentation solely for your
 own personal use. Conversion to other formats is allowed as long as
 the actual content is not altered or edited in any way. You shall
 not publish or distribute this documentation in any form or on any
 media, except if you distribute the documentation in a manner
 similar to how Oracle disseminates it (that is, electronically for
 download on a Web site with the software) or on a CD-ROM or similar
 medium, provided however that the documentation is disseminated
 together with the software on the same medium. Any other use, such
 as any dissemination of printed copies or use of this documentation,
 in whole or in part, in another publication, requires the prior
 written consent from an authorized representative of Oracle. Oracle
 and/or its affiliates reserve any and all rights to this
 documentation not expressly granted above.

 For more information on the terms of this license, or for details on
 how the MySQL documentation is built and produced, please visit
 MySQL Contact &
 Questions.

 For additional licensing information, including licenses for
 third-party libraries used by MySQL products, see
 Preface and Legal Notices.

 For help with using MySQL, please visit either the
 MySQL Forums or
 MySQL Mailing Lists
 where you can discuss your issues with other MySQL users.

 For additional documentation on MySQL products, including
 translations of the documentation into other languages, and
 downloadable versions in variety of formats, including HTML and PDF
 formats, see the MySQL
 Documentation Library.

System Variable Index

A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W
A
[index top]
	
	

auto_increment_increment
	Section 17.1.5.10, “Previous MySQL Cluster Issues Resolved in MySQL 5.0”
	
	Section 16.1.2.2, “Replication Master Options and Variables”
	
	Section 3.6.9, “Using AUTO_INCREMENT”
	

auto_increment_offset
	Section 17.1.5.10, “Previous MySQL Cluster Issues Resolved in MySQL 5.0”
	
	Section 16.1.2.2, “Replication Master Options and Variables”
	
	Section 3.6.9, “Using AUTO_INCREMENT”
	

autocommit
	Section 13.2.2, “DELETE Syntax”
	
	Section 14.2.2, “InnoDB Startup Options and System Variables”
	
	Section 14.2.7.3, “SELECT ... FOR UPDATE
 and SELECT ... LOCK IN
 SHARE MODE Locking Reads”
	
	Section 13.3.1, “START TRANSACTION,
 COMMIT, and
 ROLLBACK Syntax”
	
	Section 14.2.7.8, “Deadlock Detection and Rollback”
	
	Section 13.3.5.1, “Interaction of Table Locking and Transactions”
	
	Section 14.2.13, “Limits on InnoDB Tables”
	
	Section 14.2.7.6, “Locks Set by Different SQL Statements in InnoDB”
	
	Section 16.4.1.25, “Replication and Transactions”
	
	Section 5.1.4, “Server System Variables”
	
	Section 1.8.2.3, “Transactions and Atomic Operations”
	

automatic_sp_privileges
	Section 13.1.3, “ALTER PROCEDURE Syntax”
	
	Section 13.1.9, “CREATE PROCEDURE and
 CREATE FUNCTION Syntax”
	
	Section 5.1.4, “Server System Variables”
	
	Section 18.2.2, “Stored Routines and MySQL Privileges”
	

B
[index top]
	
	

back_log
	Section 5.1.4, “Server System Variables”
	

basedir
	Section 5.1.4, “Server System Variables”
	

bdb_cache_size
	Section 5.1.4, “Server System Variables”
	

bdb_home
	Section 5.1.4, “Server System Variables”
	

bdb_log_buffer_size
	Section 5.1.4, “Server System Variables”
	

bdb_logdir
	Section 5.1.4, “Server System Variables”
	

bdb_max_lock
	Section 14.5.3, “BDB Startup Options”
	
	Section 5.1.4, “Server System Variables”
	

bdb_shared_data
	Section 5.1.4, “Server System Variables”
	

bdb_tmpdir
	Section 5.1.4, “Server System Variables”
	

big_tables
	Section 5.1.4, “Server System Variables”
	

binlog_cache_size
	Section 14.5.3, “BDB Startup Options”
	
	Section 5.1.6, “Server Status Variables”
	
	Section 5.1.4, “Server System Variables”
	
	Section 5.2.3, “The Binary Log”
	

bulk_insert_buffer_size
	Section 14.1.1, “MyISAM Startup Options”
	
	Section 5.1.4, “Server System Variables”
	
	Section 8.3.2.1, “Speed of INSERT Statements”
	

C
[index top]
	
	

character_set_client
	Section 13.2.6, “LOAD DATA INFILE
 Syntax”
	
	Section 13.7.4, “SET Syntax”
	
	Section 20.6.9.1, “C API Prepared Statement Type Codes”
	
	Section 10.5, “Character Set Configuration”
	
	Section 10.1.4, “Connection Character Sets and Collations”
	
	Section 16.4.1.28, “Replication and Variables”
	
	Section 5.1.4, “Server System Variables”
	
	Section 5.2.3, “The Binary Log”
	

character_set_connection
	Section 10.1.9.2, “CONVERT() and
 CAST()”
	
	Section 13.7.4, “SET Syntax”
	
	Section 10.1.3.5, “Character String Literal Character Set and Collation”
	
	Section 10.1.4, “Connection Character Sets and Collations”
	
	Section 12.7, “Date and Time Functions”
	
	Section 10.7, “MySQL Server Locale Support”
	
	Section 10.1.9.1, “Result Strings”
	
	Section 5.1.4, “Server System Variables”
	
	Section 9.1.1, “String Literals”
	
	Section 10.1.8, “String Repertoire”
	

character_set_database
	Section 13.1.9, “CREATE PROCEDURE and
 CREATE FUNCTION Syntax”
	
	Section 13.2.6, “LOAD DATA INFILE
 Syntax”
	
	Section 13.7.4, “SET Syntax”
	
	Section 10.1.4, “Connection Character Sets and Collations”
	
	Section 10.1.3.2, “Database Character Set and Collation”
	
	Section 5.1.4, “Server System Variables”
	

character_set_filesystem
	Section 13.2.6, “LOAD DATA INFILE
 Syntax”
	
	Section 13.2.8.1, “SELECT ... INTO
 Syntax”
	
	Section 5.1.3, “Server Command Options”
	
	Section 5.1.4, “Server System Variables”
	
	Section 12.5, “String Functions”
	

character_set_results
	Section 13.7.4, “SET Syntax”
	
	Section 20.6.5, “C API Data Structures”
	
	Section 10.1.6, “Character Set for Error Messages”
	
	Section 10.1.4, “Connection Character Sets and Collations”
	
	Section 5.1.4, “Server System Variables”
	
	Section 10.1.11, “UTF-8 for Metadata”
	

character_set_server
	Section 10.5, “Character Set Configuration”
	
	Section 10.1.4, “Connection Character Sets and Collations”
	
	Section 10.1.3.2, “Database Character Set and Collation”
	
	Section 16.4.1.2, “Replication and Character Sets”
	
	Section 10.1.3.1, “Server Character Set and Collation”
	
	Section 5.1.4, “Server System Variables”
	

character_set_system
	Section 10.5, “Character Set Configuration”
	
	Section 5.1.4, “Server System Variables”
	
	Section 10.1.11, “UTF-8 for Metadata”
	

character_sets_dir
	Section 10.4.3, “Adding a Simple Collation to an 8-Bit Character Set”
	
	Section 10.4.4.1, “Defining a UCA Collation Using LDML Syntax”
	
	Section 5.1.4, “Server System Variables”
	

collation_connection
	Section 10.1.9.2, “CONVERT() and
 CAST()”
	
	Section 13.7.4, “SET Syntax”
	
	Section 10.1.3.5, “Character String Literal Character Set and Collation”
	
	Section 10.1.4, “Connection Character Sets and Collations”
	
	Section 12.7, “Date and Time Functions”
	
	Section 16.4.1.28, “Replication and Variables”
	
	Section 10.1.9.1, “Result Strings”
	
	Section 5.1.4, “Server System Variables”
	
	Section 5.2.3, “The Binary Log”
	

collation_database
	Section 13.1.9, “CREATE PROCEDURE and
 CREATE FUNCTION Syntax”
	
	Section 10.1.4, “Connection Character Sets and Collations”
	
	Section 10.1.3.2, “Database Character Set and Collation”
	
	Section 16.4.1.28, “Replication and Variables”
	
	Section 5.1.4, “Server System Variables”
	
	Section 5.2.3, “The Binary Log”
	

collation_server
	Section 10.1.4, “Connection Character Sets and Collations”
	
	Section 10.1.3.2, “Database Character Set and Collation”
	
	Section 16.4.1.2, “Replication and Character Sets”
	
	Section 16.4.1.28, “Replication and Variables”
	
	Section 10.1.3.1, “Server Character Set and Collation”
	
	Section 5.1.4, “Server System Variables”
	
	Section 5.2.3, “The Binary Log”
	

completion_type
	Section 20.6.7.6, “mysql_commit()”
	
	Section 20.6.7.57, “mysql_rollback()”
	
	Section 13.3.1, “START TRANSACTION,
 COMMIT, and
 ROLLBACK Syntax”
	
	Section 5.1.4, “Server System Variables”
	

concurrent_insert
	Section 8.7.3, “Concurrent Inserts”
	
	Section 8.7.1, “Internal Locking Methods”
	
	Section 8.3.3, “Other Optimization Tips”
	
	Section 5.1.4, “Server System Variables”
	

connect_timeout
	Section C.5.2.3, “Lost connection to MySQL server”
	
	Section 20.6.7.52, “mysql_real_connect()”
	
	Section C.5.2.11, “Communication Errors and Aborted Connections”
	
	Section 5.1.4, “Server System Variables”
	

D
[index top]
	
	

datadir
	Section 2.10, “Installing MySQL on Microsoft Windows”
	
	Section 5.1.4, “Server System Variables”
	

date_format
	Section 5.1.4, “Server System Variables”
	

datetime_format
	Section 5.1.4, “Server System Variables”
	

debug
	Section 21.3.3, “The DBUG Package”
	

default_week_format
	Section 12.7, “Date and Time Functions”
	
	Section 5.1.4, “Server System Variables”
	

delay_key_write
	Section 13.1.10, “CREATE TABLE Syntax”
	
	Section 5.1.4, “Server System Variables”
	

delayed_insert_limit
	Section 13.2.5.2, “INSERT DELAYED Syntax”
	
	Section 5.1.4, “Server System Variables”
	

delayed_insert_timeout
	Section 13.2.5.2, “INSERT DELAYED Syntax”
	
	Section 5.1.4, “Server System Variables”
	

delayed_queue_size
	Section 13.2.5.2, “INSERT DELAYED Syntax”
	
	Section 5.1.4, “Server System Variables”
	

div_precision_increment
	Section 12.6.1, “Arithmetic Operators”
	
	Section 5.1.4, “Server System Variables”
	

E
[index top]
	
	

engine_condition_pushdown
	Section 8.3.1.5, “Engine Condition Pushdown Optimization”
	
	Section 5.1.3, “Server Command Options”
	
	Section 5.1.4, “Server System Variables”
	

error_count
	Section 13.7.5.14, “SHOW ERRORS Syntax”
	
	Section 5.1.4, “Server System Variables”
	
	Section C.1, “Sources of Error Information”
	

expire_logs_days
	Section 13.4.1.1, “PURGE BINARY LOGS Syntax”
	
	Section 5.2.5, “Server Log Maintenance”
	
	Section 5.1.4, “Server System Variables”
	

F
[index top]
	
	

flush
	Section 5.1.4, “Server System Variables”
	

flush_time
	Section 5.1.4, “Server System Variables”
	

foreign_key_checks
	Section 16.4.1.28, “Replication and Variables”
	
	Section 5.1.7, “Server SQL Modes”
	
	Section 5.1.4, “Server System Variables”
	
	Section 5.2.3, “The Binary Log”
	
	Section 13.1.10.2, “Using FOREIGN KEY Constraints”
	

ft_boolean_syntax
	Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”
	
	Section 5.1.4, “Server System Variables”
	

ft_max_word_len
	Section 16.1.1.6, “Creating a Data Snapshot Using Raw Data Files”
	
	Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”
	
	Section 5.1.4, “Server System Variables”
	

ft_min_word_len
	Section 12.9.2, “Boolean Full-Text Searches”
	
	Section 16.1.1.6, “Creating a Data Snapshot Using Raw Data Files”
	
	Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”
	
	Section 5.1.4, “Server System Variables”
	

ft_query_expansion_limit
	Section 5.1.4, “Server System Variables”
	

ft_stopword_file
	Section 16.1.1.6, “Creating a Data Snapshot Using Raw Data Files”
	
	Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”
	
	Section 5.1.4, “Server System Variables”
	

G
[index top]
	
	

group_concat_max_len
	Section 12.15.1, “GROUP BY (Aggregate) Functions”
	
	Section 5.1.4, “Server System Variables”
	

H
[index top]
	
	

have_archive
	Section 5.1.4, “Server System Variables”
	

have_bdb
	Section 5.1.4, “Server System Variables”
	

have_blackhole_engine
	Section 5.1.4, “Server System Variables”
	

have_community_features
	Section 5.1.4, “Server System Variables”
	

have_compress
	Section 5.1.4, “Server System Variables”
	

have_crypt
	Section 5.1.4, “Server System Variables”
	

have_csv
	Section 5.1.4, “Server System Variables”
	

have_example_engine
	Section 5.1.4, “Server System Variables”
	

have_federated_engine
	Section 5.1.4, “Server System Variables”
	

have_geometry
	Section 5.1.4, “Server System Variables”
	

have_innodb
	Section C.5.5.5, “Rollback Failure for Nontransactional Tables”
	
	Section 5.1.4, “Server System Variables”
	

have_isam
	Section 5.1.4, “Server System Variables”
	

have_merge_engine
	Section 5.1.4, “Server System Variables”
	

have_ndbcluster
	Section 17.3.4.3, “MySQL Cluster System Variables”
	

have_openssl
	Section 6.3.6.2, “Configuring MySQL for SSL”
	
	Section 5.1.4, “Server System Variables”
	

have_profiling
	Section 5.1.4, “Server System Variables”
	

have_query_cache
	Section 8.6.3.3, “Query Cache Configuration”
	
	Section 5.1.4, “Server System Variables”
	

have_raid
	Section 5.1.4, “Server System Variables”
	

have_rtree_keys
	Section 5.1.4, “Server System Variables”
	

have_ssl
	Section 6.3.6.2, “Configuring MySQL for SSL”
	
	Section 5.1.4, “Server System Variables”
	

have_symlink
	Section 5.1.4, “Server System Variables”
	
	Section 8.9.6.2, “Using Symbolic Links for MyISAM Tables on Unix”
	
	Section 8.9.6.3, “Using Symbolic Links for Databases on Windows”
	

hostname
	Section 5.1.4, “Server System Variables”
	

I
[index top]
	
	

identity
	Section 5.1.4, “Server System Variables”
	

init_connect
	Section 10.1.5, “Configuring the Character Set and Collation for Applications”
	
	Section 16.1.2.3, “Replication Slave Options and Variables”
	
	Section 5.1.4, “Server System Variables”
	

init_file
	Section 5.1.4, “Server System Variables”
	

init_slave
	Section 16.1.2.3, “Replication Slave Options and Variables”
	

innodb_autoextend_increment
	Section 14.2.2, “InnoDB Startup Options and System Variables”
	
	Section 14.2.4, “Changing the Number or Size of InnoDB Log Files and
 Resizing the InnoDB Tablespace”
	
	Section 14.2.1, “Configuring InnoDB”
	
	Section 14.2.1.1, “Using Per-Table Tablespaces”
	

innodb_buffer_pool_awe_mem_mb
	Section 14.2.1, “Configuring InnoDB”
	

innodb_buffer_pool_size
	Section 14.2.12.1, “InnoDB Performance Tuning Tips”
	
	Section 14.2.2, “InnoDB Startup Options and System Variables”
	
	Section 8.6.2, “The InnoDB Buffer Pool”
	

innodb_checksums
	Section 14.2.2, “InnoDB Startup Options and System Variables”
	

innodb_concurrency_tickets
	Section 14.2.2, “InnoDB Startup Options and System Variables”
	

innodb_data_file_path
	Section 14.2.2, “InnoDB Startup Options and System Variables”
	
	Section 14.2.4, “Changing the Number or Size of InnoDB Log Files and
 Resizing the InnoDB Tablespace”
	
	Section 14.2.1, “Configuring InnoDB”
	
	Section 14.2.1.4, “Dealing with InnoDB Initialization Problems”
	
	Section 14.2.1.2, “Using Raw Devices for the Shared Tablespace”
	

innodb_data_home_dir
	Section 14.2.2, “InnoDB Startup Options and System Variables”
	
	Section 14.2.1, “Configuring InnoDB”
	
	Section 14.2.1.4, “Dealing with InnoDB Initialization Problems”
	

innodb_fast_shutdown
	Section 14.2.4, “Changing the Number or Size of InnoDB Log Files and
 Resizing the InnoDB Tablespace”
	
	Section 5.1.10, “The Shutdown Process”
	
	Section 2.19.1.2, “Upgrading from MySQL 4.1 to 5.0”
	

innodb_file_io_threads
	Section 14.2.12.2.1, “InnoDB Standard Monitor and Lock Monitor Output”
	
	Section 21.1.1, “MySQL Threads”
	

innodb_file_per_table
	Section 13.1.10, “CREATE TABLE Syntax”
	
	Section 14.2.3.5, “InnoDB and MySQL Replication”
	
	Section 14.2.2, “InnoDB Startup Options and System Variables”
	
	Section 14.2.12.2.2, “InnoDB Tablespace Monitor Output”
	
	Section 14.2.1.3, “Creating the InnoDB Tablespace”
	
	Section 16.3.4, “Replicating Different Databases to Different Slaves”
	
	Section 14.2.12.4, “Troubleshooting InnoDB Data Dictionary Operations”
	
	Section 14.2.1.1, “Using Per-Table Tablespaces”
	

innodb_flush_log_at_trx_commit
	Section 14.2.12.1, “InnoDB Performance Tuning Tips”
	
	Section 14.2.2, “InnoDB Startup Options and System Variables”
	

innodb_flush_method
	Section 14.2.12.1, “InnoDB Performance Tuning Tips”
	
	Section 14.2.2, “InnoDB Startup Options and System Variables”
	
	Section 14.2.1.1, “Using Per-Table Tablespaces”
	

innodb_force_recovery
	Section 14.2.5.2, “Forcing InnoDB Recovery”
	
	Section 1.7, “How to Report Bugs or Problems”
	

innodb_lock_wait_timeout
	Section 14.2.11.1, “InnoDB Error Codes”
	
	Section 14.2.2, “InnoDB Startup Options and System Variables”
	
	Section 14.2.7.8, “Deadlock Detection and Rollback”
	
	Section 16.4.1.22, “Replication Retries and Timeouts”
	
	Section 16.1.2.3, “Replication Slave Options and Variables”
	

innodb_locks_unsafe_for_binlog
	Section 14.2.7.4, “InnoDB Record, Gap, and Next-Key Locks”
	
	Section 14.2.2, “InnoDB Startup Options and System Variables”
	
	Section 14.2.7.2, “Consistent Nonlocking Reads”
	
	Section 14.2.7.6, “Locks Set by Different SQL Statements in InnoDB”
	

innodb_log_file_size
	Section 14.2.2, “InnoDB Startup Options and System Variables”
	
	Section 14.2.1, “Configuring InnoDB”
	

innodb_log_files_in_group
	Section 14.2.2, “InnoDB Startup Options and System Variables”
	

innodb_max_purge_lag
	Section 14.2.8, “InnoDB Multi-Versioning”
	
	Section 14.2.2, “InnoDB Startup Options and System Variables”
	

innodb_support_xa
	Section 14.2.2, “InnoDB Startup Options and System Variables”
	
	Section 14.2.7.9, “How to Cope with Deadlocks”
	

innodb_table_locks
	Section 14.2.2, “InnoDB Startup Options and System Variables”
	

innodb_thread_concurrency
	Section 14.2.12.2.1, “InnoDB Standard Monitor and Lock Monitor Output”
	
	Section 14.2.2, “InnoDB Startup Options and System Variables”
	

innodb_use_legacy_cardinality_algorithm
	Section 14.2.2, “InnoDB Startup Options and System Variables”
	

insert_id
	Section 5.1.4, “Server System Variables”
	

interactive_timeout
	Section 20.6.7.52, “mysql_real_connect()”
	
	Section C.5.2.11, “Communication Errors and Aborted Connections”
	
	Section 2.20.4.1, “FreeBSD Notes”
	
	Section 2.20.2.1, “Mac OS X 10.x (Darwin)”
	
	Section 5.1.4, “Server System Variables”
	

J
[index top]
	
	

join_buffer_size
	Section 8.3.1.8, “Nested-Loop Join Algorithms”
	
	Section 5.1.4, “Server System Variables”
	

K
[index top]
	
	

keep_files_on_create
	Section 5.1.4, “Server System Variables”
	

key_buffer_size
	Section 8.2.4, “Estimating Query Performance”
	
	Section 8.9.4, “How MySQL Uses Memory”
	
	Section 7.6.3, “How to Repair MyISAM Tables”
	
	Section C.5.8, “Known Issues in MySQL”
	
	Section 8.6.1.2, “Multiple Key Caches”
	
	Section 8.6.1.6, “Restructuring a Key Cache”
	
	Section 5.1.3, “Server Command Options”
	
	Section 5.1.6, “Server Status Variables”
	
	Section 5.1.4, “Server System Variables”
	
	Section 8.3.2.3, “Speed of DELETE Statements”
	
	Section 8.3.2.1, “Speed of INSERT Statements”
	
	Section 8.3.2.4, “Speed of REPAIR TABLE Statements”
	
	Section 5.1.5.1, “Structured System Variables”
	
	Section 8.6.1, “The MyISAM Key Cache”
	
	Section 8.9.2, “Tuning Server Parameters”
	
	Section 4.2.3.3, “Using Option Files”
	

key_cache_age_threshold
	Section 8.6.1.3, “Midpoint Insertion Strategy”
	
	Section 5.1.4, “Server System Variables”
	
	Section 5.1.5.1, “Structured System Variables”
	

key_cache_block_size
	Section 8.6.1.5, “Key Cache Block Size”
	
	Section 8.6.1.6, “Restructuring a Key Cache”
	
	Section 5.1.4, “Server System Variables”
	
	Section 5.1.5.1, “Structured System Variables”
	

key_cache_division_limit
	Section 8.6.1.3, “Midpoint Insertion Strategy”
	
	Section 5.1.4, “Server System Variables”
	
	Section 5.1.5.1, “Structured System Variables”
	

L
[index top]
	
	

language
	Section 5.1.4, “Server System Variables”
	

large_files_support
	Section 5.1.4, “Server System Variables”
	

large_page_size
	Section 5.1.4, “Server System Variables”
	

large_pages
	Section 5.1.4, “Server System Variables”
	

last_insert_id
	Section 5.1.4, “Server System Variables”
	

lc_time_names
	Section 12.7, “Date and Time Functions”
	
	Section 10.7, “MySQL Server Locale Support”
	
	Section 5.1.4, “Server System Variables”
	
	Section 2.19.1.2, “Upgrading from MySQL 4.1 to 5.0”
	

license
	Section 5.1.4, “Server System Variables”
	

local
	Section 13.2.6, “LOAD DATA INFILE
 Syntax”
	
	Section 6.1.6, “Security Issues with LOAD
 DATA LOCAL”
	

local_infile
	Section 5.1.4, “Server System Variables”
	

locked_in_memory
	Section 5.1.4, “Server System Variables”
	

log
	Section 5.1.4, “Server System Variables”
	

log_bin
	Section 16.1.2.4, “Binary Log Options and Variables”
	

log_bin_trust_function_creators
	Section 16.1.2.4, “Binary Log Options and Variables”
	
	Section 18.6, “Binary Logging of Stored Programs”
	
	Section 5.1.4, “Server System Variables”
	

log_error
	Section 5.1.4, “Server System Variables”
	
	Section 5.2.1, “The Error Log”
	

log_queries_not_using_indexes
	Section 5.1.4, “Server System Variables”
	

log_slave_updates
	Section 16.1.2.4, “Binary Log Options and Variables”
	

log_slow_queries
	Section 5.1.4, “Server System Variables”
	

log_warnings
	Section 5.1.4, “Server System Variables”
	
	Section 5.2.1, “The Error Log”
	

long_query_time
	Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
	
	Section 5.2, “MySQL Server Logs”
	
	Section 5.1.3, “Server Command Options”
	
	Section 5.1.6, “Server Status Variables”
	
	Section 5.1.4, “Server System Variables”
	
	Section 5.2.4, “The Slow Query Log”
	

low_priority_updates
	Section 5.1.4, “Server System Variables”
	
	Section 8.7.2, “Table Locking Issues”
	

lower_case_file_system
	Section 5.1.4, “Server System Variables”
	

lower_case_table_names
	Section 13.7.1.3, “GRANT Syntax”
	
	Section 13.7.1.5, “REVOKE Syntax”
	
	Section 13.7.5.34, “SHOW TABLES Syntax”
	
	Section 16.2.3, “How Servers Evaluate Replication Filtering Rules”
	
	Section 1.7, “How to Report Bugs or Problems”
	
	Section 9.2.2, “Identifier Case Sensitivity”
	
	Section 16.4.1.28, “Replication and Variables”
	
	Section 5.1.4, “Server System Variables”
	
	Section 13.1.10.2, “Using FOREIGN KEY Constraints”
	

M
[index top]
	
	

max_allowed_packet
	Section 12.15.1, “GROUP BY (Aggregate) Functions”
	
	Section C.5.2.3, “Lost connection to MySQL server”
	
	Section C.5.2.9, “MySQL server has gone away”
	
	Section 20.6.7.71, “mysql_use_result()”
	
	Section C.5.2.11, “Communication Errors and Aborted Connections”
	
	Section 12.3.2, “Comparison Functions and Operators”
	
	Section C.5.5.6, “Deleting Rows from Related Tables”
	
	Section 8.9.4, “How MySQL Uses Memory”
	
	Section 20.6, “MySQL C API”
	
	Section C.5.2.10, “Packet Too Large”
	
	Section 5.1.4, “Server System Variables”
	
	Section 12.5, “String Functions”
	
	Section 11.4.3, “The BLOB and
 TEXT Types”
	
	Section 4.2.3.3, “Using Option Files”
	

max_binlog_cache_size
	Section 14.5.3, “BDB Startup Options”
	
	Section 16.1.2.4, “Binary Log Options and Variables”
	
	Section 5.2.3, “The Binary Log”
	

max_binlog_size
	Section 16.1.2.4, “Binary Log Options and Variables”
	
	Section 5.2, “MySQL Server Logs”
	
	Section 5.2.5, “Server Log Maintenance”
	
	Section 5.1.4, “Server System Variables”
	
	Section 5.2.3, “The Binary Log”
	
	Section 16.2.2.1, “The Slave Relay Log”
	

max_connect_errors
	Section 13.7.6.2, “FLUSH Syntax”
	
	Section C.5.2.6, “Host 'host_name' is
 blocked”
	
	Section 8.9.8, “DNS Lookup Optimization and the Host Cache”
	
	Section 5.1.4, “Server System Variables”
	

max_connections
	Section C.5.2.18, “'File' Not Found and
 Similar Errors”
	
	Section C.5.2.7, “Too many connections”
	
	Section 21.3.1.4, “Debugging mysqld under gdb”
	
	Section 8.8.3, “How MySQL Opens and Closes Tables”
	
	Section 8.9.3, “How MySQL Uses Threads for Client Connections”
	
	Section 2.20.1.4, “Linux Postinstallation Notes”
	
	Section 6.2.1, “Privileges Provided by MySQL”
	
	Section 5.1.3, “Server Command Options”
	
	Section 5.1.4, “Server System Variables”
	

max_delayed_threads
	Section 5.1.4, “Server System Variables”
	

max_error_count
	Section 13.2.6, “LOAD DATA INFILE
 Syntax”
	
	Section 13.7.5.14, “SHOW ERRORS Syntax”
	
	Section 13.7.5.37, “SHOW WARNINGS Syntax”
	
	Section 5.1.4, “Server System Variables”
	

max_heap_table_size
	Section 8.8.5, “How MySQL Uses Internal Temporary Tables”
	
	Section E.7.3, “Limits on Table Size”
	
	Section 16.4.1.14, “Replication and MEMORY Tables”
	
	Section 16.4.1.28, “Replication and Variables”
	
	Section E.2, “Restrictions on Server-Side Cursors”
	
	Section 5.1.6, “Server Status Variables”
	
	Section 5.1.4, “Server System Variables”
	
	Section 14.4, “The MEMORY (HEAP) Storage Engine”
	

max_insert_delayed_threads
	Section 5.1.4, “Server System Variables”
	

max_join_size
	Section 8.2.2, “EXPLAIN Output Format”
	
	Section 13.7.4, “SET Syntax”
	
	Section 5.1.4, “Server System Variables”
	
	Section 5.1.5, “Using System Variables”
	

max_length_for_sort_data
	Section 8.3.1.11, “ORDER BY Optimization”
	
	Section 5.1.4, “Server System Variables”
	

max_prepared_stmt_count
	Section 5.1.6, “Server Status Variables”
	
	Section 5.1.4, “Server System Variables”
	
	Section 13.5, “SQL Syntax for Prepared Statements”
	

max_relay_log_size
	Section 16.1.2.4, “Binary Log Options and Variables”
	
	Section 16.1.2.3, “Replication Slave Options and Variables”
	
	Section 5.1.4, “Server System Variables”
	
	Section 16.2.2.1, “The Slave Relay Log”
	

max_seeks_for_key
	Section 14.2.13, “Limits on InnoDB Tables”
	
	Section 5.1.4, “Server System Variables”
	

max_sort_length
	Section 13.1.10, “CREATE TABLE Syntax”
	
	Section C.5.8, “Known Issues in MySQL”
	
	Section 5.1.4, “Server System Variables”
	
	Section 11.4.3, “The BLOB and
 TEXT Types”
	

max_sp_recursion_depth
	Section 5.1.4, “Server System Variables”
	
	Section 18.2.1, “Stored Routine Syntax”
	

max_tmp_tables
	Section 5.1.4, “Server System Variables”
	

max_user_connections
	Section 13.7.1.3, “GRANT Syntax”
	
	Section 6.1.3, “Making MySQL Secure Against Attackers”
	
	Section 6.2.2, “Privilege System Grant Tables”
	
	Section 5.1.4, “Server System Variables”
	
	Section 6.3.4, “Setting Account Resource Limits”
	

max_write_lock_count
	Section 5.1.4, “Server System Variables”
	
	Section 8.7.2, “Table Locking Issues”
	

myisam_data_pointer_size
	Section 13.1.10, “CREATE TABLE Syntax”
	
	Section E.7.3, “Limits on Table Size”
	
	Section 5.1.4, “Server System Variables”
	

myisam_max_extra_sort_file_size
	Section 5.1.4, “Server System Variables”
	

myisam_max_sort_file_size
	Section 14.1.1, “MyISAM Startup Options”
	
	Section 5.1.4, “Server System Variables”
	
	Section 8.3.2.4, “Speed of REPAIR TABLE Statements”
	

myisam_mmap_size
	Section 5.1.4, “Server System Variables”
	

myisam_recover_options
	Section 5.1.4, “Server System Variables”
	

myisam_repair_threads
	Section 5.1.4, “Server System Variables”
	

myisam_sort_buffer_size
	Section 13.1.4, “ALTER TABLE Syntax”
	
	Section 14.1.1, “MyISAM Startup Options”
	
	Section 5.1.4, “Server System Variables”
	
	Section 8.3.2.4, “Speed of REPAIR TABLE Statements”
	

myisam_stats_method
	Section 8.5.4, “MyISAM Index Statistics Collection”
	
	Section 5.1.4, “Server System Variables”
	

N
[index top]
	
	

named_pipe
	Section 5.1.4, “Server System Variables”
	

ndb_autoincrement_prefetch_sz
	Section 17.3.4.3, “MySQL Cluster System Variables”
	

ndb_cache_check_time
	Section 17.3.4.3, “MySQL Cluster System Variables”
	

ndb_force_send
	Section 17.3.4.3, “MySQL Cluster System Variables”
	

ndb_index_stat_cache_entries
	Section 17.3.4.3, “MySQL Cluster System Variables”
	

ndb_index_stat_enable
	Section 17.3.4.3, “MySQL Cluster System Variables”
	

ndb_index_stat_update_freq
	Section 17.3.4.3, “MySQL Cluster System Variables”
	

ndb_optimized_node_selection
	Section 17.3.4.3, “MySQL Cluster System Variables”
	
	Section 17.5.6.3, “Using CLUSTERLOG STATISTICS in the MySQL Cluster
 Management Client”
	

ndb_report_thresh_binlog_epoch_slip
	Section 17.3.4.3, “MySQL Cluster System Variables”
	

ndb_report_thresh_binlog_mem_usage
	Section 17.3.4.3, “MySQL Cluster System Variables”
	

ndb_use_exact_count
	Section 17.3.4.3, “MySQL Cluster System Variables”
	

ndb_use_transactions
	Section 17.3.4.3, “MySQL Cluster System Variables”
	

net_buffer_length
	Section 4.5.4, “mysqldump — A Database Backup Program”
	
	Section 8.9.4, “How MySQL Uses Memory”
	
	Section 20.6, “MySQL C API”
	
	Section 5.1.4, “Server System Variables”
	

net_read_timeout
	Section 13.4.2.2, “LOAD DATA FROM MASTER Syntax”
	
	Section C.5.2.3, “Lost connection to MySQL server”
	
	Section 2.20.4.1, “FreeBSD Notes”
	
	Section 2.20.2.1, “Mac OS X 10.x (Darwin)”
	
	Section 5.1.4, “Server System Variables”
	

net_retry_count
	Section 5.1.4, “Server System Variables”
	

net_write_timeout
	Section 13.4.2.2, “LOAD DATA FROM MASTER Syntax”
	
	Section 5.1.4, “Server System Variables”
	

new
	Section 5.1.4, “Server System Variables”
	

O
[index top]
	
	

old_passwords
	Section C.5.2.4, “Client does not support authentication protocol”
	
	Section 13.7.1.6, “SET PASSWORD Syntax”
	
	Section 6.3.5, “Assigning Account Passwords”
	
	Section 12.12, “Encryption and Compression Functions”
	
	Section 6.1.2.5, “Implications of Password Hashing Changes in MySQL 4.1 for Application
 Programs”
	
	Section 6.1.2.4, “Password Hashing in MySQL”
	
	Section 5.1.4, “Server System Variables”
	

one_shot
	Section 5.1.4, “Server System Variables”
	

open_files_limit
	Section C.5.2.18, “'File' Not Found and
 Similar Errors”
	
	Section 5.1.4, “Server System Variables”
	

optimizer_prune_level
	Section 8.4, “Controlling the Query Optimizer”
	
	Section 5.1.4, “Server System Variables”
	

optimizer_search_depth
	Section 8.4, “Controlling the Query Optimizer”
	
	Section 5.1.4, “Server System Variables”
	

P
[index top]
	
	

pid_file
	Section 5.1.4, “Server System Variables”
	

plugin_dir
	Section 13.7.3.1, “CREATE FUNCTION Syntax for User-defined
 Functions”
	
	Section 6.1.2.2, “Administrator Guidelines for Password Security”
	
	Section 21.2.2.5, “Compiling and Installing User-Defined Functions”
	
	Section 2.17.1, “Installing MySQL Using a Standard Source Distribution”
	
	Section 6.1.3, “Making MySQL Secure Against Attackers”
	
	Section 5.1.4, “Server System Variables”
	
	Section 2.18.1, “Unix Postinstallation Procedures”
	

port
	Section C.5.2.2, “Can't connect to [local] MySQL server”
	
	Section 5.1.4, “Server System Variables”
	

preload_buffer_size
	Section 5.1.4, “Server System Variables”
	

prepared_stmt_count
	Section 5.1.4, “Server System Variables”
	

profiling
	Section 13.7.5.28, “SHOW PROFILE Syntax”
	
	Section 5.1.4, “Server System Variables”
	
	Section 19.7, “The INFORMATION_SCHEMA PROFILING Table”
	

profiling_history_size
	Section 13.7.5.28, “SHOW PROFILE Syntax”
	
	Section 5.1.4, “Server System Variables”
	

protocol_version
	Section 5.1.4, “Server System Variables”
	

pseudo_thread_id
	Section 5.1.4, “Server System Variables”
	

Q
[index top]
	
	

query_alloc_block_size
	Section 5.1.4, “Server System Variables”
	

query_cache_limit
	Section 8.6.3.3, “Query Cache Configuration”
	
	Section 5.1.4, “Server System Variables”
	

query_cache_min_res_unit
	Section 8.6.3.3, “Query Cache Configuration”
	
	Section 5.1.4, “Server System Variables”
	

query_cache_size
	Section 8.6.3.3, “Query Cache Configuration”
	
	Section 5.1.4, “Server System Variables”
	
	Section 8.6.3, “The MySQL Query Cache”
	
	Section 5.1.5, “Using System Variables”
	

query_cache_type
	Section 13.2.8, “SELECT Syntax”
	
	Section 8.6.3.2, “Query Cache SELECT Options”
	
	Section 8.6.3.3, “Query Cache Configuration”
	
	Section 5.1.6, “Server Status Variables”
	
	Section 5.1.4, “Server System Variables”
	

query_cache_wlock_invalidate
	Section 5.1.4, “Server System Variables”
	

query_prealloc_size
	Section 5.1.4, “Server System Variables”
	

R
[index top]
	
	

rand_seed
	Section 5.1.4, “Server System Variables”
	

range_alloc_block_size
	Section 5.1.4, “Server System Variables”
	

read_buffer_size
	Section 8.9.4, “How MySQL Uses Memory”
	
	Section 5.1.4, “Server System Variables”
	
	Section 8.3.2.4, “Speed of REPAIR TABLE Statements”
	

read_only
	Section 13.7.1.6, “SET PASSWORD Syntax”
	
	Section 6.2.1, “Privileges Provided by MySQL”
	
	Section 16.4.1.28, “Replication and Variables”
	
	Section 5.1.4, “Server System Variables”
	

read_rnd_buffer_size
	Section 8.3.1.11, “ORDER BY Optimization”
	
	Section 8.9.4, “How MySQL Uses Memory”
	
	Section 5.1.4, “Server System Variables”
	
	Section 8.9.2, “Tuning Server Parameters”
	

relay_log
	Section 16.1.2.3, “Replication Slave Options and Variables”
	

relay_log_index
	Section 16.1.2.3, “Replication Slave Options and Variables”
	

relay_log_info_file
	Section 16.1.2.3, “Replication Slave Options and Variables”
	

relay_log_purge
	Section 13.4.2.1, “CHANGE MASTER TO Syntax”
	
	Section 5.1.4, “Server System Variables”
	

relay_log_space_limit
	Section 8.10.6, “Replication Slave I/O Thread States”
	
	Section 5.1.4, “Server System Variables”
	

Rpl_recovery_rank
	Section 13.7.5.30, “SHOW SLAVE HOSTS Syntax”
	

rpl_recovery_rank
	Section 16.1.2.3, “Replication Slave Options and Variables”
	

S
[index top]
	
	

secure_auth
	Section 6.1.2.4, “Password Hashing in MySQL”
	
	Section 5.1.4, “Server System Variables”
	

secure_file_priv
	Section 13.2.6, “LOAD DATA INFILE
 Syntax”
	
	Section 13.2.8.1, “SELECT ... INTO
 Syntax”
	
	Section 6.1.3, “Making MySQL Secure Against Attackers”
	
	Section 6.2.1, “Privileges Provided by MySQL”
	
	Section 5.1.4, “Server System Variables”
	
	Section 12.5, “String Functions”
	

server_id
	Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”
	
	Section 5.1.4, “Server System Variables”
	

shared_memory
	Section 5.1.4, “Server System Variables”
	

shared_memory_base_name
	Section 5.1.4, “Server System Variables”
	

skip_external_locking
	Section 8.7.4, “External Locking”
	
	Section 5.1.4, “Server System Variables”
	

skip_networking
	Section 5.1.4, “Server System Variables”
	

skip_show_database
	Section 5.1.3, “Server Command Options”
	
	Section 5.1.4, “Server System Variables”
	

slave_compressed_protocol
	Section 16.1.2.3, “Replication Slave Options and Variables”
	

slave_load_tmpdir
	Section 13.2.6, “LOAD DATA INFILE
 Syntax”
	
	Section 16.1.2.3, “Replication Slave Options and Variables”
	
	Section 5.1.4, “Server System Variables”
	

slave_net_timeout
	Section 16.1.3.1, “Checking Replication Status”
	
	Section 16.4.1.13, “Replication and Master or Slave Shutdowns”
	
	Section 8.10.6, “Replication Slave I/O Thread States”
	
	Section 16.1.2.3, “Replication Slave Options and Variables”
	
	Section 5.1.4, “Server System Variables”
	

slave_skip_errors
	Section 16.1.2.3, “Replication Slave Options and Variables”
	

slave_transaction_retries
	Section 16.4.1.22, “Replication Retries and Timeouts”
	
	Section 16.1.2.3, “Replication Slave Options and Variables”
	

slow_launch_time
	Section 5.1.6, “Server Status Variables”
	
	Section 5.1.4, “Server System Variables”
	

socket
	Section 5.1.4, “Server System Variables”
	

sort_buffer_size
	Section 8.3.1.11, “ORDER BY Optimization”
	
	Section 7.6.3, “How to Repair MyISAM Tables”
	
	Section 5.1.6, “Server Status Variables”
	
	Section 5.1.4, “Server System Variables”
	

sql_auto_is_null
	Section 12.3.2, “Comparison Functions and Operators”
	
	Section 16.4.1.28, “Replication and Variables”
	
	Section 5.1.4, “Server System Variables”
	
	Section 5.2.3, “The Binary Log”
	

sql_big_selects
	Section 5.1.4, “Server System Variables”
	

sql_buffer_result
	Section 5.1.4, “Server System Variables”
	

sql_log_bin
	Section 13.4.1.3, “SET sql_log_bin Syntax”
	
	Section 16.1.2.4, “Binary Log Options and Variables”
	
	Section 17.1.5.8, “Issues Exclusive to MySQL Cluster”
	
	Section 16.1.2.1, “Replication and Binary Logging Option and Variable Reference”
	
	Section 5.1.4, “Server System Variables”
	
	Section 16.4.3, “Upgrading a Replication Setup”
	

sql_log_off
	Section 16.1.2.4, “Binary Log Options and Variables”
	
	Section 16.1.2.1, “Replication and Binary Logging Option and Variable Reference”
	
	Section 5.2.5, “Server Log Maintenance”
	
	Section 5.1.4, “Server System Variables”
	

sql_log_update
	Section 5.1.4, “Server System Variables”
	

sql_mode
	Section 13.1.9, “CREATE PROCEDURE and
 CREATE FUNCTION Syntax”
	
	Section 13.1.11, “CREATE TRIGGER Syntax”
	
	Section 13.2.6, “LOAD DATA INFILE
 Syntax”
	
	Section 13.7.5.10, “SHOW CREATE VIEW Syntax”
	
	Section 12.17.3, “Expression Handling”
	
	Section 1.7, “How to Report Bugs or Problems”
	
	Section 1.8, “MySQL Standards Compliance”
	
	Section C.5.5.2, “Problems Using DATE Columns”
	
	Section 16.4.1.28, “Replication and Variables”
	
	Section 5.1.7, “Server SQL Modes”
	
	Section 5.1.4, “Server System Variables”
	
	Section 19.17, “The INFORMATION_SCHEMA VIEWS Table”
	
	Section 5.2.3, “The Binary Log”
	
	Section 5.1.5, “Using System Variables”
	

sql_notes
	Section 13.7.5.37, “SHOW WARNINGS Syntax”
	
	Section 5.1.4, “Server System Variables”
	

sql_quote_show_create
	Section 13.7.5.6, “SHOW CREATE DATABASE Syntax”
	
	Section 13.7.5.9, “SHOW CREATE TABLE Syntax”
	
	Section 5.1.4, “Server System Variables”
	

sql_safe_updates
	Section 5.1.4, “Server System Variables”
	

sql_select_limit
	Section 5.1.4, “Server System Variables”
	

sql_slave_skip_counter
	Section 13.7.5.31, “SHOW SLAVE STATUS Syntax”
	
	Section 16.1.2.3, “Replication Slave Options and Variables”
	

sql_warnings
	Section 5.1.4, “Server System Variables”
	

ssl_ca
	Section 5.1.4, “Server System Variables”
	

ssl_capath
	Section 5.1.4, “Server System Variables”
	

ssl_cert
	Section 5.1.4, “Server System Variables”
	

ssl_cipher
	Section 5.1.4, “Server System Variables”
	

ssl_key
	Section 5.1.4, “Server System Variables”
	

storage_engine
	Section 16.4.1.28, “Replication and Variables”
	
	Section 5.1.4, “Server System Variables”
	
	Chapter 14, Storage Engines
	
	Section 16.3.2, “Using Replication with Different Master and Slave Storage Engines”
	

sync_binlog
	Section 14.2.2, “InnoDB Startup Options and System Variables”
	
	Section 16.1.2.4, “Binary Log Options and Variables”
	
	Section 16.4.1.13, “Replication and Master or Slave Shutdowns”
	
	Section 5.2.3, “The Binary Log”
	

sync_frm
	Section 5.1.4, “Server System Variables”
	

system_time_zone
	Section 10.6, “MySQL Server Time Zone Support”
	
	Section 5.1.3, “Server Command Options”
	
	Section 5.1.4, “Server System Variables”
	

T
[index top]
	
	

table_cache
	Section C.5.2.18, “'File' Not Found and
 Similar Errors”
	
	Section 8.10.2, “General Thread States”
	
	Section 8.8.3, “How MySQL Opens and Closes Tables”
	
	Section 8.9.4, “How MySQL Uses Memory”
	
	Section 5.1.3, “Server Command Options”
	
	Section 5.1.6, “Server Status Variables”
	
	Section 5.1.4, “Server System Variables”
	
	Section 8.9.2, “Tuning Server Parameters”
	

table_lock_wait_timeout
	Section 5.1.4, “Server System Variables”
	

table_type
	Section 5.1.4, “Server System Variables”
	
	Chapter 14, Storage Engines
	
	Section 16.3.2, “Using Replication with Different Master and Slave Storage Engines”
	

thread_cache_size
	Section 21.3.1.4, “Debugging mysqld under gdb”
	
	Section 8.9.3, “How MySQL Uses Threads for Client Connections”
	
	Section 8.3.3, “Other Optimization Tips”
	
	Section 5.1.6, “Server Status Variables”
	
	Section 5.1.4, “Server System Variables”
	

thread_concurrency
	Section 5.1.4, “Server System Variables”
	

thread_stack
	Section 8.9.4, “How MySQL Uses Memory”
	
	Section 5.1.4, “Server System Variables”
	
	Section 18.2.1, “Stored Routine Syntax”
	

time_format
	Section 5.1.4, “Server System Variables”
	

time_zone
	Section 12.7, “Date and Time Functions”
	
	Section 10.6, “MySQL Server Time Zone Support”
	
	Section 5.1.3, “Server Command Options”
	
	Section 5.1.4, “Server System Variables”
	
	Section 11.3.1, “The DATE, DATETIME, and
 TIMESTAMP Types”
	

timed_mutexes
	Section 13.7.5.22, “SHOW MUTEX STATUS Syntax”
	
	Section 5.1.4, “Server System Variables”
	

timestamp
	Section 5.1.4, “Server System Variables”
	

tmp_table_size
	Section 8.8.5, “How MySQL Uses Internal Temporary Tables”
	
	Section E.2, “Restrictions on Server-Side Cursors”
	
	Section 5.1.6, “Server Status Variables”
	
	Section 5.1.4, “Server System Variables”
	

tmpdir
	Section C.5.2.13, “Can't create/write to file”
	
	Section 13.2.6, “LOAD DATA INFILE
 Syntax”
	
	Section 8.3.1.11, “ORDER BY Optimization”
	
	Section 16.3.1.2, “Backing Up Raw Data from a Slave”
	
	Section 7.2, “Database Backup Methods”
	
	Section 16.1.2.3, “Replication Slave Options and Variables”
	
	Section 5.1.4, “Server System Variables”
	

transaction_alloc_block_size
	Section 5.1.4, “Server System Variables”
	

transaction_prealloc_size
	Section 5.1.4, “Server System Variables”
	

tx_isolation
	Section 13.3.6, “SET TRANSACTION Syntax”
	
	Section 5.1.3, “Server Command Options”
	
	Section 5.1.4, “Server System Variables”
	

U
[index top]
	
	

unique_checks
	Section 14.2.3.2, “Converting Tables from Other Storage Engines to
 InnoDB”
	
	Section 16.4.1.28, “Replication and Variables”
	
	Section 5.1.4, “Server System Variables”
	
	Section 5.2.3, “The Binary Log”
	

updatable_views_with_limit
	Section 5.1.4, “Server System Variables”
	
	Section 18.4.3, “Updatable and Insertable Views”
	

V
[index top]
	
	

version
	Section 12.13, “Information Functions”
	
	Section 5.1.4, “Server System Variables”
	

version_bdb
	Section 5.1.4, “Server System Variables”
	

version_comment
	Section 5.1.4, “Server System Variables”
	

version_compile_machine
	Section 5.1.4, “Server System Variables”
	

version_compile_os
	Section 5.1.4, “Server System Variables”
	

W
[index top]
	
	

wait_timeout
	Section C.5.2.9, “MySQL server has gone away”
	
	Section 20.6.7.52, “mysql_real_connect()”
	
	Section C.5.2.11, “Communication Errors and Aborted Connections”
	
	Section 2.20.4.1, “FreeBSD Notes”
	
	Section 2.20.2.1, “Mac OS X 10.x (Darwin)”
	
	Section 5.1.4, “Server System Variables”
	

warning_count
	Section 13.7.5.14, “SHOW ERRORS Syntax”
	
	Section 13.7.5.37, “SHOW WARNINGS Syntax”
	
	Section 5.1.4, “Server System Variables”
	
	Section C.1, “Sources of Error Information”
	

12.12. Encryption and Compression Functions

Table 12.16. Encryption Functions
	Name	Description
	AES_DECRYPT()	Decrypt using AES
	AES_ENCRYPT()	Encrypt using AES
	COMPRESS()	Return result as a binary string
	DECODE()	Decodes a string encrypted using ENCODE()
	DES_DECRYPT()	Decrypt a string
	DES_ENCRYPT()	Encrypt a string
	ENCODE()	Encode a string
	ENCRYPT()	Encrypt a string
	MD5()	Calculate MD5 checksum
	OLD_PASSWORD()	Return the value of the pre-4.1 implementation of PASSWORD
	PASSWORD()	Calculate and return a password string
	SHA1(), SHA()	Calculate an SHA-1 160-bit checksum
	UNCOMPRESS()	Uncompress a string compressed
	UNCOMPRESSED_LENGTH()	Return the length of a string before compression

 Many encryption and compression functions return strings for which
 the result might contain arbitrary byte values. If you want to
 store these results, use a column with a
 VARBINARY or
 BLOB binary string data type. This
 will avoid potential problems with trailing space removal or
 character set conversion that would change data values, such as
 may occur if you use a nonbinary string data type
 (CHAR,
 VARCHAR,
 TEXT).

 For functions such as MD5() or
 SHA1() that return a string of hex digits, the
 return value cannot be converted to uppercase or compared in
 case-insensitive fashion as is. You must convert the value to a
 nonbinary string. See the discussion of binary string conversion
 in Section 12.10, “Cast Functions and Operators”.

 If an application stores values from a function such as
 MD5() or
 SHA1() that returns a string of hex
 digits, more efficient storage and comparisons can be obtained by
 converting the hex representation to binary using
 UNHEX() and storing the result in a
 BINARY(N)
 column. Each pair of hex digits requires one byte in binary form,
 so the value of N depends on the length
 of the hex string. N is 16 for an
 MD5() value and 20 for a
 SHA1() value.

 The size penalty for storing the hex string in a
 CHAR column is at least two times,
 up to six times if the value is stored in a column that uses the
 utf8 character set (where each character uses 3
 bytes). Storing the string also results in slower comparisons
 because of the larger values and the need to take character set
 collation rules into account.

 Suppose that an application stores
 MD5() string values in a
 CHAR(32) column:

CREATE TABLE md5_tbl (md5_val CHAR(32), ...);
INSERT INTO md5_tbl (md5_val, ...) VALUES(MD5('abcdef'), ...);

 To convert hex strings to more compact form, modify the
 application to use UNHEX() and
 BINARY(16) instead as follows:

CREATE TABLE md5_tbl (md5_val BINARY(16), ...);
INSERT INTO md5_tbl (md5_val, ...) VALUES(UNHEX(MD5('abcdef')), ...);

 Applications should be prepared to handle the very rare case that
 a hashing function produces the same value for two different input
 values. One way to make collisions detectable is to make the hash
 column a primary key.

Note

 Exploits for the MD5 and SHA-1 algorithms have become known. You
 may wish to consider using one of the other encryption functions
 described in this section instead.

Caution

 Passwords or other sensitive values supplied as arguments to
 encryption functions are sent in plaintext to the MySQL server
 unless an SSL connection is used. Also, such values will appear
 in any MySQL logs to which they are written. To avoid these
 types of exposure, applications can encrypt sensitive values on
 the client side before sending them to the server. The same
 considerations apply to encryption keys. To avoid exposing
 these, applications can use stored procedures to encrypt and
 decrypt values on the server side.

	

 AES_DECRYPT(crypt_str,key_str)

 This function decrypts data using the official AES (Advanced
 Encryption Standard) algorithm. For more information, see the
 description of AES_ENCRYPT().

	

 AES_ENCRYPT(str,key_str)

 AES_ENCRYPT() and
 AES_DECRYPT() implement
 encryption and decryption of data using the official AES
 (Advanced Encryption Standard) algorithm, previously known as
 “Rijndael.” The AES standard permits various key
 lengths. These functions implement AES with a 128-bit key
 length, but you can extend them to 256 bits by modifying the
 source. The key length is a trade off between performance and
 security.

 AES_ENCRYPT() encrypts the
 string str using the key string
 key_str and returns a binary string
 containing the encrypted output.
 AES_DECRYPT() decrypts the
 encrypted string crypt_str using
 the key string key_str and returns
 the original plaintext string. If either function argument is
 NULL, the function returns
 NULL.

 The str and
 crypt_str arguments can be any
 length, and padding is automatically added to
 str so it is a multiple of a block
 as required by block-based algorithms such as AES. This
 padding is automatically removed by the
 AES_DECRYPT() function. The
 length of crypt_str can be
 calculated using this formula:

16 * (trunc(string_length / 16) + 1)

 For a key length of 128 bits, the most secure way to pass a
 key to the key_str argument is to
 create a truly random 128-bit value and pass it as a binary
 value. For example:

INSERT INTO t
VALUES (1,AES_ENCRYPT('text',UNHEX('F3229A0B371ED2D9441B830D21A390C3')));

 A passphrase can be used to generate an AES key by hashing the
 passphrase. For example:

INSERT INTO t VALUES (1,AES_ENCRYPT('text', SHA1('My secret passphrase')));

 Do not pass a password or passphrase directly to
 crypt_str, hash it first. Previous
 versions of this documentation suggested the former approach,
 but it is no longer recommended as the examples shown here are
 more secure.

 If AES_DECRYPT() detects
 invalid data or incorrect padding, it returns
 NULL. However, it is possible for
 AES_DECRYPT() to return a
 non-NULL value (possibly garbage) if the
 input data or the key is invalid.

	

 COMPRESS(string_to_compress)

 Compresses a string and returns the result as a binary string.
 This function requires MySQL to have been compiled with a
 compression library such as zlib.
 Otherwise, the return value is always NULL.
 The compressed string can be uncompressed with
 UNCOMPRESS().

mysql> SELECT LENGTH(COMPRESS(REPEAT('a',1000)));
 -> 21
mysql> SELECT LENGTH(COMPRESS(''));
 -> 0
mysql> SELECT LENGTH(COMPRESS('a'));
 -> 13
mysql> SELECT LENGTH(COMPRESS(REPEAT('a',16)));
 -> 15

 The compressed string contents are stored the following way:

	
 Empty strings are stored as empty strings.

	
 Nonempty strings are stored as a 4-byte length of the
 uncompressed string (low byte first), followed by the
 compressed string. If the string ends with space, an extra
 “.” character is added to
 avoid problems with endspace trimming should the result be
 stored in a CHAR or
 VARCHAR column. (However,
 use of nonbinary string data types such as
 CHAR or
 VARCHAR to store compressed
 strings is not recommended anyway because character set
 conversion may occur. Use a
 VARBINARY or
 BLOB binary string column
 instead.)

	

 DECODE(crypt_str,pass_str)

 Decrypts the encrypted string
 crypt_str using
 pass_str as the password.
 crypt_str should be a string
 returned from ENCODE().

	

 DES_DECRYPT(crypt_str[,key_str])

 Decrypts a string encrypted with
 DES_ENCRYPT(). If an error
 occurs, this function returns NULL.

 This function works only if MySQL has been configured with SSL
 support. See Section 6.3.6, “Using SSL for Secure Connections”.

 If no key_str argument is given,
 DES_DECRYPT() examines the
 first byte of the encrypted string to determine the DES key
 number that was used to encrypt the original string, and then
 reads the key from the DES key file to decrypt the message.
 For this to work, the user must have the
 SUPER privilege. The key file
 can be specified with the
 --des-key-file server option.

 If you pass this function a key_str
 argument, that string is used as the key for decrypting the
 message.

 If the crypt_str argument does not
 appear to be an encrypted string, MySQL returns the given
 crypt_str.

	

 DES_ENCRYPT(str[,{key_num|key_str}])

 Encrypts the string with the given key using the Triple-DES
 algorithm.

 This function works only if MySQL has been configured with SSL
 support. See Section 6.3.6, “Using SSL for Secure Connections”.

 The encryption key to use is chosen based on the second
 argument to DES_ENCRYPT(), if
 one was given. With no argument, the first key from the DES
 key file is used. With a key_num
 argument, the given key number (0 to 9) from the DES key file
 is used. With a key_str argument,
 the given key string is used to encrypt
 str.

 The key file can be specified with the
 --des-key-file server option.

 The return string is a binary string where the first character
 is CHAR(128 |
 key_num). If an error
 occurs, DES_ENCRYPT() returns
 NULL.

 The 128 is added to make it easier to recognize an encrypted
 key. If you use a string key,
 key_num is 127.

 The string length for the result is given by this formula:

new_len = orig_len + (8 - (orig_len % 8)) + 1

 Each line in the DES key file has the following format:

key_num des_key_str

 Each key_num value must be a number
 in the range from 0 to
 9. Lines in the file may be in any order.
 des_key_str is the string that is
 used to encrypt the message. There should be at least one
 space between the number and the key. The first key is the
 default key that is used if you do not specify any key
 argument to DES_ENCRYPT().

 You can tell MySQL to read new key values from the key file
 with the FLUSH
 DES_KEY_FILE statement. This requires the
 RELOAD privilege.

 One benefit of having a set of default keys is that it gives
 applications a way to check for the existence of encrypted
 column values, without giving the end user the right to
 decrypt those values.

mysql> SELECT customer_address FROM customer_table
 > WHERE crypted_credit_card = DES_ENCRYPT('credit_card_number');

	

 ENCODE(str,pass_str)

 Encrypt str using
 pass_str as the password. The
 result is a binary string of the same length as
 str. To decrypt the result, use
 DECODE().

 The strength of the encryption is based on how good the random
 generator is. It should suffice for short strings.

	

 ENCRYPT(str[,salt])

 Encrypts str using the Unix
 crypt() system call and returns a binary
 string. The salt argument must be a
 string with at least two characters or the result will be
 NULL. If no salt
 argument is given, a random value is used.

mysql> SELECT ENCRYPT('hello');
 -> 'VxuFAJXVARROc'

 ENCRYPT() ignores all but the
 first eight characters of str, at
 least on some systems. This behavior is determined by the
 implementation of the underlying crypt()
 system call.

 The use of ENCRYPT() with the
 ucs2 multi-byte character set is not
 recommended because the system call expects a string
 terminated by a zero byte.

 If crypt() is not available on your
 system (as is the case with Windows),
 ENCRYPT() always returns
 NULL.

	

 MD5(str)

 Calculates an MD5 128-bit checksum for the string. The value
 is returned as a binary string of 32 hex digits, or
 NULL if the argument was
 NULL. The return value can, for example, be
 used as a hash key. See the notes at the beginning of this
 section about storing hash values efficiently.

mysql> SELECT MD5('testing');
 -> 'ae2b1fca515949e5d54fb22b8ed95575'

 This is the “RSA Data Security, Inc. MD5 Message-Digest
 Algorithm.”

 See the note regarding the MD5 algorithm at the beginning this
 section.

	

 OLD_PASSWORD(str)

 OLD_PASSWORD() was added when
 the implementation of
 PASSWORD() was changed in MySQL
 4.1 to improve security.
 OLD_PASSWORD() returns the
 value of the pre-4.1 implementation of
 PASSWORD() as a binary string,
 and is intended to permit you to reset passwords for any
 pre-4.1 clients that need to connect to your version
 5.0 MySQL server without locking them out. See
 Section 6.1.2.4, “Password Hashing in MySQL”.

	

 PASSWORD(str)

 Returns a hashed password string calculated from the cleartext
 password str. The return value is a
 binary string, or NULL if the argument is
 NULL. This function is the SQL interface to
 the algorithm used by the server to encrypt MySQL passwords
 for storage in the mysql.user grant table.

 The old_passwords system
 variable controls the password hashing method used by the
 PASSWORD() function. It also
 influences password hashing performed by
 CREATE USER and
 GRANT statements that specify a
 password using an IDENTIFIED BY clause.

 The value determines whether or not to use “old”
 native MySQL password hashing. A value of 0 (or
 OFF) causes passwords to be encrypted using
 the format available from MySQL 4.1 on. A value of 1 (or
 ON) causes password encryption to use the
 older pre-4.1 format.

 If old_passwords=1,
 PASSWORD(str)
 returns the same value as
 OLD_PASSWORD(str).
 The latter function is not affected by the value of
 old_passwords.

mysql> SET old_passwords = 0;
mysql> SELECT PASSWORD('mypass'), OLD_PASSWORD('mypass');
+---+------------------------+
| PASSWORD('mypass') | OLD_PASSWORD('mypass') |
+---+------------------------+
| *6C8989366EAF75BB670AD8EA7A7FC1176A95CEF4 | 6f8c114b58f2ce9e |
+---+------------------------+

mysql> SET old_passwords = 1;
mysql> SELECT PASSWORD('mypass'), OLD_PASSWORD('mypass');
+--------------------+------------------------+
| PASSWORD('mypass') | OLD_PASSWORD('mypass') |
+--------------------+------------------------+
| 6f8c114b58f2ce9e | 6f8c114b58f2ce9e |
+--------------------+------------------------+

 Encryption performed by
 PASSWORD() is one-way (not
 reversible). It is not the same type of encryption as used for
 Unix passwords; for that, use
 ENCRYPT().

Note

 The PASSWORD() function is
 used by the authentication system in MySQL Server; you
 should not use it in your own
 applications. For that purpose, consider
 MD5() or
 SHA1() instead. Also see
 RFC 2195,
 section 2 (Challenge-Response Authentication Mechanism
 (CRAM)), for more information about handling
 passwords and authentication securely in your applications.

Caution

 Statements that invoke
 PASSWORD() may be recorded in
 server logs or in a history file such as
 ~/.mysql_history, which means that
 cleartext passwords may be read by anyone having read access
 to that information. See
 Section 6.1.2, “Keeping Passwords Secure”.

	

 SHA1(str),
 SHA(str)

 Calculates an SHA-1 160-bit checksum for the string, as
 described in RFC 3174 (Secure Hash Algorithm). The value is
 returned as a binary string of 40 hex digits, or
 NULL if the argument was
 NULL. One of the possible uses for this
 function is as a hash key. See the notes at the beginning of
 this section about storing hash values efficiently. You can
 also use SHA1() as a
 cryptographic function for storing passwords.
 SHA() is
 synonymous with SHA1().

mysql> SELECT SHA1('abc');
 -> 'a9993e364706816aba3e25717850c26c9cd0d89d'

 SHA1() can be considered a
 cryptographically more secure equivalent of
 MD5(). However, see the note
 regarding the MD5 and SHA-1 algorithms at the beginning this
 section.

	

 UNCOMPRESS(string_to_uncompress)

 Uncompresses a string compressed by the
 COMPRESS() function. If the
 argument is not a compressed value, the result is
 NULL. This function requires MySQL to have
 been compiled with a compression library such as
 zlib. Otherwise, the return value is always
 NULL.

mysql> SELECT UNCOMPRESS(COMPRESS('any string'));
 -> 'any string'
mysql> SELECT UNCOMPRESS('any string');
 -> NULL

	

 UNCOMPRESSED_LENGTH(compressed_string)

 Returns the length that the compressed string had before being
 compressed.

mysql> SELECT UNCOMPRESSED_LENGTH(COMPRESS(REPEAT('a',30)));
 -> 30

2.9. Standard MySQL Installation from a Binary Distribution

 The next several sections cover the installation of MySQL on
 platforms where we offer packages using the native packaging
 format of the respective platform. (This is also known as
 performing a binary installation.) However, binary distributions
 of MySQL are available for many other platforms as well. See
 Section 2.16, “Installing MySQL on Unix/Linux Using Generic Binaries”, for generic installation
 instructions for these packages that apply to all platforms.

 See Section 2.4, “Notes for MySQL Community Server”, for more information on what
 other binary distributions are available and how to obtain them.

A.5. GNU Lesser General Public License Version 2.1, February 1999

The following applies to all products licensed under the
GNU Lesser General Public License, Version 2.1: You may
not use the identified files except in compliance with
the GNU Lesser General Public License, Version 2.1 (the
"License"). You may obtain a copy of the License at
http://www.gnu.org/licenses/lgpl-2.1.html. A copy of the
license is also reproduced below. Unless required by
applicable law or agreed to in writing, software distributed
under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
or implied. See the License for the specific language governing
permissions and limitations under the License.

 GNU LESSER GENERAL PUBLIC LICENSE
 Version 2.1, February 1999

 Copyright (C) 1991, 1999 Free Software Foundation, Inc.
 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 Everyone is permitted to copy and distribute verbatim copies
 of this license document, but changing it is not allowed.

[This is the first released version of the Lesser GPL. It also counts
 as the successor of the GNU Library Public License, version 2, hence
 the version number 2.1.]

 Preamble

 The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
Licenses are intended to guarantee your freedom to share and change
free software--to make sure the software is free for all its users.

 This license, the Lesser General Public License, applies to some
specially designated software packages--typically libraries--of the
Free Software Foundation and other authors who decide to use it. You
can use it too, but we suggest you first think carefully about whether
this license or the ordinary General Public License is the better
strategy to use in any particular case, based on the explanations below.

 When we speak of free software, we are referring to freedom of use,
not price. Our General Public Licenses are designed to make sure that
you have the freedom to distribute copies of free software (and charge
for this service if you wish); that you receive source code or can get
it if you want it; that you can change the software and use pieces of
it in new free programs; and that you are informed that you can do
these things.

 To protect your rights, we need to make restrictions that forbid
distributors to deny you these rights or to ask you to surrender these
rights. These restrictions translate to certain responsibilities for
you if you distribute copies of the library or if you modify it.

 For example, if you distribute copies of the library, whether gratis
or for a fee, you must give the recipients all the rights that we gave
you. You must make sure that they, too, receive or can get the source
code. If you link other code with the library, you must provide
complete object files to the recipients, so that they can relink them
with the library after making changes to the library and recompiling
it. And you must show them these terms so they know their rights.

 We protect your rights with a two-step method: (1) we copyright the
library, and (2) we offer you this license, which gives you legal
permission to copy, distribute and/or modify the library.

 To protect each distributor, we want to make it very clear that
there is no warranty for the free library. Also, if the library is
modified by someone else and passed on, the recipients should know
that what they have is not the original version, so that the original
author's reputation will not be affected by problems that might be
introduced by others.

 Finally, software patents pose a constant threat to the existence of
any free program. We wish to make sure that a company cannot
effectively restrict the users of a free program by obtaining a
restrictive license from a patent holder. Therefore, we insist that
any patent license obtained for a version of the library must be
consistent with the full freedom of use specified in this license.

 Most GNU software, including some libraries, is covered by the
ordinary GNU General Public License. This license, the GNU Lesser
General Public License, applies to certain designated libraries, and
is quite different from the ordinary General Public License. We use
this license for certain libraries in order to permit linking those
libraries into non-free programs.

 When a program is linked with a library, whether statically or using
a shared library, the combination of the two is legally speaking a
combined work, a derivative of the original library. The ordinary
General Public License therefore permits such linking only if the
entire combination fits its criteria of freedom. The Lesser General
Public License permits more lax criteria for linking other code with
the library.

 We call this license the "Lesser" General Public License because it
does Less to protect the user's freedom than the ordinary General
Public License. It also provides other free software developers Less
of an advantage over competing non-free programs. These disadvantages
are the reason we use the ordinary General Public License for many
libraries. However, the Lesser license provides advantages in certain
special circumstances.

 For example, on rare occasions, there may be a special need to
encourage the widest possible use of a certain library, so that it
becomes a de-facto standard. To achieve this, non-free programs
must be allowed to use the library. A more frequent case is that
a free library does the same job as widely used non-free libraries.
In this case, there is little to gain by limiting the free library
to free software only, so we use the Lesser General Public License.

 In other cases, permission to use a particular library in non-free
programs enables a greater number of people to use a large body of
free software. For example, permission to use the GNU C Library in
non-free programs enables many more people to use the whole GNU
operating system, as well as its variant, the GNU/Linux operating
system.

 Although the Lesser General Public License is Less protective of the
users' freedom, it does ensure that the user of a program that is
linked with the Library has the freedom and the wherewithal to run
that program using a modified version of the Library.

 The precise terms and conditions for copying, distribution and
modification follow. Pay close attention to the difference between a
"work based on the library" and a "work that uses the library". The
former contains code derived from the library, whereas the latter must
be combined with the library in order to run.

 GNU LESSER GENERAL PUBLIC LICENSE
 TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

 0. This License Agreement applies to any software library or other
program which contains a notice placed by the copyright holder or
other authorized party saying it may be distributed under the terms of
this Lesser General Public License (also called "this License").
Each licensee is addressed as "you".

 A "library" means a collection of software functions and/or data
prepared so as to be conveniently linked with application programs
(which use some of those functions and data) to form executables.

 The "Library", below, refers to any such software library or work
which has been distributed under these terms. A "work based on the
Library" means either the Library or any derivative work under
copyright law: that is to say, a work containing the Library or a
portion of it, either verbatim or with modifications and/or translated
straightforwardly into another language. (Hereinafter, translation is
included without limitation in the term "modification".)

 "Source code" for a work means the preferred form of the work for
making modifications to it. For a library, complete source code means
all the source code for all modules it contains, plus any associated
interface definition files, plus the scripts used to control
compilation and installation of the library.

 Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running a program using the Library is not restricted, and output from
such a program is covered only if its contents constitute a work based
on the Library (independent of the use of the Library in a tool for
writing it). Whether that is true depends on what the Library does
and what the program that uses the Library does.

 1. You may copy and distribute verbatim copies of the Library's
complete source code as you receive it, in any medium, provided that
you conspicuously and appropriately publish on each copy an
appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any
warranty; and distribute a copy of this License along with the
Library.

 You may charge a fee for the physical act of transferring a copy,
and you may at your option offer warranty protection in exchange for a
fee.

 2. You may modify your copy or copies of the Library or any portion
of it, thus forming a work based on the Library, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

 a) The modified work must itself be a software library.

 b) You must cause the files modified to carry prominent notices
 stating that you changed the files and the date of any change.

 c) You must cause the whole of the work to be licensed at no
 charge to all third parties under the terms of this License.

 d) If a facility in the modified Library refers to a function or a
 table of data to be supplied by an application program that uses
 the facility, other than as an argument passed when the facility
 is invoked, then you must make a good faith effort to ensure that,
 in the event an application does not supply such function or
 table, the facility still operates, and performs whatever part of
 its purpose remains meaningful.

 (For example, a function in a library to compute square roots has
 a purpose that is entirely well-defined independent of the
 application. Therefore, Subsection 2d requires that any
 application-supplied function or table used by this function must
 be optional: if the application does not supply it, the square
 root function must still compute square roots.)

These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Library,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Library, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote
it.

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Library.

In addition, mere aggregation of another work not based on the Library
with the Library (or with a work based on the Library) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.

 3. You may opt to apply the terms of the ordinary GNU General Public
License instead of this License to a given copy of the Library. To do
this, you must alter all the notices that refer to this License, so
that they refer to the ordinary GNU General Public License, version 2,
instead of to this License. (If a newer version than version 2 of the
ordinary GNU General Public License has appeared, then you can specify
that version instead if you wish.) Do not make any other change in
these notices.

 Once this change is made in a given copy, it is irreversible for
that copy, so the ordinary GNU General Public License applies to all
subsequent copies and derivative works made from that copy.

 This option is useful when you wish to copy part of the code of
the Library into a program that is not a library.

 4. You may copy and distribute the Library (or a portion or
derivative of it, under Section 2) in object code or executable form
under the terms of Sections 1 and 2 above provided that you accompany
it with the complete corresponding machine-readable source code, which
must be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange.

 If distribution of object code is made by offering access to copy
from a designated place, then offering equivalent access to copy the
source code from the same place satisfies the requirement to
distribute the source code, even though third parties are not
compelled to copy the source along with the object code.

 5. A program that contains no derivative of any portion of the
Library, but is designed to work with the Library by being compiled or
linked with it, is called a "work that uses the Library". Such a
work, in isolation, is not a derivative work of the Library, and
therefore falls outside the scope of this License.

 However, linking a "work that uses the Library" with the Library
creates an executable that is a derivative of the Library (because it
contains portions of the Library), rather than a "work that uses the
library". The executable is therefore covered by this License.
Section 6 states terms for distribution of such executables.

 When a "work that uses the Library" uses material from a header file
that is part of the Library, the object code for the work may be a
derivative work of the Library even though the source code is not.
Whether this is true is especially significant if the work can be
linked without the Library, or if the work is itself a library. The
threshold for this to be true is not precisely defined by law.

 If such an object file uses only numerical parameters, data
structure layouts and accessors, and small macros and small inline
functions (ten lines or less in length), then the use of the object
file is unrestricted, regardless of whether it is legally a derivative
work. (Executables containing this object code plus portions of the
Library will still fall under Section 6.)

 Otherwise, if the work is a derivative of the Library, you may
distribute the object code for the work under the terms of Section 6.
Any executables containing that work also fall under Section 6,
whether or not they are linked directly with the Library itself.

 6. As an exception to the Sections above, you may also combine or
link a "work that uses the Library" with the Library to produce a
work containing portions of the Library, and distribute that work
under terms of your choice, provided that the terms permit
modification of the work for the customer's own use and reverse
engineering for debugging such modifications.

 You must give prominent notice with each copy of the work that the
Library is used in it and that the Library and its use are covered by
this License. You must supply a copy of this License. If the work
during execution displays copyright notices, you must include the
copyright notice for the Library among them, as well as a reference
directing the user to the copy of this License. Also, you must do one
of these things:

 a) Accompany the work with the complete corresponding
 machine-readable source code for the Library including whatever
 changes were used in the work (which must be distributed under
 Sections 1 and 2 above); and, if the work is an executable linked
 with the Library, with the complete machine-readable "work that
 uses the Library", as object code and/or source code, so that the
 user can modify the Library and then relink to produce a modified
 executable containing the modified Library. (It is understood
 that the user who changes the contents of definitions files in the
 Library will not necessarily be able to recompile the application
 to use the modified definitions.)

 b) Use a suitable shared library mechanism for linking with the
 Library. A suitable mechanism is one that (1) uses at run time a
 copy of the library already present on the user's computer system,
 rather than copying library functions into the executable, and (2)
 will operate properly with a modified version of the library, if
 the user installs one, as long as the modified version is
 interface-compatible with the version that the work was made with.

 c) Accompany the work with a written offer, valid for at
 least three years, to give the same user the materials
 specified in Subsection 6a, above, for a charge no more
 than the cost of performing this distribution.

 d) If distribution of the work is made by offering access to copy
 from a designated place, offer equivalent access to copy the above
 specified materials from the same place.

 e) Verify that the user has already received a copy of these
 materials or that you have already sent this user a copy.

 For an executable, the required form of the "work that uses the
Library" must include any data and utility programs needed for
reproducing the executable from it. However, as a special exception,
the materials to be distributed need not include anything that is
normally distributed (in either source or binary form) with the major
components (compiler, kernel, and so on) of the operating system on
which the executable runs, unless that component itself accompanies
the executable.

 It may happen that this requirement contradicts the license
restrictions of other proprietary libraries that do not normally
accompany the operating system. Such a contradiction means you cannot
use both them and the Library together in an executable that you
distribute.

 7. You may place library facilities that are a work based on the
Library side-by-side in a single library together with other library
facilities not covered by this License, and distribute such a combined
library, provided that the separate distribution of the work based on
the Library and of the other library facilities is otherwise
permitted, and provided that you do these two things:

 a) Accompany the combined library with a copy of the same work
 based on the Library, uncombined with any other library
 facilities. This must be distributed under the terms of the
 Sections above.

 b) Give prominent notice with the combined library of the fact
 that part of it is a work based on the Library, and explaining
 where to find the accompanying uncombined form of the same work.

 8. You may not copy, modify, sublicense, link with, or distribute
the Library except as expressly provided under this License. Any
attempt otherwise to copy, modify, sublicense, link with, or
distribute the Library is void, and will automatically terminate your
rights under this License. However, parties who have received copies,
or rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.

 9. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Library or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Library (or any work based on the
Library), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Library or works based on it.

 10. Each time you redistribute the Library (or any work based on the
Library), the recipient automatically receives a license from the
original licensor to copy, distribute, link with or modify the Library
subject to these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties with
this License.

 11. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Library at all. For example, if a patent
license would not permit royalty-free redistribution of the Library by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Library.

If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended
to apply, and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

 12. If the distribution and/or use of the Library is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Library under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.

 13. The Free Software Foundation may publish revised and/or new
versions of the Lesser General Public License from time to time.
Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library
specifies a version number of this License which applies to it and
"any later version", you have the option of following the terms and
conditions either of that version or of any later version published by
the Free Software Foundation. If the Library does not specify a
license version number, you may choose any version ever published by
the Free Software Foundation.

 14. If you wish to incorporate parts of the Library into other free
programs whose distribution conditions are incompatible with these,
write to the author to ask for permission. For software which is
copyrighted by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions for this. Our
decision will be guided by the two goals of preserving the free status
of all derivatives of our free software and of promoting the sharing
and reuse of software generally.

 NO WARRANTY

 15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

 16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY
AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

 END OF TERMS AND CONDITIONS

 How to Apply These Terms to Your New Libraries

 If you develop a new library, and you want it to be of the greatest
possible use to the public, we recommend making it free software that
everyone can redistribute and change. You can do so by permitting
redistribution under these terms (or, alternatively, under the terms
of the ordinary General Public License).

 To apply these terms, attach the following notices to the library.
It is safest to attach them to the start of each source file to most
effectively convey the exclusion of warranty; and each file should
have at least the "copyright" line and a pointer to where the full
notice is found.

 <one line to give the library's name and a brief idea of what it does.>
 Copyright (C) <year> <name of author>

 This library is free software; you can redistribute it and/or
 modify it under the terms of the GNU Lesser General Public
 License as published by the Free Software Foundation; either
 version 2.1 of the License, or (at your option) any later version.

 This library is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 Lesser General Public License for more details.

 You should have received a copy of the GNU Lesser General Public
 License along with this library; if not, write to the Free Software
 Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
 02110-1301 USA

Also add information on how to contact you by electronic and paper mail.

You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the library, if
necessary. Here is a sample; alter the names:

 Yoyodyne, Inc., hereby disclaims all copyright interest in the
 library `Frob' (a library for tweaking knobs) written by James
 Random Hacker.

 <signature of Ty Coon>, 1 April 1990
 Ty Coon, President of Vice

That's all there is to it!

10.3. Adding a Character Set

 This section discusses the procedure for adding a character set to
 MySQL. The proper procedure depends on whether the character set
 is simple or complex:

	
 If the character set does not need special string collating
 routines for sorting and does not need multi-byte character
 support, it is simple.

	
 If the character set needs either of those features, it is
 complex.

 For example, greek and swe7
 are simple character sets, whereas big5 and
 czech are complex character sets.

 To use the following instructions, you must have a MySQL source
 distribution. In the instructions,
 MYSET represents the name of the
 character set that you want to add.

	
 Add a <charset> element for
 MYSET to the
 sql/share/charsets/Index.xml file. Use
 the existing contents in the file as a guide to adding new
 contents. A partial listing for the latin1
 <charset> element follows:

<charset name="latin1">
 <family>Western</family>
 <description>cp1252 West European</description>
 ...
 <collation name="latin1_swedish_ci" id="8" order="Finnish, Swedish">
 <flag>primary</flag>
 <flag>compiled</flag>
 </collation>
 <collation name="latin1_danish_ci" id="15" order="Danish"/>
 ...
 <collation name="latin1_bin" id="47" order="Binary">
 <flag>binary</flag>
 <flag>compiled</flag>
 </collation>
 ...
</charset>

 The <charset> element must list all
 the collations for the character set. These must include at
 least a binary collation and a default (primary) collation.
 The default collation is often named using a suffix of
 general_ci (general, case insensitive). It
 is possible for the binary collation to be the default
 collation, but usually they are different. The default
 collation should have a primary flag. The
 binary collation should have a binary flag.

 You must assign a unique ID number to each collation, chosen
 from the range 1 to 254. To find the maximum of the currently
 used collation IDs, use this query:

SELECT MAX(ID) FROM INFORMATION_SCHEMA.COLLATIONS;

	
 This step depends on whether you are adding a simple or
 complex character set. A simple character set requires only a
 configuration file, whereas a complex character set requires C
 source file that defines collation functions, multi-byte
 functions, or both.

 For a simple character set, create a configuration file,
 MYSET.xml,
 that describes the character set properties. Create this file
 in the sql/share/charsets directory. You
 can use a copy of latin1.xml as the basis
 for this file. The syntax for the file is very simple:

	
 Comments are written as ordinary XML comments
 (<!-- text
 -->).

	
 Words within <map> array elements
 are separated by arbitrary amounts of whitespace.

	
 Each word within <map> array
 elements must be a number in hexadecimal format.

	
 The <map> array element for the
 <ctype> element has 257 words.
 The other <map> array elements
 after that have 256 words. See
 Section 10.3.1, “Character Definition Arrays”.

	
 For each collation listed in the
 <charset> element for the
 character set in Index.xml,
 MYSET.xml
 must contain a <collation>
 element that defines the character ordering.

 For a complex character set, create a C source file that
 describes the character set properties and defines the support
 routines necessary to properly perform operations on the
 character set:

	
 Create the file
 ctype-MYSET.c
 in the strings directory. Look at one
 of the existing ctype-*.c files (such
 as ctype-big5.c) to see what needs to
 be defined. The arrays in your file must have names like
 ctype_MYSET,
 to_lower_MYSET,
 and so on. These correspond to the arrays for a simple
 character set. See Section 10.3.1, “Character Definition Arrays”.

	
 For each <collation> element
 listed in the <charset> element
 for the character set in Index.xml,
 the
 ctype-MYSET.c
 file must provide an implementation of the collation.

	
 If the character set requires string collating functions,
 see Section 10.3.2, “String Collating Support for Complex Character Sets”.

	
 If the character set requires multi-byte character
 support, see Section 10.3.3, “Multi-Byte Character Support for Complex Character Sets”.

	
 Modify the configuration information. Use the existing
 configuration information as a guide to adding information for
 MYSYS. The example here assumes
 that the character set has default and binary collations, but
 more lines are needed if MYSET has
 additional collations.

	
 Edit mysys/charset-def.c, and
 “register” the collations for the new
 character set.

 Add these lines to the “declaration” section:

#ifdef HAVE_CHARSET_MYSET
extern CHARSET_INFO my_charset_MYSET_general_ci;
extern CHARSET_INFO my_charset_MYSET_bin;
#endif

 Add these lines to the “registration”
 section:

#ifdef HAVE_CHARSET_MYSET
 add_compiled_collation(&my_charset_MYSET_general_ci);
 add_compiled_collation(&my_charset_MYSET_bin);
#endif

	
 If the character set uses
 ctype-MYSET.c,
 edit strings/Makefile.am and add
 ctype-MYSET.c
 to each definition of the CSRCS
 variable, and to the EXTRA_DIST
 variable.

	
 If the character set uses
 ctype-MYSET.c,
 edit libmysql/Makefile.shared and add
 ctype-MYSET.lo
 to the mystringsobjects definition.

	
 Edit
 config/ac-macros/character_sets.m4:

	
 Add MYSET to one of the
 define(CHARSETS_AVAILABLE...) lines
 in alphabetic order.

	
 Add MYSET to
 CHARSETS_COMPLEX. This is needed
 even for simple character sets, or
 configure will not recognize
 --with-charset=MYSET.

	
 Add MYSET to the first
 case control structure. Omit the
 USE_MB and
 USE_MB_IDENT lines for 8-bit
 character sets.

MYSET)
 AC_DEFINE(HAVE_CHARSET_MYSET, 1, [Define to enable charset MYSET])
 AC_DEFINE([USE_MB], 1, [Use multi-byte character routines])
 AC_DEFINE(USE_MB_IDENT, 1)
 ;;

	
 Add MYSET to the second
 case control structure:

MYSET)
 default_charset_default_collation="MYSET_general_ci"
 default_charset_collations="MYSET_general_ci MYSET_bin"
 ;;

	
 Reconfigure, recompile, and test.

10.3.1. Character Definition Arrays

 Each simple character set has a configuration file located in
 the sql/share/charsets directory. For a
 character set named MYSYS, the file
 is named
 MYSET.xml. It
 uses <map> array elements to list
 character set properties. <map>
 elements appear within these elements:

	
 <ctype> defines attributes for each
 character.

	
 <lower> and
 <upper> list the lowercase and
 uppercase characters.

	
 <unicode> maps 8-bit character
 values to Unicode values.

	
 <collation> elements indicate
 character ordering for comparisons and sorts, one element
 per collation. Binary collations need no
 <map> element because the character
 codes themselves provide the ordering.

 For a complex character set as implemented in a
 ctype-MYSET.c
 file in the strings directory, there are
 corresponding arrays:
 ctype_MYSET[],
 to_lower_MYSET[],
 and so forth. Not every complex character set has all of the
 arrays. See also the existing ctype-*.c
 files for examples. See the
 CHARSET_INFO.txt file in the
 strings directory for additional
 information.

 Most of the arrays are indexed by character value and have 256
 elements. The <ctype> array is indexed
 by character value + 1 and has 257 elements. This is a legacy
 convention for handling EOF.

 <ctype> array elements are bit values.
 Each element describes the attributes of a single character in
 the character set. Each attribute is associated with a bitmask,
 as defined in include/m_ctype.h:

#define _MY_U 01 /* Upper case */
#define _MY_L 02 /* Lower case */
#define _MY_NMR 04 /* Numeral (digit) */
#define _MY_SPC 010 /* Spacing character */
#define _MY_PNT 020 /* Punctuation */
#define _MY_CTR 040 /* Control character */
#define _MY_B 0100 /* Blank */
#define _MY_X 0200 /* heXadecimal digit */

 The <ctype> value for a given character
 should be the union of the applicable bitmask values that
 describe the character. For example, 'A' is
 an uppercase character (_MY_U) as well as a
 hexadecimal digit (_MY_X), so its
 ctype value should be defined like this:

ctype['A'+1] = _MY_U | _MY_X = 01 | 0200 = 0201

 The bitmask values in m_ctype.h are octal
 values, but the elements of the <ctype>
 array in
 MYSET.xml should
 be written as hexadecimal values.

 The <lower> and
 <upper> arrays hold the lowercase and
 uppercase characters corresponding to each member of the
 character set. For example:

lower['A'] should contain 'a'
upper['a'] should contain 'A'

 Each <collation> array indicates how
 characters should be ordered for comparison and sorting
 purposes. MySQL sorts characters based on the values of this
 information. In some cases, this is the same as the
 <upper> array, which means that sorting
 is case-insensitive. For more complicated sorting rules (for
 complex character sets), see the discussion of string collating
 in Section 10.3.2, “String Collating Support for Complex Character Sets”.

10.3.2. String Collating Support for Complex Character Sets

 For a simple character set named
 MYSET, sorting rules are specified in
 the MYSET.xml
 configuration file using <map> array
 elements within <collation> elements.
 If the sorting rules for your language are too complex to be
 handled with simple arrays, you must define string collating
 functions in the
 ctype-MYSET.c
 source file in the strings directory.

 The existing character sets provide the best documentation and
 examples to show how these functions are implemented. Look at
 the ctype-*.c files in the
 strings directory, such as the files for
 the big5, czech,
 gbk, sjis, and
 tis160 character sets. Take a look at the
 MY_COLLATION_HANDLER structures to see how
 they are used. See also the
 CHARSET_INFO.txt file in the
 strings directory for additional
 information.

10.3.3. Multi-Byte Character Support for Complex Character Sets

 If you want to add support for a new character set named
 MYSET that includes multi-byte
 characters, you must use multi-byte character functions in the
 ctype-MYSET.c
 source file in the strings directory.

 The existing character sets provide the best documentation and
 examples to show how these functions are implemented. Look at
 the ctype-*.c files in the
 strings directory, such as the files for
 the euc_kr, gb2312,
 gbk, sjis, and
 ujis character sets. Take a look at the
 MY_CHARSET_HANDLER structures to see how they
 are used. See also the CHARSET_INFO.txt
 file in the strings directory for
 additional information.

14.5. The BDB (BerkeleyDB) Storage
 Engine

 Sleepycat Software has provided MySQL with the Berkeley DB
 transactional storage engine. This storage engine typically is
 called BDB for short. BDB
 tables may have a greater chance of surviving crashes and are also
 capable of COMMIT and
 ROLLBACK
 operations on transactions.

 Support for the BDB storage engine is included in
 MySQL source distributions, which come with a BDB
 distribution that is patched to make it work with MySQL. You cannot
 use an unpatched version of BDB with MySQL.

BDB support will be removed

 As of MySQL 5.1, BDB is not supported.

 For general information about Berkeley DB, please visit the
 Sleepycat Web site, http://www.sleepycat.com/.

14.5.1. Operating Systems Supported by BDB

 Currently, we know that the BDB storage engine
 works with the following operating systems:

	
 Linux 2.x Intel

	
 Sun Solaris (SPARC and x86)

	
 FreeBSD 4.x/5.x (x86, sparc64)

	
 IBM AIX 4.3.x

	
 SCO OpenServer

	
 SCO UnixWare 7.1.x

	
 Windows

 The BDB storage engine does
 not work with the following operating
 systems:

	
 Linux 2.x Alpha

	
 Linux 2.x AMD64

	
 Linux 2.x IA-64

	
 Linux 2.x s390

	
 Mac OS X

Note

 The preceding lists are not complete. We update them as we
 receive more information.

 If you build MySQL from source with support for
 BDB tables, but the following error occurs when
 you start mysqld, it means that the
 BDB storage engine is not supported for your
 architecture:

bdb: architecture lacks fast mutexes: applications cannot be threaded
Can't init databases

 In this case, you must rebuild MySQL without
 BDB support or start the server with the
 --skip-bdb option.

14.5.2. Installing BDB

 If you have downloaded a binary version of MySQL that includes
 support for Berkeley DB, simply follow the usual binary
 distribution installation instructions.

 If you build MySQL from source, you can enable
 BDB support by invoking
 configure with the
 --with-berkeley-db option in addition to any
 other options that you normally use. Download a MySQL
 5.0 distribution, change location into its top-level
 directory, and run this command:

shell> ./configure --with-berkeley-db [other-options]

 For more information, Section 2.16, “Installing MySQL on Unix/Linux Using Generic Binaries”, and
 Section 2.17, “Installing MySQL from Source”.

14.5.3. BDB Startup Options

 The following options to mysqld can be used to
 change the behavior of the BDB storage engine.
 For more information, see Section 5.1.3, “Server Command Options”.

Table 14.3. BDB Option/Variable Reference
	Name	Cmd-Line	Option file	System Var	Status Var	Var Scope	Dynamic
	bdb_cache_size	 	 	Yes	 	Global	No
	bdb-home	Yes	Yes	 	 	Global	No
	 - Variable: bdb_home	 	 	Yes	 	Global	No
	bdb-lock-detect	Yes	Yes	Yes	 	Global	No
	bdb_log_buffer_size	 	 	Yes	 	Global	No
	bdb-logdir	Yes	Yes	 	 	Global	No
	 - Variable: bdb_logdir	 	 	Yes	 	Global	No
	bdb_max_lock	 	 	Yes	 	Global	No
	bdb-no-recover	Yes	Yes	 	 	 	
	bdb-no-sync	Yes	Yes	 	 	 	
	bdb-shared-data	Yes	Yes	 	 	Global	No
	 - Variable: bdb_shared_data	 	 	Yes	 	Global	No
	bdb-tmpdir	Yes	Yes	 	 	Global	No
	 - Variable: bdb_tmpdir	 	 	Yes	 	Global	No
	have_bdb	 	 	Yes	 	Global	No
	skip-bdb	Yes	Yes	 	 	 	
	skip-sync-bdb-logs	Yes	Yes	Yes	 	Global	No
	sync-bdb-logs	Yes	Yes	Yes	 	Global	No

	

 --bdb-home=path

 The base directory for BDB tables. This
 should be the same directory that you use for
 --datadir.

	

 --bdb-lock-detect=method

 The BDB lock detection method. The option
 value should be DEFAULT,
 OLDEST, RANDOM, or
 YOUNGEST.

	

 --bdb-logdir=file_name

 The BDB log file directory.

	

 --bdb-no-recover

 Do not start Berkeley DB in recover mode.

	

 --bdb-no-sync

 Don't synchronously flush the BDB logs.
 This option is deprecated; use
 --skip-sync-bdb-logs
 instead (see the description for
 --sync-bdb-logs).

	

 --bdb-shared-data

 Start Berkeley DB in multi-process mode. (Do not use
 DB_PRIVATE when initializing Berkeley DB.)

	

 --bdb-tmpdir=path

 The BDB temporary file directory.

	

 --skip-bdb

 Disable the BDB storage engine.

	

 --sync-bdb-logs

 Synchronously flush the BDB logs. This
 option is enabled by default. Use
 --skip-sync-bdb-logs
 to disable it.

 If you use the --skip-bdb option,
 MySQL does not initialize the Berkeley DB library and this saves a
 lot of memory. However, if you use this option, you cannot use
 BDB tables. If you try to create a
 BDB table, MySQL uses the default storage
 engine instead.

 Normally, you should start mysqld without the
 --bdb-no-recover option if you
 intend to use BDB tables. However, this may
 cause problems when you try to start mysqld if
 the BDB log files are corrupted. See
 Section 2.18.1.3, “Starting and Troubleshooting the MySQL Server”.

 With the bdb_max_lock variable,
 you can specify the maximum number of locks that can be active on
 a BDB table. The default is 10,000. You should
 increase this if errors such as the following occur when you
 perform long transactions or when mysqld has to
 examine many rows to execute a query:

bdb: Lock table is out of available locks
Got error 12 from ...

 You may also want to change the
 binlog_cache_size and
 max_binlog_cache_size variables
 if you are using large multiple-statement transactions. See
 Section 5.2.3, “The Binary Log”.

 See also Section 5.1.4, “Server System Variables”.

14.5.4. Characteristics of BDB Tables

 Each BDB table is stored on disk in two files.
 The files have names that begin with the table name and have an
 extension to indicate the file type. An .frm
 file stores the table format, and a .db file
 contains the table data and indexes.

 To specify explicitly that you want a BDB
 table, indicate that with an ENGINE table
 option:

CREATE TABLE t (i INT) ENGINE = BDB;

 The older term TYPE is supported as a synonym
 for ENGINE for backward compatibility, but
 ENGINE is the preferred term and
 TYPE is deprecated.

 BerkeleyDB is a synonym for
 BDB in the ENGINE table
 option.

 The BDB storage engine provides transactional
 tables. The way you use these tables depends on the autocommit
 mode:

	
 If you are running with autocommit enabled (which is the
 default), changes to BDB tables are
 committed immediately and cannot be rolled back.

	
 If you are running with autocommit disabled, changes do not
 become permanent until you execute a
 COMMIT statement. Instead of
 committing, you can execute
 ROLLBACK to
 forget the changes.

 You can start a transaction with the
 START
 TRANSACTION or
 BEGIN
 statement to suspend autocommit, or with SET
 autocommit = 0 to disable autocommit explicitly.

 For more information about transactions, see
 Section 13.3.1, “START TRANSACTION,
 COMMIT, and
 ROLLBACK Syntax”.

 The BDB storage engine has the following
 characteristics:

	
 BDB tables can have up to 31 indexes per
 table, 16 columns per index, and a maximum key size of 1024
 bytes.

	
 MySQL requires a primary key in each BDB
 table so that each row can be uniquely identified. If you
 don't create one explicitly by declaring a PRIMARY
 KEY, MySQL creates and maintains a hidden primary
 key for you. The hidden key has a length of five bytes and is
 incremented for each insert attempt. This key does not appear
 in the output of SHOW CREATE
 TABLE or DESCRIBE.

	
 The primary key is faster than any other index, because it is
 stored together with the row data. The other indexes are
 stored as the key data plus the primary key, so it is
 important to keep the primary key as short as possible to save
 disk space and get better speed.

 This behavior is similar to that of InnoDB,
 where shorter primary keys save space not only in the primary
 index but in secondary indexes as well.

	
 If all columns that you access in a BDB
 table are part of the same index or part of the primary key,
 MySQL can execute the query without having to access the
 actual row. In a MyISAM table, this can be
 done only if the columns are part of the same index.

	
 Sequential scanning is slower for BDB
 tables than for MyISAM tables because the
 data in BDB tables is stored in B-trees and
 not in a separate data file.

	
 Key values are not prefix- or suffix-compressed like key
 values in MyISAM tables. In other words,
 key information takes a little more space in
 BDB tables compared to
 MyISAM tables.

	
 There are often holes in the BDB table to
 permit you to insert new rows in the middle of the index tree.
 This makes BDB tables somewhat larger than
 MyISAM tables.

	
 SELECT COUNT(*) FROM
 tbl_name is slow for
 BDB tables, because no row count is
 maintained in the table.

	
 The optimizer needs to know the approximate number of rows in
 the table. MySQL solves this by counting inserts and
 maintaining this in a separate segment in each
 BDB table. If you don't issue a lot of
 DELETE or
 ROLLBACK
 statements, this number should be accurate enough for the
 MySQL optimizer. However, MySQL stores the number only on
 close, so it may be incorrect if the server terminates
 unexpectedly. It should not be fatal even if this number is
 not 100% correct. You can update the row count by using
 ANALYZE TABLE or
 OPTIMIZE TABLE. See
 Section 13.7.2.1, “ANALYZE TABLE Syntax”, and
 Section 13.7.2.5, “OPTIMIZE TABLE Syntax”.

	
 Internal locking in BDB tables is done at
 the page level.

	
 LOCK TABLES works on
 BDB tables as with other tables. If you do
 not use LOCK TABLES, MySQL
 issues an internal multiple-write lock on the table (a lock
 that does not block other writers) to ensure that the table is
 properly locked if another thread issues a table lock.

	
 To support transaction rollback, the BDB
 storage engine maintains log files. For maximum performance,
 you can use the --bdb-logdir
 option to place the BDB logs on a different
 disk than the one where your databases are located.

	
 MySQL performs a checkpoint each time a new
 BDB log file is started, and removes any
 BDB log files that are not needed for
 current transactions. You can also use
 FLUSH LOGS at
 any time to checkpoint the Berkeley DB tables.

 For disaster recovery, you should use table backups plus
 MySQL's binary log. See Section 7.2, “Database Backup Methods”.

Warning

 If you delete old log files that are still in use,
 BDB is not able to do recovery at all and
 you may lose data if something goes wrong.

	
 Applications must always be prepared to handle cases where any
 change of a BDB table may cause an
 automatic rollback and any read may fail with a deadlock
 error.

	
 If you get a full disk with a BDB table,
 you get an error (probably error 28) and the transaction
 should roll back. This contrasts with
 MyISAM tables, for which
 mysqld waits for sufficient free disk space
 before continuing.

14.5.5. Restrictions on BDB Tables

 The following list indicates restrictions that you must observe
 when using BDB tables:

	
 Each BDB table stores in its
 .db file the path to the file as it was
 created. This is done to enable detection of locks in a
 multi-user environment that supports symlinks. As a
 consequence of this, it is not possible to move
 BDB table files from one database directory
 to another.

	
 When making backups of BDB tables, you must
 either use mysqldump or else make a backup
 that includes the files for each BDB table
 (the .frm and .db
 files) as well as the BDB log files. The
 BDB storage engine stores unfinished
 transactions in its log files and requires them to be present
 when mysqld starts. The
 BDB logs are the files in the data
 directory with names of the form
 log.NNNNNNNNNN
 (ten digits).

	
 If a column that permits NULL values has a
 unique index, only a single NULL value is
 permitted. This differs from other storage engines, which
 permit multiple NULL values in unique
 indexes.

14.5.6. Errors That May Occur When Using BDB Tables

	
 If the following error occurs when you start
 mysqld after upgrading, it means that the
 current version of BDB doesn't support the
 old log file format:

bdb: Ignoring log file: .../log.NNNNNNNNNN:
unsupported log version #

 In this case, you must delete all BDB logs
 from your data directory (the files that have names of the
 form
 log.NNNNNNNNNN)
 and restart mysqld. We also recommend that
 you then use mysqldump --opt to dump your
 BDB tables, drop the tables, and restore
 them from the dump file.

	
 If autocommit mode is disabled and you drop a
 BDB table that is referenced in another
 transaction, you may get error messages of the following form
 in your MySQL error log:

001119 23:43:56 bdb: Missing log fileid entry
001119 23:43:56 bdb: txn_abort: Log undo failed for LSN:
 1 3644744: Invalid

 This is not fatal, but the fix is not trivial. Avoid dropping
 BDB tables except while autocommit mode is
 enabled.

13.6. MySQL Compound-Statement Syntax

 This section describes the syntax for the
 BEGIN ... END
 compound statement and other statements that can be used in the body
 of stored programs: Stored procedures and functions and triggers.
 These objects are defined in terms of SQL code that is stored on the
 server for later invocation (see
 Chapter 18, Stored Programs and Views).

 A compound statement is a block that can contain other blocks;
 declarations for variables, condition handlers, and cursors; and
 flow control constructs such as loops and conditional tests.

13.6.1. BEGIN ... END
 Compound-Statement Syntax

[begin_label:] BEGIN
 [statement_list]
END [end_label]

 BEGIN ... END
 syntax is used for writing compound statements, which can appear
 within stored programs (stored procedures and functions, and
 triggers). A compound statement can contain multiple statements,
 enclosed by the BEGIN and
 END keywords.
 statement_list represents a list of one
 or more statements, each terminated by a semicolon
 (;) statement delimiter. The
 statement_list itself is optional, so
 the empty compound statement (BEGIN END) is
 legal.

 BEGIN ... END
 blocks can be nested.

 Use of multiple statements requires that a client is able to send
 statement strings containing the ; statement
 delimiter. In the mysql command-line client,
 this is handled with the delimiter command.
 Changing the ; end-of-statement delimiter (for
 example, to //) permit ; to
 be used in a program body. For an example, see
 Section 18.1, “Defining Stored Programs”.

 A BEGIN ...
 END block can be labeled. See
 Section 13.6.2, “Statement Label Syntax”.

 The optional [NOT] ATOMIC clause is not
 supported. This means that no transactional savepoint is set at
 the start of the instruction block and the
 BEGIN clause used in this context has no effect
 on the current transaction.

Note

 Within all stored programs, the parser treats
 BEGIN [WORK]
 as the beginning of a
 BEGIN ...
 END block. To begin a transaction in this context, use
 START
 TRANSACTION instead.

13.6.2. Statement Label Syntax

[begin_label:] BEGIN
 [statement_list]
END [end_label]

[begin_label:] LOOP
 statement_list
END LOOP [end_label]

[begin_label:] REPEAT
 statement_list
UNTIL search_condition
END REPEAT [end_label]

[begin_label:] WHILE search_condition DO
 statement_list
END WHILE [end_label]

 Labels are permitted for
 BEGIN ... END
 blocks and for the LOOP,
 REPEAT, and
 WHILE statements. Label use for
 those statements follows these rules:

	
 begin_label must be followed by a
 colon.

	
 begin_label can be given without
 end_label. If
 end_label is present, it must be
 the same as begin_label.

	
 end_label cannot be given without
 begin_label.

	
 Labels at the same nesting level must be distinct.

	
 Labels can be up to 16 characters long.

 To refer to a label within the labeled construct, use an
 ITERATE or
 LEAVE statement. The following
 example uses those statements to continue iterating or terminate
 the loop:

CREATE PROCEDURE doiterate(p1 INT)
BEGIN
 label1: LOOP
 SET p1 = p1 + 1;
 IF p1 < 10 THEN ITERATE label1; END IF;
 LEAVE label1;
 END LOOP label1;
END;

 The scope of a block label does not include the code for handlers
 declared within the block. For details, see
 Section 13.6.7.2, “DECLARE ...
 HANDLER Syntax”.

13.6.3. DECLARE Syntax

 The DECLARE statement is used to
 define various items local to a program:

	
 Local variables. See
 Section 13.6.4, “Variables in Stored Programs”.

	
 Conditions and handlers. See
 Section 13.6.7, “Condition Handling”.

	
 Cursors. See Section 13.6.6, “Cursors”.

 DECLARE is permitted only inside a
 BEGIN ... END
 compound statement and must be at its start, before any other
 statements.

 Declarations must follow a certain order. Cursor declarations must
 appear before handler declarations. Variable and condition
 declarations must appear before cursor or handler declarations.

13.6.4. Variables in Stored Programs

 System variables and user-defined variables can be used in stored
 programs, just as they can be used outside stored-program context.
 In addition, stored programs can use DECLARE to
 define local variables, and stored routines (procedures and
 functions) can be declared to take parameters that communicate
 values between the routine and its caller.

	
 To declare local variables, use the
 DECLARE
 statement, as described in
 Section 13.6.4.1, “Local Variable
 DECLARE
 Syntax”.

	
 Variables can be set directly with the
 SET
 statement. See Section 13.7.4, “SET Syntax”.

	
 Results from queries can be retrieved into local variables
 using SELECT ...
 INTO var_list or by
 opening a cursor and using
 FETCH ... INTO
 var_list. See
 Section 13.2.8.1, “SELECT ... INTO
 Syntax”, and Section 13.6.6, “Cursors”.

 For information about the scope of local variables and how MySQL
 resolves ambiguous names, see
 Section 13.6.4.2, “Local Variable Scope and Resolution”.

13.6.4.1. Local Variable
 DECLARE
 Syntax

DECLARE var_name [, var_name] ... type [DEFAULT value]

 This statement declares local variables within stored programs.
 To provide a default value for a variable, include a
 DEFAULT clause. The value can be specified as
 an expression; it need not be a constant. If the
 DEFAULT clause is missing, the initial value
 is NULL.

 Local variables are treated like stored routine parameters with
 respect to data type and overflow checking. See
 Section 13.1.9, “CREATE PROCEDURE and
 CREATE FUNCTION Syntax”.

 Variable declarations must appear before cursor or handler
 declarations.

 Local variable names are not case sensitive. Permissible
 characters and quoting rules are the same as for other
 identifiers, as described in Section 9.2, “Schema Object Names”.

 The scope of a local variable is the
 BEGIN ...
 END block within which it is declared. The variable
 can be referred to in blocks nested within the declaring block,
 except those blocks that declare a variable with the same name.

13.6.4.2. Local Variable Scope and Resolution

 The scope of a local variable is the
 BEGIN ...
 END block within which it is declared. The variable
 can be referred to in blocks nested within the declaring block,
 except those blocks that declare a variable with the same name.

 Because local variables are in scope only during stored program
 execution, references to them are not permitted in prepared
 statements created within a stored program. Prepared statement
 scope is the current session, not the stored program, so the
 statement could be executed after the program ends, at which
 point the variables would no longer be in scope. For example,
 SELECT ... INTO
 local_var cannot be used as
 a prepared statement. This restriction also applies to stored
 procedure and function parameters. See
 Section 13.5.1, “PREPARE Syntax”.

 A local variable should not have the same name as a table
 column. If an SQL statement, such as a
 SELECT ...
 INTO statement, contains a reference to a column and a
 declared local variable with the same name, MySQL currently
 interprets the reference as the name of a variable. Consider the
 following procedure definition:

CREATE PROCEDURE sp1 (x VARCHAR(5))
BEGIN
 DECLARE xname VARCHAR(5) DEFAULT 'bob';
 DECLARE newname VARCHAR(5);
 DECLARE xid INT;

 SELECT xname, id INTO newname, xid
 FROM table1 WHERE xname = xname;
 SELECT newname;
END;

 MySQL interprets xname in the
 SELECT statement as a reference
 to the xname variable
 rather than the xname
 column. Consequently, when the procedure
 sp1()is called, the
 newname variable returns the value
 'bob' regardless of the value of the
 table1.xname column.

 Similarly, the cursor definition in the following procedure
 contains a SELECT statement that
 refers to xname. MySQL interprets this as a
 reference to the variable of that name rather than a column
 reference.

CREATE PROCEDURE sp2 (x VARCHAR(5))
BEGIN
 DECLARE xname VARCHAR(5) DEFAULT 'bob';
 DECLARE newname VARCHAR(5);
 DECLARE xid INT;
 DECLARE done TINYINT DEFAULT 0;
 DECLARE cur1 CURSOR FOR SELECT xname, id FROM table1;
 DECLARE CONTINUE HANDLER FOR NOT FOUND SET done = 1;

 OPEN cur1;
 read_loop: LOOP
 FETCH FROM cur1 INTO newname, xid;
 IF done THEN LEAVE read_loop; END IF;
 SELECT newname;
 END LOOP;
 CLOSE cur1;
END;

 See also Section E.1, “Restrictions on Stored Programs”.

13.6.5. Flow Control Statements

 MySQL supports the IF,
 CASE,
 ITERATE,
 LEAVE
 LOOP,
 WHILE, and
 REPEAT constructs for flow control
 within stored programs. It also supports
 RETURN within stored functions.

 Many of these constructs contain other statements, as indicated by
 the grammar specifications in the following sections. Such
 constructs may be nested. For example, an
 IF statement might contain a
 WHILE loop, which itself contains a
 CASE statement.

 MySQL does not support FOR loops.

13.6.5.1. CASE Syntax

CASE case_value
 WHEN when_value THEN statement_list
 [WHEN when_value THEN statement_list] ...
 [ELSE statement_list]
END CASE

 Or:

CASE
 WHEN search_condition THEN statement_list
 [WHEN search_condition THEN statement_list] ...
 [ELSE statement_list]
END CASE

 The CASE statement for stored
 programs implements a complex conditional construct.

Note

 There is also a CASE
 expression, which differs from the
 CASE
 statement described here. See
 Section 12.4, “Control Flow Functions”. The
 CASE statement cannot have an
 ELSE NULL clause, and it is terminated with
 END CASE instead of END.

 For the first syntax, case_value is
 an expression. This value is compared to the
 when_value expression in each
 WHEN clause until one of them is equal. When
 an equal when_value is found, the
 corresponding THEN clause
 statement_list executes. If no
 when_value is equal, the
 ELSE clause
 statement_list executes, if there is
 one.

 This syntax cannot be used to test for equality with
 NULL because NULL = NULL
 is false. See Section 3.3.4.6, “Working with NULL Values”.

 For the second syntax, each WHEN clause
 search_condition expression is
 evaluated until one is true, at which point its corresponding
 THEN clause
 statement_list executes. If no
 search_condition is equal, the
 ELSE clause
 statement_list executes, if there is
 one.

 If no when_value or
 search_condition matches the value
 tested and the CASE statement
 contains no ELSE clause, a Case
 not found for CASE statement error results.

 Each statement_list consists of one
 or more SQL statements; an empty
 statement_list is not permitted.

 To handle situations where no value is matched by any
 WHEN clause, use an ELSE
 containing an empty
 BEGIN ...
 END block, as shown in this example. (The indentation
 used here in the ELSE clause is for purposes
 of clarity only, and is not otherwise significant.)

DELIMITER |

CREATE PROCEDURE p()
 BEGIN
 DECLARE v INT DEFAULT 1;

 CASE v
 WHEN 2 THEN SELECT v;
 WHEN 3 THEN SELECT 0;
 ELSE
 BEGIN
 END;
 END CASE;
 END;
 |

13.6.5.2. IF Syntax

IF search_condition THEN statement_list
 [ELSEIF search_condition THEN statement_list] ...
 [ELSE statement_list]
END IF

 The IF statement for stored
 programs implements a basic conditional construct.

Note

 There is also an IF()
 function, which differs from the
 IF
 statement described here. See
 Section 12.4, “Control Flow Functions”. The
 IF statement can have
 THEN, ELSE, and
 ELSEIF clauses, and it is terminated with
 END IF.

 If the search_condition evaluates to
 true, the corresponding THEN or
 ELSEIF clause
 statement_list executes. If no
 search_condition matches, the
 ELSE clause
 statement_list executes.

 Each statement_list consists of one
 or more SQL statements; an empty
 statement_list is not permitted.

 An IF ... END IF block, like all other
 flow-control blocks used within stored programs, must be
 terminated with a semicolon, as shown in this example:

DELIMITER //

CREATE FUNCTION SimpleCompare(n INT, m INT)
 RETURNS VARCHAR(20)

 BEGIN
 DECLARE s VARCHAR(20);

 IF n > m THEN SET s = '>';
 ELSEIF n = m THEN SET s = '=';
 ELSE SET s = '<';
 END IF;

 SET s = CONCAT(n, ' ', s, ' ', m);

 RETURN s;
 END //

DELIMITER ;

 As with other flow-control constructs, IF ... END
 IF blocks may be nested within other flow-control
 constructs, including other IF
 statements. Each IF must be
 terminated by its own END IF followed by a
 semicolon. You can use indentation to make nested flow-control
 blocks more easily readable by humans (although this is not
 required by MySQL), as shown here:

DELIMITER //

CREATE FUNCTION VerboseCompare (n INT, m INT)
 RETURNS VARCHAR(50)

 BEGIN
 DECLARE s VARCHAR(50);

 IF n = m THEN SET s = 'equals';
 ELSE
 IF n > m THEN SET s = 'greater';
 ELSE SET s = 'less';
 END IF;

 SET s = CONCAT('is ', s, ' than');
 END IF;

 SET s = CONCAT(n, ' ', s, ' ', m, '.');

 RETURN s;
 END //

DELIMITER ;

 In this example, the inner IF is
 evaluated only if n is not equal to
 m.

13.6.5.3. ITERATE Syntax

ITERATE label

 ITERATE can appear only within
 LOOP,
 REPEAT, and
 WHILE statements.
 ITERATE means “start the
 loop again.”

 For an example, see Section 13.6.5.5, “LOOP Syntax”.

13.6.5.4. LEAVE Syntax

LEAVE label

 This statement is used to exit the flow control construct that
 has the given label. If the label is for the outermost stored
 program block, LEAVE exits the
 program.

 LEAVE can be used within
 BEGIN ...
 END or loop constructs
 (LOOP,
 REPEAT,
 WHILE).

 For an example, see Section 13.6.5.5, “LOOP Syntax”.

13.6.5.5. LOOP Syntax

[begin_label:] LOOP
 statement_list
END LOOP [end_label]

 LOOP implements a simple loop
 construct, enabling repeated execution of the statement list,
 which consists of one or more statements, each terminated by a
 semicolon (;) statement delimiter. The
 statements within the loop are repeated until the loop is
 terminated. Usually, this is accomplished with a
 LEAVE statement. Within a stored
 function, RETURN can also be
 used, which exits the function entirely.

 Neglecting to include a loop-termination statement results in an
 infinite loop.

 A LOOP statement can be labeled.
 For the rules regarding label use, see
 Section 13.6.2, “Statement Label Syntax”.

 Example:

CREATE PROCEDURE doiterate(p1 INT)
BEGIN
 label1: LOOP
 SET p1 = p1 + 1;
 IF p1 < 10 THEN
 ITERATE label1;
 END IF;
 LEAVE label1;
 END LOOP label1;
 SET @x = p1;
END;

13.6.5.6. REPEAT Syntax

[begin_label:] REPEAT
 statement_list
UNTIL search_condition
END REPEAT [end_label]

 The statement list within a
 REPEAT statement is repeated
 until the search_condition expression
 is true. Thus, a REPEAT always
 enters the loop at least once.
 statement_list consists of one or
 more statements, each terminated by a semicolon
 (;) statement delimiter.

 A REPEAT statement can be
 labeled. For the rules regarding label use, see
 Section 13.6.2, “Statement Label Syntax”.

 Example:

mysql> delimiter //

mysql> CREATE PROCEDURE dorepeat(p1 INT)
 -> BEGIN
 -> SET @x = 0;
 -> REPEAT
 -> SET @x = @x + 1;
 -> UNTIL @x > p1 END REPEAT;
 -> END
 -> //
Query OK, 0 rows affected (0.00 sec)

mysql> CALL dorepeat(1000)//
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @x//
+------+
| @x |
+------+
| 1001 |
+------+
1 row in set (0.00 sec)

13.6.5.7. RETURN Syntax

RETURN expr

 The RETURN statement terminates
 execution of a stored function and returns the value
 expr to the function caller. There
 must be at least one RETURN
 statement in a stored function. There may be more than one if
 the function has multiple exit points.

 This statement is not used in stored procedures or triggers. The
 LEAVE statement can be used to
 exit a stored program of those types.

13.6.5.8. WHILE Syntax

[begin_label:] WHILE search_condition DO
 statement_list
END WHILE [end_label]

 The statement list within a WHILE
 statement is repeated as long as the
 search_condition expression is true.
 statement_list consists of one or
 more SQL statements, each terminated by a semicolon
 (;) statement delimiter.

 A WHILE statement can be labeled.
 For the rules regarding label use, see
 Section 13.6.2, “Statement Label Syntax”.

 Example:

CREATE PROCEDURE dowhile()
BEGIN
 DECLARE v1 INT DEFAULT 5;

 WHILE v1 > 0 DO
 ...
 SET v1 = v1 - 1;
 END WHILE;
END;

13.6.6. Cursors

 MySQL supports cursors inside stored programs. The syntax is as in
 embedded SQL. Cursors have these properties:

	
 Asensitive: The server may or may not make a copy of its
 result table

	
 Read only: Not updatable

	
 Nonscrollable: Can be traversed only in one direction and
 cannot skip rows

 Cursor declarations must appear before handler declarations and
 after variable and condition declarations.

 Example:

CREATE PROCEDURE curdemo()
BEGIN
 DECLARE done INT DEFAULT FALSE;
 DECLARE a CHAR(16);
 DECLARE b, c INT;
 DECLARE cur1 CURSOR FOR SELECT id,data FROM test.t1;
 DECLARE cur2 CURSOR FOR SELECT i FROM test.t2;
 DECLARE CONTINUE HANDLER FOR NOT FOUND SET done = TRUE;

 OPEN cur1;
 OPEN cur2;

 read_loop: LOOP
 FETCH cur1 INTO a, b;
 FETCH cur2 INTO c;
 IF done THEN
 LEAVE read_loop;
 END IF;
 IF b < c THEN
 INSERT INTO test.t3 VALUES (a,b);
 ELSE
 INSERT INTO test.t3 VALUES (a,c);
 END IF;
 END LOOP;

 CLOSE cur1;
 CLOSE cur2;
END;

13.6.6.1. Cursor CLOSE Syntax

CLOSE cursor_name

 This statement closes a previously opened cursor. For an
 example, see Section 13.6.6, “Cursors”.

 An error occurs if the cursor is not open.

 If not closed explicitly, a cursor is closed at the end of the
 BEGIN ...
 END block in which it was declared.

13.6.6.2. Cursor DECLARE
 Syntax

DECLARE cursor_name CURSOR FOR select_statement

 This statement declares a cursor and associates it with a
 SELECT statement that retrieves
 the rows to be traversed by the cursor. To fetch the rows later,
 use a FETCH statement. The number
 of columns retrieved by the
 SELECT statement must match the
 number of output variables specified in the
 FETCH statement.

 The SELECT statement cannot have
 an INTO clause.

 Cursor declarations must appear before handler declarations and
 after variable and condition declarations.

 A stored program may contain multiple cursor declarations, but
 each cursor declared in a given block must have a unique name.
 For an example, see Section 13.6.6, “Cursors”.

 For information available through
 SHOW statements, it is possible
 in many cases to obtain equivalent information by using a cursor
 with an INFORMATION_SCHEMA table.

13.6.6.3. Cursor FETCH Syntax

FETCH [[NEXT] FROM] cursor_name INTO var_name [, var_name] ...

 This statement fetches the next row for the
 SELECT statement associated with
 the specified cursor (which must be open), and advances the
 cursor pointer. If a row exists, the fetched columns are stored
 in the named variables. The number of columns retrieved by the
 SELECT statement must match the
 number of output variables specified in the
 FETCH statement.

 If no more rows are available, a No Data condition occurs with
 SQLSTATE value '02000'. To detect this
 condition, you can set up a handler for it (or for a
 NOT FOUND condition). For an example, see
 Section 13.6.6, “Cursors”.

13.6.6.4. Cursor OPEN Syntax

OPEN cursor_name

 This statement opens a previously declared cursor. For an
 example, see Section 13.6.6, “Cursors”.

13.6.7. Condition Handling

 Conditions may arise during stored program execution that require
 special handling, such as exiting the current program block or
 continuing execution. Handlers can be defined for general
 conditions such as warnings or exceptions, or for specific
 conditions such as a particular error code. Specific conditions
 can be assigned names and referred to that way in handlers.

 To name a condition, use the
 DECLARE ...
 CONDITION statement. To declare a handler, use the
 DECLARE ...
 HANDLER statement. See
 Section 13.6.7.1, “DECLARE ...
 CONDITION Syntax”, and
 Section 13.6.7.2, “DECLARE ...
 HANDLER Syntax”.

 Other statements related to conditions are
 SIGNAL, RESIGNAL, and
 GET DIAGNOSTICS. The SIGNAL
 and RESIGNAL statements are not supported until
 MySQL 5.5. The GET DIAGNOSTICS statement is not
 supported until MySQL 5.6.

13.6.7.1. DECLARE ...
 CONDITION Syntax

DECLARE condition_name CONDITION FOR condition_value

condition_value:
 mysql_error_code
 | SQLSTATE [VALUE] sqlstate_value

 The DECLARE
 ... CONDITION statement declares a named error
 condition, associating a name with a condition that needs
 specific handling. The name can be referred to in a subsequent
 DECLARE ...
 HANDLER statement (see
 Section 13.6.7.2, “DECLARE ...
 HANDLER Syntax”).

 Condition declarations must appear before cursor or handler
 declarations.

 The condition_value for
 DECLARE ...
 CONDITION can be a MySQL error code (a number) or an
 SQLSTATE value (a 5-character string literal). You should not
 use MySQL error code 0 or SQLSTATE values that begin with
 '00', because those indicate success rather
 than an error condition. For a list of MySQL error codes and
 SQLSTATE values, see Section C.3, “Server Error Codes and Messages”.

 Using names for conditions can help make stored program code
 clearer. For example, this handler applies to attempts to drop a
 nonexistent table, but that is apparent only if you know the
 meaning of MySQL error code 1051:

DECLARE CONTINUE HANDLER FOR 1051
 BEGIN
 -- body of handler
 END;

 By declaring a name for the condition, the purpose of the
 handler is more readily seen:

DECLARE no_such_table CONDITION FOR 1051;
DECLARE CONTINUE HANDLER FOR no_such_table
 BEGIN
 -- body of handler
 END;

 Here is a named condition for the same condition, but based on
 the corresponding SQLSTATE value rather than the MySQL error
 code:

DECLARE no_such_table CONDITION FOR SQLSTATE '42S02';
DECLARE CONTINUE HANDLER FOR no_such_table
 BEGIN
 -- body of handler
 END;

13.6.7.2. DECLARE ...
 HANDLER Syntax

DECLARE handler_action HANDLER
 FOR condition_value [, condition_value] ...
 statement

handler_action:
 CONTINUE
 | EXIT
 | UNDO

condition_value:
 mysql_error_code
 | SQLSTATE [VALUE] sqlstate_value
 | condition_name
 | SQLWARNING
 | NOT FOUND
 | SQLEXCEPTION

 The DECLARE ...
 HANDLER statement specifies a handler that deals with
 one or more conditions. If one of these conditions occurs, the
 specified statement executes.
 statement can be a simple statement
 such as SET var_name =
 value, or a compound
 statement written using BEGIN and
 END (see Section 13.6.1, “BEGIN ... END
 Compound-Statement Syntax”).

 Handler declarations must appear after variable or condition
 declarations.

 The handler_action value indicates
 what action the handler takes after execution of the handler
 statement:

	
 CONTINUE: Execution of the current
 program continues.

	
 EXIT: Execution terminates for the
 BEGIN ...
 END compound statement in which the handler is
 declared. This is true even if the condition occurs in an
 inner block.

	
 UNDO: Not supported.

 The condition_value for
 DECLARE ...
 HANDLER indicates the specific condition or class of
 conditions that activates the handler:

	
 A MySQL error code (a number) or an SQLSTATE value (a
 5-character string literal). You should not use MySQL error
 code 0 or SQLSTATE values that begin with
 '00', because those indicate success
 rather than an error condition. For a list of MySQL error
 codes and SQLSTATE values, see
 Section C.3, “Server Error Codes and Messages”.

	
 A condition name previously specified with
 DECLARE
 ... CONDITION. A condition name can be associated
 with a MySQL error code or SQLSTATE value. See
 Section 13.6.7.1, “DECLARE ...
 CONDITION Syntax”.

	
 SQLWARNING is shorthand for the class of
 SQLSTATE values that begin with '01'.

	
 NOT FOUND is shorthand for the class of
 SQLSTATE values that begin with '02'.
 This is relevant within the context of cursors and is used
 to control what happens when a cursor reaches the end of a
 data set. If no more rows are available, a No Data condition
 occurs with SQLSTATE value '02000'. To
 detect this condition, you can set up a handler for it (or
 for a NOT FOUND condition). For an
 example, see Section 13.6.6, “Cursors”. This condition also
 occurs for SELECT ... INTO
 var_list statements
 that retrieve no rows.

	
 SQLEXCEPTION is shorthand for the class
 of SQLSTATE values that do not begin with
 '00', '01', or
 '02'.

 If a condition occurs for which no handler has been declared,
 the action taken depends on the condition class:

	
 For SQLEXCEPTION conditions, the stored
 program terminates at the statement that raised the
 condition, as if there were an EXIT
 handler. If the program was called by another stored
 program, the calling program handles the condition using the
 handler selection rules applied to its own handlers.

	
 For SQLWARNING or NOT
 FOUND conditions, the program continues executing,
 as if there were a CONTINUE handler.

 The following example uses a handler for SQLSTATE
 '23000', which occurs for a duplicate-key error:

mysql> CREATE TABLE test.t (s1 INT, PRIMARY KEY (s1));
Query OK, 0 rows affected (0.00 sec)

mysql> delimiter //

mysql> CREATE PROCEDURE handlerdemo ()
 -> BEGIN
 -> DECLARE CONTINUE HANDLER FOR SQLSTATE '23000' SET @x2 = 1;
 -> SET @x = 1;
 -> INSERT INTO test.t VALUES (1);
 -> SET @x = 2;
 -> INSERT INTO test.t VALUES (1);
 -> SET @x = 3;
 -> END;
 -> //
Query OK, 0 rows affected (0.00 sec)

mysql> CALL handlerdemo()//
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @x//
 +------+
 | @x |
 +------+
 | 3 |
 +------+
 1 row in set (0.00 sec)

 Notice that @x is 3 after
 the procedure executes, which shows that execution continued to
 the end of the procedure after the error occurred. If the
 DECLARE ...
 HANDLER statement had not been present, MySQL would
 have taken the default action (EXIT) after
 the second INSERT failed due to
 the PRIMARY KEY constraint, and
 SELECT @x would have returned
 2.

 To ignore a condition, declare a CONTINUE
 handler for it and associate it with an empty block. For
 example:

DECLARE CONTINUE HANDLER FOR SQLWARNING BEGIN END;

 The scope of a block label does not include the code for
 handlers declared within the block. Therefore, the statement
 associated with a handler cannot use
 ITERATE or
 LEAVE to refer to labels for
 blocks that enclose the handler declaration. Consider the
 following example, where the
 REPEAT block has a label of
 retry:

CREATE PROCEDURE p ()
BEGIN
 DECLARE i INT DEFAULT 3;
 retry:
 REPEAT
 BEGIN
 DECLARE CONTINUE HANDLER FOR SQLWARNING
 BEGIN
 ITERATE retry; # illegal
 END;
 IF i < 0 THEN
 LEAVE retry; # legal
 END IF;
 SET i = i - 1;
 END;
 UNTIL FALSE END REPEAT;
END;

 The retry label is in scope for the
 IF statement within the block. It
 is not in scope for the CONTINUE handler, so
 the reference there is invalid and results in an error:

ERROR 1308 (42000): LEAVE with no matching label: retry

 To avoid references to outer labels in handlers, use one of
 these strategies:

	
 To leave the block, use an EXIT handler.
 If no block cleanup is required, the
 BEGIN ...
 END handler body can be empty:

DECLARE EXIT HANDLER FOR SQLWARNING BEGIN END;

 Otherwise, put the cleanup statements in the handler body:

DECLARE EXIT HANDLER FOR SQLWARNING
 BEGIN
 block cleanup statements
 END;

	
 To continue execution, set a status variable in a
 CONTINUE handler that can be checked in
 the enclosing block to determine whether the handler was
 invoked. The following example uses the variable
 done for this purpose:

CREATE PROCEDURE p ()
BEGIN
 DECLARE i INT DEFAULT 3;
 DECLARE done INT DEFAULT FALSE;
 retry:
 REPEAT
 BEGIN
 DECLARE CONTINUE HANDLER FOR SQLWARNING
 BEGIN
 SET done = TRUE;
 END;
 IF done OR i < 0 THEN
 LEAVE retry;
 END IF;
 SET i = i - 1;
 END;
 UNTIL FALSE END REPEAT;
END;

22.3. MySQL Enterprise Security

 MySQL Enterprise Edition provides plugins that implement
 authentication using external services:

	
 MySQL Enterprise Edition includes an authentication plugin
 that enables MySQL Server to use PAM (Pluggable Authentication
 Modules) to authenticate MySQL users. PAM enables a system to
 use a standard interface to access various kinds of
 authentication methods, such as Unix passwords or an LDAP
 directory.

	
 MySQL Enterprise Edition includes an authentication plugin
 that performs external authentication on Windows, enabling
 MySQL Server to use native Windows services to authenticate
 client connections. Users who have logged in to Windows can
 connect from MySQL client programs to the server based on the
 information in their environment without specifying an
 additional password.

 For more information, see
 The PAM Authentication Plugin, and
 The Windows Native Authentication Plugin.

11.3. Date and Time Types

 The date and time types for representing temporal values are
 DATE,
 TIME,
 DATETIME,
 TIMESTAMP, and
 YEAR. Each temporal type has a
 range of legal values, as well as a “zero” value that
 may be used when you specify an illegal value that MySQL cannot
 represent. The TIMESTAMP type has
 special automatic updating behavior, described later. For temporal
 type storage requirements, see
 Section 11.6, “Data Type Storage Requirements”.

 Keep in mind these general considerations when working with date
 and time types:

	
 MySQL retrieves values for a given date or time type in a
 standard output format, but it attempts to interpret a variety
 of formats for input values that you supply (for example, when
 you specify a value to be assigned to or compared to a date or
 time type). For a description of the permitted formats for
 date and time types, see
 Section 9.1.3, “Date and Time Literals”. It is expected that
 you supply legal values. Unpredictable results may occur if
 you use values in other formats.

	
 Although MySQL tries to interpret values in several formats,
 date parts must always be given in year-month-day order (for
 example, '98-09-04'), rather than in the
 month-day-year or day-month-year orders commonly used
 elsewhere (for example, '09-04-98',
 '04-09-98').

	
 Dates containing two-digit year values are ambiguous because
 the century is unknown. MySQL interprets two-digit year values
 using these rules:

	
 Year values in the range 70-99 are
 converted to 1970-1999.

	
 Year values in the range 00-69 are
 converted to 2000-2069.

 See also Section 11.3.8, “Two-Digit Years in Dates”.

	
 Conversion of values from one temporal type to another occurs
 according to the rules in
 Section 11.3.7, “Conversion Between Date and Time Types”.

	
 MySQL automatically converts a date or time value to a number
 if the value is used in a numeric context and vice versa.

	
 By default, when MySQL encounters a value for a date or time
 type that is out of range or otherwise illegal for the type,
 it converts the value to the “zero” value for
 that type. The exception is that out-of-range
 TIME values are clipped to the
 appropriate endpoint of the
 TIME range.

	
 Starting from MySQL 5.0.2, by setting the SQL mode to the
 appropriate value, you can specify more exactly what kind of
 dates you want MySQL to support. (See
 Section 5.1.7, “Server SQL Modes”.) You can get MySQL to accept
 certain dates, such as '2009-11-31', by
 enabling the
 ALLOW_INVALID_DATES SQL
 mode. (Before 5.0.2, this mode was the default behavior for
 MySQL.) This is useful when you want to store a
 “possibly wrong” value which the user has
 specified (for example, in a web form) in the database for
 future processing. Under this mode, MySQL verifies only that
 the month is in the range from 1 to 12 and that the day is in
 the range from 1 to 31.

	
 MySQL permits you to store dates where the day or month and
 day are zero in a DATE or
 DATETIME column. This is useful
 for applications that need to store birthdates for which you
 may not know the exact date. In this case, you simply store
 the date as '2009-00-00' or
 '2009-01-00'. If you store dates such as
 these, you should not expect to get correct results for
 functions such as DATE_SUB() or
 DATE_ADD() that require
 complete dates. To disallow zero month or day parts in dates,
 enable the NO_ZERO_IN_DATE
 SQL mode.

	
 MySQL permits you to store a “zero” value of
 '0000-00-00' as a “dummy
 date.” This is in some cases more convenient than using
 NULL values, and uses less data and index
 space. To disallow '0000-00-00', enable the
 NO_ZERO_DATE SQL mode.

	
 “Zero” date or time values used through
 Connector/ODBC are converted automatically to
 NULL because ODBC cannot handle such
 values.

 The following table shows the format of the “zero”
 value for each type. The “zero” values are special,
 but you can store or refer to them explicitly using the values
 shown in the table. You can also do this using the values
 '0' or 0, which are easier
 to write. For temporal types that include a date part
 (DATE,
 DATETIME, and
 TIMESTAMP), use of these values
 produces warnings if the
 NO_ZERO_DATE SQL mode is
 enabled.

	Data Type	“Zero” Value
	DATE	'0000-00-00'
	TIME	'00:00:00'
	DATETIME	'0000-00-00 00:00:00'
	TIMESTAMP	'0000-00-00 00:00:00'
	YEAR	0000

11.3.1. The DATE, DATETIME, and
 TIMESTAMP Types

 The DATE, DATETIME, and
 TIMESTAMP types are related. This section
 describes their characteristics, how they are similar, and how
 they differ. MySQL recognizes DATE,
 DATETIME, and TIMESTAMP
 values in several formats, described in
 Section 9.1.3, “Date and Time Literals”. For the
 DATE and DATETIME range
 descriptions, “supported” means that although
 earlier values might work, there is no guarantee.

 The DATE type is used for values with a date
 part but no time part. MySQL retrieves and displays
 DATE values in
 'YYYY-MM-DD' format. The supported range is
 '1000-01-01' to
 '9999-12-31'.

 The DATETIME type is used for values that
 contain both date and time parts. MySQL retrieves and displays
 DATETIME values in 'YYYY-MM-DD
 HH:MM:SS' format. The supported range is
 '1000-01-01 00:00:00' to '9999-12-31
 23:59:59'.

 The TIMESTAMP data type is used for values
 that contain both date and time parts.
 TIMESTAMP has a range of '1970-01-01
 00:00:01' UTC to '2038-01-19
 03:14:07' UTC.

 MySQL converts TIMESTAMP values from the
 current time zone to UTC for storage, and back from UTC to the
 current time zone for retrieval. (This does not occur for other
 types such as DATETIME.) By default, the
 current time zone for each connection is the server's time. The
 time zone can be set on a per-connection basis. As long as the
 time zone setting remains constant, you get back the same value
 you store. If you store a TIMESTAMP value,
 and then change the time zone and retrieve the value, the
 retrieved value is different from the value you stored. This
 occurs because the same time zone was not used for conversion in
 both directions. The current time zone is available as the value
 of the time_zone system
 variable. For more information, see
 Section 10.6, “MySQL Server Time Zone Support”.

 The TIMESTAMP data type offers automatic
 initialization and updating to the current date and time. For
 more information, see
 Section 11.3.5, “Automatic Initialization and Updating for
 TIMESTAMP”.

 A DATETIME or TIMESTAMP
 value can include a trailing fractional seconds part in up to
 microseconds (6 digits) precision. Although this fractional part
 is recognized, it is discarded from values stored into
 DATETIME or TIMESTAMP
 columns. For information about fractional seconds support in
 MySQL, see Section 11.3.6, “Fractional Seconds in Time Values”.

 Illegal DATE, DATETIME, or
 TIMESTAMP values are converted to the
 “zero” value of the appropriate type
 ('0000-00-00' or '0000-00-00
 00:00:00').

 Be aware of certain properties of date value interpretation in
 MySQL:

	
 MySQL permits a “relaxed” format for values
 specified as strings, in which any punctuation character may
 be used as the delimiter between date parts or time parts.
 In some cases, this syntax can be deceiving. For example, a
 value such as '10:11:12' might look like
 a time value because of the
 “:” delimiter, but is
 interpreted as the year '2010-11-12' if
 used in a date context. The value
 '10:45:15' is converted to
 '0000-00-00' because
 '45' is not a legal month.

	
 As of 5.0.2, the server requires that month and day values
 be legal, and not merely in the range 1 to 12 and 1 to 31,
 respectively. With strict mode disabled, invalid dates such
 as '2004-04-31' are converted to
 '0000-00-00' and a warning is generated.
 With strict mode enabled, invalid dates generate an error.
 To permit such dates, enable
 ALLOW_INVALID_DATES. See
 Section 5.1.7, “Server SQL Modes”, for more information.

 Before MySQL 5.0.2, the MySQL server performs only basic
 checking on the validity of a date: The ranges for year,
 month, and day are 1000 to 9999, 00 to 12, and 00 to 31,
 respectively. Any date containing parts not within these
 ranges is subject to conversion to
 '0000-00-00'. Please note that this still
 permits you to store invalid dates such as
 '2002-04-31'. To ensure that a date is
 valid, you should perform a check in your application.

	
 As of MySQL 5.0.2, MySQL does not accept
 TIMESTAMP values that include a zero in
 the day or month column or values that are not a valid date.
 The sole exception to this rule is the special
 “zero” value '0000-00-00
 00:00:00'.

	
 Dates containing two-digit year values are ambiguous because
 the century is unknown. MySQL interprets two-digit year
 values using these rules:

	
 Year values in the range 00-69 are
 converted to 2000-2069.

	
 Year values in the range 70-99 are
 converted to 1970-1999.

 See also Section 11.3.8, “Two-Digit Years in Dates”.

Note

 The MySQL server can be run with the
 MAXDB SQL mode enabled. In
 this case, TIMESTAMP is identical with
 DATETIME. If this mode is enabled at the
 time that a table is created, TIMESTAMP
 columns are created as DATETIME columns. As
 a result, such columns use DATETIME display
 format, have the same range of values, and there is no
 automatic initialization or updating to the current date and
 time. See Section 5.1.7, “Server SQL Modes”.

11.3.2. The TIME Type

 MySQL retrieves and displays TIME values in
 'HH:MM:SS' format (or
 'HHH:MM:SS' format for large hours values).
 TIME values may range from
 '-838:59:59' to
 '838:59:59'. The hours part may be so large
 because the TIME type can be used not only to
 represent a time of day (which must be less than 24 hours), but
 also elapsed time or a time interval between two events (which
 may be much greater than 24 hours, or even negative).

 MySQL recognizes TIME values in several
 formats, described in Section 9.1.3, “Date and Time Literals”.
 Some of these formats can include a trailing fractional seconds
 part in up to microseconds (6 digits) precision. Although this
 fractional part is recognized, it is discarded from values
 stored into TIME columns. For information
 about fractional seconds support in MySQL, see
 Section 11.3.6, “Fractional Seconds in Time Values”.

 Be careful about assigning abbreviated values to a
 TIME column. MySQL interprets abbreviated
 TIME values with colons as time of the day.
 That is, '11:12' means
 '11:12:00', not
 '00:11:12'. MySQL interprets abbreviated
 values without colons using the assumption that the two
 rightmost digits represent seconds (that is, as elapsed time
 rather than as time of day). For example, you might think of
 '1112' and 1112 as meaning
 '11:12:00' (12 minutes after 11 o'clock), but
 MySQL interprets them as '00:11:12' (11
 minutes, 12 seconds). Similarly, '12' and
 12 are interpreted as
 '00:00:12'.

 By default, values that lie outside the TIME
 range but are otherwise legal are clipped to the closest
 endpoint of the range. For example,
 '-850:00:00' and
 '850:00:00' are converted to
 '-838:59:59' and
 '838:59:59'. Illegal TIME
 values are converted to '00:00:00'. Note that
 because '00:00:00' is itself a legal
 TIME value, there is no way to tell, from a
 value of '00:00:00' stored in a table,
 whether the original value was specified as
 '00:00:00' or whether it was illegal.

 For more restrictive treatment of invalid
 TIME values, enable strict SQL mode to cause
 errors to occur. See Section 5.1.7, “Server SQL Modes”.

11.3.3. The YEAR Type

 The YEAR type is a 1-byte type used to
 represent year values. It can be declared as
 YEAR(4) or YEAR(2) to
 specify a display width of four or two characters. The default
 is four characters if no width is given.

Note

 The YEAR(2) data type has certain issues
 that you should consider before choosing to use it. For more
 information, see Section 11.3.4, “YEAR(2) Limitations and Migrating to
 YEAR(4)”.

 YEAR(4) and YEAR(2) differ
 in display format, but have the same range of values. For
 4-digit format, MySQL displays YEAR values in
 YYYY format, with a range of
 1901 to 2155, or
 0000. For 2-digit format, MySQL displays only
 the last two (least significant) digits; for example,
 70 (1970 or 2070) or 69
 (2069).

 You can specify input YEAR values in a
 variety of formats:

	
 As a 4-digit string in the range '1901'
 to '2155'.

	
 As a 4-digit number in the range 1901 to
 2155.

	
 As a 1- or 2-digit string in the range
 '0' to '99'. Values in
 the ranges '0' to '69'
 and '70' to '99' are
 converted to YEAR values in the ranges
 2000 to 2069 and
 1970 to 1999.

	
 As a 1- or 2-digit number in the range 1
 to 99. Values in the ranges
 1 to 69 and
 70 to 99 are converted
 to YEAR values in the ranges
 2001 to 2069 and
 1970 to 1999.

 Inserting a numeric 0 has a different
 effect for YEAR(2) and
 YEAR(4). For YEAR(2),
 the result has a display value of 00 and
 an internal value of 2000. For
 YEAR(4), the result has a display value
 of 0000 and an internal value of
 0000. To specify zero for
 YEAR(4) and have it be interpreted as
 2000, specify it as a string
 '0' or '00'.

	
 As the result of a function that returns a value that is
 acceptable in a YEAR context, such as
 NOW().

 Illegal YEAR values are converted to
 0000.

 See also Section 11.3.8, “Two-Digit Years in Dates”.

11.3.4. YEAR(2) Limitations and Migrating to
 YEAR(4)

 Although the internal range of values for
 YEAR(4) and
 YEAR(2) is the same
 (1901 to 2155, and
 0000), the display width for
 YEAR(2) makes that type
 inherently ambiguous because displayed values indicate only the
 last two digits of the internal values. The result can be a loss
 of information under certain circumstances. For this reason,
 consider avoiding YEAR(2)
 throughout your applications and using
 YEAR(4) wherever you need a
 YEAR data type. This section
 describes problems that can occur when using
 YEAR(2) and provides information
 about migrating existing YEAR(2)
 columns to YEAR(4). Note that
 migration will become necessary at some point because support
 for YEAR data types with display
 values other than 4, most notably
 YEAR(2), is reduced as of MySQL
 5.6.6 and will be removed entirely in a future release.

 YEAR(2) Limitations

 Issues with the YEAR(2) data type
 include ambiguity of displayed values, and possible loss of
 information when values are dumped and reloaded or converted to
 strings.

	
 Displayed YEAR(2) values can
 be ambiguous. It is possible for up to three
 YEAR(2) values that have
 different internal values to have the same displayed value,
 as the following example demonstrates:

mysql> CREATE TABLE t (y2 YEAR(2), y4 YEAR(4));
Query OK, 0 rows affected (0.01 sec)

mysql> INSERT INTO t (y2) VALUES(1912),(2012),(2112);
Query OK, 3 rows affected (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 0

mysql> UPDATE t SET y4 = y2;
Query OK, 3 rows affected (0.00 sec)
Rows matched: 3 Changed: 3 Warnings: 0

mysql> SELECT * FROM t;
+------+------+
| y2 | y4 |
+------+------+
12	1912
12	2012
12	2112
+------+------+
3 rows in set (0.00 sec)

	
 If you use mysqldump to dump the table
 created in the preceding item, the dump file represents all
 y2 values using the same 2-digit
 representation (12). If you reload the
 table from the dump file, all resulting rows have internal
 value 2012 and display value
 12, thus losing the distinctions among
 them.

	
 Conversion of a YEAR(2) or
 YEAR(4) data value to string
 form uses the display width of the
 YEAR type. Suppose that
 YEAR(2) and
 YEAR(4) columns both contain
 the value 1970. Assigning each column to
 a string results in a value of '70' or
 '1970', respectively. That is, loss of
 information occurs for conversion from
 YEAR(2) to string.

	
 Values outside the range from 1970 to
 2069 are stored incorrectly when inserted
 into a YEAR(2) column in a
 CSV table. For example,
 inserting 2111 results in a display value
 of 11 but an internal value of
 2011.

 To avoid these problems, use
 YEAR(4) rather than
 YEAR(2). Suggestions regarding
 migration strategies appear later in this section.

 Migrating from YEAR(2) to YEAR(4)

 Should you decide to convert
 YEAR(2) columns to
 YEAR(4), use
 ALTER TABLE. Suppose that a table
 t1 has this definition:

CREATE TABLE t1 (ycol YEAR(2) NOT NULL DEFAULT '70');

 Modify the column using ALTER TABLE as
 follows. Remember to include any column attributes such as
 NOT NULL or DEFAULT:

ALTER TABLE t1 MODIFY ycol YEAR(4) NOT NULL DEFAULT '1970';

 The ALTER TABLE statement
 converts the table without changing
 YEAR(2) values. If the server is
 a replication master, the ALTER
 TABLE statement replicates to slaves and makes the
 corresponding table change on each one.

 One migration method should be avoided: Do not dump your data
 with mysqldump and reload the dump file after
 upgrading. This has the potential to change
 YEAR(2) values, as described
 previously.

 A migration from YEAR(2) to
 YEAR(4) should also involve
 examining application code for the possibility of changed
 behavior under conditions such as these:

	
 Code that expects selecting a
 YEAR column to produce
 exactly two digits.

	
 Code that does not account for different handling for
 inserts of numeric 0: Inserting
 0 into
 YEAR(2) or
 YEAR(4) results in an
 internal value of 2000 or
 0000, respectively.

11.3.5. Automatic Initialization and Updating for
 TIMESTAMP

Note

 In older versions of MySQL (prior to 4.1), the properties of
 the TIMESTAMP data type
 differed significantly in several ways from what is described
 in this section (see the MySQL 3.23, 4.0, 4.1
 Reference Manual for details); these include
 syntax extensions which are deprecated in MySQL 5.1, and no
 longer supported in MySQL 5.5. This has implications for
 performing a dump and restore or replicating between MySQL
 Server versions. If you are using columns that are defined
 using the old TIMESTAMP(N)
 syntax, see Section 2.19.1.2, “Upgrading from MySQL 4.1 to 5.0”,
 prior to upgrading to MySQL 5.1 or later.

 The TIMESTAMP data type offers
 automatic initialization and updating to the current date and
 time (that is, the current timestamp). You can choose whether to
 use these properties and which column should have them:

	
 One TIMESTAMP column in a
 table can have the current timestamp as the default value
 for initializing the column, as the auto-update value, or
 both. It is not possible to have the current timestamp be
 the default value for one column and the auto-update value
 for another column.

	
 If the column is auto-initialized, it is set to the current
 timestamp for inserted rows that specify no value for the
 column.

	
 If the column is auto-updated, it is automatically updated
 to the current timestamp when the value of any other column
 in the row is changed from its current value. The column
 remains unchanged if all other columns are set to their
 current values. To prevent the column from updating when
 other columns change, explicitly set it to its current
 value. To update the column even when other columns do not
 change, explicitly set it to the value it should have (for
 example, set it to
 CURRENT_TIMESTAMP).

 In addition, you can initialize or update any
 TIMESTAMP column to the current
 date and time by assigning it a NULL value,
 unless it has been defined with the NULL
 attribute to permit NULL values.

 To specify automatic properties, use the DEFAULT
 CURRENT_TIMESTAMP and ON UPDATE
 CURRENT_TIMESTAMP clauses. The order of the clauses
 does not matter. If both are present in a column definition,
 either can occur first. Any of the synonyms for
 CURRENT_TIMESTAMP have the same
 meaning as CURRENT_TIMESTAMP.
 These are CURRENT_TIMESTAMP(),
 NOW(),
 LOCALTIME,
 LOCALTIME(),
 LOCALTIMESTAMP, and
 LOCALTIMESTAMP().

 Use of DEFAULT CURRENT_TIMESTAMP and
 ON UPDATE CURRENT_TIMESTAMP is specific to
 TIMESTAMP. The
 DEFAULT clause also can be used to specify a
 constant (nonautomatic) default value; for example,
 DEFAULT 0 or DEFAULT '2000-01-01
 00:00:00'.

Note

 The following examples that use DEFAULT 0
 do not work if the
 NO_ZERO_DATE SQL mode is
 enabled because that mode causes “zero” date
 values (specified, for example, as 0
 '0000-00-00 00:00:00') to be rejected. Be
 aware that the TRADITIONAL
 SQL mode includes
 NO_ZERO_DATE.

 The following rules describe the possibilities for defining the
 first TIMESTAMP column in a table
 with the current timestamp for both the default and auto-update
 values, for one but not the other, or for neither:

	
 With both DEFAULT CURRENT_TIMESTAMP and
 ON UPDATE CURRENT_TIMESTAMP, the column
 has the current timestamp for its default value and is
 automatically updated to the current timestamp.

CREATE TABLE t1 (
 ts TIMESTAMP DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP
);

	
 With neither DEFAULT CURRENT_TIMESTAMP
 nor ON UPDATE CURRENT_TIMESTAMP, it is
 the same as specifying both DEFAULT
 CURRENT_TIMESTAMP and ON UPDATE
 CURRENT_TIMESTAMP.

CREATE TABLE t1 (
 ts TIMESTAMP
);

	
 With a DEFAULT clause but no ON
 UPDATE CURRENT_TIMESTAMP clause, the column has
 the given default value and is not automatically updated to
 the current timestamp.

 The default depends on whether the
 DEFAULT clause specifies
 CURRENT_TIMESTAMP or a constant value.
 With CURRENT_TIMESTAMP, the default is
 the current timestamp.

CREATE TABLE t1 (
 ts TIMESTAMP DEFAULT CURRENT_TIMESTAMP
);

 With a constant, the default is the given value. In this
 case, the column has no automatic properties at all.

CREATE TABLE t1 (
 ts TIMESTAMP DEFAULT 0
);

	
 With an ON UPDATE CURRENT_TIMESTAMP
 clause and a constant DEFAULT clause, the
 column is automatically updated to the current timestamp and
 has the given constant default value.

CREATE TABLE t1 (
 ts TIMESTAMP DEFAULT 0 ON UPDATE CURRENT_TIMESTAMP
);

	
 With an ON UPDATE CURRENT_TIMESTAMP
 clause but no DEFAULT clause, the column
 is automatically updated to the current timestamp. The
 default is 0 unless the column is defined with the
 NULL attribute, in which case the default
 is NULL.

CREATE TABLE t1 (
 ts TIMESTAMP ON UPDATE CURRENT_TIMESTAMP -- default 0
);
CREATE TABLE t2 (
 ts TIMESTAMP NULL ON UPDATE CURRENT_TIMESTAMP -- default NULL
);

 It need not be the first
 TIMESTAMP column in a table that
 is automatically initialized or updated to the current
 timestamp. However, to specify automatic initialization or
 updating for a different
 TIMESTAMP column, you must
 suppress the automatic properties for the first one. Then, for
 the other TIMESTAMP column, the
 rules for the DEFAULT and ON
 UPDATE clauses are the same as for the first
 TIMESTAMP column, except that if
 you omit both clauses, no automatic initialization or updating
 occurs.

 To suppress automatic properties for the first
 TIMESTAMP column, do either of
 the following:

	
 Define the column with a DEFAULT clause
 that specifies a constant default value.

	
 Specify the NULL attribute. This also
 causes the column to permit NULL values,
 which means that you cannot assign the current timestamp by
 setting the column to NULL. Assigning
 NULL sets the column to
 NULL.

 Consider these table definitions:

CREATE TABLE t1 (
 ts1 TIMESTAMP DEFAULT 0,
 ts2 TIMESTAMP DEFAULT CURRENT_TIMESTAMP
 ON UPDATE CURRENT_TIMESTAMP);
CREATE TABLE t2 (
 ts1 TIMESTAMP NULL,
 ts2 TIMESTAMP DEFAULT CURRENT_TIMESTAMP
 ON UPDATE CURRENT_TIMESTAMP);
CREATE TABLE t3 (
 ts1 TIMESTAMP NULL DEFAULT 0,
 ts2 TIMESTAMP DEFAULT CURRENT_TIMESTAMP
 ON UPDATE CURRENT_TIMESTAMP);

 The tables have these properties:

	
 In each table definition, the first
 TIMESTAMP column has no
 automatic initialization or updating.

	
 The tables differ in how the ts1 column
 handles NULL values. For
 t1, ts1 is
 NOT NULL and assigning it a value of
 NULL sets it to the current timestamp.
 For t2 and t3,
 ts1 permits NULL and
 assigning it a value of NULL sets it to
 NULL.

	
 t2 and t3 differ in
 the default value for ts1. For
 t2, ts1 is defined to
 permit NULL, so the default is also
 NULL in the absence of an explicit
 DEFAULT clause. For
 t3, ts1 permits
 NULL but has an explicit default of 0.

 TIMESTAMP Initialization and the NULL Attribute

 By default, TIMESTAMP columns are
 NOT NULL, cannot contain
 NULL values, and assigning
 NULL assigns the current timestamp. To permit
 a TIMESTAMP column to contain
 NULL, explicitly declare it with the
 NULL attribute. In this case, the default
 value also becomes NULL unless overridden
 with a DEFAULT clause that specifies a
 different default value. DEFAULT NULL can be
 used to explicitly specify NULL as the
 default value. (For a TIMESTAMP
 column not declared with the NULL attribute,
 DEFAULT NULL is illegal.) If a
 TIMESTAMP column permits
 NULL values, assigning
 NULL sets it to NULL, not
 to the current timestamp.

 The following table contains several
 TIMESTAMP columns that permit
 NULL values:

CREATE TABLE t
(
 ts1 TIMESTAMP NULL DEFAULT NULL,
 ts2 TIMESTAMP NULL DEFAULT 0,
 ts3 TIMESTAMP NULL DEFAULT CURRENT_TIMESTAMP
);

 A TIMESTAMP column that permits
 NULL values does not
 take on the current timestamp at insert time except under one of
 the following conditions:

	
 Its default value is defined as
 CURRENT_TIMESTAMP and no
 value is specified for the column

	
 CURRENT_TIMESTAMP or any of
 its synonyms such as NOW() is
 explicitly inserted into the column

 In other words, a TIMESTAMP
 column defined to permit NULL values
 auto-initializes only if its definition includes
 DEFAULT CURRENT_TIMESTAMP:

CREATE TABLE t (ts TIMESTAMP NULL DEFAULT CURRENT_TIMESTAMP);

 If the TIMESTAMP column permits
 NULL values but its definition does not
 include DEFAULT CURRENT_TIMESTAMP, you must
 explicitly insert a value corresponding to the current date and
 time. Suppose that tables t1 and
 t2 have these definitions:

CREATE TABLE t1 (ts TIMESTAMP NULL DEFAULT '0000-00-00 00:00:00');
CREATE TABLE t2 (ts TIMESTAMP NULL DEFAULT NULL);

 To set the TIMESTAMP column in
 either table to the current timestamp at insert time, explicitly
 assign it that value. For example:

INSERT INTO t1 VALUES (NOW());
INSERT INTO t2 VALUES (CURRENT_TIMESTAMP);

11.3.6. Fractional Seconds in Time Values

 A trailing fractional seconds part is permissible for temporal
 values in contexts such as literal values, and in the arguments
 to or return values from some temporal functions. Example:

mysql> SELECT MICROSECOND('2010-12-10 14:12:09.019473');
+---+
| MICROSECOND('2010-12-10 14:12:09.019473') |
+---+
| 19473 |
+---+

 However, when MySQL stores a value into a column of any temporal
 data type, it discards any fractional part and does not store
 it.

11.3.7. Conversion Between Date and Time Types

 To some extent, you can convert a value from one temporal type
 to another. However, there may be some alteration of the value
 or loss of information. In all cases, conversion between
 temporal types is subject to the range of legal values for the
 resulting type. For example, although
 DATE,
 DATETIME, and
 TIMESTAMP values all can be
 specified using the same set of formats, the types do not all
 have the same range of values.
 TIMESTAMP values cannot be
 earlier than 1970 UTC or later than
 '2038-01-19 03:14:07' UTC. This means that a
 date such as '1968-01-01', while legal as a
 DATE or
 DATETIME value, is not valid as a
 TIMESTAMP value and is converted
 to 0.

 Conversion of DATE values:

	
 Conversion to a DATETIME or
 TIMESTAMP value adds a time
 part of '00:00:00' because the
 DATE value contains no time
 information.

	
 Conversion to a TIME value is
 not useful; the result is '00:00:00'.

 Conversion of DATETIME and
 TIMESTAMP values:

	
 Conversion to a DATE value
 discards the time part because the
 DATE type contains no time
 information.

	
 Conversion to a TIME value
 discards the date part because the
 TIME type contains no date
 information.

 Conversion of TIME values:

 MySQL converts a time value to a date or date-and-time value by
 parsing the string value of the time as a date or date-and-time.
 This is unlikely to be useful. For example,
 '23:12:31' interpreted as a date becomes
 '2032-12-31'. Time values not valid as dates
 become '0000-00-00' or
 NULL.

 Prior to MySQL 5.0.42, when DATE
 values are compared with DATETIME
 values, the time portion of the
 DATETIME value is ignored, or the
 comparison could be performed as a string compare. Starting from
 MySQL 5.0.42, a DATE value is
 coerced to the DATETIME type by
 adding the time portion as '00:00:00'. To
 mimic the old behavior, use the
 CAST() function to cause the
 comparison operands to be treated as previously. For example:

date_col = CAST(datetime_col AS DATE)

 As of MySQL 5.0.8, conversion of
 TIME or
 DATETIME values to numeric form
 (for example, by adding +0) results in a
 double-precision value with a microseconds part of
 .000000:

mysql> SELECT CURTIME(), CURTIME()+0;
+-----------+---------------+
| CURTIME() | CURTIME()+0 |
+-----------+---------------+
| 10:41:36 | 104136.000000 |
+-----------+---------------+
mysql> SELECT NOW(), NOW()+0;
+---------------------+-----------------------+
| NOW() | NOW()+0 |
+---------------------+-----------------------+
| 2007-11-30 10:41:47 | 20071130104147.000000 |
+---------------------+-----------------------+

 Before MySQL 5.0.8, the conversion results in an integer value
 with no microseconds part.

11.3.8. Two-Digit Years in Dates

 Date values with two-digit years are ambiguous because the
 century is unknown. Such values must be interpreted into
 four-digit form because MySQL stores years internally using four
 digits.

 For DATETIME,
 DATE, and
 TIMESTAMP types, MySQL interprets
 dates specified with ambiguous year values using these rules:

	
 Year values in the range 00-69 are
 converted to 2000-2069.

	
 Year values in the range 70-99 are
 converted to 1970-1999.

 For YEAR, the rules are the same, with this
 exception: A numeric 00 inserted into
 YEAR(4) results in 0000
 rather than 2000. To specify zero for
 YEAR(4) and have it be interpreted as
 2000, specify it as a string
 '0' or '00'.

 Remember that these rules are only heuristics that provide
 reasonable guesses as to what your data values mean. If the
 rules used by MySQL do not produce the values you require, you
 must provide unambiguous input containing four-digit year
 values.

 ORDER BY properly sorts
 YEAR values that have two-digit
 years.

 Some functions like MIN() and
 MAX() convert a
 YEAR to a number. This means that
 a value with a two-digit year does not work properly with these
 functions. The fix in this case is to convert the
 YEAR to four-digit year format.

11.8. Using Data Types from Other Database Engines

 To facilitate the use of code written for SQL implementations from
 other vendors, MySQL maps data types as shown in the following
 table. These mappings make it easier to import table definitions
 from other database systems into MySQL.

	Other Vendor Type	MySQL Type
	BOOL	TINYINT
	BOOLEAN	TINYINT
	CHARACTER VARYING(M)	VARCHAR(M)
	FIXED	DECIMAL
	FLOAT4	FLOAT
	FLOAT8	DOUBLE
	INT1	TINYINT
	INT2	SMALLINT
	INT3	MEDIUMINT
	INT4	INT
	INT8	BIGINT
	LONG VARBINARY	MEDIUMBLOB
	LONG VARCHAR	MEDIUMTEXT
	LONG	MEDIUMTEXT
	MIDDLEINT	MEDIUMINT
	NUMERIC	DECIMAL

 Data type mapping occurs at table creation time, after which the
 original type specifications are discarded. If you create a table
 with types used by other vendors and then issue a
 DESCRIBE tbl_name
 statement, MySQL reports the table structure using the equivalent
 MySQL types. For example:

mysql> CREATE TABLE t (a BOOL, b FLOAT8, c LONG VARCHAR, d NUMERIC);
Query OK, 0 rows affected (0.00 sec)

mysql> DESCRIBE t;
+-------+---------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+---------------+------+-----+---------+-------+
a	tinyint(1)	YES		NULL	
b	double	YES		NULL	
c	mediumtext	YES		NULL	
d	decimal(10,0)	YES		NULL	
+-------+---------------+------+-----+---------+-------+
4 rows in set (0.01 sec)

13.8. MySQL Utility Statements

13.8.1. DESCRIBE Syntax

 The DESCRIBE and
 EXPLAIN statements are synonyms,
 used either to obtain information about table structure or query
 execution plans. For more information, see
 Section 13.8.2, “EXPLAIN Syntax”.

13.8.2. EXPLAIN Syntax

{EXPLAIN | DESCRIBE | DESC}
 tbl_name [col_name | wild]

{EXPLAIN | DESCRIBE | DESC}
 [EXTENDED] SELECT select_options

 The DESCRIBE and
 EXPLAIN statements are synonyms. In
 practice, the DESCRIBE keyword is
 more often used to obtain information about table structure,
 whereas EXPLAIN is used to obtain a
 query execution plan (that is, an explanation of how MySQL would
 execute a query). The following discussion uses the
 DESCRIBE and
 EXPLAIN keywords in accordance with
 those uses, but the MySQL parser treats them as completely
 synonymous.

 Obtaining Table Structure Information

 DESCRIBE provides information about
 the columns in a table:

mysql> DESCRIBE City;
+------------+----------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+------------+----------+------+-----+---------+----------------+
Id	int(11)	NO	PRI	NULL	auto_increment
Name	char(35)	NO			
Country	char(3)	NO	UNI		
District	char(20)	YES	MUL		
Population	int(11)	NO		0	
+------------+----------+------+-----+---------+----------------+

 DESCRIBE is a shortcut for
 SHOW COLUMNS. As of MySQL 5.0.1,
 these statements also display information for views. The
 description for SHOW COLUMNS
 provides more information about the output columns. See
 Section 13.7.5.5, “SHOW COLUMNS Syntax”.

 By default, DESCRIBE displays
 information about all columns in the table.
 col_name, if given, is the name of a
 column in the table. In this case, the statement displays
 information only for the named column.
 wild, if given, is a pattern string. It
 can contain the SQL “%” and
 “_” wildcard characters. In this
 case, the statement displays output only for the columns with
 names matching the string. There is no need to enclose the string
 within quotation marks unless it contains spaces or other special
 characters.

 The DESCRIBE statement is provided
 for compatibility with Oracle.

 The SHOW CREATE TABLE,
 SHOW TABLE STATUS, and
 SHOW INDEX statements also provide
 information about tables. See Section 13.7.5, “SHOW Syntax”.

 Obtaining Execution Plan Information

 The EXPLAIN statement provides
 information about how MySQL executes statements:

	
 When you precede a SELECT
 statement with the keyword
 EXPLAIN, MySQL displays
 information from the optimizer about the statement execution
 plan. That is, MySQL explains how it would process the
 statement, including information about how tables are joined
 and in which order. For information about using
 EXPLAIN to obtain execution
 plan information, see Section 8.2.2, “EXPLAIN Output Format”.

	
 EXPLAIN EXTENDED can be used to
 obtain additional execution plan information. See
 Section 8.2.3, “EXPLAIN EXTENDED Output Format”.

 With the help of EXPLAIN, you can
 see where you should add indexes to tables so that the statement
 executes faster by using indexes to find rows. You can also use
 EXPLAIN to check whether the
 optimizer joins the tables in an optimal order. To give a hint to
 the optimizer to use a join order corresponding to the order in
 which the tables are named in a
 SELECT statement, begin the
 statement with SELECT STRAIGHT_JOIN rather than
 just SELECT. (See
 Section 13.2.8, “SELECT Syntax”.)

 If you have a problem with indexes not being used when you believe
 that they should be, run ANALYZE
 TABLE to update table statistics, such as cardinality of
 keys, that can affect the choices the optimizer makes. See
 Section 13.7.2.1, “ANALYZE TABLE Syntax”.

13.8.3. HELP Syntax

HELP 'search_string'

 The HELP statement returns online
 information from the MySQL Reference manual. Its proper operation
 requires that the help tables in the mysql
 database be initialized with help topic information (see
 Section 5.1.8, “Server-Side Help”).

 The HELP statement searches the
 help tables for the given search string and displays the result of
 the search. The search string is not case sensitive.

 The search string can contain the the wildcard characters
 “%” and
 “_”. These have the same meaning
 as for pattern-matching operations performed with the
 LIKE operator. For example,
 HELP 'rep%' returns a list of topics that begin
 with rep.

 The HELP statement understands several types of search strings:

	
 At the most general level, use contents to
 retrieve a list of the top-level help categories:

HELP 'contents'

	
 For a list of topics in a given help category, such as
 Data Types, use the category name:

HELP 'data types'

	
 For help on a specific help topic, such as the
 ASCII() function or the
 CREATE TABLE statement, use the
 associated keyword or keywords:

HELP 'ascii'
HELP 'create table'

 In other words, the search string matches a category, many topics,
 or a single topic. You cannot necessarily tell in advance whether
 a given search string will return a list of items or the help
 information for a single help topic. However, you can tell what
 kind of response HELP returned by
 examining the number of rows and columns in the result set.

 The following descriptions indicate the forms that the result set
 can take. Output for the example statements is shown using the
 familiar “tabular” or “vertical” format
 that you see when using the mysql client, but
 note that mysql itself reformats
 HELP result sets in a different
 way.

	
 Empty result set

 No match could be found for the search string.

	
 Result set containing a single row with three columns

 This means that the search string yielded a hit for the help
 topic. The result has three columns:

	
 name: The topic name.

	
 description: Descriptive help text for
 the topic.

	
 example: Usage example or examples.
 This column might be blank.

 Example: HELP 'replace'

 Yields:

name: REPLACE
description: Syntax:
REPLACE(str,from_str,to_str)

Returns the string str with all occurrences of the string from_str
replaced by the string to_str. REPLACE() performs a case-sensitive
match when searching for from_str.
example: mysql> SELECT REPLACE('www.mysql.com', 'w', 'Ww');
 -> 'WwWwWw.mysql.com'

	
 Result set containing multiple rows with two columns

 This means that the search string matched many help topics.
 The result set indicates the help topic names:

	
 name: The help topic name.

	
 is_it_category: Y if
 the name represents a help category, N
 if it does not. If it does not, the
 name value when specified as the
 argument to the HELP
 statement should yield a single-row result set containing
 a description for the named item.

 Example: HELP 'status'

 Yields:

+-----------------------+----------------+
| name | is_it_category |
+-----------------------+----------------+
SHOW	N
SHOW ENGINE	N
SHOW INNODB STATUS	N
SHOW MASTER STATUS	N
SHOW PROCEDURE STATUS	N
SHOW SLAVE STATUS	N
SHOW STATUS	N
SHOW TABLE STATUS	N
+-----------------------+----------------+

	
 Result set containing multiple rows with three columns

 This means the search string matches a category. The result
 set contains category entries:

	
 source_category_name: The help category
 name.

	
 name: The category or topic name

	
 is_it_category: Y if
 the name represents a help category, N
 if it does not. If it does not, the
 name value when specified as the
 argument to the HELP
 statement should yield a single-row result set containing
 a description for the named item.

 Example: HELP 'functions'

 Yields:

+----------------------+-------------------------+----------------+
| source_category_name | name | is_it_category |
+----------------------+-------------------------+----------------+
Functions	CREATE FUNCTION	N
Functions	DROP FUNCTION	N
Functions	Bit Functions	Y
Functions	Comparison operators	Y
Functions	Control flow functions	Y
Functions	Date and Time Functions	Y
Functions	Encryption Functions	Y
Functions	Information Functions	Y
Functions	Logical operators	Y
Functions	Miscellaneous Functions	Y
Functions	Numeric Functions	Y
Functions	String Functions	Y
+----------------------+-------------------------+----------------+

 If you intend to use the HELP
 statement while other tables are locked with
 LOCK TABLES, you must also lock the
 required
 mysql.help_xxx
 tables.

13.8.4. USE Syntax

USE db_name

 The USE db_name
 statement tells MySQL to use the
 db_name database as the default
 (current) database for subsequent statements. The database remains
 the default until the end of the session or another
 USE statement is issued:

USE db1;
SELECT COUNT(*) FROM mytable; # selects from db1.mytable
USE db2;
SELECT COUNT(*) FROM mytable; # selects from db2.mytable

 Making a particular database the default by means of the
 USE statement does not preclude you
 from accessing tables in other databases. The following example
 accesses the author table from the
 db1 database and the editor
 table from the db2 database:

USE db1;
SELECT author_name,editor_name FROM author,db2.editor
 WHERE author.editor_id = db2.editor.editor_id;

2.22. Perl Installation Notes

 The Perl DBI module provides a generic interface
 for database access. You can write a DBI script
 that works with many different database engines without change. To
 use DBI, you must install the
 DBI module, as well as a DataBase Driver (DBD)
 module for each type of database server you want to access. For
 MySQL, this driver is the DBD::mysql module.

 Perl, and the DBD::MySQL module for
 DBI must be installed if you want to run the
 MySQL benchmark scripts; see Section 8.1.3, “The MySQL Benchmark Suite”.
 They are also required for the MySQL Cluster
 ndb_size.pl utility; see
 Section 17.4.18, “ndb_size.pl — NDBCLUSTER Size Requirement Estimator”.

Note

 Perl support is not included with MySQL distributions. You can
 obtain the necessary modules from
 http://search.cpan.org for Unix, or by using the
 ActiveState ppm program on Windows. The
 following sections describe how to do this.

 The DBI/DBD interface requires
 Perl 5.6.0, and 5.6.1 or later is preferred. DBI does not
 work if you have an older version of Perl. You should use
 DBD::mysql 4.009 or higher. Although earlier
 versions are available, they do not support the full functionality
 of MySQL 5.0.

2.22.1. Installing Perl on Unix

 MySQL Perl support requires that you have installed MySQL client
 programming support (libraries and header files). Most
 installation methods install the necessary files. If you install
 MySQL from RPM files on Linux, be sure to install the developer
 RPM as well. The client programs are in the client RPM, but client
 programming support is in the developer RPM.

 The files you need for Perl support can be obtained from the CPAN
 (Comprehensive Perl Archive Network) at
 http://search.cpan.org.

 The easiest way to install Perl modules on Unix is to use the
 CPAN module. For example:

shell> perl -MCPAN -e shell
cpan> install DBI
cpan> install DBD::mysql

 The DBD::mysql installation runs a number of
 tests. These tests attempt to connect to the local MySQL server
 using the default user name and password. (The default user name
 is your login name on Unix, and ODBC on
 Windows. The default password is “no password.”) If
 you cannot connect to the server with those values (for example,
 if your account has a password), the tests fail. You can use
 force install DBD::mysql to ignore the failed
 tests.

 DBI requires the
 Data::Dumper module. It may be installed; if
 not, you should install it before installing
 DBI.

 It is also possible to download the module distributions in the
 form of compressed tar archives and build the
 modules manually. For example, to unpack and build a DBI
 distribution, use a procedure such as this:

	
 Unpack the distribution into the current directory:

shell> gunzip < DBI-VERSION.tar.gz | tar xvf -

 This command creates a directory named
 DBI-VERSION.

	
 Change location into the top-level directory of the unpacked
 distribution:

shell> cd DBI-VERSION

	
 Build the distribution and compile everything:

shell> perl Makefile.PL
shell> make
shell> make test
shell> make install

 The make test command is important because it
 verifies that the module is working. Note that when you run that
 command during the DBD::mysql installation to
 exercise the interface code, the MySQL server must be running or
 the test fails.

 It is a good idea to rebuild and reinstall the
 DBD::mysql distribution whenever you install a
 new release of MySQL. This ensures that the latest versions of the
 MySQL client libraries are installed correctly.

 If you do not have access rights to install Perl modules in the
 system directory or if you want to install local Perl modules, the
 following reference may be useful:
 http://servers.digitaldaze.com/extensions/perl/modules.html#modules

 Look under the heading “Installing New Modules that Require
 Locally Installed Modules.”

2.22.2. Installing ActiveState Perl on Windows

 On Windows, you should do the following to install the MySQL
 DBD module with ActiveState Perl:

	
 Get ActiveState Perl from
 http://www.activestate.com/Products/ActivePerl/
 and install it.

	
 Open a console window.

	
 If necessary, set the HTTP_proxy variable.
 For example, you might try a setting like this:

C:\> set HTTP_proxy=my.proxy.com:3128

	
 Start the PPM program:

C:\> C:\perl\bin\ppm.pl

	
 If you have not previously done so, install
 DBI:

ppm> install DBI

	
 If this succeeds, run the following command:

ppm> install DBD-mysql

 This procedure should work with ActiveState Perl 5.6 or newer.

 If you cannot get the procedure to work, you should install the
 ODBC driver instead and connect to the MySQL server through ODBC:

use DBI;
$dbh= DBI->connect("DBI:ODBC:$dsn",$user,$password) ||
 die "Got error $DBI::errstr when connecting to $dsn\n";

2.22.3. Problems Using the Perl DBI/DBD
 Interface

 If Perl reports that it cannot find the
 ../mysql/mysql.so module, the problem is
 probably that Perl cannot locate the
 libmysqlclient.so shared library. You should
 be able to fix this problem by one of the following methods:

	
 Compile the DBD::mysql distribution with
 perl Makefile.PL -static -config rather
 than perl Makefile.PL.

	
 Copy libmysqlclient.so to the directory
 where your other shared libraries are located (probably
 /usr/lib or /lib).

	
 Modify the -L options used to compile
 DBD::mysql to reflect the actual location
 of libmysqlclient.so.

	
 On Linux, you can add the path name of the directory where
 libmysqlclient.so is located to the
 /etc/ld.so.conf file.

	

 Add the path name of the directory where
 libmysqlclient.so is located to the
 LD_RUN_PATH environment variable. Some
 systems use LD_LIBRARY_PATH instead.

 Note that you may also need to modify the -L
 options if there are other libraries that the linker fails to
 find. For example, if the linker cannot find
 libc because it is in /lib
 and the link command specifies -L/usr/lib, change
 the -L option to -L/lib or add
 -L/lib to the existing link command.

 If you get the following errors from
 DBD::mysql, you are probably using
 gcc (or using an old binary compiled with
 gcc):

/usr/bin/perl: can't resolve symbol '__moddi3'
/usr/bin/perl: can't resolve symbol '__divdi3'

 Add -L/usr/lib/gcc-lib/... -lgcc to the link
 command when the mysql.so library gets built
 (check the output from make for
 mysql.so when you compile the Perl client).
 The -L option should specify the path name of the
 directory where libgcc.a is located on your
 system.

 Another cause of this problem may be that Perl and MySQL are not
 both compiled with gcc. In this case, you can
 solve the mismatch by compiling both with gcc.

 You may see the following error from DBD::mysql
 when you run the tests:

t/00base............install_driver(mysql) failed:
Can't load '../blib/arch/auto/DBD/mysql/mysql.so' for module DBD::mysql:
../blib/arch/auto/DBD/mysql/mysql.so: undefined symbol:
uncompress at /usr/lib/perl5/5.00503/i586-linux/DynaLoader.pm line 169.

 This means that you need to include the -lz
 compression library on the link line. That can be done by changing
 the following line in the file
 lib/DBD/mysql/Install.pm:

$sysliblist .= " -lm";

 Change that line to:

$sysliblist .= " -lm -lz";

 After this, you must run make
 realclean and then proceed with the installation from
 the beginning.

 If you want to install DBI on SCO, you have to edit the
 Makefile in
 DBI-xxx and each subdirectory. Note
 that the following assumes gcc 2.95.2 or newer:

OLD: NEW:
CC = cc CC = gcc
CCCDLFLAGS = -KPIC -W1,-Bexport CCCDLFLAGS = -fpic
CCDLFLAGS = -wl,-Bexport CCDLFLAGS =

LD = ld LD = gcc -G -fpic
LDDLFLAGS = -G -L/usr/local/lib LDDLFLAGS = -L/usr/local/lib
LDFLAGS = -belf -L/usr/local/lib LDFLAGS = -L/usr/local/lib

LD = ld LD = gcc -G -fpic
OPTIMISE = -Od OPTIMISE = -O1

OLD:
CCCFLAGS = -belf -dy -w0 -U M_XENIX -DPERL_SCO5 -I/usr/local/include

NEW:
CCFLAGS = -U M_XENIX -DPERL_SCO5 -I/usr/local/include

 These changes are necessary because the Perl dynaloader does not
 load the DBI modules if they were compiled with
 icc or cc.

 If you want to use the Perl module on a system that does not
 support dynamic linking (such as SCO), you can generate a static
 version of Perl that includes DBI and
 DBD::mysql. The way this works is that you
 generate a version of Perl with the DBI code
 linked in and install it on top of your current Perl. Then you use
 that to build a version of Perl that additionally has the
 DBD code linked in, and install that.

 On SCO, you must have the following environment variables set:

LD_LIBRARY_PATH=/lib:/usr/lib:/usr/local/lib:/usr/progressive/lib

 Or:

LD_LIBRARY_PATH=/usr/lib:/lib:/usr/local/lib:/usr/ccs/lib:\
 /usr/progressive/lib:/usr/skunk/lib
LIBPATH=/usr/lib:/lib:/usr/local/lib:/usr/ccs/lib:\
 /usr/progressive/lib:/usr/skunk/lib
MANPATH=scohelp:/usr/man:/usr/local1/man:/usr/local/man:\
 /usr/skunk/man:

 First, create a Perl that includes a statically linked
 DBI module by running these commands in the
 directory where your DBI distribution is
 located:

shell> perl Makefile.PL -static -config
shell> make
shell> make install
shell> make perl

 Then, you must install the new Perl. The output of make
 perl indicates the exact make command
 you need to execute to perform the installation. On SCO, this is
 make -f Makefile.aperl inst_perl
 MAP_TARGET=perl.

 Next, use the just-created Perl to create another Perl that also
 includes a statically linked DBD::mysql by
 running these commands in the directory where your
 DBD::mysql distribution is located:

shell> perl Makefile.PL -static -config
shell> make
shell> make install
shell> make perl

 Finally, you should install this new Perl. Again, the output of
 make perl indicates the command to use.

14.8. The ARCHIVE Storage Engine

 The ARCHIVE storage engine is used for storing
 large amounts of data without indexes in a very small footprint.

 The ARCHIVE storage engine is included in MySQL
 binary distributions. To enable this storage engine if you build
 MySQL from source, invoke configure with the
 --with-archive-storage-engine option.

 To examine the source for the ARCHIVE engine,
 look in the sql directory of a MySQL source
 distribution.

 You can check whether the ARCHIVE storage engine
 is available with this statement:

mysql> SHOW VARIABLES LIKE 'have_archive';

 When you create an ARCHIVE table, the server
 creates a table format file in the database directory. The file
 begins with the table name and has an .frm
 extension. The storage engine creates other files, all having names
 beginning with the table name. The data and metadata files have
 extensions of .ARZ and
 .ARM, respectively. An
 .ARN file may appear during optimization
 operations.

 The ARCHIVE engine supports
 INSERT and
 SELECT, but not
 DELETE,
 REPLACE, or
 UPDATE. It does support
 ORDER BY operations,
 BLOB columns, and basically all but
 spatial data types (see Section 12.16.4.1, “MySQL Spatial Data Types”).
 The ARCHIVE engine uses row-level locking.

 Storage: Rows are compressed as
 they are inserted. The ARCHIVE engine uses
 zlib lossless data compression (see
 http://www.zlib.net/). You can use
 OPTIMIZE TABLE to analyze the table
 and pack it into a smaller format (for a reason to use
 OPTIMIZE TABLE, see later in this
 section). Beginning with MySQL 5.0.15, the engine also supports
 CHECK TABLE. There are several types
 of insertions that are used:

	
 An INSERT statement just pushes
 rows into a compression buffer, and that buffer flushes as
 necessary. The insertion into the buffer is protected by a lock.
 A SELECT forces a flush to occur,
 unless the only insertions that have come in were
 INSERT DELAYED (those flush as
 necessary). See Section 13.2.5.2, “INSERT DELAYED Syntax”.

	
 A bulk insert is visible only after it completes, unless other
 inserts occur at the same time, in which case it can be seen
 partially. A SELECT never causes
 a flush of a bulk insert unless a normal insert occurs while it
 is loading.

 Retrieval: On retrieval, rows are
 uncompressed on demand; there is no row cache. A
 SELECT operation performs a complete
 table scan: When a SELECT occurs, it
 finds out how many rows are currently available and reads that
 number of rows. SELECT is performed
 as a consistent read. Note that lots of
 SELECT statements during insertion
 can deteriorate the compression, unless only bulk or delayed inserts
 are used. To achieve better compression, you can use
 OPTIMIZE TABLE or
 REPAIR TABLE. The number of rows in
 ARCHIVE tables reported by
 SHOW TABLE STATUS is always accurate.
 See Section 13.7.2.5, “OPTIMIZE TABLE Syntax”,
 Section 13.7.2.6, “REPAIR TABLE Syntax”, and
 Section 13.7.5.33, “SHOW TABLE STATUS Syntax”.

 Additional Resources

	
 A forum dedicated to the ARCHIVE storage
 engine is available at http://forums.mysql.com/list.php?112.

12.11. Bit Functions

Table 12.15. Bitwise Functions
	Name	Description
	BIT_COUNT()	Return the number of bits that are set
	&	Bitwise AND
	~	Invert bits
	|	Bitwise OR
	^	Bitwise XOR
	<<	Left shift
	>>	Right shift

 MySQL uses BIGINT (64-bit)
 arithmetic for bit operations, so these operators have a maximum
 range of 64 bits.

	

 |

 Bitwise OR:

mysql> SELECT 29 | 15;
 -> 31

 The result is an unsigned 64-bit integer.

	

 &

 Bitwise AND:

mysql> SELECT 29 & 15;
 -> 13

 The result is an unsigned 64-bit integer.

	

 ^

 Bitwise XOR:

mysql> SELECT 1 ^ 1;
 -> 0
mysql> SELECT 1 ^ 0;
 -> 1
mysql> SELECT 11 ^ 3;
 -> 8

 The result is an unsigned 64-bit integer.

	

 <<

 Shifts a longlong (BIGINT)
 number to the left.

mysql> SELECT 1 << 2;
 -> 4

 The result is an unsigned 64-bit integer. The value is
 truncated to 64 bits. In particular, if the shift count is
 greater or equal to the width of an unsigned 64-bit number,
 the result is zero.

	

 >>

 Shifts a longlong (BIGINT)
 number to the right.

mysql> SELECT 4 >> 2;
 -> 1

 The result is an unsigned 64-bit integer. The value is
 truncated to 64 bits. In particular, if the shift count is
 greater or equal to the width of an unsigned 64-bit number,
 the result is zero.

	

 ~

 Invert all bits.

mysql> SELECT 5 & ~1;
 -> 4

 The result is an unsigned 64-bit integer.

	

 BIT_COUNT(N)

 Returns the number of bits that are set in the argument
 N.

mysql> SELECT BIT_COUNT(29), BIT_COUNT(b'101010');
 -> 4, 3

18.3. Using Triggers

 Support for triggers is included beginning with MySQL 5.0.2. A
 trigger is a named database object that is associated with a table,
 and that activates when a particular event occurs for the table.
 Some uses for triggers are to perform checks of values to be
 inserted into a table or to perform calculations on values involved
 in an update.

 A trigger is defined to activate when a statement inserts, updates,
 or deletes rows in the associated table. These row operations are
 trigger events. For example, rows can be inserted by
 INSERT or LOAD
 DATA statements, and an insert trigger activates for each
 inserted row. A trigger can be set to activate either before or
 after the trigger event. For example, you can have a trigger
 activate before each row that is inserted into a table or after each
 row that is updated.

Important

 MySQL triggers activate only for changes made to tables by SQL
 statements. They do not activate for changes in tables made by
 APIs that do not transmit SQL statements to the MySQL Server; in
 particular, they are not activated by updates made using the
 NDB API.

 To use triggers if you have upgraded to MySQL 5.0 from
 an older release that did not support triggers, you should upgrade
 your grant tables so that they contain the trigger-related
 privileges. See Section 4.4.9, “mysql_upgrade — Check Tables for MySQL Upgrade”.

 The following sections describe the syntax for creating and dropping
 triggers, show some examples of how to use them, and indicate how to
 obtain trigger metadata.

 Additional Resources

	
 You may find the Triggers
 User Forum of use when working with triggers.

	
 For answers to commonly asked questions regarding triggers in
 MySQL, see Section B.5, “MySQL 5.0 FAQ: Triggers”.

	
 There are some restrictions on the use of triggers; see
 Section E.1, “Restrictions on Stored Programs”.

	
 Binary logging for triggers takes place as described in
 Section 18.6, “Binary Logging of Stored Programs”.

18.3.1. Trigger Syntax and Examples

 To create a trigger or drop a trigger, use the
 CREATE TRIGGER or
 DROP TRIGGER statement, described
 in Section 13.1.11, “CREATE TRIGGER Syntax”, and
 Section 13.1.18, “DROP TRIGGER Syntax”.

 Here is a simple example that associates a trigger with a table,
 to activate for INSERT operations.
 The trigger acts as an accumulator, summing the values inserted
 into one of the columns of the table.

mysql> CREATE TABLE account (acct_num INT, amount DECIMAL(10,2));
Query OK, 0 rows affected (0.03 sec)

mysql> CREATE TRIGGER ins_sum BEFORE INSERT ON account
 -> FOR EACH ROW SET @sum = @sum + NEW.amount;
Query OK, 0 rows affected (0.06 sec)

 The CREATE TRIGGER statement
 creates a trigger named ins_sum that is
 associated with the account table. It also
 includes clauses that specify the trigger action time, the
 triggering event, and what to do when the trigger activates:

	
 The keyword BEFORE indicates the trigger
 action time. In this case, the trigger activates before each
 row inserted into the table. The other permitted keyword here
 is AFTER.

	
 The keyword INSERT indicates the trigger
 event; that is, the type of operation that activates the
 trigger. In the example, INSERT
 operations cause trigger activation. You can also create
 triggers for DELETE and
 UPDATE operations.

	
 The statement following FOR EACH ROW
 defines the trigger body; that is, the statement to execute
 each time the trigger activates, which occurs once for each
 row affected by the triggering event. In the example, the
 trigger body is a simple
 SET
 that accumulates into a user variable the values inserted into
 the amount column. The statement refers to
 the column as NEW.amount which means
 “the value of the amount column to be
 inserted into the new row.”

 To use the trigger, set the accumulator variable to zero, execute
 an INSERT statement, and then see
 what value the variable has afterward:

mysql> SET @sum = 0;
mysql> INSERT INTO account VALUES(137,14.98),(141,1937.50),(97,-100.00);
mysql> SELECT @sum AS 'Total amount inserted';
+-----------------------+
| Total amount inserted |
+-----------------------+
| 1852.48 |
+-----------------------+

 In this case, the value of @sum after the
 INSERT statement has executed is
 14.98 + 1937.50 - 100, or
 1852.48.

 To destroy the trigger, use a DROP
 TRIGGER statement. You must specify the schema name if
 the trigger is not in the default schema:

mysql> DROP TRIGGER test.ins_sum;

 If you drop a table, any triggers for the table are also dropped.

 Trigger names exist in the schema namespace, meaning that all
 triggers must have unique names within a schema. Triggers in
 different schemas can have the same name.

 In addition to the requirement that trigger names be unique for a
 schema, there are other limitations on the types of triggers you
 can create. In particular, there cannot be multiple triggers for a
 given table that have the same trigger event and action time. For
 example, you cannot have two BEFORE UPDATE
 triggers for a table. To work around this, you can define a
 trigger that executes multiple statements by using the
 BEGIN ... END
 compound statement construct after FOR EACH
 ROW. (An example appears later in this section.)

 Within the trigger body, the OLD and
 NEW keywords enable you to access columns in
 the rows affected by a trigger. OLD and
 NEW are MySQL extensions to triggers; they are
 not case sensitive.

 In an INSERT trigger, only
 NEW.col_name can be
 used; there is no old row. In a DELETE trigger,
 only OLD.col_name
 can be used; there is no new row. In an UPDATE
 trigger, you can use
 OLD.col_name to
 refer to the columns of a row before it is updated and
 NEW.col_name to
 refer to the columns of the row after it is updated.

 A column named with OLD is read only. You can
 refer to it (if you have the SELECT
 privilege), but not modify it. You can refer to a column named
 with NEW if you have the
 SELECT privilege for it. In a
 BEFORE trigger, you can also change its value
 with SET NEW.col_name =
 value if you have the
 UPDATE privilege for it. This means
 you can use a trigger to modify the values to be inserted into a
 new row or used to update a row. (Such a SET
 statement has no effect in an AFTER trigger
 because the row change will have already occurred.)

 In a BEFORE trigger, the NEW
 value for an AUTO_INCREMENT column is 0, not
 the sequence number that is generated automatically when the new
 row actually is inserted.

 By using the BEGIN ...
 END construct, you can define a trigger that executes
 multiple statements. Within the BEGIN block,
 you also can use other syntax that is permitted within stored
 routines such as conditionals and loops. However, just as for
 stored routines, if you use the mysql program
 to define a trigger that executes multiple statements, it is
 necessary to redefine the mysql statement
 delimiter so that you can use the ; statement
 delimiter within the trigger definition. The following example
 illustrates these points. It defines an UPDATE
 trigger that checks the new value to be used for updating each
 row, and modifies the value to be within the range from 0 to 100.
 This must be a BEFORE trigger because the value
 must be checked before it is used to update the row:

mysql> delimiter //
mysql> CREATE TRIGGER upd_check BEFORE UPDATE ON account
 -> FOR EACH ROW
 -> BEGIN
 -> IF NEW.amount < 0 THEN
 -> SET NEW.amount = 0;
 -> ELSEIF NEW.amount > 100 THEN
 -> SET NEW.amount = 100;
 -> END IF;
 -> END;//
mysql> delimiter ;

 It can be easier to define a stored procedure separately and then
 invoke it from the trigger using a simple
 CALL statement. This is also
 advantageous if you want to execute the same code from within
 several triggers.

 There are limitations on what can appear in statements that a
 trigger executes when activated:

	
 The trigger cannot use the CALL
 statement to invoke stored procedures that return data to the
 client or that use dynamic SQL. (Stored procedures are
 permitted to return data to the trigger through
 OUT or INOUT
 parameters.)

	
 The trigger cannot use statements that explicitly or
 implicitly begin or end a transaction, such as
 START
 TRANSACTION, COMMIT,
 or ROLLBACK.

	
 Prior to MySQL 5.0.10, triggers cannot contain direct
 references to tables by name.

 See also Section E.1, “Restrictions on Stored Programs”.

 MySQL handles errors during trigger execution as follows:

	
 If a BEFORE trigger fails, the operation on
 the corresponding row is not performed.

	
 A BEFORE trigger is activated by the
 attempt to insert or modify the row,
 regardless of whether the attempt subsequently succeeds.

	
 An AFTER trigger is executed only if any
 BEFORE triggers and the row operation
 execute successfully.

	
 An error during either a BEFORE or
 AFTER trigger results in failure of the
 entire statement that caused trigger invocation.

	
 For transactional tables, failure of a statement should cause
 rollback of all changes performed by the statement. Failure of
 a trigger causes the statement to fail, so trigger failure
 also causes rollback. For nontransactional tables, such
 rollback cannot be done, so although the statement fails, any
 changes performed prior to the point of the error remain in
 effect.

 Before MySQL 5.0.10, triggers cannot contain direct references to
 tables by name. Beginning with MySQL 5.0.10, you can write
 triggers such as the one named testref shown in
 this example:

CREATE TABLE test1(a1 INT);
CREATE TABLE test2(a2 INT);
CREATE TABLE test3(a3 INT NOT NULL AUTO_INCREMENT PRIMARY KEY);
CREATE TABLE test4(
 a4 INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 b4 INT DEFAULT 0
);

delimiter |

CREATE TRIGGER testref BEFORE INSERT ON test1
 FOR EACH ROW
 BEGIN
 INSERT INTO test2 SET a2 = NEW.a1;
 DELETE FROM test3 WHERE a3 = NEW.a1;
 UPDATE test4 SET b4 = b4 + 1 WHERE a4 = NEW.a1;
 END;
|

delimiter ;

INSERT INTO test3 (a3) VALUES
 (NULL), (NULL), (NULL), (NULL), (NULL),
 (NULL), (NULL), (NULL), (NULL), (NULL);

INSERT INTO test4 (a4) VALUES
 (0), (0), (0), (0), (0), (0), (0), (0), (0), (0);

 Suppose that you insert the following values into table
 test1 as shown here:

mysql> INSERT INTO test1 VALUES
 -> (1), (3), (1), (7), (1), (8), (4), (4);
Query OK, 8 rows affected (0.01 sec)
Records: 8 Duplicates: 0 Warnings: 0

 As a result, the four tables contain the following data:

mysql> SELECT * FROM test1;
+------+
| a1 |
+------+
| 1 |
| 3 |
| 1 |
| 7 |
| 1 |
| 8 |
| 4 |
| 4 |
+------+
8 rows in set (0.00 sec)

mysql> SELECT * FROM test2;
+------+
| a2 |
+------+
| 1 |
| 3 |
| 1 |
| 7 |
| 1 |
| 8 |
| 4 |
| 4 |
+------+
8 rows in set (0.00 sec)

mysql> SELECT * FROM test3;
+----+
| a3 |
+----+
| 2 |
| 5 |
| 6 |
| 9 |
| 10 |
+----+
5 rows in set (0.00 sec)

mysql> SELECT * FROM test4;
+----+------+
| a4 | b4 |
+----+------+
1	3
2	0
3	1
4	2
5	0
6	0
7	1
8	1
9	0
10	0
+----+------+
10 rows in set (0.00 sec)

18.3.2. Trigger Metadata

 Metadata about triggers can be obtained as follows:

	
 Query the TRIGGERS table of the
 INFORMATION_SCHEMA database. See
 Section 19.15, “The INFORMATION_SCHEMA TRIGGERS Table”.

	
 Use the SHOW CREATE TRIGGER
 statement. See SHOW CREATE TRIGGER Syntax.

	
 Use the SHOW TRIGGERS
 statement. See Section 13.7.5.35, “SHOW TRIGGERS Syntax”.

12.16. Spatial Extensions

 MySQL supports spatial extensions to enable the generation, storage,
 and analysis of geographic features. Before MySQL 5.0.16, these
 features are available for MyISAM tables only. As
 of MySQL 5.0.16, InnoDB,
 NDB, BDB, and
 ARCHIVE also support spatial features.

 For spatial columns, MyISAM supports both
 SPATIAL and non-SPATIAL
 indexes. Other storage engines support
 non-SPATIAL indexes, as described in
 Section 13.1.8, “CREATE INDEX Syntax”.

 This chapter covers the following topics:

	
 The basis of these spatial extensions in the OpenGIS geometry
 model

	
 Data formats for representing spatial data

	
 How to use spatial data in MySQL

	
 Use of indexing for spatial data

	
 MySQL differences from the OpenGIS specification

 Additional Resources

	
 The Open Geospatial Consortium publishes the
 OpenGIS® Simple Features Specifications For
 SQL, a document that proposes several conceptual
 ways for extending an SQL RDBMS to support spatial data. This
 specification is available from the OGC Web site at
 http://www.opengis.org/docs/99-049.pdf.

	
 If you have questions or concerns about the use of the spatial
 extensions to MySQL, you can discuss them in the GIS forum:
 http://forums.mysql.com/list.php?23.

12.16.1. Introduction to MySQL Spatial Support

 MySQL implements spatial extensions following the specification of
 the Open Geospatial Consortium (OGC). This is an international
 consortium of more than 250 companies, agencies, and universities
 participating in the development of publicly available conceptual
 solutions that can be useful with all kinds of applications that
 manage spatial data. The OGC maintains a Web site at
 http://www.opengis.org/.

 In 1997, the Open Geospatial Consortium published the
 OpenGIS® Simple Features Specifications For
 SQL, a document that proposes several conceptual ways
 for extending an SQL RDBMS to support spatial data. This
 specification is available from the OGC Web site at
 http://www.opengis.org/docs/99-049.pdf. It contains
 additional information relevant to this chapter.

 MySQL implements a subset of the SQL with
 Geometry Types environment proposed by OGC. This term
 refers to an SQL environment that has been extended with a set of
 geometry types. A geometry-valued SQL column is implemented as a
 column that has a geometry type. The specification describe a set
 of SQL geometry types, as well as functions on those types to
 create and analyze geometry values.

 A geographic feature is anything
 in the world that has a location. A feature can be:

	
 An entity. For example, a mountain, a pond, a city.

	
 A space. For example, town district, the tropics.

	
 A definable location. For example, a crossroad, as a
 particular place where two streets intersect.

 Some documents use the term geospatial
 feature to refer to geographic features.

 Geometry is another word that
 denotes a geographic feature. Originally the word
 geometry meant measurement of the
 earth. Another meaning comes from cartography, referring to the
 geometric features that cartographers use to map the world.

 This chapter uses all of these terms synonymously:
 geographic feature,
 geospatial feature,
 feature, or
 geometry. Here, the term most
 commonly used is geometry,
 defined as a point or an aggregate of points
 representing anything in the world that has a location.

12.16.2. The OpenGIS Geometry Model

 The set of geometry types proposed by OGC's
 SQL with Geometry Types
 environment is based on the OpenGIS Geometry
 Model. In this model, each geometric object has the
 following general properties:

	
 It is associated with a Spatial Reference System, which
 describes the coordinate space in which the object is defined.

	
 It belongs to some geometry class.

12.16.2.1. The Geometry Class Hierarchy

 The geometry classes define a hierarchy as follows:

	
 Geometry (noninstantiable)

	
 Point (instantiable)

	
 Curve (noninstantiable)

	
 LineString (instantiable)

	
 Line

	
 LinearRing

	
 Surface (noninstantiable)

	
 Polygon (instantiable)

	
 GeometryCollection (instantiable)

	
 MultiPoint (instantiable)

	
 MultiCurve (noninstantiable)

	
 MultiLineString
 (instantiable)

	
 MultiSurface (noninstantiable)

	
 MultiPolygon (instantiable)

 It is not possible to create objects in noninstantiable classes.
 It is possible to create objects in instantiable classes. All
 classes have properties, and instantiable classes may also have
 assertions (rules that define valid class instances).

 Geometry is the base class. It is an abstract
 class. The instantiable subclasses of
 Geometry are restricted to zero-, one-, and
 two-dimensional geometric objects that exist in two-dimensional
 coordinate space. All instantiable geometry classes are defined
 so that valid instances of a geometry class are topologically
 closed (that is, all defined geometries include their boundary).

 The base Geometry class has subclasses for
 Point, Curve,
 Surface, and
 GeometryCollection:

	
 Point represents zero-dimensional
 objects.

	
 Curve represents one-dimensional objects,
 and has subclass LineString, with
 sub-subclasses Line and
 LinearRing.

	
 Surface is designed for two-dimensional
 objects and has subclass Polygon.

	
 GeometryCollection has specialized zero-,
 one-, and two-dimensional collection classes named
 MultiPoint,
 MultiLineString, and
 MultiPolygon for modeling geometries
 corresponding to collections of Points,
 LineStrings, and
 Polygons, respectively.
 MultiCurve and
 MultiSurface are introduced as abstract
 superclasses that generalize the collection interfaces to
 handle Curves and
 Surfaces.

 Geometry, Curve,
 Surface, MultiCurve, and
 MultiSurface are defined as noninstantiable
 classes. They define a common set of methods for their
 subclasses and are included for extensibility.

 Point, LineString,
 Polygon,
 GeometryCollection,
 MultiPoint,
 MultiLineString, and
 MultiPolygon are instantiable classes.

12.16.2.2. Class Geometry

 Geometry is the root class of the hierarchy.
 It is a noninstantiable class but has a number of properties
 that are common to all geometry values created from any of the
 Geometry subclasses. These properties are
 described in the following list. Particular subclasses have
 their own specific properties, described later.

 Geometry Properties

 A geometry value has the following properties:

	
 Its type. Each geometry
 belongs to one of the instantiable classes in the hierarchy.

	
 Its SRID, or Spatial
 Reference Identifier. This value identifies the geometry's
 associated Spatial Reference System that describes the
 coordinate space in which the geometry object is defined.

 In MySQL, the SRID value is just an integer associated with
 the geometry value. All calculations are done assuming
 Euclidean (planar) geometry.

	
 Its coordinates in its
 Spatial Reference System, represented as double-precision
 (8-byte) numbers. All nonempty geometries include at least
 one pair of (X,Y) coordinates. Empty geometries contain no
 coordinates.

 Coordinates are related to the SRID. For example, in
 different coordinate systems, the distance between two
 objects may differ even when objects have the same
 coordinates, because the distance on the
 planar coordinate system
 and the distance on the
 geocentric system
 (coordinates on the Earth's surface) are different things.

	
 Its interior,
 boundary, and
 exterior.

 Every geometry occupies some position in space. The exterior
 of a geometry is all space not occupied by the geometry. The
 interior is the space occupied by the geometry. The boundary
 is the interface between the geometry's interior and
 exterior.

	
 Its MBR (Minimum Bounding
 Rectangle), or Envelope. This is the bounding geometry,
 formed by the minimum and maximum (X,Y) coordinates:

((MINX MINY, MAXX MINY, MAXX MAXY, MINX MAXY, MINX MINY))

	
 Whether the value is simple
 or nonsimple. Geometry
 values of types (LineString,
 MultiPoint,
 MultiLineString) are either simple or
 nonsimple. Each type determines its own assertions for being
 simple or nonsimple.

	
 Whether the value is closed
 or not closed. Geometry
 values of types (LineString,
 MultiString) are either closed or not
 closed. Each type determines its own assertions for being
 closed or not closed.

	
 Whether the value is empty
 or nonempty A geometry is
 empty if it does not have any points. Exterior, interior,
 and boundary of an empty geometry are not defined (that is,
 they are represented by a NULL value). An
 empty geometry is defined to be always simple and has an
 area of 0.

	
 Its dimension. A geometry
 can have a dimension of –1, 0, 1, or 2:

	
 –1 for an empty geometry.

	
 0 for a geometry with no length and no area.

	
 1 for a geometry with nonzero length and zero area.

	
 2 for a geometry with nonzero area.

 Point objects have a dimension of zero.
 LineString objects have a dimension of 1.
 Polygon objects have a dimension of 2.
 The dimensions of MultiPoint,
 MultiLineString, and
 MultiPolygon objects are the same as the
 dimensions of the elements they consist of.

12.16.2.3. Class Point

 A Point is a geometry that represents a
 single location in coordinate space.

 Point
 Examples

	
 Imagine a large-scale map of the world with many cities. A
 Point object could represent each city.

	
 On a city map, a Point object could
 represent a bus stop.

 Point
 Properties

	
 X-coordinate value.

	
 Y-coordinate value.

	
 Point is defined as a zero-dimensional
 geometry.

	
 The boundary of a Point is the empty set.

12.16.2.4. Class Curve

 A Curve is a one-dimensional geometry,
 usually represented by a sequence of points. Particular
 subclasses of Curve define the type of
 interpolation between points. Curve is a
 noninstantiable class.

 Curve
 Properties

	
 A Curve has the coordinates of its
 points.

	
 A Curve is defined as a one-dimensional
 geometry.

	
 A Curve is simple if it does not pass
 through the same point twice.

	
 A Curve is closed if its start point is
 equal to its endpoint.

	
 The boundary of a closed Curve is empty.

	
 The boundary of a nonclosed Curve
 consists of its two endpoints.

	
 A Curve that is simple and closed is a
 LinearRing.

12.16.2.5. Class LineString

 A LineString is a Curve
 with linear interpolation between points.

 LineString
 Examples

	
 On a world map, LineString objects could
 represent rivers.

	
 In a city map, LineString objects could
 represent streets.

 LineString
 Properties

	
 A LineString has coordinates of segments,
 defined by each consecutive pair of points.

	
 A LineString is a Line
 if it consists of exactly two points.

	
 A LineString is a
 LinearRing if it is both closed and
 simple.

12.16.2.6. Class Surface

 A Surface is a two-dimensional geometry. It
 is a noninstantiable class. Its only instantiable subclass is
 Polygon.

 Surface
 Properties

	
 A Surface is defined as a two-dimensional
 geometry.

	
 The OpenGIS specification defines a simple
 Surface as a geometry that consists of a
 single “patch” that is associated with a single
 exterior boundary and zero or more interior boundaries.

	
 The boundary of a simple Surface is the
 set of closed curves corresponding to its exterior and
 interior boundaries.

12.16.2.7. Class Polygon

 A Polygon is a planar
 Surface representing a multisided geometry.
 It is defined by a single exterior boundary and zero or more
 interior boundaries, where each interior boundary defines a hole
 in the Polygon.

 Polygon
 Examples

	
 On a region map, Polygon objects could
 represent forests, districts, and so on.

 Polygon
 Assertions

	
 The boundary of a Polygon consists of a
 set of LinearRing objects (that is,
 LineString objects that are both simple
 and closed) that make up its exterior and interior
 boundaries.

	
 A Polygon has no rings that cross. The
 rings in the boundary of a Polygon may
 intersect at a Point, but only as a
 tangent.

	
 A Polygon has no lines, spikes, or
 punctures.

	
 A Polygon has an interior that is a
 connected point set.

	
 A Polygon may have holes. The exterior of
 a Polygon with holes is not connected.
 Each hole defines a connected component of the exterior.

 The preceding assertions make a Polygon a
 simple geometry.

12.16.2.8. Class GeometryCollection

 A GeometryCollection is a geometry that is a
 collection of one or more geometries of any class.

 All the elements in a GeometryCollection must
 be in the same Spatial Reference System (that is, in the same
 coordinate system). There are no other constraints on the
 elements of a GeometryCollection, although
 the subclasses of GeometryCollection
 described in the following sections may restrict membership.
 Restrictions may be based on:

	
 Element type (for example, a MultiPoint
 may contain only Point elements)

	
 Dimension

	
 Constraints on the degree of spatial overlap between
 elements

12.16.2.9. Class MultiPoint

 A MultiPoint is a geometry collection
 composed of Point elements. The points are
 not connected or ordered in any way.

 MultiPoint
 Examples

	
 On a world map, a MultiPoint could
 represent a chain of small islands.

	
 On a city map, a MultiPoint could
 represent the outlets for a ticket office.

 MultiPoint
 Properties

	
 A MultiPoint is a zero-dimensional
 geometry.

	
 A MultiPoint is simple if no two of its
 Point values are equal (have identical
 coordinate values).

	
 The boundary of a MultiPoint is the empty
 set.

12.16.2.10. Class MultiCurve

 A MultiCurve is a geometry collection
 composed of Curve elements.
 MultiCurve is a noninstantiable class.

 MultiCurve
 Properties

	
 A MultiCurve is a one-dimensional
 geometry.

	
 A MultiCurve is simple if and only if all
 of its elements are simple; the only intersections between
 any two elements occur at points that are on the boundaries
 of both elements.

	
 A MultiCurve boundary is obtained by
 applying the “mod 2 union rule” (also known as
 the “odd-even rule”): A point is in the
 boundary of a MultiCurve if it is in the
 boundaries of an odd number of MultiCurve
 elements.

	
 A MultiCurve is closed if all of its
 elements are closed.

	
 The boundary of a closed MultiCurve is
 always empty.

12.16.2.11. Class MultiLineString

 A MultiLineString is a
 MultiCurve geometry collection composed of
 LineString elements.

 MultiLineString
 Examples

	
 On a region map, a MultiLineString could
 represent a river system or a highway system.

12.16.2.12. Class MultiSurface

 A MultiSurface is a geometry collection
 composed of surface elements. MultiSurface is
 a noninstantiable class. Its only instantiable subclass is
 MultiPolygon.

 MultiSurface
 Assertions

	
 Two MultiSurface surfaces have no
 interiors that intersect.

	
 Two MultiSurface elements have boundaries
 that intersect at most at a finite number of points.

12.16.2.13. Class MultiPolygon

 A MultiPolygon is a
 MultiSurface object composed of
 Polygon elements.

 MultiPolygon
 Examples

	
 On a region map, a MultiPolygon could
 represent a system of lakes.

 MultiPolygon
 Assertions

	
 A MultiPolygon has no two
 Polygon elements with interiors that
 intersect.

	
 A MultiPolygon has no two
 Polygon elements that cross (crossing is
 also forbidden by the previous assertion), or that touch at
 an infinite number of points.

	
 A MultiPolygon may not have cut lines,
 spikes, or punctures. A MultiPolygon is a
 regular, closed point set.

	
 A MultiPolygon that has more than one
 Polygon has an interior that is not
 connected. The number of connected components of the
 interior of a MultiPolygon is equal to
 the number of Polygon values in the
 MultiPolygon.

 MultiPolygon
 Properties

	
 A MultiPolygon is a two-dimensional
 geometry.

	
 A MultiPolygon boundary is a set of
 closed curves (LineString values)
 corresponding to the boundaries of its
 Polygon elements.

	
 Each Curve in the boundary of the
 MultiPolygon is in the boundary of
 exactly one Polygon element.

	
 Every Curve in the boundary of an
 Polygon element is in the boundary of the
 MultiPolygon.

12.16.3. Supported Spatial Data Formats

 This section describes the standard spatial data formats that are
 used to represent geometry objects in queries. They are:

	
 Well-Known Text (WKT) format

	
 Well-Known Binary (WKB) format

 Internally, MySQL stores geometry values in a format that is not
 identical to either WKT or WKB format.

12.16.3.1. Well-Known Text (WKT) Format

 The Well-Known Text (WKT) representation of Geometry is designed
 to exchange geometry data in ASCII form. For a Backus-Naur
 grammar that specifies the formal production rules for writing
 WKT values, see the OpenGIS specification document referenced in
 Section 12.16, “Spatial Extensions”.

 Examples of WKT representations of geometry objects:

	
 A Point:

POINT(15 20)

 Note that point coordinates are specified with no separating
 comma. This differs from the syntax for the SQL
 POINT() function, which
 requires a comma between the coordinates. Take care to use
 the syntax appropriate to the context of a given spatial
 operation. For example, the following statements both
 extract the X-coordinate from a Point
 object. The first produces the object directly using the
 POINT() function. The second
 uses a WKT representation converted to a
 Point with
 GeomFromText().

mysql> SELECT X(POINT(15, 20));
+------------------+
| X(POINT(15, 20)) |
+------------------+
| 15 |
+------------------+

mysql> SELECT X(GeomFromText('POINT(15 20)'));
+---------------------------------+
| X(GeomFromText('POINT(15 20)')) |
+---------------------------------+
| 15 |
+---------------------------------+

	
 A LineString with four points:

LINESTRING(0 0, 10 10, 20 25, 50 60)

 Note that point coordinate pairs are separated by commas.

	
 A Polygon with one exterior ring and one
 interior ring:

POLYGON((0 0,10 0,10 10,0 10,0 0),(5 5,7 5,7 7,5 7, 5 5))

	
 A MultiPoint with three
 Point values:

MULTIPOINT(0 0, 20 20, 60 60)

	
 A MultiLineString with two
 LineString values:

MULTILINESTRING((10 10, 20 20), (15 15, 30 15))

	
 A MultiPolygon with two
 Polygon values:

MULTIPOLYGON(((0 0,10 0,10 10,0 10,0 0)),((5 5,7 5,7 7,5 7, 5 5)))

	
 A GeometryCollection consisting of two
 Point values and one
 LineString:

GEOMETRYCOLLECTION(POINT(10 10), POINT(30 30), LINESTRING(15 15, 20 20))

12.16.3.2. Well-Known Binary (WKB) Format

 The Well-Known Binary (WKB) representation for geometric values
 is defined by the OpenGIS specification. It is also defined in
 the ISO SQL/MM Part 3: Spatial standard.

 WKB is used to exchange geometry data as binary streams
 represented by BLOB values
 containing geometric WKB information.

 WKB uses 1-byte unsigned integers, 4-byte unsigned integers, and
 8-byte double-precision numbers (IEEE 754 format). A byte is
 eight bits.

 For example, a WKB value that corresponds to POINT(1
 1) consists of this sequence of 21 bytes (each
 represented here by two hex digits):

0101000000000000000000F03F000000000000F03F

 The sequence may be broken down into these components:

Byte order : 01
WKB type : 01000000
X : 000000000000F03F
Y : 000000000000F03F

 Component representation is as follows:

	
 The byte order may be either 1 or 0 to indicate
 little-endian or big-endian storage. The little-endian and
 big-endian byte orders are also known as Network Data
 Representation (NDR) and External Data Representation (XDR),
 respectively.

	
 The WKB type is a code that indicates the geometry type.
 Values from 1 through 7 indicate Point,
 LineString, Polygon,
 MultiPoint,
 MultiLineString,
 MultiPolygon, and
 GeometryCollection.

	
 A Point value has X and Y coordinates,
 each represented as a double-precision value.

 WKB values for more complex geometry values are represented by
 more complex data structures, as detailed in the OpenGIS
 specification.

12.16.4. Creating a Spatially Enabled MySQL Database

 This section describes the data types you can use for representing
 spatial data in MySQL, and the functions available for creating
 and retrieving spatial values.

12.16.4.1. MySQL Spatial Data Types

 MySQL has data types that correspond to OpenGIS classes. Some of
 these types hold single geometry values:

	
 GEOMETRY

	
 POINT

	
 LINESTRING

	
 POLYGON

 GEOMETRY can store geometry values of any
 type. The other single-value types (POINT,
 LINESTRING, and POLYGON)
 restrict their values to a particular geometry type.

 The other data types hold collections of values:

	
 MULTIPOINT

	
 MULTILINESTRING

	
 MULTIPOLYGON

	
 GEOMETRYCOLLECTION

 GEOMETRYCOLLECTION can store a collection of
 objects of any type. The other collection types
 (MULTIPOINT,
 MULTILINESTRING,
 MULTIPOLYGON, and
 GEOMETRYCOLLECTION) restrict collection
 members to those having a particular geometry type.

12.16.4.2. Creating Spatial Values

 This section describes how to create spatial values using
 Well-Known Text and Well-Known Binary functions that are defined
 in the OpenGIS standard, and using MySQL-specific functions.

12.16.4.2.1. Creating Geometry Values Using WKT Functions

 MySQL provides a number of functions that take as arguments a
 Well-Known Text representation and, optionally, a spatial
 reference system identifier (SRID). They return the
 corresponding geometry.

 GeomFromText() accepts a WKT of
 any geometry type as its first argument. An implementation
 also provides type-specific construction functions for
 construction of geometry values of each geometry type.

	

 GeomCollFromText(wkt[,srid]),
 GeometryCollectionFromText(wkt[,srid])

 Constructs a GEOMETRYCOLLECTION value
 using its WKT representation and SRID.

	

 GeomFromText(wkt[,srid]),
 GeometryFromText(wkt[,srid])

 Constructs a geometry value of any type using its WKT
 representation and SRID.

	

 LineFromText(wkt[,srid]),
 LineStringFromText(wkt[,srid])

 Constructs a LINESTRING value using its
 WKT representation and SRID.

	

 MLineFromText(wkt[,srid]),
 MultiLineStringFromText(wkt[,srid])

 Constructs a MULTILINESTRING value
 using its WKT representation and SRID.

	

 MPointFromText(wkt[,srid]),
 MultiPointFromText(wkt[,srid])

 Constructs a MULTIPOINT value using its
 WKT representation and SRID.

	

 MPolyFromText(wkt[,srid]),
 MultiPolygonFromText(wkt[,srid])

 Constructs a MULTIPOLYGON value using
 its WKT representation and SRID.

	

 PointFromText(wkt[,srid])

 Constructs a POINT value using its WKT
 representation and SRID.

	

 PolyFromText(wkt[,srid]),
 PolygonFromText(wkt[,srid])

 Constructs a POLYGON value using its
 WKT representation and SRID.

 The OpenGIS specification also defines the following optional
 functions, which MySQL does not implement. These functions
 construct Polygon or
 MultiPolygon values based on the WKT
 representation of a collection of rings or closed
 LineString values. These values may
 intersect.

	

 BdMPolyFromText(wkt,srid)

 Constructs a MultiPolygon value from a
 MultiLineString value in WKT format
 containing an arbitrary collection of closed
 LineString values.

	

 BdPolyFromText(wkt,srid)

 Constructs a Polygon value from a
 MultiLineString value in WKT format
 containing an arbitrary collection of closed
 LineString values.

12.16.4.2.2. Creating Geometry Values Using WKB Functions

 MySQL provides a number of functions that take as arguments a
 BLOB containing a Well-Known
 Binary representation and, optionally, a spatial reference
 system identifier (SRID). They return the corresponding
 geometry.

 As of MySQL 5.0.82, these functions also accept geometry
 objects for compatibility with the changes made in MySQL
 5.0.82 to the return value of the functions in
 Section 12.16.4.2.3, “Creating Geometry Values Using MySQL-Specific Functions”. Thus, those
 functions may continue to be used to provide the first
 argument to the functions in this section.

	

 GeomCollFromWKB(wkb[,srid]),
 GeometryCollectionFromWKB(wkb[,srid])

 Constructs a GEOMETRYCOLLECTION value
 using its WKB representation and SRID.

	

 GeomFromWKB(wkb[,srid]),
 GeometryFromWKB(wkb[,srid])

 Constructs a geometry value of any type using its WKB
 representation and SRID.

	

 LineFromWKB(wkb[,srid]),
 LineStringFromWKB(wkb[,srid])

 Constructs a LINESTRING value using its
 WKB representation and SRID.

	

 MLineFromWKB(wkb[,srid]),
 MultiLineStringFromWKB(wkb[,srid])

 Constructs a MULTILINESTRING value
 using its WKB representation and SRID.

	

 MPointFromWKB(wkb[,srid]),
 MultiPointFromWKB(wkb[,srid])

 Constructs a MULTIPOINT value using its
 WKB representation and SRID.

	

 MPolyFromWKB(wkb[,srid]),
 MultiPolygonFromWKB(wkb[,srid])

 Constructs a MULTIPOLYGON value using
 its WKB representation and SRID.

	

 PointFromWKB(wkb[,srid])

 Constructs a POINT value using its WKB
 representation and SRID.

	

 PolyFromWKB(wkb[,srid]),
 PolygonFromWKB(wkb[,srid])

 Constructs a POLYGON value using its
 WKB representation and SRID.

 The OpenGIS specification also describes optional functions
 for constructing Polygon or
 MultiPolygon values based on the WKB
 representation of a collection of rings or closed
 LineString values. These values may
 intersect. MySQL does not implement these functions:

	

 BdMPolyFromWKB(wkb,srid)

 Constructs a MultiPolygon value from a
 MultiLineString value in WKB format
 containing an arbitrary collection of closed
 LineString values.

	

 BdPolyFromWKB(wkb,srid)

 Constructs a Polygon value from a
 MultiLineString value in WKB format
 containing an arbitrary collection of closed
 LineString values.

12.16.4.2.3. Creating Geometry Values Using MySQL-Specific Functions

 MySQL provides a set of useful nonstandard functions for
 creating geometry values. The functions described in this
 section are MySQL extensions to the OpenGIS specification.

 As of MySQL 5.0.82, these functions produce geometry objects
 from either WKB values or geometry objects as arguments. If
 any argument is not a proper WKB or geometry representation of
 the proper object type, the return value is
 NULL.

 Before MySQL 5.0.82, these functions produce
 BLOB values containing WKB
 representations of geometry values with no SRID from WKB
 arguments. The WKB value returned from these functions can be
 converted to geometry arguments by using them as the first
 argument to functions in the
 GeomFromWKB() function family.

 For example, as of MySQL 5.0.82, you can insert the geometry
 return value from Point()
 directly into a Point column:

INSERT INTO t1 (pt_col) VALUES(Point(1,2));

 Prior to MySQL 5.0.82, convert the WKB return value to a
 Point before inserting it:

INSERT INTO t1 (pt_col) VALUES(GeomFromWKB(Point(1,2)));

	

 GeometryCollection(g1,g2,...)

 Constructs a GeometryCollection.

	

 LineString(pt1,pt2,...)

 Constructs a LineString value from a
 number of Point or WKB
 Point arguments. If the number of
 arguments is less than two, the return value is
 NULL.

	

 MultiLineString(ls1,ls2,...)

 Constructs a MultiLineString value
 using LineString or WKB
 LineString arguments.

	

 MultiPoint(pt1,pt2,...)

 Constructs a MultiPoint value using
 Point or WKB Point
 arguments.

	

 MultiPolygon(poly1,poly2,...)

 Constructs a MultiPolygon value from a
 set of Polygon or WKB
 Polygon arguments.

	

 Point(x,y)

 Constructs a Point using its
 coordinates.

	

 Polygon(ls1,ls2,...)

 Constructs a Polygon value from a
 number of LineString or WKB
 LineString arguments. If any argument
 does not represent a LinearRing (that
 is, not a closed and simple
 LineString), the return value is
 NULL.

12.16.4.3. Creating Spatial Columns

 MySQL provides a standard way of creating spatial columns for
 geometry types, for example, with CREATE
 TABLE or ALTER TABLE.
 Currently, spatial columns are supported for
 MyISAM, InnoDB,
 NDB, BDB, and
 ARCHIVE tables. (Support for storage engines
 other than MyISAM was added in MySQL 5.0.16.)
 See also the annotations about spatial indexes under
 Section 12.16.6.1, “Creating Spatial Indexes”.

	
 Use the CREATE TABLE
 statement to create a table with a spatial column:

CREATE TABLE geom (g GEOMETRY);

	
 Use the ALTER TABLE statement
 to add or drop a spatial column to or from an existing
 table:

ALTER TABLE geom ADD pt POINT;
ALTER TABLE geom DROP pt;

12.16.4.4. Populating Spatial Columns

 After you have created spatial columns, you can populate them
 with spatial data.

 Values should be stored in internal geometry format, but you can
 convert them to that format from either Well-Known Text (WKT) or
 Well-Known Binary (WKB) format. The following examples
 demonstrate how to insert geometry values into a table by
 converting WKT values into internal geometry format:

	
 Perform the conversion directly in the
 INSERT statement:

INSERT INTO geom VALUES (GeomFromText('POINT(1 1)'));

SET @g = 'POINT(1 1)';
INSERT INTO geom VALUES (GeomFromText(@g));

	
 Perform the conversion prior to the
 INSERT:

SET @g = GeomFromText('POINT(1 1)');
INSERT INTO geom VALUES (@g);

 The following examples insert more complex geometries into the
 table:

SET @g = 'LINESTRING(0 0,1 1,2 2)';
INSERT INTO geom VALUES (GeomFromText(@g));

SET @g = 'POLYGON((0 0,10 0,10 10,0 10,0 0),(5 5,7 5,7 7,5 7, 5 5))';
INSERT INTO geom VALUES (GeomFromText(@g));

SET @g =
'GEOMETRYCOLLECTION(POINT(1 1),LINESTRING(0 0,1 1,2 2,3 3,4 4))';
INSERT INTO geom VALUES (GeomFromText(@g));

 The preceding examples all use
 GeomFromText() to create geometry
 values. You can also use type-specific functions:

SET @g = 'POINT(1 1)';
INSERT INTO geom VALUES (PointFromText(@g));

SET @g = 'LINESTRING(0 0,1 1,2 2)';
INSERT INTO geom VALUES (LineStringFromText(@g));

SET @g = 'POLYGON((0 0,10 0,10 10,0 10,0 0),(5 5,7 5,7 7,5 7, 5 5))';
INSERT INTO geom VALUES (PolygonFromText(@g));

SET @g =
'GEOMETRYCOLLECTION(POINT(1 1),LINESTRING(0 0,1 1,2 2,3 3,4 4))';
INSERT INTO geom VALUES (GeomCollFromText(@g));

 Note that if a client application program wants to use WKB
 representations of geometry values, it is responsible for
 sending correctly formed WKB in queries to the server. However,
 there are several ways of satisfying this requirement. For
 example:

	
 Inserting a POINT(1 1) value with hex
 literal syntax:

mysql> INSERT INTO geom VALUES
 -> (GeomFromWKB(0x0101000000000000000000F03F000000000000F03F));

	
 An ODBC application can send a WKB representation, binding
 it to a placeholder using an argument of
 BLOB type:

INSERT INTO geom VALUES (GeomFromWKB(?))

 Other programming interfaces may support a similar
 placeholder mechanism.

	
 In a C program, you can escape a binary value using
 mysql_real_escape_string()
 and include the result in a query string that is sent to the
 server. See Section 20.6.7.53, “mysql_real_escape_string()”.

12.16.4.5. Fetching Spatial Data

 Geometry values stored in a table can be fetched in internal
 format. You can also convert them into WKT or WKB format.

	
 Fetching spatial data in internal format:

 Fetching geometry values using internal format can be useful
 in table-to-table transfers:

CREATE TABLE geom2 (g GEOMETRY) SELECT g FROM geom;

	
 Fetching spatial data in WKT format:

 The AsText() function
 converts a geometry from internal format into a WKT string.

SELECT AsText(g) FROM geom;

	
 Fetching spatial data in WKB format:

 The AsBinary() function
 converts a geometry from internal format into a
 BLOB containing the WKB
 value.

SELECT AsBinary(g) FROM geom;

12.16.5. Spatial Analysis Functions

 After populating spatial columns with values, you are ready to
 query and analyze them. MySQL provides a set of functions to
 perform various operations on spatial data. These functions can be
 grouped into four major categories according to the type of
 operation they perform:

	
 Functions that convert geometries between various formats

	
 Functions that provide access to qualitative or quantitative
 properties of a geometry

	
 Functions that describe relations between two geometries

	
 Functions that create new geometries from existing ones

 Spatial analysis functions can be used in many contexts, such as:

	
 Any interactive SQL program, such as mysql.

	
 Application programs written in any language that supports a
 MySQL client API

12.16.5.1. Geometry Format Conversion Functions

 MySQL supports the following functions for converting geometry
 values between internal format and either WKT or WKB format:

	

 AsBinary(g),
 AsWKB(g)

 Converts a value in internal geometry format to its WKB
 representation and returns the binary result.

SELECT AsBinary(g) FROM geom;

	

 AsText(g),
 AsWKT(g)

 Converts a value in internal geometry format to its WKT
 representation and returns the string result.

mysql> SET @g = 'LineString(1 1,2 2,3 3)';
mysql> SELECT AsText(GeomFromText(@g));
+--------------------------+
| AsText(GeomFromText(@g)) |
+--------------------------+
| LINESTRING(1 1,2 2,3 3) |
+--------------------------+

	

 GeomFromText(wkt[,srid])

 Converts a string value from its WKT representation into
 internal geometry format and returns the result. A number of
 type-specific functions are also supported, such as
 PointFromText() and
 LineFromText(). See
 Section 12.16.4.2.1, “Creating Geometry Values Using WKT Functions”.

	

 GeomFromWKB(wkb[,srid])

 Converts a binary value from its WKB representation into
 internal geometry format and returns the result. A number of
 type-specific functions are also supported, such as
 PointFromWKB() and
 LineFromWKB(). See
 Section 12.16.4.2.2, “Creating Geometry Values Using WKB Functions”.

12.16.5.2. Geometry Property Functions

 Each function that belongs to this group takes a geometry value
 as its argument and returns some quantitative or qualitative
 property of the geometry. Some functions restrict their argument
 type. Such functions return NULL if the
 argument is of an incorrect geometry type. For example,
 Area() returns
 NULL if the object type is neither
 Polygon nor MultiPolygon.

12.16.5.2.1. General Geometry Functions

 The functions listed in this section do not restrict their
 argument and accept a geometry value of any type.

	

 Dimension(g)

 Returns the inherent dimension of the geometry value
 g. The result can be –1,
 0, 1, or 2. The meaning of these values is given in
 Section 12.16.2.2, “Class Geometry”.

mysql> SELECT Dimension(GeomFromText('LineString(1 1,2 2)'));
+--+
| Dimension(GeomFromText('LineString(1 1,2 2)')) |
+--+
| 1 |
+--+

	

 Envelope(g)

 Returns the Minimum Bounding Rectangle (MBR) for the
 geometry value g. The result is
 returned as a Polygon value.

 The polygon is defined by the corner points of the
 bounding box:

POLYGON((MINX MINY, MAXX MINY, MAXX MAXY, MINX MAXY, MINX MINY))

mysql> SELECT AsText(Envelope(GeomFromText('LineString(1 1,2 2)')));
+---+
| AsText(Envelope(GeomFromText('LineString(1 1,2 2)'))) |
+---+
| POLYGON((1 1,2 1,2 2,1 2,1 1)) |
+---+

	

 GeometryType(g)

 Returns as a binary string the name of the geometry type
 of which the geometry instance
 g is a member. The name
 corresponds to one of the instantiable
 Geometry subclasses.

mysql> SELECT GeometryType(GeomFromText('POINT(1 1)'));
+--+
| GeometryType(GeomFromText('POINT(1 1)')) |
+--+
| POINT |
+--+

	

 SRID(g)

 Returns an integer indicating the Spatial Reference System
 ID for the geometry value g.

 In MySQL, the SRID value is just an integer associated
 with the geometry value. All calculations are done
 assuming Euclidean (planar) geometry.

mysql> SELECT SRID(GeomFromText('LineString(1 1,2 2)',101));
+---+
| SRID(GeomFromText('LineString(1 1,2 2)',101)) |
+---+
| 101 |
+---+

 The OpenGIS specification also defines the following
 functions, which MySQL does not implement:

	

 Boundary(g)

 Returns a geometry that is the closure of the
 combinatorial boundary of the geometry value
 g.

	

 IsEmpty(g)

 This function is a placeholder that returns 0 for any
 valid geometry value, 1 for any invalid geometry value or
 NULL.

 MySQL does not support GIS EMPTY values
 such as POINT EMPTY.

	

 IsSimple(g)

 In MySQL 5.0, this function is a placeholder
 that always returns 0.

 The description of each instantiable geometric class given
 earlier in the chapter includes the specific conditions
 that cause an instance of that class to be classified as
 not simple. (See
 Section 12.16.2.1, “The Geometry Class Hierarchy”.)

12.16.5.2.2. Point Functions

 A Point consists of X and Y coordinates,
 which may be obtained using the following functions:

	

 X(p)

 Returns the X-coordinate value for the
 Point object
 p as a double-precision number.

mysql> SELECT X(POINT(56.7, 53.34));
+-----------------------+
| X(POINT(56.7, 53.34)) |
+-----------------------+
| 56.7 |
+-----------------------+

	

 Y(p)

 Returns the Y-coordinate value for the
 Point object
 p as a double-precision number.

mysql> SELECT Y(POINT(56.7, 53.34));
+-----------------------+
| Y(POINT(56.7, 53.34)) |
+-----------------------+
| 53.34 |
+-----------------------+

12.16.5.2.3. LineString Functions

 A LineString consists of
 Point values. You can extract particular
 points of a LineString, count the number of
 points that it contains, or obtain its length.

	

 EndPoint(ls)

 Returns the Point that is the endpoint
 of the LineString value
 ls.

mysql> SET @ls = 'LineString(1 1,2 2,3 3)';
mysql> SELECT AsText(EndPoint(GeomFromText(@ls)));
+-------------------------------------+
| AsText(EndPoint(GeomFromText(@ls))) |
+-------------------------------------+
| POINT(3 3) |
+-------------------------------------+

	

 GLength(ls)

 Returns as a double-precision number the length of the
 LineString value
 ls in its associated spatial
 reference.

mysql> SET @ls = 'LineString(1 1,2 2,3 3)';
mysql> SELECT GLength(GeomFromText(@ls));
+----------------------------+
| GLength(GeomFromText(@ls)) |
+----------------------------+
| 2.8284271247462 |
+----------------------------+

 GLength() is a nonstandard
 name. It corresponds to the OpenGIS
 Length() function.

	

 IsClosed(ls)

 Returns 1 if the LineString value
 ls is closed (that is, its
 StartPoint() and
 EndPoint() values are the
 same) and is simple (does not pass through the same point
 more than once). Returns 0 if
 ls is not closed, and –1
 if it is NULL.

mysql> SET @ls1 = 'LineString(1 1,2 2,3 3,2 2)';
Query OK, 0 rows affected (0.00 sec)

mysql> SET @ls2 = 'LineString(1 1,2 2,3 3,1 1)';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT IsClosed(GeomFromText(@ls1));
+------------------------------+
| IsClosed(GeomFromText(@ls1)) |
+------------------------------+
| 0 |
+------------------------------+
1 row in set (0.00 sec)

mysql> SELECT IsClosed(GeomFromText(@ls2));
+------------------------------+
| IsClosed(GeomFromText(@ls2)) |
+------------------------------+
| 1 |
+------------------------------+
1 row in set (0.00 sec)

	

 NumPoints(ls)

 Returns the number of Point objects in
 the LineString value
 ls.

mysql> SET @ls = 'LineString(1 1,2 2,3 3)';
mysql> SELECT NumPoints(GeomFromText(@ls));
+------------------------------+
| NumPoints(GeomFromText(@ls)) |
+------------------------------+
| 3 |
+------------------------------+

	

 PointN(ls,N)

 Returns the N-th
 Point in the
 Linestring value
 ls. Points are numbered
 beginning with 1.

mysql> SET @ls = 'LineString(1 1,2 2,3 3)';
mysql> SELECT AsText(PointN(GeomFromText(@ls),2));
+-------------------------------------+
| AsText(PointN(GeomFromText(@ls),2)) |
+-------------------------------------+
| POINT(2 2) |
+-------------------------------------+

	

 StartPoint(ls)

 Returns the Point that is the start
 point of the LineString value
 ls.

mysql> SET @ls = 'LineString(1 1,2 2,3 3)';
mysql> SELECT AsText(StartPoint(GeomFromText(@ls)));
+---------------------------------------+
| AsText(StartPoint(GeomFromText(@ls))) |
+---------------------------------------+
| POINT(1 1) |
+---------------------------------------+

12.16.5.2.4. MultiLineString Functions

 These functions return properties of
 MultiLineString values.

	

 GLength(mls)

 Returns as a double-precision number the length of the
 MultiLineString value
 mls. The length of
 mls is equal to the sum of the
 lengths of its elements.

mysql> SET @mls = 'MultiLineString((1 1,2 2,3 3),(4 4,5 5))';
mysql> SELECT GLength(GeomFromText(@mls));
+-----------------------------+
| GLength(GeomFromText(@mls)) |
+-----------------------------+
| 4.2426406871193 |
+-----------------------------+

 GLength() is a nonstandard
 name. It corresponds to the OpenGIS
 Length() function.

	

 IsClosed(mls)

 Returns 1 if the MultiLineString value
 mls is closed (that is, the
 StartPoint() and
 EndPoint() values are the
 same for each LineString in
 mls). Returns 0 if
 mls is not closed, and –1
 if it is NULL.

mysql> SET @mls = 'MultiLineString((1 1,2 2,3 3),(4 4,5 5))';
mysql> SELECT IsClosed(GeomFromText(@mls));
+------------------------------+
| IsClosed(GeomFromText(@mls)) |
+------------------------------+
| 0 |
+------------------------------+

12.16.5.2.5. Polygon Functions

 These functions return properties of
 Polygon values.

	

 Area(poly)

 Returns as a double-precision number the area of the
 Polygon value
 poly, as measured in its
 spatial reference system.

mysql> SET @poly = 'Polygon((0 0,0 3,3 0,0 0),(1 1,1 2,2 1,1 1))';
mysql> SELECT Area(GeomFromText(@poly));
+---------------------------+
| Area(GeomFromText(@poly)) |
+---------------------------+
| 4 |
+---------------------------+

	

 ExteriorRing(poly)

 Returns the exterior ring of the
 Polygon value
 poly as a
 LineString.

mysql> SET @poly =
 -> 'Polygon((0 0,0 3,3 3,3 0,0 0),(1 1,1 2,2 2,2 1,1 1))';
mysql> SELECT AsText(ExteriorRing(GeomFromText(@poly)));
+---+
| AsText(ExteriorRing(GeomFromText(@poly))) |
+---+
| LINESTRING(0 0,0 3,3 3,3 0,0 0) |
+---+

	

 InteriorRingN(poly,N)

 Returns the N-th interior ring
 for the Polygon value
 poly as a
 LineString. Rings are numbered
 beginning with 1.

mysql> SET @poly =
 -> 'Polygon((0 0,0 3,3 3,3 0,0 0),(1 1,1 2,2 2,2 1,1 1))';
mysql> SELECT AsText(InteriorRingN(GeomFromText(@poly),1));
+--+
| AsText(InteriorRingN(GeomFromText(@poly),1)) |
+--+
| LINESTRING(1 1,1 2,2 2,2 1,1 1) |
+--+

	

 NumInteriorRings(poly)

 Returns the number of interior rings in the
 Polygon value
 poly.

mysql> SET @poly =
 -> 'Polygon((0 0,0 3,3 3,3 0,0 0),(1 1,1 2,2 2,2 1,1 1))';
mysql> SELECT NumInteriorRings(GeomFromText(@poly));
+---------------------------------------+
| NumInteriorRings(GeomFromText(@poly)) |
+---------------------------------------+
| 1 |
+---------------------------------------+

12.16.5.2.6. MultiPolygon Functions

 These functions return properties of
 MultiPolygon values.

	

 Area(mpoly)

 Returns as a double-precision number the area of the
 MultiPolygon value
 mpoly, as measured in its
 spatial reference system.

mysql> SET @mpoly =
 -> 'MultiPolygon(((0 0,0 3,3 3,3 0,0 0),(1 1,1 2,2 2,2 1,1 1)))';
mysql> SELECT Area(GeomFromText(@mpoly));
+----------------------------+
| Area(GeomFromText(@mpoly)) |
+----------------------------+
| 8 |
+----------------------------+

	

 Centroid(mpoly)

 Returns the mathematical centroid for the
 MultiPolygon value
 mpoly as a
 Point. The result is not guaranteed to
 be on the MultiPolygon.

mysql> SET @poly =
 -> GeomFromText('POLYGON((0 0,10 0,10 10,0 10,0 0),(5 5,7 5,7 7,5 7,5 5))');
mysql> SELECT GeometryType(@poly),AsText(Centroid(@poly));
+---------------------+--+
| GeometryType(@poly) | AsText(Centroid(@poly)) |
+---------------------+--+
| POLYGON | POINT(4.958333333333333 4.958333333333333) |
+---------------------+--+

 The OpenGIS specification also defines the following function,
 which MySQL does not implement:

	

 PointOnSurface(mpoly)

 Returns a Point value that is
 guaranteed to be on the MultiPolygon
 value mpoly.

12.16.5.2.7. GeometryCollection Functions

 These functions return properties of
 GeometryCollection values.

	

 GeometryN(gc,N)

 Returns the N-th geometry in
 the GeometryCollection value
 gc. Geometries are numbered
 beginning with 1.

mysql> SET @gc = 'GeometryCollection(Point(1 1),LineString(2 2, 3 3))';
mysql> SELECT AsText(GeometryN(GeomFromText(@gc),1));
+--+
| AsText(GeometryN(GeomFromText(@gc),1)) |
+--+
| POINT(1 1) |
+--+

	

 NumGeometries(gc)

 Returns the number of geometries in the
 GeometryCollection value
 gc.

mysql> SET @gc = 'GeometryCollection(Point(1 1),LineString(2 2, 3 3))';
mysql> SELECT NumGeometries(GeomFromText(@gc));
+----------------------------------+
| NumGeometries(GeomFromText(@gc)) |
+----------------------------------+
| 2 |
+----------------------------------+

12.16.5.3. Functions That Create New Geometries from Existing Ones

 The following sections describe functions that take geometry
 values as arguments and return new geometry values.

12.16.5.3.1. Geometry Functions That Produce New Geometries

 Section 12.16.5.2, “Geometry Property Functions”, discusses
 several functions that construct new geometries from existing
 ones. See that section for descriptions of these functions:

	
 Envelope(g)

	
 StartPoint(ls)

	
 EndPoint(ls)

	
 PointN(ls,N)

	
 ExteriorRing(poly)

	
 InteriorRingN(poly,N)

	
 GeometryN(gc,N)

12.16.5.3.2. Spatial Operators

 OpenGIS proposes a number of other functions that can produce
 geometries. They are designed to implement spatial operators.

 These functions are not implemented in MySQL.

	

 Buffer(g,d)

 Returns a geometry that represents all points whose
 distance from the geometry value
 g is less than or equal to a
 distance of d.

	

 ConvexHull(g)

 Returns a geometry that represents the convex hull of the
 geometry value g.

	

 Difference(g1,g2)

 Returns a geometry that represents the point set
 difference of the geometry value
 g1 with
 g2.

	

 Intersection(g1,g2)

 Returns a geometry that represents the point set
 intersection of the geometry values
 g1 with
 g2.

	

 SymDifference(g1,g2)

 Returns a geometry that represents the point set symmetric
 difference of the geometry value
 g1 with
 g2.

	

 Union(g1,g2)

 Returns a geometry that represents the point set union of
 the geometry values g1 and
 g2.

12.16.5.4. Functions for Testing Spatial Relations Between Geometric Objects

 The functions described in these sections take two geometries as
 input parameters and return a qualitative or quantitative
 relation between them.

12.16.5.4.1. Relations on Geometry Minimal Bounding Rectangles (MBRs)

 MySQL provides several functions that test relations between
 minimal bounding rectangles of two geometries
 g1 and g2. The return
 values 1 and 0 indicate true and false, respectively.

	

 MBRContains(g1,g2)

 Returns 1 or 0 to indicate whether the Minimum Bounding
 Rectangle of g1 contains the
 Minimum Bounding Rectangle of
 g2. This tests the opposite
 relationship as
 MBRWithin().

mysql> SET @g1 = GeomFromText('Polygon((0 0,0 3,3 3,3 0,0 0))');
mysql> SET @g2 = GeomFromText('Point(1 1)');
mysql> SELECT MBRContains(@g1,@g2), MBRContains(@g2,@g1);
----------------------+----------------------+
| MBRContains(@g1,@g2) | MBRContains(@g2,@g1) |
+----------------------+----------------------+
| 1 | 0 |
+----------------------+----------------------+

	

 MBRDisjoint(g1,g2)

 Returns 1 or 0 to indicate whether the Minimum Bounding
 Rectangles of the two geometries
 g1 and
 g2 are disjoint (do not
 intersect).

	

 MBREqual(g1,g2)

 Returns 1 or 0 to indicate whether the Minimum Bounding
 Rectangles of the two geometries
 g1 and
 g2 are the same.

	

 MBRIntersects(g1,g2)

 Returns 1 or 0 to indicate whether the Minimum Bounding
 Rectangles of the two geometries
 g1 and
 g2 intersect.

	

 MBROverlaps(g1,g2)

 Returns 1 or 0 to indicate whether the Minimum Bounding
 Rectangles of the two geometries
 g1 and
 g2 overlap. The term
 spatially overlaps is used if two
 geometries intersect and their intersection results in a
 geometry of the same dimension but not equal to either of
 the given geometries.

	

 MBRTouches(g1,g2)

 Returns 1 or 0 to indicate whether the Minimum Bounding
 Rectangles of the two geometries
 g1 and
 g2 touch. Two geometries
 spatially touch if the interiors of
 the geometries do not intersect, but the boundary of one
 of the geometries intersects either the boundary or the
 interior of the other.

	

 MBRWithin(g1,g2)

 Returns 1 or 0 to indicate whether the Minimum Bounding
 Rectangle of g1 is within the
 Minimum Bounding Rectangle of
 g2. This tests the opposite
 relationship as
 MBRContains().

mysql> SET @g1 = GeomFromText('Polygon((0 0,0 3,3 3,3 0,0 0))');
mysql> SET @g2 = GeomFromText('Polygon((0 0,0 5,5 5,5 0,0 0))');
mysql> SELECT MBRWithin(@g1,@g2), MBRWithin(@g2,@g1);
+--------------------+--------------------+
| MBRWithin(@g1,@g2) | MBRWithin(@g2,@g1) |
+--------------------+--------------------+
| 1 | 0 |
+--------------------+--------------------+

12.16.5.4.2. Functions That Test Spatial Relationships Between Geometries

 The OpenGIS specification defines the following functions.
 They test the relationship between two geometry values
 g1 and g2.

 The return values 1 and 0 indicate true and false,
 respectively.

Note

 Currently, MySQL does not implement these functions
 according to the specification. Those that are implemented
 return the same result as the corresponding MBR-based
 functions.

	

 Contains(g1,g2)

 Returns 1 or 0 to indicate whether
 g1 completely contains
 g2. This tests the opposite
 relationship as Within().

	

 Crosses(g1,g2)

 Returns 1 if g1 spatially
 crosses g2. Returns
 NULL if g1 is a
 Polygon or a
 MultiPolygon, or if
 g2 is a
 Point or a
 MultiPoint. Otherwise, returns 0.

 The term spatially crosses denotes a
 spatial relation between two given geometries that has the
 following properties:

	
 The two geometries intersect

	
 Their intersection results in a geometry that has a
 dimension that is one less than the maximum dimension
 of the two given geometries

	
 Their intersection is not equal to either of the two
 given geometries

	

 Disjoint(g1,g2)

 Returns 1 or 0 to indicate whether
 g1 is spatially disjoint from
 (does not intersect) g2.

	

 Equals(g1,g2)

 Returns 1 or 0 to indicate whether
 g1 is spatially equal to
 g2.

	

 Intersects(g1,g2)

 Returns 1 or 0 to indicate whether
 g1 spatially intersects
 g2.

	

 Overlaps(g1,g2)

 Returns 1 or 0 to indicate whether
 g1 spatially overlaps
 g2. The term
 spatially overlaps is used if two
 geometries intersect and their intersection results in a
 geometry of the same dimension but not equal to either of
 the given geometries.

	

 Touches(g1,g2)

 Returns 1 or 0 to indicate whether
 g1 spatially touches
 g2. Two geometries
 spatially touch if the interiors of
 the geometries do not intersect, but the boundary of one
 of the geometries intersects either the boundary or the
 interior of the other.

	

 Within(g1,g2)

 Returns 1 or 0 to indicate whether
 g1 is spatially within
 g2. This tests the opposite
 relationship as Contains().

12.16.6. Optimizing Spatial Analysis

 For MyISAM tables, Search operations
 in nonspatial databases can be optimized using
 SPATIAL indexes. This is true for spatial
 databases as well. With the help of a great variety of
 multi-dimensional indexing methods that have previously been
 designed, it is possible to optimize spatial searches. The most
 typical of these are:

	
 Point queries that search for all objects that contain a given
 point

	
 Region queries that search for all objects that overlap a
 given region

 MySQL uses R-Trees with quadratic
 splitting for SPATIAL indexes on
 spatial columns. A SPATIAL index is built using
 the MBR of a geometry. For most geometries, the MBR is a minimum
 rectangle that surrounds the geometries. For a horizontal or a
 vertical linestring, the MBR is a rectangle degenerated into the
 linestring. For a point, the MBR is a rectangle degenerated into
 the point.

 It is also possible to create normal indexes on spatial columns.
 In a non-SPATIAL index, you must declare a
 prefix for any spatial column except for POINT
 columns.

 MyISAM supports both SPATIAL
 and non-SPATIAL indexes. Other storage engines
 support non-SPATIAL indexes, as described in
 Section 13.1.8, “CREATE INDEX Syntax”.

12.16.6.1. Creating Spatial Indexes

 For MyISAM tables, MySQL can create
 spatial indexes using syntax similar to that for creating
 regular indexes, but extended with the
 SPATIAL keyword. Currently, columns in
 spatial indexes must be declared NOT NULL.
 The following examples demonstrate how to create spatial
 indexes:

	
 With CREATE TABLE:

CREATE TABLE geom (g GEOMETRY NOT NULL, SPATIAL INDEX(g)) ENGINE=MyISAM;

	
 With ALTER TABLE:

ALTER TABLE geom ADD SPATIAL INDEX(g);

	
 With CREATE INDEX:

CREATE SPATIAL INDEX sp_index ON geom (g);

 For MyISAM tables, SPATIAL
 INDEX creates an R-tree index. For storage engines
 that support nonspatial indexing of spatial columns, the engine
 creates a B-tree index. A B-tree index on spatial values will be
 useful for exact-value lookups, but not for range scans.

 For more information on indexing spatial columns, see
 Section 13.1.8, “CREATE INDEX Syntax”.

 To drop spatial indexes, use ALTER
 TABLE or DROP INDEX:

	
 With ALTER TABLE:

ALTER TABLE geom DROP INDEX g;

	
 With DROP INDEX:

DROP INDEX sp_index ON geom;

 Example: Suppose that a table geom contains
 more than 32,000 geometries, which are stored in the column
 g of type GEOMETRY. The
 table also has an AUTO_INCREMENT column
 fid for storing object ID values.

mysql> DESCRIBE geom;
+-------+----------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+-------+----------+------+-----+---------+----------------+
| fid | int(11) | | PRI | NULL | auto_increment |
| g | geometry | | | | |
+-------+----------+------+-----+---------+----------------+
2 rows in set (0.00 sec)

mysql> SELECT COUNT(*) FROM geom;
+----------+
| count(*) |
+----------+
| 32376 |
+----------+
1 row in set (0.00 sec)

 To add a spatial index on the column g, use
 this statement:

mysql> ALTER TABLE geom ADD SPATIAL INDEX(g);
Query OK, 32376 rows affected (4.05 sec)
Records: 32376 Duplicates: 0 Warnings: 0

12.16.6.2. Using a Spatial Index

 The optimizer investigates whether available spatial indexes can
 be involved in the search for queries that use a function such
 as MBRContains() or
 MBRWithin() in the
 WHERE clause. The following query finds all
 objects that are in the given rectangle:

mysql> SET @poly =
 -> 'Polygon((30000 15000,31000 15000,31000 16000,30000 16000,30000 15000))';
mysql> SELECT fid,AsText(g) FROM geom WHERE
 -> MBRContains(GeomFromText(@poly),g);
+-----+---+
| fid | AsText(g) |
+-----+---+
21	LINESTRING(30350.4 15828.8,30350.6 15845,30333.8 15845,30 ...
22	LINESTRING(30350.6 15871.4,30350.6 15887.8,30334 15887.8, ...
23	LINESTRING(30350.6 15914.2,30350.6 15930.4,30334 15930.4, ...
24	LINESTRING(30290.2 15823,30290.2 15839.4,30273.4 15839.4, ...
25	LINESTRING(30291.4 15866.2,30291.6 15882.4,30274.8 15882. ...
26	LINESTRING(30291.6 15918.2,30291.6 15934.4,30275 15934.4, ...
249	LINESTRING(30337.8 15938.6,30337.8 15946.8,30320.4 15946. ...
1	LINESTRING(30250.4 15129.2,30248.8 15138.4,30238.2 15136. ...
2	LINESTRING(30220.2 15122.8,30217.2 15137.8,30207.6 15136, ...
3	LINESTRING(30179 15114.4,30176.6 15129.4,30167 15128,3016 ...
4	LINESTRING(30155.2 15121.4,30140.4 15118.6,30142 15109,30 ...
5	LINESTRING(30192.4 15085,30177.6 15082.2,30179.2 15072.4, ...
6	LINESTRING(30244 15087,30229 15086.2,30229.4 15076.4,3024 ...
7	LINESTRING(30200.6 15059.4,30185.6 15058.6,30186 15048.8, ...
10	LINESTRING(30179.6 15017.8,30181 15002.8,30190.8 15003.6, ...
11	LINESTRING(30154.2 15000.4,30168.6 15004.8,30166 15014.2, ...
13	LINESTRING(30105 15065.8,30108.4 15050.8,30118 15053,3011 ...
154	LINESTRING(30276.2 15143.8,30261.4 15141,30263 15131.4,30 ...
155	LINESTRING(30269.8 15084,30269.4 15093.4,30258.6 15093,30 ...
157	LINESTRING(30128.2 15011,30113.2 15010.2,30113.6 15000.4, ...
+-----+---+
20 rows in set (0.00 sec)

 Use EXPLAIN to check the way this
 query is executed:

mysql> SET @poly =
 -> 'Polygon((30000 15000,31000 15000,31000 16000,30000 16000,30000 15000))';
mysql> EXPLAIN SELECT fid,AsText(g) FROM geom WHERE
 -> MBRContains(GeomFromText(@poly),g)\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: geom
 type: range
possible_keys: g
 key: g
 key_len: 32
 ref: NULL
 rows: 50
 Extra: Using where
1 row in set (0.00 sec)

 Check what would happen without a spatial index:

mysql> SET @poly =
 -> 'Polygon((30000 15000,31000 15000,31000 16000,30000 16000,30000 15000))';
mysql> EXPLAIN SELECT fid,AsText(g) FROM g IGNORE INDEX (g) WHERE
 -> MBRContains(GeomFromText(@poly),g)\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: geom
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 32376
 Extra: Using where
1 row in set (0.00 sec)

 Executing the SELECT statement
 without the spatial index yields the same result but causes the
 execution time to rise from 0.00 seconds to 0.46 seconds:

mysql> SET @poly =
 -> 'Polygon((30000 15000,31000 15000,31000 16000,30000 16000,30000 15000))';
mysql> SELECT fid,AsText(g) FROM geom IGNORE INDEX (g) WHERE
 -> MBRContains(GeomFromText(@poly),g);
+-----+---+
| fid | AsText(g) |
+-----+---+
1	LINESTRING(30250.4 15129.2,30248.8 15138.4,30238.2 15136. ...
2	LINESTRING(30220.2 15122.8,30217.2 15137.8,30207.6 15136, ...
3	LINESTRING(30179 15114.4,30176.6 15129.4,30167 15128,3016 ...
4	LINESTRING(30155.2 15121.4,30140.4 15118.6,30142 15109,30 ...
5	LINESTRING(30192.4 15085,30177.6 15082.2,30179.2 15072.4, ...
6	LINESTRING(30244 15087,30229 15086.2,30229.4 15076.4,3024 ...
7	LINESTRING(30200.6 15059.4,30185.6 15058.6,30186 15048.8, ...
10	LINESTRING(30179.6 15017.8,30181 15002.8,30190.8 15003.6, ...
11	LINESTRING(30154.2 15000.4,30168.6 15004.8,30166 15014.2, ...
13	LINESTRING(30105 15065.8,30108.4 15050.8,30118 15053,3011 ...
21	LINESTRING(30350.4 15828.8,30350.6 15845,30333.8 15845,30 ...
22	LINESTRING(30350.6 15871.4,30350.6 15887.8,30334 15887.8, ...
23	LINESTRING(30350.6 15914.2,30350.6 15930.4,30334 15930.4, ...
24	LINESTRING(30290.2 15823,30290.2 15839.4,30273.4 15839.4, ...
25	LINESTRING(30291.4 15866.2,30291.6 15882.4,30274.8 15882. ...
26	LINESTRING(30291.6 15918.2,30291.6 15934.4,30275 15934.4, ...
154	LINESTRING(30276.2 15143.8,30261.4 15141,30263 15131.4,30 ...
155	LINESTRING(30269.8 15084,30269.4 15093.4,30258.6 15093,30 ...
157	LINESTRING(30128.2 15011,30113.2 15010.2,30113.6 15000.4, ...
249	LINESTRING(30337.8 15938.6,30337.8 15946.8,30320.4 15946. ...
+-----+---+
20 rows in set (0.46 sec)

12.16.7. MySQL Conformance and Compatibility

 MySQL does not yet implement the following GIS features:

	
 Additional Metadata Views

 OpenGIS specifications propose several additional metadata
 views. For example, a system view named
 GEOMETRY_COLUMNS contains a description of
 geometry columns, one row for each geometry column in the
 database.

	
 The OpenGIS function Length()
 on LineString and
 MultiLineString currently should be called
 in MySQL as GLength()

 The problem is that there is an existing SQL function
 Length() that calculates the
 length of string values, and sometimes it is not possible to
 distinguish whether the function is called in a textual or
 spatial context. We need either to solve this somehow, or
 decide on another function name.

B.9. MySQL 5.0 FAQ: Security

Questions
	B.9.1:
 Where can I find documentation that addresses security issues
 for MySQL?

	B.9.2:
 Does MySQL 5.0 have native support for SSL?

	B.9.3:
 Is SSL support be built into MySQL binaries, or must I recompile
 the binary myself to enable it?

	B.9.4:
 Does MySQL 5.0 have built-in authentication against
 LDAP directories?

	B.9.5:
 Does MySQL 5.0 include support for Roles Based
 Access Control (RBAC)?

Questions and Answers
B.9.1:
 Where can I find documentation that addresses security issues
 for MySQL?

 The best place to start is Chapter 6, Security.

 Other portions of the MySQL Documentation which you may find
 useful with regard to specific security concerns include the
 following:

	
 Section 6.1.1, “Security Guidelines”.

	
 Section 6.1.3, “Making MySQL Secure Against Attackers”.

	
 Section C.5.4.1, “How to Reset the Root Password”.

	
 Section 6.1.5, “How to Run MySQL as a Normal User”.

	
 Section 21.2.2.6, “User-Defined Function Security Precautions”.

	
 Section 6.1.4, “Security-Related mysqld Options and Variables”.

	
 Section 6.1.6, “Security Issues with LOAD
 DATA LOCAL”.

	
 Section 2.18, “Postinstallation Setup and Testing”.

	
 Section 6.3.6.1, “Basic SSL Concepts”.

B.9.2:
 Does MySQL 5.0 have native support for SSL?

 Most 5.0 binaries have support for SSL connections
 between the client and server. See
 Section 6.3.6, “Using SSL for Secure Connections”.

 You can also tunnel a connection using SSH, if (for example) the
 client application does not support SSL connections. For an
 example, see Section 6.3.7, “Connecting to MySQL Remotely from Windows with SSH”.

B.9.3:
 Is SSL support be built into MySQL binaries, or must I recompile
 the binary myself to enable it?

 Most 5.0 binaries have SSL enabled for
 client-server connections that are secured, authenticated, or
 both. See Section 6.3.6, “Using SSL for Secure Connections”.

B.9.4:
 Does MySQL 5.0 have built-in authentication against
 LDAP directories?

 Not at this time.

B.9.5:
 Does MySQL 5.0 include support for Roles Based
 Access Control (RBAC)?

 Not at this time.

