Connectors and APIs



Abstract
This manual describes the Connectors and APIs that can be used with MySQL.

For legal information, see the Legal Notices.

For help with using MySQL, please visit the MySQL Forums, where you can discuss your issues with other MySQL
users.

Document generated on: 2024-03-29 (revision: 78232)



http://forums.mysql.com

Table of Contents

Preface and Legal NOTICES ......ccouuuiiiiiiieee ittt e e e e et e e e et e e e eaea s Vi
I [ a1 fo o [N ox 1 o] o ISP TR PP 1
2 MySQL Connector/C++ DeVelOPEr GUILE ..........iiiiiiiieiiiiii et e e e e eeeai e eees 3
2.1 Introduction t0 CONNECIONCH .ouuui ittt ettt e et e e et e e e e e e eat e e eena e eeeees 3
2.2 ObtaiNiNg CONNECIOICH ...ttt e ettt e e e e e 6
2.3 Installing Connector/C++ from a Binary Distribution .............ccoooiiiiiiiiiiii e 6
2.4 Installing Connector/C++ frOM SOUICE .......ccouuuiiiiii ettt et e e e e e e 9
2.4.1 Source Installation SyStem Prer@qUISIteS ...........uuiiiiiiiiiiiiiii e 9
2.4.2 Obtaining and Unpacking a Connector/C++ Source Distribution ............cccccooveeviierennnnn. 10
2.4.3 Installing ConNector/C++ frOM SOUICE .......cuuiiiiiiiieeiit et 11
2.4.4 Connector/C++ Source-Configuration OPLIONS ........ccoevuuieiiiiiieiiiie e 15

2.5 Building Connector/C++ APPICALIONS .......uniiiiiiiieieii e 21
2.5.1 Building Connector/C++ Applications: General Considerations .............ccooeevevineeeinnnnnn. 21
2.5.2 Building Connector/C++ Applications: Platform-Specific Considerations ....................... 29
2.5.3 AULhentiCation SUPPOIT ....couuiiiiie et 34
2.5.4 OpenTelemetry Tracing SUPPOIT ....ccouuuieiiitiie ettt 38

2.6 CoNNECtOr/CH+ KNOWN ISSUES ....covuuiiiiiii ittt e e 39
2.7 CONNECIOICHF SUPPOIT ...ttt ettt ettt e et e et et et e e e e ab e e e e naa s 40
3 MySQL Connector/J DEVEIOPEI GUILE ......cceiuiieeiiiieee ittt ettt e et eeee e e eeri e eeens 41
3.1 Overview of MySQL CONNECIOITT .....uuuiiiiiiiee ettt e e e eaaens 42
3.2 Compatibility with MySQL and Java VErISIONS ........cc.uuieiiiiuieieiiieeieiiiae et eeei e eeni e eenaens 43
3.3 CoNNECLOr/J INSTAIALION .....ccoutiieeiii et et e s 43
3.3.1 Installing Connector/J from a Binary DisStribution .............ccovoviiiiiiiiiiiini e 43
3.3.2 Installing Connector/J USING MAVEN ........ccuuiiiiiiiiiiiiiii et 45
3.3.3 INStalling frOM SOUICE ......uiiiiii ettt e e e e e 46
3.3.4 Upgrading from an Older VEIrSION ............iiiiiiuiiiiiiiiiieiiii et 48
3.3.5 TeSHNG CONNECLONJ ... ettt ettt e ettt e e e et e e e ane e eeens 53

3.4 CoNNECLOII EXAMPIES ..ottt 54
3.5 CoNNECLOI/J REFEIENCE ....ooviiiiiiii ettt e e et e e e eees 55
3.5.1 Driver/Datasource Class NAME ......ccouuiiiiiiiieiii ettt 55
3.5.2 COoNNECHION URL SYNEAX ...uiiiiiiiiieiiiii ettt ettt et e e et eeeeab e e ena e eeens 55
3.5.3 Configuration PrOPEITIES .......iieiiii et e e et e e e een e eeees 59
3.5.4 JDBC API Implementation NOTES .........ccoiiiiiiiiiiiiee e 106
3.5.5 Java, JDBC, and MYSQL TYPES ....ciiiiiieiiiiiiei ettt 109
3.5.6 Handling of Date-Time ValUES ..........ooiiiiiiiiiiiiie et 111
3.5.7 Using Character Sets and UNICOOE ............coouuiiiiiiiiiiiiiiii e 117
3.5.8 UsIiNg QUETY ATIDULES ....ouuiiiiiiie et 120
3.5.9 Connecting Securely USING SSL ....c.uuiiiiiiiiiiiiii et 121
3.5.10 Connecting Using Unix Domain SOCKELS ............oiiiiiiiiiiiiiiiieeii e 127
3.5.11 Connecting Using Named PiPES .......ooiiiiiiiiiiiiieiei e 128
3.5.12 Connecting Using Various Authentication Methods ............c.cc.ooovviiiiiiiiiiiiiiiieee, 129
3.5.13 Using Source/Replica Replication with ReplicationConnection ...........c.....cccuviverennnn. 131
3.5.14 Support for DNS SRV RECOITS ....ccuuuiiiiiiiiieiiiii ettt 131
3.5.15 Client Session State TraCKer ..........i i 132
3.5.16 Mapping MySQL Error Numbers to JDBC SQLState Codes ...........cccuvvveveriinierennnnn. 133

I I 1B = O o] o [o1=T o £ PP 140
3.6.1 Connecting to MySQL Using the JDBC Dr i ver Manager Interface ..........c.c...ccevunneee. 140
3.6.2 Using JDBC St at enent Objects to EXecute SQL .......ovvviiviiiiiiiiieeiiiieecci e 142
3.6.3 Using JDBC Cal | abl eSt at enent s to Execute Stored Procedures ......................... 143
3.6.4 Retrieving AUTO_| NCREMENT Column Values through JDBC ...........ccccoevieiiiiineeiinnnnn. 145

3.7 Connection Pooling With CONNECIONJ ..........iiiiiiiiei e 148




Connectors and APIs

3.8 MUItI-HOSt CONNECLIONS ...ttt e et e et e e e e e e e et e e eeeeans 151
3.8.1 Configuring Server Failover for Connections Using JDBC .........cc.ccceveviiieiiiieeiieeiins 152
3.8.2 Configuring Server Failover for Connections Using X DeVAPI ..........cccoeeviiiiiiiieinnnen, 154
3.8.3 Configuring Load Balancing with Connector/J ...........ccoovvviiiiiii i, 155
3.8.4 Configuring Source/Replica Replication with Connector/J ...........ccooeveviiiiiiiineeieeen, 157
3.8.5 Advanced Load-balancing and Failover Configuration ...............ccooveviiieiiiieiin e, 161

3.9 Using the X DeVvAPI with Connector/J; Special TOPICS .....ocvvuieiiiieiiieiie e e e 163
3.9.1 Connection Compression Using X DEVAPI ... 163
3.9.2 Schema Validation ............oiiiiiiii e 164

3.10 Using the Connector/J INterceptor CIASSES ....cuuuiiiuiiiiiiieii e 166

3.11 Using Logging Frameworks With SLFAJ .......couiiiiiiiii e 166

3.12 Using Connector/J With TOMCAL ........civuniiiiiei e e e e e e e eaans 168

3.13 Using Connector/J With SPriNQG .......couuiiiiii e e e e e e e e e anaees 170
3.13.1 UsSIiNG JADCTENPI L € 1uiiiiiiiii i e e e e e e e aaeeas 171
3.13.2 Transactional JDBC ACCESS ....ccuuuiiiiiiiietiiiiie et e e et e et e e e et e e e eaa e e e et e eeenanns 172
3.13.3 Connection Pooling With SPring .........oiiiiiiiii e 174

3.14 Troubleshooting Connector/J APPlICAtIONS .....cc.uiiiiiiiiii e e 174

3.15 Known ISsues and LIMItAtIONS ........iiiiiiiiiiiiiiee e et e e e e e et e e e e e e eaa e e eeenns 181

G I @0 a1 [=Tox (o1 7 ST U] ] o o] o A PP 181
3.16.1 Connector/J COMMUNILY SUPPOIT ...cvvueiiieii et e e e e e e e e e e e e e eees 181
3.16.2 How to Report Connector/J Bugs or Problems ...........ccooveiiiiiiiiiiiee e, 182

4 MySQL Connector/NET DeVEIOPEr GUITE .....ccuuiiiiieiii et e e e e e e e e e eaas 185

4.1 Introduction to MySQL ConNECIONNET ......uiiiiiiiiiii e e e e e e e e 186

4.2 CONNECLOI/NET VEISIONS ...ovtuieiiiii ettt e ettt e e et e e e e et e e e et e e e et e e e et e e e eaanas 187

4.3 ConNECOr/NET INSLAIALION ....iiiiiiiee et e e 189
4.3.1 Installing Connector/NET 0N WINAOWS .....c.uuiiiiiiiiieii e e e e e 189
4.3.2 Installing Connector/NET on Unix With MONO ..........ccccoiviiiiiiiiii e, 192
4.3.3 Installing ConNector/NET from SOUICE ........iviiiiiiiei e 193

4.4 CONNECLOI/NET CONNECLONS ....uiiiitiieiiiiie ettt e et e e et e e et e e e eaa e e e etenneeeeenns 194
4.4.1 Creating a Connector/NET Connection String ........cocvuvviiiiieiiiieiiiiee e e 194
4.4.2 Managing a Connection Pool in ConNecCtor/NET .........ccocvviiiiiiiiiiiiiecie e, 197
4.4.3 Handling CONNECHION EITOIS ...c.uuiiiiiiii e e e e e e e e e e e e et e e aaaees 198
4.4.4 Connector/NET AUtNENTICALION ......uuiiiiiiiie et eaens 199
4.4.5 Connector/NET Connection Options Reference ..........cooocvviiiiiiiiiiicii e 204

4.5 ConNECIOr/NET ProgramMiNg ........ceueueeiueeeieeeieesieeeste e e est e et e et e eataesaeestaeeanaessneenen 221
4.5.1 Using GetSchema on @ CONNECLION ..........ceiiiiiiiiieii e e e e 221
4.5.2 Using MySqICOMMANG .......oouuiiiiiiii e e e e et e e eanas 223
4.5.3 Using Connector/NET with Table Caching .........ccooveviiiiiiiiiiiicie e, 226
4.5.4 Preparing Statements in ConNECIOr/NET .......ccovviiiiiiiiiiiiie e 226
4.5.5 Creating and Calling Stored ProCeAUIES ...........ccouuieiiiiiiiiiieii e 227
4.5.6 Handling BLOB Data With Connector/NET ..........coiiiiiiiiiieiie e e e 231
4.5.7 Working with Partial Trust / Medium TrUSE .........ccocoiiiiiiiie e 234
4.5.8 Writing a Custom Authentication PIUgIN ...........coooiiiiiii e 238
4.5.9 Using the Connector/NET Interceptor CIasSes ........cocvvveiiiiiiiiiieiiiieiie e, 241
4.5.10 Handling Date and Time Information in ConNector/NET ..........ccccovieiiiieiiiieiiiieeeis 242
4.5.11 Using the MySqIBUIKLOAAEr CIASS .....ccuuiiiiiieiiiiiiii e e e e e e 244
4.5.12 CoNNECLOI/NET TraACING . eevuuiiieeiiiieiii e et e e e e et e e e e e e e e e e e e e e et e e aaeeeanas 246
4.5.13 Using Connector/NET with Crystal REPOIS .......c..oeviiiiiiiiieiiie e 251
4.5.14 AsSynchronous MethodS ........ccoouiiiiiiiiii e e e 255
4.5.15 Binary and NONBINArY ISSUES .......ccuuiiiiiiii e e e e e eees 262
4.5.16 Character Set Considerations for CoNNeCtOr/NET ..........coviiiiiiiiiiiiiiiieeeiiii e 262

4.6 CONNECLOI/NET TULOMAIS ... eiiiti e e et e et e e e et e e e eatn e eeeenes 263
4.6.1 Tutorial: An Introduction to Connector/NET Programming .........cccccceveviiieviinneenneennnnn. 263

4.6.2 ASP.NET Provider Model and TUtONalS .........cc.uieuiiniiiii e 272




Connectors and APIs

4.6.3 Tutorial: Using an Entity Framework Entity as a Windows Forms Data Source ........... 289
4.6.4 Tutorial: Data Binding in ASP.NET Using LINQ on Entities ..........c..cccovvviviviineeineenn, 297
4.6.5 Tutorial: Generating MySQL DDL from an Entity Framework Model ........................... 300
4.6.6 Tutorial: Basic CRUD Operations with Connector/NET .........cccooeviviiiiiiiiiiiciieeeiee, 301
4.6.7 Tutorial: Configuring SSL with Connector/NET .......cocoviiiiiiiiii e, 304
4.6.8 Tutorial: USINg MYSQISCIIPL ..vuniieiiei e e e e s 307

4.7 Connector/NET for Entity FrameWOrK .........cocouuiiiiiiii e e e e 311
4.7.1 Entity Framework 6 SUPPOI ...oeuu e e e e e e e e e aaa s 311
4.7.2 Entity Framework COre SUPPOI .. ..uuiiii e e e e e e e e e e e e e e e e ean s 317

4.8 ConNNECLOI/NET APl REFEIENCE .....uuiiiiiiiii e 326
4.8.1 MySql.Data.Common.DNSCHENT .........iiiiiiiii e e e 326
4.8.2 MySql.Data.MySqIClient NamMESPACE ......ccuueiiiiiiiieiiiieiie e ee e aans 326
4.8.3 MySql.Data.MySqlClient.Authentication NameSpacCe ........cccccuvveviieiiiiieviieeiiiieeiieeeennn, 329
4.8.4 MySql.Data.MySqlClient.Interceptors NamespaCe ..........cceeeuueeeunieiiiieeiiieeiiiieeieeeaneens 330
4.8.5 MySql.Data.MySqlClient.Replication NameSPacCe ..........cceveerieiiiieiiiieeiiieeiieeeaeeeannn 330
4.8.6 MySql.Data. TYPeS NAMESPACE ....c.uevereieieeiiiieeiee et e et ee et e e e e e e e et e et e e eaeaeenaaes 330
4.8.7 MySql.Data.EntityFramework NameSPaCE .........ccvvvieiinieiiiieiiiieei e e e e e e eaens 331
4.8.8 Microsoft.EntityFrameworkCore NameSPACE .........oevvuiiiiieiiieeiiiieciie e e e et e e eeines 332
4.8.9 MySql.EntityFrameworkCore NamMESPACE .......cevuuiiirneeiiiieiiiieeiie et e e e e e e e eaen 332
4.8.10 MySql.WeED NAMESPACE .....cevuiiiiiieiiii et e et e e e e e e e e e e e et eaanaeees 335

/e T @] o g T=Tox (o] 74 N1 = ST o] Lo ] o A PP 336
4.9.1 Connector/NET COmMMUNILY SUPPOIT ..oevuiiiiiieii e e e e e 336
4.9.2 How to Report Connector/NET Problems Or BUgS .........oveviiiiiiiiiiiiiecieeeeeeeeeiee 336

5 MySQL Connector/ODBC DeVEIOPEr GUITE .....cuuiiiiieii e ee e e e e e e e e e e e aaens 339
5.1 Introduction to MySQL Connector/ODBC ........c.uiiiiiiiiiie et e e 340
5.2 CONNECLOI/ODBC VEISIONS ....uuuiiiiiitiieieeii et et e e e et e e e et e e e e et aeeeata e e eat s e e eeta e e e eaea e eennnns 341
5.3 General Information About ODBC and Connector/ODBC ............coveiiiiiiieiiiiii e 342
5.3.1 Connector/ODBC ArChItECIUIE ... .ciiuiiieeii e 342
5.3.2 ODBC DIiVEIr MANAGELS ..uuuiiiteiiiieiii e et e et ettt e e e e e e e e et e et e e et e e et e e e et e eaneeaens 344

5.4 Connector/ODBC INSLAIIALION .......coiiuiiiei e e et eeee 345
5.4.1 Installing Connector/ODBC 0N WINAOWS .......uoiiiniiiiieiiieeie e eee e e e e e e e e e eeens 346
5.4.2 Installing Connector/ODBC on Unix-like Systems .........ccccccoviiiiiiiiiieiii e 348
5.4.3 Installing Connector/ODBC 0N MACOS ..........oiiiiiiiiiii e e e e 351
5.4.4 Building Connector/ODBC from a Source Distribution on Windows ...............c..c..ee. 352
5.4.5 Building Connector/ODBC from a Source Distribution on UniX ...........c.cccoevviiineinnnnne. 353
5.4.6 Building Connector/ODBC from a Source Distribution on macOS ...............ccoeeeevnneene. 356
5.4.7 Installing Connector/ODBC from the Development Source Tree .......cccocvvvvevivneeennnnn. 356

5.5 Configuring ConNECIOr/ODBC .........iiiiiiii e e e e e e et e e e e et eeanaees 356
5.5.1 Overview of Connector/ODBC Data Source NameS ...........coveviiiiiieiiiiiieeeiiiineeeeiinnnn 356
5.5.2 Connector/ODBC ConNection Parameters .........coooviuuiieiiiiiiieeiiiieeeee e 357
5.5.3 Configuring a Connector/ODBC DSN 0N WINAOWS ........cccvuiiiiieiiiieiiieeee e eeae e, 367
5.5.4 Configuring a Connector/ODBC DSN 0N MacOS .........ccocovviiiiiiiiiiieeeee e 372
5.5.5 Configuring a Connector/ODBC DSN 0N UNIX ....covuiiiiiiiiiiiciieee e 375
5.5.6 Connecting Without a Predefined DSN ..........c.oiiiiiiiiiic e 375
5.5.7 ODBC ConNECtion POOING ......iiiiiiiiciii e e eeeas 376
5.5.8 OpenTelemetry TraCing SUPPOI ... ccuuuiiiieiii e e e e e e e e e e e e et e e et eean e eees 376
5.5.9 Authentication OPLIONS ......ccuuiiiiiiiiiii e e e s 377
5.5.10 Getting an ODBC Trace File ........ccouuiiiii e 378

5.6 Connector/ODBC EXAMPIES ... ccvuiiiiiieiiici e e e e e e e e e e e e e et e e e aenas 380
5.6.1 Basic Connector/ODBC AppPlICatioN StEPS ...ccvuiiiiiieiiieiiieee e e e 380
5.6.2 Step-by-step Guide to Connecting to a MySQL Database through Connector/ODBC ... 381
5.6.3 Connector/ODBC and Third-Party ODBC TOOIS ........cc.oiiviiiiiiiiiiiiieeeeeee e 382
5.6.4 Using Connector/ODBC with MIiCroSOft ACCESS .....ccuuiiiiiiiiiieiiiecie e e 383
5.6.5 Using Connector/ODBC with Microsoft Word or EXCEl ..........cccooevviiiiiiiiiiiiiciieccie, 394




Connectors and APIs

5.6.6 Using Connector/ODBC with Crystal REPOMS .........oevviiiiiiiiiicie e, 396
5.6.7 Connector/ODBC Programming ..........eeeeeeeueeeieeeiieesieesieesisesanessneestnaessnaessnaeenes 402

5.7 ConNEcCtOr/ODBC REEIENCE .....ieiuiieiiiii ettt e et e eeeae s 409
5.7.1 Connector/ODBC API REEIENCE .....coveuiiiiiii e 409
5.7.2 Connector/ODBC Data TYPES ..cvvuuiiiiiieiiieeii et e et e e e e e e e e e e e e e et e e e e eeas 413
5.7.3 Connector/ODBEC ErrOr COUES ......uiiiiiiiieiiiii et e et e et e e e e eeaens 414

5.8 Connector/ODBC NOES AN TIPS .vvuiiiiieiiiieiii et e e e e e e e e e e e e et e e et e eannaes 416
5.8.1 Connector/ODBC General FUNConality ...........coooiuiiiiiiiiiii e 416
5.8.2 Connector/ODBC Application-SPecific TIPS ...covuiiiieiieii i 418
5.8.3 Connector/ODBC and the Application Both Use OpenSSL .........cccccovvvviiveviiieeiieennnn. 422
5.8.4 Connector/ODBC Errors and Resolutions (FAQ) ......oevvniiiiiiiiiiieeie e e, 423

5.9 CoNNECOI/ODBC SUPPOIT «..uuiiiieiii et e e e e e e e e e e e e e e e e et r e et e e et e e et reeanaeranaes 428
5.9.1 Connector/ODBC CommUNIty SUPPOI .....uiiiieiii i e e e e e e e e e eaeas 428
5.9.2 How to Report Connector/ODBC Problems or BUgS .......cc.uveviiieiiiiieiiieeiicecie e, 428

6 MySQL Connector/Python DeVeloper GUIAE ...........oviuiiiiii i e e e 431
6.1 Introduction to MySQL ConnecCtOr/PYtNON ..........oiiiniiiiii e 432
6.2 Guidelines for Python DEVEIOPEIS ......cvuniiiicii e e e e 432
6.3 CONNECLOI/PYNON VEISIONS ....iiiiiiiii i e e e e e e e e e e e e e e et e e et e e et e aaanaaes 434
6.4 Connector/Python INStallation ..........cccouiiiiiiii e 436
6.4.1 Obtaining ConNECION/PYtNON ........iiii e 436
6.4.2 Installing Connector/Python from a Binary Distribution ...............cccooiiviiiiiiiiniin e, 437
6.4.3 Installing Connector/Python from a Source Distribution .............cccoccoiiiiiiiiiinee, 438
6.4.4 Verifying Your Connector/Python Installation ...............cccoveiiiiiiiii e, 440

6.5 Connector/Python Coding EXAMPIES .....coviiiiiiiiie e e e e 441
6.5.1 Connecting to MySQL Using Connector/Python ............ccooviiiiiiiiiiiii e 441
6.5.2 Creating Tables Using Connector/PYthon ...........ccuviiiiiiiiiii e 443
6.5.3 Inserting Data Using Connector/PYtNON ..........ccuiiiiiiiiiii e 445
6.5.4 Querying Data Using ConNector/PYthoN ...........ccooouiiiiiiiiiie e 447

6.6 CoNNECtOr/PYthON TULOKIAIS ......iviiiieii e e e e e e e e e e e e e e e eeen 447
6.6.1 Tutorial: Raise Employee's Salary Using a Buffered Cursor .............ccooeeviviviiieinn, 448

6.7 Connector/Python Connection Establishment ..............cccoiiiiiiiiii e, 448
6.7.1 Connector/Python Connection ArgUMENES .........cccuiiiiiiiiiiieei e e e e e 448
6.7.2 Connector/Python Option-File SUPPOI .......ccovuiiiiiie e 456

6.8 ConNector/Python Other TOPICS .....uiiiieieiii e e e e e e e e e e e e e e e eanaeees 458
6.8.1 ConNector/PYthon LOGQING ......ovvinieiiieiiiee et e e e e et e e e e e eanas 458
6.8.2 OPENTEIEMELIY SUPPOIT ... iitieii et e e e e e e e e e e e e ean s 458
6.8.3 ASYNchronous CONNECHIVILY ....civuuiiii i e e e 462
6.8.4 Connector/Python Connection POOlNG ........cc.uiiiiiiiiiiici e 470
6.8.5 Connector/Python Django Back ENd ............cooiiiiiiiiiiii e 472

6.9 Connector/Python APl REEIENCE ......covuiiii i 473
6.9.1 Mysqgl.cONNECIOr MOAUIE .........uiiiiiei e e e 473
6.9.2 connection.MySQLCONNECHION ClaSS .......cccvuiiiiiiiiiieee e 475
6.9.3 pooling.MySQLCoNNECtioNPOOI CIaSS ..........cciviiiiiiiicii e 487
6.9.4 pooling.PooledMySQLCONNECHION CIASS ....c.vuiviiiieiiieiii e 489
6.9.5 CUrsOr.MYSQLCUISOI CIASS ...uiivuieiiiieiiiiee e e e e e e e e e e e e e e eaeas 490
6.9.6 Subclasses CUrsor.MYSQLCUISON ......uiiiueiiieii e ee e e e e e e e e e e e eeanas 498
6.9.7 constants.ClieNtFIag Class ...........oeiiiiiiiiiiie e e 502
6.9.8 coNStantS. FIieldTYPE ClIasS .......iiiiuiiii i e aans 503
6.9.9 constants.SQLMOAE ClaSS .......ccuuiiiiiiiiii e e 503
6.9.10 constants.CharacterSet Class ..........ovvviiiiiiiiiiii e 503
6.9.11 constants.RefreshOPtioN CIaSsS ........oviiiiiiiiiiii e 503
6.9.12 Errors and EXCEPLIONS ...c.uuuiiiiiiiii et e et e e e e et e e e e e et e e et e e et e e et e e e e aanaees 504

ALY 12510 T - U To [ = | PP 509
7.1 Introduction to the MYSQL PHP APl ....oueii e 509

Vi



Preface and Legal Notices

This manual describes the Connectors and APIs that can be used with MySQL.

Legal Notices

Copyright © 1997, 2024, Oracle and/or its affiliates.
License Restrictions

This software and related documentation are provided under a license agreement containing restrictions
on use and disclosure and are protected by intellectual property laws. Except as expressly permitted

in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast,
modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

Warranty Disclaimer

The information contained herein is subject to change without notice and is not warranted to be error-free.
If you find any errors, please report them to us in writing.

Restricted Rights Notice

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or
related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications

of such programs) and Oracle computer documentation or other Oracle data delivered to or accessed

by U.S. Government end users are "commercial computer software," "commercial computer software
documentation,"” or "limited rights data" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, the use, reproduction, duplication, release, display,
disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle programs (including
any operating system, integrated software, any programs embedded, installed, or activated on delivered
hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract.
The terms governing the U.S. Government's use of Oracle cloud services are defined by the applicable
contract for such services. No other rights are granted to the U.S. Government.

Hazardous Applications Notice

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Trademark Notice

Oracle, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names
may be trademarks of their respective owners.

Vii



Documentation Accessibility

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Epyc, and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a
registered trademark of The Open Group.

Third-Party Content, Products, and Services Disclaimer

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

Use of This Documentation

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the
following terms:

You may create a printed copy of this documentation solely for your own personal use. Conversion to other
formats is allowed as long as the actual content is not altered or edited in any way. You shall not publish

or distribute this documentation in any form or on any media, except if you distribute the documentation in
a manner similar to how Oracle disseminates it (that is, electronically for download on a Web site with the
software) or on a CD-ROM or similar medium, provided however that the documentation is disseminated
together with the software on the same medium. Any other use, such as any dissemination of printed
copies or use of this documentation, in whole or in part, in another publication, requires the prior written
consent from an authorized representative of Oracle. Oracle and/or its affiliates reserve any and all rights
to this documentation not expressly granted above.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website
at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support for Accessibility

Oracle customers that have purchased support have access to electronic support through My Oracle
Support. For information, visit

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit ht t p: / / www. or acl e. cont pl s/ t opi c/
| ookup?ct x=acc&i d=t r s if you are hearing impaired.

viii


http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Chapter 1 Introduction

MySQL Connectors provide connectivity to the MySQL server for client programs. APIs provide low-level
access to MySQL resources using either the classic MySQL protocol or X Protocol. Both Connectors and
the APIs enable you to connect and execute MySQL statements from another language or environment,
including ODBC, Java (JDBC), C++, Python, Node.js, PHP, Perl, Ruby, and C.

MySQL Connectors

Oracle develops a number of connectors:
» Connector/C++ enables C++ applications to connect to MySQL.

» Connector/J provides driver support for connecting to MySQL from Java applications using the standard
Java Database Connectivity (JDBC) API.

» Connector/NET enables developers to create .NET applications that connect to MySQL. Connector/NET
implements a fully functional ADO.NET interface and provides support for use with ADO.NET aware
tools. Applications that use Connector/NET can be written in any supported .NET language.

» Connector/ODBC provides driver support for connecting to MySQL using the Open Database
Connectivity (ODBC) API. Support is available for ODBC connectivity from Windows, Unix, and macOS
platforms.

» Connector/Python provides driver support for connecting to MySQL from Python applications using an
API that is compliant with the Python DB API version 2.0. No additional Python modules or MySQL client
libraries are required.

» Connect or/ Node. j s provides an asynchronous API for connecting to MySQL from Node.js
applications using X Protocol. Connector/Node.js supports managing database sessions and schemas,
working with MySQL Document Store collections and using raw SQL statements.

The MySQL C API

For direct access to using MySQL natively within a C application, the C API provides low-level access to
the MySQL client/server protocol through the | i bnysqgl cl i ent client library. This is the primary method
used to connect to an instance of the MySQL server, and is used both by MySQL command-line clients
and many of the MySQL Connectors and third-party APIs detailed here.

i bnysgl cl i ent isincluded in MySQL distributions distributions.
See also MySQL C API Implementations.

To access MySQL from a C application, or to build an interface to MySQL for a language not supported by
the Connectors or APIs in this chapter, the C API is where to start. A number of programmer's utilities are
available to help with the process; see Program Development Utilities.

Third-Party MySQL APIs

The remaining APIs described in this chapter provide an interface to MySQL from specific application
languages. These third-party solutions are not developed or supported by Oracle. Basic information on
their usage and abilities is provided here for reference purposes only.

All the third-party language APIs are developed using one of two methods, using | i brmysql cl i ent or by
implementing a native driver. The two solutions offer different benefits:



https://dev.mysql.com/doc/connector-cpp/8.3/en/
https://dev.mysql.com/doc/connector-j/8.0/en/
http://www.python.org/dev/peps/pep-0249/
https://dev.mysql.com/doc/c-api/8.2/en/
https://dev.mysql.com/doc/c-api/8.2/en/c-api-implementations.html
https://dev.mysql.com/doc/c-api/8.2/en/
https://dev.mysql.com/doc/refman/8.0/en/programs-development.html

Third-Party MySQL APIs

e Using | i bmysql client offers complete compatibility with MySQL because it uses the same libraries
as the MySQL client applications. However, the feature set is limited to the implementation and
interfaces exposed through | i bnysql cl i ent and the performance may be lower as data is copied
between the native language, and the MySQL APl components.

» Native drivers are an implementation of the MySQL network protocol entirely within the host language
or environment. Native drivers are fast, as there is less copying of data between components, and they
can offer advanced functionality not available through the standard MySQL API. Native drivers are also
easier for end users to build and deploy because no copy of the MySQL client libraries is needed to build
the native driver components.

MySQL APIs and Interfaces lists many of the libraries and interfaces available for MySQL.



https://dev.mysql.com/doc/refman/8.0/en/connectors-apis.html#connectors-apis-summary

Chapter 2 MySQL Connector/C++ Developer Guide

Table of Contents

2.1 Introduction 10 CONNECIONCH .o.uui ittt ettt e e et ettt e e et et e e e ee e e e eeba e eeenes 3
2.2 Obtaining CONNECIOICH ... et et e e ettt e et e e et e e e aa e een e e et e aetnaaennaees 6
2.3 Installing Connector/C++ from a Binary DistribDUtion ............ccoiiiiiiii e 6
2.4 Installing ConNector/C++ frOM SOUFCE .......iitiiii et e e e e e et e et e e eaeaeens 9
2.4.1 Source Installation System PrereqUISITES ... ... 9
2.4.2 Obtaining and Unpacking a Connector/C++ Source Distribution .................coooiiiiiinn, 10
2.4.3 Installing ConNector/C++ frOM SOUICE .....ccuuiiiiieei e e e e e e 11
2.4.4 Connector/C++ Source-Configuration OPLiONS .........ccouuiiiiiiiiiiii e 15
2.5 Building Connector/C++ APPIICALIONS ... .ccuiiiiiieei et e e e e e ean s 21
2.5.1 Building Connector/C++ Applications: General Considerations .............ccooceueveeiieiiiineeieeennnn. 21
2.5.2 Building Connector/C++ Applications: Platform-Specific Considerations ................cccceeeuuneees 29
2.5.3 AULhENtICAtION SUPPOIT ...ttt ettt e et e et e et eean e e et e eeanaaees 34
2.5.4 OpenTelemetry TraCing SUPPOIT ....c..u ittt e e et e e e e e e e e et e e e eeenns 38
2.6 CoNNECLOr/CH+ KNOWN ISSUES ....oouiiiiiiiii ettt ettt ettt e et e e e e et 39
A A ©7o] gl [=Tex (o] 7@ o T ] o] o o] o A PPN 40

MySQL Connector/C++ is the C++ interface for communicating with MySQL servers.

For notes detailing the changes in each release of Connector/C++, see MySQL Connector/C++ Release
Notes.

For legal information, see the Legal Notices.

For help with using MySQL, please visit the MySQL Forums, where you can discuss your issues with other
MySQL users.

Licensing information.  This product may include third-party software, used under license. If you

are using a Commercial release of MySQL Connector/C++, see this document for licensing information,
including licensing information relating to third-party software that may be included in this Commercial
release. If you are using a Community release of MySQL Connector/C++, see this document for licensing
information, including licensing information relating to third-party software that may be included in this
Community release.

2.1 Introduction to Connector/C++

MySQL Connector/C++ 8.3 is a MySQL database connector for C++ applications that connect to MySQL
servers. Connector/C++ can be used to access MySQL servers that implement a document store, or in a
traditional way using SQL statements. The preferred development environment for Connector/C++ 8.3 is

to enable development of C++ applications using X DevAPI, or plain C applications using X DevAPI for C,
but Connector/C++ 8.3 also enables development of C++ applications that use the legacy JDBC-based API
from Connector/C++ 1.1.

Connector/C++ applications that use X DevAPI or X DevAPI for C require a MySQL server that has X
Plugin enabled. Connector/C++ applications that use the legacy JDBC-based API neither require nor
support X Plugin.

For more detailed requirements about required MySQL versions for Connector/C++ applications, see
Platform Support and Prerequisites.



https://dev.mysql.com/doc/relnotes/connector-cpp/en/
https://dev.mysql.com/doc/relnotes/connector-cpp/en/
http://forums.mysql.com
https://downloads.mysql.com/docs/licenses/connector-cpp-8.3-com-en.pdf
https://downloads.mysql.com/docs/licenses/connector-cpp-8.3-gpl-en.pdf
https://dev.mysql.com/doc/refman/8.0/en/document-store.html
https://dev.mysql.com/doc/refman/8.0/en/x-plugin.html
https://dev.mysql.com/doc/refman/8.0/en/x-plugin.html

Connector/C++ Benefits

For notes detailing the changes in each release of Connector/C++, see MySQL Connector/C++ Release
Notes.

» Connector/C++ Benefits
* X DevAPI and X DevAPI for C
* Legacy JDBC APl and JDBC Compatibility

» Platform Support and Prerequisites

Connector/C++ Benefits

MySQL Connector/C++ offers the following benefits for C++ users compared to the MySQL C API provided
by the MySQL client library:

» Convenience of pure C++.
» Support for these application programming interfaces:
o X DevAPI
* X DevAPI for C
e Legacy JDBC 4.0-based API
» Support for the object-oriented programming paradigm.
» Reduced development time.
 Licensed under the GPL with the FLOSS License Exception.

* Available under a commercial license upon request.

X DevAPI and X DevAPI for C

Connector/C++ implements X DevAPI, which enables connecting to MySQL servers that implement a
document store with X Plugin. X DevAPI also enables applications to execute SQL statements.

Connector/C++ also implements a similar interface called X DevAPI for C for use by applications written in
plain C.

For general information about X DevAPI, see X DevAPI User Guide. For reference information specific
to the Connector/C++ implementation of X DevAPI and X DevAPI for C, see MySQL Connector/C++ X
DevAPI Reference in the X DevAPI section of MySQL Documentation.

Legacy JDBC API and JDBC Compatibility

Connector/C++ implements the JDBC 4.0 API, if built to include the legacy JDBC connector:
» Connector/C++ binary distributions include the JDBC connector.

* If you build Connector/C++ from source, the JDBC connector is not built by default, but can be included
by enabling the W TH_JDBC CVake option. See Section 2.4, “Installing Connector/C++ from Source”.

The Connector/C++ JDBC API is compatible with the JDBC 4.0 API. Connector/C++ does not implement
the entire JDBC 4.0 API, but does feature these classes: Connect i on, Dat abaseMet aDat a, Dri ver,
Pr epar edSt at enent , Resul t Set, Resul t Set Met aDat a, Savepoi nt, St at enment .



https://dev.mysql.com/doc/relnotes/connector-cpp/en/
https://dev.mysql.com/doc/relnotes/connector-cpp/en/
https://dev.mysql.com/doc/refman/8.0/en/document-store.html
https://dev.mysql.com/doc/refman/8.0/en/x-plugin.html
https://dev.mysql.com/doc/x-devapi-userguide/en/
https://dev.mysql.com/doc/

Platform Support and Prerequisites

The JDBC 4.0 API defines approximately 450 methods for the classes just mentioned. Connector/C++
implements approximately 80% of these.

Note

The legacy JDBC connector in Connector/C++ 8.3 is based on the connector
provided by Connector/C++ 1.1. For more information about using the JDBC APl in
Connector/C++ 8.3, see MySQL Connector/C++ 1.1 Developer Guide.

Platform Support and Prerequisites

To see which platforms are supported, visit the Connector/C++ downloads page.

On Windows platforms, Commercial and Community Connector/C++ distributions require the Visual

C++ Redistributable for Visual Studio. The Redistributable is available at the Visual Studio Download
Center; install it before installing Connector/C++. The acceptable Redistributable versions depend on your
Connector/C++ version:

e Connector/C++ 8.0.19 and higher: VC++ Redistributable 2017 or higher.
» Connector/C++ 8.0.14 to 8.0.18: VC++ Redistributable 2015 or higher.

The following requirements apply to building and running Connector/C++ applications, and to building
Connector/C++ itself if you build it from source:

» To run Connector/C++ applications, the MySQL server requirements depend on the API the application
uses:

e Connector/C++ applications that use X DevAPI or X DevAPI for C require a server from MySQL 8.3
(8.3.0), 8.2 (8.2.0), 8.1 (8.1.0), MySQL 8.0 (8.0.11 or later), or MySQL 5.7 (5.7.12 or later), with X
Plugin enabled. For MySQL 8.0 and later, X Plugin is enabled by default. For MySQL 5.7, X Plugin
must be enabled explicitly. (Some X Protocol features may not work with MySQL 5.7.)

« Applications that use the JDBC API can use a server from MySQL 5.6 or higher. X Plugin is neither
required nor supported.

 To build Connector/C++ applications:
* The MySQL version does not apply.

« On Windows, Microsoft Visual Studio is required. The acceptable MSVC versions depend on your
Connector/C++ version and the type of linking you use:

» Connector/C++ 8.0.20 and higher: Same as Connector/C++ 8.0.19, with the addition that binary
distributions are also compatible with MSVC 2017 using the static X DevAPI connector library. This
means that binary distributions are fully compatible with MSVC 2019, and fully compatible with
MSVC 2017 with the exception of the static legacy (JDBC) connector library.

e Connector/C++ 8.0.19: Connector/C++ binary distributions are compatible with projects built using
MSVC 2019 (using either dynamic or static connector libraries) or MSVC 2017 (using dynamic
connector libraries).

» Connector/C++ 8.0.14 to 8.0.18: MSVC 2017 or 2015.
« Connector/C++ prior to 8.0.14; MSVC 2015.

» To build Connector/C++ from source:



https://dev.mysql.com/doc/connector-cpp/1.1/en/
https://dev.mysql.com/downloads/connector/cpp/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://dev.mysql.com/doc/refman/8.0/en/x-plugin.html
https://dev.mysql.com/doc/refman/8.0/en/x-plugin.html

Obtaining Connector/C++

e The MySQL C API client library may be required:

« For Connector/C++ built without the JDBC connector (which is the default), the client library is not
needed.

* To build Connector/C++ with the JDBC connector, configure Connector/C++ with the W TH_JDBC
CWMake option enabled. In this case, the JDBC connector requires a client library from MySQL 8.3
(8.3.0), 8.2 (8.2.0), 8.1 (8.1.0), MySQL 8.0 (8.0.11 or later), or MySQL 5.7 (5.7.9 or later).

¢ On Windows, Microsoft Visual Studio is required. The acceptable MSVC versions depend on your
Connector/C++ version:

» Connector/C++ 8.0.19 and higher: MSVC 2019 or 2017.
« Connector/C++ 8.0.14 t0 8.0.18: MSVC 2017 or 2015.
« Connector/C++ prior to 8.0.14: MSVC 2015.

2.2 Obtaining Connector/C++

Connector/C++ binary and source distributions are available, in platform-specific packaging formats. To
obtain a distribution, visit the Connector/C++ downloads page. It is also possible to clone the Connector/C+
+ Git source repository.

» Connector/C++ binary distributions are available for Microsoft Windows, and for Unix and Unix-like
platforms. See Section 2.3, “Installing Connector/C++ from a Binary Distribution”.

» Connector/C++ source distributions are available as compressed t ar files or Zip archives and can be
used on any supported platform. See Section 2.4, “Installing Connector/C++ from Source”.

» The Connector/C++ source code repository uses Git and is available at GitHub. See Section 2.4,
“Installing Connector/C++ from Source”.

2.3 Installing Connector/C++ from a Binary Distribution

To obtain a Connector/C++ binary distribution, visit the Connector/C++ downloads page.

For some platforms, Connector/C++ binary distributions are available in platform-specific packaging
formats. Binary distributions are also available in more generic format, in the form of compressed t ar files
or Zip archives.

Note

Generic Linux packages do not contain Connector/C++ static libraries. If you intend
to link your application to a static library, consider installing a package that is
specific to the platform on which you build your final application.

For descriptions here that refer to documentation files, those files have names such as

CONTRI BUTI NG. nd, READVE. md, README. t xt , README, LI CENSE. t xt , LI CENSE, | NFO_BI N, and

I NFO_SRC. (Prior to Connector/C++ 8.0.14, the information file is BUI LDI NFO. t xt rather than | NFO _BI N
and | NFO_SRC))

 [nstallation on Windows
 [nstallation on Linux

 [nstallation on macOS



https://dev.mysql.com/downloads/connector/cpp/
https://dev.mysql.com/downloads/connector/cpp/

Installation on Windows

 |Installation on Solaris

« Installation Using a tar or Zip Package

Installation on Windows

Important

On Windows platforms, Commercial and Community Connector/C++ distributions
require the Visual C++ Redistributable for Visual Studio. The Redistributable

is available at the Visual Studio Download Center; install it before installing
Connector/C++. For information about which VC++ Redistributable versions are
acceptable, see Platform Support and Prerequisites.

These methods of installing binary distributions are available on Windows:

* Windows MSI Installer.  As of Connector/C++ 8.0.12, an MSI Installer is available for Windows. To
use the MSI Installer (. nsi file), launch it and follow the prompts in the screens it presents. The MSI
Installer can install components for these connectors:

» The connector for X DevAPI (including X DevAPI for C).
< The connector for the legacy JDBC API.
For each connector, there are two components:

e The DLL component includes the connector DLLs and libraries to satisfy runtime dependencies. The
DLL component is required to run Connector/C++ application binaries that use the connector.

* The Developer component includes header files, static libraries, and import libraries for DLLs. The
Developer component is required to build from source Connector/C++ applications that use the
connector.

The MSI Installer requires administrative privileges. It begins by presenting a welcome screen that
enables you to continue the installation or cancel it. If you continue the installation, the MSI Installer
overview screen enables you to select the type of installation to perform:

¢ The Complete installation installs the DLL and Developer components for both connectors.
e The Typical installation installs the DLL component for both connectors.

e The Custom installation enables you to specify the installation location and select which components
to install. The DLL and Developer components for the X DevAPI connector are preselected, but you
can override the selection. The Developer component for a connector cannot be selected without also
selecting the connector DLL component.

The MSI Installer performs these actions:

« It checks whether the required Visual C++ Redistributable for Visual Studio is present. If not, the
installer asks you to install it and exits with an error. For information about which VC++ Redistributable
versions are acceptable, see Platform Support and Prerequisites.

« |t installs documentation files.

To install Connector/C++ from the command line in batch mode, use a command similar to:

nsi exec. exe /i packages\ nysqgl - connect or - cpp- commer ci al - 8. X. X-wi nx64. nsi /qgn /| vx*



https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/

Installation on Linux

mei _install.log ALLUSERS=1 | NSTALLDI R=C: \t np\ c- cpp-unpacked | NSTALLLEVEL=4

To uninstall Connector/C++ from the command line in batch mode, use a command similar to:

nmsi exec. exe / x packages\ nysql - connect or - cpp- conmrerci al - 8. X. X-wi nx64. nsi /qn /| vx*
msi _uni nstall .l og

» Zip archive package without installer.  To install from a Zip archive package (. zi p file), see
Installation Using a tar or Zip Package.

In addition to the standard Zip archive packages, packages are available that were built in debug mode.
However, applications should use the same build mode as Connector/C++. If you install Connector/C++
packages built in debug mode, build applications in debug mode. If you install Connector/C++ packages
built in release mode, build applications in release mode.

Installation on Linux

These methods of installing binary distributions are available on Linux:

* RPM package. RPM packages are available for Linux (as of Connector/C++ 8.0.12). The packages
are distinguished by their base names (the full names include the Connector/C++ version and suffixes):

e nmysgl - connect or - c++: This package provides the shared connector library implementing X
DevAPI and X DevAPI for C.

e nmysqgl - connect or - c++-j dbc: This package provides the shared legacy connector library
implementing the JDBC API.

e nysql - connect or - c++- devel : This package installs development files required for building
applications that use Connector/C++ libraries provided by the other packages, and static connector
libraries. This package depends on the shared libraries provided by the other packages. It cannot be
installed by itself without the other two packages.

» Debian package. Debian packages are available for Linux (as of Connector/C++ 8.0.14). The
packages are distinguished by their base names (the full names include the Connector/C++ version and
suffixes):

e i bmysgl cppconn8- 1: This package provides the shared connector library implementing X DevAPI
and X DevAPI for C.

* i bmysgl cppconn?: This package provides the shared legacy connector library implementing the
JDBC API.

e |i bnmysqgl cppconn- dev: This package installs development files required for building applications
that use Connector/C++ libraries provided by the other packages, and static connector libraries. This
package depends on the shared libraries provided by the other packages. It cannot be installed by
itself without the other two packages.

e Compressed tar file.  To install from a compressed t ar file (. t ar . gz file), see Installation Using a
tar or Zip Package.

Installation on macOS

These methods of installing binary distributions are available on macOS:

 DMG package. DMG (disk image) packages for macOS are available as of Connector/C++ 8.0.12. A
DMG package provides shared and static connector libraries implementing X DevAPI and X DevAPI for




Installation on Solaris

C, and the legacy connector library implementing the JDBC API. The package also includes OpenSSL
libraries, public header files, and documentation files.

» Compressed tar file.  To install from a compressed t ar file (. t ar. gz file), see Installation Using a
tar or Zip Package.

Installation on Solaris

These methods of installing binary distributions are available on Solaris:

 Compressed tar file.  To install from a compressed t ar file (. t ar . gz file), see Installation Using a
tar or Zip Package.

Installation Using a tar or Zip Package

Connector/C++ binary distributions are available for several platforms, packaged in the form of
compressed t ar files or Zip archives, denoted here as PACKAGE. t ar . gz or PACKACE. zi p.

Note
Generic Linux packages do not contain Connector/C++ static libraries.

To unpack a compressed t ar file, use this command in the intended installation directory:

tar zxvf PACKACE.tar.gz

To install from a Zip archive package (. zi p file), use W nZi p or another tool that can read . zi p files to
unpack the file into the location of your choosing.

2.4 Installing Connector/C++ from Source

This chapter describes how to install Connector/C++ using a source distribution or a copy of the Git source

repository.
2.4.1 Source Installation System Prerequisites
To install Connector/C++ from source, the following system requirements must be satisfied:
 Build Tools
* MySQL Client Library
» Boost C++ Libraries
e SSL Support
Build Tools
You must have the cross-platform build tool CVeke (3.0 or higher).
You must have a C++ compiler that supports C++17 (as of Connector/C++ 8.0.33).
MySQL Client Library
To build Connector/C++ from source, the MySQL C API client library may be required:

 Building the JDBC connector requires a client library from MySQL 8.3 (8.3.0), 8.2 (8.2.0), 8.1 (8.1.0),
MySQL 8.0 (8.0.11 or later), or MySQL 5.7 (5.7.9 or later). This occurs when Connector/C++ is
configured with the W TH_JDBC CMake option enabled to include the JDBC connector.




Obtaining and Unpacking a Connector/C++ Source Distribution

» For Connector/C++ built without the JDBC connector, the client library is not needed.

Typically, the MySQL client library is installed when MySQL is installed. However, check your operating
system documentation for other installation options.

To specify where to find the client library, set the MYSQL_DI R Cvake option appropriately at configuration
time as necessary (see Section 2.4.4, “Connector/C++ Source-Configuration Options”).

Boost C++ Libraries

To compile Connector/C++ the Boost C++ libraries are needed only if you build the legacy JDBC API
or if the version of the C++ standard library on your system does not implement the UTF8 converter
(codecvt _utf 8).

If the Boost C++ libraries are needed, Boost 1.59.0 or newer must be installed. To obtain Boost and its
installation instructions, visit the official Boost site.

After Boost is installed, use the W TH_BOOST ClVake option to indicate where the Boost files are located
(see Section 2.4.4, “Connector/C++ Source-Configuration Options”):

cmake [other_options] -DW TH BOOST=/usr/| ocal /boost 1 59 0

Adjust the path as necessary to match your installation.

SSL Support

Use the W TH_SSL CVake option to specify which SSL library to use when compiling Connector/C++.
OpenSSL 1.0.x or higher is required. Your other options are:

» As of Connector/C++ 8.0.18, it is possible to compile against OpenSSL 1.1.
» As of Connector/C++ 8.0.30, it is possible to compile against OpenSSL 3.0.

For more information about W TH_SSL and SSL libraries, see Section 2.4.4, “Connector/C++ Source-
Configuration Options”.

2.4.2 Obtaining and Unpacking a Connector/C++ Source Distribution

To obtain a Connector/C++ source distribution, visit the Connector/C++ downloads page. Alternatively,
clone the Connector/C++ Git source repository.

A Connector/C++ source distribution is packaged as a compressed t ar file or Zip archive, denoted here as
PACKAGE. t ar . gz or PACKACE. zi p. A source distribution in t ar file or Zip archive format can be used on
any supported platform.

The distribution when unpacked includes an | NFO_SRCfile that provides information about the product
version and the source repository from which the distribution was produced. The distribution also includes
other documentation files such as those listed in Section 2.3, “Installing Connector/C++ from a Binary
Distribution”.

To unpack a compressed t ar file, use this command in the intended installation directory:

tar zxvf PACKAGE.tar.gz

After unpacking the distribution, build it using the appropriate instructions for your platform later in this
chapter.

10


http://www.boost.org
https://dev.mysql.com/downloads/connector/cpp/

Installing Connector/C++ from Source

To install from a Zip archive package (. zi p file), use W nZi p or another tool that can read . zi p files
to unpack the file into the location of your choosing. After unpacking the distribution, build it using the
appropriate instructions for your platform later in this chapter.

To clone the Connector/C++ code from the source code repository located on GitHub at https://github.com/
mysql/mysgl-connector-cpp, use this command:

git clone https://github. com nysql/nysql -connector-cpp. git

That command should create a mysql - connect or - cpp directory containing a copy of the entire
Connector/C++ source tree.

The git cl one command sets the sources to the mast er branch, which is the branch that contains the
latest sources. Released code is in the 8. 0 branche (the 8. 0 branch contains the same sources as the
mast er branch). If necessary, use git checkout in the source directory to select the desired branch.
For example, to build Connector/C++ 8.0:

cd nysql - connect or - cpp
git checkout 8.0

After cloning the repository, build it using the appropriate instructions for your platform later in this chapter.

After the initial checkout operation to get the source tree, run gi t pul | periodically to update your source
to the latest version.

2.4.3 Installing Connector/C++ from Source

To install Connector/C++ from source, verify that your system satisfies the requirements outlined in
Section 2.4.1, “Source Installation System Prerequisites”.

» Configuring Connector/C++

» Specifying External Dependencies

Building Connector/C++

Installing Connector/C++

» Verifying Connector/C++ Functionality
Configuring Connector/C++

Use CMake to configure and build Connector/C++. Only out-of-source-builds are supported, so create a
directory to use for the build and change location into it. Then configure the build using this command,
where concpp_sour ce is the directory containing the Connector/C++ source code:

crmake concpp_source
It may be necessary to specify other options on the configuration command. Some examples:
» By default, these installation locations are used:

e /usr/local/mysqgl/connector-c++-8. 0 (Unix and Unix-like systems)

e User _hone/ \ySQL/"MySQL Connect or C++ 8.0" (Windows)

To specify the installation location explicitly, use the CVAKE | NSTALL_PREFI X option:

- DCMAKE_| NSTALL_PREFI X=pat h_nane

» On Windows, you can use the - Gand - A options to select a particular generator:

11


https://github.com/mysql/mysql-connector-cpp
https://github.com/mysql/mysql-connector-cpp

Installing Connector/C++ from Source

e -G "Visual Studio 16" -A x64 (64-bit builds)
e -G "Visual Studio 16" -A W n32 (32-bit builds)

Consult the Cvake manual or check crmake - - hel p to find out which generators are supported by your
Chake version. (However, it may be that your version of C\Vake supports more generators than can
actually be used to build Connector/C++.)

« If the Boost C++ libraries are needed, use the W TH_BOOST option to specify their location:
- DW TH_BOOST=pat h_nane

» By default, the build creates dynamic (shared) libraries. To build static libraries, enable the
BUI LD_STATI C option:

- DBUI LD_STATI C=ON

» By default, the legacy JDBC connector is not built. To include the JDBC connector in the build, enable
the W TH_JDBC option:

- DW TH_JDBC=ON
Note

If you configure and build the test programs later, use the same CVake options to
configure them as the ones you use to configure Connector/C++ (- G W TH_BOOST,
BUI LD_STATI C, and so forth). Exceptions: Path name arguments will differ, and
you need not specify CVAKE | NSTALL PREFI X.

For information about CMake configuration options, see Section 2.4.4, “Connector/C++ Source-
Configuration Options”.

Specifying External Dependencies

Use CMake options to configure and build Connector/C++ with external sources that you can substitute
for the required third-party dependencies currently bundled with the connector. If the dependency is an
external library, then the library is linked dynamically to the connector. In contrast, bundled third-party
libraries used by connector are linked statically to it.

Note

Using an external third-party library that cannot be linked to the connector
dynamically causes the build to fail, even when the static library is available.

The supported options are:
« W TH BOOST

« WTH LZ4

« WTH MYSQL

* WTH_PROTOBUF

« W TH_SSL

s WTH ZLI B

« WTH_ZSTD

12



Installing Connector/C++ from Source

For example, to use an external installation of Protobuf, instead of building it from bundled sources,
specify the W TH_PROTOBUF option and provide the path name to the location where CVake can find the
alternative dependency.

Note

If an external dependency cannot be found (or is unusable), then the build fails. No
attempt is made to locate the bundled source.

crmake [ot her_options] -DW TH PROTOBUF=pat h_nane_t o_pr ot obuf _i nst al |

To configure the standard system-wide location for an external dependency, use the literal value syst em
rather than providing a path name. For example:

- DW TH_SSL=syst em

For information about CMVake configuration options, see Section 2.4.4, “Connector/C++ Source-
Configuration Options”.

External dependencies make it possible to use shared third-party libraries that are linked dynamically to
the connector. This can be an advantage because, for example, you cannot use the connector static library
with an application that also links to a Protobuf library.

When running an application that is linked to the connector dynamic library, the third-party libraries on
which the connector depends should be correctly found if they are placed in the file system next to the
connector library. The application should also work when the libraries are installed at the standard system-
wide locations. This assumes that the external third-party dependency version is expected by Connector/C
++.

Except for Windows, it should be possible to run an application linked to the connector dynamic library
when the connector library and the third-party libraries are placed in a nonstandard location, provided that
these locations were stored as runtime paths when building the application (gcc - r pat h option).

For Windows, an application that is linked to the connector shared library can be run only if the connector
library and the libraries are stored either:

 In the Windows system folder
* In the same folder as the application
 In afolder listed in the PATH environment variable

If the application is linked to the connector static library, it remains true that the required libraries must be
found in one of the preceding locations.

Building Connector/C++

After configuring the Connector/C++ distribution, build it using this command:

cmake --build . --config build_type

The - - conf i g option is optional. It specifies the build configuration to use, such as Rel ease or Debug. If
you omit - - conf i g, the default is Debug.

Important

If you specify the - - conf i g option on the preceding command, specify the same
- - confi g option for later steps, such as the steps that install Connector/C++ or
that build test programs.

13



Installing Connector/C++ from Source

If the build is successful, it creates the connector libraries in the build directory. (For Windows, look for
the libraries in a subdirectory with the same name as the bui | d_t ype value specified for the - - confi g
option.)

* If you build dynamic libraries, they have these names:
e |'ibmysql cppconn8. so. 1 (Unix)
e |ibnmysgl cppconn8. 3. dyl i b (macOS)
e nysql cppconn8-1-vsi4.dl | (Windows)
« If you build static libraries, they have these names:
e |ibmysgl cppconn8-stati c. a (Unix, macOS)
e mysgl cppconn8-static.|ib (Windows)

If you enabled the W TH_JDBC option to include the legacy JDBC connector in the build, the following
additional library files are created.

* If you build legacy dynamic libraries, they have these names:
e i bmysgl cppconn. so. 7 (Unix)
e i bmysgl cppconn. 7. dyl i b (macOS)
e nmysgl cppconn-7-vsl4.dl | (Windows)
« If you build legacy static libraries, they have these names:
e i bmysqgl cppconn-stati c. a (Unix, macOS)

e nmysgl cppconn-static.lib (Windows)

Installing Connector/C++

To install Connector/C++, use this command:

cmake --build . --target install --config build_type

Verifying Connector/C++ Functionality

To verify connector functionality, build and run one or more of the test programs included in the t est app
directory of the source distribution. Create a directory to use and change location into it. Then issue the
following commands:

cmake [ ot her_options] -DW TH CONCPP=concpp_i nstall concpp_source/testapp
cmake --build . --config=build_type

W TH_CONCPP is an option used only to configure the test application. ot her _opt i ons consists of the
options that you used to configure Connector/C++ itself (- G W TH_BOOST, BUI LD_STATI C, and so forth).
concpp_sour ce is the directory containing the Connector/C++ source code, and concpp_i nstal | is
the directory where Connector/C++ is installed:

The preceding commands should create the devapi _test and xapi _t est programs in the run
directory of the build location. If you enable W TH_JDBC when configuring the test programs, the build also
creates the | dbc_t est program.

14



Connector/C++ Source-Configuration Options

Before running test programs, ensure that a MySQL server instance is running with X Plugin enabled. The
easiest way to arrange this is to use the mysql -t est - run. pl script from the MySQL distribution. For
MySQL 8.0, X Plugin is enabled by default, so invoke this command in the nysql - t est directory of that
distribution:

perl nysqgl-test-run.pl --start-and-exit

For MySQL 5.7, X Plugin must be enabled explicitly, so add an option to do that:

perl nysql-test-run.pl --start-and-exit --nysqld=--plugin-Iload=nysql x

The command should start a test server instance with X Plugin enabled and listening on port 13009 instead
of its standard port (33060).

Now you can run one of the test programs. They accept a connection-string argument, so if the server was
started as just described, you can run them like this:

run/ devapi _test nysql x://root@z27.0.0.1: 13009
run/ xapi _test mysql x://root @27.0.0.1: 13009

The connection string assumes availability of a r oot user account without any password and the programs
assume that there is at est schema available (assumptions that hold for a server started using nysql -
test-run.pl).

Totest | dbc_t est, you need a MySQL server, but X Plugin is not required. Also, the connection options

must be in the form specified by the JDBC API. Pass the user nhame as the second argument. For
example:

run/jdbc_test tcp://127.0.0.1: 13009 root
2.4.4 Connector/C++ Source-Configuration Options
Connector/C++ recognizes the C\Vake options described in this section.

Table 2.1 Connector/C++ Source-Configuration Option Reference

Formats Description Default
BU LD _STATIC Whether to build a static librarty  |OFF
BUNDLE_DEPENDENCI ES Whether to bundle external OFF
dependency libraries with the
connector
CVAKE_BUI LD TYPE Type of build to produce Debug
CVAKE | NSTALL_DOCDI R Documentation installation
directory
CMAKE_| NSTALL_I NCLUDEDI R |Header file installation directory
CVAKE | NSTALL_ LI BDI R Library installation directory
CMAKE | NSTALL_ PREFI X Installation base directory /usr/ 1 ocal
MAI NTAI NER_MODE For internal use only OFF
MYSQLCLI ENT_STATI C_BI NDI NGWhether to link to the shared ON
MySQL client library
MYSQLCLI ENT_STATI C_LI NKI NGWhether to statically link to the OFF
MySQL client library

15



Connector/C++ Source-Configuration Options

Formats Description Default
MYSQL_CONFI G_EXECUTABLE Path to the mysql_config program |${ M\YSQL_DI R}/ bi n/
mysql _config

MYSQ._DI R MySQL Server installation
directory

STATI C_MSVCRT Use the static runtime library

W TH_BOOST The Boost source directory system

W TH_DOC Whether to generate Doxygen OFF
documentation

W TH JDBC Whether to build legacy JDBC OFF
library

W TH LZ4 The LZ4 source directory

W TH_MYSQL The MySQL Server source system
directory

W TH_PROTOBUF The Protobuf source directory

W TH_SSL The SSL source directory system

WTH ZLI B The ZLIB source directory

W TH_ZSTD The ZSTD source directory

» -DBUI LD_STATI C=bool

By default, dynamic (shared) libraries are built. If this option is enabled, static libraries are built instead.

- DBUNDLE_DEPENDENCI ES=bool
This is an internal option used for creating Connector/C++ distribution packages.
« - DCMAKE_BUI LD TYPE=t ype
The type of build to produce:
< Debug: Disable optimizations and generate debugging information. This is the default.
* Rel ease: Enable optimizations.
« Rel Wt hDebl nf o: Enable optimizations and generate debugging information.
o - DCMAKE | NSTALL DOCDI R=di r _nane

The documentation installation directory, relative to CVAKE | NSTALL_PREFI X. If not specified, the
default is to install in CVAKE | NSTALL _PREFI X.

This option requires that W TH_DCC be enabled.
This option was added in Connector/C++ 8.0.14.
e - DCMAKE | NSTALL_| NCLUDEDI R=di r _nane

The header file installation directory, relative to CMAKE | NSTALL_PREFI X. If not specified, the default is
i ncl ude.

This option was added in Connector/C++ 8.0.14.




Connector/C++ Source-Configuration Options

- DCMAKE_| NSTALL_LI BDI R=di r _name

The library installation directory, relative to CVAKE_| NSTALL_PREFI X. If not specified, the default is
l'i b64 orlib.

This option was added in Connector/C++ 8.0.14.

- DCMAKE_| NSTALL_PREFI X=di r _nane

The installation base directory (where to install Connector/C++).
- DMAI NTAI NER_MODE=bool

This is an internal option used for creating Connector/C++ distribution packages. It was added in
Connector/C++ 8.0.12.

- DWSQLCLI ENT_STATI C_BI NDI NG=bool

Whether to link to the shared MySQL client library. This option is used only if

MYSQLCLI ENT_STATI C_LI NKI NGis disabled to enable dynamic linking of the MySQL client library.
In that case, if MYSQLCLI ENT_STATI C _BI NDI NGis enabled (the default), Connector/C++ is linked to
the shared MySQL client library. Otherwise, the shared MySQL client library is loaded and mapped at
runtime.

This option applies only if you are building the legacy JDBC connector (that is, only if W TH_JDBC s
enabled). It was added in Connector/C++ 8.0.16.

- DMYSQLCLI ENT_STATI C_LI NKI NG=bool

Whether to link statically to the MySQL client library. The default depends on the legacy JDBC connector
that you are building:

e From Connector/C++ 8.0.33, the default is OFF (use dynamic linking to the client library). Enabling this
option disables dynamic linking to the client library.

¢ For Connector/C++ 8.0.16 to 8.0.32, the default is ON (use static linking to the client library). Disabling
this option enables dynamic linking to the client library. C\Vake verifies that the current compiler and
standard libraries can build without errors at configuration time.

This option applies only if you are building the legacy JDBC connector (that is, only if W TH_JDBCis
enabled). It was added in Connector/C++ 8.0.16.

- DMYSQL_CONFI G_ EXECUTABLE=fi | e_nane
The path to the nysqgl _confi g program.

On non-Windows systems, CVake checks to see whether MYSQL_CONFI G_EXECUTABLE is set. If not,
CMake tries to locate mysql _confi g in the default locations.

This option applies only if you are building the legacy JDBC connector (that is, only if W TH_JDBCis
enabled).

-DMYSQL_DI R=di r _nane
The directory where MySQL is installed.

This option applies only if you are building the legacy JDBC connector (that is, only if W TH_JDBC s
enabled).

17



Connector/C++ Source-Configuration Options

» - DSTATI C_MsVCRT=bool

(Windows only) Use the static runtime library (the / MT'* compiler option). This option might be necessary
if code that uses Connector/C++ also uses the static runtime library.

- DW TH_BOOST={ syst en| pat h_nane}

This option specifies which BOOST header file to use when compiling Connector/C++ with an external
dependency. The option value to use:

e syst em Use the system BOOST header file.
e pat h_nane is the path name to the file to use.

For consistency with C\Vake conventions, BOOST DI Ror BOOST _ROOT_DI R can be used instead

of W TH_BQOCST to indicate the base location of the dependency. As an alternative that implies the

W TH_BOOST option (without specifying it), use BOOST | NCLUDE_DI Rto provide the header file location
instead of deriving it from the BOOST_ROOT_DI R value.

This option applies only if you are building the legacy JDBC connector (that is, only if W TH_JDBCis
enabled).

- DW TH_DOC=bool

Whether to enable generating the Doxygen documentation. As of Connector/C++ 8.0.16, enabling this
option also causes the Doxygen documentation to be built by the al | target.

- DW TH_JDBC=bool

Whether to build the legacy JDBC connector. This option is disabled by default. If it is enabled,
Connector/C++ 8.0 applications can use the legacy JDBC API, just like Connector/C++ 1.1 applications.

- DW TH_LZ4={syst en] pat h_nane}

This option specifies which LZ4 installation to use when compiling Connector/C++ with an external
dependency. The option value to use:

e syst em Use the system LZ4 location.
e pat h_nane is the path name to the installation location to use.

For consistency with CVake conventions, LZ4 DI Ror LZ4 ROOT_DI R can be used instead of
W TH_LZ4 to indicate the base location of the dependency.

To imply the W TH_LZ4 option but with more fine-grained specification of installation directories, use
LZ4 | NCLUDE DI RorLz4 LI B DI Rto indicate the header file (or library) location instead of deriving
it from the LZ4 ROOT DI Rvalue. To specify a list of external libraries to link to, use LZ4_ LI BRARY
instead of the W TH_LZ4 option.

If you specify both LZ4 LI BRARY and LZ4 LI B DI R,thenLZ4 LI B DI Ris used as an additional
prefix when finding the library file and LZ4 LI BRARY should be relative to that prefix. On Windows,
LZ4 LI BRARY should point at the import library of the DLL.

- DW TH_MYSQL={ syst en] pat h_nane}

The location where the MySQL sources are installed. The client library is linked statically when you
specify this option unless you also request MYSQLCLI ENT_STATI C_LI NKI NG=OFF. The option value to
use:

18



Connector/C++ Source-Configuration Options

e syst em Use the system MYSQL location.

e pat h_nane is the path name to the installation location to use.

This option applies only if you are building the legacy JDBC connector (that is, only if W TH_JDBCis
enabled).

For consistency with CVake conventions, M\YSQL_DI Ror MYSQL_ROOT DI R can be used instead of
W TH_MYSQL to indicate the base location of the dependency.

To imply the W TH_MYSQL option but with more fine-grained specification of installation directories,
use MYSQL_| NCLUDE_DI Ror M\YSQL_LI B_DI Rto indicate the header file (or library) location instead
of deriving it from the MYySQL_ROOT_DI R value. To specify a list of external libraries to link to, use
MYSQL_LI BRARY instead of the W TH_MYSQL option.

If you specify both MYSQL_LI BRARY and MYSQL_LI B_DI R, then MYSQL_LI B_DI Ris used as an
additional prefix when finding the library file and MYSQL_ LI BRARY should be relative to that prefix. On
Windows, MYSQL_ LI BRARY should point at the import library of the DLL.

- DW TH_PROTOBUF={ syst en] pat h_nane}

This option specifies which Protobuf installation to use when compiling Connector/C++ with an external
dependency. Although the library in Connector/C++ binary packages still links in Protobuf statically,
using this option makes it possible to build from external sources a variant that links in Protobuf
dynamically.

The option value to use:
« syst em Use the system Protobuf location.

e pat h_nane is the path name to the installation location to use.

For consistency with CVake conventions, PROTOBUF_DI R or PROTOBUF_ROOT DI R can be used
instead of W TH_PROTOBUF to indicate the base location of the dependency.

To imply the W TH_PROTOBUF option but with more fine-grained specification of installation directories,
use PROTOBUF | NCLUDE DI Ror PROTOBUF_LI B DI Rto indicate the header file (or library) location

instead of deriving it from the PROTOBUF_ROOT DI Rvalue. To specify a list of external libraries to link

to, use PROTOBUF_ LI BRARY instead of the W TH_PROTOBUF option.

If you specify both PROTOBUF_L| BRARY and PROTOBUF_LI B_DI R, then PROTOBUF_LI B_DI Ris used
as an additional prefix when finding the library file and PROTOBUF_L| BRARY should be relative to that
prefix. On Windows, PROTOBUF_LI BRARY should point at the import library of the DLL.

Similarly, specifying PROTOBUF_BI N_DI R makes it possible to locate the binaries required to use the
dependency and find the compiler.

- DW TH_SSL={ syst enj pat h_nane}
This option specifies which SSL library to use when compiling Connector/C++. The option value to use:
e syst em Use the system OpenSSL library.

e pat h_nane is the path name to the SSL installation to use. It should be the path to the installed
OpenSSL library, and must point to a directory containing a | i b subdirectory with OpenSSL libraries
that are already built. Specifying a path name for the OpenSSL installation can be preferable to using

19



Connector/C++ Source-Configuration Options

syst embecause it can prevent CVake from detecting and using an older or incorrect OpenSSL
version installed on the system.

For consistency with C\Vake conventions, SSL_DI Ror SSL_ROOT_DI R (OPENSSL_ROOT DI R) can be
used instead of W TH_SSL to indicate the base location of the dependency.

To imply the W TH_SSL option but with more fine-grained specification of installation directories,

use OPENSSL_| NCLUDE DI Ror OPENSSL_ LI B_DI Rto indicate the header file (or library) location
instead of deriving it from the SSL_ROOT DI Rvalue. To specify a list of external libraries to link to, use
SSL_ LI BRARY instead of the W TH_SSL option.

If you specify both SSL_ LI BRARY and OPENSSL_LI B DI R, then OPENSSL_LI B _DI Ris used as an
additional prefix when finding the library file and SSL_ LI BRARY should be relative to that prefix. On
Windows, SSL_ LI BRARY should point at the import library of the DLL.

-DW TH ZLI B={ syst en] pat h_nane}

This option specifies which ZLIB installation to use when compiling Connector/C++ with an external
dependency. The option value to use:

e syst em Use the system ZLIB location.

e pat h_nane is the path name to the installation location to use.

For consistency with C\Vake conventions, ZLI B_DI Ror ZLI B_ROOT_DI R can be used instead of
W TH_ZLI B to indicate the base location of the dependency.

To imply the W TH_ZL1 B option but with more fine-grained specification of installation directories,
use ZLI B | NCLUDE DI Ror ZLI B_LI B_DI Rto indicate the header file (or library) location instead
of deriving it from the ZLI B_ROOT DI Rvalue. To specify a list of external libraries to link to, use
ZL1 B_LI BRARY instead of the W TH_ZLI| B option.

If you specify both ZLI B LI BRARY and ZLI B LI B DI R, then ZLI B_LI B DI Ris used as an additional
prefix when finding the library file and ZLI B_LI BRARY should be relative to that prefix. On Windows,
ZL1 B_LI BRARY should point at the import library of the DLL,

-DW TH _ZSTD={ syst en{ pat h_nane}

This option specifies which ZSTD installation to use when compiling Connector/C++ with an external
dependency. The option value to use:

e syst em Use the system ZSTD location.

e pat h_nane is the path name to the installation location to use.

For consistency with C\Vake conventions, ZSTD DI Ror ZSTD_ROOT_DI R can be used instead of
W TH_ZSTDto indicate the base location of the dependency.

To imply the W TH_ZSTD option but with more fine-grained specification of installation directories,
use ZSTD | NCLUDE DI Ror ZSTD LI B_DI Rto indicate the header file (or library) location instead
of deriving it from the ZSTD_ROOT DI Rvalue. To specify a list of external libraries to link to, use
ZSTD LI BRARY instead of the W TH_ZSTD option.

If you specify both ZSTD LI BRARY and ZSTD LI B DI R, then ZSTD LI B DI Ris used as an additional
prefix when finding the library file and ZSTD LI BRARY should be relative to that prefix. On Windows,
ZSTD LI BRARY should point at the import library of the DLL.

20



Building Connector/C++ Applications

2.5 Building Connector/C++ Applications

This chapter provides guidance on building Connector/C++ applications:

» General considerations for building Connector/C++ applications successfully. See Section 2.5.1,
“Building Connector/C++ Applications: General Considerations”.

 Information about building Connector/C++ applications that applies to specific platforms such as
Windows, macOS, generic Linux, and Solaris. See Section 2.5.2, “Building Connector/C++ Applications:
Platform-Specific Considerations”.

For discussion of the programming interfaces available to Connector/C++ applications, see Section 2.1,
“Introduction to Connector/C++".

2.5.1 Building Connector/C++ Applications: General Considerations

This section discusses general considerations to keep in mind when building Connector/C++ applications.
For information that applies to particular platforms, see the section that applies to your platform in
Section 2.5.2, “Building Connector/C++ Applications: Platform-Specific Considerations”.

Commands shown here are as given from the command line (for example, as invoked from a Makefi | e).
The commands apply to any platform that supports nake and command-line build tools such as g++, cc,
or cl ang, but may need adjustment for your build environment.

» Build Tools and Configuration Settings

e C++17 Support

» Connector/C++ Header Files

+ Connector/C++ Version Macros

* Boost Header Files

 Link Libraries

* Runtime Libraries

 Using the Connector/C++ Dynamic Library

» Using the Connector/C++ Static Library
Build Tools and Configuration Settings

It is important that the tools you use to build your Connector/C++ applications are compatible with the tools
used to build Connector/C++ itself. Ideally, build your applications with the same tools that were used to
build the Connector/C++ binaries.

To avoid issues, ensure that these factors are the same for your applications and Connector/C++ itself:
o Compiler version.

e Runtime library.

* Runtime linker configuration settings.

To avoid potential crashes, the build configuration of Connector/C++ should match the build configuration
of the application using it. For example, do not use a release build of Connector/C++ with a debug build of
the client application.

21



Building Connector/C++ Applications: General Considerations

To use a different compiler version, release configuration, or runtime library, first build Connector/C++ from
source using your desired settings (see Section 2.4, “Installing Connector/C++ from Source”), then build
your applications using those same settings.

Connector/C++ binary distributions include an | NFO_BI N file that describes the environment and
configuration options used to build the distribution. If you installed Connector/C++ from a binary distribution
and experience build-related issues on a platform, it may help to check the settings that were used to

build the distribution on that platform. Binary distributions also include an | NFO_SRC file that provides
information about the product version and the source repository from which the distribution was produced.
(Prior to Connector/C++ 8.0.14, look for BUI LDI NFO. t xt rather than | NFO_BI Nand | NFO_SRC.)

C++17 Support

X DevAPI uses C++17 language features (as of Connector/C++ 8.0.33). To compile Connector/C++
applications that use X DevAPI, enable C++17 support in the compiler using the - st d=c++17 option. This
option is not needed for applications that use X DevAPI for C (which is a plain C API) or the legacy JDBC
API (which is based on plain C++), unless the application code uses C++17.

Connector/C++ Header Files

The API an application uses determines which Connector/C++ header files it should include. The following
include directives work under the assumption that the include path contains $MYSQL_CPPCONN_DI R/

i ncl ude, where $MYSQL_CPPCONN_DI R is the Connector/C++ installation location. Pass an - |
$MYSQL_CPPCONN_DI R/i ncl ude option on the compiler invocation command to ensure this.

» For applications that use X DevAPI:
#i ncl ude <mysql x/ xdevapi . h>
» For applications that use X DevAPI for C:
#i ncl ude <mysql x/ xapi . h>
» For applications that use the legacy JDBC API, the header files are version dependent:
« As of Connector/C++ 8.0.16, a single #i ncl ude directive suffices:
#i ncl ude <nysql/j dbc. h>
» Prior to Connector/C++ 8.0.16, use this set of #i ncl ude directives:

#i ncl ude <jdbc/nysql _driver. h>
#i ncl ude <j dbc/ nysql _connecti on. h>
#i ncl ude <j dbc/cppconn/*. h>

The notation <j dbc/ cppconn/ *. h> means that you should include all header files from the | dbc/
cppconn directory that are needed by your application. The particular files needed depend on the
application.

* Legacy code that uses Connector/C++ 1.1 has #i ncl ude directives of this form:

#i ncl ude <nysql _driver. h>
#i ncl ude <nmysqgl _connecti on. h>
#i ncl ude <cppconn/*. h>

To build such code with Connector/C++ 8.0 without modifying it, add $MYSQL._CPPCONN_DI R/
i ncl ude/ j dbc to the include path.

22



Building Connector/C++ Applications: General Considerations

To compile code that you intend to link statically against Connector/C++, define a macro that adjusts API
declarations in the header files for usage with the static library. For details, see Using the Connector/C++
Static Library.

Connector/C++ Version Macros
Starting with Connector/C++ 8.0.30, version-related macros are defined in public header files. The intent

of the macros is to provide a way to systematically and predictably maintain version numbering of the
Connector/C++ product. The following table describes the version-related macros.

Macro Name Description

MYSQL_CONCPP_VERSI ON_MAJOR Major number of the product version; currently 8.

MYSQL_CONCPP_VERSI ON_M NOR Minor number of the product version; currently 00.

MYSQL_CONCPP_VERSI ON_M CRO Micro number of the product version; initially 30.

MYSQL_CONCPP_VERSI ON_NUVBER Full Connector/C++ version number, which
combines the major, minor, and micro numbers. For
example, the combined version number 8000030
represents Connector/C++ 8.0.30.

Note

The version numbers maintained by these macros apply to the Connector/C
++ product only and are unrelated to API or ABI versions, which are handled
separately.

Connector/C++ applications that use X DevAPI, X DevAPI for C, or the legacy JDBC API can specify
the MYSQL_ CONCPP_VERSI ON_NUVMBER macro to add conditional tests that determine the inclusion or
exclusion of feature dependencies, based on which Connector/C++ version introduced the dependency.
For example, it is possible to use the MYSQL_CONCPP_VERSI ON_NUVBER macro in the following cases:

» When a Connector/C++ application needs a guard that checks for features introduced after the specified
version. The following example specifies version 8.0.32, which has the macro defined in public header
files. The same conditional-compilation directive also works when the macro is not defined (with
pre-8.0.30 header files), because the value is treated as 0.

#i f MySQL_CONCPP_VERSI ON_NUMBER > 8000032
/] use some 8.0.32+ feature
#endi f

» When a Connector/C++ application requires all features introduced before the specified version.

#i f MYSQL_CONCPP_VERSI ON_NUMBER < 8000032
/] this usage is OK; it conpiles with 8.0.31 and all previous versions
#endi f

» When a Connector/C++ application that uses X DevAPI also uses the Char act er Set : : ut f 8nb3
enumeration constant or any of the new ut f 8nb4 collation members. If the application compiles with the
pre-8.0.30 connector, then it is possible to guard the use of these new API elements.

#i f MYSQL_CONCPP_VERSI ON_NUMBER >= 8000030
if (CharacterSet::utf8mb3 == cs)

#el se
if (CharacterSet::utf8 == cs)

#endi f
{

/Il cs is the id of the utf8 character set

}

23



Building Connector/C++ Applications: General Considerations

* When a Connector/C++ application that uses X DevAPI needs to check the name of the ut f 8nmb3
character set or any of its collations, and it must also be compiled with the pre-8.0.30 connector.

#i f MYSQL_CONCPP_VERSI ON_NUMBER >= 8000030

if ("utf8mb3" == character Set Name(cs))
#el se

if ("utf8" == characterSet Nane(cs))
#endi f

{

/]l cs is the id of the utf8 character set

}
Note

Alternatively, you can compare against numeric enumeration constant value,
which should work regardless of the connector version.

» When a Connector/C++ application that uses the legacy JDBC API needs to check the name of
the ut f 8nb3 character set or any of its collations, and it must also be compiled with the pre-8.0.30
connector.

#i f MySQL_CONCPP_VERSI ON_NUMBER >= 8000030

if ("utf8nmb3" == netadat a- >get Col unmChar set ( col unm))
#el se

if ("utf8" == netadata->get Col umChar set (col um))
#endi f

/] colum is the columm index using the utf8 character set

}

Do not use the MYSQL_ CONCPP_VERSI ON_NUMBER macro to check against versions earlier than
Connector/C++ 8.0.30, which can produce unreliable results. For example:

#i f MYSQL_CONCPP_VERSI ON_NUMBER > 8000028
/'l this does not conpile the with 8.0.29 connector
#endi f
#i f MYSQL_CONCPP_VERSI ON_NUMBER < 8000028
/1 this conpiles with the 8.0.29 connector
#endi f

Boost Header Files

The Boost header files are needed under these circumstances:

 Prior to Connector/C++ 8.0.16, on Unix and Unix-like platforms for applications that use X DevAPI or X
DevAPI for C, if you build using gcc and the version of the C++ standard library on your system does not
implement the UTF8 converter (codecvt _ut f 8).

» Prior to Connector/C++ 8.0.23, to compile Connector/C++ applications that use the legacy JDBC API.

If the Boost header files are needed, Boost 1.59.0 or newer must be installed, and the location of the
headers must be added to the include path. To obtain Boost and its installation instructions, visit the official
Boost site.

Link Libraries

When running an application that uses the shared Connector/C++ library, the library and its runtime
dependencies must be found by the dynamic linker. The dynamic linker must be properly configured to find
Connector/C++ libraries and their dependencies. This includes adding - | r esol v explicitly to the compile/
link command.

24


https://www.boost.org
https://www.boost.org

Building Connector/C++ Applications: General Considerations

Building Connector/C++ using OpenSSL makes the connector library dependent on OpenSSL dynamic
libraries. In that case:

* When linking an application to Connector/C++ dynamically, this dependency is relevant only at runtime.

« When linking an application to Connector/C++ statically, link to the OpenSSL libraries as well. On Linux,
this means adding - | ssl -1 crypt o explicitly to the compile/link command. On Windows, this is
handled automatically.

On Windows, link to the dynamic version of the C++ Runtime Library.
Runtime Libraries

X DevAPI for C applications need | i bst dc++ at runtime. Depending on your platform or build tools, a
different library may apply. For example, the library is | i bc++ on macOS; see Section 2.5.2.2, “macOS
Notes”.

If an application is built using dynamic link libraries, those libraries must be present not just on the build
host, but on target hosts where the application runs. The dynamic linker must be properly configured to find
those libraries and their runtime dependencies, as well as to find Connector/C++ libraries and their runtime
dependencies.

Connector/C++ libraries built by Oracle depend on the OpenSSL libraries. The latter must be installed
on the system in order to run code that links against Connector/C++ libraries. Another option is to put
the OpenSSL libraries in the same location as Connector/C++, in which case, the dynamic linker should
find them next to the connector library. See also Section 2.5.2.1, “Windows Notes”, and Section 2.5.2.2,
“macOS Notes”.

Note

The TLSv1 and TLSv1.1 connection protocols are no longer supported as of
Connector/C++ 8.0.28, making TLSv1.2 the earliest supported connection protocol.

Using the Connector/C++ Dynamic Library

The Connector/C++ dynamic library name depends on the platform. These libraries implement X DevAPI
and X DevAPI for C, where A in the library name represents the ABI version:

e |ibmysgl cppconn8. so. A (Unix)
e libnysgl cppconn8. A. dyl i b (macOS)
* nysqgl cppconn8- A- vsNN. dl |, with import library vsNN/ mysql cppconn8. | i b (Windows)

For the legacy JDBC API, the dynamic libraries are named as follows, where B in the library name
represents the ABI version:

e |ibmysgl cppconn. so. B (Unix)
e libnysqgl cppconn. B. dyl i b (macOS)
* nysql cppconn- B-vsNN. dl |, with import library vsNN/ nysql cppconn-static. i b (Windows)

On Windows, the vsNN value in library names depends on the MSVC toolchain version used to build the
libraries. (Connector/C++ libraries provided by Oracle use vs14, and they are compatible with MSVC
2019 and 2017.) This convention enables using libraries built with different versions of MSVC on the same
system. See also Section 2.5.2.1, “Windows Notes”.

25



Building Connector/C++ Applications: General Considerations

To build code that uses X DevAPI or X DevAPI for C, add - | mysql cppconn8 to the linker options. To
build code that uses the legacy JDBC API, add - | nysql cppconn.

You must also indicate whether to use the 64-bit or 32-bit libraries by specifying the appropriate
library directory. Use an - L linker option to specify $MYSQL_CONCPP_DI R/ | i b64 (64-bit libraries) or
$MYSQL_CONCPP_DI R/ 1'i b (32-bit libraries), where $SMYSQL_CPPCONN_DI Ris the Connector/C++
installation location. On FreeBSD, / | i b64 is not used. The library name always ends with / | i b.

To build a Connector/C++ application that uses X DevAPI, has sources in app. cc, and links dynamically
to the connector library, the Makef i | e might look like this:

MYSQL_CONCPP_DI R = Connector/C++ installation |ocation

CPPFLAGS = -1 $(MYSQL_CONCPP_DI R)/include -L $(MYSQL_CONCPP_DI R)/|i b64
LDLI BS = -1 mysqgl cppconn8

CXXFLAGS = -std=c++17

app : app.cc

With that Makefi | e, the command nake app generates the following compiler invocation:

g++ -std=c++17 -| .../include -L .../lib64 app.cc -I|nysqgl cppconn8 -0 app

To build a plain C application that uses X DevAPI for C, has sources in app. ¢, and links dynamically to the
connector library, the Makef i | e might look like this:

MYSQL_CONCPP_DI R = Connector/C++ installation |ocation

CPPFLAGS = -1 $(MYSQL_CONCPP_DIR)/include -L $(MYSQL_CONCPP_DI R)/|i b64
LDLI BS = -1 mysqgl cppconn8
app : app.c

With that Makefi | e, the command nake app generates the following compiler invocation:

cc -1 .../linclude -L .../lib64 app.c -lnmysql cppconn8 -o app
Note

The resulting code, even though it is compiled as plain C, depends on the C++
runtime (typically | i bst dc++, though this may differ depending on platform or build
tools; see Runtime Libraries).

To build a plain C++ application that uses the legacy JDBC API, has sources in app. c, and links
dynamically to the connector library, the Makef i | e might look like this:

MYSQL_CONCPP_DI R = Connector/C++ installation | ocation

CPPFLAGS = -1 $(MYSQL_CONCPP_DI R)/include -L $(MYSQL_CONCPP_DI R)/ | i b64
LDLI BS = -1 mysqgl cppconn
app @ app.c

The library option in this case is - | mysql cppcon, rather than - | nysql cppcon8 as for an X DevAPI or X
DevAPI for C application.

With that Makefi | e, the command nake app generates the following compiler invocation:
cc -1 .../include -L .../lib64 app.c -l mysqgl cppconn -0 app
Note

When running an application that uses the Connector/C++ dynamic library, the
library and its runtime dependencies must be found by the dynamic linker. See
Runtime Libraries.




Building Connector/C++ Applications: General Considerations

Using the Connector/C++ Static Library

It is possible to link your application with the Connector/C++ static library. This way there is no runtime
dependency on the connector, and the resulting binary can run on systems where Connector/C++ is not
installed.

Note

Even when linking statically, the resulting code still depends on all runtime
dependencies of the Connector/C++ library. For example, if Connector/C++ is built
using OpenSSL, the code has a runtime dependency on the OpenSSL libraries.
See Runtime Libraries.

The Connector/C++ static library name depends on the platform. These libraries implement X DevAPI and
X DevAPI for C:

* |ibrmysgl cppconn8-stati c. a (Unix, macOS)
* VsNN/ nysql cppconn8-static.|ib (Windows)
For the legacy JDBC API, the static libraries are named as follows:
e |ibnysqgl cppconn-static. a (Unix, macOS)
* VvsNN/ nysql cppconn-static.|ib (Windows)
Note

Generic Linux packages do not contain any Connector/C++ static libraries. If you
intend to link your application to a static library, consider installing a package that is
specific to the platform on which you build your final application.

On Windows, the vsNN value in library names depends on the MSVC toolchain version used to build the
libraries. (Connector/C++ libraries provided by Oracle use vs14, and they are compatible with MSVC
2019 and 2017.) This convention enables using libraries built with different versions of MSVC on the same
system. See also Section 2.5.2.1, “Windows Notes”.

To compile code that you intend to link statically against Connector/C++, define a macro that adjusts API
declarations in the header files for usage with the static library. One way to define the macro is by passing
a - D option on the compiler invocation command:

» For applications that use X DevAPI, X DevAPI for C, or (as of Connector/C++ 8.0.16) the legacy JDBC
API, define the STATI C_CONCPP macro. All that matters is that you define it; the value does not matter.
For example: - DSTATI C_CONCPP

 Prior to Connector/C++ 8.0.16, for applications that use the legacy JDBC API, define
the CPPCONN_PUBLI C_FUNC macro as an empty string. To ensure this, define the
macro as CPPCONN_PUBLI C_FUNC=, not as CPPCONN_PUBLI C_FUNC. For example: -
DCPPCONN_PUBLI C_FUNC=

To build a Connector/C++ application that uses X DevAPI, has sources in app. cc, and links statically to
the connector library, the Makef i | e might look like this:

MYSQL_CONCPP_DI R = Connector/C++ installation |ocation

CPPFLAGS = - DSTATI C_CONCPP -1 $(MYSQL_CONCPP_DI R)/i ncl ude

LDLI BS = $(MYSQL_CONCPP_DI R)/ i b64/1i bnysql cppconn8-static.a -Issl -lcrypto -I pthread
CXXFLAGS = -std=c++17

app : app.cc

With that Makef i | e, the command nake app generates the following compiler invocation:

27



Building Connector/C++ Applications: General Considerations

g++ -std=c++17 -DSTATI C_CONCPP -| .../include app.cc
.../1ib64/1ibnysqgl cppconn8-static.a -1ssl -lcrypto -Ipthread -o app

Note

To avoid having the linker report unresolved symbols, the compile line must include
the OpenSSL libraries and the pt hr ead library on which Connector/C++ code
depends.

OpenSSL libraries are not needed if Connector/C++ is built without them, but
Connector/C++ distributions built by Oracle do depend on OpenSSL.

The exact list of libraries required by Connector/C++ library depends on the
platform. For example, on Solaris, the socket, rt, and nsl libraries might be
needed.

To build a plain C application that uses X DevAPI for C, has sources in app. ¢, and links statically to the
connector library, the Makef i | e might look like this:

MYSQL_CONCPP_DI R = Connector/C++ installation | ocation

CPPFLAGS = - DSTATI C_CONCPP -1 $(MySQL_CONCPP_DI R) /i ncl ude

LDLI BS = $(MYSQL_CONCPP_DI R)/ | i b64/ i brrysql cppconn8-static.a -I1ssl -lcrypto -I pthread
app @ app.c

With that Makef i | e, the command nake app generates the following compiler invocation:

cc - DSTATIC_ CONCPP -1 .../include app.c
...11ib64/libnysql cppconn8-static.a -Issl -lcrypto -Ipthread -o app

To build a plain C application that uses the legacy JDBC API, has sources in app. ¢, and links statically to
the connector library, the Makef i | e might look like this:

MYSQL_CONCPP_DI R = Connector/C++ installation |ocation

CPPFLAGS = - DCPPCONN_PUBLI C_FUNC= -1 $(MYSQ._CONCPP_DI R)/i ncl ude

LDLI BS = $( MYSQ._CONCPP_DI R)/|i b64/1i bnysql cppconn-static.a -1ssl -lcrypto -I pthread
app : app.c

The library option in this case names | i bnysql cppcon- st ati c. a, ratherthan | i brrysql cppcon8-
stati c. a as for an X DevAPI or X DevAPI for C application.

With that Makefi | e, the command nake app generates the following compiler invocation:

cc -std=c++17 --DCPPCONN_PUBLI C FUNC= -I .../include app.c
.../1ib64/1ibnysqgl cppconn-static.a -1ssl -lcrypto -l pthread -o app

When building plain C code, it is important to take care of connector's dependency on the C++ runtime,
which is introduced by the connector library even though the code that uses it is plain C:

» One approach is to ensure that a C++ linker is used to build the final code. This approach is taken by the
Makef i | e shown here:

MYSQ._CONCPP_DI R = Connector/C++ installation |ocation

CPPFLAGS = - DSTATI C_CONCPP -1 $(MYSQL_CONCPP_DI R)/i ncl ude

LDLI BS = $(MYSQL_CONCPP_DI R)/1i b64/1i bnysql cppconn8-static.a -I1ssl -lcrypto -Ipthread
LINK. o = $(LINK. cc) # use C++ |inker

app : app.o

With that Makef i | e, the build process has two steps: first compile the application source in app. c
using a plain C compiler to produce app. o, then link the final executable (app) using the C++ linker,
which takes care of the dependency on the C++ runtime. The commands look something like this:

cc -DSTATIC CONCPP -1 .../include -c -0 app.o app.c

28



Building Connector/C++ Applications: Platform-Specific Considerations

g++ - DSTATI C_CONCPP -1 .../include app.o
.../1ibnysqgl cppconn8-static.a -l1ssl -lcrypto -Ipthread -o app

» Another approach is to use a plain C compiler and linker, but add the | i bst dc++ C++ runtime library as
an explicit option to the linker. This approach is taken by the Makef i | e shown here:
MYSQ._CONCPP_DI R = Connector/C++ installation |ocation
CPPFLAGS = - DSTATI C_CONCPP -1 $(MYSQL_CONCPP_DI R)/ i ncl ude

LDLI BS = $( MYSQL_CONCPP_DI R)/ | i b64/1i bnysql cppconn8-static.a -l1ssl -lcrypto -Ipthread -|stdc++
app : app.c

With that Makef i | e, the compiler is invoked as follows:

cc -DSTATI C CONCPP -1 .../include app.c
...l1ibnysqgl cppconn8-static.a -l1ssl -lcrypto -Ipthread -1stdc++ -0 app

Note

Even if the application that uses Connector/C++ is written in plain C, the final
executable depends on the C++ runtime which must be installed on the target
computer on which the application is to run.

2.5.2 Building Connector/C++ Applications: Platform-Specific Considerations

This section discusses platform-specific considerations to keep in mind when building Connector/C++
applications. For general considerations that apply on a platform-independent basis, see Section 2.5.1,
“Building Connector/C++ Applications: General Considerations”.

2.5.2.1 Windows Notes

This section describes aspects of building Connector/C++ applications that are specific to Microsoft
Windows. For general application-building information, see Section 2.5.1, “Building Connector/C++
Applications: General Considerations”.

On Windows, applications can be built in different build configurations, which determine the type of the C++
runtime library that is used by the final executable:

* An application can be built in 32-bit or 64-bit mode.
« An application can be built in release or debug mode.

* You can choose between the dynamic runtime library (/ VD linker option) or static runtime library (/ MI'
linker option). Different versions of the MSVC compiler also use different versions of the runtime library.

To build Connector/C++ applications, developers using Windows must satisfy these conditions:
* An acceptable version of Microsoft Visual Studio is required.

» Applications should use the same build configuration as that used to build Connector/C++. Build
configuration includes the build mode (release mode or debug mode) and the linker option (for example,
/ NDor /| NDd).

» Target hosts running client applications must have an acceptable version of the Visual C++
Redistributable for Visual Studio installed.

For information about acceptable versions of Visual Studio and VC++ Redistributable, see Platform
Support and Prerequisites.

The following sections provide additional detail about several aspects of building Connector/C++
applications:

29


https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/

Building Connector/C++ Applications: Platform-Specific Considerations

» Application Build Configuration Must Match Connector/C++
« Linking Connector/C++ to Applications

 Building Connector/C++ Applications with Microsoft Visual Studio

Application Build Configuration Must Match Connector/C++

It is important to use a compatible compiler version to build applications and Connector/C++. It is also
important to build applications using the same build configuration as that used to build Connector/C++.
That is, applications should use the same build mode and linker option, to ensure that the connector and
the application use the same runtime library.

The following table shows the linker option appropriate for each combination of build mode and runtime
library. It also shows for each combination whether a Connector/C++ binary package is available from
Oracle. (If not, you must build Connector/C++ from source yourself.)

Table 2.2 Connector/C++ Linker Option Per Build Mode and Runtime Library

Build Mode Runtime Library Linker Option Binary Package
Available

Release Dynamic / ND Yes

Debug Dynamic / vDd Yes

Release Static [ Mr No (build from source)

Debug Static / Mrd No (build from source)

Standard Connector/C++ binary packages available from Oracle are built in release mode. If you install
such a package, build applications in release mode to match. Oracle packages built in debug mode are
available as well. To build applications in debug mode, you must either install an Oracle-built Connector/C+
+ package that was built in debug mode, or build Connector/C++ from source yourself using debug mode.

Linking Connector/C++ to Applications

Connector/C++ binary distributions are available as 64-bit or 32-bit packages, which store libraries under a
directory named | i b64 or | i b, respectively. Package names and certain library file and directory names
also include vsNN. The vsNN value in these names depends on the MSVC toolchain version used to build
the libraries. This convention enables using libraries built with different versions of MSVC on the same
system.

Note

The vsNN value represents the major version of the MSVC toolchain used to
build the libraries. Currently it is vs14, which is the toolchain used by MSVC 2015
through 2019.

Connector/C++ binary packages include libraries built using the dynamic runtime library in either release
mode (/ VD) or debug mode (/ Mdd). The Connector/C++ libraries are compatible with MSVC 2019 and
2017, and code that uses these libraries can be built with either MSVC 2019 or 2017 using the appropriate
linker option (that is, / VD for release mode or / MDd for debug mode). To build code with a different linker
option (/ Mr or / MTd), first build Connector/C++ from source with that option (see Section 2.4.3, “Installing
Connector/C++ from Source”), then build applications using the same option.

Note

One exception for compiler version compatibility is that to build applications using
the static JDBC legacy connector, MSVC 2019 is required; 2017 does not work.

30




Building Connector/C++ Applications: Platform-Specific Considerations

Connector/C++ is available as a dynamic or static library to use with your application. Which library you
choose determines the library files needed, and the location of those files within a Connector/C++ package
depends on whether the package was built in release or debug mode. Library files are located under the
library directory, which, as previously mentioned, is | i b64 for 64-bit packages or | i b for 32-bit packages.
Denote this directory as LI B. The following table shows the directory in which to find library files for each
type of library (including import libraries, which are used in conjunction with dynamic libraries).

Table 2.3 Connector/C++ Library File Directories

Library Type Library File Directory (Release |Library File Directory (Debug
Build) Build)

Dynamic Library LI B LI B/ debug

Import Library LI B/vs14 LI B/ vs14/ debug

Static Library LI B/vs14 LI B/ vs14/ debug

For dynamic linking, the following table indicates which dynamic and import library files to use.

Table 2.4 Connector/C++ Dynamic and Import Library Files Per Connector

Connector Dynamic Library File Import Library File
X DevAPI, X DevAPI for C nysql cppconn8- 2-vs14. dl | nysql cppconn8. lib
JDBC nysql cppconn-7-vsl4. dl | nysql cppconn. lib

For the X DevAPI or X DevAPI for C connector, use the dynamic library file named nysql cppconn8- 2-
vs14. dl |, together with with the import library file named nysql cppconn8. | i b from the import library
directory. The 2 in the dynamic library name is the major ABI version number. (This helps when using
compatibility libraries with an old ABI together with new libraries having a different ABI.) The libraries
installed on your system may have a different ABI version in their file names.

For the legacy JDBC connector, use the dynamic library file named nysql cppconn- 7-vs14. dl |,
together with the import library file named nysql cppconn. | i b from the import library directory.

For static linking, the following table indicates which static library file to use.

Table 2.5 Connector/C++ Static Library File Per Connector

Connector Static Library File
X DevAPI, X DevAPI for C nysql cppconn8-static.lib
JDBC nmysql cppconn-static.lib

For the X DevAPI or X DevAPI for C connector, use the static library file named nmysql cppconn8-
static.|ib from the static library directory.

For the legacy JDBC connector, use the static library file named mysql cppconn-stati c. | i b from the
static library directory.

When building code that uses Connector/C++ libraries, use these guidelines for setting build options in the
project configuration:

 As an additional include directory, specify $MYSQL_CPPCONN_DI R/ i ncl ude.

« As an additional library directory, specify the directory containing the libraries the application must link to,
as indicated in Table 2.3, “Connector/C++ Library File Directories”. For example, to specify the import or
static library directory for building in release mode, use $MYSQL_CONCPP_DI R/ | i b64/ vs14 (for 64-bit
libraries) or $MYSQL_CONCPP_DI R/ | i b/ vs14 (for 32-bit libraries). For building in debug mode, change
vs1l4 tovs1l4/ debug.

31



Building Connector/C++ Applications: Platform-Specific Considerations

e To use a dynamic library file (. dl | extension), link your application with a . | i b import library:

nysql cppconn8. | i b to the linker options, or nysql cppconn. | i b for legacy code.

» To use a static library file (. | i b extension), link your application with the library: mysql cppconn8-

static.lib,ornysqgl cppconn-static.lib forlegacy code.

For static linking, the application must also be linked with import libraries for the required OpenSSL
libraries. If the connector was installed from a binary package provided by Oracle, these are

present in the vs14 subdirectory under the main library directory ($MYSQL_CONCPP_DI R/ | i b64 or
$MYSQL_CONCPP_DI R/ | i b), and the corresponding OpenSSL . dl | libraries are present in the main
library directory.

Note

A Windows application that uses the connector dynamic library must be able to
locate it at runtime, as well as its dependencies such as OpenSSL. The common
way of arranging this is to copy all the required DLLs to the same location as the
application executable.

Building Connector/C++ Applications with Microsoft Visual Studio

To build a Connector/C++ application with Microsoft Visual Studio, follow this procedure:

1.

2.

Start a new Visual C++ project in Visual Studio.
Set the required include paths.

From the main menu, select Project, Properties. This can also be accessed using the hot key ALT +
F7. Under Configuration Properties, open the tree view. Select C/C++, General in the tree view.

In the Additional Include Directories text field:

¢ Add the i ncl ude/ directory of Connector/C++. This directory should be located within the
Connector/C++ installation directory.

 If Boost is required to build the application, also add the Boost library root directory. (See
Section 2.5.1, “Building Connector/C++ Applications: General Considerations”.)

Set the library locations.
In the tree view, open Linker, General, Additional Library Directories.

In the Additional Library Directories text field, add the Connector/C++ import or static library directory
as specified in Table 2.3, “Connector/C++ Library File Directories”. Set appropriate paths for release
and debug builds.

Note

For building in debug mode, the Connector/C++ debug package must be
installed.

Set the connector library to use.
Open Linker, Input in the Property Pages dialog.

For building with the Connector/C++ dynamic library, enter the import library name:
nysql cppconn8. |i b, ornysql cppconn. | i b for legacy applications.

32



Building Connector/C++ Applications: Platform-Specific Considerations

For building with the Connector/C++ static library, enter the static library name: nysql cppconn8-
static.lib,ornysql cppconn-static.|ib forlegacy applications.

Note

Generic Linux packages do not contain Connector/C++ static libraries.

5. Define macros for static linking.

To compile code that is linked statically with the connector library, you must define a macro that adjusts
API declarations in the header files for usage with the static library. By default, the macro is undefined
to declare functions to be compatible with an application that calls a DLL.

In the Project, Properties tree view, under C++, Preprocessor, enter the appropriate macro into the
Preprocessor Definitions text field:

< For applications that use X DevAPI, X DevAPI for C, or (as of Connector/C++ 8.0.16) the legacy
JDBC API, define the STATI C_CONCPP macro. All that matters is that you define it; the value does
not matter. For example: - DSTATI C_CONCPP

« Prior to Connector/C++ 8.0.16, for applications that use the legacy JDBC API, define the
CPPCONN_PUBLI C_FUNC macro as an empty string. To ensure this, define the macro as
CPPCONN_PUBLI C_FUNC=, not as CPPCONN_PUBLI C_FUNC.

2.5.2.2 macOS Notes

Notes

¢ Target hosts running the client application must have the Visual C++

Redistributable for Visual Studio installed. For information about which VC++
Redistributable versions are acceptable, see Platform Support and Prerequisites.

If your code uses the Connector/C++ dynamic library, it must be present on the
target host where the application is run. Copy the appropriate Connector/C++
dynamic library to the same directory as the application executable (see Linking
Connector/C++ to Applications). Alternatively, extend the PATH environment
variable using SET PATH=%PATH% C: \ pat h\'t o\ cpp, or copy the dynamic
library to the Windows installation directory, typically C: \ wi ndows.

If your code uses the Connector/C++ static library, the required OpenSSL
libraries must be found on the target host where the application is run.

For Connector/C++ binary distributions, the OpenSSL . dl | libraries are

present in the main library directory ($MySQL_CONCPP_DI R/ | i b64 or
$MYSQL_CONCPP_DI R/ I'i b). Copy them to the same location as the application
executable or to some directory listed in the system PATH.

This section describes aspects of building Connector/C++ applications that are specific to macOS. For
general application-building information, see Section 2.5.1, “Building Connector/C++ Applications: General

Considerations”.

The binary distribution of Connector/C++ for macOS is compiled using the macOS native cl ang compiler.
For that reason, an application that uses Connector/C++ should be built with the same cl ang compiler.

The cl ang compiler can use two different implementations of the C++ runtime library: either the native
| i bc++ orthe GNU | i bst dc++ library. It is important that an application uses the same runtime

33


https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/

Authentication Support

implementation as Connector/C++ that is, the native | i bc++. To ensure that, the - st dl i b=l i bc++
option should be passed to the compiler and the linker invocations.

To build a Connector/C++ application that uses X DevAPI, has sources in app. cc, and links dynamically
to the connector library, the Makef i | e for building on macOS might look like this:

MYSQL_CONCPP_DI R = Connector/C++ installation |ocation

CPPFLAGS = -1 $(MYSQ._CONCPP_DIR)/include -L $(MYSQL_CONCPP_DIR)/|i b64
LDLI BS = -1 nysql cppconn8

CXX = cl ang++ -stdlib=libc++

CXXFLAGS = -std=c++17

app : app.cc

Binary packages for macOS include OpenSSL libraries that are required by code linked with the connector.
These libraries are installed in the same location as the connector libraries and should be found there by
the dynamic linker.

2.5.2.3 Generic Linux Notes

This section describes aspects of building Connector/C++ applications that are specific to Linux. Generic
Linux packages do not contain Connector/C++ static libraries. For general application-building information,
see Section 2.5.1, “Building Connector/C++ Applications: General Considerations”.

Note

Connector/C++ 8.0.32 provides generic Linux packages for ARM architecture
(64 bit). All Connector/C++ versions provide generic Linux packages for Intel
architecture (both 32 and 64 hits).

Previously, generic Linux packages were built on the EL7 platform and on that platform GCC is configured
to use an older ABI of | i bst dc++. Some of the symbols exported by the library include standard library
types in their names, and consequently, are not compatible with the new CXX11 ABI, which is the default
for modern GCC on most platforms (EL7 being an exception). So, unless you build your code on EL7, and
use GCCE6 or later compiler, it defaults to new CXX11 ABI and looks for Connector/C++ symbols that have
new ABI names in them.

As of Connector/C++ 8.0.30, Connector/C++ uses the new CXX11 ABI. With this change, you might
encounter following problems when using Connector/C++ installed from a generic Linux package:

* An upgrade from Connector/C++ 8.0.29 (or earlier) to 8.0.30 (or later) could produce runtime errors after
the upgrade, even if the previous version of Connector/C++ ran successfully.

« It will not work with GCC5 or earlier, because the old compiler uses the old ABI and cannot link to code
that uses new the ABI.

« It will not work on EL6, EL7, or any other platform that modifies GCC settings to use
the old ABI by default. However, in this situation a workaround is to build code under -
D GLI BCXX_USE_CXX11_ABI =1.

For a majority of platforms, including EL8, the GCC default was changed to the new ABI.

2.5.3 Authentication Support

For connections to the server made using the legacy JDBC API (that is, not made using X DevAPI or X
DevAPI for C), Connector/C++ supports different client-side authentication plugins and authentication
methods for:

» LDAP Authentication

34



Authentication Support

» Kerberos Authentication

OCI Authentication

Multifactor Authentication

WebAuthn (FIDO) Authentication

LDAP Authentication

LDAP authentication enables Connector/C++ (8.0.22 and later) application programs to connect to
MySQL servers using simple LDAP authentication, or SASL LDAP authentication using the SCRAM-
SHA-1 authentication method. LDAP authentication requires use of a server from a MySQL Enterprise
Edition distribution. For more information about the LDAP authentication plugins, see LDAP Pluggable
Authentication.

Connector/C++ binary distributions include the libraries that provide the client-side LDAP authentication
plugins, as well as any dependent libraries required by the plugins.

Note

In Connector/C++ 8.0.23, a dependency on the nysql - cl i ent - pl ugi ns
package was removed. This package now is required only on hosts where
Connector/C++ applications make connections using commercial MySQL server
accounts with LDAP authentication. In that case, additional libraries must also

be installed: cyr us- sasl - scr amfor installations that use RPM packages and
I'i bsasl 2- nodul es-gssapi - m t for installations that use Debian packages.
These SASL packages provide the support required to use the SCRAM-SHA-256
and GSSAPI/Kerberos authentication methods for LDAP.

If Connector/C++ was installed from a compressed t ar file or Zip archive, the application program will
need to set the OPT_PLUG N_DI R connection option to the appropriate directory so that the bundled plugin
library can be found. (Alternatively, copy the required plugin library to the default directory expected by the
client library.)

For example:

sql : : Connect Opti onsMap connecti on_properti es;

/1 To use sinple LDAP authentication ...
connection_properties["userNanme"] = "sinple_| dap_user_nanme";
connection_properties["password"] = "sinple_| dap_password";

connecti on_properties[ OPT_ENABLE_CLEARTEXT_PLUG N] =t r ue;

/] To use SASL LDAP aut hentication usi ng SCRAM SHA-1 ...
connection_properties["userName"] = "sasl _| dap_user_nane";
connection_properties["password"] = "sasl_| dap_scram password";

/'l Needed if Connector/Ct++ was installed fromtar file or Zip archive ...
connection_properti es[] OPT_PLUA N.DIR] = "${INSTALL_DI R}/ 1i b{64}/pl ugi n";
auto *driver = get_driver_instance();

auto *con = driver->connect (connection_properties);

/] Execute statenents ...

con->cl ose();

Kerberos Authentication

Kerberos authentication enables Connector/C++ application programs to establish connections for
accounts that use the aut hent i cati on_ker ber os server-side authentication plugin, provided that the
correct Kerberos tickets are available or can be obtained from Kerberos. This capability is available on
client hosts running Linux (starting with 8.0.26).

35


https://dev.mysql.com/doc/refman/8.0/en/ldap-pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.0/en/ldap-pluggable-authentication.html

Authentication Support

On Windows (starting with 8.0.32), the OPT_AUTHENTI CATI ON_KERBEROS CLI ENT_MODE connection
option can be set to either SSPI (default) or GSSAPI . The option permits choosing between SSPI and
GSSAPI at runtime for the aut henti cati on_ker beros_cl i ent authentication plugin on Windows.
Connector/C++ implements GSSAPI mode through the MIT kerberos library and this mode is compatible
with the Java SE security tools (for example, ki i st and ki ni t commands) on Windows. In this mode, the
ticket search on Windows hosts is restricted to the MIT Kerberos cache only. If the cache has no ticket, the
connection fails even if the Windows ticket is valid

Previously, Connector/C++ supported Kerberos authentication through the Windows SSPI Kerberos library
only (starting with 8.0.27). SSPI is not capable of acquiring cached credentials that were generated using
the ki ni t command. In SSPI mode, the Windows single sign-on ticket is used for authentication if the
client user provides no password and the authentication method considers the Windows ticket exclusively.
If the ticket is missing or invalid, the connection fails even if the Kerberos cache contains a valid ticket. For
more information, see Commands for Windows Clients in SSPI Mode.

It is possible to connect to Kerberos-authenticated accounts without giving a user name under these
conditions:

» The user has a Kerberos principal name assigned, a MySQL Kerberos account for that principal name
exists, and the user has the required tickets.

» The default authentication method must be set to the aut henti cati on_kerberos_client client-
side authentication plugin using the OPT_DEFAULT_AUTH connection option.

It is possible to connect without giving a password, provided that the user has the required tickets in the
Kerberos cache on Linux or the MIT Kerberos cache on Windows (for example, created by ki ni t or a
similar command).

Note

The SSPI Kerberos library is not compatible with Java SE security
tools. To use the ki ni t command, the client application must set the
OPT_AUTHENTI CATI ON_KERBERGS _CLI ENT__MODE connection option to GSSAPI .

If the required tickets are not present in the Kerberos cache (or the MIT Kerberos cache) and a password
was given, Connector/C++ obtains the tickets from Kerberos using that password. If the required tickets
are found in the cache, any password given is ignored and the connection might succeed even if the
password is incorrect.

On client hosts running Windows, you can override the default location of the MIT Kerberos configuration
file by setting the KRB5_ CONFI G environment variable and the default MIT Kerberos credential cache
name with the KRB5CCNANME environment variable (for example, KRB5CCNAVE=DI R: / rydi r /).

For details about using the MIT Kerberos configuration and cache, see:
» KRB5_ CONFI G https://web.mit.edu/kerberos/krb5-devel/doc/admin/conf_files/krb5_conf.html
» KRB5CCNANE: https://web.mit.edu/kerberos/krb5-1.12/doc/basic/ccache_def.html

For more information about Kerberos authentication, see Kerberos Pluggable Authentication.

OCI Authentication

OCI authentication enables Connector/C++ application programs to make connections without passwords
for accounts that use the aut hent i cati on_oci server-side authentication plugin, provided that

the correct configuration entries are available to map to one unique user in a specific Oracle Cloud
Infrastructure tenancy. This supported was added in the Connector/C++ 8.0.27 release.

36


https://dev.mysql.com/doc/refman/8.0/en/kerberos-pluggable-authentication.html#kerberos-usage-win-sspi-client-commands
https://web.mit.edu/kerberos/krb5-devel/doc/admin/conf_files/krb5_conf.html
https://web.mit.edu/kerberos/krb5-1.12/doc/basic/ccache_def.html
https://dev.mysql.com/doc/refman/8.0/en/kerberos-pluggable-authentication.html

Authentication Support

To ensure correct account mapping, the client-side Oracle Cloud Infrastructure configuration must contain
a fingerprint of the API key to use for authentication (f i nger pri nt entry) and the location of a PEM file
with the private part of the APl key (key_fi | e entry). Both entries should be specified in the [ DEFAULT]
profile of the configuration file. In Connector/C++ 8.0.33, the OPT_OCI _CLI ENT_CONFI G_PROFI LE
connection option permits selecting a profile in the configuration file to use for authentication. By default,
the value of OPT_OCI _CLI ENT_CONFI G_PROFI LE is the [ DEFAULT] profile.

Unless an alternative path to the configuration file is specified with the OPT_OCI _CONFI G FI LE
connection option, the following default locations are used:

* ~/.oci/confi g on Linux or Posix host types
* %1OVEDRI VEY®4IOVEPATHY . oci / confi g on Windows host types

If the MySQL user name is not provided as a connection option, then the operating system user name is
substituted. Specifically, if the private key and correct Oracle Cloud Infrastructure configuration are present
on the client side, then a connection can be made without giving any options.

To support Oracle Cloud Infrastructure ephemeral key-based authentication, Connector/C++ 8.0.33 (and
later) obtains the location of the token file from the security_t oken_fi | e entry. For example:

[ DEFAULT]

fingerprint=59:8a:0b[...]

key_file=~/.oci/sessi ons/ DEFAULT/ oci _api _key. pem
t enancy=oci d1. tenancy.ocl.[...]

regi on=us- ashburn-1
security_token_file=~/.oci/sessi ons/ DEFAULT/t oken

Connector/C++ sends to the server a JSON attribute (named "t oken™) with the value extracted from the
security_token_fil e field. If the target file referenced in the profile does not exist, or if the file exceeds
a specified maximum value, then Connector/C++ terminates the action and returns an exception with the
cause.

Connector/C++ sends an empty token value in the JSON payload if:
* The security-token file is empty.

» The configuration option security_token_fil e is found but the value in the configuration file is
empty.

In all other cases, Connector/C++ adds the content of the security-token file intact to the JSON document.
Multifactor Authentication

Starting with Connector/C++ 8.0.28, applications can establish connections using multifactor
authentication, such that up to three passwords can be specified at connect time. The OPT_PASSWORDL1,
OPT_PASSWORD2, and OPT_PASSWORD3 connection options are available for specifying the first, second,
and third multifactor authentication passwords, respectively.

OPT_PASSWORDL is an alias for the existing OPT_PASSWORD option; if both are provided, OPT_PASSWORD
is ignored. For more information about this authentication option, see Multifactor Authentication.

WebAuthn (FIDO) Authentication

WebAuthn authentication to MySQL Server supports using devices such as web browsers, smart cards,
security keys, and biometric readers. WebAuthn authentication supports both the FIDO and FIDO2
standards. To ensure client applications using the legacy JBDC API are notified when a user is expected

37


https://dev.mysql.com/doc/refman/8.0/en/multifactor-authentication.html

OpenTelemetry Tracing Support

to interact with the FIDO/FIDO2 device, Connector/C++ 8.2.0 (and later) adds a callback argument
named WWebAut hn_Cal | back to the set Cal | back() method in the MySQL_Dri ver class. The
WebAut hn_Cal | back class has a callback method named Act i onRequest ed() .

cl ass WebAut hn_Cal | back

{
publi c:
WebAut hn_Cal | back(std:: functi on<voi d( SQLString) >);

/**
* Qverride this nessage to recei ve WebAut hn Acti on Requests
*/
virtual void ActionRequested(sql::SQString nsg);
}s

Set the WebAut hn_Cal | back callback explicitly for authentication to accounts that use WebAuthn
authentication.

Note

On Windows, the client application must run as administrator. The is a requirement
of the fi do2. dl | library, which is used by the aut hent i cati on_webaut hn

plugin.
A client application has two options for obtaining a callback from the connector:

» By passing a function or lambda to \ebAut hn_Cal | back.

driver->set Cal | Back( WebAut hn_Cal | back([] (SQ.String nmsg) {...}));

» By implementing the virtual method Act i onRequest ed.

cl ass MyW ndow : public WebAut hn_Cal | back
{

s
M/W ndow wi ndow;
dri ver->set Cal | Back(w ndow) ;

voi d ActionRequested(sql::SQString nmsg) override;

Setting a new callback always removes the previous callback. To disable the active callback and restore
the default behavior, pass nul | pt r as a function callback. Example:

driver->set Cal | Back( WebAut hn_Cal | back(nul | ptr));
For more information about WebAuthn authentication, see WebAuthn Pluggable Authentication.
Note

Connector/C++ 8.0.29 added aut hent i cati on_fi do support, deprecated
itin 8.2.0 in favor of aut hent i cati on_webaut hn, and removed

aut henti cation_fi do supportin 8.4.0. For backward-compatibility,

the Fi do_Cal | back callback argument remains but it invokes WebAuthn
authentication.

2.5.4 OpenTelemetry Tracing Support

For applications that use the legacy JDBC API (that is, not X DevAPI or X DevAPI for C) on Linux systems
and use OpenTelemetry (OTel) instrumentation, the connector adds query and connection spans to

the trace generated by application code and forwards the current OpenTelemetry context to the server.
OpenTelemetry tracing was introduced in the Connector/C++ 8.1.0 release.

38


https://dev.mysql.com/doc/refman/8.2/en/webauthn-pluggable-authentication.html

Connector/C++ Known Issues

Note

OTel context forwarding works only with MySQL Enterprise Edition, a commercial
product. To learn more about commercial products, see https://www.mysql.com/
products/.

Enabling and Disabling Tracing

By default, the connector generates spans only when an instrumented application links with the required
OpenTelemetry SDK libraries and configures the trace exporter to send trace data to some destination. If
the application code does not use instrumentation, then the legacy connector does not use it either.

Connector/C++ supports a connection property option, OPT_OPENTELENMETRY, which has these values:

e OTEL_DI SABLED: The connector does not create OpenTelemetry spans or forward the OpenTelemetry
context to the server.

» OTEL_PREFERRED: Default. Use instrumentation in the connection if the required OpenTelemetry
instrumentation is available. Otherwise, permit the connection to operate without any OpenTelemetry
instrumentation.

The OPT_OPENTELEMETRY option also accepts a Boolean value in which f al se corresponds to
OTEL_DI SABLED. f al se is the only accepted Boolean value for this option; setting it to t r ue has no
meaning and emits an error.

For example, an application can specify OPT_OPENTELEMETRY in either form using the connect () syntax
that takes an option map argument:

connecti on_properties[" OPT_OPENTELEMETRY"]
connecti on_properties[" OPT_OPENTELEMETRY"]

f al se;
OTEL_DI SABLED,;

When you build code that links to Connector/C++ and uses OTel instrumentation, the additional spans
generated by the connector appear in the traces generated by your code. Spans generated by the
connector are sent to the same destination (trace exporter) where other spans generated by the user code
are sent as configured by user code. It is not possible to send spans generated by the connector to any
other destination.

This implementation is distinct from the implementation provided through the MySQL client library (or the
relatedt el enetry_cl i ent client-side plugin).

2.6 Connector/C++ Known Issues

To report bugs, use the MySQL Bug System. See How to Report Bugs or Problems.

For notes detailing the changes in each release of Connector/C++, see MySQL Connector/C++ Release
Notes.

» Generally speaking, C++ library binaries are less portable than C library binaries. Issues can be caused
by name mangling, different Standard Template Library (STL) versions, and using different compilers
and linkers for linking against the libraries than were used for building the library itself.

Even a small change in the compiler version can cause problems. If you obtain error messages that
you suspect are related to binary incompatibilities, build Connector/C++ from source, using the same
compiler and linker that you use to build and link your application.

Due to variations between Linux distributions, compiler versions, linker versions, and STL versions, it
is not possible to provide binaries for every possible configuration. However, Connector/C++ binary

39


https://www.mysql.com/products/
https://www.mysql.com/products/
https://dev.mysql.com/doc/refman/8.0/en/bug-reports.html
https://dev.mysql.com/doc/relnotes/connector-cpp/en/
https://dev.mysql.com/doc/relnotes/connector-cpp/en/

Connector/C++ Support

distributions include an | NFO_BI Nfile that describes the environment and configuration options used

to build the binary versions of the connector libraries. Binary distributions also include an | NFO_SRCfile
that provides information about the product version and the source repository from which the distribution
was produced. (Prior to Connector/C++ 8.0.14, look for BUI LDI NFO. t xt rather than | NFO_BI Nand

| NFO_SRC.)

» To avoid potential crashes, the build configuration of Connector/C++ should match the build
configuration of the application using it. For example, do not use a release build of Connector/C++ with a
debug build of the client application.

2.7 Connector/C++ Support

For general discussion of Connector/C++, please use the C/C++ community forum.
To report bugs, use the MySQL Bug System. See How to Report Bugs or Problems.

For notes detailing the changes in each release of Connector/C++, see MySQL Connector/C++ Release
Notes.

For Licensing questions, and to purchase MySQL Products and Services, please see http://
www.mysgl.com/buy-mysql/.

40


http://forums.mysql.com/list.php?167
https://dev.mysql.com/doc/refman/8.0/en/bug-reports.html
https://dev.mysql.com/doc/relnotes/connector-cpp/en/
https://dev.mysql.com/doc/relnotes/connector-cpp/en/
http://www.mysql.com/buy-mysql/
http://www.mysql.com/buy-mysql/

Chapter 3 MySQL Connector/J Developer Guide

Table of Contents

3.1 Overview of MySQL CONNECIONJ .. ..uuiiiiieiii et e e e e e e e e e e e e et s e e et e e eaneeeens 42
3.2 Compatibility with MySQL and Java VEISIONS .........ccuuieiiiieiiiiieiiiee e et e e e e e e et e et e e eaanas 43
IR B O] g g T=Ted (o] /AN I T 0 1S3 v= 1 =1 T I PP 43
3.3.1 Installing Connector/J from a Binary Distribution ..............ccooiiiiiiiiiiin e 43
3.3.2 Installing ConNector/J USING MaVEN .......cc.uiiiiiiiiiiiei e e e e e e e e e e e e ean s 45
3.3.3 INStalliNg frOM SOUICE ...uuiii e et e e e e e e e e e e et e e eanees 46
3.3.4 Upgrading from an Older VEISION ........couuiiiiiiiiii e e e e e e e e 48
3.3.5 TeStING CONNECIOIT ....iiniii e e e e e e et e e e e e e et e e e e eanas 53
G o] gl a[=Tox (o] ¢ A I e T o] o] L= 54
RS Ofe] o aT=Tod (o] f A N =) (=T (=] T = TN 55
3.5.1 Driver/Datasource ClassS NAME ........uui it e e e et e e e et e e e et e aeettaeeeeataeaees 55
3.5.2 CONNECHON URL SYNIAX ...iituiiiiieiii et e et e e e e e e e e e e e e e et e e et e e et e e st e e et eeennnes 55
3.5.3 Configuration PrOPEITIES .......ciieiiiiiiei it e e e e e e e e e e et e e et e e et aeeaaeeaaaees 59
3.5.4 JDBC API Implementation NOTES .......cc.uiiiiiiiiiiie e e e e e e e e eaaaeees 106
3.5.5 Java, JDBC, and MYSOQL TYPES ..iiiuieiiiieiiiieeiee e e e e e e e e e e e e e e e e et e e et eeaneees 109
3.5.6 Handling of Date-TimMe VAlUES ........ccuuiiiiiiiiiiiie e e e e 111
3.5.7 Using Character Sets and UNICOAE ..........cccoeuiiiiiiiiii e e e e 117
3.5.8 Using QUETY ALTIDULES .....iiii e e e 120
3.5.9 Connecting Securely USING SSL ......coouiiiiiiiiii e aaas 121
3.5.10 Connecting Using UniX DOMaIN SOCKELS ......c.uiiiiiiiiiiiiei e ee e e e e 127
3.5.11 Connecting UsiNg NamMEd PIPES .....ccuuiiiiiiiiiiee e e e e e e e e e eaas 128
3.5.12 Connecting Using Various Authentication Methods ............ccoooiiiiiiiii i 129
3.5.13 Using Source/Replica Replication with ReplicationConnection .............ccccceeveviiiiiiiiieiinenns 131
3.5.14 Support for DNS SRV RECOIS .....uuiiiiiiiiiiiiii et e e e e e e eees 131
3.5.15 Client SeSSION State TIACKET ....ccevuiiiiiiiiiie e e e e e et eeeeeaeaeeees 132
3.5.16 Mapping MySQL Error Numbers to JDBC SQLState Codes ........c.cceevvvveviiieiiiieiiiieeieennn, 133
I I 1] = T O o] o [ol=] o £ PP PP 140
3.6.1 Connecting to MySQL Using the JDBC Dr i ver Manager Interface ........cccoocceeveviiieeinnennnnn. 140
3.6.2 Using JDBC St at enent Objects to Execute SQL .....cc.uvviiiiiiiiiiiieec e 142
3.6.3 Using JDBC Cal | abl eSt at enent s to Execute Stored Procedures ...........cccovevvvvevnnnnn. 143
3.6.4 Retrieving AUTO | NCREMENT Column Values through JDBC ..........coccoiiiiiiiiiiieveeee 145
3.7 Connection Pooling With CONNECIOI T .........uiiiiiiei e e e aes 148
3.8 MUItI-HOSE CONNECLIONS ...ttt et e et e e e et r e e e et n e e e aan e e eeannns 151
3.8.1 Configuring Server Failover for Connections Using JDBC ..........cccoeeviiiiiiiiieiiiiecceeeeeeen, 152
3.8.2 Configuring Server Failover for Connections Using X DeVAPI ........cccooeviiiiiiiiiiiiccieeeieees 154
3.8.3 Configuring Load Balancing with CONNECLOI/ ..........couviiiiiiiiii e 155
3.8.4 Configuring Source/Replica Replication with Connector/J ............cccoeeviiiiiiiiiiii e, 157
3.8.5 Advanced Load-balancing and Failover Configuration ..............cccoeeiiiiiiiiiiiiicie e 161
3.9 Using the X DevAPI with Connector/J: Special TOPICS ....couuiiiiiiiiiieei e 163
3.9.1 Connection Compression USING X DEVAPI ...t e e s 163
3.9.2 Schema Validation ............iiiiiiii e 164
3.10 Using the Connector/J INterCeptor CIASSES ......uiiiiuiiiii e e e e e e e e e ees 166
3.11 Using Logging Frameworks With SLFAJ ......c..oiiiiiiiiii e e e e e 166
3.12 Using Connector/J With TOMCAL ........ciuiiiii e e e e e e e e e e et e e ea e e aanaes 168
3.13 Using Connector/J With SPriNG ......couuiiiiii e e e e e e e e e e e e eanas 170
0 I 0 A U g o I o o Yo =Y a0 = = 171
3.13.2 Transactional JDBC ACCESS .....uuuiiieiiiieieiiaae et e e et e et e e et e e e et e e e e et e e e e et e e eeetnnnes 172
3.13.3 Connection Pooling With SPIiNg ....couuiiiiiii e e 174

41



Overview of MySQL Connector/J

3.14 Troubleshooting Connector/J APPlICALIONS .........ociiuieiii e e 174
3.15 Known 1SSUES and LIMItATIONS ........iiiiuiiiieiiiiee ettt e e e e e et e e e et e e e et e e e eeaanns 181
G0 I @0 a1 [=Tox 1o T 7 ST U] o] o o A 181
3.16.1 Connector/J COMMUNILY SUPPOIT ...veuniiiieii e e e e e e e e e e e e e e e et eeaan e eenas 181
3.16.2 How to Report Connector/J Bugs Or Problems ..........c.uiviiiiiiiiiciie e 182

MySQL Connector/J is a JDBC driver for communicating with MySQL servers.
For notes detailing the changes in each release of Connector/J, see MySQL Connector/J Release Notes.
For legal information, see the Legal Notices.

For help with using MySQL, please visit the MySQL Forums, where you can discuss your issues with other
MySQL users.

Licensing information.  This product may include third-party software, used under license. If you are
using a Commercial release of MySQL Connector/J, see this document for licensing information, including
licensing information relating to third-party software that may be included in this Commercial release. If
you are using a Community release of MySQL Connector/J, see this document for licensing information,
including licensing information relating to third-party software that may be included in this Community
release.

3.1 Overview of MySQL Connector/J

MySQL provides connectivity for client applications developed in the Java programming language with
MySQL Connector/J. Connector/J implements the Java Database Connectivity (JDBC) API, as well as a
number of value-adding extensions of it. It also supports the new X DevAPI.

MySQL Connector/J is a JDBC Type 4 driver, implementing the JDBC 4.2 specification. The Type 4
designation means that the driver is a pure Java implementation of the MySQL protocol and does not
rely on the MySQL client libraries. See Section 3.2, “Compatibility with MySQL and Java Versions” for
compatibility information.

Connector/J 8.0 provides ease of development features including auto-registration with the Driver
Manager, standardized validity checks, categorized SQLExceptions, support for large update counts,
support for local and offset date-time variants from the j ava. t i me package, support for JDBC-4.x XML
processing, support for per connection client information, and support for the NCHAR, NVARCHAR and
NCL OB data types. See Section 3.2, “Compatibility with MySQL and Java Versions” for compatibility
information.

For large-scale programs that use common design patterns of data access, consider using one of the
popular persistence frameworks such as Hibernate, Spring's JDBC templates or MyBatis SQL Maps to
reduce the amount of JDBC code for you to debug, tune, secure, and maintain.

Key Topics

» For installation instructions for Connector/J, see Section 3.3, “Connector/J Installation”.

» For help with connection strings, connection options, and setting up your connection through JDBC, see
Section 3.5, “Connector/J Reference”.

» For information on connection pooling, see Section 3.7, “Connection Pooling with Connector/J".
» For information on multi-host connections, see Section 3.8, “Multi-Host Connections”.

» For information on using the X DevAPI with Connector/J, see Section 3.9, “Using the X DevAPI with
Connector/J: Special Topics”.

42


https://dev.mysql.com/doc/relnotes/connector-j/en/
http://forums.mysql.com
https://downloads.mysql.com/docs/licenses/connector-j-8.3-com-en.pdf
https://downloads.mysql.com/docs/licenses/connector-j-8.3-gpl-en.pdf
http://www.oracle.com/technetwork/java/javase/jdbc/index.html
http://docs.oracle.com/javase/6/docs/technotes/guides/jdbc/
https://dev.mysql.com/doc/refman/8.0/en/char.html
https://dev.mysql.com/doc/refman/8.0/en/char.html
http://www.hibernate.org/
http://www.springframework.org/
http://www.mybatis.org/

Compatibility with MySQL and Java Versions

3.2 Compatibility with MySQL and Java Versions

Here is some compatibility information for Connector/J 8.0:

» JDBC versions: Connector/J 8.0 implements JDBC 4.2. While Connector/J 8.0 works with libraries of
higher JDBC versions, it returns a SQLFeat ur eNot Suppor t edExcept i on for any calls of methods
supported only by JDBC 4.3 and higher.

» MySQL Server versions: Connector/J 8.0 supports MySQL 5.7, 8.0, 8.1, and 8.0.
* JRE versions: Connector/J 8.0 supports JRE 8 or higher.

» JDK Required for Compilation: JDK 8.0 or higher is required for compiling Connector/J 8.0. Also, a
customized JSSE provider might be required to use some later TLS versions and cipher suites when
connecting to MySQL servers. For example, because Oracle's Java 8 releases before 8u261 were
shipped with JSSE implementations that support TLS up to version 1.2 only, you need a customized
JSSE implementation to use TLSv1.3 on those Java 8 platforms. Oracle Java 8u261 and above do
support TLSv1.3, so no customized JSSE implementation is needed.

3.3 Connector/J Installation

You can install the Connector/J package using either a binary or source distribution. While the binary
distribution provides the easiest method for installation, the source distribution lets you customize your
installation. Both types of distributions are available from the Connector/J Download page. The source
code for Connector/J is also available on GitHub at https://github.com/mysql/mysql-connector-j.

Connector/J is also available as a Maven artifact in the Central Repository. See Section 3.3.2, “Installing
Connector/J Using Maven” for details.

If you are upgrading from a previous version, read the upgrade information in Section 3.3.4, “Upgrading
from an Older Version” before continuing.

Important

Third-party Libraries: According to how you use Connector/J 8.0, you may also
need to install the following third-party libraries on your system for it to work:

¢ Protocol Buffers (pr ot obuf - | ava) 3.21.9 is required for using X DevAPI

¢ Oracle Cloud Infrastructure SDK for Java (oci - j ava- sdk) 2.47.0 is required to
support OCI AIM authentication

¢ Simple Logging Facade API (sl f 4j - api ) 2.0.3 is required for using
the logging capabilities provided by the default implementation of
org.slf4j.Logger. Sl f4JLogger by Connector/J

These and other third-party libraries are required for building Connector/J from
source—see the section for more information.

3.3.1 Installing Connector/J from a Binary Distribution

Obtaining and Using the Binary Distribution Packages

Different types of binary distribution packages for Connector/J are available from the Connector/J
Download page. The following explains how to use each type of the packages to install Connector/J.

43


https://dev.mysql.com/downloads/connector/j/
https://github.com/mysql/mysql-connector-j
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/

Installing Connector/J from a Binary Distribution

Using Platform-independent Archives: . tar. gz or. zi p archives are available for installing Connector/
J on any platform. Using the appropriate graphical or command-line utility (for example, t ar for the
.tar. gz archive and W nZi p for the .zip archive), extract the JAR archive fromthe .tar. gz or. zi p
archive to a suitable location.

Note

Because there are potentially long file names in the distribution, the Connector/J
archives use the GNU Tar archive format. Use GNU Tar or a compatible application
to unpack the . t ar . gz variant of the distribution.

Using Packages for Software Package Management Systems on Linux Platforms: RPM and Debian
packages are available for installing Connector/J on a number of Linux distributions like Oracle Linux,
Debian, Ubuntu, SUSE, and so on. Install these packages using your system's software package
management system.

On Windows Platforms: You cannot install Connector/J on Windows platforms using the MySQL Installer
for Windows. Natice that there are also no stand-alone Windows installer files (.msi) for installing
Connector/J. Use the platform-independent archives instead for installations on Windows platforms.

Configuring the CLASSPATH

Once nysql - connect or-j - ver si on. j ar has been extracted from the binary distribution package

to the right place, finish installing the driver by placing the JAR archive in your Java classpath, either by
adding its full file path to your CLASSPATH environment variable, or by directly specifying the file path with
the command line switch - cp when starting the JVM.

For example, on Linux platforms, add the Connector/J driver to your CLASSPATH using one of the following
forms, depending on your command shell:

# Bour ne-conpati bl e shell (sh, ksh, bash, zsh):

$> export CLASSPATH=/ pat h/ nysql - connector-j-ver.jar: $CLASSPATH

# C shell (csh, tcsh):
$> setenv CLASSPATH / pat h/ nysql - connector-j -ver. j ar: $CLASSPATH

You can also set the CLASSPATH environment variable in a profile file, either locally for a user within the
user's. profile,. |l ogin,orother login file, or globally by editing the global / et c/ profi | e file.

For Windows platforms, you set the environment variable through the System Control Panel.
Important

Remember to also add the locations of the third-party libraries required for using
Connector/J to CLASSPATH.

Configuring Connector/J for Application Servers

To use MySQL Connector/J with an application server such as GlassFish or Tomcat, read your vendor's
documentation for information on how to configure third-party class libraries, as most application servers
ignore the CLASSPATH environment variable. For configuration examples for some J2EE application
servers, see Section 3.7, “Connection Pooling with Connector/J”, Section 3.8.3, “Configuring Load
Balancing with Connector/J”, and Section 3.8.5, “Advanced Load-balancing and Failover Configuration”.
However, the authoritative source for JDBC connection pool configuration information is the documentation
for your own application server.

If you are developing servlets or JSPs and your application server is J2EE-compliant, you can put

the driver's . j ar file in the VVEB- | NF/ | i b subdirectory of your web application, as this is a standard
location for third-party class libraries in J2EE web applications. You can also use the Mysql Dat aSour ce
or Mysql Connect i onPool Dat aSour ce classes in the com nysql . cj . j dbc package, if your

44


https://dev.mysql.com/doc/refman/8.0/en/mysql-installer.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-installer.html

Installing Connector/J Using Maven

J2EE application server supports or requires them. The j avax. sqgl . XADat aSour ce interface is
implemented using the com nysql . cj . j dbc. Mysql XADat aSour ce class, which supports XA
distributed transactions. The various Mysql Dat aSour ce classes support the following parameters
(through standard set mutators):

e user
e password

e server Nane

» dat abaseNane

e port

3.3.2 Installing Connector/J Using Maven

You can also use Maven dependencies manager to install and configure the Connector/J library in your
project. Connector/J is published in The Maven Central Repository with the following groupld and artifactid:

e groupld: com nysq|l
« artifactld: nysql - connect or - |

You can link the Connector/J library to your project by adding the following dependency in your pom xmi
file:

<dependency>
<gr oupl d>com nysgql </ gr oupl d>
<artifact!ld>nysql -connector-j</artifactld>
<versi on>x.y. z</ ver si on>

</ dependency>

Notice that if you use Maven to manage your project dependencies, you do not need to explicitly refer to
the library pr ot obuf - j ava as it is resolved by dependency transitivity. However, if you do not want to use
the X DevAPI features, you may also want to add a dependency exclusion to avoid linking the unneeded
sub-library. For example:

<dependency>
<gr oupl d>com nysql </ gr oupl d>
<artifactld>nysql -connector-j</artifactld>
<ver si on>x.y. z</ ver si on>
<excl usi ons>
<excl usi on>
<gr oupl d>com googl e. pr ot obuf </ gr oupl d>
<artifact!d>protobuf-java</artifactld>
</ excl usi on>
</ excl usi ons>
</ dependency>

Note
For Connector/J 8.0.29 and earlier, use the following Maven coordinates:

e groupld: nysql

« artifactld: nysql - connect or -j ava

45


https://search.maven.org/search?q=g:mysql%20AND%20a:mysql-connector-java

Installing from Source

3.3.3 Installing from Source

Caution

You need to install Connector/J from source only if you want to build a customized
version of Connector/J or if you are interested in helping us test our new code. To
just get MySQL Connector/J up and running on your system, install Connector/

J using a standard binary release distribution; see Section 3.3.1, “Installing
Connector/J from a Binary Distribution” for instructions.

To install MySQL Connector/J from source, make sure that you have the following software on your
system:

Tip

It is suggested that the latest versions available for the following software be used
for compiling Connector/J; otherwise, some features might not be available.

A Git client, if you want to check out the sources from our GitHub repository (available from http://git-
scm.com/downloads).

» Apache Ant version 1.10.6 or newer (available from http://ant.apache.org/).

« JDK 1.8.x (available from https://www.oracle.com/technetwork/java/javase/downloads/jdk8-
downloads-2133151.html).

» The following third-party libraries:

« JUnit 5.9 (see installation and download information in the JUnit 5 User Guide). The following JAR files
are required:

e junit-jupiter-api-5.9.1.jar (available from, for example, https://search.maven.org/artifact/
org.junit.jupiter/junit-jupiter-api/5.9.1/jar).

e junit-jupiter-engine-5.9.1.jar (available from, for example, https://search.maven.org/
artifact/org.junit.jupiter/junit-jupiter-engine/5.9.1/jar).

e junit-platformcomons-1.9.1.jar (available from, for example, https://search.maven.org/
artifact/org.junit.platform/junit-platform-commons/1.9.1/jar).

e junit-platformengine-1.9.1.]ar (available from, for example, https://search.maven.org/
artifact/org.junit.platform/junit-platform-engine/1.9.1/jar).

e junit-platformlauncher-1.9.1.]jar (available from, for example, https://search.maven.org/
artifact/org.junit.platform/junit-platform-launcher/1.9.1/jar).

» These additional JAR files, which JUnit 5 depends on:

e api guardi an-api - 1. 1. 2. j ar (available from, for example, https://search.maven.org/artifact/
org.apiguardian/apiguardian-api/1.1.2/jar).

» opentest4j-1.2.0.]jar (available from, for example, https://search.maven.org/artifact/
org.opentestdj/opentest4j/1.2.0/jar).

e Javassist 3.29.2 (j avassi st 3. 29. 2- GA. j ar, available from, for example, https://
search.maven.org/artifact/org.javassist/javassist/3.29.2-GA/bundle).

46


http://git-scm.com/downloads
http://git-scm.com/downloads
http://ant.apache.org/
https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://junit.org/junit5/docs/current/user-guide/
https://search.maven.org/artifact/org.junit.jupiter/junit-jupiter-api/5.9.1/jar
https://search.maven.org/artifact/org.junit.jupiter/junit-jupiter-api/5.9.1/jar
https://search.maven.org/artifact/org.junit.jupiter/junit-jupiter-engine/5.9.1/jar
https://search.maven.org/artifact/org.junit.jupiter/junit-jupiter-engine/5.9.1/jar
https://search.maven.org/artifact/org.junit.platform/junit-platform-commons/1.9.1/jar
https://search.maven.org/artifact/org.junit.platform/junit-platform-commons/1.9.1/jar
https://search.maven.org/artifact/org.junit.platform/junit-platform-engine/1.9.1/jar
https://search.maven.org/artifact/org.junit.platform/junit-platform-engine/1.9.1/jar
https://search.maven.org/artifact/org.junit.platform/junit-platform-launcher/1.9.1/jar
https://search.maven.org/artifact/org.junit.platform/junit-platform-launcher/1.9.1/jar
https://search.maven.org/artifact/org.apiguardian/apiguardian-api/1.1.2/jar
https://search.maven.org/artifact/org.apiguardian/apiguardian-api/1.1.2/jar
https://search.maven.org/artifact/org.opentest4j/opentest4j/1.2.0/jar
https://search.maven.org/artifact/org.opentest4j/opentest4j/1.2.0/jar
https://search.maven.org/artifact/org.javassist/javassist/3.29.2-GA/bundle
https://search.maven.org/artifact/org.javassist/javassist/3.29.2-GA/bundle

Installing from Source

Protocol Buffers Java API 3.21.9 (pr ot obuf - j ava- 3. 21. 9. ] ar, available from, for example,
https://search.maven.org/artifact/com.google.protobuf/protobuf-java/3.21.9/bundle).

Simple Logging Facade APl 2.0.3 or newer (sl f 4j - api - 2. 0. 3. | ar, available from, for example,
https://search.maven.org/artifact/org.slf4j/slf4j-api/2.0.3/jar).

Java Hamcrest 2.2 or newer (hantrest - 2. 2. j ar, available from, for example, https://
search.maven.org/artifact/org.hamcrest/hamcrest/2.2/jar).

Oracle Cloud Infrastructure SDK for Java (oci -] ava- sdk- cormon- 2. 47. 0. j ar, available from, for
example, https://search.maven.org/artifact/com.oracle.oci.sdk/oci-java-sdk-common/2.47.0/jar).

To build MySQL Connector/J from source, follow these steps:

1.
2.

Make sure that you have JDK 1.8.x installed.
Obtain the sources for Connector/J by one of the following means:

« Download the platform independent distribution archive (in . t ar. gz or . zi p format) for Connector/
J, which contains the sources, from the Connector/J Download page. Extract contents of the archive
into a folder named, for example, nysql - connect or-j .

» Download a source RPM package for Connector/J from Connector/J Download page and install it.

¢ Check out the code from the source code repository for MySQL Connector/J located on GitHub at
https://github.com/mysqgl/mysgl-connector-j. The latest release of the Connector/J 8.0 series is on the
r el ease/ 8. 0 branch; use the following command to check it out:

$> git clone --branch release/8.0 https://github.com nysql/nysql-connector-j.git

Under the current directory, the command creates a nysql - connect or - j subdirectory , which
contains the code you want.

Place all the required third-party libraries in a the directory called | i b at the root of the source tree (that
is, in nysqgl - connect or-j /i b, if you have followed the steps above), or put them elsewhere and
supply the location to Ant later (see Step 5 below).

Change your current working directory to the nysql - connect or - | directory created in step 2 above.

In the directory, create a file named bui | d. pr operti es to indicate to Ant the location of the

root directory for your JDK 1.8.x installation with the property com nysql . cj . bui I d. j dk, as
well as the location for the extra libraries, if they are notin nysql - connect or-j /i b, with the
property com nysql . cj . extra. | i bs. Here is a sample file with those properties set (replace the
“pat h_t o_*" parts with the appropriate file paths):

com nysql .cj.build.jdk=path_to jdk_ 1.8
comnysql .cj.extra.libs=path_to folder_for_extra_libraries

Alternatively, you can set the values of those properties through the Ant - D options.
Note

Going from Connector/J 5.1 to 8.0 and beyond, a number of Ant properties for
building Connector/J have been renamed or removed; see Changes for Build
Properties for detalils.

Issue the following command to compile the driver and create a . j ar file for Connector/J:

47


https://search.maven.org/artifact/com.google.protobuf/protobuf-java/3.21.9/bundle
https://search.maven.org/artifact/org.slf4j/slf4j-api/2.0.3/jar
https://search.maven.org/artifact/org.hamcrest/hamcrest/2.2/jar
https://search.maven.org/artifact/org.hamcrest/hamcrest/2.2/jar
https://search.maven.org/artifact/com.oracle.oci.sdk/oci-java-sdk-common/2.47.0/jar
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://github.com/mysql/mysql-connector-j

Upgrading from an Older Version

$> ant build

This creates a bui | d directory in the current directory, where all the build output goes. A directory
is created under the bui | d directory, whose name includes the version number of the release you
are building. That directory contains the sources, the compiled . cl ass files,and a . j ar file for
deployment.

For information on all the build targets, including those that create a fully packaged distribution, issue
the following command:

$> ant -projecthelp

7. Install the newly created . | ar file for the JDBC driver as you would install a binary . j ar file you
download from MySQL by following the instructions given in Configuring the CLASSPATH or
Configuring Connector/J for Application Servers.

3.3.4 Upgrading from an Older Version

This section has information for users who are upgrading from one version of Connector/J to another,

or to a new version of the MySQL server that supports a more recent level of JDBC. A newer version of
Connector/J might include changes to support new features, improve existing functionality, or comply with
new standards.

Depending on the platform and the way you used to install Connector/J, upgrading can be performed by
one of the following methods:

» Downloading a new platform-independent archive (. t ar, . tar. gz, . zi p, etc.) and overwriting with it
your original installation created by an older archive.

Updating the version of the Connector/J dependency in your Maven . pomfile.
 Using the upgrade command of your Linux distro's package management system.
» Using the MySQL Installer for Windows, which can also perform automatic updates for Connector/J

See Section 3.3, “Connector/J Installation” for details on the installation and upgrade methods. You should
also pay attention to any important changes in the new version like changes in 3rd-party dependencies,
incompatibilities, etc.

3.3.4.1 Upgrading to MySQL Connector/J 8.0

Upgrading an application developed for Connector/J 5.1 to use Connector/J 8.0 and beyond might require
certain changes to your code or the environment in which it runs. Here are some changes for Connector/J
going from 5.1 to 8.0 and beyond, for which adjustments might be required:

Running on the Java 8 Platform

Connector/J 8.0 and beyond is created specifically to run on the Java 8 platform. While Java 8 is known
to be strongly compatible with earlier Java versions, incompatibilities do exist, and code designed to
work on Java 7 might need to be adjusted before being run on Java 8. Developers should refer to the
incompatibility information provided by Oracle.

Changes in Connection Properties

A complete list of Connector/J 8.0 connection properties are available in Section 3.5.3, “Configuration
Properties”. The following are connection properties that have been changed (removed, added, have their
names changed, or have their default values changed) going from Connector/J 5.1 to 8.0 and beyond.

48


https://dev.mysql.com/doc/refman/8.0/en/mysql-installer.html
http://www.oracle.com/technetwork/java/javase/8-compatibility-guide-2156366.html#A999198

Upgrading from an Older Version

Properties that have been removed (do not use them during connection):

useDynani cCharsetInfo

useBl obToSt or eUTF8Qut si deBMP, ut f 8Qut si deBnpExcl udedCol uimmNanePat t er n, and

ut f 8Qut si deBnpl ncl udedCol urmNanePat t er n: MySQL 5.6 and later supports the utf8mb4
character set, which is the character set that should be used by Connector/J applications for supporting
characters beyond the Basic Multilingual Plane (BMP) of Unicode Version 3.

useJvntChar set Convert er s: JVM character set conversion is now used in all cases
The following date and time properties:

e dynam cCal endar s

e noTzConver si onFor Ti neType

*« noTzConver si onFor Dat eType

e cacheDef aul t Ti mrezone

e useFast | nt Parsi ng

¢ useFast Dat ePar si ng

e useJDBCConpl i ant Ti nezoneShi ft

e uselLegacyDat et i neCode

¢ useSSPSConpati bl eTi mezoneShi ft

e useTi nezone

e useGnm M I 1|isForDatetines

dunpMet adat aOnCol urmNot Found

r el axAut oConmi t

strictFl oati ngPoi nt

runni ngCTS13

retai nSt at ement Aft er Resul t Set Cl ose

nul | NamePat t er nivat chesAl | (removed since release 8.0.9)

Properties that have been added:

nysql x. useAsyncPr ot ocol (deprecated since release 8.0.22)

Property that has its name changed:

com nysqgl . jdbc. faul tlnjection. serverCharset | ndex changed to
comnysqgl.cj.testsuite.faultlnjection.serverCharsetl ndex

| oadBal anceEnabl eJMX to ha. enabl eJMX

replicati onEnabl eJMXto ha. enabl eJMX

Properties that have their default values changed:

49



Upgrading from an Older Version

e nul | Cat al ogMeansCurrent is now f al se by default

Changes in the Connector/J API

This section describes some of the more important changes to the Connector/J API going from version 5.1
to 8.0 and beyond. You might need to adjust your API calls accordingly:

» The name of the class that implements j ava. sql . Dri ver in MySQL Connector/J has changed
from com nysql . j dbc. Dri ver tocom nysql . cj.jdbc. Driver. The old class nhame has been
deprecated.

» The names of these commonly-used classes and interfaces have also been changed:

< Exceptioninterceptor: from com nysql . j dbc. Excepti onl nt er cept or to
com nysql . cj.exceptions. Exceptionl nterceptor

¢ Statementinterceptor: from com nysql . j dbc. St at ement | nt er cept or V2 to
com nysql . cj.interceptors. Queryl nterceptor

« ConnectionLifecyclelnterceptor: from com nysql . j dbc. Connecti onLi f ecycl el nt er cept or to
com nysql . cj.jdbc.interceptors. ConnectionLifecycl el nterceptor

¢ AuthenticationPlugin: from com nmysql . j dbc. Aut henti cati onPl ugi n to
com nysql . cj.protocol . Aut henticationPl ugi n

< BalanceStrategy: from com nysql . j dbc. Bal anceSt r at egy to
com nysql . cj.jdbc. ha. Bal anceStrat egy

« MysqglDataSource: from com nysql . j dbc. j dbc2. opti onal . Mysql Dat aSour ce to
com nysql . cj.jdbc. Mysqgl Dat aSour ce

* MysqglDataSourceFactory: from com nysql . j dbc. j dbc2. opti onal . Mysql Dat aSour ceFact ory
to com nysqgl.cj.jdbc. Mysql Dat aSour ceFact ory

* MysglConnectionPoolDataSource: from
com nysql . jdbc.jdbc2. optional. Mysql Connecti onPool Dat aSour ce to
com nysql . cj.jdbc. Mysqgl Connect i onPool Dat aSour ce

« MysqglXADataSource: from com nysql . j dbc. j dbc2. opti onal . Mysql XADat aSour ce to
com nysql . cj.jdbc. Mysql XADat aSour ce

¢ MysqlXid: from com nysql . j dbc. j dbc2. opti onal . Mysql Xi d to
com nysql .cj.jdbc. Mysqgl Xi d

Changes for Build Properties

A number of Ant properties for building Connector/J from source have been renamed; see Table 3.1,
“Changes with the Build Properties from Connector/J 5.1 to 8.0 and Beyond”

Table 3.1 Changes with the Build Properties from Connector/J 5.1 to 8.0 and Beyond

Old name New name

com nysql . jdbc. extra.libs comnysqgl.cj.extra.libs

com nysql . j dbc. jdk com nysql . cj.build.jdk

debug. enabl e com nysql . cj. build. addDebugl nf o

com nysql . j dbc. noCl eanBet weenConpi | es |[com nysql . ¢j . bui | d. noCl eanBet weenConpi |

50



Upgrading from an Older Version

nor

hot

Old name New name

com nysql . j dbc. cormerci al Bui l d com nysql . cj . buil d.cormerci a

com nysql .jdbc. filterlLicense comnysql.cj.build.filterLicense

com nysql . jdbc. noCryptoBui Il d com nysql . cj . buil d. noCrypto

com nysql . j dbc. noSour ces com nysql . cj.build. noSources

com nysql . j dbc. noMavenSour ces com nysql . cj . bui | d. noMavenSour ces

maj or _version comnysql.cj.build.driver.version. mjor
m nor _ver si on comnysql .cj.build.driver.version.mn nor
submi nor _version com nysql .cj.build.driver.version.subm
ver si on_stat us com nysql . cj.build.driver.version.statu
extra.version comnysql.cj.build.driver.version.extra
snhapshot . version com nysql . cj.build.driver.version.snaps
version com nysql .cj.build.driver.version
full.version com nysql . cj.build.driver.version.ful

pr odDi spl ayName comnysql.cj.build.driver.displayNane
pr odNare com nysql .cj.build.driver.nane

ful | ProdNane comnysql.cj.build.driver.full Nanme
bui |l dDi r comnysql.cj.build. dir

bui | dDri verDir com nysql.cj.build.dir.driver

mavenUpl oadDi r com nysql . cj.build.dir.nmven

distDr comnysql.cj.dist.dir

t oPackage comnysql.cj.dist.dir.prepare
packageDest com nysql.cj.dist.dir.package

com nysql . j dbc. docs. sourceDir comnysql.cj.dist.dir.prebuilt.docs

Change for Test Properties

A number of Ant properties for testing Connector/J have been renamed or removed; see Table 3.2,
“Changes with the Test Properties from Connector/J 5.1 to 8.0 and Beyond”

Table 3.2 Changes with the Test Properties from Connector/J 5.1 to 8.0 and Beyond

Old name New name

bui | dTestDir comnysql.cj.testsuite. build.dir
junit.results comnysql.cj.testsuite.junit.results
com nysql .jdbc.testsuite.jvm comnysql.cj.testsuite.jvm

t est comnysql.cj.testsuite.test.class
nmet hods comnysqgl.cj.testsuite.test. nethods
com nysql . jdbc.testsuite. url comnysql.cj.testsuite. url

com nysql . jdbc. testsuite.adm n-url com nysql.cj.testsuite.url.admn
com nysql . jdbc.testsuite. ClusterUrl comnysqgl.cj.testsuite.url.cluster
com nysql . jdbc.testsuite.url.sha256def alddm nysql . cj.testsuite.url.openssl

51



Upgrading from an Older Version

Old name New name

com nysql . jdbc. testsuite. cant G ant com nysql . cj.testsuite. cant G ant

com nysql . jdbc.testsuite.no-nulti- comnysql.cj.testsuite.disable.multihost.tests
hosts-tests

com nysql . j dbc. test.ds. host com nysql . cj.testsuite.ds. host

com nysql . j dbc. test.ds. port comnysqgl .cj.testsuite.ds. port

com nysql .jdbc.test.ds.db com nysql . cj.testsuite. ds.db

com nysql . j dbc.test.ds. user comnysql .cj.testsuite.ds. user

com nysql . j dbc. test. ds. password com nysql .cj.testsuite.ds. password

com nysql . jdbc.test.tabl etype comnysqgl.cj.testsuite.l oadstoreperf.tapletype
com nysql .jdbc.testsuite. | oadstoreperf. | =mEBimgReduldjs t est suite. | oadst oreperf. useBi gResul |
com nysql . j dbc.testsuite. M ni Adnm nTest . raorBhotstgwej . t est sui t e. mi ni Adm nTest . r unShut down
com nysql . j dbc. t estsui te. noDebugQut put [com nysql . cj.testsuite.nobDebugQut put

comnysql .jdbc.testsuite.retainArtifactgcomnysqgl.cj.testsuite.retainArtifacts

com nysql .jdbc.testsuite. runLongTests |com mnysql.cj.testsuite.runLongTests

com nysql . jdbc.test. ServerControl | er. bagamnrmysql . cj.testsuite.serverController| basedir
com nysql . j dbc. Repli cati onConnecti on. i s@amwerysqgl .cj.testsuite.replicati onConnection.isR
com nysql . jdbc. test.isLocal Host naneRepl gRemewed

com nysql .jdbc.testsuite.driver Removed

com nysql .jdbc.testsuite.url.default Removed. No longer needed, as multi-JVM tests

have been removed from the test suite.

Changes for Exceptions

Some exceptions have been removed from Connector/J going from version 5.1 to 8.0 and beyond.
Applications that used to catch the removed exceptions should now catch the corresponding exceptions
listed in Table 3.3 below.

Note

Some of these Connector/J 5.1 exceptions are duplicated in the
com.mysql.jdbc.exception.jdbc4 package; that is indicated by “[jdbc4.]" in their
names in Table 3.3.

Table 3.3 Changes for Exceptions from Connector/J 5.1 to 8.0 and Beyond

Removed Exception in Connector/J 5.1

com nysql . j dbc. exceptions. jdbc4. Cormuni cati onsExcepti on

com nysql . j dbc. exceptions. [jdbc4.] MySQLDat aExcepti on

com nysql . j dbc. exceptions.[jdbc4.] MySQLI nt egrityConstraintViol ati onException
com nysql . j dbc. exceptions. [jdbc4.] MySQLI nval i dAut hori zati onSpecExcepti on
com nysql . j dbc. exceptions. [jdbc4.] MySQLNonTr ansi ent Connecti onExcepti on

com nysql . j dbc. exceptions. [jdbc4.] MySQLNonTr ansi ent Excepti on

com nysql . j dbc. exceptions. []jdbc4.] MySQLQuer yl nt errupt edExcepti on

com nysql . j dbc. excepti ons. MySQLSt at enent Cancel | edExcepti on

52



Testing Connector/J

Removed Exception in Connector/J 5.1

com nysql . j dbc. exceptions. [jdbc4.] MySQLSynt axErr or Excepti on

com nysql . j dbc. exceptions. []jdbc4.] MySQLTi meout Excepti on

com nysql . j dbc. exceptions.[]jdbc4.] MySQLTransact i onRol | backExcepti on

com nysql . j dbc. exceptions.[]jdbc4.] MySQLTr ansi ent Connecti onExcepti on

com nysql . j dbc. exceptions.[]jdbc4.] MySQLTr ansi ent Excepti on

com nysql . j dbc. exceptions.[]jdbc4.] MySQLI ntegrityConstraintViol ati onException

Other Changes

Here are other changes with Connector/J 8.0 and beyond:

Removed Repl i cat i onDri ver . Instead of using a separate driver, you can how obtain a connection
for a replication setup just by using the j dbc: mysql : replication:// scheme.

See Section 3.3, “Connector/J Installation” for third-party libraries required for Connector/J 8.0 to work.

For Connector/J 8.0.22 and earlierr: Connector/J 8.0 always performs time offset adjustments on date-
time values, and the adjustments require one of the following to be true:

« The MySQL server is configured with a canonical time zone that is recognizable by Java (for example,
Europe/Paris, Etc/GMT-5, UTC, etc.)

* The server's time zone is overridden by setting the Connector/J connection property
server Ti mezone (for example, ser ver Ti nezone=Eur ope/ Par i s).

Note

The Connector/J's behavior in this respect has changed since release 8.0.23.
See Section 3.5.6.1, “Preserving Time Instants” for details. ser ver Ti nezone
is now an alias for the connection property connect i onTi neZone, which has
replaced ser ver Ti nezone.

3.3.5 Testing Connector/J

The Connector/J source code repository or packages that are shipped with source code include an
extensive test suite, containing test cases that can be executed independently. The test cases are divided
into the following categories:

Unit tests: They are methods located in packages aligning with the classes that they test.

Functional tests: Classes from the package t est sui t e. si npl e. Include test code for the main
features of Connector/J.

Performance tests: Classes from the package t est sui t e. per f. Include test code to make
measurements for the performance of Connector/J.

Regression tests: Classes from the package t est sui t e. r egr essi on. Includes code for testing bug
and regression fixes.

X DevAPI and X Protocol tests: Classes from the package t est sui t e. x for testing X DevAPI and X
Protocol functionality.

The bundled Ant build file contains targets like t est , which can facilitate the process of running the
Connector/J tests; see the target descriptions in the build file for details. To run the tests, in addition

53



Connector/J Examples

to fulfilling the requirements described in Section 3.3.3, “Installing from Source”, you must also set the
following properties in the bui | d. properti es file or through the Ant - D options:

comnysql.cj.testsuite.|vnmthe JVM to be used for the tests. If the property is not set, the JVM
supplied with com nmysql . ¢j . bui | d. j dk will be used.

com nysql.cj.testsuite.url:itspecifies the JIDBC URL for connection to a MySQL test server;
see Section 3.5.2, “Connection URL Syntax”.

comnysql.cj.testsuite.url.openssl: (for release 8.0.26 and earlier only) it specifies the JDBC
URL for connection to a MySQL test server compiled with OpenSSL,; see Section 3.5.2, “Connection
URL Syntax”.

comnysql .cj.testsuite.nysql x. url : it specifies the X DevAPI URL for connection to a MySQL
test server; see Section 3.5.2, “Connection URL Syntax”.

comnysql.cj.testsuite.nysqgl x. url.openssl : (for release 8.0.26 and earlier only) it specifies
the X DevAPI URL for connection to a MySQL test server compiled with OpenSSL; see Section 3.5.2,
“Connection URL Syntax”.

After setting these parameters, run the tests with Ant in the following ways:

Building the t est target with ant t est runs all test cases by default on a single server
instance. If you want to run a particular test case, put the test's fully qualified class names in the
comnysql.cj.testsuite.test.class variable; for example:

shell > ant -Dcom nysql.cj.testsuite.test.class=testsuite.sinple.StringUilsTest test

You can also run individual tests in a test case by specifying the names of the corresponding methods in
the com nysql . cj . testsuite.test. et hods variable, separating multiple methods by commas;
for example:

shell > ant -Dcom nysql.cj.testsuite.test.class=testsuite.sinple.StringUilsTest \
-Dcom nmysql . cj.testsuite.test. methods=t est| ndexCf | gnor eCase, t est Get Byt es t est

While the test results are partially reported by the console, complete reports in HTML and XML formats are
provided. View the HTML report by opening bui | dt est/j uni t/report/i ndex. ht m . XML version of
the reports are located in the folder bui | dt est/j uni t.

Note

Going from Connector/J 5.1 to 8.0 and beyond, a number of Ant properties
for testing Connector/J have been renamed or removed; see Change for Test
Properties for details.

3.4 Connector/J Examples

Examples of using Connector/J are located throughout this document. This section provides a summary
and links to these examples.

Example 3.4, “Connector/J: Obtaining a connection from the Dr i ver Manager ”
Example 3.5, “Connector/J: Using java.sql.Statement to execute a SELECT query”
Example 3.6, “Connector/J: Calling Stored Procedures”

Example 3.7, “Connector/J: Using Connecti on. prepareCal | ()”

Example 3.8, “Connector/J: Registering output parameters”

54



Connector/J Reference

Example 3.9, “Connector/J: Setting Cal | abl eSt at enent input parameters”
Example 3.10, “Connector/J: Retrieving results and output parameter values”

Example 3.11, “Connector/J: Retrieving AUTO_| NCREMENT column values using
St at enent . get Gener at edKeys()”

Example 3.12, “Connector/J: Retrieving AUTO_| NCREMVENT column values using SELECT
LAST_I NSERT_I ()"

Example 3.13, “Connector/J: Retrieving AUTO_| NCREMENT column values in Updat abl e
Resul t Set s”

Example 3.14, “Connector/J: Using a connection pool with a J2EE application server”

Example 3.15, “Connector/J: Example of transaction with retry logic”

3.5 Connector/J Reference

This section of the manual contains reference material for MySQL Connector/J.

3.5.1 Driver/Datasource Class Name

The name of the class that implements j ava. sql . Dri ver in MySQL Connector/J is
com nysql.cj.jdbc.Driver.

3.5.2 Connection URL Syntax

This section explains the syntax of the URLs for connecting to MySQL.

This is the generic format of the connection URL:

protocol //[ hosts] [/ dat abase] [ ?pr operti es]

The URL consists of the following parts:

pr ot ocol

Important

Any reserved characters for URLs (for example, /,:, @(,),[,], & #, =, ?, and
space) that appear in any part of the connection URL must be percent encoded.

There are the possible protocols for a connection:

j dbc: nysql : is for ordinary and basic JDBC failover connections.

j dbc: nysql : | oadbal ance: is for load-balancing JDBC connections. See Section 3.8.3, “Configuring

Load Balancing with Connector/J” for details.

j dbc: nysql : replication: isfor JDBC replication connections. See Section 3.8.4, “Configuring
Source/Replica Replication with Connector/J” for details.

nysql x: is for X DevAPI connections.

j dbc: nysql +srv: is for ordinary and basic failover JDBC connections that make use of DNS SRV
records.

j dbc: nysql +srv: | oadbal ance: is for load-balancing JDBC connections that make use of DNS SRV

records.

55



Connection URL Syntax

host s

e jdbc: nysql +srv:replication: is for replication JDBC connections that make use of DNS SRV
records.

* nysql x+srv: is for X DevAPI connections that make use of DNS SRV records.

Depending on the situation, the host s part may consist simply of a host name, or it can be a complex
structure consisting of various elements like multiple host names, port numbers, host-specific properties,
and user credentials.

» Single host:
« Single-host connections without adding host-specific properties:

e The host s part is written in the format of host :por t . This is an example of a simple single-host
connection URL:

jdbc: nysql : // host 1: 33060/ saki | a

* host can be an IPv4 or an IPv6 host name string, and in the latter case it must be put inside
square brackets, for example “[1000:2000::abcd].” When host is not specified, the default value of
| ocal host is used.

e port is astandard port number, i.e., an integer between 1 and 65535. The default port number
for an ordinary MySQL connection is 3306, and it is 33060 for a connection using the X Protocol. If
port is not specified, the corresponding default is used.

¢ Single-host connections adding host-specific properties:

 In this case, the host is defined as a succession of key=val ue pairs. Keys are used to identify the
host, the port, as well as any host-specific properties. There are two alternate formats for specifying
keys:

e The “address-equals” form:
addr ess=(host =host _or _i p) (port =port) (keyl=val uel) (key2=val ue2). .. (keyN=val ueN)
Here is a sample URL using the“address-equals” form :
jdbc: nysql : // addr ess=(host =myhost ) (port=1111) (keyl=val uel)/db
* The “key-value” form:
(host =host, port =port, keyl=val uel, key2=val ue2, .. ., keyN=val ueN)
Here is a sample URL using the “key-value” form :
jdbc: nysql : // (host =nyhost, port=1111, keyl=val uel)/db

» The host and the port are identified by the keys host and por t . The descriptions of the format and
default values of host and port in Single host without host-specific properties [56] above also
apply here.

« Other keys that can be added include user, passwor d, pr ot ocol , and so on. They override
the global values set in the pr oper ti es part of the URL. Limit the overrides to user, password,
network timeouts, and statement and metadata cache sizes; the effects of other per-host overrides
are not defined.

56



Connection URL Syntax

- Different protocols may require different keys. For example, the nysql x: scheme uses two special
keys, address and priority.address isahost:port pairandpriority an integer. For
example:

nysql x: // (addr ess=host: 1111, pri ority=1, keyl=val uel)/db

« key is case-sensitive. Two keys differing in case only are considered conflicting, and there are no
guarantees on which one will be used.

» Multiple hosts

There are two formats for specifying multiple hosts:
 List hosts in a comma-separated list:

host 1, host2, ..., hostN

Each host can be specified in any of the three ways described in Single host [56] above. Here are
some examples:

jdbc: nysql : // myhost 1: 1111, nyhost 2: 2222/ db

j dbc: nysql : // addr ess=( host =nyhost 1) (port=1111) (keyl=val uel), addr ess=( host =nyhost 2) ( port =2222) ( key2=val
jdbc: nysqgl : // (host =nyhost 1, port=1111, keyl=val uel), (host =nyhost 2, port =2222, key2=val ue2)/ db

jdbc: nysql : // nyhost 1: 1111, (host =nyhost 2, por t =2222, key2=val ue2)/ db

nysql x: // (addr ess=host 1: 1111, pri ori ty=1, keyl=val uel), (addr ess=host 2: 2222, pri ori t y=2, key2=val ue2)/ db

 List hosts in a comma-separated list, and then encloses the list by square brackets:

[host 1, host 2, ..., hostN|

This is called the host sublist form, which allows sharing of the user credentials by all hosts in the list
as if they are a single host. Each host in the list can be specified in any of the three ways described in
Single host [56] above. Here are some examples:

jdbc: mysql : //sandy: secret @ nyhost 1: 1111, nyhost 2: 2222] / db
j dbc: nysql : //sandy: secret @ addr ess=( host =nyhost 1) (port=1111) (keyl=val uel), addr ess=( host =nyhost 2) (port=
jdbc: mysql : //sandy: secret @ nmyhost 1: 1111, addr ess=( host =nyhost 2) ( port =2222) (key2=val ue2)]/db

While it is not possible to write host sublists recursively, a host list may contain host sublists as its
member hosts.

57



Connection URL Syntax

» User credentials

User credentials can be set outside of the connection URL—for example, as arguments when getting
a connection from the j ava. sql . Dri ver Manager (see Section 3.5.3, “Configuration Properties” for
details). When set with the connection URL, there are several ways to specify them:

« Prefix the a single host, a host sublist (see Multiple hosts [57]), or any host in a list of hosts with the
user credentials with an @

user: passwor d@ost _or _host _subl i st
For example:
nysql x: // sandy: secret @ (addr ess=host 1: 1111, pri ori ty=1, keyl=val uel), (addr ess=host 2: 2222, pri ori ty=2, key2=va
¢ Use the keys user and passwor d to specify credentials for each host:

(user =sandy) ( passwor d=nypass)

For example:

jdbc: nysql ://[(host =nmyhost 1, port=1111, user =sandy, passwor d=secr et ), (host =nmyhost 2, port =2222, user =f i nn, passwo
j dbc: nysql : //address=( host =myhost 1) (port =1111) (user =sandy) ( passwor d=secr et ), addr ess=( host =nyhost 2) (port =22

In both forms, when multiple user credentials are specified, the one to the left takes precedence—that is,
going from left to right in the connection string, the first one found that is applicable to a host is the one
that is used.

Inside a host sublist, no host can have user credentials in the @ format, but individual host can have
user credentials specified in the key format.

dat abase

The default database or catalog to open. If the database is not specified, the connection is made with no
default database. In this case, either call the set Cat al og() method on the Connect i on instance, or
specify table names using the database name (that is, SELECT dbnane. t abl enane. col nane FROM
dbnane. t abl enane. . . ) in your SQL statements. Opening a connection without specifying the database
to use is, in general, only useful when building tools that work with multiple databases, such as GUI
database managers.

Note

Always use the Connect i on. set Cat al og() method to specify the desired
database in JDBC applications, rather than the USE dat abase statement.

properties

A succession of global properties applying to all hosts, preceded by ? and written as key=val ue pairs
separated by the symbol “&. " Here are some examples:

jdbc: nysql :// (host =nyhost 1, port=1111), (host =nyhost 2, port =2222) / db?keyl=val uel&ey2=val ue2&key3=val ue3
The following are true for the key-value pairs:

» key and val ue are just strings. Proper type conversion and validation are performed internally in
Connector/J.

» key is case-sensitive. Two keys differing in case only are considered conflicting, and it is uncertain
which one will be used.

58



Configuration Properties

« Any host-specific values specified with key-value pairs as explained in Single host with host-specific

properties [56] and Multiple hosts [57] above override the global values set here.

See Section 3.5.3, “Configuration Properties” for details about the configuration properties.

3.5.3 Configuration Properties

Configuration properties define how Connector/J will make a connection to a MySQL server. Unless
otherwise noted, properties can be set for a Dat aSour ce object or for a Connect i on object.

Configuration properties can be set in one of the following ways:

e Using the set * () methods on MySQL implementations of j ava. sql . Dat aSour ce (which is the

preferred method when using implementations of j ava. sql . Dat aSour ce):

e com nysql . cj.jdbc.

« comnysql . cj.jdbc. Mysql Connect i onPool Dat aSour ce

Mysql Dat aSour ce

* As a key-value pairinthe j ava. uti| . Properti es instance passed to

Dri ver Manager . get Connecti on() orDri ver.connect ()

» As a JDBC URL parameter in the URL given to j ava. sql . Dri ver Manager . get Connecti on(),
java. sql . Driver.connect () orthe MySQL implementations of the j avax. sql . Dat aSour ce
set URL() method. If you specify a configuration property in the URL without providing a value for
it, nothing will be set; for example, adding useSer ver Pr epSt nt s alone to the URL does not make
Connector/J use server-side prepared statements; you need to add useSer ver PrepSt nt s=t r ue.

Note

If the mechanism you use to configure a JDBC URL is XML-based, use the XML
character literal &anp; to separate configuration parameters, as the ampersand
is a reserved character for XML.

The properties are listed by categories in the following tables and then in the subsections that follow. Click
on a property nhame in the tables to see its full description in the subsections.

Table 3.4 Authentication Properties

Name Default Value Since Version
user - all versions
passwor d - all versions
passwor dl - 8.0.28
passwor d2 - 8.0.28
passwor d3 - 8.0.28

aut henti cati onPl ugi ns - 5.1.19

di sabl edAut henti cati onPl ugi ns- 5.1.19

def aul t Aut henti cati onPl ugi n |mysql_native_password 5.1.19

| dapSer ver Host nane - 8.0.23

oci ConfigFile - 8.0.27

oci ConfigProfile DEFAULT 8.0.33

aut henti cati onFi doCal | backHandl er 8.0.29

59



Configuration Properties

Name
aut henti cati onWebAut hnCal | bag

Default Value
kHandl er

Since Version
8.2.0

Table 3.5 Connection Properties

Name
connecti onAttri butes

Default Value

Since Version
5.1.25

connectionLi fecycl el ntercept grs 514
useConfi gs - 3.15
clientlnfoProvider com.mysqgl.cj.jdbc.CommentClientinfoREo%iGer
cr eat eDat abasel f Not Exi st false 3.1.9
dat abaseTer m CATALOG 8.0.17
det ect Cust onCol | ati ons false 5.1.29
di sconnect OnExpi r edPasswor ds |true 5.1.23
interactivedient false 3.1.0
passwor dChar act er Encodi ng - 517
propertiesTransform - 3.14
rol | backOnPool edC ose true 3.0.15
useAf f ect edRows false 5.1.7

Table 3.6 Session Properties

Name
sessi onVari abl es

Default Value

Since Version
3.1.8

char act er Encodi ng - 1.1g

characterSet Results - 3.0.13
connectionCol | ati on - 3.0.13
cust onChar set Mappi ng - 8.0.26
trackSessi onState false 8.0.26

Table 3.7 Networking Properties

Name Default Value Since Version
socksPr oxyHost - 5.1.34
socksProxyPort 1080 5.1.34
socket Factory com.mysql.cj.protocol.StandardSocketRaot@ry
connect Ti neout 0 3.0.1
socket Ti meout 0 3.01
dnsSrv false 8.0.19
| ocal Socket Addr ess - 5.05
maxAl | owedPacket 65535 5.1.8
socksPr oxyRenot eDns false 8.0.29
t cpKeepAl i ve true 5.0.7

60




Configuration Properties

Name Default Value Since Version
t cpNoDel ay true 5.0.7

t cpRevBuUf 0 5.0.7

t cpSndBuf 0 5.0.7
tcpTrafficd ass 0 5.0.7
useConpr essi on false 3.0.17
useUnbuf f er edl nput true 3.0.11

Table 3.8 Security Properties

Name Default Value Since Version
par anoi d false 3.0.1
server RSAPubl i cKeyFi | e - 5.1.31
al | owPubl i cKeyRetri eval false 5131
ssl Mode PREFERRED 8.0.13
trustCertificateKeyStoreUrl |- 5.1.0
trustCertificateKeyStoreType |JKS 5.1.0
trustCertificat eKeySt or ePasswerd 5.1.0
fall backToSyst emlr ust St ore true 8.0.22
clientCertificateKeyStoreUrl |- 5.1.0
clientCertificateKeyStoreTypeJKS 5.1.0
clientCertificateKeyStorePasgword 5.1.0
fall backToSyst enKeySt or e true 8.0.22
t1sC phersuites - 5.1.35
tl sVersions - 8.0.8
fi psConpli ant Jsse false 8.1.0
KeyManager Fact or yPr ovi der - 8.1.0
t rust Manager Fact or yProvi der |- 8.1.0
keySt or eProvi der - 8.1.0
ssl Cont ext Provi der - 8.1.0
al | omLoadLocal Infile false 3.0.3
al | owLoadLocal I nfil el nPath - 8.0.22
al  owul ti Queries false 3.1.1
al lowJr|l I nLocal Infile false 3.14
requi r eSSL false 3.1.0
useSSL true 3.0.2
verifyServerCertificate false 5.1.6

Table 3.9 Statements Properties

Name

Default Value

cacheDef aul t Ti neZone

true

Since Version
8.0.20

61



Configuration Properties

Name Default Value Since Version
cont i nueBat chOnErr or true 3.0.3
dont Tr ackOpenResour ces false 3.1.7
querylnterceptors - 8.0.7
quer yTi meout Ki | | sConnecti on |false 5.1.9

Table 3.10 Prepared Statements Properties

Name Default Value Since Version
al | owNanAndI nf false 3.15

aut oCl osePSt nt St r eans false 3.1.12
conmpensat eOnDupl i cat eKeyUpdat|&seint s 5.1.7

enul at eUnsupport edPst nt s true 3.1.7

gener at eSi npl ePar anet er Met adafase 5.0.5
processEscapeCodesFor Pr epSt nt|rue 3.1.12
useServer PrepStnt s false 3.1.0
useStreanLengt hsl nPrepStnts |true 3.0.2

Table 3.11 Result Sets Properties

Name Default Value Since Version
cl obber Streani ngResul ts false 3.0.9
enptyStringsConvert ToZero true 3.1.8

hol dResul t sOpenOver St at enent (fadse 3.1.7

j dbcConpl i ant Truncati on true 3.1.2

max Rows -1 all versions
net Ti meout For St r eanmi ngResul t §600 5.1.0
padChar sWt hSpace false 5.0.6
popul at el nsert RowW t hDef aul t VEIses 5.0.5
scrol | Tol er ant Forwar dOnl y false 8.0.24
strict Updat es true 3.04
tinylntlisBit true 3.0.16
transformedBi t | sBool ean false 3.1.9

Table 3.12 Metadata Properties

Name Default Value Since Version
get Procedur esRet ur nsFunct i onstrue 5.1.26
noAccessToProcedur eBodi es false 5.0.3

nul | Dat abaseMeansCurr ent false 3.1.8
useHost sl nPrivi |l eges true 3.0.2

usel nf ormat i onSchena false 5.0.0

62




Configuration Properties

Table 3.13 BLOB/CLOB processing Properties

Name Default Value Since Version
bl obSendChunkSi ze 1048576 3.1.9
bl obsAreStrings false 5.0.8
cl obChar act er Encodi ng - 5.0.0
enul at eLocat ors false 3.1.0
functi onsNever Ret ur nBl obs false 5.0.8
| ocat or Fet chBuf f er Si ze 1048576 3.2.1

Table 3.14 Datetime types processing Properties

Name
connectionTi neZone

Default Value

Since Version
3.0.2

f or ceConnecti onTi neZoneToSessfalse 8.0.23
noDat eti meStri ngSync false 3.1.7
preservel nstants true 8.0.23
sendFr acti onal Seconds true 5.1.37
sendFr act i onal SecondsFor Ti ne |true 8.0.23
treat Mysql Dat et i neAsTi nest anpfalse 8.2.0
treat Uti | Dat eAsTi nest anp true 5.0.5
year | sDat eType true 3.19
zer oDat eTi neBehavi or EXCEPTION 3.14

Table 3.15 High Availability and Clus

tering Properties

Name Default Value Since Version
aut oReconnect false 1.1
aut oReconnect For Pool s false 3.13
fail Over ReadOnl y true 3.0.12
maxReconnect s 3 1.1
reconnect At TxEnd false 3.0.10
retriesAl | Down 120 5.1.6
i nitialTimeout 2 1.1
quer i esBef or eRet r ySour ce 50 3.0.2
secondsBef or eRet r ySour ce 30 3.0.2
al | owRepl i caDownConnecti ons [false 6.0.2
al | owSour ceDownConnect i ons false 5.1.27
ha. enabl eJMX false 5.1.27
| oadBal anceHost Renoval G acePed5000 6.0.3
r eadFr onSour ceWhenNoRepl i cas |false 6.0.2
sel f Dest ruct OnPi ngMaxQper at i afis 5.1.6
sel f Dest ruct OnPi ngSecondsLi f ¢0i me 5.1.6

63



Configuration Properties

Name
ha. | oadBal anceSt r at egy

Default Value
random

Since Version
5.0.6

| oadBal anceAut oCommi t St at enent Regex 5.1.15
| oadBal anceAut oConmi t St at emen0Thr eshol d 5.1.15
| oadBal anceBl ockl i st Ti meout |0 5.1.0
| oadBal anceConnect i onG oup - 5.1.13
| oadBal anceExcepti onChecker |com.mysql.cj.jdbc.ha.StandardLoadBal|&ntdBxceptionChecker
| oadBal ancePi ngTi neout 0 5.1.13
| oadBal anceSQLExcepti onSubcl assFai | over 5.1.13
| oadBal anceSQLSt at eFai | over |- 5.1.13
| oadBal anceVal i dat eConnect i onfad&apSer ver 5.1.13
pi nd obal TxToPhysi cal Connect i|talse 5.0.1
replicationConnecti onG oup - 8.0.7
resourceld - 5.0.1
server AffinityOrder - 8.0.8

Table 3.16 Performance Extensions Properties

Name Default Value Since Version
cal | abl eSt nt CacheSi ze 100 3.1.2
net adat aCacheSi ze 50 3.1.1
uselLocal Sessi onSt at e false 3.1.7
uselLocal Transacti onSt ate false 5.1.7
prepSt nt CacheSi ze 25 3.0.10
prepSt mt CacheSql Li mit 256 3.0.10
queryl nfoCacheFact ory com.mysql.cj.PerConnectionLRUFactory.1.1
server Confi gCacheFact ory com.mysqgl.cj.util.PerVmServerConfigCachdFactory
al waysSendSet | sol ati on true 3.1.7
mai nt ai nTi meSt at s true 3.1.9
useCur sor Fet ch false 5.0.0
cacheCal | abl eStnt s false 3.1.2
cachePrepStnts false 3.0.10
cacheResul t Set Met adat a false 3.1.1
cacheServer Confi guration false 3.1.5
def aul t Fet chSi ze 0 3.1.9
dont CheckOnDupl i cat eKeyUpdat efads) 5.1.32
el i deSet Aut oConmi t s false 3.13
enabl eEscapePr ocessi ng true 6.0.1
enabl eQuer yTi neout s true 5.0.6
| ar geRowSi zeThr eshol d 2048 511
readOnl yPr opagat esToSer ver true 5.1.35

64




Configuration Properties

Name Default Value Since Version
rew iteBat chedSt at enent s false 3.1.13
useReadAhead! nput true 3.15

Table 3.17 Debugging/Profiling Properties

Name Default Value Since Version
| ogger com.mysqgl.cj.log.StandardLogger 3.1.1
profil er Event Handl er com.mysqgl.cj.log.LoggingProfilerEventiHafhdier
useNanosFor El apsedTi ne false 5.0.7
maxQuer ySi zeTolLog 2048 3.1.3
maxByt eAr r ay AsHex 1024 8.0.31
profil eSQ false 3.1.0
| ogSl owQueri es false 3.1.2
sl owQueryThreshol dM I lis 2000 3.1.2
sl owQuer yThr eshol dNanos 0 5.0.7
aut oSl owlLog true 5.1.4
expl ai nSI owQueri es false 3.1.2
gat her Perf Metrics false 3.1.2
reportMetricsinterval MI1is |30000 3.1.2
| ogXaCommands false 5.05
traceProt ocol false 3.1.2
enabl ePacket Debug false 3.1.3
packet DebugBuf f er Si ze 20 3.1.3
useUsageAdvi sor false 3.11
result Set Si zeThreshol d 100 5.05
aut oGener at eTest caseScri pt false 3.1.9

Table 3.18 Exceptions/Warnings Properties

Name Default Value Since Version
dunmpQueri esOnExcepti on false 3.1.3
exceptionlnterceptors - 5.1.8

i gnor eNonTxTabl es false 3.0.9

i ncl udel nnodbSt at usl nDeadl ockfaleept i ons 5.0.7

i ncl udeThr eadDunpl nDeadl ockExtadge i ons 5.1.15

i ncl udeThr eadNanesAsSt at enent|fadsarent 5.1.15

useOnl ySer ver Err or Messages true 3.0.15

Table 3.19 Tunes for integration with

other products Properties

Name
overri deSupportslntegrityEnhg

Default Value
\fadserent Faci l ity

Since Version
3.1.12

ul t raDevHack

false

2.0.3

65



Configuration Properties

Table 3.20 JDBC compliance Properties

Name Default Value Since Version
useCol utmmNanes| nFi ndCol umm false 5.1.7
pedantic false 3.00
used dAl i asMet adat aBehavi or |false 5.0.4

Table 3.21 X Protocol and X DevAPI Properties

Name Default Value Since Version
xdevapi . aut h PLAIN 8.0.8
xdevapi . conpr essi on PREFERRED 8.0.20

xdevapi . conpr essi on-
al gorithms

zstd_stream,lz4_message,deflate_stre

#810.22

xdevapi . conpr essi on- - 8.0.22
ext ensi ons

xdevapi . connect - t i meout 10000 8.0.13
xdevapi . connecti on- - 8.0.16
attributes

xdevapi . dns-srv false 8.0.19
xdevapi . fal | back-to-system |true 8.0.22
keystore

xdevapi . fal | back-to-system |true 8.0.22
truststore

xdevapi . ssl - keystore - 8.0.22
xdevapi . ssl - keyst or e- - 8.0.22
passwor d

xdevapi . ssl - keystore-type JKS 8.0.22
xdevapi . ssl - node REQUIRED 8.0.7
xdevapi.ssl-truststore - 6.0.6
xdevapi . ssl -truststore- - 6.0.6
passwor d

xdevapi . ssl -truststore-type |JKS 6.0.6
xdevapi . tl s-ci phersuites - 8.0.19
xdevapi . tl s-versions - 8.0.19

3.5.3.1 Authentication

e user

The user to connect as. If none is specified, it is authentication plugin dependent what user name is

used. Built-in authentication plugins default to the session login user name.

Since Version

all versions

e password

66




Configuration Properties

The password to use when authenticating the user.

Since Version all versions

passwor dl

The password to use in the first phase of a Multi-Factor Authentication workflow. It is a synonym of the
connection property ‘password' and can also be set with user credentials in the connection string.

‘Since Version ‘8.0.28 \

passwor d2

The password to use in the second phase of a Multi-Factor Authentication workflow.

‘Since Version ‘8.0.28 ‘

passwor d3

The password to use in the third phase of a Multi-Factor Authentication workflow.

‘Since Version ‘8.0.28

aut henti cati onPl ugi ns

Comma-delimited list of classes that implement the interface
‘com.mysql.cj.protocol.AuthenticationPlugin'. These plugins will be loaded at connection initialization
and can be used together with their sever-side counterparts for authenticating users, unless they are
disabled in the connection property 'disabledAuthenticationPlugins'.

Since Version 5.1.19

di sabl edAut henti cati onPl ugi ns

Comma-delimited list of authentication plugins client-side protocol names or classes implementing the
interface 'com.mysql.cj.protocol. AuthenticationPlugin'. The authentication plugins listed will not be used
for authenticating users and, if anyone of them is required during the authentication exchange, the
connection fails. The default authentication plugin specified in the property 'defaultAuthenticationPlugin’
cannot be disabled.

Since Version 5.1.19

def aul t Aut henti cati onPl ugin

The default authentication plugin client-side protocol name or a fully qualified name of a class that
implements the interface ‘com.mysql.cj.protocol.AuthenticationPlugin'. The specified authentication
plugin must be either one of the built-in authentication plugins or one of the plugins listed in the property
‘authenticationPlugins'. Additionally, the default authentication plugin cannot be disabled with the
property 'disabledAuthenticationPlugins'. Neither an empty nor unknown plugin name or class can be set
for this property.

By default, Connector/J honors the server-side default authentication plugin, which is known after
receiving the initial handshake packet, and falls back to this property's default value if that plugin cannot
be used. However, when a value is explicitly provided to this property, Connector/J then overrides the
server-side default authentication plugin and always tries first the plugin specified with this property.

67



Configuration Properties

Default Value mysql_native_password

Since Version 5.1.19

| dapSer ver Host nane

When using MySQL's LDAP pluggable authentication with GSSAPI/Kerberos authentication method,
allows setting the LDAP service principal hostname as configured in the Kerberos KDC. If this property is
not set, Connector/J takes the system property ‘java.security.krb5.kdc' and extracts the hostname (short
name) from its value and uses it. If neither is set, the connection fails with an exception.

‘Since Version 8.0.23

oci ConfigFile

The location of the OCI configuration file as required by the OCI SDK for Java. Default value is "~/.oci/
config" for Unix-like systems and "%HOMEDRIVE%%HOMEPATH%.oci\config" for Windows.

Since Version 8.0.27

oci ConfigProfile

The profile in the OCI configuration file specified in ‘'ociConfigFile’, from where the configuration to use in
the "authentication_oci_client' authentication plugin is to be read.

Default Value DEFAULT

Since Version 8.0.33

aut henti cati onFi doCal | backHandl er

Fully-qualified class name of a class implementing the interface
‘com.mysql.cj.callback.MysglCallbackHandler'. This class will be used by the FIDO authentication plugin
to obtain the authenticator data and signature required for the FIDO authentication process. See the
documentation of ‘com.mysql.cj.callback.FidoAuthenticationCallback' for more details.

Since Version 8.0.29

aut henti cati onWebAut hnCal | backHandl er

Fully-qualified class name of a class implementing the interface
‘com.mysql.cj.callback.MysglCallbackHandler'. This class will be used by the WebAuthn authentication
plugin to obtain the authenticator data and signature required for the FIDO authentication process. See
the documentation of com.mysq|l.cj.callback.WebAuthnAuthenticationCallback for more details.

Since Version 8.2.0

3.5.3.2 Connection

connecti onAttri butes

A comma-delimited list of user-defined "key:value" pairs, in addition to standard MySQL-defined
"key:value" pairs, to be passed to MySQL Server for display as connection attributes in the
'PERFORMANCE_SCHEMA' tables 'session_account_connect_attrs' and 'session_connect_attrs'.
Example usage: "connectionAttributes=key1l:valuel,key2:value2" This functionality is available

for use with MySQL Server version 5.6 or later only. Earlier versions of MySQL Server do

68



Configuration Properties

not support connection attributes, causing this configuration option to be ignored. Setting
"connectionAttributes=none" will cause connection attribute processing to be bypassed for situations
where Connection creation/initialization speed is critical.

Since Version 5.1.25

connectionLi fecycl el nterceptors

A comma-delimited list of classes that implement
‘com.mysql.cj.jdbc.interceptors.ConnectionLifecyclelnterceptor’ that should be notified of

connection lifecycle events (creation, destruction, commit, rollback, setting the current database

and changing the autocommit mode) and potentially alter the execution of these commands.
‘ConnectionLifecyclelnterceptors' are stackable, more than one interceptor may be specified via the
configuration property as a comma-delimited list, with the interceptors executed in order from left to right.

Since Version 5.1.4

useConfi gs

Load the comma-delimited list of configuration properties for specifying combinations of options
for particular scenarios. These properties are loaded before parsing the URL or applying user-

specified properties. Allowed values are "3-0-Compat”, "clusterBase", "coldFusion”, "fullDebug"”,

"maxPerformance”, "maxPerformance-8-0" and "solarisMaxPerformance”, and they correspond to
properties files shipped within the Connector/J jar file, under "com/mysgl/cj/configurations”.

Since Version ‘3.1.5

clientl nfoProvider

The name of a class that implements the ‘com.mysql.cj.jdbc.ClientinfoProvider' interface in order to
support JDBC-4.0's 'Connection.get/setClientinfo()' methods.

Default Value com.mysql.cj.jdbc.CommentClientinfoProvider

Since Version 5.1.0

cr eat eDat abasel f Not Exi st

Creates the database given in the URL if it doesn't yet exist. Assumes the configured user has
permissions to create databases.

Default Value false

Since Version 3.1.9

dat abaseTerm

MySQL uses the term "schema" as a synonym of the term "database," while Connector/J historically
takes the JDBC term "catalog" as synonymous to "database". This property sets for Connector/J which
of the JDBC terms "catalog” and "schema" is used in an application to refer to a database. The property
takes one of the two values "CATALOG" or "SCHEMA" and uses it to determine (1) which Connection
methods can be used to set/get the current database (e.g. 'setCatalog()’ or 'setSchema()'?), (2) which
arguments can be used within the various 'DatabaseMetaData’ methods to filter results (e.g. the catalog
or 'schemaPattern’ argument of 'getColumns()'?), and (3) which fields in the result sets returned by
‘DatabaseMetaData’ methods contain the database identification information (i.e., the 'TABLE_CAT or
‘TABLE_SCHEM ' field in the result set returned by ‘getTables()'?).

69



Configuration Properties

If "databaseTerm=CATALOG", 'schemaPattern’ for searches are ignored and calls of schema methods
(like 'setSchemay()' or get 'Schemay()") become no-ops, and vice versa.

Default Value CATALOG
Since Version 8.0.17

det ect Cust onCol | ati ons

Should the driver detect custom charsets/collations installed on server? If this option set to "true" the
driver gets actual charsets/collations from the server each time a connection establishes. This could slow
down connection initialization significantly.

Default Value false
Since Version 5.1.29

di sconnect OnExpi r edPasswor ds

If 'disconnectOnExpiredPasswords’ is set to "false" and password is expired then server enters sandbox
mode and sends 'ERR(08001, ER_MUST_CHANGE_PASSWORD)' for all commands that are not
needed to set a new password until a new password is set.

Default Value true
Since Version 5.1.23

interactivedient

Set the 'CLIENT_INTERACTIVE' flag, which tells MySQL to timeout connections based on
‘interactive_timeout' instead of ‘wait_timeout'.

Default Value false

Since Version 3.1.0

passwor dChar act er Encodi ng

Instructs the server to use the default character set for the specified Java encoding during the
authentication phase. If this property is not set, Connector/J falls back to the collation name specified in
the property ‘connectionCollation’ or to the Java encoding specified in the property ‘characterEncoding’,
in that order of priority. The default collation of the character set utf8mb4 is used if none of the properties
is set.

‘Since Version 5.1.7

propertiesTransform

An implementation of 'com.mysql.cj.conf.ConnectionPropertiesTransform' that the driver will use to
modify connection string properties passed to the driver before attempting a connection.

‘Since Version 3.14




Configuration Properties

e roll backOnPool edC ose

Should the driver issue a 'rollback()' when the logical connection in a pool is closed?

Default Value true
Since Version 3.0.15

e useAffect edRows

Don't set the '"CLIENT_FOUND_ROWS' flag when connecting to the server. Note that this is not JDBC-
compliant and it will break most applications that rely on "found" rows vs. "affected rows" for DML
statements, but does cause correct update counts from "INSERT ... ON DUPLICATE KEY UPDATE"
statements to be returned by the server.

Default Value false

Since Version 5.1.7

3.5.3.3 Session

e sessionVari abl es

A comma or semicolon separated list of "name=value" pairs to be sent as "SET [SESSION] ..." to the
server when the driver connects.

Since Version 3.1.8

» charact er Encodi ng

Instructs the server to set session system variables 'character_set_client' and 'character_set_connection’
to the default character set supported by MySQL for the specified Java character encoding and set
‘collation_connection' to the default collation for this character set. If neither this property nor the property
‘connectionCollation’ is set:

For Connector/J 8.0.25 and earlier, the driver will try to use the server's default character set;

For Connector/J 8.0.26 and later, the driver will use "utf8@mb4".

Since Version 1l.1g

e characterSetResults

Instructs the server to return the data encoded with the default character set for the specified Java
encoding. If not set or set to "null", the server will send data in its original character set and the driver will
decode it according to the result metadata.

Since Version 3.0.13

e connectionCol | ati on

Instructs the server to set session system variable 'collation_connection' to the specified collation
name and set 'character_set_client' and 'character_set_connection' to a corresponding character set.
This property overrides the value of 'characterEncoding' with the default character set this collation
belongs to, if and only if ‘characterEncoding' is not configured or is configured with a character set that
is incompatible with the collation. That means ‘connectionCollation' may not always correct a mismatch
of character sets. For example, if ‘connectionCollation' is set to "latin1_swedish_ci", the corresponding

71



Configuration Properties

character set is "latin1" for MySQL, which maps it to the Java character set "windows-1252";

so if 'characterEncoding' is not set,"windows-1252" is the character set that will be used; but if
‘characterEncoding' has been set to, e.g. "ISO-8859-1", that is compatible with "latinl_swedish_ci", so
the character encoding setting is left unchanged; and if client is actually using "windows-1252" (which is
similar but different from "1ISO-8859-1"), errors would occur for some characters. If neither this property
nor the property 'characterEncoding’ is set:

For Connector/J 8.0.25 and earlier, the driver will try to use the server's default character set;

For Connector/J 8.0.26 and later, the driver will use utf8mb4's default collation.

Since Version 3.0.13

* cust ontChar set Mappi ng
A comma-delimited list of custom "charset:java encoding" pairs.

In case the MySQL server is configured with custom character sets and "detectCustomCollations=true",
Connector/J needs to know which Java character encoding to use for the data represented by these
character sets. Example usage: "customCharsetMapping=charset1:UTF-8,charset2:Cp1252".

Since Version ‘8.0.26

e trackSessi onState

Receive server session state changes on query results. These changes are accessible via
'‘MysqglConnection.getServerSessionStateController()'.

Default Value false

Since Version 8.0.26

3.5.3.4 Networking
» socksProxyHost

Name or IP address of a SOCKS host to connect through.

Since Version 5.1.34

» socksProxyPort

Port of the SOCKS server.

Default Value 1080

Since Version 5.1.34

» socket Factory

The name of the class that the driver should use for creating socket connections to the server. This
class must implement the interface 'com.mysql.cj.protocol.SocketFactory' and have a public no-args

constructor.
Default Value com.mysql.cj.protocol.StandardSocketFactory
Since Version 3.0.3

72



Configuration Properties

e connect Ti meout

Timeout for socket connect (in milliseconds), with O being no timeout.

Default Value 0
Since Version 3.0.1

e socket Ti neout

Timeout, specified in milliseconds, on network socket operations. Value "0" means no timeout.

Default Value 0
Since Version 3.0.1
e dnsSrv

Should the driver use the given host name to lookup for DNS SRV records and use the resulting list of
hosts in a multi-host failover connection? Note that a single host name and no port must be provided
when this option is enabled.

Default Value false
Since Version 8.0.19

* | ocal Socket Addr ess

Hostname or IP address given to explicitly configure the interface that the driver will bind the client side
of the TCP/IP connection to when connecting.

Since Version 5.0.5

« maxAl | onedPacket

Maximum allowed packet size to send to server. If not set, the value of system variable
'max_allowed_packet' will be used to initialize this upon connecting. This value will not take effect if set
larger than the value of 'max_allowed_packet'. Also, due to an internal dependency with the property
'blobSendChunkSize', this setting has a minimum value of "8203" if 'useServerPrepStmts' is set to "true”.

Default Value 65535
Since Version 5.1.8

» socksProxyRenot eDns

When using a SOCKS proxy, whether the DNS lookup for the database host should be performed locally
or through the SOCKS proxy.

Default Value false
Since Version 8.0.29

* tcpKeepAlive

If connecting using TCP/IP, should the driver set 'SO_KEEPALIVE'?

Default Value true

73



Configuration Properties

Since Version 5.0.7
e tcpNoDel ay
If connecting using TCP/IP, should the driver set 'SO_TCP_NODELAY", disabling the Nagle Algorithm?
Default Value true
Since Version 5.0.7

e t cpRecvBuUf
If connecting using TCP/IP, should the driver set 'SO_RCV_BUF' to the given value? The default value
of "0", means use the platform default value for this property.

0

5.0.7

Default Value
Since Version

* tcpSndBuf
If connecting using TCP/IP, should the driver set 'SO_SND_BUF' to the given value? The default value
of "0", means use the platform default value for this property.

0

5.0.7

Default Value
Since Version

e tcpTrafficd ass
If connecting using TCP/IP, should the driver set traffic class or type-of-service fields? See the
documentation for ‘'java.net.Socket.setTrafficClass()' for more information.

0

5.0.7

Default Value
Since Version

e useConpression

Use zlib compression when communicating with the server?

false
3.0.17

Default Value
Since Version

» useUnbuf f er edl nput

Don't use 'BufferedinputStream' for reading data from the server.

true
3.0.11

Default Value
Since Version

3.5.3.5 Security

e paranoid
Take measures to prevent exposure sensitive information in error messages and clear data structures

holding sensitive data when possible?

74




Configuration Properties

Default Value false

Since Version 3.0.1

e server RSAPubl i cKeyFi |l e

File path to the server RSA public key file for 'sha256_password' authentication. If not specified, the
public key will be retrieved from the server.

Since Version 5.1.31

e all owPubl i cKeyRetri eval

Allows special handshake round-trip to get an RSA public key directly from server.

Default Value false
Since Version 5.1.31
e ssl| Mbde

By default, network connections are SSL encrypted,; this property permits secure connections

to be turned off, or a different levels of security to be chosen. The following values are allowed:
"DISABLED" - Establish unencrypted connections; "PREFERRED" - Establish encrypted connections

if the server enabled them, otherwise fall back to unencrypted connections; "REQUIRED" - Establish
secure connections if the server enabled them, fail otherwise; "VERIFY_CA" - Like "REQUIRED" but
additionally verify the server TLS certificate against the configured Certificate Authority (CA) certificates;
"VERIFY_IDENTITY" - Like "VERIFY_CA", but additionally verify that the server certificate matches the
host to which the connection is attempted.

This property replaced the deprecated legacy properties 'useSSL', 'requireSSL', and
‘verifyServerCertificate', which are still accepted but translated into a value for 'ssiIMode'

if 'ssIMode’ is not explicitly set: "useSSL=false" is translated to "ssIMode=DISABLED";

{"useSSL=true", "requireSSL=false", "verifyServerCertificate=false"} is translated to
"ssIMode=PREFERRED"; {"useSSL=true", "requireSSL=true", "verifyServerCertificate=false"} is
translated to "ssIMode=REQUIRED"; {"useSSL=true", "verifyServerCertificate=true"} is translated to
"ssIMode=VERIFY_CA". There is no equivalent legacy settings for "ssIMode=VERIFY_IDENTITY". Note
that, for all server versions, the default setting of 'ssIMode’ is "PREFERRED", and it is equivalent to the
legacy settings of "useSSL=true", "requireSSL=false", and "verifyServerCertificate=false", which are
different from their default settings for Connector/J 8.0.12 and earlier in some situations. Applications
that continue to use the legacy properties and rely on their old default settings should be reviewed.

The legacy properties are ignored if 'ssIMode' is set explicitly. If none of 'ssIMode’ or 'useSSL" is set
explicitly, the default setting of "ssIMode=PREFERRED" applies.

Default Value PREFERRED

Since Version 8.0.13

e trustCertificateKeyStoreUrl
URL for the trusted root certificates key store.

If not specified, the property 'fallbackToSystemTrustStore' determines if system-wide trust store is used.

Since Version 5.1.0

75



Configuration Properties

e trustCertificateKeyStoreType

Key store type for trusted root certificates.

Null or empty means use the default, which is "JKS". Standard key store types supported by the JVM are
"JKS" and "PKCS12", your environment may have more available depending on what security providers

are installed and available to the JVM.

Default Value JKS
Since Version 5.1.0
e trustCertificateKeyStorePassword
Password for the trusted root certificates key store.
5.1.0

Since Version

« fall backToSyst enilrust Store

Whether the absence of setting a value for 'trustCertificateKeyStoreUr!' falls back to using the system-
wide default trust store or one defined through the system properties ‘javax.net.ssl.trustStore*'.

Default Value true
8.0.22

Since Version

o clientCertificateKeyStoreUrl

URL for the client certificate KeyStore.

If not specified, the property 'fallbackToSystemKeyStore' determines if system-wide key store is used.

Since Version 5.1.0

e clientCertificateKeyStoreType

Key store type for client certificates.

Null or empty means use the default, which is "JKS". Standard key store types supported by the JVM are
"JKS" and "PKCS12", your environment may have more available depending on what security providers

are installed and available to the JVM.

Default Value JKS
Since Version 5.1.0
e clientCertificateKeyStorePassword
Password for the client certificates key store.
5.1.0

Since Version




Configuration Properties

fall backToSyst enKeySt or e

Whether the absence of setting a value for 'clientCertificateKeyStoreUr!' falls back to using the system-

wide key store defined through the system properties 'javax.net.ssl.keyStore*'.

Default Value

true

Since Version

8.0.22

t1sC phersuites

When establishing secure connections, overrides the cipher suites enabled for use on the underlying
SSL sockets. This may be required when using external JSSE providers or to specify cipher suites
compatible with both MySQL server and used JVM. Prior to version 8.0.28, this property was named

‘enabledSSLCipherSuites’, which remains as an alias.

Since Version

5.1.35

t1 sVersions

List of TLS protocols to allow when establishing secure connections. Overrides the TLS protocols

enabled in the underlying SSL sockets. This can be used to restrict connections to specific TLS versions

and, by doing that, avoid TLS negotiation fallback. Allowed and default values are "TLSv1.2" and

"TLSv1.3". Prior to version 8.0.28, this property was hamed 'enabledTLSProtocols', which remains as an

alias.

Since Version

8.0.8

fi psConpliantJsse

Enables Connector/J to be compatible to JSSE operating in FIPS mode. Should be set to "true" if the
JSSE is configured to operate in FIPS mode and Connector/J receives the error "FIPS mode: only
SunJSSE TrustManagers may be used" when creating secure connections. If set to "true" then, when
establishing secure connections, the driver operates as if the 'ssIMode' was set to "VERIFY_CA" or

"VERIFY_IDENTITY", i.e., all secure connections require at least server certificate validation, for which a

trust store must be configured or fall back to the system-wide trust store must be enabled.

Default Value

false

Since Version

8.1.0

KeyManager Fact or yPr ovi der

The name of the a Java Security Provider that provides a ‘javax.net.ssl.KeyManagerFactory'
implementation. If none is specified then the default one is used.

Since Version

8.1.0

t rust Manager Fact or yPr ovi der

The name of the a Java Security Provider that provides a ‘javax.net.ssl. TrustManagerFactory'
implementation. If none is specified then the default one is used.

Since Version

8.1.0

keySt or eProvi der

77




Configuration Properties

The name of the a Java Security Provider that provides a 'java.security.KeyStore' implementation
that supports the key stores types specified with 'clientCertificateKeyStoreType' and
‘trustCertificateKeyStoreType'. If none is specified then the default one is used.

Since Version 8.1.0

ssl| Cont ext Pr ovi der

The name of the a Java Security Provider that provides a ‘javax.net.ssl.SSLContext' implementation. If
none is specified then the default one is used.

Since Version 8.1.0

al | owLoadLocal Infile
Should the driver allow use of "LOAD DATA LOCAL INFILE ..."?

Setting to "true" overrides whatever path is set in 'allowLoadLocallnfileInPath’, allowing uploading files
from any location.

Default Value false

Since Version 3.0.3

al | owLoadLocal I nfil el nPat h

Enables "LOAD DATA LOCAL INFILE ..." statements, but only allows loading files from the specified
path. Files within sub-directories are also allowed, but relative paths or symlinks that fall outside this path
are forbidden.

‘Since Version 8.0.22

al l owul ti Queri es

Allow the use of ;" to delimit multiple queries during one statement. This option does not affect the
‘addBatch()' and ‘executeBatch()' methods, which rely on 'rewriteBatchStatements' instead.

Default Value false

Since Version 3.11

all owlr | I nLocal Infile

Should the driver allow URLs in "LOAD DATA LOCAL INFILE ..." statements?

Default Value false
Since Version 3.14
requi r eSSL

DEPRECATED: See 'ssIMode’ property description for details.

For 8.0.12 and earlier: Require server support of SSL connection if "useSSL=true".

Default Value false




Configuration Properties

Since Version

3.1.0

useSSL

DEPRECATED: See 'ssIMode’ property description for details.

For 8.0.12 and earlier: Use SSL when communicating with the server, default is "true” when connecting
to MySQL 5.5.45+, 5.6.26+ or 5.7.6+, otherwise default is "false".

For 8.0.13 and later: Default is "true".

Default Value

true

Since Version

3.0.2

verifyServerCertificate

DEPRECATED: See 'ssIMode’ property description for details.

For 8.0.12 and earlier: If 'useSSL' is set to "true", should the driver verify the server's certificate? When
using this feature, the key store parameters should be specified by the ‘clientCertificateKeyStore*'
properties, rather than system properties. Default is "false” when connecting to MySQL 5.5.45+, 5.6.26+
or 5.7.6+ and 'useSSL' was not explicitly set to "true". Otherwise default is "true".

For 8.0.13 and later: Default is "false".

Default Value

false

Since Version

5.1.6

3.5.3.6 Statements

cacheDef aul t Ti neZone

Caches client's default time zone. This results in better performance when dealing with time zone
conversions in Date and Time data types, however it won't be aware of time zone changes if they

happen at runtime.

Default Value

true

Since Version

8.0.20

cont i nueBat chOnEr r or

Should the driver continue processing batch commands if one statement fails. The JDBC spec allows

either way.
Default Value true
Since Version 3.0.3

dont TrackQOpenResour ces

The JDBC specification requires the driver to automatically track and close resources,
however if your application doesn't do a good job of explicitly calling 'close()' on statements
or result sets this can cause memory leakage. Setting this property to "true" relaxes this
constraint, and can be more memory efficient for some applications. Also the automatic
closing of the statement and current result set in 'Statement.closeOnCompletion()’

79




Configuration Properties

and 'Statement.getMoreResults([Statement. CLOSE_CURRENT_RESULT |

Statement.CLOSE_ALL_RESULTS])', respectively, ceases to happen. This property automatically sets
"holdResultsOpenOverStatementClose=true".

Default Value false

Since Version 3.1.7

querylnterceptors

A comma-delimited list of classes that implement ‘com.mysq|l.cj.interceptors.Queryinterceptor' that
intercept query executions and are able influence the results. Query iterceptors are chainable: the results

returned by the current interceptor will be passed on to the next in the chain, from left-to-right in the order
specified in this property.

Since Version ‘8.0.7

quer yTi meout Ki | | sConnecti on

If the timeout given in 'Statement.setQueryTimeout()' expires, should the driver forcibly abort the
connection instead of attempting to abort the query?

Default Value false

Since Version 5.1.9

3.5.3.7 Prepared Statements

al | owNanAnd| nf

Should the driver allow NaN or +/- INF values in 'PreparedStatement.setDouble()'?

Default Value false

Since Version 3.1.5

aut oCl osePSt nt St r eans

Should the driver automatically call the method 'close()' on streams/readers passed as arguments via
'set*()' methods?

Default Value false

Since Version 3.1.12

conpensat eOnDupl i cat eKeyUpdat eCount s

Should the driver compensate for the update counts of "INSERT ... ON DUPLICATE KEY UPDATE"
statements (2 = 1, 0 = 1) when using prepared statements?

Default Value false

Since Version 5.1.7

enul at eUnsupport edPst nt s

Should the driver detect prepared statements that are not supported by the server, and replace them
with client-side emulated versions?

80




Configuration Properties

Default Value

true

Since Version

3.1.7

gener at eSi npl ePar anet er Met adat a

Should the driver generate simplified parameter metadata for prepared statements when no metadata

is available either because the server couldn't support preparing the statement, or server-side prepared

statements are disabled?

Default Value

false

Since Version

5.0.5

processEscapeCodesFor PrepSt nt s

Should the driver process escape codes in queries that are prepared? Default escape processing
behavior in non-prepared statements must be defined with the property '‘enableEscapeProcessing'.

Default Value

true

Since Version

3.1.12

useServer PrepStnts

Use server-side prepared statements if the server supports them? The server may limit the number
of prepared statements with 'max_prepared_stmt_count' or disable them altogether. In case of
not being possible to prepare new server-side prepared statements, it depends on the value of
‘emulateUnsupportedPstmts' to whether return an error or fall back to client-side emulated prepared

statements.
Default Value false
Since Version 3.1.0

useStreanlengt hsl nPrepStnts

Honor stream length parameter in 'PreparedStatement/ResultSet.set*Stream()' method calls?

Default Value

true

Since Version

3.0.2

3.5.3.8 Result Sets

cl obber Stream ngResul ts

This will cause a streaming result set to be automatically closed, and any outstanding data still streaming

from the server to be discarded if another query is executed before all the data has been read from the

server.
Default Value false
Since Version 3.0.9

enptyStringsConvert ToZer o

Should the driver allow conversions from empty string fields to numeric values of "0"?

81



Configuration Properties

Default Value

true

Since Version

3.1.8

e hol dResul t sQpenOver St at enent Cl ose

Should the driver close result sets on 'Statement.close()' as required by the JDBC specification?

Default Value

false

Since Version

3.1.7

e jdbcConpliant Truncati on

Should the driver throw ‘java.sgl.DataTruncation' exceptions when data is truncated as is
required by the JDBC specification? This property has no effect if the server sql-mode includes

'STRICT_TRANS_TABLES'.

Default Value

true

Since Version

3.1.2

e maxRows

The maximum number of rows to return. The default "0" means return all rows.

Default Value

-1

Since Version

all versions

e net Ti neout For St ream ngResul ts

What value should the driver automatically set the server setting 'net_write_timeout' to when the
streaming result sets feature is in use? Value has unit of seconds, the value "0" means the driver will not

try and adjust this value.

Default Value

600

Since Version

5.1.0

e padCharsWt hSpace

If a result set column has the CHAR type and the value does not fill the amount of characters specified
in the DDL for the column, should the driver pad the remaining characters with space (for ANSI

compliance)?

Default Value

false

Since Version

5.0.6

» popul at el nsert RowwW t hDef aul t Val ues

When using result sets that are 'CONCUR_UPDATABLE', should the driver pre-populate the insert
row with default values from the DDL for the table used in the query so those values are immediately
available for 'ResultSet' accessors? This functionality requires a call to the database for metadata each

82




Configuration Properties

time a result set of this type is created. If disabled, the default values will be populated by the an internal
call to 'refreshRow()' which pulls back default values and/or values changed by triggers.

Default Value false

Since Version 5.05

scrol | Tol er ant Forwar dOnl y

Should the driver contradict the JDBC API and tolerate and support backward and absolute cursor
movement on result sets of type 'ResultSet. TYPE_FORWARD_ONLY'?

Regardless of this setting, cursor-based and row streaming result sets cannot be navigated in the
prohibited directions.

Default Value false
Since Version 8.0.24

strict Updates

Should the driver do strict checking, i.e. all primary keys selected, of updatable result sets?

Default Value true

Since Version 3.04

tinylntlisBit

Since the MySQL server silently converts BIT to TINYINT(1) when creating tables, should the driver treat
the datatype TINYINT(1) as the BIT type?

Default Value true
Since Version 3.0.16

transf or medBi t | sBool ean

If the driver converts TINYINT(1) to a different type, should it use BOOLEAN instead of BIT?

Default Value false

Since Version 3.1.9

3.5.3.9 Metadata

get Procedur esRet ur nsFuncti ons

Pre-JDBC4 'DatabaseMetaData’ API has only the ‘getProcedures()' and ‘getProcedureColumns()'
methods, so they return metadata info for both stored procedures and functions. JDBC4 was extended
with the 'getFunctions()' and 'getFunctionColumns()' methods and the expected behaviours of previous
methods are not well defined. For JDBC4 and higher, default "true" value of the option means that

calls of 'DatabaseMetaData.getProcedures()' and 'DatabaseMetaData.getProcedureColumns()'

return metadata for both procedures and functions as before, keeping backward compatibility.
'‘DatabaseMetaData.getProcedures()' and 'DatabaseMetaData.getProcedureColumns()', forcing them tg 3
return metadata for procedures only.



Configuration Properties

true
5.1.26

Default Value
Since Version

e noAccessToProcedur eBodi es

When determining procedure parameter types for ‘CallableStatement’, and the connected user can't
access procedure bodies through "SHOW CREATE PROCEDURE" or SELECT on mysql.proc should
the driver instead create basic metadata, with all parameters reported as INOUT VARCHARSs, instead of

throwing an exception?

false
5.0.3

Default Value
Since Version

e nul | Dat abaseMeansCurr ent

In 'DatabaseMetaData’ methods that take a 'catalog’ or 'schema’' parameter, does the value "null" mean
to use the current database? See also the property 'databaseTerm'.

false
3.1.8

Default Value
Since Version

e useHostslnPrivil eges

Add '@hostname’ to users in 'DatabaseMetaData.getColumn/TablePrivileges()'.

true
3.0.2

Default Value
Since Version

e usel nformati onSchena

Should the driver use the INFORMATION_SCHEMA to derive information used by 'DatabaseMetaData'?
Default is "true" when connecting to MySQL 8.0.3+, otherwise default is "false".

false
5.0.0

Default Value
Since Version

3.5.3.10 BLOB/CLOB processing

* bl obSendChunkSi ze

Chunk size to use when sending BLOB/CLOBsS via server-prepared statements. Note that this value
cannot exceed the value of 'maxAllowedPacket' and, if that is the case, then this value will be corrected

automatically.

1048576
3.1.9

Default Value
Since Version

* bl obsAreStrings

Should the driver always treat BLOBs as Strings - specifically to work around dubious metadata returned

84
by the server for GROUP BY clauses?




Configuration Properties

Default Value false

Since Version 5.0.8

e cl obCharact er Encodi ng

The character encoding to use for sending and retrieving TEXT, MEDIUMTEXT and LONGTEXT values
instead of the configured connection ‘characterEncoding'.

Since Version 5.0.0

« emnul at eLocators

Should the driver emulate 'java.sql.Blob' with locators? With this feature enabled, the driver will delay
loading the actual Blob data until the one of the retrieval methods (‘getinputStream()’, 'getBytes()', and so
forth) on the blob data stream has been accessed. For this to work, you must use a column alias with the
value of the column to the actual name of the Blob. The feature also has the following restrictions: The
SELECT that created the result set must reference only one table, the table must have a primary key;
the SELECT must alias the original blob column name, specified as a string, to an alternate name; the
SELECT must cover all columns that make up the primary key.

Default Value false

Since Version 3.1.0

e functionsNever Ret ur nBl obs

Should the driver always treat data from functions returning BLOBs as Strings - specifically to work
around dubious metadata returned by the server for "GROUP BY" clauses?

Default Value false

Since Version 5.0.8

e | ocatorFetchBufferSize

If '‘emulateLocators' is configured to "true”, what size buffer should be used when fetching BLOB data for
‘getBinarylnputStream()'?

Default Value 1048576

Since Version 3.21

3.5.3.11 Datetime types processing
e connectionTi meZone

Configures the connection time zone which is used by Connector/J if conversion between the JVM
default and a target time zone is needed when preserving instant temporal values.

Accepts a geographic time zone name or a time zone offset from Greenwich/UTC, using a syntax
'java.time.Zoneld' is able to parse, or one of the two logical values "LOCAL" and "SERVER". Default

is "LOCAL". If set to an explicit time zone then it must be one that either the JVM or both the JVM and
MySQL support. If set to "LOCAL" then the driver assumes that the connection time zone is the same as
the JVM default time zone. If set to "SERVER" then the driver attempts to detect the session time zone
from the values configured on the MySQL server session variables 'time_zone' or 'system_time_zone'.
The time zone detection and subsequent mapping to a Java time zone may fail due to several reasons,

85




Configuration Properties

mostly because of time zone abbreviations being used, in which case an explicit time zone must be set
or a different time zone must be configured on the server.

This option itself does not set MySQL server session variable 'time_zone' to the given value. To do that
the 'forceConnectionTimeZoneToSession' connection option must be set to "true".

Please note that setting a value to 'connectionTimeZone' in conjunction with
"forceConnectionTimeZoneToSession=false" and "preservelnstants=false" has no effect since, in this
case, neither this option is used to change the session time zone nor used for time zone conversions of
time-based data.

Former connection option 'serverTimezone' is still valid as an alias of this one but may be deprecated in
the future.

See also 'forceConnectionTimeZoneToSession' and ‘preservelnstants' for more details.

Since Version 3.0.2

f orceConnecti onTi neZoneToSessi on

If enabled, sets the time zone value determined by 'connectionTimeZone' connection property to the
current server session 'time_zone' variable. If the time zone value is given as a geographical time zone,
then Connector/J sets this value as-is in the server session, in which case the time zone system tables
must be populated beforehand (consult the MySQL Server documentation for further details); but, if
the value is given as an offset from Greenwich/UTC in any of the supported syntaxes, then the server
session time zone is set as a numeric offset from UTC.

With that no intermediate conversion between JVM default time zone and connection time zone is
needed to store correct milliseconds value of instant Java objects such as ‘java.sqgl. Timestamp' or
'java.time.OffsetDateTime' when stored in TIMESTAMP columns.

Note that it also affects the result of MySQL functions such as 'NOW()', 'CURTIME()' or 'CURDATE()".

This option has no effect if used in conjunction with "connectionTimeZone=SERVER" since, in this case,
the session is already set with the required time zone.

See also 'connectionTimeZone' and 'preservelnstants' for more details.

Default Value false

Since Version 8.0.23

noDat eti meStri ngSync

Don't ensure that 'ResultSet.getTimestamp().toString().equals(ResultSet.getString())'.

Default Value false

Since Version 3.1.7

preservel nstants

If enabled, Connector/J does its best to preserve the instant point on the time-line for Java instant-based
objects such as 'java.sqgl.Timestamp' or 'java.time.OffsetDateTime' instead of their original visual form.

86



Configuration Properties

Otherwise, the driver always uses the JVM default time zone for rendering the values it sends to the
server and for constructing the Java objects from the fetched data.

MySQL uses implied time zone conversion for TIMESTAMP values: they are converted from the session
time zone to UTC for storage, and back from UTC to the session time zone for retrieval. So, to store

the correct correct UTC value internally, the driver converts the value from the original time zone to the
session time zone before sending to the server. On retrieval, Connector/J converts the received value
from the session time zone to the JVM default one.

When storing, the conversion is performed only if the target 'SQLType', either the explicit one or the
default one, is TIMESTAMP. When retrieving, the conversion is performed only if the source column
has the TIMESTAMP, DATETIME or character type and the target class is an instant-based one, like
‘java.sql.Timestamp' or 'java.time.OffsetDateTime'.

Note that this option has no effect if used in conjunction with "connectionTimeZone=LOCAL" since, in
this case, the source and target time zones are the same. Though, in this case, it's still possible to store
a correct instant value if set together with "forceConnectionTimeZoneToSession=true".

See also 'connectionTimeZone' and 'forceConnectionTimeZoneToSession' for more details.

Default Value true
Since Version 8.0.23

 sendFracti onal Seconds

If set to "false”, the fractional seconds will always be truncated before sending any data to the server.
This option applies only to prepared statements, callable statements or updatable result sets.

Default Value true
Since Version 5.1.37

e sendFracti onal SecondsFor Ti ne

If set to "false”, the fractional seconds of ‘java.sql.Time' will be ignored as required by JDBC
specification. If set to "true”, its value is rendered with fractional seconds allowing to store milliseconds
into MySQL TIME column. This option applies only to prepared statements, callable statements or
updatable result sets. It has no effect if "sendFractionalSeconds=false".

Default Value true
Since Version 8.0.23

» treat Mysql Dat eti neAsTi nest anp

Should the driver treat the MySQL DATETIME type as TIMESTAMP in 'ResultSet.getObject()'?
Enabling this option changes the default MySQL data type to Java type mapping for DATETIME from
'java.time.LocalDateTime' to 'java.sgl.Timestamp'. Given the nature of the DATETIME type and its
inability to represent instant values, it is not advisable to enable this option unless the driver is used with
a framework or API that expects exclusively objects following the default MySQL data types to Java
types mapping, which is the case of, for example, 'javax.sgl.rowset.CachedRowSet'.

Default Value false

Since Version 8.2.0

e treatUtil Dat eAsTi nest anp

87



Configuration Properties

3.5.3.12 High Availability and Clustering

Should the driver treat ‘java.util.Date' as a TIMESTAMP in 'PreparedStatement.setObject()"?

Default Value

true

Since Version

5.0.5

year | sDat eType

Should the JDBC driver treat the MySQL type YEAR as a ‘java.sqgl.Date’, or as a SHORT?

Default Value

true

Since Version

3.1.9

zer oDat eTi neBehavi or

What should happen when the driver encounters DATETIME values that are composed entirely of
zeros - used by MySQL to represent invalid dates? Valid values are "EXCEPTION", "ROUND" and

"CONVERT_TO_NULL".

Default Value

EXCEPTION

Since Version

3.1.4

aut oReconnect

Should the driver try to re-establish stale and/or dead connections? If enabled the driver will throw an
exception for queries issued on a stale or dead connection, which belong to the current transaction,
but will attempt reconnect before the next query issued on the connection in a new transaction. The
use of this feature is not recommended, because it has side effects related to session state and data
consistency when applications don't handle SQLEXxceptions properly, and is only designed to be used
when you are unable to configure your application to handle SQLEXxceptions resulting from dead and
stale connections properly. Alternatively, as a last option, investigate setting the MySQL server variable
'wait_timeout' to a high value, rather than the default of 8 hours.

Default Value

false

Since Version

11

aut oReconnect For Pool s

Use a reconnection strategy appropriate for connection pools?

Default Value

false

Since Version

3.1.3

fail Over ReadOnl y

When failing over in 'autoReconnect' mode, should the connection be set to ‘'read-only'?

Default Value

true

Since Version

3.0.12

maxReconnect s

88




Configuration Properties

Maximum number of reconnects to attempt if 'autoReconnect' is "true".

Default Value

Since Version 11

reconnect At TxEnd

If ‘autoReconnect' is set to "true", should the driver attempt reconnections at the end of every
transaction?

Default Value false
Since Version 3.0.10

retriesAl | Down

When using load balancing or failover, the number of times the driver should cycle through available
hosts, attempting to connect. Between cycles, the driver will pause for 250 ms if no servers are available.

Default Value 120
Since Version 5.1.6

initial Ti neout

If 'autoReconnect' is enabled, the initial time to wait between re-connect attempts (in seconds, defaults to
II2II).

Default Value

Since Version 1.1

queri esBef or eRet r ySour ce

When using multi-host failover, the number of queries to issue before falling back to the

primary host when failed over. Whichever condition is met first, '‘queriesBeforeRetrySource' or
'secondsBeforeRetrySource' will cause an attempt to be made to reconnect to the primary host. Setting
both properties to "0" disables the automatic fall back to the primary host at transaction boundaries.

Default Value 50
Since Version 3.0.2

secondsBef or eRet r ySour ce

How long, in seconds, should the driver wait when failed over, before attempting to reconnect

to the primary host? Whichever condition is met first, 'queriesBeforeRetrySource' or
'secondsBeforeRetrySource' will cause an attempt to be made to reconnect to the source host. Setting
both properties to "0" disables the automatic fall back to the primary host at transaction boundaries.

Default Value 30
Since Version 3.0.2

89



Configuration Properties

al | owRepl i caDownConnecti ons

By default, a replication-aware connection will fail to connect when configured replica hosts are all
unavailable at initial connection. Setting this property to "true" allows to establish the initial connection.
It won't prevent failures when switching to replicas i.e. by setting the replication connection to read-only
state. The property 'readFromSourceWhenNoReplicas' should be used for this purpose.

Default Value

false

Since Version

6.0.2

al | owSour ceDownConnecti ons

By default, a replication-aware connection will fail to connect when configured source hosts are all
unavailable at initial connection. Setting this property to "true" allows to establish the initial connection,
by failing over to the replica servers, in read-only state. It won't prevent subsequent failures when
switching back to the source hosts i.e. by setting the replication connection to read/write state.

Default Value

false

Since Version

5.1.27

ha. enabl eJMX

Enables JMX-based management of load-balanced connection groups, including live addition/removal
of hosts from load-balancing pool. Enables JMX-based management of replication connection groups,
including live replica promotion, addition of new replicas and removal of source or replica hosts from

load-balanced source and replica connection pools.

Default Value

false

Since Version

5.1.27

| oadBal anceHost Renpval Gr acePeri od

Sets the grace period to wait for a host being removed from a load-balanced connection, to be released

when it is currently the active host.

Default Value

15000

Since Version

6.0.3

« readFronSour ceWhenNoRepl i cas

Replication-aware connections distribute load by using the source hosts when in read/write state and by
using the replica hosts when in read-only state. If, when setting the connection to read-only state, none

of the replica hosts are available, an 'SQLException' is thrown back. Setting this property to "true" allows
to fail over to the source hosts, while setting the connection state to read-only, when no replica hosts are

available at switch instant.

Default Value

false

Since Version

6.0.2

90




Configuration Properties

sel f Dest ruct OnPi ngMaxQOper at i ons

If set to a non-zero value, the driver will report close the connection and report failure when

‘com.mysql.cj.jdbc.JdbcConnection.ping()' or ‘java.sql.Connection.isValid(int)' is called if the connection's
count of commands sent to the server exceeds this value.

Default Value

Since Version

5.1.6

sel f Dest ruct OnPi ngSecondsLi feti ne

If set to a non-zero value, the driver will close the connection and report failure when

‘com.mysql.cj.jdbc.JdbcConnection.ping()' or ‘java.sql.Connection.isValid(int)' is called if the connection's
lifetime exceeds this value, specified in milliseconds.

Default Value

Since Version

5.1.6

ha. | oadBal anceSt r at egy

If using a load-balanced connection to connect to SQL servers in a MySQL Cluster configuration (by
using the URL prefix "jdbc:mysgl:loadbalance://"), which load balancing algorithm should the driver
use: (1) "random" - the driver will pick a random host for each request. This tends to work better than
round-robin, as the randomness will somewhat account for spreading loads where requests vary in
response time, while round-robin can sometimes lead to overloaded nodes if there are variations in
response times across the workload. (2) "bestResponseTime" - the driver will route the request to the
host that had the best response time for the previous transaction. (3) "serverAffinity" - the driver initially
attempts to enforce server affinity while still respecting and benefiting from the fault tolerance aspects
of the load-balancing implementation. The server affinity ordered list is provided using the property

'serverAffinityOrder'. If none of the servers listed in the affinity list is responsive, the driver then refers to

the "random" strategy to proceed with choosing the next server.

Default Value

random

Since Version

5.0.6

| oadBal anceAut oComi t St at enent Regex

When load-balancing is enabled for auto-commit statements (via

'loadBalanceAutoCommitStatementThreshold'), the statement counter will only increment when the SQL

matches the regular expression. By default, every statement issued matches.

Since Version

\5.1.15

| oadBal anceAut oConmi t St at enent Thr eshol d

When auto-commit is enabled, the number of statements which should be executed before triggering
load-balancing to rebalance. Default value of "0" causes load-balanced connections to only rebalance

when exceptions are encountered, or auto-commit is disabled and transactions are explicitly committed

or rolled back.

DefauttVatue

a1

Since Version

5.1.15




Configuration Properties

| oadBal anceBl ockl i st Ti neout

Time in milliseconds between checks of servers whic
lives in the global blocklist.

h are unavailable, by controlling how long a server

Default Value

Since Version

5.1.0

| oadBal anceConnecti onGr oup

Logical group of load-balanced connections within a class loader, used to manage different groups
independently. If not specified, live management of load-balanced connections is disabled.

Since Version

5.1.13

| oadBal anceExcepti onChecker

Fully-qualified class name of custom exception checker. The class must implement

‘com.mysql.cj.jdbc.ha.LoadBalanceExceptionChecke
exceptions and determine whether they should trigge
deployment.

r' interface, and is used to inspect 'SQLException’
r fail-over to another host in a load-balanced

Default Value

com.mysql.cj.jdbc.ha.StandardLoadBalanceExcepti

pnChecker

Since Version

5.1.13

| oadBal ancePi ngTi meout

Time in milliseconds to wait for ping responses from each of load-balanced physical connections when

using a load-balanced connection.

Default Value

0

Since Version

5.1.13

| oadBal anceSQLExcept i onSubcl assFai | over

Comma-delimited list of classes/interfaces used by default load-balanced exception checker to
determine whether a given 'SQLException' should trigger a failover. The comparison is done using
'Class.isInstance(SQLEXxception)' using the 'SQLException' thrown.

Since Version

5.1.13

| oadBal anceSQLSt at eFai | over

Comma-delimited list of 'SQLState' codes used by the default load-balanced exception checker

to determine whether a given 'SQLException' should

trigger a failover. The 'SQLState' of a given

'SQLEXxception' is evaluated to determine whether it begins with any of the values specified in the

comma-delimited list.

Since Version

5.1.13

| oadBal anceVal i dat eConnect i onOnSwapSer ver

Should the load-balanced connection explicitly check
new physical connection at commit/rollback?

whether the connection is live when swapping to a

92



Configuration Properties

Default Value

false

Since Version

5.1.13

pi nd obal TxToPhysi cal Connecti on

When using XA connections, should the driver ensure that operations on a given XID are always routed
to the same physical connection? This allows the 'XAConnection' to support "XA START ... JOIN" after

"XA END" has been called.

Default Value

false

Since Version

5.0.1

replicati onConnecti onG oup

Logical group of replication connections within a class loader, used to manage different groups
independently. If not specified, live management of replication connections is disabled.

Since Version

8.0.7

resourcel d

A globally unique name that identifies the resource that this data source or connection is connected to,

used for '"XAResource.isSameRM()' when the driver can't determine this value based on hostnames

used in the URL.

Since Version

5.0.1

server AffinityQOrder

A comma separated list containing the host/port pairs that are to be used in load-balancing

"serverAffinity" strategy. Only the sub-set of the hosts enumerated in the main hosts section in this URL
will be used and they must be identical in case and type, i.e., can't use an IP address in one place and

the corresponding host name in the other.

Since Version

8.0.8

3.5.3.13 Performance Extensions

cal | abl eSt nt CacheSi ze

If ‘cacheCallableStmts' is enabled, how many callable statements should be cached?

Default Value

100

Since Version

3.1.2

net adat aCacheSi ze

The number of queries to cache 'ResultSetMetadata’ for if ‘cacheResultSetMetaData' is set to "true”.

Default Value

50

Since Version

3.1.1

uselLocal Sessi onSt at e

93




Configuration Properties

Should the driver refer to the internal values of auto-commit and transaction isolation that are set by
'‘Connection.setAutoCommit()' and 'Connection.setTransactionlsolation()' and transaction state as
maintained by the protocol, rather than querying the database or blindly sending commands to the
database for 'commit()' or 'rollback()' method calls?

Default Value false

Since Version 3.1.7

uselLocal Transacti onSt at e

Should the driver use the in-transaction state provided by the MySQL protocol to determine if a
‘commit()' or 'rollback()' should actually be sent to the database?

Default Value false

Since Version 5.1.7

prepSt m CacheSi ze

If prepared statement caching is enabled, how many prepared statements should be cached?

Default Value 25

Since Version 3.0.10

prepSt mt CacheSql Li m t

If prepared statement caching is enabled, what's the largest SQL the driver will cache the parsing for?

Default Value 256

Since Version 3.0.10

queryl nf oCacheFact ory

Name of a class implementing 'com.mysql.cj.CacheAdapterFactory' which will be used to create caches
for the parsed representation of prepared statements. Prior to version 8.0.29, this property was named
'parselnfoCacheFactory', which remains as an alias.

Default Value com.mysql.cj.PerConnectionLRUFactory
Since Version 5.1.1

server Confi gCacheFactory

Name of a class implementing 'com.mysql.cj.CacheAdapterFactory', which will be used to create caches
for MySQL server configuration values.

Default Value com.mysql.cj.util.PerVmServerConfigCacheFactory
Since Version 5.1.1

al waysSendSet | sol ati on

Should the driver always communicate with the database when 'Connection.setTransactionlsolation()'
is called? If set to "false", the driver will only communicate with the database when the requested
transaction isolation is different than the whichever is newer, the last value that was set via

94




Configuration Properties

‘Connection.setTransactionlsolation()', or the value that was read from the server when the
connection was established. Note that "useLocalSessionState=true" will force the same behavior as
"alwaysSendSetlsolation=false", regardless of how 'alwaysSendSetlsolation' is set.

Default Value

true

Since Version

3.1.7

mai nt ai nTi neSt at s

Should the driver maintain various internal timers to enable idle time calculations as well as more
verbose error messages when the connection to the server fails? Setting this property to false removes

at least two calls to 'System.getCurrentTimeMillis()' per query.

Default Value

true

Since Version

3.1.9

useCur sor Fet ch

Should the driver use cursor-based fetching to retrieve rows? If set to "true" and 'defaultFetchSize' is

set to a value higher than zero or 'setFetchSize()' with a value higher than zero is called on a statement,
then the cursor-based result set will be used. Please note that 'useServerPrepStmts' is automatically set
to "true" in this case because cursor functionality is available only for server-side prepared statements.

Default Value

false

Since Version

5.0.0

e cacheCal | abl eStnts

Should the driver cache the parsing stage of CallableStatements?

Default Value

false

Since Version

3.1.2

e« cachePrepStnts

Should the driver cache the parsing stage of PreparedStatements of client-side prepared statements, the
"check" for suitability of server-side prepared and server-side prepared statements themselves?

Default Value

false

Since Version

3.0.10

e cacheResul t Set Met adat a

Should the driver cache 'ResultSetMetaData' for statements and prepared statements?

Default Value

false

Since Version

311

95



Configuration Properties

cacheServer Confi guration

Should the driver cache the results of "SHOW VARIABLES" and "SHOW COLLATION" on a per-URL

basis?
Default Value false
Since Version 3.15

def aul t Fet chSi ze

The driver will call 'setFetchSize(n)" with this value on all newly-created statements.

Default Value

0

Since Version

3.1.9

dont CheckOnDupl i cat eKeyUpdat el nSQL

Stops checking if every INSERT statement contains the "ON DUPLICATE KEY UPDATE" clause. As a
side effect, obtaining the statement's generated keys information will return a list where normally it would
not. Also be aware that, in this case, the list of generated keys returned may not be accurate. The effect

of this property is canceled if set simultaneously with "rewriteBatchedStatements=true".

Default Value

false

Since Version

5.1.32

el i deSet Aut oCommi t s

Should the driver only issue 'set autocommit=n' queries when the server's state doesn't match the
requested state by '‘Connection.setAutoCommit(boolean)'?

Default Value

false

Since Version

3.13

enabl eEscapePr ocessi ng

Sets the default escape processing behavior for Statement objects. The method
'Statement.setEscapeProcessing()' can be used to specify the escape processing behavior for an
individual statement object. Default escape processing behavior in prepared statements must be defined
with the property 'processEscapeCodesForPrepStmts'.

Default Value

true

Since Version

6.0.1

enabl eQuer yTi nmeout s

When enabled, query timeouts set via 'Statement.setQueryTimeout()' use a shared 'java.util. Timer'
instance for scheduling. Even if the timeout doesn't expire before the query is processed, there will

be memory used by the 'TimerTask' for the given timeout which won't be reclaimed until the time the
timeout would have expired if it hadn't been cancelled by the driver. High-load environments might want

to consider disabling this functionality.

Default Value

true

Since Version

5.0.6

96




Configuration Properties

| ar geRowSi zeThr eshol d

What size result set row should the JDBC driver consider large, and thus use a more memory-efficient
way of representing the row internally?

Default Value 2048
Since Version 511

readOnl yPropagat esToSer ver

Should the driver issue appropriate statements to implicitly set the transaction access mode on server
side when 'Connection.setReadOnly()' is called? Setting this property to "true" enables InnoDB read-
only potential optimizations but also requires an extra roundtrip to set the right transaction state. Even if
this property is set to "false", the driver will do its best effort to prevent the execution of database-state-
changing queries.

Default Value true
5.1.35

Since Version

rew iteBat chedSt at enents

Should the driver use multi-queries, regardless of the setting of ‘allowMultiQueries', as well as rewriting
of prepared statements for INSERT and REPLACE queries into multi-values clause statements when
‘executeBatch()' is called?

Notice that this might allow SQL injection when using plain statements and the provided input is not
properly sanitized. Also notice that for prepared statements, if the stream length is not specified when
using 'PreparedStatement.set*Stream()’, the driver would not be able to determine the optimum number
of parameters per batch and might return an error saying that the resultant packet is too large.

‘Statement.getGeneratedKeys()', for statements that are rewritten only works when the entire batch
consists of INSERT or REPLACE statements.

Be aware that when using "rewriteBatchedStatements=true" with "INSERT ... ON DUPLICATE KEY
UPDATE" for rewritten statements, the server returns only one value for all affected (or found) rows in
the batch, and it is not possible to map it correctly to the initial statements; in this case the driver returns
"0" as the result for each batch statement if total count was zero, and 'Statement. SUCCESS_NO _INFO'
if total count was above zero.

Default Value

false

Since Version

3.1.13

» useReadAheadl nput

Use optimized non-blocking buffered input stream when reading from the server?

Default Value

true

Since Version

3.15

3.5.3.14 Debugging/Profiling

* | ogger

97



Configuration Properties

The name of a class that implements ‘com.mysql.cj.log.Log' that will be used to log messages to. (default
is ‘com.mysql.cj.log.StandardLogger', which logs to STDERR).

Default Value com.mysql.cj.log.StandardLogger

Since Version 3.11

profil er Event Handl er

Name of a class that implements the interface 'com.mysql.cj.log.ProfilerEventHandler' that will be used to
handle profiling/tracing events.

Default Value com.mysql.cj.log.LoggingProfilerEventHandler

Since Version 5.1.6

useNanosFor El apsedTi ne

For profiling/debugging functionality that measures elapsed time, should the driver try to use
nanoseconds resolution?

Default Value false
Since Version 5.0.7

maxQuerySi zeTolLog

Controls the maximum length of the part of a query that will get logged when profiling or tracing.

Default Value 2048
Since Version 3.1.3

maxByt eAr r ay AsHex

Maximum size for a byte array parameter in a prepared statement that is converted to a hexadecimal
literal when interpolated by 'JdbcPreparedStatement.toString()'. Any byte arrays larger than this value
are interpolated generically as "** BYTE ARRAY DATA **",

Default Value 1024

Since Version 8.0.31

profil eSQ

Trace queries and their execution/fetch times to the configured 'profilerEventHandler".
Default Value false

Since Version 3.1.0

| ogSI owQueri es

Should queries that take longer than 'slowQueryThresholdMillis' or detected by the 'autoSlowLog'
monitoring be reported to the registered 'profilerEventHandler'?

Default Value false

Since Version 3.1.2

98



Configuration Properties

sl owQueryThreshol dM I li s

If 'logSlowQueries' is enabled, how long, in milliseconds, should a query take before it is logged as slow?

Default Value

2000

Since Version

3.1.2

sl owQuer yThr eshol dNanos

If 'logSlowQueries' is enabled, 'useNanosForElapsedTime' is set to "true", and this property is set to a
non-zero value, the driver will use this threshold, in nanosecond units, to determine if a query was slow.

Default Value

0

Since Version

5.0.7

aut oSl owlLog

Instead of using 'slowQueryThreshold* to determine if a query is slow enough to be logged, maintain
statistics that allow the driver to determine queries that are outside the 99th percentile?

Default Value

true

Since Version

514

expl ai nSl owQueri es

If 'logSlowQueries' is enabled, should the driver automatically issue an 'EXPLAIN' on the server and
send the results to the configured logger at a WARN level?

Default Value

false

Since Version

3.1.2

gat her Perf Metrics

Should the driver gather performance metrics, and report them via the configured logger every

‘reportMetricsintervalMillis' milliseconds?

Default Value

false

Since Version

3.1.2

reportMetricsinterval MI1is

If 'gatherPerfMetrics' is enabled, how often should they be logged (in milliseconds)?

Default Value

30000

Since Version

3.1.2

| ogXaConmands

Should the driver log XA commands sent by 'MysglXaConnection' to the server, at the DEBUG level of

logging?
Default Value false
Since Version 5.0.5

99




Configuration Properties

* traceProtocol

Should the network protocol be logged at the TRACE level?
false
3.1.2

Default Value
Since Version

» enabl ePacket Debug
When enabled, a ring-buffer of 'packetDebugBufferSize' packets will be kept, and dumped when
exceptions are thrown in key areas in the driver's code.

false

3.1.3

Default Value
Since Version

e packet DebugBufferSi ze

The maximum number of packets to retain when 'enablePacketDebug' is "true".
20
3.1.3

Default Value
Since Version

e useUsageAdvi sor
Should the driver issue usage warnings advising proper and efficient usage of JDBC and MySQL
Connector/J to the 'profilerEventHandler'?

false
3.1.1

Default Value
Since Version

* resul tSetSizeThreshol d
If 'useUsageAdvisor' is "true”, how many rows should a result set contain before the driver warns that it is

suspiciously large?
Default Value 100
Since Version 5.0.5

e autoCenerat eTest caseScri pt
Should the driver dump the SQL it is executing, including server-side prepared statements to STDERR?

false
3.1.9

Default Value
Since Version

3.5.3.15 Exceptions/Warnings

o dunpQueri esOnException
Should the driver dump the contents of the query sent to the server in the message for SQLExceptions?

false
3.1.3

Default Value
Since Version

100




Configuration Properties

exceptionlnterceptors

Comma-delimited list of classes that implement the interface

‘com.mysql.cj.exceptions.Exceptioninterceptor'. These classes will be instantiated one per ‘Connection’

instance, and all 'SQLException' exceptions thrown by the driver will be allowed to be intercepted by
these interceptors, in a chained fashion, with the first class listed as the head of the chain.

Since Version 5.1.8

i gnor eNonTxTabl es

Ignore non-transactional table warning for rollback?

Default Value false

Since Version 3.0.9

i ncl udel nnodbSt at usl nDeadl ockExcepti ons

Include the output of "SHOW ENGINE INNODB STATUS" in exception messages when deadlock
exceptions are detected?

Default Value false

Since Version 5.0.7

i ncl udeThr eadDunpl nDeadl ockExcepti ons

Include current Java thread dump in exception messages when deadlock exceptions are detected?

Default Value false

Since Version 5.1.15

i ncl udeThr eadNanmesAsSt at enent Conment

Include the name of the current thread as a comment visible in "SHOW PROCESSLIST", or in Innodb

deadlock dumps, useful in correlation with "includelnnodbStatusinDeadlockExceptions=true" and
"includeThreadDumplnDeadlockExceptions=true".

Default Value false

Since Version 5.1.15

useOnl yServer Err or Messages

Don't prepend standard 'SQLState' error messages to error messages returned by the server.

Default Value true

Since Version 3.0.15

3.5.3.16 Tunes for integration with other products

overri deSupportslntegrityEnhancement Facility

Should the driver return "true" for '‘DatabaseMetaData.supportsintegrityEnhancementFacility()' even if the
database doesn't support it to workaround applications that require this method to return "true" to signal

101




Configuration Properties

support of foreign keys, even though the SQL specification states that this facility contains much more
than just foreign key support (one such application being OpenOffice)?

Default Value

false

Since Version

3.1.12

e ul traDevHack

Create prepared statements for 'prepareCall()' when required, because UltraDev is broken and issues a

'‘prepareCall()' for all statements?

Default Value

false

Since Version

2.0.3

3.5.3.17 JDBC compliance

e useCol unmmNanesl| nFi ndCol unm

Prior to JDBC-4.0, the JDBC specification had a bug related to what could be given as a

column name to result set methods like ‘findColumn()', or getters that took a String property.
JDBC-4.0 clarified "column name" to mean the label, as given in an "AS" clause and returned by
'ResultSetMetaData.getColumnLabel()', and if no "AS" clause is specified, the column name. Setting
this property to "true" will result in a behavior that is congruent to JDBC-3.0 and earlier versions of
the JDBC specification, but which could have unexpected results. This property is preferred over
‘'useOldAliasMetadataBehavior' unless in need of the specific behavior that it provides with respect to

'ResultSetMetadata’.

Default Value false

Since Version 5.1.7
e pedantic

Follow the JDBC specification to the letter.

Default Value false

Since Version 3.0.0

e« used dAl i asMet adat aBehavi or

Should the driver use the legacy behavior for "AS" clauses on columns and tables, and only return
aliases ,if any, for 'ResultSetMetaData.getColumnName()' or 'ResultSetMetaData.getTableName()'

rather than the original column/table name?

Default Value

false

Since Version

5.04

3.5.3.18 X Protocol and X DevAPI

e xdevapi . auth

102

Authentication mechanism to use with the X Protocol. Allowed values are "SHA256  MEMORY",
"MYSQL41", "PLAIN", and "EXTERNAL". Value is case insensitive. If the property is not set, the




Configuration Properties

mechanism is chosen depending on the connection type: "PLAIN" is used for TLS connections and
"SHA256_MEMORY" or "MYSQLA41" is used for unencrypted connections.

Default Value PLAIN

Since Version 8.0.8

xdevapi . conpr essi on

X DevAPI-specific network traffic compression. This option accepts one of the three values:
"PREFERRED", "REQUIRED", and "DISABLED". Setting this option to "PREFERRED" or "REQUIRED"
enables compression algorithm negotiation between Connector and Server, and turns on compression
of large X Protocol packets, as long as a consensus is reached between client and server regarding

the compression algorithm to use. If a consensus cannot be reached, connection fails if the option is
set to "REQUIRED" and continues without compression if the option is set to "PREFERRED". Setting
this option as "DISABLED" skips the compression negotiation phase and forbids the interchange of
compressed messages between client and server.

Default Value PREFERRED
Since Version 8.0.20

xdevapi . conpr essi on-al gorithns

A comma-delimited list of compression algorithms, each one identified by its name and

operating mode, (e.g. "Iz4_message"; consult the description for the MySQL global variable
'mysqlx_compression_algorithms' for a list of supported and enabled algorithms), that defines the order
and which algorithms will be attempted when negotiating connection compression with the server.

The compression algorithm 'deflate_stream’ is supported natively. Additional compression algorithms
require using third-party libraries and enabling them with the connection property 'xdevapi.compression-
extensions'.

This option is meaningful only when network traffic compression is enabled using the connection
property 'xdevapi.compression'.

As an alternative to the default algorithm names, that contain a reference to the compression operation
mode, the aliases "zstd", "Iz4", and "deflate" can be used instead of "zstd_stream", "lz4_message", and
"deflate_stream".

Default Value zstd_stream,lz4_message,deflate_stream
Since Version 8.0.22

xdevapi . conpr essi on- ext ensi ons

A comma-delimited list of triplets, with their elements delimited by colon, that enables the support

for additional compression algorithms. Each triplet must contain: first, an algorithm name and

operating mode (e.g. "Iz4_message"; consult the description for the MySQL global variable
'mysqlx_compression_algorithms' for a list of supported and enabled algorithms); second, a fully-
qualified class name of a class implementing the interface 'java.io.InputStream' that will be used to inflate
data compressed with the named algorithm; third, a fully-qualified class name of a class implementing
the interface ‘java.io.OutputStream' that will be used to deflate data using the named algorithm. Along

103




Configuration Properties

with this setting, the library containing implementations of the designated classes must be available in
the application's class path.

Any number of triplets defining compression algorithms and their inflater and deflater implementations
can be provided but only the ones supported and enabled on the MySQL Server can be used.

The compression algorithm 'deflate_stream’ is supported natively. Additional compression algorithms
require using third-party libraries.

This option is meaningful only when network traffic compression is enabled using the connection
property 'xdevapi.compression'.

As an alternative to the default algorithm names, that contain a reference to the compression operation
mode, the aliases "zstd", "Iz4", and "deflate" can be used instead of "zstd_stream", "lz4_message", and
"deflate_stream".

Since Version 8.0.22

xdevapi . connect -t i meout

X DevAPI-specific timeout, in milliseconds, for socket connect, with "0" being no timeout. If
'xdevapi.connect-timeout' is not set explicitly and ‘connectTimeout' is, 'xdevapi.connect-timeout' takes up
the value of 'connectTimeout'.

Default Value 10000

Since Version 8.0.13

xdevapi . connection-attributes

An X DevAPI-specific comma-delimited list of user-defined "key=value" pairs, in addition to standard X
Protocol-defined "key=value" pairs, to be passed to MySQL Server for display as connection attributes
in the 'PERFORMANCE_SCHEMA' tables 'session_account_connect_attrs' and 'session_connect_attrs'.
Example usage: "xdevapi.connection-attributes=keyl=valuel,key2=value2" or "xdevapi.connection-
attributes=[keyl=valuel,key2=value2]". This functionality is available for use with MySQL Server version
8.0.16 or later only. Earlier versions of X Protocol do not support connection attributes, causing this
configuration option to be ignored. For situations where Session creation/initialization speed is critical,
setting "xdevapi.connection-attributes=false" will cause connection attribute processing to be bypassed.

Since Version 8.0.16

xdevapi . dns-srv

X DevAPI-specific option for instructing the driver use the given host name to lookup for DNS SRV
records and use the resulting list of hosts in a multi-host failover connection. Note that a single host
name and no port must be provided when this option is enabled.

Default Value false

Since Version 8.0.19

xdevapi . fal | back-to-system keystore

X DevAPI-specific switch to specify whether in the absence of a set value for 'xdevapi.ssl-keystore' (or
‘clientCertificateKeyStoreUrl"), Connector/J falls back to using the system-wide key store defined through
the system properties 'javax.net.ssl.keyStore*'. If not specified, the value of ‘fallbackToSystemKeyStore'
is used.

104



Configuration Properties

Default Value true

Since Version 8.0.22

 xdevapi.fallback-to-systemtruststore

X DevAPI-specific switch to specify whether in the absence of a set value for 'xdevapi.ssl-truststore' (or
‘trustCertificateKeyStoreUrl"), Connector/J falls back to using the system-wide default trust store or

one defined through the system properties ‘javax.net.ssl.trustStore*'. If not specified, the value of
'fallbackToSystemTrustStore' is used.

Default Value true

Since Version 8.0.22

» xdevapi . ssl -keystore

X DevAPI-specific URL for the client certificate key store. If not specified, use
‘clientCertificateKeyStoreUrl' value.

Since Version 8.0.22

xdevapi . ssl - keyst or e- passwor d

X DevAPI-specific password for the client certificate key store. If not specified, use
‘clientCertificateKeyStorePassword' value.

Since Version 8.0.22

xdevapi . ssl - keyst ore-type

X DevAPI-specific type of the client certificate key store. If not specified, use
‘clientCertificateKeyStoreType' value.

Default Value JKS

Since Version 8.0.22

xdevapi . ssl - node

X DevAPI-specific SSL mode setting. If not specified, use 'ssIMode'. Because the "PREFERRED" mode

is not applicable to X Protocol, if 'xdevapi.ssl-mode' is not set and 'ssIMode’ is set to "PREFERRED",
'xdevapi.ssl-mode’ is set to "REQUIRED".

Default Value REQUIRED
Since Version 8.0.7

xdevapi .ssl-truststore

X DevAPI-specific URL for the trusted CA certificates key store. If not specified, use
‘trustCertificateKeyStoreUrl' value.

Since Version 6.0.6 105




JDBC API Implementation Notes

e xdevapi . ssl-truststore-password

X DevAPI-specific password for the trusted CA certificates key store. If not specified, use
'trustCertificateKeyStorePassword' value.

Since Version 6.0.6

» xdevapi.ssl-truststore-type

X DevAPI-specific type of the trusted CA certificates key store. If not specified, use
‘trustCertificateKeyStoreType' value.

Default Value JKS

Since Version 6.0.6

e xdevapi.tls-ciphersuites

X DevAPI-specific property overriding the cipher suites enabled for use on the underlying SSL sockets. If
not specified, the value of 'enabledSSLCipherSuites' is used.

Since Version 8.0.19

e xdevapi .tl s-versions

X DevAPI-specific property that takes a list of TLS protocols to allow when creating secure sessions.
Overrides the TLS protocols enabled in the underlying SSL socket. If not specified, then the value of
'tlsVersions' is used instead. Allowed and default values are "TLSv1.2" and "TLSv1.3".

‘Since Version 8.0.19

3.5.4 JDBC API Implementation Notes

MySQL Connector/J, as a rigorous implementation of the JDBC API, passes all of the tests in the publicly
available version of Oracle's JDBC compliance test suite. The JDBC specification is flexible on how certain
functionality should be implemented. This section gives details on an interface-by-interface level about
implementation decisions that might affect how you code applications with MySQL Connector/J.

* BLOB

You can emulate BLOBs with locators by adding the property enmul at eLocat or s=t r ue to your JDBC
URL. Using this method, the driver will delay loading the actual BLOB data until you retrieve the other
data and then use retrieval methods (get | nput St rean( ), get Byt es(), and so forth) on the BLOB
data stream.

You must use a column alias with the value of the column to the actual name of the BLOB, for example:

SELECT id, 'data' as bl ob_data from bl obtabl e

You must also follow these rules:

e The SELECT must reference only one table. The table must have a primary key.

106 « The SELECT must alias the original BLOB column name, specified as a string, to an alternate name.

e The SELECT must cover all columns that make up the primary key.


http://www.oracle.com/technetwork/java/javase/jdbc/index.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_primary_key
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/select.html

JDBC API Implementation Notes

The BLOB implementation does not allow in-place modification (they are copies, as reported by the
Dat abaseMet aDat a. | ocat or sUpdat eCopi es() method). Because of this, use the corresponding
Pr epar edSt at enent . set Bl ob() or Resul t Set . updat eBl ob() (in the case of updatable result
sets) methods to save changes back to the database.

Connection

The i sCl osed() method does not ping the server to determine if it is available. In accordance with the
JDBC specification, it only returns true if cl osed() has been called on the connection. If you need to
determine if the connection is still valid, issue a simple query, such as SELECT 1. The driver will throw
an exception if the connection is no longer valid.

DatabaseMetaData

Foreign key information (get | npor t edKeys() /get Export edKeys() and get Cr ossRef erence())
is only available from | nnoDB tables. The driver uses SHON CREATE TABLE to retrieve this information,
so if any other storage engines add support for foreign keys, the driver would transparently support them
as well.

PreparedStatement

Two variants of prepared statements are implemented by Connector/J, the client-side and the server-
side prepared statements. Client-side prepared statements are used by default because early MySQL
versions did not support the prepared statement feature or had problems with its implementation. Server-
side prepared statements and binary-encoded result sets are used when the server supports them. To
enable usage of server-side prepared statements, set useSer ver PrepSt nt s=t r ue.

Be careful when using a server-side prepared statement with large parameters that are set using
setBinaryStrean(), set Ascii Stream), set Uni codeStrean(), set Character Streanm(),
set NChar acter Strean(), set Bl ob(), set Cl ob(), or set NCLobh() . To re-execute the statement
with any large parameter changed to a nonlarge parameter, call cl ear Par anet er s() and set all
parameters again. The reason for this is as follows:

» During both server-side prepared statements and client-side emulation, large data is exchanged only
when Pr epar edSt at ement . execut e() is called.

¢ Once that has been done, the stream used to read the data on the client side is closed (as per the
JDBC spec), and cannot be read from again.

« If a parameter changes from large to nonlarge, the driver must reset the server-side state of the
prepared statement to allow the parameter that is being changed to take the place of the prior large
value. This removes all of the large data that has already been sent to the server, thus requiring the
data to be re-sent, using the set Bi naryStrean(), set Ascii Strean(), set Uni codeStrean(),
set Charact er Strean(), set NCharact er Streamn(), set Bl ob(), set C ob(), orset NCLob()
method.

Consequently, to change the type of a parameter to a nonlarge one, you must call
cl ear Par anet er s() and set all parameters of the prepared statement again before it can be re-
executed.

ResultSet

By default, ResultSets are completely retrieved and stored in memory. In most cases this is the most
efficient way to operate and, due to the design of the MySQL network protocol, is easier to implement.
If you are working with ResultSets that have a large number of rows or large values and cannot allocate

107


https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_foreign_key
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/show-create-table.html

JDBC API Implementation Notes

heap space in your JVM for the memory required, you can tell the driver to stream the results back one
row at a time.

To enable this functionality, create a St at enent instance in the following manner:

stnmt = conn. createStatement (j ava. sgl . Resul t Set . TYPE_FORWARD_ONLY,
java. sql . Resul t Set . CONCUR_READ_ONLY) ;
stnt. set FetchSi ze(l nteger. M N_VALUE) ;

The combination of a forward-only, read-only result set, with a fetch size of | nt eger . M N_VALUE
serves as a signal to the driver to stream result sets row-by-row. After this, any result sets created with
the statement will be retrieved row-by-row.

There are some caveats with this approach. You must read all of the rows in the result set (or close it)
before you can issue any other queries on the connection, or an exception will be thrown.

The earliest the locks these statements hold can be released (whether they be Myl SAMtable-level locks
or row-level locks in some other storage engine such as | nnoDB) is when the statement completes.

If the statement is within scope of a transaction, then locks are released when the transaction completes
(which implies that the statement needs to complete first). As with most other databases, statements
are not complete until all the results pending on the statement are read or the active result set for the
statement is closed.

Therefore, if using streaming results, process them as quickly as possible if you want to maintain
concurrent access to the tables referenced by the statement producing the result set.

Another alternative is to use cursor-based streaming to retrieve a set number of rows each time.
This can be done by setting the connection property useCur sor Fet ch to true, and then calling
set Fet chSi ze(i nt) withi nt being the desired number of rows to be fetched each time:

conn = DriverManager. get Connecti on("jdbc: nysql://| ocal host/ ?useCur sor Fet ch=true", "user", "s3cr3t");
stm = conn.createStatenent();

stnt. set FetchSi ze(100) ;

rs = stnt.executeQuery("SELECT * FROM your _tabl e _here");

* Statement

Connector/J includes support for both St at enent . cancel () and St at enent . set Quer yTi meout ().
Both require a separate connection to issue the KI LL QUERY statement. In the case of

set Quer yTi meout (), the implementation creates an additional thread to handle the timeout
functionality.

Note

Failures to cancel the statement for set Quer yTi neout () may manifest
themselves as Runt i meExcept i on rather than failing silently, as there is

108


https://dev.mysql.com/doc/refman/8.0/en/kill.html

Java, JDBC, and MySQL Types

currently no way to unblock the thread that is executing the query being cancelled
due to timeout expiration and have it throw the exception instead.

MySQL does not support SQL cursors, and the JDBC driver does not emulate them, so
set Cur sor Nane() has no effect.

Connector/J also supplies two additional methods:

e setLocal I nfil el nput Strean() sets an | nput St r eaminstance that will be used to send data to
the MySQL server for a LOAD DATA LOCAL | NFI LE statement rather than a Fi | el nput St r eamor
URLI nput St r eamthat represents the path given as an argument to the statement.

This stream will be read to completion upon execution of a LOAD DATA LOCAL | NFI LE statement,
and will automatically be closed by the driver, so it needs to be reset before each call to execut e* ()
that would cause the MySQL server to request data to fulfill the request for LOAD DATA LOCAL

I NFI LE.

If this value is set to NULL, the driver will revert to using a Fi | el nput St r eamor URLI nput St r eam
as required.

e getLocal I nfilelnputStrean() returns the | nput St r eaminstance that will be used to send data
in response to a LOAD DATA LOCAL | NFI LE statement.

This method returns NULL if no such stream has been set using set Local I nfil el nput Strean().
3.5.5 Java, JDBC, and MySQL Types

MySQL Connector/J is flexible in the way it handles conversions between MySQL data types and Java
data types.

In general, any MySQL data type can be converted to aj ava. | ang. St ri ng, and any numeric type
can be converted to any of the Java humeric types, although round-off, overflow, or loss of precision may
occur.

Connector/J issues warnings or throws Dat aTr uncat i on exceptions as is required by the
JDBC specification, unless the connection was configured not to do so by using the property
j dbcConpl i ant Truncat i on and setting itto f al se.

The conversions that are always guaranteed to work are listed in the following table. The first column lists

one or more MySQL data types, and the second column lists one or more Java types to which the MySQL
types can be converted.

Table 3.22 Possible Conversions Between MySQL and Java Data Types

These MySQL Data Types Can always be converted to these Java types
CHAR, VARCHAR, BLOB, TEXT, ENUM and java.lang. String, java.io.|nputStream
SET java.io. Reader, java.sql. Bl ob,

java. sgl . d ob
FLOAT, REAL, DOUBLE PRECI Sl ON, java.l ang. String, java.lang. Short,
NUVERI C, DECI MAL, TI NYI NT, SMALLI NT, java.l ang. I nteger, java.l ang. Long,
MEDI UM NT, | NTEGER, BI G NT j ava. | ang. Doubl e, java. mat h. Bi gDeci nal
DATE, TIME, DATETI ME, TI MESTAWP java.lang. String, java.sql.Date,

j ava. sql . Ti nest anp

109


https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html

Java, JDBC, and MySQL Types

Note

Round-off, overflow or loss of precision may occur if you choose a Java humeric
data type that has less precision or capacity than the MySQL data type you are
converting to/from.

The Resul t Set . get Obj ect () method uses the type conversions between MySQL and

Java types, following the JDBC specification where appropriate. The values returned by

Resul t Set Met aDat a. Get Col umTypeNane() and Resul t Set Met aDat a. Get Col unmCl assNaneg()
are shown in the table below. For more information on the JDBC types, see the reference on the

java.sql.Types class.

Table 3.23 MySQL Types and Return Values for ResultSetMetaData.GetColumnTypeName()and
ResultSetMetaData.GetColumnClassName()

MySQL Type Name

Return value of
Cet Col umTypeNane

Return value of Get Col unmCl assNane

BI T(1)

BIT

j ava. | ang. Bool ean

BIT( > 1)

BIT

byt e[]

BOOLEAN

TI NYI NT(1) SI GNED,

If
tinylntlisBit=true
and

t ransf or nedBi t | sBool
BIT

If
tinylntlisBit=true
and

t ransf or nedBi t | sBool
BOOLEAN

If
tinylnt1isBit=fal se
TI NYI NT

IftinylntlisBit=trueand
transf or medBi t | sBool ean=f al se:
j ava. | ang. Bool ean

ean=f al se:
IftinylntlisBit=trueand

t ransf or nedBi t | sBool ean=t r ue:
j ava. | ang. Bool ean

Iftinyl nt1li sBit=fal se:java.lang. | nteger
ean=true:

TINYI NT( > 1)
SI GNED

TI NYI NT

java. |l ang. | nt eger

TINYI NT( any )

TI NYI NT UNSI GNED

j ava. |l ang. | nt eger

UNSI GNED

SVALLI NT[ (M ] SMALLI NT [ UNSI GNED] |j ava. | ang. | nt eger (regardless of whether it is
[ UNSI GNED) UNSI GNED or not)

MEDI UM NT[ (M ] MEDI UM NT java.l ang. | nt eger (regardless of whether it is
[ UNSI GNED) [ UNSI GNED) UNSI GNED or not)

I NT, | NTEGER[ (M ] | NTEGER java. |l ang. | nt eger

| NT, | NTEGER[ (M ]

I NTEGER UNSI GNED

j ava. |l ang. Long

UNSI GNED

BIGNT[(M] Bl G NT java. |l ang. Long
BIGNT[(M] Bl G NT UNSI GNED j ava. mat h. Bi gl nt eger
UNSI GNED

FLOAT[ (M D) ]

FLOAT

j ava. | ang. Fl oat

110



http://docs.oracle.com/javase/8/docs/api/java/sql/Types.html

Handling of Date-Time Values

MySQL Type Name Return value of Return value of Get Col utmdC assNane
CGet Col umTypeNane

DOUBLE[ (M B) ] DOUBLE j ava. | ang. Doubl e (regardless of whether it is

[ UNSI GNED] UNSI GNED or not)

DECI MAL[ (M, D) ] DECI MAL j ava. mat h. Bi gDeci mal (regardless of whether it

[ UNSI GNED) is UNSI GNED or not)

DATE DATE java.sql . Date

DATETI ME DATETI ME java.tine. Local Dat eTi ne

TI MESTAMP[ (M) ] Tl MESTAMP java. sgl . Ti nest anp

TI VE TI VE java.sql . Tine

YEAR] (2] 4)] YEAR If year | sDat eType configuration property is
setto f al se, then the returned object type is
java. sgl . Short. If settot r ue (the default), then
the returned object is of type j ava. sql . Dat e.

CHAR( M CHAR java.lang. String

VARCHAR( M VARCHAR java.l ang. String

Bl NARY( M, CHAR(M  |BI NARY byt e[ ]

Bl NARY

VARBI NARY( M), VARBI NARY byte[]

VARCHAR( M Bl NARY

BLOB BLOB byt e[]

TI NYBLOB TI NYBLOB byt e[]

MEDI UVBLOB MEDI UVBLOB byt e[]

LONGBLOB LONGBLOB byt e[]

TEXT TEXT java.lang. String

TI NYTEXT TI NYTEXT java.l ang. String

VEDI UMTEXT VEDI UMTEXT java.lang. String

LONGTEXT LONGTEXT java.lang. String

JSON JSON java.lang. String

GEOVETRY GEOVETRY byt e[]

ENUM ' val uel', ' val ug@HAR. .) java.lang. String

SET(' val uel', "' val ue2CHAR.) java.lang. String

3.5.6 Handling of Date-Time Values

3.5.6.1 Preserving Time Instants

Background

A time instant is a specific moment on a time-line. A time instant is said to be preserved when it always
refers to the same point in time when its value is being stored to or retrieved from a database, no matter
what time zones the database server and the clients are operating in.

TI MESTAMP is the only MySQL data type designed to store instants. To preserve time instants, the
server applies time zone conversions in incoming or outgoing time values when needed. Incoming

111



Handling of Date-Time Values

values are converted by server from the connection session's time zone to Coordinated Universal Time
(UTC) for storage, and outgoing values are converted from UTC to the session time zone. Starting from
MySQL 8.0.19, you can also specify a time zone offset when storing TI MESTAMP values (see The DATE,
DATETIME, and TIMESTAMP Types for details), in which case the TI MESTAMP values are converted to
the UTC from the specified offset instead of the session time zone. But, once stored, the original offset
information is no longer preserved.

The situation is less straightforward with the DATETI VE data type: it does not represent an instant and,
when no time zone offset is specified, there is no time zone conversion for DATETI MVE values, so they are
stored and retrieved as they are. However, with a specified time zone offset, the input value is converted
to the session time zone before it is stored; the result is that, when retrieved in a different session with a
different time zone offset as the specified one, the DATETI ME value becomes different from the original
input value.

Because MySQL data types other than TI MESTAMP (and the Java wrapper classes for those other
MySQL data types) do not represent true time instants; mixing up instant-representing and non-instant-
representing date-time types when storing and retrieving values might give rise to unexpected results. For
example:

e When storing j ava. sql . Ti nest anp to, for example, a DATETI ME column, you might not get back the
same instant value when retrieving it into a client that is in a different time zone than the one the client
was in when storing the value.

* When storing, for example, a j ava.tinme. Local Dat eTi ne to a TI MESTAMP column, you might not
be storing the correct UTC-based value for it, because the time zone for the value is actually undefined.

Therefore, do not pass instant date-time types (j ava. uti | . Cal endar,j ava. util . Dat e,
java.tine. O fsetDateTine, java. sql . Ti mest anp) to non-instant date-time types (for example,
java. sql . DATE, java. ti ne. Local Date,java.tine. Local Tine,java.tinme. O fsetTinme)or
vice versa, when working with the server.

The rest of the section discusses how to preserve time instants when working with Connector/J.

Preserving Instants with Connector/J

The scenario: Let us assume that an application is running on a certain application server and is
connecting to a MySQL server using Connector/J. Certain events take place in a connection session, for
which timestamps are generated, and the event timestamps are associated with the JVM time zone of the
application server. These timestamps are to be stored onto a MySQL Server, and are also to be retrieved
from it later.

The challenge: The timestamps' instant values need to be preserved when they are saved onto or retrieved
from the server using Connector/J. Because the MySQL Server always assumes implicitly that a time
instant value references to the connection session time zone (which is set by the sessionti ne_zone
variable ) when being saved to or retrieved form the server, a time instant value is properly preserved only
in the following situations:

1. When Connector/J is running in the same time zone as the MySQL Server (i.e., the server's session
time zone is the same as the JVM's time zone), time instants are naturally preserved, and no time zone
conversion is needed. Note that in this case, time instants are really preserved only if the server and
the JVM continue to run always in the same time zone in the future.

2. When Connector/J is running in a different time zone from that of the MySQL Server (i.e., the JVM's
time zone is different from the server's session time zone), Connector/.J performs one of the following:

a. Queries the value of the session time zone from the server, and converts the event timestamps
between the session time zone and the JVM time zone.

112


https://dev.mysql.com/doc/refman/8.0/en/time-zone-support.html#time-zone-variables
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_time_zone

Handling of Date-Time Values

Changes the server's session time zone to that of the JVM time zone, after which no time zone
conversion will be required.

Changes the server session time zone to a desired time zone specified by the user, and then
converts the timestamps between the JVM time zone and the user-specified time zone.

We identify the above solutions for time instant preservation as Solution 1, 2a, 2b, and 2c. To achieve
these solutions, the following connection properties have been introduced in Connector/J since release
8.0.23:

» preservel nstants={true|fal se}: Whether to attempt to preserve time instant values by adjusting
timestamps.

« Whenitis f al se, no conversions are attempted; a timestamp is sent to the server as-is for storage,
and its visual presentation, not the actual time instant is preserved. When it is retrieved from the server
by Connector/J, different time zones might be associated with it, as the retrieval might happen in
different JVM time zones. For example: For example:

Time zones: UTC for JVM, UTC+1 for server session
Original timestamp from client (in UTC): 2020- 01- 01 01: 00: 00
Timestamp sent to server by Connector/J: 2020- 01- 01 01: 00: 00 (no conversion)

Timestamp values stored internally on the server: 2020- 01- 01 00: 00: 00 UTC (after internal
conversion of 2020- 01- 01 00: 00: 00 UTC+1 to UTC)

Timestamp value retrieved later into a server section (in UTC+1): 2020- 01- 01 01: 00: 00 (after
internal conversion of 2020- 01- 01 00: 00: 00 from UTC to UTC+1)

Timestamp values constructed by Connector/J in some other JVM time zone then before (say, in
UTC+3): 2020- 01- 01 01:00: 00

Comment: Time instant is not preserved

* When itis t r ue, Connector/J attempts to preserve the time instants by performing the
conversions in a manner defined by the connection properties connect i onTi neZone and
forceConnecti onTi neZoneToSessi on.

When storing a value, the conversion is performed only if the target data type, either the explicit one or
the default one, is TI MESTAMP. When retrieving a value, the conversion is performed only if the source
column has the TI MESTAMP, DATETI ME, or a character data type and the target class is an instant-
preserving one, like j ava. sql . Ti mnestanp orj ava. ti me. O f set Dat eTi ne.

e connectionTi meZone={ LOCAL| SERVER| user - def i ned-ti ne- zone} : Specifies how the server's
session time zone (in reference to which the timestamps are saved onto the server) is to be determined
by Connector/J. It takes on one of the following values:

» LOCAL: Connector/J assumes that the server's session time zone either (a) is the same as the JVM
time zone for Connector/J, or (b) should be set as the same as the JVM time zone for Connector/
J. Connector/J takes the situation as (a) or (b) depending on the value of the connection property
forceConnecti onTi neZoneToSessi on.

* SERVER: Connector/J should query the session's time zone from the server, instead of making any
assumptions about it. If the session time zone actually turns out to be different from Connector/J's JVM

113



Handling of Date-Time Values

time zone and pr eser vel nst ant s=t r ue, Connector/J performs time zone conversion between the
session time zone and the JVM time zone.

e user-defined-tine-zone: Connector/J assumes that the server's session time zone either
(a) is the same as the user-defined time zone, or (b) should be set as the user-defined time zone.
Connector/J takes the situation as (a) or (b) depending on the value of the connection property
forceConnecti onTi neZoneToSessi on.

Note

For Connector/J 8.0.23 and later, ser ver Ti mezone is an alias for
connecti onTi neZone. For Connector/J 8.0.22 and earlier, ser ver Ti nezone
was used to override the session time zone setting on the server.

» forceConnectionTi meZoneToSessi on={true| f al se}: Controls whether the sessionti ne_zone
variable is to be set to the value specified in connect i onTi neZone.

Now, here are the connection properties values to be used for achieving the Solutions defined above for
preserving time instants:

» Solution 1: Use either preservelnstants=false or connectionTimeZone=LOCAL&
forceConnectionTimeZoneToSession=false. Because it can be safely assumed that the server
session time zone is the same as Connector/J' s JVM timezone, no query of the server's session time
zone occurs, and no time zone conversion occurs. For example:

e Time zones: UTC+1 for both the JVM and the server session
¢ Original timestamp from client (in UTC+1): 2020- 01- 01 01: 00: 00
« Timestamp sent to server by Connector/J: 2020- 01- 01 01: 00: 00 (no conversion needed)

» Timestamp values stored internally on the server: 2020- 01- 01 00: 00: 00 UTC (after internal
conversion from UTC+1 to UTC)

« Timestamp value retrieved later into a server time session in UTC+1 that Connector/J connects to:
2020- 01- 01 01: 00: 00 (after internal conversion from UTC to UTC+1)

« Timestamp value constructed by Connector/J in the same JVM time zone as before (UTC+1) and
returned to an application: 2020- 01- 01 01: 00: 00

« Comment: Time instant is preserved without conversion.
Note

This setting corresponds to the default behavior of Connector/J 5.1

» Solution 2a: Use preservelnstants=true&connectionTimeZone=SERVER . Connector/J then queries
the value of the session time zone from the server, and converts the event timestamps between the
session time zone and the JVM time zone. For example:

* Time zones: UTC+2 for JVM, UTC+1 for server session
 Original timestamp from client (in UTC+2): 2020- 01- 01 02: 00: 00

« Timestamp sent to server by Connector/J: 2020- 01- 01 01: 00: 00 (after conversion from UTC+2 to
UTC+1)

114


https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_time_zone

Handling of Date-Time Values

« Timestamp value stored internally on the server: 2020- 01- 01 00: 00: 00 UTC (after internal
conversion from UTC+1 to UTC)

« Timestamp value retrieved later into a server session in UTC+1: 2020- 01- 01 01: 00: 00 (after
internal conversion from UTC to UTC+1)

« Timestamp values constructed by Connector/J in the same JVM time zone as before (UTC+2) and
returned to an application: 2020- 01- 01 02: 00: 00 (after conversion from UTC+1 to UTC+2)

« Timestamp values constructed by Connector/J in another JVM time zone (say, UTC+3) and returned
to an application: 2020- 01- 01 03: 00: 00 (after conversion from UTC+1 to UTC+3)

« Comment: Time instant is preserved.

Notes

» This setting corresponds to the default behavior of Connector/
J 8.0.22 and before and to the behavior of Connector/J 5.1 with
uselLegacyDat et i neCode=f al se.

Solution 2b: Use connectionTimeZone=LOCAL& forceConnectionTimeZoneToSession=true.
Connector/J then changes the server's session time zone to that of the JVM time zone, after which no
timezone conversions are required when storing or achieving the timestamps. For example:

e Time zones: UTC+1 for JVM, UTC+2 for server session originally, but now modified to UTC+1 by
Connector/J

¢ Original timestamp from client (in UTC+1): 2020- 01- 01 01: 00: 00
« Timestamp sent to server by Connector/J; 2020- 01- 01 01: 00: 00 (no conversion)

« Timestamp values stored internally on the server: 2020- 01- 01 00: 00: 00 (after internal conversion
from UTC+1 to UTC)

« Timestamp values retrieved later into a server session (in UTC+1, as set by Connector/J):
2020- 01- 01 01: 00: 00 (after internal conversion from UTC to UTC+1)

« Timestamp value constructed by Connector/J in the same JVM time zone as before (UTC+1):
2020- 01- 01 01: 00: 00 (no conversion needed)

< Timestamp values retrieved later into a server session (time zone modified to, say, UTC+3, by
Connector/J): 2020- 01- 01 03: 00: 00 (after internal conversion from UTC to UTC+3)

« Timestamp value constructed by Connector/J in the JVM time zone of UTC+3: 2020- 01- 01
03: 00: 00 (no conversion needed)

« Comment: Time instant is preserved without conversion by Connector/J, because the session time
zone is changed by Connector/J to its JVM's value.

Warnings

» « Altering the session time zone affects the results of MySQL functions such
as NON( ) , CURTI ME() , or CURDATE( ) —if you do not want those functions
to be affected, do not use this setting.

115



Handling of Date-Time Values

« If you use this setting on different clients in different time zones, the clients
are going to modify their connection session's time zones to different values;
if you want to keep the same visual date-time value representation for the
same time instant for all the clients and in all their sessions, store the values
to a DATETI ME instead of a TI MESTAMP column and use non-instant Java
classes for them, for example, j ava. t i ne. Local Dat eTi ne.

» Solution 2c: Use preservelnstants=true&connectionTimeZone=user - def i ned-ti nme- zone&
forceConnectionTimeZoneToSession=true. Connector/J then changes the server's session time zone
to the user-defined time zone, and converts the timestamps between the user-defined time zone and the
JVM time zone. A typical use case for this setting is when the session time zone value on the server is
known to be unrecognizable by Connector/J (e.g., CST or CEST). For example:

Time zones: UTC+2 for JVM, CET for server session originally, but now modified to user-specified
Eur ope/ Ber | i n by Connector/J

Original timestamp from client (in UTC+2): 2020- 01- 01 02: 00: 00

Timestamp sent to server by Connector/J: 2020- 01- 01 01: 00: 00 (after conversion between JVM
time zone (UTC+2) and user-defined time zone (Eur ope/ Ber | i n=UTC+1))

Timestamp values stored internally on the server: 2020- 01- 01 00: 00: 00 (after internal conversion
from UTC+1 to UTC)

Timestamp value retrieved into a server session (time zone modified to Eur ope/ Ber | i n (=UTC+1)
by Connector/J): 2020- 01- 01 01: 00: 00 (after internal conversion from UTC to UTC+1)

Timestamp value constructed by Connector/J in the same JVM time zone as before (UTC+2) and
returned to an application: 2020- 01- 01 02: 00: 00 (after conversion between user-defined time
zone (UTC+1) and JVM time zone (UTC+2)).

Comment: Time instant is preserved with conversion and with the session time zone being changed by
Connector/J according to a user-defined value.

As an alternative to this solution, the user might want the same conversion of the timestamps
between the JVM time zone and the user-defined time zone as described above, without

actually correcting the unrecognizable time zone value on the server. To do so, use,

preservel nst ant s=t rue&connecti onTi neZone=user - defi ned-ti nme- zone&
forceConnecti onTi meZoneToSessi on=f al se. This achieves the same result of preserving the
time instant.

Warnings

See the warnings above for Solution 2b.

3.5.6.2 Fractional Seconds

While aj ava. sql . Tl ME instance, according to the JDBC specification, is not supposed to contain
fractional seconds by design, because j ava. sqgl . TI MEis a wrapper around j ava. uti | . Dat e, it

is possible to store fractional seconds in aj ava. sqgl . TI ME instance. However, when Connector/
Jinserted aj ava. sql . Tl ME into the server as a MySQL Tl VE value, the fractional seconds were
always truncated. To allow the fractional seconds to be sent to the server, a connection property,

sendFr acti onal SecondsFor Ti e, has been introduced in release 8.0.23: when the property ist r ue
(which is the default value), the fractional seconds for j ava. sql . Tl VE are sent to the server; otherwise,
the fractional seconds are truncated.

116



Using Character Sets and Unicode

Also, the connection property sendFr act i onal Seconds has become a global control for

the sending of fractional seconds for ALL date-time types since release 8.0.23. As a result, if
sendFracti onal Seconds=f al se, fractional seconds are not sent irrespective of the value of
sendFr acti onal SecondsFor Ti re.

3.5.6.3 Handling of YEAR Values

How a value in a MySQL YEAR column is handled is controlled by the connection property
yearlsDateType:

 If yearlsDateType is t r ue (the default), YEAR is mapped to the Java data type | ava. sql . Dat e.
 If yearlsDateType is f al se, YEAR is mapped to the Java data type j ava. sql . Short.

Connector/J follows the same rules that govern how values are inserted by a mysql client; see
explanations in The YEAR Type for details.

Connector/J handles the retrieval of zero values from a YEAR column differently than a mysql client.
Treatments of zero values depend on whether they are strings or numbers, and on the value of
yearlsDateType:

» Ifastring value of ' 0' ," 00" , or' 000" is entered into a YEAR column, when retrieved by Connector/J:
« If yearlsDateType is true, the retrieved value is equivalent to January 1, 2000 00:00:00.000.
« If yearlsDateType is false, the retrieved value is 2000

« If a numeric value of 0, 00, 000, or 0000 is entered into a YEAR column, when retrieved by Connector/
\]1

« If yearlsDateType is true, the retrieved value is equivalent to January 1, 2000 00:00:00.000.

 If yearlsDateType is false, the retrieved value is O

3.5.7 Using Character Sets and Unicode

All strings sent from the JDBC driver to the server are converted automatically from native

Java Unicode form to the connection's character encoding, including all queries sent using

St at ement . execut e(), St at enrent . execut eUpdat e(), and St at enent . execut eQuery(), as
well as all Pr epar edSt at enent and Cal | abl eSt at enment parameters, excluding parameters set using
the following methods:

set Bl ob()

* setBytes()

» setC ob()

* set NCl ob()

e setAscii Stream()

e setBinaryStream()

» set Character Streamn()

e set NCharacter Stream()

117


https://dev.mysql.com/doc/refman/8.0/en/year.html
https://dev.mysql.com/doc/refman/8.0/en/year.html
https://dev.mysql.com/doc/refman/8.0/en/year.html
https://dev.mysql.com/doc/refman/8.0/en/year.html

Using Character Sets and Unicode

e set Uni codeStream()

Number of Encodings Per Connection

Connector/J supports a single character encoding between the client and the server, and any number of
character encodings for data returned by the server to the client in Resul t Set s.

Setting the Character Encoding

For Connector/J 8.0.25 and earlier: The character encoding between the client and the server
is automatically detected upon connection (provided that the Connector/J connection properties

char act er Encodi ng and connect i onCol | ati on are not set). The encoding on the server is specified

using the system variable char act er _set _server (for more information, see Server Character Set and

Collation), and the driver automatically uses the encoding. For example, to use the 4-byte UTF-8 character

set with Connector/J, configure the MySQL server with char act er _set server =ut f 8nb4, and leave

char act er Encodi ng and connect i onCol | at i on out of the Connector/J connection string. Connector/
J will then autodetect the UTF-8 setting. To override the automatically detected encoding on the client side,

use the char act er Encodi ng property in the connection URL to the server.

For Connector/J 8.0.26 and later: There are two phases during the connection initialization in which the
character encoding and collation are set.

* Pre-Authentication Phase: In this phase, the character encoding between the client and the server is
determined by the settings of the Connector/J connection properties, in the following order of priority:

e passwor dChar act er Encodi ng

e connectionCol |l ation

e charact er Encodi ng

» Setto UTF8 (corresponds to ut f 8mb4 on MySQL servers), if none of the properties above is set

» Post-Authentication Phase: In this phase, the character encoding between the client and the server for
the rest of the session is determined by the settings of the Connector/J connection properties, in the
following order of priority:

e connectionCol |l ation
e charact er Encodi ng
e Setto UTF8 (corresponds to ut f 8nb4 on MySQL servers), if none of the properties above is set

This means Connector/J needs to issue a SET NAMES Statement to change the character set and
collation that were established in the pre-authentication phase only if passwor dChar act er Encodi ng
is set, but its setting is different from that of connect i onCol | at i on, or different from that of

char act er Encodi ng (when connecti onCol | ati on is not set), or different from ut f 8nb4 (when
both connecti onCol | ati on and char act er Encodi ng are not set).

Custom Character Sets and Collations

For Connector/J 8.0.26 and later only: To support the use of custom character sets and
collations on the server, set the Connector/J connection property det ect Cust ontCol | ati ons
tot r ue, and provide the mapping between the custom character sets and the Java

character encodings by supplying the cust ontChar set Mappi ng connection property

with a comma-delimited list of cust om char set: j ava_encodi ng pairs (for example:

cust onChar set Mappi ng=char set 1: UTF- 8, char set 2: Cp1252).

118


https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_server
https://dev.mysql.com/doc/refman/8.0/en/charset-server.html
https://dev.mysql.com/doc/refman/8.0/en/charset-server.html
https://dev.mysql.com/doc/refman/8.0/en/charset-unicode-utf8mb4.html
https://dev.mysql.com/doc/refman/8.0/en/charset-unicode-utf8mb4.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_server
https://dev.mysql.com/doc/refman/8.0/en/set-names.html

Using Character Sets and Unicode

MySQL to Java Encoding Name Translations

Use Java-style names when specifying character encodings. The following table lists MySQL character set

names and their corresponding Java-style names:

Table 3.24 MySQL to Java Encoding Name Translations

MySQL Character Set Name

Java-Style Character Encoding Name

asci i US- ASCl |

bi g5 Bi g5

gbk GBK

sjis SJI'S or Cp932
cp932 Cp932 or MS932
gh2312 EUC_CN

ujis EUC JP

euckr EUC KR

latinl Cpl252

latin2 | SC8859 2
greek | SC8859 7
hebr ew | SC8859 8
cp866 Cp866

tis620 TI S620

cpl250 Cpl1250

cpl251 Cp1251

cpl257 Cpl257

macr oman MacRoman
nacce MacCent r al Eur ope
For 8.0.12 and earlier: ut f 8 UTF- 8

For 8.0.13 and later: ut f 8nb4

ucs2 Uni codeBi g

Notes

For Connector/J 8.0.12 and earlier: In order to use the ut f 8nb4

character set for the connection, the server MUST be configured with
character_set _server=ut f 8nb4; if that is not the case, when UTF- 8 is
used for char act er Encodi ng in the connection string, it will map to the MySQL
character set name ut f 8, which is an alias for ut f 8nb3.

For Connector/J 8.0.13 and later:

¢ When UTF- 8 is used for char act er Encodi ng in the connection string, it maps
to the MySQL character set name ut f 8nb4.

« If the connection option connect i onCol | at i on is also set alongside
char act er Encodi ng and is incompatible with it, char act er Encodi ng will be
overridden with the encoding corresponding to connect i onCol | ati on.

119


https://dev.mysql.com/doc/refman/8.0/en/charset-unicode-utf8mb4.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_server
https://dev.mysql.com/doc/refman/8.0/en/charset-unicode-utf8.html

Using Query Attributes

« Because there is no Java-style character set name for ut f mb3 that you can use
with the connection option char at er Encodi ng, the only way to use ut f 8nb3
as your connection character set is to use a ut f 8nb3 collation (for example,
ut f 8_general _ci ) for the connection option connecti onCol | ati on, which
forces a ut f 8nb3 character set to be used, as explained in the last bullet.

Warning

Do not issue the query SET NAMES with Connector/J, as the driver will not detect
that the character set has been changed by the query, and will continue to use the
character set configured when the connection was first set up.

3.5.8 Using Query Attributes

For Connector/J 8.0.26 and later: Connector/J supports Query Attributes when it has been enabled on the
server by installing the query_at tri but es component (see Prerequisites for Using Query Attributes for
details).

Attributes are set for a query by using the set At t ri but e() method of the Jdbc St at enent interface.
Here is the method's signature:

JdbcSt at enent . set Attri bute(Stri ng name, Cbject val ue)

Here is an example of using the query attributes with a Jdbc St at enent :
Example 3.1 Using Query Attributes with a Plain Statement

conn = DriverManager . get Connection("jdbc: nysql :// I ocal host/test", "nyuser", "password"),
Statement stmt = conn. createStatement();
JdbcSt at ement jdbcStnt = (JdbcStatement) stnt;
j dbcSt nt . execut eUpdat e( " CREATE TABLE t11 (cl CHAR(20), c2 CHAR(20))");
jdbcStnt.setAttribute("attr1", "cat");
jdbcStnt.setAttribute("attr2", "mat");
j dbcSt nt . execut eUpdat e(" 1 NSERT | NTO t11 (cl, c2) VALUES(\n" +

" nysql _query_attribute_string('attr1'),\n" +

" nysql _query_attribute_string('attr2')\n" +

"))
Resul t Set rs = stnt.executeQuery("SELECT * fromt11");
while(rs.next()) {

String coll = rs.getString(1);

String col2 = rs.getString(2);

System out. println("The "+col 1+" is on the "+col 2);

}

While query attributes are cleared on the server after each query, they are kept on the side of Connector/J,
so they can be resent for the next query. To clear the attributes, use the cl ear At t ri but es() method of
the JdbcSt at enent interface:

JdbcSt at enent . cl ear Attri butes()

The following example (a continuation of the code in Example 3.1, “Using Query Attributes with a Plain
Statement”) shows how the attributes are preserved for a statement until it is cleared :

Example 3.2 Preservation of Query Attributes

/* Continuing fromthe code in the |ast exanple, where query attributes have
al ready been set and used */
rs = stnt.executeQuery("SELECT c2 FROMt11 where " +
"cl = nysqgl _query_attribute_string('attrl')");
if (rs.next()) {
String coll = rs.getString(1);
Systemout.println("lIt is on the "+col 1);

120


https://dev.mysql.com/doc/refman/8.0/en/set-names.html
https://dev.mysql.com/doc/refman/8.0/en/query-attributes.html
https://dev.mysql.com/doc/refman/8.0/en/query-attributes.html#query-attributes-prerequisites

Connecting Securely Using SSL

}

/! Prints "It is on the mat"
jdbcStnt.clearAttributes();

rs = stnt.executeQuery("SELECT c2 FROM t11 where " +
"cl = nysql __query_attribute_string('attrl')");

if (rs.next()) {
String coll = rs.getString(1);

Systemout.println(“lIt is on the "+col 1);

}
el se {

Systemout. println("No results!");
}

/1 Prints "No results!" as attribute string attrl is enpty

Attributes can also be set for client-side and server-side prepared statements, using the set Attri but e()

method:

Example 3.3 Using Query Attributes with a Prepared Statement

conn = DriverManager. get Connection("j dbc: mysqgl ://1 ocal host/test", "myuser", "password");

Pr epar edSt at enent ps = conn. pr epar eSt at enent (

"select ?, c2 fromtll where cl1 = nysql _query_attribute_string('attrl')");

ps.setString(1l, "It is on a");

JdbcSt at ement j dbcPs = (JdbcStatenment) ps;
jdbcPs. setAttribute("attrl1", "cat");

rs = ps.executeQery();

if (rs.next()) {

Systemout.println(rs.getString(1)+" "+ rs.getString(2));

}

Not all MySQL data types are supported by the set At t ri but e() method; only the following MySQL data
types are supported and are directly mapped to from specific Java objects or their subclasses:

Table 3.25 Data Type Mappings for Query Attributes

MySQL Data Type

Java Object

MYSQL_TYPE_STRI NG

java.lang. String

MYSQL_TYPE_TI NY

j ava. | ang. Bool ean, j ava. | ang. Byt e

MYSQL_TYPE_SHORT

j ava. |l ang. Short

MYSQL_TYPE_LONG

java.l ang. | nt eger

MYSQL_TYPE_LONGLONG

j ava. | ang. Long, j ava. mat h. Bi gl nt eger

MYSQL_TYPE_FLOAT

j ava. | ang. Fl oat

MYSQL_TYPE_DOUBLE

j ava. | ang. Doubl e, j ava. nat h. Bi gDeci nal

MYSQL_TYPE_DATE

java.sql . Date,java. tinme. Local Date

MYSQL_TYPE_TI MVE

java.sqgl . Tinme,java. tinme. Local Ti e,
java.tine. O fsetTine,
java.tine.Duration

MYSQL_TYPE_DATETI ME

java. tine. Local Dat eTi ne

MYSQL_TYPE_TI MESTAMP

java. sql . Ti nestanp, j ava. ti ne. I nst ant,
java.tine. O fset Dat eTi ne,

java.tine. ZonedDat eTi ne,java. util . Date,
java. util. Cal endar

When there is no direct mapping from a Java object type to any MySQL data type, the attribute is set with a
string value that comes from converting the supplied object to a St ri ng using the . t oSt ri ng() method.

3.5.9 Connecting Securely Using SSL

121



Connecting Securely Using SSL

Connector/J can encrypt all data communicated between the JDBC driver and the server (except for the
initial handshake) using SSL. There is a performance penalty for enabling connection encryption, the
severity of which depends on multiple factors including (but not limited to) the size of the query, the amount
of data returned, the server hardware, the SSL library used, the network bandwidth, and so on.

The system works through two Java keystore files: one file contains the certificate information for the
server (t r ust st or e in the examples below), and another contains the keys and certificate for the client
(keyst or e in the examples below). All Java keystore files are protected by the password supplied to the
keyt ool when you created the files. You need the file names and the associated passwords to create an
SSL connection.

For SSL support to work, you must have the following:

» A MySQL server that supports SSL, and compiled and configured to do so. For more information, see
Using Encrypted Connections and Configuring SSL Library Support.

» A signed client certificate, if using mutual (two-way) authentication.

By default, Connector/J establishes secure connections with the MySQL servers. Note that MySQL servers
5.7, 8.0, and 8.1, when compiled with OpenSSL, can automatically generate missing SSL files at startup
and configure the SSL connection accordingly.

For 8.0.12 and earlier; As long as the server is correctly configured to use SSL, there is no need to
configure anything on the Connector/J client to use encrypted connections (the exception is when
Connector/J is connecting to very old server versions like 5.6.25 and earlier or 5.7.5 and earlier, in which
case the client must set the connection property useSSL=t r ue in order to use encrypted connections).
The client can demand SSL to be used by setting the connection property r equi r eSSL=t r ue; the
connection then fails if the server is not configured to use SSL. Without r equi r eSSL=t r ue, the
connection just falls back to non-encrypted mode if the server is not configured to use SSL.

For 8.0.13 and later: As long as the server is correctly configured to use SSL, there is no need to configure
anything on the Connector/J client to use encrypted connections. The client can demand SSL to be

used by setting the connection property ss| Mode=REQUI RED, VERI FY_CA, or VERI FY_| DENTI TY;

the connection then fails if the server is not configured to use SSL. With ss| Mode=PREFERRED, the
connection just falls back to non-encrypted mode if the server is not configured to use SSL. For X-Protocol
connections, the connection property xdevapi . ssl - node specifies the SSL Mode setting, just like

ssl Mode does for MySQL-protocol connections (except that PREFERRED is not supported by X Protocol); if
not explicitly set, xdevapi . ssl - node takes up the value of ssl Mode (if xdevapi . ssl - node is not set
and ssl Mode is set to PREFERRED, xdevapi . ssl - node is set to REQUI RED).

For additional security, you can setup the client for a one-way (server or client) or two-way (server and
client) SSL authentication, allowing the client or the server to authenticate each other's identity.

TLS versions: The allowable versions of TLS protocol can be restricted using the connection properties

t I sVer si ons and, for X DevAPI connections and for release 8.0.19 and later, xdevapi . t| s-ver si ons
(when xdevapi . t| s-ver si ons is not specified, it takes up the value of t | sVer si ons). If no such
restrictions have been specified, Connector/J attempts to connect to the server with the TLSv1.2 and
TLSv1.3.

Notes

¢ Since Connector/J 8.0.28, the connection property enabl edTLSPr ot ocol s has
been renamed to t | sVer si ons, and enabl edSSLCi pher Sui t es has been
renamed to t | sC pher sui t es; the original names remain as aliases.

e For Connector/J 8.0.26 and later: TLSv1 and TLSv1.1 were deprecated in
Connector/J 8.0.26 and removed in release 8.0.28; the removed values are

122


https://dev.mysql.com/doc/refman/8.0/en/encrypted-connections.html
https://dev.mysql.com/doc/refman/8.0/en/source-ssl-library-configuration.html

Connecting Securely Using SSL

considered invalid for use with connection options and session settings.
Connections can be made using the more-secure TLSv1.2 and TLSv1.3
protocols. Using TLSv1.3 requires that the server be compiled with OpenSSL
1.1.1 or higher and Connector/J be run with a JVM that supports TLSv1.3 (for
example, Oracle Java 8u261 and above).

« For Connector/J 8.0.18 and earlier when connecting to MySQL Community
Server 5.6 and 5.7 using the JDBC API: Due to compatibility issues with
MySQL Server compiled with yaSSL, Connector/J does not enable connections
with TLSv1.2 and higher by default. When connecting to servers that restrict
connections to use those higher TLS versions, enable them explicitly by setting
the Connector/J connection property enabl edTLSPr ot ocol s (e.g., set
enabl edTLSPr ot ocol s=TLSv1. 2, TLSv1. 3).

Cipher Suites: Since release 8.0.19, the cipher suites usable by Connector/J are pre-

restricted by a properties file that can be found at sr ¢/ nai n/ r esour ces/ conif nysql / cj /

Tl sSettings. properti es inside the sr c folder on the source tree or in the platform-independent
distribution archive (in . t ar. gz or . zi p format) for Connector/J. The file contains four sections, listing

in each the mandatory, approved, deprecated, and unacceptable ciphers. Only suites listed in the first
three sections can be used. The last section (unacceptable) defines patterns or masks that blocklist unsafe
cipher suites. Practically, with the allowlist already given in the first three sections, the blocklist patterns in
the forth section are redundant; but they are there as an extra safeguard against unwanted ciphers. The
allowlist and blocklist of cipher suites apply to both JIDBC and X DevAPI connections.

The allowable cipher suites for SSL connections can be restricted using the connection properties

t I sCi pher sui t es and, for X DevAPI connections and for release 8.0.19 and later, xdevapi . t| s-

ci phersui t es (when xdevapi . t| s-ci phersuit es is not specified, it takes up the value of

t I sCi pher sui t es). If no such restrictions have been specified, Connector/J attempts to establish SSL
connections with any allowlisted cipher suites that the server accepts.

3.5.9.1 Setting up Server Authentication

For 8.0.12 and earlier: Server authentication via server certificate verification is enabled when the
Connector/J connection properties useSSL AND veri fyServer Certi fi cat e are both true. Hosthame
verification is not supported—host authentication is by certificates only.

For 8.0.13 and later: Server authentication via server certificate verification is enabled when the Connector/
J connection property ssl Mode is set to VERI FY_CA or VERI FY_| DENTI TY. If ssl Mode is not set,

server authentication via server certificate verification is enabled when the legacy properties useSSL AND
verifyServerCertificat e are both true.

Certificates signed by a trusted CA.  When server authentication via server certificate verification is
enabled, if no additional configurations are made regarding server authentication, Java verifies the server
certificate using its default trusted CA certificates, usually from $JAVA HOVE/ | i b/ security/ cacerts.

Using self-signed certificates. It is pretty common though for MySQL server certificates to be self-
signed or signed by a self-signed CA certificate; the auto-generated certificates and keys created by the
MySQL server are based on the latter—that is, the server generates all required keys and a self-signed CA
certificate that is used to sign a server and a client certificate. The server then configures itself to use the
CA certificate and the server certificate. Although the client certificate file is placed in the same directory, it
is not used by the server.

To verify the server certificate, Connector/J needs to be able to read the certificate that signed it, that

is, the server certificate that signed itself or the self-signed CA certificate. This can be accomplished by
either importing the certificate (ca. pemor any other certificate) into the Java default truststore (although
tampering the default truststore is not recommended) or by importing it into a custom Java truststore

123



Connecting Securely Using SSL

file and configuring the Connector/J driver accordingly. Use Java's keytool (typically located in the bi n
subdirectory of your JDK or JRE installation) to import the server certificates:

$> keytool -inportcert -alias MySQLCACert -file ca.pem)\
-keystore truststore -storepass nypassword

Supply the proper arguments for the command options. If the truststore file does not already exist, a new
one will be created; otherwise the certificate will be added to the existing file. Interaction with keyt ool
looks like this:

Onner: CN=MySQL_Server 5.7.17 Auto_Generated CA Certificate
I ssuer: CN=MySQ._Server_5.7.17_Auto_Cenerated CA Certificate
Serial nunber: 1
Valid from Thu Feb 16 11:42:43 EST 2017 until: Sun Feb 14 11:42:43 EST 2027
Certificate fingerprints:
MD5:  18:87:97: 37: EA: CB: 0B: 5A: 24: AB: 27: 76: 45: A4: 78: C1
SHA1: 2B: 0D: D9: 69: 2C: 99: BF: 1E: 2A: 25: 4E: 8D: 2D: 38: B8: 70: 66: 47: FA: ED
SHA256: C3:29: 67: 1B: E5: 37: 06: F7: A9: 93: DF: C7: B3: 27: 5E: 09: C7: FD: EE: 2D: 18: 86: F4: 9C: 40: D8: 26: CB: DA: 95: A0: 24
Si gnature al gorithm name: SHA256wi t hRSA
Subj ect Public Key Algorithm 2048-bit RSA key
Version: 1
Trust this certificate? [no]: yes
Certificate was added to keystore

The output of the command shows all details about the imported certificate. Make sure you remember the
password you have supplied. Also, be mindful that the password will have to be written as plain text in your
Connector/J configuration file or application source code.

The next step is to configure Java or Connector/J to read the truststore you just created or modified. This
can be done by using one of the following three methods:

1. Using the Java command line arguments:

-D avax. net.ssl.trustStore=path_to_truststore file
- D avax. net . ssl . trust St or ePasswor d=nypasswor d

2. Setting the system properties directly in the client code:

System set Property("javax. net.ssl.trustStore","path to truststore file");
System set Property("j avax. net. ssl.trust StorePassword", " nypassword");

3. Setting the Connector/J connection properties:

trustCertificateKeyStoreUrl=file:path_ to_ truststore_file
trustCertificat eKeySt orePasswor d=nypasswor d

Notice that when used together, the connection properties override the values set by the other two
methods. Also, whatever values set with connection properties are used in that connection only,

while values set using the system-wide values are used for all connections (unless overridden

by the connection properties). For Connector/J 8.0.22 and later: Setting the connection property

fal |l backToSyst emlr ust St or e to f al se prevents Connector/J from falling back to the system-wide
truststore setup you created using method (1) or (2) when method (3) is not used.

With the above setup and the server authentication enabled, all connections established are going to be
SSL-encrypted, with the server being authenticated in the SSL handshake process, and the client can now
safely trust the server it is connecting to.

For X-Protocol connections, the connection properties xdevapi . ssl -t rust st or e,

xdevapi . ssl -truststore-type, xdevapi . ssl -trust store-password, and

xdevapi . ssl -fal | backToSyst enilr ust St or e specify the truststore settings,

justliketrust CertificateKeyStoreUrl,trustCertificateKeyStoreType,
trustCertificateKeySt orePasswordamdfal | backToSyst enilr ust St or e do for MySQL-

124



Connecting Securely Using SSL

protocol connections; if not explicitly set, xdevapi . ssl -trust st or e, xdevapi . ssl -trust st ore-
type, xdevapi . ssl -trust st or e- passwor d, and xdevapi . ssl -fal | backToSyst enTr ust St or e
take up the values of t rust Certi fi cat eKeyStoreUrl,trustCertificateKeyStoreType,
trustCertificateKeySt orePassword, andfal |l backToSyst enilr ust St or e respectively.

Service Identity Verification.  For 8.0.13 and later: Beyond server authentication via server certificate
verification, when ss| Mode is set to VERI FY_| DENTI TY, Connector/J also performs host name identity
verification by checking whether the host name that it uses for connecting matches the Common Name
value in the server certificate.

3.5.9.2 Setting up Client Authentication

The server may want to authenticate a client and require the client to provide an SSL certificate to it,

which it verifies against its known certificate authorities or performs additional checks on the client identity
if needed (see CREATE USER SSL/TLS Options for details). In that case, Connector/J needs to have
access to the client certificate, so it can be sent to the server while establishing new database connections.
This is done using the Java keystore files.

To allow client authentication, the client connecting to the server must have its own set of keys and an SSL
certificate. The client certificate must be signed so that the server can verify it. While you can have the
client certificates signed by official certificate authorities, it is more common to use an intermediate, private,
CA certificate to sign client certificates. Such an intermediate CA certificate may be self-signed or signed
by a trusted root CA. The requirement is that the server knows a CA certificate that is capable of validating
the client certificate.

Some MySQL server builds are able to generate SSL keys and certificates for communication encryption,
including a certificate and a private key (contained inthe cl i ent - cert. pemandcl i ent - key. pem
files), which can be used by any client. This SSL certificate is already signed by the self-signed CA
certificate ca. pem which the server may have already been configured to use.

If you do not want to use the client keys and certificate files generated by the server, you can also generate
new ones using the procedures described in Creating SSL and RSA Certificates and Keys. Notice that,
according to the setup of the server, you may have to reuse the already existing CA certificate the server is
configured to work with to sign the new client certificate, instead of creating a new one.

Once you have the client private key and certificate files you want to use, you need to import them into a
Java keystore so that they can be used by the Java SSL library and Connector/J. The following instructions
explain how to create the keystore file:

» Convert the client key and certificate files to a PKCS #12 archive:

$> openssl| pkcsl2 -export -in client-cert.pem-inkey client-key.pem\
-nane "mysqlclient" -passout pass:nypassword -out client-keystore.pl2

* Import the client key and certificate into a Java keystore:

$> keytool -inportkeystore -srckeystore client-keystore.pl2 -srcstoretype pkcsl2 \
-srcstorepass nypassword -destkeystore keystore -deststoretype JKS -deststorepass mypassword

Supply the proper arguments for the command options. If the keystore file does not already exist, a new
one will be created; otherwise the certificate will be added to the existing file. Output by keyt ool looks
like this:

Entry for alias nysqlclient successfully inported
I nport command conpleted: 1 entries successfully inported, O entries failed or cancelled

Make sure you remember the password you have chosen. Also, be mindful that the password will have
to be written as plain text in your Connector/J configuration file or application source code.

125


https://dev.mysql.com/doc/refman/8.0/en/create-user.html#create-user-tls
https://dev.mysql.com/doc/refman/8.0/en/creating-ssl-rsa-files.html

Connecting Securely Using SSL

After the step, you can delete the PKCS #12 archive (cl i ent - keyst or e. p12 in the example).

The next step is to configure Java or Connector/J so that it reads the keystore you just created or modified.
This can be done by using one of the following three methods:

1. Using the Java command line arguments:

-D avax. net. ssl . keyStore=path_t o_keystore_file
- D avax. net . ssl . keySt or ePasswor d=nmypasswor d

2. Setting the system properties directly in the client code:

System set Property("javax. net.ssl.keyStore", "path_to_keystore file");
System set Property("j avax. net. ssl . keySt or ePasswor d", " nmypasswor d") ;

3. Through Connector/J connection properties:

clientCertificateKeyStoreUr |l =file:path_to truststore file
clientCertificateKeySt orePasswor d=nmypasswor d

Notice that when used together, the connection properties override the values set by the other two
methods. Also, whatever values set with connection properties are used in that connection only,
while values set using the system-wide values are used for all connections (unless overridden

by the connection properties). For Connector/J 8.0.22 and later: Setting the connection property
fall backToSyst enKeySt or e to f al se prevents Connector/J from falling back to the system-wide
keystore setup you created using method (1) or (2) when method (3) is not used.

With the above setups, all connections established are going to be SSL-encrypted with the client being
authenticated in the SSL handshake process, and the server can now safely trust the client that is
requesting a connection to it.

For Connector/J 8.0.22 and later: For X-Protocol connections, the connection properties

xdevapi . ssl - keyst or e, xdevapi . ssl - keyst ore-type, xdevapi . ssl - keyst or e-
passwor d, and xdevapi . ssl -fal | backToSyst enKey St or e specify the keystore

settings, just like t rust Certifi cat eKeyStoreUrl,trustCertificat eKeyStoreType,
trustCertificateKeyStorePassword, andfal | backToSyst enifKey St or e do for MySQL-
protocol connections; if not explicitly set, xdevapi . ssl - keyst or e, xdevapi . ssl - keyst or e-
type, xdevapi . ssl - keyst or e- passwor d, and xdevapi . ssl -fal | backToSyst enKeySt or e
take up the values of cl i ent Certifi cateKeyStoreUrl,clientCertificateKeyStoreType,
clientCertificateKeyStorePassword,andfall backToSyst enKeySt or e respectively.

3.5.9.3 Setting up 2-Way Authentication

Apply the steps outlined in both Section 3.5.9.1, “Setting up Server Authentication” and Section 3.5.9.2,
“Setting up Client Authentication” to set up a mutual, two-way authentication process in which the server
and the client authenticate each other before establishing a connection.

Although the typical setup described above uses the same CA certificate in both ends for mutual
authentication, it does not have to be the case. The only requirements are that the CA certificate
configured in the server must be able to validate the client certificate and the CA certificate imported into
the client truststore must be able to validate the server certificate; the two CA certificates used on the two
ends can be distinct.

3.5.9.4 JSSE in FIPS Mode

When using a Java 8 to 12 JREs, if JSSE is configured to use FIPS mode, attempts to connect to a
MySQL Server may fail in some cases with a KeyManagenent Except i on, complaining that "FIPS
mode: only SunJSSE Tr ust Manager s may be used." This happens because, in that case, a custom

126



Connecting Using Unix Domain Sockets

Tr ust Manager implemented by Connector/J that supports the different ssl Mode options is invoked but is
eventually rejected by the default implementation of SunJSSE.

The issue can be overcome by telling Connector/J not to use its custom Tr ust Manager implementation,
but use your own security providers instead. This can be done by setting the following connection
properties:

o fipsCompliantJsse: Settotrue to overcome the above-mentioned issue with FIPS mode.
Note

When set to true, Connector/J always performs server certificate validation (even
if ssl Mbde is set to PREFERRED or REQUI RED), which means a truststore must
be configured with the connection proprieties described below, or the fallback
system-wide truststore must be enabled.

» KeyManager Fact or yPr ovi der : The name of the a Java Security Provider that provides a
j avax. net . ssl . KeyManager Fact or y implementation.

e trust Manager Fact or yProvi der : The name of the a Java Security Provider that provides a
j avax. net. ssl . Trust Manager Fact or y implementation.

» keySt or eProvi der: The name of the a Java Security Provider that provides a
j ava. security. KeySt or e implementation, supporting the key stores types specified with
clientCertificateKeyStoreTypeandtrustCertificateKeyStoreType.

3.5.9.5 Debugging an SSL Connection

JSSE provides debugging information to st dout when you set the system property -

Dj avax. net . debug=al | . Java then tells you what keystores and truststores are being used, as well as
what is going on during the SSL handshake and certificate exchange. That will be helpful when you are
trying to debug a failed SSL connection.

3.5.10 Connecting Using Unix Domain Sockets

Connector/J does not natively support connections to MySQL Servers with Unix domain sockets. However,
there is provision for using 3rd-party libraries that supply the function via a pluggable socket factory. Such
a custom factory should implement the com mysql . cj . prot ocol . Socket Fact ory interface or the
legacy com mmysql . j dbc. Socket Fact ory interface of Connector/J. Follow these requirements when
you use such a custom socket factory for Unix sockets :

e The MySQL Server must be configured with the system variable - - socket (for native protocol
connections using the JDBC API) or - - nysqgl x- socket (for X Protocol connections using the X
DevAPI), which must contain the file path of the Unix socket file.

» The fully-qualified class name of the custom factory should be passed to Connector/J via the connection
property socket Fact ory. For example, with the junixsocket library, set:

socket Fact or y=or g. newscl ub. net . mysql . AFUNI XDat abaseSocket Fact ory

You might also need to pass other parameters to the custom factory as connection properties.
For example, for the junixsocket library, provide the file path of the socket file with the property
j uni xsocket . file:

j uni xsocket . fil e=path_to_socket file

» Fore release 8.0.21 and earlier: When using the X Protocol, set the connection property
xdevapi . useAsyncPr ot ocol =f al se (that is the default setting for Connector/J

127


https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_socket
https://dev.mysql.com/doc/refman/8.0/en/x-plugin-options-system-variables.html#sysvar_mysqlx_socket

Connecting Using Named Pipes

8.0.12 and later). Unix socket is not supported for asynchronous socket channels. When
xdevapi . useAsyncPr ot ocol =t r ue, the socket Fact or y property is ignored (the connection
property xdevapi . useAsyncPr ot ocol has been deprecated since release 8.0.22).

Note

For X Protocol connections, the provision to use custom socket factory for Unix
socket connefctions is only available for Connector/J 8.0.12 and later.

3.5.11 Connecting Using Named Pipes

Important

For MySQL 8.0.14 and later, 5.7.25 and later, and 5.6.43 and later, minimal
permissions on named pipes are granted to clients that use them to connect to the
server. Connector/J, however, can only use named pipes when granted full access
on them. As a workaround, the MySQL Server that Connector/J wants to connect
to must be started with the system variable naned_pi pe_ful | _access_group,
which specifies a Windows local group containing the user by which the client
application JVM (and thus Connector/J) is being executed; see the description for
nanmed_pi pe_full _access_group for more details.

Note
Support for named pipes is not available for X Protocol connections.

Connector/J also supports access to MySQL using named pipes on Windows platforms with the

NanmedPi peSocket Fact ory as a plugin-sockets factory. If you do not use a nanedPi pePat h property,
the default of ' \'\ . \ pi pe\ MySQL" is used. If you use the NanedPi peSocket Fact or y, the host name
and port number values in the JDBC URL are ignored. To enable this feature, set the socket Fact ory
property:

socket Fact ory=com nysql . cj . prot ocol . NamedPi peSocket Fact ory
Set this property, as well as the path of the named pipe, with the following connection URL.:

jdbc: nysql : ///test?socket Fact or y=com nysql . cj . pr ot ocol . NanedPi peSocket Fact or y&nanmedPi pePat h=\\ . \ pi pe\ MySQ.80

To create your own socket factories, follow the sample code in
com nysql . cj . prot ocol . NamedPi peSocket Fact ory or
com nysql . cj.protocol . Standar dSocket Fact ory.

An alternate approach is to use the following two properties in connection URLSs for establishing named
pipe connections on Windows platforms:

e (protocol =pi pe) for named pipes (default value for the property is t cp).
* (pat h=pat h_t o_pi pe) for path of named pipes. Default value for the pathis\\ . \ pi pe\ MySQL.

The “address-equals” or “key-value” form of host specification (see Single host [56] for details) greatly
simplifies the URL for a named pipe connection on Windows. For example, to use the default named pipe

of “\\ .\ pi pe\ MySQL,” just specify:
j dbc: nysql : // addr ess=( pr ot ocol =pi pe)/t est

To use the custom named pipe of “\ \ . \ pi pe\ MySQL80” :

jdbc: nysql : // addr ess=( pr ot ocol =pi pe) (pat h=\\.\ pi pe\ MySQL80) / t est

128


https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_named_pipe_full_access_group
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_named_pipe_full_access_group

Connecting Using Various Authentication Methods

With ( pr ot ocol =pi pe), the NanmedPi peSocket Fact ory is automatically selected.

Named pipes only work when connecting to a MySQL server on the same physical machine where the
JDBC driver is running. In simple performance tests, named pipe access is between 30%-50% faster than
the standard TCP/IP access. However, this varies per system, and named pipes are slower than TCP/IP in
many Windows configurations.

3.5.12 Connecting Using Various Authentication Methods

3.5.12.1 Connecting Using PAM Authentication

Java applications using Connector/J can connect to MySQL servers that use the pluggable authentication
module (PAM) authentication scheme.

For PAM authentication to work, you must have the following:

* A MySQL server that supports PAM authentication. See PAM Pluggable Authentication for more
information. Connector/J implements the same cleartext authentication method as in Client-Side
Cleartext Pluggable Authentication.

» SSL capability, as explained in Section 3.5.9, “Connecting Securely Using SSL". Because the PAM
authentication scheme sends the original password to the server, the connection to the server must be
encrypted.

PAM authentication support is enabled by default in Connector/J 8.0, so no extra configuration is needed.

To disable the PAM authentication feature, specify nysql _cl ear _passwor d (the method) or

com nysql . cj . protocol . a.aut hentication. Mysqgl Cl ear Passwor dPl ugi n (the class nhame) in
the comma-separated list of arguments for the di sabl edAut hent i cati onPl ugi ns connection option.
See Section 3.5.3, “Configuration Properties” for details about that connection option.

3.5.12.2 Connecting Using Kerberos

Kerberos is a ticket-based server-client mutual authentication protocol that is supported by the MySQL
Server (commercial versions only) since release 8.0.26 .

Support for Kerberos is implemented by Connector/J (release 8.0.26 and later) using the GSS-API, JAAS
API, and JCA API; providers for each of these APIs must be available on the Java Virtual Machine running
your application that uses Kerberos authentication. Using non-default providers can lead to unexpected
results.

Kerberos Authentication Workflow

The main usage of Kerberos authentication in MySQL is to allow users to create

connections without having to specify a user name and password in the connection string.

For that to work, Connector/J must be configured with the connection property setting

def aul t Aut henti cati onPl ugi n=aut henti cati on_kerberos_client andthenthe MySQL user
name may be extracted from the Kerberos principal associated to the locally cached Ticket-Granting Ticket
(TGT). Notice that a MySQL user name differs from a Kerberos principal in not containing a realm part;
therefore, Connector/J cuts all the characters in the principle after the “@” sign and uses it as the MySQL
user name.

If there is no TGT available in the local Kerberos cache, Connector/J uses the OS login user name as the
MySQL user name. A user name specified in the connection string always takes precedence over names
obtained by any other means for the MySQL user.

129


https://dev.mysql.com/doc/refman/8.0/en/pam-pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.0/en/cleartext-pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.0/en/cleartext-pluggable-authentication.html

Connecting Using Various Authentication Methods

The MySQL user name is then sent to the MySQL server for validation. Non-existing users cause the
server to return an error. Existing users are allowed to proceed with the authentication process, and the
authentication mechanism that follows depends on how the MySQL user was created:

» For users created with the authentication plugin aut henti cati on_ker ber os, MySQL server sends
the corresponding Kerberos realm back to Connector/J, which, in turn, uses it to construct the Kerberos
principal that identifies the user on the Kerberos server. One of three things may then happen:

« The newly constructed Kerberos principal matches the Kerberos principal associated to the locally
cached TGT; this TGT is then sent to the Kerberos server to obtain the desired MySQL Service Ticket,
and the authentication proceeds.

« The newly constructed Kerberos principal does not match the Kerberos principal associated to
the locally cached TGT, or there is no local Kerberos cache; this Kerberos principal, as well as the
password that may have been specified in the connection string (or an empty string if none was
specified), is sent to the Kerberos server to obtain first a valid TGT, and then the desired MySQL
Service Ticket; and the authentication proceeds.

< An error is thrown if Connector/J is unable to obtain the correct Kerberos configurations, unable to
communicate with the Kerberos server, or unable to perform either of the two steps above.

» For users defined with a plugin different from aut hent i cati on_ker ber os, the server requests
Connector/J to use another authentication method.

Client-side Kerberos configurations

In order to operate properly with the Kerberos server, Connector/J requires either a system-wide Kerberos
configuration, or these local system property settings for the JVM:

 -Djava. security. krb5. kdc=[the KDC host nane]

e -Djava.security. krb5.real me[the default Kerberos real n

Debug Information

The process of configuring Connector/J to use Kerberos authentication is not always straightforward.
Enabling logging in the internal Java providers can help find potential problems. That can be done by
setting these system properties:

e -Dsun. security. krb5. debug=true

e -Dsun. security.jgss.debug=true

3.5.12.3 Connecting Using Multifactor Authentication

Multifactor authentication (MFA) is the use of multiple authentication factors during an authentication
process. MySQL Server supports MFA for up to three authentication factors.

Connection to MySQL Server with MFA is supported by Connector/J for release 8.0.28 and later. When
authenticating user accounts that require multiple passwords, up to three passwords can be specified
using the Connector/J connection properties passwor d1, passwor d2, and passwor d3 . This is a sample
connection string that uses the three connection properties for passwords:

jdbc: nysql : //1 ocal host/db?user =j ohndoe&passwor d1=passwor d&passswor d2=passwor d&passwor d3=passwor d

The following apply when using the connection properties for passwords:

130



Using Source/Replica Replication with ReplicationConnection

e passwor dl, passwor d2, and passwor d3 are passwords for authentication factors 1, 2, and 3,
respectively, as described in Getting Started with Multifactor Authentication.

« If any of the authentication factors (say, factor N) does not require a password, the corresponding
password (passwor dN) is ignored, even if supplied.

* Not specifying the corresponding password for an authentication factor that requires a password is
equivalent to supplying an empty password for the factor.

» password and passwor d1 are taken as synonyms except when both are supplied, in which case
passwor d1 overrides password.

3.5.12.4 Connecting Using Fast Identity Online (FIDO) Authentication

Fast Identity Online (FIDO) authentication enables user authentication for MySQL Server using devices
such as smart cards, security keys, and biometric readers. FIDO enables passwordless authentication, and
can be used for MySQL accounts that use multifactor authentication. It is supported by MySQL Enterprise
Edition since release 8.0.27—see FIDO Pluggable Authentication for details.

Connector/J supports FIDO authentication since release 8.0.28. To use the feature, a custom
implementation of the com nysqgl . cj . cal | back. Mysqgl Cal | backHandl er interface must be created
(see the documentation for com nysql . cj . cal | back. Fi doAut henti cati onCal | back for details),
and the full class name of the implementation must be provided to Connector/J using the connection
property authenticationFidoCallbackHandler.

3.5.13 Using Source/Replica Replication with ReplicationConnection

See Section 3.8.4, “Configuring Source/Replica Replication with Connector/J” for details on the topic.

3.5.14 Support for DNS SRV Records

Connector/J supports the use of DNS SRV records for connections since release 8.0.19. For information
about DNS SRV support in MySQL, see Connecting to the Server Using DNS SRV Records.

When multiple MySQL instances provide the same service for your applications, DNS SRV records can
be used to provide failover, load balancing, and replication services. They eliminate the need for clients
to identify each possible host in the connection string, or for connections to be handled by an additional
software component. Here is a summary for Connector/J's support for DNS SRV records:

e These new schemas in the connection URLs enable DNS SRV record support:

e jdbc: nysql +srv: For ordinary and basic failover JDBC connections that make use of DNS SRV
records.

e jdbc: nysql +srv: | oadbal ance: For load-balancing JDBC connections that make use of DNS
SRV records.

e jdbc: nysql +srv: replication: For replication JDBC connections that make use of DNS SRV
records.

e nysql x+srv: For X DevAPI connections that make use of DNS SRV records.

» Besides using the new schemas in the connection URLs, DNS SRV record support can be enabled or
disabled using the two new connection properties, dnsSr v and xdevapi . dns- sr v, for JDBC and X
DevAPI connections respectively. For example, this connection URL enables DNS SRV record support:

nmysql x: //j ohndoe: secret @nysql . _tcp. myconpany. | ocal / db?xdevapi . dns-srv=true

131


https://dev.mysql.com/doc/refman/8.0/en/multifactor-authentication.html#multifactor-authentication-getting-started
https://dev.mysql.com/doc/refman/8.0/en/fido-pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.0/en/connecting-using-dns-srv.html

Client Session State Tracker

However, using the DNS SRV schema with the DNS SRV connection properties set to f al se results in
an error; for example:

mysql x+srv://johndoe: secret @nysql . _t cp. myconpany. | ocal / db?xdevapi . dns- srv=f al se
# The connection URL causes Connector/J to throw an error

Here are some requirements and restrictions on the DNS SRV record support by Connector/J:

» Connector/J throws an exception if multiple hosts are specified in the connection URL for a DNS SRV
connection (except for a replication set up, created using j dbc: nysql +srv: repli cati on, which
requires exactly one source and one replica server to be specified).

» Connector/J throws an exception if a port number is specified in the connection URL for a DNS SRV
connection.

* DNS SRV records are supported only for TCP/IP connections. Connector/J throws an exception if you
attempt to enable DNS SRV record support Windows named pipe connections.

DNS SRV Record Support for Load Balancing and Failover.  For load-balancing and failover
connections, Connector/J uses the pri ori ty field of the DNS SRV records to decide on the priorities for
connection attempts for hosts.

DNS SRV Record Support for Connection Pooling.  In an X DevAPI connection pooling setup,
Connector/J re-queries the DNS SRV records regularly and phases out gracefully any connections whose
hosts no longer appear in the records, and readmits the connections into the pool when their hosts
reappear in the records.

Looking up DNS SRV Records. Itis the users' responsibility to provide a full service host name;
Connector/J does not append any prefix nor validate the host name structure. The following are examples
of valid service host name patterns:

» foo.domai n. | ocal

e nysqgl. _tcp.foo.domain. | ocal

e _mysql x. _tcp. foo. domai n. | ocal
 readonly. tcp.foo.donain.local
e readwite. tcp.foo.donnin.local

See Connections Using DNS SRV Records in the X DevAPI User Guide for details.

3.5.15 Client Session State Tracker

For Connection/J 8.0.26 and later: Connector/J can receive information on client session state changes
tracked by the server if the tracking has been enabled on the server. The reception of the information is
enabled by setting the Connector/J connection property t r ackSessi onSt at e to t r ue (default value is
f al se for the property).

When the function is enabled, information on session state changes received from the server are stored
inside the Sessi onSt at eChanges object, accessible through a Ser ver Sessi onSt at eControl | er
and its get Sessi onSt at eChanges() method:

Ser ver Sessi onSt at eChanges ssc =
Mysql Connect i on. get Ser ver Sessi onSt at eControl | er (). get Sessi onSt at eChanges() ;

132


https://dev.mysql.com/doc/x-devapi-userguide/en/
https://dev.mysql.com/doc/refman/8.0/en/session-state-tracking.html
https://dev.mysql.com/doc/refman/8.0/en/session-state-tracking.html

Mapping MySQL Error Numbers to JDBC SQLState Codes

In Sessi onSt at eChanges is a list of Sessoi nSt at eChange objects, accessible by the
get Sessi onSt at eChangesLi st () method:

Li st <Sessi onSt at eChange> sscLi st = ssc. get Sessi onSt at eChangesLi st ();

Each Sessi onSt at eChange has the fields t ype and val ues, accessible by the get Type() and
get Val ues() methods. The types and their corresponding values are described below:

Table 3.26 SessionStateChange Type and Values

Type Number of Values in the value |Values
List

SESSI ON. TRACK_SYSTEM VARI ABLES The name of the changed system
variable and its new value

SESSI ON_TRACK _SCHENA 1 The new schema name

SESSI ON_TRACK_STATE_CHANGH 1 "1" or "0"

SESSI ON_TRACK_GTI DS 1 List of GTIDs as reported by
server

SESSI ON_ TRACK_TRANSACTI ON_[@HARACTERI STI CS Transaction characteristics
statement

SESSI ON. TRACK _TRANSACTI ON_9TATE Transaction state record

Connector/J receives changes only from the most recent OK packet sent by the server. With

get Sessi onSt at eChanges( ), some changes returned by the intermediate queries issued

by Connector/J could be missed. However, the session state change information can also

be received using a Sessi onSt at eChangesLi st ener, which has to be registered with a

Server Sessi onSt at eCont r ol | er using the addSessi onSt at eChangesLi st ener () method.
The following example implements Sessi onSt at eChangesLi st ener in a class, which also provides a
method to print the change information:

cl ass SSCLi stener inplenents SessionStateChangeslLi stener {

Ser ver Sessi onSt at eChanges changes = nul | ;

public voi d handl eSessi onSt at eChanges( Ser ver Sessi onSt at eChanges ch) {
t hi s. changes = ch;
for (SessionStateChange change : ch. get Sessi onSt at eChangesList()) {

pri nt Change(change);

}

}

private void printChange(Sessi onSt at eChange change) {
System out . pri nt (change. get Type() + " == > ");
int pos = 0;
i f (change. get Type() == Server Sessi onSt at eControl | er. SESSI ON_TRACK_SYSTEM VARI ABLES) {
/'l There are two values with this change type, the systemvariable nane and its new val ue
System out . pri nt (change. get Val ues() . get (pos++) + "=");

}
System out . pri ntl n(change. get Val ues() . get (pos));

}

Sessi onSt at eChangesLi stener |istener = new SSCLi st ener ();
Mysql Connect i on. get Ser ver Sessi onSt at eControl | er (). addSessi onSt at eChangesLi st ener (|i st ener);

With a registered Sessi onSt at eChangesLi st ener, users have access to all intermediate results,
though the listener might slow down the delivery of query results. That is because the listener is invoked
immediately after the OK packet is consumed by Connector/J, before the Resul t Set is constructed.

3.5.16 Mapping MySQL Error Numbers to JDBC SQLState Codes

The table below provides a mapping of the MySQL error numbers to JDBC SQLSt at e values.

133



Mapping MySQL Error Numbers to JDBC SQLState Codes

Table 3.27 Mapping of MySQL Error Numbers to SQLStates

MySQL MySQL Error Name SQL
Error Standard
Number SQLState
1022 ER_DUP_KEY 23000
1037 ER_OUTOFMEMORY HY001
1038 ER_OUT_OF_SORTMEMORY HY001
1040 ER_CON_COUNT_ERROR 08004
1042 ER_BAD_HOST_ERROR 08s01
1043 ER_HANDSHAKE_ERROR 08s01
1044 ER_DBACCESS_DENIED_ERROR 42000
1045 ER_ACCESS_DENIED_ERROR 28000
1046 ER_NO_DB_ERROR 3D000
1047 ER_UNKNOWN_COM_ERROR 08s01
1048 ER_BAD_NULL_ERROR 23000
1049 ER_BAD_DB_ERROR 42000
1050 ER_TABLE_EXISTS _ERROR 42501
1051 ER_BAD_TABLE_ERROR 42502
1052 ER_NON_UNIQ_ERROR 23000
1053 ER_SERVER_SHUTDOWN 08s01
1054 ER_BAD_FIELD_ERROR 42522
1055 ER_WRONG_FIELD_WITH_GROUP 42000
1056 ER_WRONG_GROUP_FIELD 42000
1057 ER_WRONG_SUM_SELECT 42000
1058 ER_WRONG_VALUE_COUNT 21S01
1059 ER_TOO_LONG_IDENT 42000
1060 ER_DUP_FIELDNAME 42521
1061 ER_DUP_KEYNAME 42000
1062 ER_DUP_ENTRY 23000
1063 ER_WRONG_FIELD_SPEC 42000
1064 ER_PARSE_ERROR 42000
1065 ER_EMPTY_QUERY 42000
1066 ER_NONUNIQ_TABLE 42000
1067 ER_INVALID_DEFAULT 42000
1068 ER_MULTIPLE_PRI_KEY 42000
1069 ER_TOO_MANY_KEYS 42000
1070 ER_TOO_MANY_KEY_PARTS 42000
1071 ER_TOO_LONG_KEY 42000
1072 ER_KEY_COLUMN_DOES_NOT_EXITS 42000

134



Mapping MySQL Error Numbers to JDBC SQLState Codes

MySQL MySQL Error Name SQL
Error Standard
Number SQLState
1073 ER_BLOB_USED_AS KEY 42000
1074 ER_TOO_BIG_FIELDLENGTH 42000
1075 ER_WRONG_AUTO_KEY 42000
1080 ER_FORCING_CLOSE 08s01
1081 ER_IPSOCK_ERROR 08s01
1082 ER_NO_SUCH_INDEX 42512
1083 ER_WRONG_FIELD_TERMINATORS 42000
1084 ER_BLOBS_AND_NO_TERMINATED 42000
1090 ER_CANT_REMOVE_ALL_FIELDS 42000
1091 ER_CANT_DROP_FIELD_OR_KEY 42000
1101 ER_BLOB_CANT_HAVE_DEFAULT 42000
1102 ER_WRONG_DB_NAME 42000
1103 ER_WRONG_TABLE_NAME 42000
1104 ER_TOO_BIG_SELECT 42000
1106 ER_UNKNOWN_PROCEDURE 42000
1107 ER_WRONG_PARAMCOUNT_TO_PROCEDURE 42000
1109 ER_UNKNOWN_TABLE 42502
1110 ER_FIELD_SPECIFIED_TWICE 42000
1112 ER_UNSUPPORTED_EXTENSION 42000
1113 ER_TABLE_MUST_HAVE_COLUMNS 42000
1115 ER_UNKNOWN_CHARACTER_SET 42000
1118 ER_TOO_BIG_ROWSIZE 42000
1120 ER_WRONG_OUTER_JOIN 42000
1121 ER_NULL_COLUMN_IN_INDEX 42000
1131 ER_PASSWORD_ANONYMOUS_USER 42000
1132 ER_PASSWORD_NOT_ALLOWED 42000
1133 ER_PASSWORD_NO_MATCH 42000
1136 ER_WRONG_VALUE_COUNT_ON_ROW 21S01
1138 ER_INVALID_USE_OF_NULL 22004
1139 ER_REGEXP_ERROR 42000
1140 ER_MIX_OF GROUP_FUNC_AND_FIELDS 42000
1141 ER_NONEXISTING_GRANT 42000
1142 ER_TABLEACCESS_DENIED_ERROR 42000
1143 ER_COLUMNACCESS_DENIED_ERROR 42000
1144 ER_ILLEGAL_GRANT_FOR_TABLE 42000
1145 ER_GRANT_WRONG_HOST_OR_USER 42000

135



Mapping MySQL Error Numbers to JDBC SQLState Codes

MySQL MySQL Error Name SQL
Error Standard
Number SQLState
1146 ER_NO_SUCH_TABLE 42502
1147 ER_NONEXISTING_TABLE_GRANT 42000
1148 ER_NOT_ALLOWED_ COMMAND 42000
1149 ER_SYNTAX_ERROR 42000
1152 ER_ABORTING_CONNECTION 08s01
1153 ER_NET_PACKET_TOO_LARGE 08s01
1154 ER_NET_READ ERROR_FROM_PIPE 08S01
1155 ER_NET_FCNTL_ERROR 08s01
1156 ER_NET_PACKETS_OUT_OF_ORDER 08s01
1157 ER_NET_UNCOMPRESS_ERROR 08s01
1158 ER_NET_READ_ERROR 08S01
1159 ER_NET_READ_INTERRUPTED 08s01
1160 ER_NET_ERROR_ON_WRITE 08s01
1161 ER_NET_WRITE_INTERRUPTED 08s01
1162 ER_TOO_LONG_STRING 42000
1163 ER_TABLE_CANT_HANDLE_BLOB 42000
1164 ER_TABLE_CANT_HANDLE_AUTO_INCREMENT 42000
1166 ER_WRONG_COLUMN_NAME 42000
1167 ER_WRONG_KEY_COLUMN 42000
1169 ER_DUP_UNIQUE 23000
1170 ER_BLOB_KEY_WITHOUT_LENGTH 42000
1171 ER_PRIMARY_CANT_HAVE_NULL 42000
1172 ER_TOO_MANY_ROWS 42000
1173 ER_REQUIRES_PRIMARY_KEY 42000
1176 ER_KEY_DOES_NOT_EXITS 42000
1177 ER_CHECK_NO_SUCH_TABLE 42000
1178 ER_CHECK_NOT_IMPLEMENTED 42000
1179 ER_CANT_DO_THIS_DURING_AN_TRANSACTION 25000
1184 ER_NEW_ABORTING_CONNECTION 08s01
1189 ER_SOURCE_NET_READ 08s01
1190 ER_SOURCE_NET WRITE 08s01
1203 ER_TOO_MANY_USER_CONNECTIONS 42000
1205 ER_LOCK_WAIT_TIMEOUT 40001
1207 ER_READ_ONLY_TRANSACTION 25000
1211 ER_NO_PERMISSION_TO_CREATE_USER 42000
1213 ER_LOCK_DEADLOCK 40001

136



Mapping MySQL Error Numbers to JDBC SQLState Codes

MySQL MySQL Error Name SQL
Error Standard
Number SQLState
1216 ER_NO_REFERENCED_ROW 23000
1217 ER_ROW_IS_REFERENCED 23000
1218 ER_CONNECT_TO_SOURCE 08s01
1222 ER_WRONG_NUMBER_OF_COLUMNS_IN_SELECT 21000
1226 ER_USER_LIMIT_REACHED 42000
1227 ER_SPECIFIC_ACCESS_DENIED_ERROR 42000
1230 ER_NO_DEFAULT 42000
1231 ER_WRONG_VALUE_FOR_VAR 42000
1232 ER_WRONG_TYPE_FOR_VAR 42000
1234 ER_CANT_USE_OPTION_HERE 42000
1235 ER_NOT_SUPPORTED_YET 42000
1239 ER_WRONG_FK_DEF 42000
1241 ER_OPERAND_COLUMNS 21000
1242 ER_SUBQUERY_NO_1 ROW 21000
1247 ER_ILLEGAL_REFERENCE 42522
1248 ER_DERIVED_MUST_HAVE_ALIAS 42000
1249 ER_SELECT_REDUCED 01000
1250 ER_TABLENAME_NOT_ALLOWED_HERE 42000
1251 ER_NOT_SUPPORTED_AUTH_MODE 08004
1252 ER_SPATIAL_CANT_HAVE_NULL 42000
1253 ER_COLLATION_CHARSET_MISMATCH 42000
1261 ER_WARN_TOO_FEW_RECORDS 01000
1262 ER_WARN_TOO_MANY_RECORDS 01000
1263 ER_WARN_NULL_TO_NOTNULL 22004
1264 ER_WARN_DATA_OUT_OF_RANGE 22003
1265 ER_WARN_DATA_TRUNCATED 01000
1280 ER_WRONG_NAME_FOR_INDEX 42000
1281 ER_WRONG_NAME_FOR_CATALOG 42000
1286 ER_UNKNOWN_STORAGE_ENGINE 42000
1292 ER_TRUNCATED_WRONG_VALUE 22007
1303 ER_SP_NO_RECURSIVE_CREATE 2F003
1304 ER_SP_ALREADY_EXISTS 42000
1305 ER_SP_DOES_NOT_EXIST 42000
1308 ER_SP_LILABEL_MISMATCH 42000
1309 ER_SP_LABEL_REDEFINE 42000
1310 ER_SP_LABEL_MISMATCH 42000

137



Mapping MySQL Error Numbers to JDBC SQLState Codes

MySQL MySQL Error Name SQL
Error Standard
Number SQLState
1311 ER_SP_UNINIT_VAR 01000
1312 ER_SP_BADSELECT 0A000
1313 ER_SP_BADRETURN 42000
1314 ER_SP_BADSTATEMENT 0A000
1315 ER_UPDATE_LOG_DEPRECATED_IGNORED 42000
1316 ER_UPDATE_LOG_DEPRECATED_TRANSLATED 42000
1317 ER_QUERY_INTERRUPTED 70100
1318 ER_SP_WRONG_NO_OF_ARGS 42000
1319 ER_SP_COND_MISMATCH 42000
1320 ER_SP_NORETURN 42000
1321 ER_SP_NORETURNEND 2F005
1322 ER_SP_BAD_CURSOR_QUERY 42000
1323 ER_SP_BAD_CURSOR_SELECT 42000
1324 ER_SP_CURSOR_MISMATCH 42000
1325 ER_SP_CURSOR_ALREADY_OPEN 24000
1326 ER_SP_CURSOR_NOT_OPEN 24000
1327 ER_SP_UNDECLARED_VAR 42000
1329 ER_SP_FETCH_NO_DATA 02000
1330 ER_SP_DUP_PARAM 42000
1331 ER_SP_DUP_VAR 42000
1332 ER_SP_DUP_COND 42000
1333 ER_SP_DUP_CURS 42000
1335 ER_SP_SUBSELECT_NYI 0A000
1336 ER_STMT_NOT_ALLOWED_IN_SF OR_TRG 0A000
1337 ER_SP_VARCOND_AFTER_CURSHNDLR 42000
1338 ER_SP_CURSOR_AFTER_HANDLER 42000
1339 ER_SP_CASE_NOT_FOUND 20000
1365 ER_DIVISION_BY_ZERO 22012
1367 ER_ILLEGAL_VALUE_FOR_TYPE 22007
1370 ER_PROCACCESS_DENIED_ERROR 42000
1397 ER_XAER_NOTA XAEO4
1398 ER_XAER_INVAL XAEOQ05
1399 ER_XAER_RMFAIL XAEOQ7
1400 ER_XAER_OUTSIDE XAEQ09
1401 ER_XA RMERR XAEO3
1402 ER_XA_ RBROLLBACK XA100

138



Mapping MySQL Error Numbers to JDBC SQLState Codes

MySQL MySQL Error Name SQL
Error Standard
Number SQLState
1403 ER_NONEXISTING_PROC_GRANT 42000
1406 ER_DATA_TOO_LONG 22001
1407 ER_SP_BAD_SQLSTATE 42000
1410 ER_CANT_CREATE_USER_WITH_GRANT 42000
1413 ER_SP_DUP_HANDLER 42000
1414 ER_SP_NOT_VAR_ARG 42000
1415 ER_SP_NO_RETSET 0A000
1416 ER_CANT_CREATE_GEOMETRY_OBJECT 22003
1425 ER_TOO_BIG_SCALE 42000
1426 ER_TOO_BIG_PRECISION 42000
1427 ER_M_BIGGER_THAN_D 42000
1437 ER_TOO_LONG_BODY 42000
1439 ER_TOO_BIG_DISPLAYWIDTH 42000
1440 ER_XAER_DUPID XAEO08
1441 ER_DATETIME_FUNCTION_OVERFLOW 22008
1451 ER_ROW_IS REFERENCED_2 23000
1452 ER_NO_REFERENCED_ROW_2 23000
1453 ER_SP_BAD_VAR_SHADOW 42000
1458 ER_SP_WRONG_NAME 42000
1460 ER_SP_NO_AGGREGATE 42000
1461 ER_MAX_PREPARED_STMT_COUNT_REACHED 42000
1463 ER_NON_GROUPING_FIELD_USED 42000
1557 ER_FOREIGN_DUPLICATE_KEY 23000
1568 ER_CANT_CHANGE_TX_ISOLATION 25001
1582 ER_WRONG_PARAMCOUNT_TO_NATIVE_FCT 42000
1583 ER_WRONG_PARAMETERS_TO_NATIVE_FCT 42000
1584 ER_WRONG_PARAMETERS_TO_STORED_FCT 42000
1586 ER_DUP_ENTRY_WITH_KEY_NAME 23000
1613 ER_XA_RBTIMEOUT XA106
1614 ER_XA_RBDEADLOCK XA102
1630 ER_FUNC_INEXISTENT_NAME_COLLISION 42000
1641 ER_DUP_SIGNAL_SET 42000
1642 ER_SIGNAL_WARN 01000
1643 ER_SIGNAL_NOT_FOUND 02000
1645 ER_RESIGNAL_WITHOUT_ACTIVE_HANDLER 0K000
1687 ER_SPATIAL_MUST_HAVE_GEOM_COL 42000

139



JDBC Concepts

MySQL MySQL Error Name SQL
Error Standard
Number SQLState
1690 ER_DATA_OUT_OF_RANGE 22003
1698 ER_ACCESS_DENIED_NO_PASSWORD_ERROR 28000
1701 ER_TRUNCATE_ILLEGAL FK 42000
1758 ER_DA_INVALID_CONDITION_NUMBER 35000
1761 ER_FOREIGN_DUPLICATE_KEY_WITH_CHILD_INFO 23000
1762 ER_FOREIGN_DUPLICATE_KEY_WITHOUT_CHILD_INFO 23000
1792 ER_CANT_EXECUTE_IN_READ_ONLY_TRANSACTION 25006
1845 ER_ALTER_OPERATION_NOT_SUPPORTED 0A000
1846 ER_ALTER_OPERATION_NOT_SUPPORTED_REASON 0A000
1859 ER_DUP_UNKNOWN_IN_INDEX 23000
1873 ER_ACCESS DENIED_CHANGE_USER_ERROR 28000
1887 ER_GET_STACKED_DA_WITHOUT_ACTIVE_HANDLER 0z002
1903 ER_INVALID_ARGUMENT_FOR_LOGARITHM 2201E

3.6 JDBC Concepts

This section provides some general JDBC background.

3.6.1 Connecting to MySQL Using the JDBC Dri ver Manager Interface

When you are using JDBC outside of an application server, the Dri ver Manager class manages the
establishment of connections.

Specify to the Dr i ver Manager which JDBC drivers to try to make Connections with. The easiest way to
do this is to use Cl ass. f or Nanme() on the class that implements the j ava. sql . Dri ver interface. With
MySQL Connector/J, the name of this class is com nysql . cj . j dbc. Dri ver . With this method, you
could use an external configuration file to supply the driver class name and driver parameters to use when
connecting to a database.

The following section of Java code shows how you might register MySQL Connector/J from the mai n()
method of your application. If testing this code, first read the installation section at Section 3.3, “Connector/
J Installation”, to make sure you have connector installed correctly and the CLASSPATH set up. Also,
ensure that MySQL is configured to accept external TCP/IP connections.

i mport java.sql.Connecti on;
import java.sql.DriverManager;
i mport java.sql.SQLException;
/'l Notice, do not inport com nysql.cj.jdbc.*
/1 or you will have probl ens!
public class LoadDriver {
public static void main(String[] args) {
try {
/'l The new nstance() call is a work around for sone
/1 broken Java inpl enent ati ons
Cl ass. forNane("com nysql . cj.jdbc. Driver").new nstance();
} catch (Exception ex) {
/1 handl e the error

}

140



Connecting to MySQL Using the JDBC Dr i ver Manager Interface

}

After the driver has been registered with the Dr i ver Manager , you can obtain a Connect i on instance
that is connected to a particular database by calling Dri ver Manager . get Connection():

Example 3.4 Connector/J: Obtaining a connection from the Dri ver Manager

If you have not already done so, please review the portion of Section 3.6.1, “Connecting to MySQL Using
the JDBC Dr i ver Manager Interface” above before working with the example below.

This example shows how you can obtain a Connect i on instance from the Dri ver Manager . There are
a few different signatures for the get Connect i on() method. Consult the API documentation that comes
with your JDK for more specific information on how to use them.

i nport java. sql. Connecti on;

i mport java.sql.DriverManager;
i mport java.sql.SQ.Excepti on;
Connection conn = null;

try {
conn =
Dri ver Manager . get Connecti on("j dbc: nysql :/ /| ocal host/test?" +
"user =m nt y&asswor d=gr eat sql db") ;
/! Do sonething with the Connection

} catch (SQLException ex) {
/! handl e any errors
System out. println("SQ.Exception: " + ex.getMessage());
Systemout.println("SQState: " + ex.getSQState());
Systemout. println("VendorError: " + ex.getErrorCode());
}

Once a Connect i on is established, it can be used to create St at enent and Pr epar edSt at enent
objects, as well as retrieve metadata about the database. This is explained in the following sections.

For Connector/J 8.0.24 and later: When the user for the connection is unspecified, Connector/J's
implementations of the authentication plugins use by default the name of the OS user who runs the
application for authentication with the MySQL server (except when the Kerberos authentication plugin is
being used; see Section 3.5.12.2, “Connecting Using Kerberos” for details).

Note

A user name is considered unspecified only when the following conditions are all
met:

1. The method Dri ver Manager . get Connection(String url, String
user, String password) is notused.

2. The connection property user is not used in, for example, the connection
URL,or elsewhere.

3. The user is not mentioned in the authority of the connection URL, as
inj dbc: nmysql ://1ocal host: 3306/ test,or jdbc: mysql://
@ ocal host: 3306/t est.

Notice if (1) or (2) is not true and an empty string is passed, the user name is an
empty string then, and is not considered unspecified.

141



Using JDBC St at enent Objects to Execute SQL

3.6.2 Using JDBC St at enent Objects to Execute SQL

St at enent objects allow you to execute basic SQL queries and retrieve the results through the
Resul t Set class, which is described later.

To create a St at enent instance, you call the cr eat eSt at enent () method on the
Connect i on object you have retrieved using one of the Dr i ver Manager . get Connecti on() or
Dat aSour ce. get Connecti on() methods described earlier.

Once you have a St at enent instance, you can execute a SELECT query by calling the
execut eQuery(String) method with the SQL you want to use.

To update data in the database, use the execut eUpdat e( Stri ng SQ.) method. This method returns
the number of rows matched by the update statement, not the number of rows that were modified.

If you do not know ahead of time whether the SQL statement will be a SELECT or an UPDATE/lI NSERT,
then you can use the execut e(String SQL) method. This method will return true if the SQL query
was a SELECT, or false if it was an UPDATE, | NSERT, or DELETE statement. If the statement was a
SELECT query, you can retrieve the results by calling the get Resul t Set () method. If the statement
was an UPDATE, | NSERT, or DELETE statement, you can retrieve the affected rows count by calling
get Updat eCount () onthe St at enent instance.

Example 3.5 Connector/J: Using java.sql.Statement to execute a SELECT query

i mport java.sql.Connecti on;
i mport java.sql.DriverManager;
i mport java.sql.SQLException;
import java.sql.Statenent;
import java.sql.ResultSet;
/] assune that conn is an already created JDBC connection (see previous exanpl es)
Statenment stnt = null;
ResultSet rs = null;
try {
stnt = conn.createStatenent();
rs = stnt.executeQuery("SELECT foo FROM bar");
I/l or alternatively, if you don't know ahead of tine that
/'l the query will be a SELECT...
if (stnt.execute("SELECT foo FROM bar")) {
rs = stnt.getResultSet();

}
/1 Now do sonething with the ResultSet ....

}
catch (SQLException ex){
/'l handl e any errors
System out . printl n("SQLException: " + ex.getMessage());
Systemout.println("SQLState: " + ex.getSQ.State());
System out . println("VendorError: " + ex.getErrorCode());
}
finally {
/Il it is a good idea to rel ease
Il resources in a finally{} block
/1 in reverse-order of their creation
/1 if they are no-|onger needed
if (rs!=null) {
try {
rs.close();
} catch (SQLException sqlEx) { } // ignore
rs = null;

if (stnt !'=null) {

try {
stnt.cl ose();

142


https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/delete.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/delete.html

Using JDBC Cal | abl eSt at enent s to Execute Stored Procedures

}
3.6.3 Usin

} catch (SQLException sqlEx) { } // ignore
stmt = null;

g JDBC Cal | abl eSt at enent s to Execute Stored Procedures

Connector/J fully implements the j ava. sqgl . Cal | abl eSt at enent interface.

For

more information on MySQL stored procedures, please refer to Using Stored Routines.

Connector/J exposes stored procedure functionality through JDBC's Cal | abl eSt at enent interface.

The following example shows a stored procedure that returns the value of i nQut Par amincremented by 1,
and the string passed in using i nput Par amas a Resul t Set :

Example 3.6 Connector/J: Calling Stored Procedures

CREATE PROCEDURE dermpSp( | N i nput Par am VARCHAR( 255), \

I NOUT i nQut Par am | NT)

BEG N

END

DECLARE z | NT;

SET z = i nQut Param + 1;

SET i nQut Param = z;

SELECT i nput Par am

SELECT CONCAT(' zyxw , i nputParan);

To use the denmpbSp procedure with Connector/J, follow these steps:

1.

Prepare the callable statement by using Connect i on. prepareCal | ().

Notice that you have to use JDBC escape syntax, and that the parentheses surrounding the parameter
placeholders are not optional:

Example 3.7 Connector/J: Using Connecti on. prepareCal | ()

i nport java.sql.Call abl eSt at enent ;

7
/] Prepare a call to the stored procedure 'denpSp'
/] with two paraneters
/1
/1 Notice the use of JDBC- escape syntax ({call ...})
/1
Cal | abl eStatenment cStnt = conn. prepareCall ("{call demdSp(?, ?)}");
cStnt.setString(1, "abcdefg");

Note

Connecti on. prepareCal | () is an expensive method, due to the metadata
retrieval that the driver performs to support output parameters. For performance
reasons, minimize unnecessary calls to Connect i on. prepareCal | () by
reusing Cal | abl eSt at enent instances in your code.

Register the output parameters (if any exist)

To retrieve the values of output parameters (parameters specified as OUT or | NOUT when you created
the stored procedure), JDBC requires that they be specified before statement execution using the
various r egi st er Qut put Par anmet er () methods in the Cal | abl eSt at ement interface:

143


https://dev.mysql.com/doc/refman/8.0/en/stored-routines.html

Using JDBC Cal | abl eSt at enent s to Execute Stored Procedures

Example 3.8 Connector/J: Registering output parameters
i mport java.sql. Types;

/1

/] Connector/J supports both named and i ndexed

/] output paraneters. You can register output

/| paraneters using either nethod, as well

/] as retrieve output paraneters using either

/1 method, regardl ess of what nethod was

/] used to register them

/1

/1 The follow ng exanpl es show how to use

[/l the various methods of registering

/] output paraneters (you shoul d of course

/'l use only one registration per parameter).

/1

/1

/'l Registers the second paraneter as output, and

/] uses the type 'INTEGER for values returned from
/] get Object()

/1

cStnt. registerQutParaneter (2, Types.|NTEGER);

/1

/'l Registers the naned paraneter 'inQutParam , and
/] uses the type 'INTEGER for values returned from
/] get Object()

/1

cStnt. registerQutParaneter("inCutParant, Types.|NTEGER);

3. Set the input parameters (if any exist)

Input and in/out parameters are set as for Pr epar edSt at enent objects. However,
Cal | abl eSt at ement also supports setting parameters by name:

Example 3.9 Connector/J: Setting Cal | abl eSt at enent input parameters

/1

/] Set a paraneter by index
/1

cStnt.setString(l, "abcdefg");
/1

/l Alternatively, set a parameter using
/| the paraneter name

/1

cStnt.setString("inputParant, "abcdefg");

/1

[/l Set the 'in/out' paranmeter using an index
/1

cStnt.setint(2, 1);

/1

// Alternatively, set the "in/out' paraneter
/] by nane

/1

cStnt.setlnt("inQutParant, 1);

4. Execute the Cal | abl eSt at enent , and retrieve any result sets or output parameters.

Although Cal | abl eSt at enent supports calling any of the St at enent execute methods
(execut eUpdat e( ), execut eQuery() orexecut e() ), the most flexible method to call is
execut e(), as you do not need to know ahead of time if the stored procedure returns result sets:

144



Retrieving AUTO | NCREMENT Column Values through JDBC

Example 3.10 Connector/J: Retrieving results and output parameter values

bool ean hadResults = cStnt.execute();

/1

/Il Process all returned result sets

/1

whi | e (hadResults) {
ResultSet rs = cStnt.getResultSet();
/] process result set

hadResults = cStnt.get MoreResul ts();
}
/1
/] Retrieve output paraneters
/1
/'l Connector/J supports both index-based and
/1 name-based retrieval
/1
int outputValue = cStnt.getlnt(2); // index-based
out putVal ue = cStnt.getlnt("inQutParant); // nane-based

3.6.4 Retrieving AUTO | NCRENMENT Column Values through JDBC

get Gener at edKeys() is the preferred method to use if you need to retrieve AUTO | NCREMENT keys
and through JDBC; this is illustrated in the first example below. The second example shows how you

can retrieve the same value using a standard SELECT LAST_| NSERT_I () query. The final example
shows how updatable result sets can retrieve the AUTO_| NCREMENT value when using the i nsert Row()
method.

Example 3.11 Connector/J: Retrieving AUTO | NCREMENT column values using
St at enent . get Gener at edKeys()

Statement stnt = null;
ResultSet rs = null;
try {
/1
/Il Create a Statenent instance that we can use for
/1 '"normal' result sets assum ng you have a
/'l Connection 'conn' to a MySQL dat abase al r eady
/1 avail abl e
stnt = conn.createStatenent();
/1
/'l 1ssue the DDL queries for the table for this exanple
/1
st nt . execut eUpdat e( " DROP TABLE | F EXI STS autol ncTutorial ");
st nt . execut eUpdat e(
" CREATE TABLE aut ol ncTutorial ("
+ "priKey INT NOT NULL AUTO | NCREMENT,
+ "dataFi el d VARCHAR(64), PRI MARY KEY (priKey))");
/1
/'l Insert one row that will generate an AUTO | NCREMENT
/1 key in the 'priKey' field
/1
st nt . execut eUpdat e(
"I NSERT | NTO aut ol ncTutori al (dataFi el d)
+ "values ('Can | Get the Auto Increnent Field? )",
St at ement . RETURN_GENERATED_KEYS) ;
/1
/| Exanpl e of using Statenment. get Gener at edKeys()
/1 to retrieve the value of an auto-increnment
/1 val ue
/1

145



Retrieving AUTO | NCREMENT Column Values through JDBC

i nt autol nckeyFromApi = -1;

rs = stnt.get Gener at edKeys();

if (rs.next()) {
aut ol ncKeyFromApi = rs.getlnt(1);

} else {
/1 throw an exception from here

}

System out. println("Key returned from get Gener at edKeys(): "
+ aut ol ncKeyFr omApi ) ;

} finally {
if (rs!=null) {
try {
rs.close();
} catch (SQLException ex) {
/'l ignore
}
if (stnt !'=null) {
try {

stnt.cl ose();

} catch (SQLException ex) {
/'l ignore

}

}

Example 3.12 Connector/J: Retrieving AUTO | NCREMENT column values using SELECT
LAST_| NSERT_| IX()

Statement stnt = null;
ResultSet rs = null;
try {
I/
/] Create a Statenent instance that we can use for
/1 *normal' result sets.
stnt = conn. createStatenent();
I/
/'l 1ssue the DDL queries for the table for this exanple
I/
st nt . execut eUpdat e( " DROP TABLE | F EXI STS aut ol ncTutorial ");
st nt . execut eUpdat e(
" CREATE TABLE autol ncTutorial ("
+ "priKey INT NOT NULL AUTO_| NCREMENT,
+ "dat aFi el d VARCHAR(64), PRI MARY KEY (priKey))");
I/
/'l Insert one row that will generate an AUTO | NCREMENT
/1 key in the 'priKey' field
I/
st nt . execut eUpdat e(
"I NSERT | NTO aut ol ncTutori al (dataFi el d)
+ "values ("Can | Get the Auto Increnent Field? )");
I/
/1 Use the MySQL LAST_I NSERT_I D()
/'l function to do the same thing as get Gener at edKeys()
I/
i nt autol nckeyFronfunc = -1;
rs = stnt.executeQuery("SELECT LAST_INSERT_ID()");
if (rs.next()) {
aut ol ncKeyFronfFunc = rs.getlnt(1);
} else {
/1 throw an exception from here

}
Systemout. println("Key returned from" +
"' SELECT LAST_INSERT_ID()': " +
aut ol ncKeyFr onfunc) ;
} finally {

if (rs!=null) {

146



Retrieving AUTO | NCREMENT Column Values through JDBC

try {
rs.close();
} catch (SQLException ex) {
/'l ignore
}
}
if (stnt !'=null) {
try {
stnt.cl ose();
} catch (SQLException ex) {
/'l ignore
}
}

Example 3.13 Connector/J: Retrieving AUTO_| NCREMENT column values in Updat abl e Resul t Set's

Statement stnt = nul|;

ResultSet rs = null;

try {
/1
/] Create a Statenent instance that we can use for
/1 '"normal' result sets as well as an 'updatabl e’
/'l one, assuming you have a Connection 'conn' to
/1 a MySQ. dat abase al ready avail abl e
/1

stnt = conn. createSt at ement (j ava. sql . Resul t Set . TYPE_FORWARD_ONLY,
j ava. sgl . Resul t Set . CONCUR_UPDATABLE) ;

/1
/] 1ssue the DDL queries for the table for this exanple
/1
st nt . execut eUpdat e( " DROP TABLE | F EXI STS aut ol ncTutorial ");
st nt . execut eUpdat e(
" CREATE TABLE autol ncTutorial ("
+ "priKey INT NOT NULL AUTO_| NCREMENT,
+ "dat aFi el d VARCHAR(64), PRI MARY KEY (priKey))");
/1
/] Exanple of retrieving an AUTO | NCREMENT key
// from an updatable result set
/1
rs = stnt.executeQuery("SELECT pri Key, dataField "
+ "FROM aut ol ncTutorial ");
rs. moveTol nsert Row() ;
rs.updateString("dataField', "AUTO | NCREMENT here?");
rs.insertRow();
/1
// the driver adds rows at the end
/1
rs.last();
/1
/1 W shoul d now be on the row we just inserted
/1
i nt autol nckeyFronRS = rs.getlnt("priKey");
Systemout. println("Key returned for inserted row
+ aut ol ncKeyFr onRS) ;

} finally {
if (rs!=null) {
try {
rs.close();
} catch (SQLException ex) {
/'l ignore
}
if (stnt !'=null) {
try {

stnt.cl ose();
} catch (SQLException ex) {

147



Connection Pooling with Connector/J

/'l ignore

}
Running the preceding example code should produce the following output:

Key returned from get Generat edKeys(): 1
Key returned from SELECT LAST INSERT ID(): 1
Key returned for inserted row 1

At times, it can be tricky to use the SELECT LAST | NSERT | D() query, as that function's value is scoped
to a connection. So, if some other query happens on the same connection, the value is overwritten. On the
other hand, the get Gener at edKeys() method is scoped by the St at enent instance, so it can be used
even if other queries happen on the same connection, but not on the same St at enent instance.

3.7 Connection Pooling with Connector/J

Connection pooling is a technique of creating and managing a pool of connections that are ready for use
by any thread that needs them. Connection pooling can greatly increase the performance of your Java
application, while reducing overall resource usage.

How Connection Pooling Works

Most applications only need a thread to have access to a JDBC connection when they are actively
processing a transaction, which often takes only milliseconds to complete. When not processing a
transaction, the connection sits idle. Connection pooling enables the idle connection to be used by some
other thread to do useful work.

In practice, when a thread needs to do work against a MySQL or other database with JDBC, it requests a
connection from the pool. When the thread is finished using the connection, it returns it to the pool, so that
it can be used by any other threads.

When the connection is loaned out from the pool, it is used exclusively by the thread that

requested it. From a programming point of view, it is the same as if your thread called

Dri ver Manager . get Connecti on() every time it needed a JDBC connection. With connection pooling,
your thread may end up using either a new connection or an already-existing connection.

Benefits of Connection Pooling

The main benefits to connection pooling are:
» Reduced connection creation time.

Although this is not usually an issue with the quick connection setup that MySQL offers compared to
other databases, creating new JDBC connections still incurs networking and JDBC driver overhead that
will be avoided if connections are recycled.

» Simplified programming model.

When using connection pooling, each individual thread can act as though it has created its own JDBC
connection, allowing you to use straightforward JDBC programming techniques.

» Controlled resource usage.

If you create a new connection every time a thread needs one rather than using connection pooling,
your application's resource usage can be wasteful, and it could lead to unpredictable behaviors for your
application when it is under a heavy load.

148


https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_thread
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_transaction

Using Connection Pooling with Connector/J

Using Connection Pooling with Connector/J

The concept of connection pooling in JDBC has been standardized through the JDBC 2.0 Optional
interfaces, and all major application servers have implementations of these APIs that work with MySQL

Connector/J.

Generally, you configure a connection pool in your application server configuration files, and access it

through the Java Naming and Directory Interface (JNDI). The following code shows how you might use a
connection pool from an application deployed in a J2EE application server:

Example 3.14 Connector/J: Using a connection pool with a J2EE application server

i mport
i mport
i mport
i mport
i mport
public

j ava. sqgl . Connecti on;

j ava. sgl . SQLExcepti on;

j ava. sql . St at enment ;

j avax. nam ng. | ni ti al Cont ext ;
j avax. sql . Dat aSour ce;

class MyServl etJspOEjb {

public void doSonet hing() throws Exception {

/*
* Create a JNDI Initial context to be able to
| ookup the DataSource

In production-|level code, this should be cached as
an instance or static variable, as it can
be quite expensive to create a JNDI context.

or EJBs in a J2EE application server. |f you are
usi ng connection pooling in standal one Java code, you
wi Il have to create/configure datasources using whatever
mechani sms your particul ar connection pooling library
provi des.
/
Initial Context ctx = new Initial Context();
/*
* Lookup the DataSource, which will be backed by a pool
* that the application server provides. DataSource instances
* are al so a good candi date for caching as an instance
* variable, as JNDI | ookups can be expensive as well.
*/
Dat aSource ds =
(Dat aSour ce) ct x. | ookup("j ava: conp/ env/ j dbc/ MySQLDB") ;
/*
* The followi ng code is what woul d actually be in your
* Servlet, JSP or EJB 'service' nmethod...where you need
* to work with a JDBC connecti on.
*/
Connection conn = nul|;
Statement stnt = null;
try {
conn = ds. get Connection();
/*
* Now, use normal JDBC programm ng to work with
* MySQL, neking sure to close each resource when you're
* finished with it, which permits the connection pool
* resources to be recovered as quickly as possible
*/
stnt = conn.createStatenent();
stnt. execut e(" SOVE SQL QUERY");
stnt.cl ose();

*
*
*
*
*
*
* Note: This code only works when you are using servlets
*
*
*
*
*
*

stnmt = null;

conn. cl ose();

conn = null;
} finally {

149



Sizing the Connection Pool

cl ose any jdbc instances here that weren't
explicitly closed during nornal code path, so
* that we don't 'leak' resources..
*/
if (stnmt !'=null) {
try {
stnt. cl ose()
} catch (sql exception sqgl ex) {
/'l ignore, as we can't do anything about it here

* % %

stmt = null
}

if (conn !'=null) {

try {
conn. cl ose()

} catch (sql exception sqgl ex) {
/'l ignore, as we can't do anything about it here
}

conn = nul |

}

As shown in the example above, after obtaining the JNDI | ni ti al Cont ext , and looking up the
Dat aSour ce, the rest of the code follows familiar JDBC conventions.

When using connection pooling, always make sure that connections, and anything created by them

(such as statements or result sets) are closed. This rule applies no matter what happens in your code
(exceptions, flow-of-control, and so forth). When these objects are closed, they can be re-used; otherwise,
they will be stranded, which means that the MySQL server resources they represent (such as buffers,
locks, or sockets) are tied up for some time, or in the worst case can be tied up forever.

Sizing the Connection Pool

Each connection to MySQL has overhead (memory, CPU, context switches, and so forth) on both the client
and server side. Every connection limits how many resources there are available to your application as
well as the MySQL server. Many of these resources will be used whether or not the connection is actually
doing any useful work! Connection pools can be tuned to maximize performance, while keeping resource
utilization below the point where your application will start to fail rather than just run slower.

The optimal size for the connection pool depends on anticipated load and average database transaction
time. In practice, the optimal connection pool size can be smaller than you might expect. If you take
Oracle's Java Petstore blueprint application for example, a connection pool of 15-20 connections can serve
a relatively moderate load (600 concurrent users) using MySQL and Tomcat with acceptable response
times.

To correctly size a connection pool for your application, create load test scripts with tools such as Apache
JMeter or The Grinder, and load test your application.

An easy way to determine a starting point is to configure your connection pool's maximum number of
connections to be unbounded, run a load test, and measure the largest amount of concurrently used
connections. You can then work backward from there to determine what values of minimum and maximum
pooled connections give the best performance for your particular application.

Validating Connections

MySQL Connector/J can validate the connection by executing a lightweight ping against a server. In the
case of load-balanced connections, this is performed against all active pooled internal connections that are

150



Multi-Host Connections

retained. This is beneficial to Java applications using connection pools, as the pool can use this feature to
validate connections. Depending on your connection pool and configuration, this validation can be carried
out at different times:

1. Before the pool returns a connection to the application.
2. When the application returns a connection to the pool.
3. During periodic checks of idle connections.

To use this feature, specify a validation query in your connection pool that starts with / * pi ng

*/ . Note that the syntax must be exactly as specified. This will cause the driver send a ping to the
server and return a dummy lightweight result set. When using a Repl i cat i onConnecti on or
LoadBal ancedConnect i on, the ping will be sent across all active connections.

It is critical that the syntax be specified correctly. The syntax needs to be exact for reasons of efficiency, as
this test is done for every statement that is executed:

protected static final String PING MARKER = "/* ping */";

it (sql.charAt(0) == '/') {
if (sqgl.startsWth(PlI NG MARKER)) {
doPi ngl nst ead() ;

None of the following snippets will work, because the ping syntax is sensitive to whitespace, capitalization,
and placement:

sgql = "/* PING */ SELECT 1";

sgql = "SELECT 1 /* ping*/";

sgl = "/*ping*/ SELECT 1";

sql =" /* ping */ SELECT 1";

sql = "/*to ping or not to ping*/ SELECT 1";

All of the previous statements will issue a normal SELECT statement and will not be transformed into
the lightweight ping. Further, for load-balanced connections, the statement will be executed against one
connection in the internal pool, rather than validating each underlying physical connection. This results
in the non-active physical connections assuming a stale state, and they may die. If Connector/J then re-
balances, it might select a dead connection, resulting in an exception being passed to the application.
To help prevent this, you can use | oadBal anceVal i dat eConnect i onOnSwapSer ver to validate the
connection before use.

If your Connector/J deployment uses a connection pool that allows you to specify a validation query, take
advantage of it, but ensure that the query starts exactly with / * pi ng */. This is particularly important
if you are using the load-balancing or replication-aware features of Connector/J, as it will help keep alive
connections which otherwise will go stale and die, causing problems later.

3.8 Multi-Host Connections

The following sections discuss a number of topics that involve multi-host connections, namely, server load-
balancing, failover, and replication.

Developers should know the following things about multi-host connections that are managed through
Connector/J:

» Each multi-host connection is a wrapper of the underlying physical connections.

151



Configuring Server Failover for Connections Using JDBC

» Each of the underlying physical connections has its own session. Sessions cannot be tracked, shared, or
copied, given the MySQL architecture.

» Every switch between physical connections means a switch between sessions.

» Within a transaction boundary, there are no switches between physical connections. Beyond a
transaction boundary, there is no guarantee that a switch does not occur.

Note

If an application reuses session-scope data (for example, variables, SSPs)
beyond a transaction boundary, failures are possible, as a switch between the
physical connections (which is also a switch between sessions) might occur.
Therefore, the application should re-prepare the session data and also restart the
last transaction in case of an exception, or it should re-prepare session data for
each new transaction if it does not want to deal with exception handling.

3.8.1 Configuring Server Failover for Connections Using JDBC

MySQL Connector/J supports server failover. A failover happens when connection-related errors occur for
an underlying, active connection. The connection errors are, by default, propagated to the client, which
has to handle them by, for example, recreating the working objects (St at enent , Resul t Set , etc.) and
restarting the processes. Sometimes, the driver might eventually fall back to the original host automatically
before the client application continues to run, in which case the host switch is transparent and the client
application will not even notice it.

A connection using failover support works just like a standard connection: the client does not experience
any disruptions in the failover process. This means the client can rely on the same connection instance
even if two successive statements might be executed on two different physical hosts. However, this does
not mean the client does not have to deal with the exception that triggered the server switch.

The failover is configured at the initial setup stage of the server connection by the connection URL (see
explanations for its format here):

jdbc:nysqgl ://[primary host][:port],[secondary host 1][:port][,[secondary host 2][:port]]...[/[database]]»
[ ?propert yNanel=propertyVal uel[ &r opertyNane2=propertyVal ue2]...]

The host list in the connection URL comprises of two types of hosts, the primary and the secondary. When
starting a new connection, the driver always tries to connect to the primary host first and, if required, fails
over to the secondary hosts on the list sequentially when communication problems are experienced. Even
if the initial connection to the primary host fails and the driver gets connected to a secondary host, the
primary host never loses its special status: for example, it can be configured with an access mode distinct
from those of the secondary hosts, and it can be put on a higher priority when a host is to be picked during
a failover process.

The failover support is configured by the following connection properties (their functions are explained in
the paragraphs below):

o fail Over ReadOnl y
* secondsBef or eRet rySour ce
e queri esBef oreRetrySource

retriesAl | Down

e aut oReconnect

152



Configuring Server Failover for Connections Using JDBC

e aut oReconnect For Pool s

Configuring Connection Access Mode

As with any standard connection, the initial connection to the primary host is in read/write mode. However,
if the driver fails to establish the initial connection to the primary host and it automatically switches to the
next host on the list, the access mode now depends on the value of the property f ai | Over ReadOnl vy,
which is “true” by default. The same happens if the driver is initially connected to the primary host and,
because of some connection failure, it fails over to a secondary host. Every time the connection falls

back to the primary host, its access mode will be read/write, irrespective of whether or not the primary
host has been connected to before. The connection access mode can be changed any time at runtime

by calling the method Connecti on. set ReadOnl y( bool ean), which partially overrides the property
fail Over ReadOnl y. When f ai | Over ReadOnl y=f al se and the access mode is explicitly set to either
true or false, it becomes the mode for every connection after a host switch, no matter what host type

are being connected to; but, if f ai | Over ReadOnl y=t r ue, changing the access mode to read/write is
only possible if the driver is connecting to the primary host; however, even if the access mode cannot be
changed for the current connection, the driver remembers the client's last intention and, when falling back
to the primary host, that is the mode that will be used. For an illustration, see the following successions of
events with a two-host connection.

* Sequence A, with f ai | Over ReadOnl y=t r ue:
1. Connects to primary host in read/write mode
2. Sets Connecti on. set ReadOnl y(true); primary host now in read-only mode
3. Failover event; connects to secondary host in read-only mode
4. Sets Connecti on. set ReadOnl y(f al se) ; secondary host remains in read-only mode
5. Falls back to primary host; connection now in read/write mode
* Sequence B, with f ai | Over ReadOnl y=f al se
1. Connects to primary host in read/write mode
2. Sets Connecti on. set ReadOnl y(true); primary host now in read-only mode
3. Failover event; connects to secondary host in read-only mode

4. Set Connection. set ReadOnl y(f al se); connection to secondary host switches to read/write
mode

5. Falls back to primary host; connection now in read/write mode

The difference between the two scenarios is in step 4: the access mode for the secondary host in
sequence A does not change at that step, but the driver remembers and uses the set mode when falling
back to the primary host, which would be read-only otherwise; but in sequence B, the access mode for the
secondary host changes immediately.

Configuring Fallback to Primary Host

As already mentioned, the primary host is special in the failover arrangement when it comes to the

host's access mode. Additionally, the driver tries to fall back to the primary host as soon as possible by
default, even if no communication exception occurs. Two properties, secondsBef or eRet r ySour ce and
qguer i esBef or eRet r ySour ce, determine when the driver is ready to retry a reconnection to the primary

153



Configuring Server Failover for Connections Using X DevAPI

host (the Sour ce in the property names stands for the primary host of our connection URL, which is not
necessarily a source host in a replication setup):

» secondsBef or eRet r ySour ce determines how much time the driver waits before trying to fall back to
the primary host

* queri esBef or eRet r ySour ce determines the number of queries that are executed
before the driver tries to fall back to the primary host. Note that for the driver, each call to a
St at ement . execut e* () method increments the query execution counter; therefore, when calls are
made to St at enent . execut eBat ch() orifal | owMul ti QueriesorrewiteBatchStatenents
are enabled, the driver may not have an accurate count of the actual number of queries executed on the
server. Also, the driver calls the St at enent . execut e* () methods internally in several occasions. All
these mean you can only use quer i esBef or eRet r ySour ce only as a coarse specification for when to
fall back to the primary host.

In general, an attempt to fallback to the primary host is made when at least one of the conditions specified
by the two properties is met, and the attempt always takes place at transaction boundaries. However,

if auto-commit is turned off, the check happens only when the method Connecti on. commi t () or
Connection. rol | back() is called. The automatic fallback to the primary host can be turned off by
setting simultaneously secondsBef or eRet r ySour ce and quer i esBef or eRet r ySour ce to “0”".
Setting only one of the properties to “0” only disables one part of the check.

Configuring Reconnection Attempts

When establishing a new connection or when a failover event occurs, the driver tries to connect
successively to the next candidate on the host list. When the end of the list has been reached, it restarts
all over again from the beginning of the list; however, the primary host is skipped over, if (a) NOT all

the secondary hosts have already been tested at least once, AND (b) the fallback conditions defined by
secondsBef or eRet rySour ce and quer i esBef or eRet r ySour ce are not yet fulfilled. Each run-
through of the whole host list, (which is not necessarily completed at the end of the host list) counts as a
single connection attempt. The driver tries as many connection attempts as specified by the value of the
property r et ri esAl | Down.

Seamless Reconnection

Although not recommended, you can make the driver perform failovers without invalidating the

active St at enent or Resul t Set instances by setting either the parameter aut oReconnect or

aut oReconnect For Pool s to t r ue. This allows the client to continue using the same object instances
after a failover event, without taking any exceptional measures. This, however, may lead to unexpected
results: for example, if the driver is connected to the primary host with read/write access mode and it fails-
over to a secondary host in read-only mode, further attempts to issue data-changing queries will result

in errors, and the client will not be aware of that. This limitation is particularly relevant when using data
streaming: after the failover, the Resul t Set looks to be alright, but the underlying connection may have
changed already, and no backing cursor is available anymore.

Configuring Server Failover Using JDBC with DNS SRV

See Section 3.5.14, “Support for DNS SRV Records” for details.

3.8.2 Configuring Server Failover for Connections Using X DevAPI

When using the X Protocol, Connector/J supports a client-side failover feature for establishing a Session.
If multiple hosts are specified in the connection URL, when Connector/J fails to connect to a listed host, it
tries to connect to another one. This is a sample X DevAPI URL for configuring client-side failover:

nysql x: / / sandy: nypasswor d@ host 1: 33060, host 2: 33061] / t est

154



Configuring Load Balancing with Connector/J

With the client-side failover configured, when there is a failure to establish a connection, Connector/J
keeps attempting to connect to a host on the host list. The order in which the hosts are attempted for
connection is as follows:

» For connections with the pri ori t y property set for each host in the connection URL, hosts are
attempted according to the set priorities for the hosts, which are specified by any numbers between 0 to
100, with a larger number indicating a higher priority for connection. For example:

nmysql x: // sandy: mypasswor d@ ( addr ess=host 1: 33060, pri ority=2), (addr ess=host 2: 33061, priority=1)]/test
In this example, host 1 is always attempted before host 2 when new sessions are created.
Priorities should either be set for all or no hosts.
» For connections with the pri ori ty property NOT set for each host in the connection URL:
« Forrelease 8.0.19 and later, hosts are attempted one after another in a random order.

 for release 8.0.18 and earlier, hosts are attempted one after another in the order they appear in the
connection URL—a host appearing earlier in the list will be attempted before a host appearing later in
the list.

Notice that the server failover feature for X DevAPI only allows for a failover when Connector/J is trying to
establish a connection, but not during operations after a connection has already been made.

Connection Pooling Using X DevAPI.  When using connection pooling with X DevAPI,

Connector/J keeps track of any host it failed to connect to and, for a short waiting period after

the failure, avoids connecting to it during the creation or retrieval of a Sessi on. However, if

all other hosts have already been tried, those excluded hosts will be retried without waiting.

Once all hosts have been tried and no connections can be established, Connector/J throws a

com nysql . cj . exceptions. CJCommuni cat i onsExcepti on and returns the message Unabl e to
connect to any of the target hosts.

Configuring Server Failover Using X DevAPI with DNS SRV

See Section 3.5.14, “Support for DNS SRV Records” for details.

3.8.3 Configuring Load Balancing with Connector/J

Connector/J has long provided an effective means to distribute read/write load across multiple MySQL
server instances for Cluster or source-source replication deployments. You can dynamically configure load-
balanced connections, with no service outage. In-process transactions are not lost, and no application
exceptions are generated if any application is trying to use that particular server instance.

The load balancing is configured at the initial setup stage of the server connection by the following
connection URL, which has a similar format as the general JDBC URL for MySQL connection, but a
specialized scheme:

jdbc: nysql : | oadbal ance: //[host1][:port],[host2][:port][,[host3][:port]]...[/[database]] »
[ ?pr opertyNanel=propertyVal uel[ &r opertyNane2=propertyVal ue2]...]

There are two configuration properties associated with this functionality:

» | oadBal anceConnecti onG oup — This provides the ability to group connections from different
sources. This allows you to manage these JDBC sources within a single class loader in any combination
you choose. If they use the same configuration, and you want to manage them as a logical single
group, give them the same name. This is the key property for management: if you do not define a
name (string) for | oadBal anceConnect i onG oup, you cannot manage the connections. All load-

155



Configuring Load Balancing with Connector/J

balanced connections sharing the same | oadBal anceConnect i onG oup value, regardless of how the
application creates them, will be managed together.

ha. enabl eJMX — The ability to manage the connections is exposed when you define a

| oadBal anceConnect i onG oup; but if you want to manage this externally, enable JMX by

setting this property to t r ue. This enables a JMX implementation, which exposes the management

and monitoring operations of a connection group. Further, start your application with the -

Dcom sun. managenent . j nxr enot e JVM flag. You can then perform connect and perform operations
using a JMX client such as j consol e.

Once a connection has been made using the correct connection properties, a number of monitoring
properties are available:

Current active host count.

Current active physical connection count.
Current active logical connection count.
Total logical connections created.

Total transaction count.

The following management operations can also be performed:

Add host.

Remove host.

The JMX interface, com nysql . cj . j dbc. j nx. LoadBal anceConnecti onG oupManager MBean, has
the following methods:

int getActiveHost Count (String group);

i nt get Tot al Host Count (String group);

| ong get Tot al Logi cal Connecti onCount (String group);

 ong get Acti veLogi cal Connecti onCount (String group);

| ong get Acti vePhysi cal Connecti onCount (String group);

| ong get Tot al Physi cal Connecti onCount (String group);

| ong get Tot al Transacti onCount (Stri ng group);

voi d renmoveHost (String group, String host) throws SQLException;
voi d st opNewConnecti onsToHost (String group, String host) throws SQ.Excepti on;
voi d addHost (String group, String host, bool ean forExisting);
String getActiveHostsList(String group);

String getRegi st eredConnecti onG oups();

The get Regi st er edConnect i onG oups() method returns the names of all connection groups defined
in that class loader.

You can test this setup with the following code:

156



Configuring Source/Replica Replication with Connector/J

public class Test {

private static String URL = "jdbc: nysqgl : | oadbal ance: //" +
"l ocal host: 3306, | ocal host: 3310/ test ?" +
"| oadBal anceConnect i onG oup=fi r st &a. enabl eJMX=t r ue";

public static void main(String[] args) throws Exception {
new Thr ead(new Repeater()).start();
new Thread(new Repeater()).start();
new Thread(new Repeater()).start();

}

static Connection get NewConnection() throws SQ.LException, C assNot FoundException {
Cl ass. for Name("com nysql . cj.jdbc. Driver");

return Driver Manager. get Connecti on(URL, "root", "");

}

static void executeSi npl eTransacti on(Connection ¢, int conn, int trans){
try {

c. set Aut oConmmi t (f al se);
Statenent s = c.createStatenent();
s. execut eQuery(" SELECT SLEEP(1) /* Connection: " + conn + ", transaction: " + trans + " */");
c.comm t();
} catch (SQLException e) {
e.printStackTrace();
}

public static class Repeater inplenments Runnable {
public void run() {
for(int i=0; i < 100; i++){
try {
Connection ¢ = get NewConnecti on();
for(int j=0; j < 10; j++){
execut eSi npl eTransaction(c, i, j);
Thr ead. sl eep(Mat h. round(100 * Mat h. randon()));
}

c.close();
Thr ead. sl eep(100) ;
} catch (Exception e) {
e.printStackTrace();
}

After compiling, the application can be started with the - Dcom sun. nmanagenent . j nxr enot e

flag, to enable remote management. j consol e can then be started. The Test main class

will be listed by j consol e. Select this and click Connect. You can then navigate to the

com nysql.cj.jdbc.jnm. LoadBal anceConnecti onG oupManager bean. At this point, you can
click on various operations and examine the returned result.

If you now had an additional instance of MySQL running on port 3309, you could ensure that Connector/J
starts using it by using the addHost () , which is exposed in j consol e. Note that these operations can be
performed dynamically without having to stop the application running.

For further information on the combination of load balancing and failover, see Section 3.8.5, “Advanced
Load-balancing and Failover Configuration”.

Configuring Load Balancing with DNS SRV
See Section 3.5.14, “Support for DNS SRV Records” for details.
3.8.4 Configuring Source/Replica Replication with Connector/J

This section describe a number of features of Connector/J's support for replication-aware deployments.

157



Configuring Source/Replica Replication with Connector/J

The replication is configured at the initial setup stage of the server connection by the connection URL,
which has a similar format as the general JDBC URL for MySQL connection, but a specialized scheme:

jdbc: nysqgl :replication://[source host][:port],[replica host 1][:port][,[replica host 2][:port]]...[/[database]
[ ?pr opertyNanel=propertyVal uel[ &ropertyNane2=propertyVal ue2]...]

Users may specify the property al | owSour ceDownConnect i ons=t r ue to allow Connect i on objects
to be created even though no source hosts are reachable. Such Connect i on objects report they are
read-only, and i sSour ceConnecti on() returns false for them. The Connect i on tests for available
source hosts when Connect i on. set ReadOnl y( f al se) is called, throwing an SQLException if it cannot
establish a connection to a source, or switching to a source connection if the host is available.

Users may specify the property al | owRepl i casDownConnect i ons=t r ue to allow Connect i on
objects to be created even though no replica hosts are reachable. A Connect i on then, at runtime, tests
for available replica hosts when Connect i on. set ReadOnl y(true) is called (see explanation for

the method below), throwing an SQLException if it cannot establish a connection to a replica, unless

the property r eadFr onSour ceWhenNoRepl i cas is set to be “true” (see below for a description of the

property).
Scaling out Read Load by Distributing Read Traffic to Replicas

Connector/J supports replication-aware connections. It can automatically send queries to a read/
write source host, or a failover or round-robin loadbalanced set of replicas based on the state of
Connecti on. get ReadOnl y() .

An application signals that it wants a transaction to be read-only by calling

Connecti on. set ReadOnl y(t rue) . The replication-aware connection will use one of

the replica connections, which are load-balanced per replica host using a round-robin

scheme. A given connection is sticky to a replica until a transaction boundary command

(a commit or rollback) is issued, or until the replica is removed from service. After calling

Connecti on. set ReadOnl y(true), if you want to allow connection to a source when no replicas
are available, set the property r eadFr onSour ceWhenNoRepl i cas to “true.” Notice that the source
host will be used in read-only state in those cases, as if it is a replica host. Also notice that setting

r eadFr onSour ceWhenNoRepl i cas=t r ue might result in an extra load for the source host in a
transparent manner.

If you have a write transaction, or if you have a read that is time-sensitive (remember, replication in MySQL
is asynchronous), set the connection to be not read-only, by calling Connect i on. set ReadOnl y(f al se)
and the driver will ensure that further calls are sent to the source MySQL server. The driver takes care of
propagating the current state of autocommit, isolation level, and catalog between all of the connections that
it uses to accomplish this load balancing functionality.

To enable this functionality, use the specialized replication scheme ( j dbc: nysql : replication://)
when connecting to the server.

Here is a short example of how a replication-aware connection might be used in a standalone application:

i mport java.sql.Connecti on;
import java.sql.ResultSet;
inmport java.util.Properties;
i mport java.sql.DriverManager;
public class Replicati onDeno {
public static void main(String[] args) throws Exception {

Properties props = new Properties();

/'l We want this for failover on the replicas
props. put ("aut oReconnect", "true");

/1l W& want to | oad bal ance between the replicas
props. put ("roundRobi nLoadBal ance", "true");

158



Configuring Source/Replica Replication with Connector/J

props. put ("user", "foo");
props. put ("password", "password");
/1
/'l Looks like a normal MySQL JDBC url, with a
/'l comma-separated |ist of hosts, the first
/'l being the 'source', the rest being any nunber
/'l of replicas that the driver will |oad bal ance agai nst
/1
Connection conn =
Dri ver Manager . get Connecti on("j dbc: nmysql :replication://source, replical,replica2,replica3/test",

props);
/1
/] Performread/wite work on the source
/1 by setting the read-only flag to "fal se"
/1
conn. set ReadOnl y(f al se);
conn. set Aut oCommi t (f al se) ;
conn. cr eat eSt at enent () . execut eUpdat e(" UPDATE sone_table ....");
conn.comit();
/1
/1l Now, do a query froma replica, the driver automatically picks one
/1 fromthe |ist
/1
conn. set ReadOnl y(true);
ResultSet rs =
conn. cr eat eSt at enent () . execut eQuery (" SELECT a,b FROM alt _table");

Consider using the Load Balancing JDBC Pool (I bpool ) tool, which provides a wrapper around the
standard JDBC driver and enables you to use DB connection pools that includes checks for system failures
and uneven load distribution. For more information, see Load Balancing JDBC Driver for MySQL (mysql-
Ibpool).

Support for Multiple-Source Replication Topographies
Connector/J supports multi-source replication topographies.

The connection URL for replication discussed earlier (i.e., in the format of

jdbc:nmysqgl :replication://source, replical, replica2,replica3/test)assumes that
the first (and only the first) host is the source host. Supporting deployments with an arbitrary number of
sources and replicas requires the "address-equals" URL syntax for multiple host connection discussed in
Section 3.5.2, “Connection URL Syntax”, with the property t ype=[ sour ce| repl i ca] ; for example:

jdbc: nysql :replication://address=(type=source) (host =sour celhost), address=(type=sour ce) (host =sour ce2host), a

Connector/J uses a load-balanced connection internally for management of the source connections, which
means that Repl i cati onConnect i on, when configured to use multiple sources, exposes the same
options to balance load across source hosts as described in Section 3.8.3, “Configuring Load Balancing
with Connector/J”.

Live Reconfiguration of Replication Topography

Connector/J also supports live management of replication host (single or multi-source) topographies. This
enables users to promote replicas for Java applications without requiring an application restart.

The replication hosts are most effectively managed in the context of a replication connection group. A
ReplicationConnectionGroup class represents a logical grouping of connections which can be managed
together. There may be one or more such replication connection groups in a given Java class loader (there
can be an application with two different JDBC resources needing to be managed independently). This key
class exposes host management methods for replication connections, and Repl i cat i onConnect i on

159


http://code.google.com/p/mysql-lbpool/
http://code.google.com/p/mysql-lbpool/

Configuring Source/Replica Replication with Connector/J

objects register themselves with the appropriate Repl i cati onConnecti onG oup if a value for the new
replicationConnecti onG oup property is specified. The Repl i cati onConnecti onG oup object
tracks these connections until they are closed, and it is used to manipulate the hosts associated with these
connections.

Some important methods related to host management include:
» get Sour ceHost s() : Returns a collection of strings representing the hosts configured as source hosts
» get Repl i caHost s() : Returns a collection of strings representing the hosts configured as replica hosts

» addRepl i caHost (String host): Adds new host to pool of possible replica hosts for selection at
start of new read-only workload

» pronot eRepl i caToSour ce(String host): Removes the host from the pool of potential replica
hosts for future read-only processes (existing read-only process is allowed to continue to completion)
and adds the host to the pool of potential source hosts

e renoveReplicaHost (String host, bool ean cl oseCGently): Removes the host (host name
match must be exact) from the list of configured replica hosts; if cl oseGent | y is false, existing
connections which have this host as currently active will be closed hardly (application should expect
exceptions)

e renmoveSour ceHost (String host, bool ean cl oseCGently): Same as
renoveRepl i caHost (), but removes the host from the list of configured source hosts

Some useful management metrics include:

e get Connecti onCount Wt hHost AsRepl i ca(String host): Returns the number of
ReplicationConnection objects that have the given host configured as a possible replica host

» get Connect i onCount Wt hHost AsSour ce( String host) : Returns the number of
ReplicationConnection objects that have the given host configured as a possible source host

* get Nunber O Repl i casAdded() : Returns the number of times a replica host has been dynamically
added to the group pool

e get Nunber O Repl i casRenpved() : Returns the number of times a replica host has been dynamically
removed from the group pool

e get Nunber OF Repl i caPr onpt i ons() : Returns the number of times a replica host has been promoted
to be a source host

» get Tot al Connecti onCount () : Returns the number of ReplicationConnection objects which have
been registered with this group

» get Acti veConnecti onCount () : Returns the number of ReplicationConnection objects currently
being managed by this group

ReplicationConnectionGroupManager

com nysql . cj.jdbc. ha. Replicati onConnecti onG oupManager provides access to the
replication connection groups, together with some utility methods.

» get ConnectionG oup(String groupNane): Returns the Repl i cati onConnecti onG oup object
matching the groupName provided

The other methods in Repl i cati onConnect i onG oupManager mirror those of
Repl i cati onConnecti onG oup, except that the first argument is a String group name. These methods

160



Advanced Load-balancing and Failover Configuration

will operate on all matching ReplicationConnectionGroups, which are helpful for removing a server from
service and have it decommissioned across all possible Repl i cati onConnecti onG oups.

These methods might be useful for in-JVM management of replication hosts if an application triggers
topography changes. For managing host configurations from outside the JVM, JMX can be used.

Using JMX for Managing Replication Hosts

When Connector/J is started with ha. enabl eJMX=t r ue and a value set for the
property r epl i cati onConnecti onG oup, a JMX MBean will be registered, allowing
manipulation of replication hosts by a JMX client. The MBean interface is defined in
com nysql . cj.jdbc.jnx.ReplicationG oupManager MBean, and leverages the
Repl i cati onConnecti onG oupManager static methods:

public abstract void addReplicaHost(String groupFilter, String host) throws SQLException
public abstract void renpveReplicaHost (String groupFilter, String host) throws SQLException
publ i c abstract void pronoteReplicaToSource(String groupFilter, String host) throws SQ.Exception
public abstract void renpveSourceHost (String groupFilter, String host) throws SQ.Exception
public abstract String get SourceHostsList(String group);

public abstract String getReplicaHostsList(String group);

public abstract String getRegi steredConnecti onG oups();

public abstract int getActiveSourceHost Count (String group);

public abstract int getActiveReplicaHostCount (String group)

public abstract int getReplicaPronoti onCount(String group)

public abstract |ong get Tot al Logi cal Connecti onCount (String group);

public abstract |ong getActivelLogi cal Connecti onCount (String group);

Configuring Source/Replica Replication with DNS SRV

See Section 3.5.14, “Support for DNS SRV Records” for details.

3.8.5 Advanced Load-balancing and Failover Configuration

Connector/J provides a useful load-balancing implementation for MySQL Cluster or multi-source
deployments, as explained in Section 3.8.3, “Configuring Load Balancing with Connector/J” and Support
for Multiple-Source Replication Topographies. This same implementation is used for balancing load
between read-only replicas for replication-aware connections.

When trying to balance workload between multiple servers, the driver has to determine when it is safe to
swap servers, doing so in the middle of a transaction, for example, could cause problems. It is important
not to lose state information. For this reason, Connector/J will only try to pick a new server when one of the
following happens:

1. Attransaction boundaries (transactions are explicitly committed or rolled back).
2. A communication exception (SQL State starting with "08") is encountered.

3. When a SQLExcept i on matches conditions defined by user, using the extension points defined by
the | oadBal anceSQLSt at eFai | over, | oadBal anceSQLExcept i onSubcl assFai | over or
| oadBal anceExcept i onChecker properties.

The third condition revolves around three properties, which allow you to control which SQLExcept i ons
trigger failover:

» | oadBal anceExcept i onChecker - The | oadBal anceExcept i onChecker property
is really the key. This takes a fully-qualified class name which implements the new
com nysql . cj.jdbc. ha. LoadBal anceExcepti onChecker interface. This interface is very simple,
and you only need to implement the following method:

publ i ¢ bool ean shoul dExcepti onTri gger Fai | over (SQLExcepti on ex)

161



Advanced Load-balancing and Failover Configuration

A SQLExcept i on is passed in, and a boolean returned. A value of t r ue triggers a failover, f al se does
not.

You can use this to implement your own custom logic. An example where this might be useful is when
dealing with transient errors when using MySQL Cluster, where certain buffers may become overloaded.
The following code snippet illustrates this:

publ i c cl ass NdbLoadBal anceExcept i onChecker
ext ends St andar dLoadBal anceExcepti onChecker {
publ i ¢ bool ean shoul dExcepti onTri gger Fai | over (SQLExcepti on ex) {
return super.shoul dExcepti onTri gger Fai |l over ( ex)
|| checkNdbExcepti on(ex);

}
private bool ean checkNdbExcepti on( SQLExcepti on ex) {

/'l Have to parse the nessage since nost NDB errors

/] are mapped to the same DEMC.
return (ex.getMessage().startsWth("Lock wait timeout exceeded") ||
(ex. get Message().startsWth("CGot tenporary error")
&& ex. get Message().endsWth("from NDB")));

}
}

The code above extends com nysql . cj . j dbc. ha. St andar dLoadBal anceExcept i onChecker,
which is the default implementation. There are a few convenient shortcuts built into this, for those

who want to have some level of control using properties, without writing Java code. This default
implementation uses the two remaining properties: | oadBal anceSQLSt at eFai | over and

| oadBal anceSQLExcepti onSubcl assFai | over.

| oadBal anceSQLSt at eFai | over - allows you to define a comma-delimited list of SQLSt at e code
prefixes, against which a SQLExcept i on is compared. If the prefix matches, failover is triggered. So, for
example, the following would trigger a failover if a given SQLExcept i on starts with "00", or is "12345":

| oadBal anceSQLSt at eFai | over =00, 12345

| oadBal anceSQLExcept i onSubcl assFai | over - can be used in conjunction with

| oadBal anceSQLSt at eFai | over or on its own. If you want certain subclasses of SQLExcept i on to
trigger failover, simply provide a comma-delimited list of fully-qualified class or interface names to check
against. For example, if you want all SQLTr ansi ent Connect i onExcept i ons to trigger failover, you
would specify:

| oadBal anceSQLExcept i onSubcl assFai | over =j ava. sql . SQLTr ansi ent Connect i onExcept i on

While the three failover conditions enumerated earlier suit most situations, if aut oconmi t is enabled,
Connector/J never re-balances, and continues using the same physical connection. This can be
problematic, particularly when load-balancing is being used to distribute read-only load across multiple
replicas. However, Connector/J can be configured to re-balance after a certain number of statements are
executed, when aut ocommi t is enabled. This functionality is dependent upon the following properties:

* | oadBal anceAut oConmmi t St at enent Thr eshol d — defines the number of matching statements

which will trigger the driver to potentially swap physical server connections. The default value, 0, retains
the behavior that connections with aut ocomni t enabled are never balanced.

» | oadBal anceAut oCommi t St at enent Regex — the regular expression against which statements must

match. The default value, blank, matches all statements. So, for example, using the following properties
will cause Connector/J to re-balance after every third statement that contains the string “test”:

| oadBal anceAut oConmi t St at ement Thr eshol d=3

162



Using the X DevAPI with Connector/J: Special Topics

| oadBal anceAut oConmmi t St at enent Regex=. *t est . *

| oadBal anceAut oConmmi t St at enent Regex can prove useful in a number of situations. Your
application may use temporary tables, server-side session state variables, or connection state, where
letting the driver arbitrarily swap physical connections before processing is complete could cause data
loss or other problems. This allows you to identify a trigger statement that is only executed when it is
safe to swap physical connections.

Configuring Load Balancing and Failover with DNS SRV

See Section 3.5.14, “Support for DNS SRV Records” for details.

3.9 Using the X DevAPI with Connector/J: Special Topics

Connector/J 8.0 supports the X DevAPI, through which native support by MySQL 8.0 for JSON, NoSQL,
document collection, and other features are provided to Java applications. See Using MySQL as a
Document Store, the X DevAPI User Guide, and the Connector/J X DevAPI Reference available at
Connectors and APIs for details.

Information on using the X DevAPI with Connector/J can be found in different chapters in this manual. This
chapter explores some special topics that are not covered elsewhere.

3.9.1 Connection Compression Using X DevAPI

Staring form release 8.0.20, Connector/J supports data compression for X DevAPI connections when
working with MySQL Server 8.0.19 and later. General details about this feature can be found in Connection
Compression with X Plugin. For details on how to configure connection compression for Connector/J,

see the descriptions for the connection properties xdevapi . conpr essi on, xdevapi . conpr essi on-

al gori t hnms, and xdevapi . conpr essi on- ext ensi ons in Section 3.5.3, “Configuration Properties”.
The following is a summary of the feature:

For Connector/J 8.0.22 and later: The compression algorithms to be negotiated with the server and

the priority of negotiation can be specified using the connection property xdevapi . conpr essi on-

al gori t hms. It accepts a list of [ al gori t hm nane] _[ oper ati on- node] , separated by commas

(,). If the property is not set, the default value of “zst d_stream | z4_nessage, defl ate_streaniis
used. The priority for negotiation follows the order the algorithms appear in the list. Setting an empty string
explicitly for the property means compression should be disabled for the connection.

Note

When specifying compression algorithms with xdevapi . conpr essi on-
al gori t his, the aliases zst d, | z4, and def | at e can be used in place of
zstd_stream| z4 nessage, and def | at e_st r eam respectively.

For Connector/J 8.0.21 and earlier: Connector/J negotiates a compression algorithm following the priority
recommended by X DevAPI: trying zstd first, then LZ4, and finally Deflate.

Out of all the compression algorithms now supported by MySQL 8.0 for X DevAPI connections, Connector/
J provides out-of-the-box support for Deflate only; this is because none of the other compression
algorithms (LZ4 and zstd, for now) are natively supported by the existing JREs. To support those
algorithms, the client application must provide implementations for the corresponding deflate and inflate
operations in the form of an Qut put St r eamand an | nput St r eamobject, respectively. The easiest way
to accomplish this is by using a third-party library such as the Apache Commons Compress library, which
supports LZ4 and zstd. The connection option xdevapi . conpr essi on- ext ensi ons allows users to
configure Connector/J to use any compression algorithm that is supported by MySQL Server, as long as

163


https://dev.mysql.com/doc/refman/8.0/en/document-store.html
https://dev.mysql.com/doc/refman/8.0/en/document-store.html
https://dev.mysql.com/doc/x-devapi-userguide/en/
https://dev.mysql.com/doc/index-connectors.html
https://dev.mysql.com/doc/refman/8.0/en/x-plugin-connection-compression.html
https://dev.mysql.com/doc/refman/8.0/en/x-plugin-connection-compression.html

Schema Validation

there is a Java implementation for that algorithm. The option takes a list of triplets separated by commas
(,), and each triplet in turn contains the following elements, separated by colons (:):

» The compression algorithm name, indicated by the identifier used by the server (see Connection
Compression with X Plugin; aliases mentioned in the Note above can be used).

A fully-qualified name of a class implementing the interface j ava. i 0. | nput St r eamthat will be used to
inflate data compressed with the named algorithm.

A fully-qualified name of a class implementing the interface j ava. i 0. Qut put St r eamthat will be used
to deflate data using the named algorithm.

Here is an example that sets up the support for the algorithms | z4 _nessage and zst d_st r eamusing the
Apache Commons Compress library:

String connStr = "jdbc: nysql://johndoe: secret @ ocal host : 33060/ nydb?"
"xdevapi . conpr essi on- ext ensi ons="

"l z4_message"+":" [/ LZ4 triplet
FramedLZ4Conpr essor | nput Stream cl ass. get Nane() + ":"

Fr amedLZ4Conpr essor Qut put St r eam cl ass. get Nanme() + ","
"zstd_strean'+":" // zstd triplet

Zst dConpr essor | nput Stream cl ass. get Name() + ":"

Zst dConpr essor Qut put St ream cl ass. get Name()

Sessi onFactory sessFact = new Sessi onFactory();

Sessi on sess = sessFact. get Session(connStr);

Col | ection col = sess. getDefaul t Schenma(). get Col | ection("nyColl ection");
I (...)

sess. cl ose();

+ o+ 4+ + o+

4k

Note

For Connector/J 8.0.21 and earlier: The connection property

xdevapi . conpr essi on- ext ensi ons described above is named

xdevapi . conpr essi on- al gori t hmfor Connector/J 8.0.21 and earlier, and the
elements in each triplet should be separated by commas (,) instead of colons (3).

Negotiation for a compression algorithm is attempted by default (xdevapi . conpr essi on=Preferred
by default), unless the connection property xdevapi . conpr essi on is set to DI SABLED. The final

choice of compression algorithm depends on what algorithms are enabled on the server. By default,
because compression is not required, if the negotiation fails, the connection will not be compressed,

but the client will still be able to communicate with the server; however, if the connection property

xdevapi . conpr essi on is set to REQUI RED, the connection attempt fails with an error if no algorithm can
be negotiated for successfully.

3.9.2 Schema Validation

For Connector/J 8.0.21 and later, when working with MySQL Server 8.0.19 and later: Schema validation
can be configured for a Col | ect i on, so that documents in the Col | ect i on are validated against a
schema before they can be inserted or updated. This is done by specifying a JSON Schema during

Col I ect i on creation or modification; schema validation is then performed by the server at a document
creation or update, and an error is returned if the document does not validate against the assigned
schema. For more information on JSON schema validation in MySQL, see JSON Schema Validation
Functions. This section describes how to configure schema validation for a Col | ect i on with Connector/J.

To configure schema validation during the creation of a Col | ect i on, pass to the cr eat eCol | ecti on()
method a Cr eat eCol | ect i onOpt i ons object, which has these fields:

* reuse: aboolean set by the set ReuseExi st i ng method. Ifitis t r ue, when the Col | ect i on to be
created already exists within the Schemna that is to contain it, Connector/J returns success (without any

164


https://dev.mysql.com/doc/refman/8.0/en/x-plugin-connection-compression.html
https://dev.mysql.com/doc/refman/8.0/en/x-plugin-connection-compression.html
http://json-schema.org
https://dev.mysql.com/doc/refman/8.0/en/json-validation-functions.html
https://dev.mysql.com/doc/refman/8.0/en/json-validation-functions.html

Schema Validation

attempt to apply JSON schema to the existing Col | ect i on); in the same case, Connector/J returns an
error if the parameter is setto f al se. If r euse is not set, it is taken to be f al se.

* validation:aValidation objectsethythe setValidation() method. AVal i dati on objectin
turns contains these fields:

» | evel : a enumeration of the class Val i dat i onLevel , set by the set Level () method; it can be
one of the following two values:

» STRI CT: Strict validation. Attempting to insert or modify a document that violates the validation
schema results in a server error being raised.

« OFF: No validation. Schema validation is turned off.
If | evel is not set, it is taken as OFF for MySQL Server 8.0.19, and STRI CT for 8.0.20 and later.

* schema: A string representing a JSON Schema to be used to validate a Docunent in the
Col | ecti on; set by the set Scherma() method.

If schena is not provided but | evel is setto STRICT, the Col | ect i on is validated against the
default schema {"type" : "object"}.

This is an example of how to configure schema validation at the creation of a Col | ect i on:

Col l ection coll = this.schema.createCollection(coll Nane,
new Creat eCol | ecti onOpti ons()
. set ReuseExi sti ng(fal se)
. set Val i dat i on(new Val i dati on()
. set Level (Val i dati onLevel . STRI CT)
. set Schena(
“{\"id\": \"http://json-schema.org/geo\","
"\"$schema\": \"http://json-schema. org/draft-06/schema#\","
" \"description\": \"A geographical coordinate\","
\"type\": \"object\", "
\"properties\": {"
\"latitude\": {"
\"type\": \"nunber\""

\"'I ongi tude\": {"
\"type\": \"nunber\""

3
\"required\": [\"latitude\", \"longitude\"]"

I I Ik T O I e

)))
The set fields are accessible by the corresponding getter methods.

To modify the schema validation configuration for a Col | ect i on, use the nodi f yCol | ecti on()
method and pass to it a Modi f yCol | ecti onOpt i ons object, which has the same fields as

the Creat eCol | ect i onOpt i ons object except for the r euse field, which does not exist for a

Modi fyCol | ecti onOpt i ons object. For the Val i dat i on object of a Mbdi f yCol | ecti onOpti ons
object, users can set either its | evel or schemm, or both. Here is an example of using the

nmodi fyCol | ecti on() to change the schema validation configuration:

schema. modi fyCol | ecti on(col | Nane,
new Mdi fyCol | ecti onOptions()
.setVal i dation(new Validation()
.set Level (Val i dati onLevel . OFF)
. set Schema(
“{\"id\": \"http://json-schema. org/geo\","

165


http://json-schema.org

Using the Connector/J Interceptor Classes

"\"$schema\": \"http://json-schema. org/draft-06/schema#\","
" \"description\": \"NEW geographi cal coordinate\","
\"type\": \"object\", "
\"properties\": {"

\"latitude\": {"

\"type\": \"nunber\""

3,

\"l ongi tude\": {"

\"type\": \"nunber\""

3
3,
\"required\": [\"latitude\", \"longitude\"]"

A I Ik T O T

)));

If the Collection contains documents that do not validate against the new JSON schema supplied through
Modi f yCol | ecti onOpt i ons, the server will reject the schema modification with the error ERROR 5180
(HY000) Docunent is not valid according to the schema assigned to collection.

Note

createCol |l ection() and nodi fyCol | ecti on() are overloaded: they can
be called without passing to them the Cr eat eCol | ecti onOpt i ons or the

Modi fyCol | ecti onOpti ons, respectively, in which case schema validation will
not be applied to the Col | ect i on.

3.10 Using the Connector/J Interceptor Classes

An interceptor is a software design pattern that provides a transparent way to extend or modify some
aspect of a program, similar to a user exit. No recompiling is required. With Connector/J, the interceptors
are enabled and disabled by updating the connection string to refer to different sets of interceptor classes
that you instantiate.

The connection properties that control the interceptors are explained in Section 3.5.3, “Configuration
Properties”:

connectionLi fecycl el nt er cept or s, where you specify the fully qualified names of classes that
implement the com nysql . cj . jdbc.interceptors. ConnectionLi fecycl el nt erceptor
interface. In these kinds of interceptor classes, you might log events such as rollbacks, measure the time
between transaction start and end, or count events such as calls to set Aut oConmi t ().

excepti onl nt er cept or s, where you specify the fully qualified nhames of classes that implement
the com nysql . cj . excepti ons. Excepti onl nt er cept or interface. In these kinds of interceptor
classes, you might add extra diagnostic information to exceptions that can have multiple causes or
indicate a problem with server settings. except i onl nt er cept or s classes are called when handling
an Except i on thrown from Connector/J code.

qgueryl nt er cept or s, where you specify the fully qualified names of classes that implement the
comnysql.cj.interceptors. Queryl nterceptor interface. In these kinds of interceptor classes,
you might change or augment the processing done by certain kinds of statements, such as automatically
checking for queried data in a nencached server, rewriting slow queries, logging information about
statement execution, or route requests to remote servers.

3.11 Using Logging Frameworks with SLF4J

Besides its default logger com nysql . ¢j . | og. St andar dLogger , which logs to st der r, Connector/
J supports the SLF4J logging facade, allowing end users of applications using Connector/J to plug
in logging frameworks of their own choices at deployment time. Popular logging frameworks such as

166



Using Logging Frameworks with SLF4J

java.util.logging,| ogback, and| og4j are supported by SLF4J. Follow these requirements to use
a logging framework with SLF4J and Connector/J:

* In the development environment:

* Install on your system sl f 4j - api - x. y. z. j ar (available at https://www.slf4j.org/download.html) and
add it to the Java classpath.

« In the code of your application, obtain an SLF4JLogger as a Log instantiated within a
Mysql Connecti on Sessi on, and then use the Log instance for your logging.

» On the deployment system:
* Install on your system sl f 4j - api - x. y. z. j ar and add it to the Java classpath

« Install on your system the SLF4J binding for the logging framework of your choice and add it
to your Java classpath. SLF4J bindings are available at, for example, https://www.slf4j.org/
manual.html#swapping.

Note

Do not put more than one SLF4J binding in you Java classpath. Switch from
one logging framework to another by removing a binding and adding a new one
to the classpath.

« Install the logging framework of your choice on your system and add it to the Java classpath.

» Configure the logging framework of your choice. This often consists of setting up appenders or
handlers for log messages using a configuration file; see your logging framework's documentation for
details.

« When connecting the application to the MySQL Server, set the Connector/J connection property
| ogger to Sl f 4JLogger.

The log category name used by Connector/J with SLF4J is MySQL. See the SLF4J user manual for more
details about using SLF4J, including discussions on Maven dependency and bindings. Here is a sample
code for using SLF4J with Connector/J:

i mport java.sql.DriverManager;

i mport java.sql.Connecti on;

import java.sql.Result Set;

i mport java.sql.SQLException;

i mport java.sql. Statenent;

i mport com nysql .cj.jdbc.JdbcConnecti on;
import com nysql.cj.!log.Log;

public class JDBCDenp {

public static void main(String[] args) {

Connection conn = null;

Statenent statement = null;
Resul t Set resultSet = null;
Log | ogger = null;
try {
/| Database paraneters
String url = "jdbc:nysql :// myexanpl e. com 3306/ pet s?l ogger =S| f 4JLogger &expl ai nSI owQueri es=true";
String user = "user";
String password = "password";

/] create a connection to the database
conn = DriverManager. get Connection(url, user, password);

167


https://www.slf4j.org/download.html
https://www.slf4j.org/manual.html#swapping
https://www.slf4j.org/manual.html#swapping
http://www.slf4j.org/manual.html

Using Connector/J with Tomcat

| ogger = ((JdbcConnecti on)conn). get Sessi on() . getLog();

catch (SQLException e) {
Systemerr.println(e.get Message());
Systemexit(1);

}

try {
statement = conn.createStatenent();
resultSet = statenent.executeQuery("SELECT * FROM pets. dogs");
whi | e(resul t Set. next()){
Systemout.printf("%l\t%\t%\t %s$ty. %St m %$td \n",
resultSet.getlnt(1),
resul t Set.getString(2),
resultSet.getString(3),
resul t Set. get Date(4));

}

cat ch( SQLException e) {
| ogger. | ogWarn("Warni ng: Select failed!");

}
}
}

If you want to use, for example, Log4j 2.17.1 as your logging framework when running this program, put
these JAR files in your Java classpath:

e sl f4j-api-2.0.3.jar (SLF4J API module, available at, for example, https://search.maven.org/
artifact/org.slf4j/slf4j-api/2.0.3/jar).

e log4j-api-2.17.1.jar and| og4j -core-2.17. 1. ar (Log4J library, available at, for
example, https://search.maven.org/artifact/org.apache.logging.log4j/log4j-api/2.17.1/jar and https://
search.maven.org/artifact/org.apache.logging.log4j/log4j-core/2.17.1/jar).

* log4j-slf4j-inpl-2.17.1.]ar (SLF4J's binding for Log4J 2.17.1, available at, for example, https://
search.maven.org/artifact/org.apache.logging.log4j/log4j-slf4j-impl/2.17.1/jar).

Here is output of the program when the SELECT statement failed:

[2021-09-05 12:06: 19, 624] WARN O[ main] - WARN MySQL - Warning: Select fail ed!

3.12 Using Connector/J with Tomcat

The following instructions are based on the instructions for Tomcat-5.x, available at http://
tomcat.apache.org/tomcat-5.5-doc/jndi-datasource-examples-howto.html which is current at the time this
document was written.

First, install the . j ar file that comes with Connector/J in $CATALI NA HOVE/ common/ | i b so that it is
available to all applications installed in the container.

Next, configure the JNDI DataSource by adding a declaration resource to $CATALI NA HOVE/ conf/
server. xm in the context that defines your web application:

<Context ....>

<Resour ce nanme="j dbc/ MySQ.DB"
aut h="Cont ai ner"
type="j avax. sql . Dat aSour ce"/ >
<Resour cePar ans nane="j dbc/ MySQLDB" >
<par anet er >
<nane>f act or y</ nane>
<val ue>or g. apache. conmons. dbcp. Basi cDat aSour ceFact or y</ val ue>
</ par anet er >

168


https://search.maven.org/artifact/org.slf4j/slf4j-api/2.0.3/jar
https://search.maven.org/artifact/org.slf4j/slf4j-api/2.0.3/jar
https://search.maven.org/artifact/org.apache.logging.log4j/log4j-api/2.17.1/jar
https://search.maven.org/artifact/org.apache.logging.log4j/log4j-core/2.17.1/jar
https://search.maven.org/artifact/org.apache.logging.log4j/log4j-core/2.17.1/jar
https://search.maven.org/artifact/org.apache.logging.log4j/log4j-slf4j-impl/2.17.1/jar
https://search.maven.org/artifact/org.apache.logging.log4j/log4j-slf4j-impl/2.17.1/jar
http://tomcat.apache.org/tomcat-5.5-doc/jndi-datasource-examples-howto.html
http://tomcat.apache.org/tomcat-5.5-doc/jndi-datasource-examples-howto.html

Using Connector/J with Tomcat

<par anet er >
<nanme>nmaxAct i ve</ nane>
<val ue>10</ val ue>

</ par anet er >

<par anet er >
<nane>max| dl e</ nane>
<val ue>5</ val ue>

</ par anet er >

<par anet er >
<nane>val i dat i onQuer y</ name>
<val ue>SELECT 1</ val ue>

</ par anet er >

<par anet er >
<nane>t est OnBor r ow</ nane>
<val ue>t rue</ val ue>

</ par anet er >

<par anet er >
<nane>t est Wi | el dl e</ nane>
<val ue>t rue</ val ue>

</ par anet er >

<par anet er >
<nanme>t i neBet weenEvi cti onRunsM | | i s</ nane>
<val ue>10000</ val ue>

</ par anet er >

<par anet er >
<nanme>m nEvi ct abl el dl eTi nreM | | i s</ nane>
<val ue>60000</ val ue>

</ par anet er >

<par anet er >
<nane>user nane</ nane>
<val ue>soneuser </ val ue>

</ par anet er >

<par anet er >
<nanme>passwor d</ nane>
<val ue>sonepass</ val ue>

</ par anet er >

<par anet er >

<nane>dri ver Cl assNane</ nane>
<val ue>com nysgql . cj . j dbc. Dri ver </ val ue>

</ par anet er >

<par anet er >
<nane>ur | </ name>
<val ue>j dbc: nysql : / /| ocal host : 3306/t est </ val ue>

</ par anet er >

</ Resour cePar ans>
</ Cont ext >

Connector/J introduces a facility whereby, rather than use a val i dat i onQuery value of SELECT 1, it

is possible to use val i dat i onQuer y with a value setto/* ping */. This sends a ping to the server
which then returns a fake result set. This is a lighter weight solution. It also has the advantage that if using
Repl i cati onConnecti on or LoadBal ancedConnect i on type connections, the ping will be sent
across all active connections. The following XML snippet illustrates how to select this option:

<par anet er >
<nane>val i dat i onQuer y</ name>
<val ue>/* ping */</val ue>

</ par anet er >

Note that/ * pi ng */ has to be specified exactly.

In general, follow the installation instructions that come with your version of Tomcat, as the way you
configure datasources in Tomcat changes from time to time, and if you use the wrong syntax in your XML
file, you will most likely end up with an exception similar to the following:

169



Using Connector/J with Spring

Error: java.sql.SQLException: Cannot |oad JDBC driver class 'null ' SQL
state: null

Note that the auto-loading of drivers having the META- | NF/ servi ce/ j ava. sql . Dri ver classin JDBC
4.0 and later causes an improper undeployment of the Connector/J driver in Tomcat on Windows. Namely,
the Connector/J jar remains locked. This is an initialization problem that is not related to the driver. The
possible workarounds, if viable, are as follows: use "ant i Resour ceLocki ng=t r ue" as a Tomcat Context
attribute, or remove the META- | NF/ directory.

3.13 Using Connector/J with Spring

The Spring Framework is a Java-based application framework designed for assisting in application design
by providing a way to configure components. The technique used by Spring is a well known design pattern
called Dependency Injection (see Inversion of Control Containers and the Dependency Injection pattern).
This article will focus on Java-oriented access to MySQL databases with Spring 2.0. For those wondering,
there is a .NET port of Spring appropriately named Spring.NET.

Spring is not only a system for configuring components, but also includes support for aspect oriented
programming (AOP). This is one of the main benefits and the foundation for Spring's resource and
transaction management. Spring also provides utilities for integrating resource management with JDBC
and Hibernate.

For the examples in this section the MySQL world sample database will be used. The first task is to set up
a MySQL data source through Spring. Components within Spring use the “bean” terminology. For example,
to configure a connection to a MySQL server supporting the world sample database, you might use:

<util:map id="dbProps">
<entry key="db.driver" val ue="com nysql.cj.jdbc.Driver"/>
<entry key="db.jdbcurl" val ue="jdbc: nysql://Iocal host/world"/>
<entry key="db. usernanme" val ue="myuser"/>
<entry key="db. password" val ue="nypass"/>

</util: map>

In the above example, we are assigning values to properties that will be used in the configuration. For the
datasource configuration:

<bean i d="dat aSour ce"
cl ass="org. spri ngframewor k. j dbc. dat asour ce. Dri ver Manager Dat aSour ce" >
<property nane="driverCl assNane" val ue="${db. driver}"/>
<property name="url" val ue="${db. jdbcurl}"/>
<property nanme="usernane" val ue="${db. usernane}"/>
<property nanme="password" val ue="${db. password}"/>
</ bean>

The placeholders are used to provide values for properties of this bean. This means that we can specify
all the properties of the configuration in one place instead of entering the values for each property on
each bean. We do, however, need one more bean to pull this all together. The last bean is responsible for
actually replacing the placeholders with the property values.

<bean

cl ass="org. spri ngframewor k. beans. fact ory. confi g. PropertyPl acehol der Confi gurer">
<property nanme="properties" ref="dbProps"/>

</ bean>

170


http://www.martinfowler.com/articles/injection.html

Using JdbcTenpl at e

Now that we have our MySQL data source configured and ready to go, we write some Java code to access
it. The example below will retrieve three random cities and their corresponding country using the data
source we configured with Spring.

/Il Create a new application context. this processes the Spring config
Appl i cationContext ctx =
new C assPat hXm Appl i cati onCont ext (" exlappCont ext.xm ");
/! Retrieve the data source fromthe application context
Dat aSource ds = (DataSource) ctx.getBean("dataSource");
/! Open a database connection using Spring's DataSourceUtils
Connection ¢ = DataSourceUtil s. get Connecti on(ds);
try {
/] retrieve a list of three randomcities
Prepar edSt at enent ps = c. prepareSt at enent (
"select City.Nane as 'City', Country.Name as 'Country' " +
"fromCity inner join Country on G ty. CountryCode = Country.Code " +
"order by rand() limt 3");
Resul t Set rs = ps. executeQuery();
while(rs.next()) {
String city = rs.getString("Gty");
String country = rs.getString("Country");
Systemout.printf("The city % is in %%", city, country);

}
} catch (SQLException ex) {
/'l something has failed and we print a stack trace to anal yse the error
ex. print StackTrace();
/1 ignore failure closing connection
try { c.close(); } catch (SQ.Exception e) { }
} finally {
/| properly rel ease our connection
Dat aSour celti | s. rel easeConnecti on(c, ds);

}

This is very similar to normal JDBC access to MySQL with the main difference being that we are using
DataSourceUtils instead of the DriverManager to create the connection.

While it may seem like a small difference, the implications are somewhat far reaching. Spring manages
this resource in a way similar to a container managed data source in a J2EE application server. When a
connection is opened, it can be subsequently accessed in other parts of the code if it is synchronized with
a transaction. This makes it possible to treat different parts of your application as transactional instead of
passing around a database connection.

3.13.1 Using JdbcTenpl at e

Spring makes extensive use of the Template method design pattern (see Template Method

Pattern). Our immediate focus will be on the JdbcTenpl at e and related classes, specifically

NamedPar anet er Jdbc Tenpl at e. The template classes handle obtaining and releasing a connection for
data access when one is needed.

The next example shows how to use NanedPar anet er JdbcTenpl at e inside of a DAO (Data Access
Object) class to retrieve a random city given a country code.

public class Ex2JdbcDao {

/**

* Data source reference which will be provided by Spring.
*

/

private DataSource dataSour ce;

/**

* Qur query to find a randomcity given a country code. Notice
* the ":country" paraneter toward the end. This is called a

* named paraneter.

*/

171


http://en.wikipedia.org/wiki/Template_method_pattern
http://en.wikipedia.org/wiki/Template_method_pattern

Transactional JDBC Access

private String queryString = "sel ect Name fromCity " +
"where CountryCode = :country order by rand() limt 1";
/**
* Retrieve a randomcity using Spring JDBC access cl asses.
*/
public String get RandonCit yByCountryCode(String cntryCode) {
/Il A tenplate that permits using queries with named paraneters
NamedPar anet er JdbcTenpl ate tenpl ate =
new NanmedPar anmet er JdbcTenpl at e( dat aSour ce) ;
/1l Ajava.util.Map is used to provide values for the paraneters
Map paranms = new HashMap();
par ans. put ("country", cntryCode);
/1 We query for an Object and specify what class we are expecting
return (String)tenplate. queryForObj ect (queryString, parans, String.class);
}
/**
* A JavaBean setter-style method to allow Spring to inject the data source.
* @ar am dat aSour ce
*/
public voi d set Dat aSour ce( Dat aSour ce dat aSource) {
t hi s. dat aSour ce = dat aSour ce;
}

}

The focus in the above code is on the get RandonCi t yByCount r yCode() method. We pass a country
code and use the NanedPar anet er JdbcTenpl at e to query for a city. The country code is placed in a
Map with the key "country”, which is the parameter is named in the SQL query.

To access this code, you need to configure it with Spring by providing a reference to the data source.

<bean i d="dao" cl ass="code. Ex2JdbcDao" >
<property nanme="dat aSource" ref="dataSource"/>
</ bean>

At this point, we can just grab a reference to the DAO from Spring and call
get RandonCi t yByCount r yCode() .

/] Create the application context
Appl i cati onContext ctx =
new Cl assPat hXm Appl i cati onCont ext (" ex2appCont ext.xm ");
/] Obtain a reference to our DAO
Ex2JdbcDao dao = (Ex2JdbcDao) ctx. get Bean("dao");
String countryCode = "USA";
// Find a fewrandomcities in the US
for(int i =0; i < 4; ++i)
Systemout.printf("A randomcity in % is %%", countryCode,
dao. get RandonCi t yByCount r yCode( count r yCode) ) ;

This example shows how to use Spring's JDBC classes to completely abstract away the use of traditional
JDBC classes including Connect i on and Pr epar edSt at enent .

3.13.2 Transactional JDBC Access

Spring allows us to add transactions into our code without having to deal directly with the JDBC classes.
For that purpose, Spring provides a transaction management package that not only replaces JDBC
transaction management, but also enables declarative transaction management (configuration instead of
code).

To use transactional database access, we will need to change the storage engine of the tables in the world
database. The downloaded script explicitly creates MylSAM tables, which do not support transactional

172



Transactional JDBC Access

semantics. The InnoDB storage engine does support transactions and this is what we will be using. We
can change the storage engine with the following statements.

ALTER TABLE City ENG NE=I nnoDB;
ALTER TABLE Country ENG NE=I nnoDB;
ALTER TABLE Count ryLanguage ENG NE=I nnoDB;

A good programming practice emphasized by Spring is separating interfaces and implementations. What
this means is that we can create a Java interface and only use the operations on this interface without any
internal knowledge of what the actual implementation is. We will let Spring manage the implementation and
with this it will manage the transactions for our implementation.

First you create a simple interface:

public interface Ex3Dao {
Integer createCity(String name, String countryCode,
String district, Integer popul ation);

}

This interface contains one method that will create a new city record in the database and return the id of
the new record. Next you need to create an implementation of this interface.

public class Ex3Daol npl inpl ements Ex3Dao {
prot ect ed Dat aSource dataSour ce;
protected Sgl Updat e updat eQuery;
protected Sgl Function idQuery;
public Integer createCty(String name, String countryCode,
String district, Integer popul ation) {
updat eQuery. updat e(new Obj ect[] { nane, countryCode,
district, population });
return getlLastld();
}
protected I nteger getlastld() {
return i dQuery.run();
}
}

You can see that we only operate on abstract query objects here and do not deal directly with the JDBC
API. Also, this is the complete implementation. All of our transaction management will be dealt with in the
configuration. To get the configuration started, we need to create the DAO.

<bean i d="dao" cl ass="code. Ex3Daol npl ">
<property nanme="dat aSource" ref="dataSource"/>
<property name="updateQuery">...</property>
<property name="idQuery">...</property>

</ bean>

Now we need to set up the transaction configuration. The first thing we must do is create transaction
manager to manage the data source and a specification of what transaction properties are required for the
dao methods.

<bean i d="transacti onManager"
cl ass="org. spri ngframewor k. j dbc. dat asour ce. Dat aSour ceTr ansact i onManager " >

<property nanme="dat aSource" ref="dataSource"/>

</ bean>

<t x:advi ce id="txAdvi ce" transaction-nmanager="transacti onManager">
<tx:attributes>
</[tx:attributes>

</tx: advi ce>

173



Connection Pooling with Spring

The preceding code creates a transaction manager that handles transactions for the data source provided
toit. The t xAdvi ce uses this transaction manager and the attributes specify to create a transaction for all
methods. Finally we need to apply this advice with an AOP pointcut.

<aop: confi g>
<aop: poi nt cut i d="daoMet hods"
expr essi on="executi on(* code. Ex3Dao.*(..))"/>
<aop: advi sor advi ce-ref ="t xAdvi ce" poi ntcut-ref="daoMet hods"/ >
</ aop: confi g>

This basically says that all methods called on the Ex3Dao interface will be wrapped in a transaction. To
make use of this, we only have to retrieve the dao from the application context and call a method on the
dao instance.

Ex3Dao dao
Integer id

(Ex3Dao) ctx. get Bean("dao");
dao. createCity(nanme, countryCode, district, pop);

We can verify from this that there is no transaction management happening in our Java code and it is all
configured with Spring. This is a very powerful notion and regarded as one of the most beneficial features
of Spring.

3.13.3 Connection Pooling with Spring

In many situations, such as web applications, there will be a large number of small database transactions.
When this is the case, it usually makes sense to create a pool of database connections available for web
requests as needed. Although MySQL does not spawn an extra process when a connection is made,
there is still a small amount of overhead to create and set up the connection. Pooling of connections also
alleviates problems such as collecting large amounts of sockets in the TI ME_WAI T state.

Setting up pooling of MySQL connections with Spring is as simple as changing the data source
configuration in the application context. There are a number of configurations that we can use. The
first example is based on the Jakarta Commons DBCP library. The example below replaces the source
configuration that was based on Dr i ver Manager Dat aSour ce with DBCP's BasicDataSource.

<bean i d="dat aSour ce" destroy-nethod="cl ose"
cl ass="org. apache. cormons. dbcp. Basi cDat aSour ce" >

<property nane="driverCl assNane" val ue="${db. driver}"/>
<property name="url" val ue="${db.jdbcurl}"/>
<property nanme="usernane" val ue="${db. usernane}"/>
<property nanme="password" val ue="${db. password}"/>
<property nanme="initial Size" val ue="3"/>

</ bean>

The configuration of the two solutions is very similar. The difference is that DBCP will pool connections

to the database instead of creating a new connection every time one is requested. We have also set a
parameter here called i ni ti al Si ze. This tells DBCP that we want three connections in the pool when it
is created.

3.14 Troubleshooting Connector/J Applications

This section explains the symptoms and resolutions for the most commonly encountered issues with
applications using MySQL Connector/J.

Questions

174


http://jakarta.apache.org/commons/dbcp/

Troubleshooting Connector/J Applications

3.14.1: When I try to connect to the database with MySQL Connector/J, | get the following exception:

SQLException: Server configuration denies access to data source
SQLSt ate: 08001
VendorError: 0

What is going on? | can connect just fine with the MySQL command-line client.
» 3.14.2: My application throws an SQLException 'No Suitable Driver'. Why is this happening?

» 3.14.3: I'm trying to use MySQL Connector/J in an applet or application and | get an exception similar to:

SQLException: Cannot connect to MySQL server on host: 3306.
Is there a MySQL server running on the nachi ne/ port you
are trying to connect to?

(java. security. AccessControl Excepti on)

SQ.State: 08S01

Vendor Error: 0O

» 3.14.4: | have a servlet/application that works fine for a day, and then stops working overnight

» 3.14.5: | cannot connect to the MySQL server using Connector/J, and I'm sure the connection
parameters are correct.

» 3.14.6: Updating a table that contains a primary key that is either FLOAT or compound primary key that
uses FLOAT fails to update the table and raises an exception.

e 3.14.7: lgetan ER_NET PACKET_TOO LARGE exception, even though the binary blob size | want to
insert using JDBC is safely below the max_al | owed packet size.

» 3.14.8: What should | do if | receive error messages similar to the following: “Communications link
failure — Last packet sent to the server was X ms ago”?

» 3.14.9: Why does Connector/J not reconnect to MySQL and re-issue the statement after a
communication failure instead of throwing an Exception, even though | use the aut oReconnect
connection string option?

» 3.14.10: How can | use 3-byte UTF8 with Connector/J?
* 3.14.11: How can | use 4-byte UTF8 (ut f 8nb4) with Connector/J?

» 3.14.12: Using useSer ver PrepSt nt s=f al se and certain character encodings can lead to corruption
when inserting BLOBs. How can this be avoided?

Questions and Answers

3.14.1: When | try to connect to the database with MySQL Connector/J, | get the following
exception:

SQ.Exception: Server configuration denies access to data source
SQLSt ate: 08001
VendorError: 0

What is going on? | can connect just fine with the MySQL command-line client.

Connector/J normally uses TCP/IP sockets to connect to MySQL (see Section 3.5.10, “Connecting
Using Unix Domain Sockets” and Section 3.5.11, “Connecting Using Named Pipes” for exceptions). The
security manager on the MySQL server uses its grant tables to determine whether a TCP/IP connection
is permitted. You must therefore add the necessary security credentials to the MySQL server for the
connection by issuing a GRANT statement to your MySQL Server. See GRANT Statement, for more
information.

175


https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_primary_key
https://dev.mysql.com/doc/refman/8.0/en/floating-point-types.html
https://dev.mysql.com/doc/refman/8.0/en/floating-point-types.html
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_net_packet_too_large
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_max_allowed_packet
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html

Troubleshooting Connector/J Applications

Warning

Changing privileges and permissions improperly on MySQL can potentially cause
your server installation to have non-optimal security properties.

Note

Testing your connectivity with the nysql command-line client will not work unless
you add the - - host flag, and use something other than | ocal host for the

host. The mysql command-line client will try to use Unix domain sockets if you
use the special host name | ocal host . If you are testing TCP/IP connectivity to

| ocal host, use 127. 0. 0. 1 as the host hame instead.

3.14.2: My application throws an SQLException 'No Suitable Driver'. Why is this happening?
There are three possible causes for this error:

» The Connector/J driver is not in your CLASSPATH, see Section 3.3, “Connector/J Installation”.

» The format of your connection URL is incorrect, or you are referencing the wrong JDBC driver.

« When using DriverManager, the j dbc. dri ver s system property has not been populated with the
location of the Connector/J driver.

3.14.3: I'm trying to use MySQL Connector/J in an applet or application and | get an exception
similar to:

SQLExcepti on: Cannot connect to MySQL server on host: 3306.
Is there a MySQ. server runni ng on the nmachi ne/ port you
are trying to connect to?

(java. security. AccessControl Excepti on)

SQLSt ate: 08S01

VendorError: 0O

Either you're running an Applet, your MySQL server has been installed with the ski p_net wor ki ng
system variable enabled, or your MySQL server has a firewall sitting in front of it.

Applets can only make network connections back to the machine that runs the web server that served

the .class files for the applet. This means that MySQL must run on the same machine (or you must have
some sort of port re-direction) for this to work. This also means that you will not be able to test applets from
your local file system, but must always deploy them to a web server.

Connector/J normally uses TCP/IP sockets to connect to MySQL (see Section 3.5.10, “Connecting

Using Unix Domain Sockets” and Section 3.5.11, “Connecting Using Named Pipes” for exceptions).
TCP/IP communication with MySQL can be affected by the ski p_net wor ki ng system variable or the
server firewall. If MySQL has been started with ski p_net wor ki ng enabled, you need to comment it

out in the file / et c/ nmysql / ny. cnf or/ et c/ my. cnf for TCP/IP connections to work. (Note that your
server configuration file might also exist in the dat a directory of your MySQL server, or somewhere else,
depending on how MySQL was compiled; binaries created by Oracle always look for / et ¢/ my. cnf and
dat adi r/ my. cnf ; see Using Option Files for details.) If your MySQL server has been firewalled, you will
need to have the firewall configured to allow TCP/IP connections from the host where your Java code is
running to the MySQL server on the port that MySQL is listening to (by default, 3306).

3.14.4: | have a servlet/application that works fine for a day, and then stops working overnight

MySQL closes connections after 8 hours of inactivity. You either need to use a connection pool that
handles stale connections or use the aut oReconnect parameter (see Section 3.5.3, “Configuration
Properties”).

176


https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_host
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_skip_networking
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_skip_networking
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_skip_networking
https://dev.mysql.com/doc/refman/8.0/en/option-files.html

Troubleshooting Connector/J Applications

Also, catch SQLExcept i ons in your application and deal with them, rather than propagating them all

the way until your application exits. This is just good programming practice. MySQL Connector/J will set
the SQLSt at e (see j ava. sqgl . SQLExcept i on. get SQLSt at e() in your APl docs) to 08S01 when it
encounters network-connectivity issues during the processing of a query. Attempt to reconnect to MySQL
at this point.

The following (simplistic) example shows what code that can handle these exceptions might look like:

Example 3.15 Connector/J: Example of transaction with retry logic

publ i c voi d doBusi nessOp() throws SQLException {
Connection conn = nul|;
Statement stnt = null;
ResultSet rs = null;
I
/! How many tinmes do you want to retry the transaction
/1 (or at least _getting_ a connection)?
I
int retryCount = 5;
bool ean transacti onConpl eted = fal se;
do {
try {
conn = get Connection(); // assume getting this froma
/] javax.sql.DataSource, or the
/] java.sql.Driver Manager
conn. set Aut oCommi t (f al se) ;
I
/]l Okay, at this point, the '"retry-ability' of the
/] transaction really depends on your application |ogic,
/'l whether or not you're using autocommit (in this case
/1 not), and whether you're using transactional storage
/'l engi nes
I
/'l For this exanple, we'll assune that it's _not_ safe
/]l to retry the entire transaction, so we set retry
// count to O at this point
I
/1 1f you were using exclusively transaction-safe tables,
/'l or your application could recover froma connecti on goi ng
/1 bad in the mddle of an operation, then you woul d not
/1 touch 'retryCount' here, and just let the | oop repeat
[/l until retryCount == 0.
I
retryCount = O;
stnt = conn. createStatenent();
String query = "SELECT foo FROM bar ORDER BY baz";
rs = stnt.executeQuery(query);
while (rs.next()) {
}
rs.close();
rs = null;
stnt.cl ose();
stmt = null;
conn. comit();
conn. cl ose();
conn = null;
transacti onConpl eted = true;
} catch (SQLException sqgl Ex) {
I
/1l The two SQL states that are 'retry-able' are 08S01
// for a communications error, and 40001 for deadl ock.
I
/Il Only retry if the error was due to a stal e connecti on,
/1 comuni cati ons probl em or deadl ock
I
String sql State = sqgl Ex. get SQLState();

177



Troubleshooting Connector/J Applications

if ("08S01".equal s(sqgl State) || "40001".equal s(sqgl State)) {
retryCount -= 1,
} else {
retryCount = O;
}
} finally {
if (rs!=null) {
try {
rs.close();

} catch (SQLException sql Ex) {
/1 You'd probably want to log this...

}
}
if (stnt !'=null) {
try {
stnt.cl ose();
} catch (SQLException sql Ex) {
/1 You'd probably want to log this as well...
}
}
if (conn = null) {
try {
/1
I/l 1f we got here, and conn is not null, the
/1 transaction should be rolled back, as not
/1 all work has been done
try {
conn. rol | back();
} finally {
conn. cl ose();
}
} catch (SQLException sql Ex) {
/1
/1 1f we got an exception here, sonething
/] pretty serious is going on, so we better
/] pass it up the stack, rather than just
Il logging it...
t hrow sqgl Ex;
}
}

} while (!transacti onConpl eted && (retryCount > 0));

Note

Use of the aut oReconnect option is not recommended because there is no safe
method of reconnecting to the MySQL server without risking some corruption of

the connection state or database state information. Instead, use a connection

pool, which will enable your application to connect to the MySQL server using an
available connection from the pool. The aut oReconnect facility is deprecated, and
may be removed in a future release.

3.14.5: | cannot connect to the MySQL server using Connector/J, and I'm sure the connection
parameters are correct.

Make sure that the ski p_net wor ki ng system variable has not been enabled on your server. Connector/
J must be able to communicate with your server over TCP/IP; named sockets are not supported. Also
ensure that you are not filtering connections through a firewall or other network security system. For more
information, see Can't connect to [local] MySQL server.

3.14.6: Updating a table that contains a primary key that is either FLOAT or compound primary key
that uses FLOAT fails to update the table and raises an exception.

178


https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_skip_networking
https://dev.mysql.com/doc/refman/8.0/en/can-not-connect-to-server.html
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_primary_key
https://dev.mysql.com/doc/refman/8.0/en/floating-point-types.html
https://dev.mysql.com/doc/refman/8.0/en/floating-point-types.html

Troubleshooting Connector/J Applications

Connector/J adds conditions to the VHERE clause during an UPDATE to check the old values of the primary
key. If there is no match, then Connector/J considers this a failure condition and raises an exception.

The problem is that rounding differences between supplied values and the values stored in the database
may mean that the values never match, and hence the update fails. The issue will affect all queries, not
just those from Connector/J.

To prevent this issue, use a primary key that does not use FLOAT. If you have to use a floating point
column in your primary key, use DOUBLE or DECI MAL types in place of FLOAT.

3.14.7: I getan ER NET_PACKET TOO LARGE exception, even though the binary blob size | want to
insert using JDBC is safely below the max_al | owed packet size.

This is because the hexEscapeBl ock() method in
com nysql . cj.Abstract PreparedQuery. streamloByt es() may almost double the size of your
data.

3.14.8: What should I do if | receive error messages similar to the following: “Communications link
failure — Last packet sent to the server was X ms ago”?

Generally speaking, this error suggests that the network connection has been closed. There can be several
root causes:

» Firewalls or routers may clamp down on idle connections (the MySQL client/server protocol does not
ping).

» The MySQL Server may be closing idle connections that exceed the wai t _ti nmeout or
i nteractive_tinmeout threshold.

Although network connections can be volatile, the following can be helpful in avoiding problems:

» Ensure connections are valid when used from the connection pool. Use a query that starts with / * pi ng
*| to execute a lightweight ping instead of full query. Note, the syntax of the ping needs to be exactly as
specified here.

* Minimize the duration a connection object is left idle while other application logic is executed.

» Explicitly validate the connection before using it if the connection has been left idle for an extended
period of time.

* Ensurethatwai t _tinmeout andinteractive_tinmeout are set sufficiently high.
» Ensure thatt cpKeepal i ve is enabled.

» Ensure that any configurable firewall or router timeout settings allow for the maximum expected
connection idle time.

Note

Do not expect to be able to reuse a connection without problems if it has being lying
idle for a period. If a connection is to be reused after being idle for any length of
time, ensure that you explicitly test it before reusing it.

3.14.9: Why does Connector/J not reconnect to MySQL and re-issue the statement after a
communication failure instead of throwing an Exception, even though | use the aut oReconnect
connection string option?

179


https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/floating-point-types.html
https://dev.mysql.com/doc/refman/8.0/en/floating-point-types.html
https://dev.mysql.com/doc/refman/8.0/en/fixed-point-types.html
https://dev.mysql.com/doc/refman/8.0/en/floating-point-types.html
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_net_packet_too_large
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_max_allowed_packet

Troubleshooting Connector/J Applications

There are several reasons for this. The first is transactional integrity. The MySQL Reference Manual states
that “there is no safe method of reconnecting to the MySQL server without risking some corruption of the
connection state or database state information”. Consider the following series of statements for example:

conn. creat eSt at enent () . execut e(

" UPDATE checki ng_account SET bal ance = bal ance - 1000. 00 WHERE custoner='Snmith'");
conn. creat eSt at enent () . execut e(

" UPDATE savi ngs_account SET bal ance = bal ance + 1000. 00 WHERE custoner='Smith'");
conn. commit();

Consider the case where the connection to the server fails after the UPDATE to checki ng_account .

If no exception is thrown, and the application never learns about the problem, it will continue executing.
However, the server did not commit the first transaction in this case, so that will get rolled back. But
execution continues with the next transaction, and increases the savi ngs_account balance by 1000.
The application did not receive an exception, so it continued regardless, eventually committing the second
transaction, as the commit only applies to the changes made in the new connection. Rather than a transfer
taking place, a deposit was made in this example.

Note that running with aut ocommi t enabled does not solve this problem. When Connector/J encounters
a communication problem, there is no means to determine whether the server processed the currently
executing statement or not. The following theoretical states are equally possible:

» The server never received the statement, and therefore no related processing occurred on the server.
» The server received the statement, executed it in full, but the response was not received by the client.

If you are running with aut oconmi t enabled, it is not possible to guarantee the state of data on the server
when a communication exception is encountered. The statement may have reached the server, or it may
not. All you know is that communication failed at some point, before the client received confirmation (or
data) from the server. This does not only affect aut oconmi t statements though. If the communication
problem occurred during Connect i on. conmi t (), the question arises of whether the transaction was
committed on the server before the communication failed, or whether the server received the commit
request at all.

The second reason for the generation of exceptions is that transaction-scoped contextual data may be
vulnerable, for example:

» Temporary tables.
» User-defined variables.
» Server-side prepared statements.

These items are lost when a connection fails, and if the connection silently reconnects without generating
an exception, this could be detrimental to the correct execution of your application.

In summary, communication errors generate conditions that may well be unsafe for Connector/J to simply
ignore by silently reconnecting. It is necessary for the application to be notified. It is then for the application
developer to decide how to proceed in the event of connection errors and failures.

3.14.10: How can | use 3-byte UTF8 with Connector/J?

For 8.0.12 and earlier: To use 3-byte UTF8 with Connector/J set char act er Encodi ng=ut f 8 and set
useUni code=t r ue in the connection string.

For 8.0.13 and later: Because there is no Java-style character set name for ut f nb3 that you can use
with the connection option char at er Encodi ng, the only way to use ut f 8nb3 as your connection

180



Known Issues and Limitations

character set is to use a ut f 8nb3 collation (for example, ut f 8_gener al _ci ) for the connection option
connect i onCol | at i on, which forces a ut f 8nb3 character set to be used. See Section 3.5.7, “Using
Character Sets and Unicode” for details.

3.14.11: How can | use 4-byte UTF8 (ut f 8nb4) with Connector/J?

To use 4-byte UTF8 with Connector/J configure the MySQL server with

character_set server=utf8nb4. Connector/J will then use that setting, if char act er Encodi ng and
connect i onCol | at i on have not been set in the connection string. This is equivalent to autodetection of
the character set. See Section 3.5.7, “Using Character Sets and Unicode” for details. For 8.0.13 and later:
You can use char act er Encodi ng=UTF- 8 to use ut f 8nb4, even if char act er _set _server on the
server has been set to something else.

3.14.12: Using useSer ver PrepSt nt s=f al se and certain character encodings can lead to
corruption when inserting BLOBs. How can this be avoided?

When using certain character encodings, such as SJIS, CP932, and BIG5, it is possible that BLOB data
contains characters that can be interpreted as control characters, for example, backslash, \'. This can lead
to corrupted data when inserting BLOBs into the database. There are two things that need to be done to
avoid this:

1. Setthe connection string option useSer ver PrepStnt s to t r ue.

2. Set SQL_MODE to NO_BACKSLASH_ESCAPES.

3.15 Known Issues and Limitations

The following are some known issues and limitations for MySQL Connector/J:

« When Connector/J retrieves timestamps for a daylight saving time (DST) switch day using the
get Ti meSt anp() method on the result set, some of the returned values might be wrong. In order to
avoid such errors, we recommend setting a connection time zone that uses a monotonic clock by, for
example, setting connect i onTi mneZone=UTC, and configuring other date-time connection properties
according to your needs; see Section 3.5.6, “Handling of Date-Time Values” for details.

» The functionality of the property el i deSet Aut oCommi t s has been disabled due to Bug# 66884. Any
value given for the property is ignored by Connector/J.

» MySQL Server uses a proleptic Gregorian calendar internally. However, Connector/J uses
j ava. sql . Dat e, which is non-proleptic. Therefore, when setting and retrieving dates that were before
the Julian-Gregorian cutover (October 15, 1582) using the Pr epar edSt at enment methods, always
supply explicitly a proleptic Gregorian calendar to the set Dat e() and get Dat e() methods, in order to
avoid possible errors with dates stored to and calculated by the server.

e For MySQL 8.0.14 and later, 5.7.25 and later, and 5.6.43 and later: To use Windows named pipes for
connections, the MySQL Server that Connector/J wants to connect to must be started with the system
variable nanmed_pi pe_ful |l _access_group; see Section 3.5.11, “Connecting Using Named Pipes” for
details.

3.16 Connector/J Support
3.16.1 Connector/J Community Support

You can join the #connect or s channel in the MySQL Community Slack workspace, where you can get
help directly from MySQL developers and other users.

181


https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_server
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_server
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_named_pipe_full_access_group
https://mysqlcommunity.slack.com/messages/connectors

How to Report Connector/J Bugs or Problems

3.16.2 How to Report Connector/J Bugs or Problems

The normal place to report bugs is http://bugs.mysql.com/, which is the address for our bugs database.
This database is public, and can be browsed and searched by anyone. If you log in to the system, you will
also be able to enter new reports.

If you find a sensitive security bug in MySQL Server, please let us know immediately by sending an email
message to <secal ert _us@r acl e. conm. Exception: Support customers should report all problems,
including security bugs, to Oracle Support at http://support.oracle.com/.

Writing a good bug report takes patience, but doing it right the first time saves time both for us and for
yourself. A good bug report, containing a full test case for the bug, makes it very likely that we will fix
sooner rather than later.

This section will help you write your report correctly so that you do not waste your time doing things that
may not help us much or at all.

If you have a repeatable bug report, please report it to the bugs database at http://bugs.mysql.com/. Any
bug that we are able to repeat has a high chance of being fixed sooner rather than later.

To report other problems, you can use one of the MySQL mailing lists.

Remember that it is possible for us to respond to a message containing too much information, but not to
one containing too little. People often omit facts because they think they know the cause of a problem and
assume that some details do not matter.

A good principle is this: If you are in doubt about stating something, state it. It is faster and less
troublesome to write a couple more lines in your report than to wait longer for the answer if we must ask
you to provide information that was missing from the initial report.

The most common errors made in bug reports are (a) not including the version number of Connector/J or
MySQL used, and (b) not fully describing the platform on which Connector/J is installed (including the JVM
version, and the platform type and version number that MySQL itself is installed on).

This is highly relevant information, and in 99 cases out of 100, the bug report is useless without it. Very
often we get questions like, “Why doesn't this work for me?” Then we find that the feature requested was
not implemented in that MySQL version, or that a bug described in a report has already been fixed in
newer MySQL versions.

Sometimes the error is platform-dependent; in such cases, it is next to impossible for us to fix anything
without knowing the operating system and the version number of the platform.

If at all possible, create a repeatable, standalone testcase that doesn't involve any third-party classes.

To streamline this process, we ship a base class for testcases with Connector/J, named

‘com nysqgl . cj.jdbc.util.BaseBugReport'. To create a testcase for Connector/J using this class,
create your own class that inherits from com nysql . cj . j dbc. uti | . BaseBugReport and override the
methods set Up(), t ear Down() and runTest ().

In the set Up() method, create code that creates your tables, and populates them with any data needed to
demonstrate the bug.

Inthe runTest () method, create code that demonstrates the bug using the tables and data you created
in the set Up method.

In the t ear Down() method, drop any tables you created in the set Up() method.

182


http://bugs.mysql.com/
http://support.oracle.com/
http://bugs.mysql.com/

How to Report Connector/J Bugs or Problems

In any of the above three methods, use one of the variants of the get Connecti on() method to create a
JDBC connection to MySQL:

» get Connecti on() - Provides a connection to the JDBC URL specified in get Ur | () . If a connection
already exists, that connection is returned, otherwise a new connection is created.

» get NewConnect i on() - Use this if you need to get a new connection for your bug report (that is, there
is more than one connection involved).

e get Connection(String url) -Returns a connection using the given URL.

» get Connection(String url, Properties props) - Returns a connection using the given URL
and properties.

If you need to use a JDBC URL that is different from 'jdbc:mysql:///test’, override the method get Ur | () as
well.

Use the assert True( bool ean expressi on) andassert True(String fail ureMessage,

bool ean expressi on) methods to create conditions that must be met in your testcase demonstrating
the behavior you are expecting (vs. the behavior you are observing, which is why you are most likely filing
a bug report).

Finally, create a mai n() method that creates a new instance of your testcase, and calls the r un method:
public static void main(String[] args) throws Exception {
new MyBugReport ().run();
}

Once you have finished your testcase, and have verified that it demonstrates the bug you are reporting,
upload it with your bug report to http://bugs.mysqgl.com/.

183


http://bugs.mysql.com/

184



Chapter 4 MySQL Connector/NET Developer Guide

Table of Contents

4.1 Introduction to0 MySQL ConNECION/NET ......ciiiiiiiiiiiii e e e e e e e e e e e e anes 186
4.2 CONNECLOI/NET VEISIONS ..eetuieiiiiiieee et e ettt e e e e e e et e e e e et e e e e et e e e e et e e e e et e e eeetanas 187
4.3 ConNNECLOI/NET INSTAIIALION .....iiiiiiiee e e e e e et e e e e e 189
4.3.1 Installing Connector/NET 0N WINAOWS ......uiiiiiii e e e e et e e e e e e eaens 189
4.3.2 Installing Connector/NET on UniX With MONO .........cooviiiiiiiiiii e 192
4.3.3 Installing Connector/NET frOmM SOUICE .......ccvvuiiiiiieiiie e et e e e e eaens 193
4.4 CONNECLOI/NET CONNECLIONS ....uiiiiiiiieeiii ettt e et e et e et e e e et e e e et a e e e et e e e eaba e eeeannns 194
4.4.1 Creating a Connector/NET ConNECtioN StHNQ ....ccueviiieiiiei e e e 194
4.4.2 Managing a Connection Pool in ConnecCtOr/NET ........ccocouiiiiiiiiii e e e 197
4.4.3 Handling CONNECLION EITOIS .....uiiiiiiiii et e e e e e e e e 198
4.4.4 Connector/NET AULNENTICALION .......iiiiii i e e e et eeanens 199
4.4.5 Connector/NET Connection Options RefErence ...........oovvviiiiiiiiiii e 204
F/ SR o] g e =Tex (o] ¢4\ | = I =d oo [ir=a 010 011 o PSS 221
4.5.1 Using GetSchema on @ CONNECION ..........iiiiieiiici e e e e e e e eanns 221
4.5.2 UsSINg MySQICOMMANG ......ooviiiiiiiiii e e e e e e e e e e e e e et eeanaeeees 223
4.5.3 Using Connector/NET with Table Caching ..........cccciiiiiiiiiiii e 226
4.5.4 Preparing Statements in ConNECION/NET .......ociiiiiiiiiiiii e e 226
4.5.5 Creating and Calling Stored ProCeAUIES .........ovieuiiiiiiiii e e e e 227
4.5.6 Handling BLOB Data With ConNeCtOr/NET .........oiiiiiiiiiieeie e e e e e 231
4.5.7 Working with Partial Trust / Medium TrUSE .......ccouuiiiiiiiiie e e e 234
4.5.8 Writing a Custom Authentication PIUQIN ........cc.iiiiiiiii e e 238
4.5.9 Using the Connector/NET INterceptor CIASSES .......uiiiiiiiiiieiiii e e e e e eaa e 241
4.5.10 Handling Date and Time Information in ConNector/NET ........ccocoviieiiiiiiiiiiec e, 242
4.5.11 Using the MySqIBUIKLOAAEr CIASS .....c.uuiiiiiieiiieiiie et e e e e 244
ST 72 @%o] o 0 [=Tox (o] ¢4 | = I I = od o Vo TP 246
4.5.13 Using Connector/NET with Crystal REPOMS .....ccuuiiiiiiiiiicii e 251
4.5.14 ASyNchronous MeEthOOS .........oiiiiiii e e e e e e e raa e 255
4.5.15 Binary and NONDINAIY ISSUES .......co.uiiiiiiiiii e e e e e 262
4.5.16 Character Set Considerations for ConNector/NET .........ccooviuiiiiiiiiiiiieiiiie e 262
4.6 CONNECLOI/NET TULOTIAIS ... ieeii ettt e e e e e e et e e e e ab e e e eean e eeennes 263
4.6.1 Tutorial: An Introduction to Connector/NET Programming ..........cccveeeuieeiinieeinneeinieraineenennss 263
4.6.2 ASP.NET Provider Model and TULOFAIS ........coouuuiiiiiiieiei e 272
4.6.3 Tutorial: Using an Entity Framework Entity as a Windows Forms Data Source ................... 289
4.6.4 Tutorial: Data Binding in ASP.NET Using LINQ on ENntitieS ..........cccoveviiiiiiiiieiiieecieeee e, 297
4.6.5 Tutorial: Generating MySQL DDL from an Entity Framework Model ..............ccocoeeeeinn. 300
4.6.6 Tutorial: Basic CRUD Operations with Connector/NET ..........cooivviiiiiiieiiiieeii e 301
4.6.7 Tutorial: Configuring SSL with ConNeCtor/NET ........cooviiiiiiiiii e 304
4.6.8 Tutorial: USING MYSISCIIPE ..u.iveiiiiieie e e e e e e e et e e e e eees 307
4.7 Connector/NET for Entity FrameWOTK .........ccoeuiiiiiiii e e e e 311
4.7.1 Entity Framework 6 SUPPOI .....uiiiiiiii e e e e e e e e e e e et e e e eaaas 311
4.7.2 Entity Framework COre SUPPOI . o.uuiiii e e e e e e e e e e e e e e e et e et e e aaeeaanas 317
4.8 CONNECLOI/NET APl REFEIENCE ....uuiiiiiii e 326
4.8.1 MySql.Data.Common.DNSCHENT .........ciiiiiii e e e e e eaaees 326
4.8.2 MySql.Data.MySqIClient NAMESPACE ......c.uueiiuniiiiieiieeei e eee e e e e e e e e e e e eees 326
4.8.3 MySql.Data.MySqlClient.Authentication NameSPaCE .........cccuuviiiinieiiiiiiiiieeie e, 329
4.8.4 MySql.Data.MySqlClient.Interceptors NameSPACE ..........oevevnieiiiieriiieiiiiee e e e eeenns 330
4.8.5 MySql.Data.MySqIClient.Replication NameSPaCE .........c..oveevuieiiieiiiieeiiieeeeee e e e eeaens 330
4.8.6 MySql.Data. TYPES NAMESPACE .....uuiieiiieiineeii et et e et e e e e e e e e et e e e e et e e e eanes 330

185



Introduction to MySQL Connector/NET

4.8.7 MySql.Data.EntityFramework NameESPACE .........ociuiiiiiiiieiiieiiiieeii e e e e e e e e e aaneees 331
4.8.8 Microsoft.EntityFrameworkCore NamMESPACE ........cvuuiiiiiieii it eeie e e e e e et e e e e eanans 332
4.8.9 MySql.EntityFrameworkCore NAMESPACE .......cevuuiiiinieiiieeiii et e e e e e e e et e e e e 332
4.8.10 MySgl.WED NAMESPACE .....cevniiiiiieiiiee e et e e e e e e e e e e e et e e eeanas 335
e I @] o g T=Tox (o] 74 N1 = IS o] Lo ] o A 336
4.9.1 Connector/NET COomMMUNILY SUPPOIT ...vuniiiiieiii e e e e e e e e e e e e e e eeens 336
4.9.2 How to Report Connector/NET Problems or BUGS .........ovvuiiiiiiiiiii e 336

MySQL Connector/NET is the connector that enables .NET applications to communicate with MySQL
servers.

For notes detailing the changes in each release of Connector/NET, see MySQL Connector/NET Release
Notes.

For legal information, see the Legal Notices.

For help with using MySQL, please visit the MySQL Forums, where you can discuss your issues with other
MySQL users.

Licensing information.  This product may include third-party software, used under license. If you

are using a Commercial release of MySQL Connector/NET, see this document for licensing information,
including licensing information relating to third-party software that may be included in this Commercial
release. If you are using a Community release of MySQL Connector/NET, see this document for licensing
information, including licensing information relating to third-party software that may be included in this
Community release.

4.1 Introduction to MySQL Connector/NET

MySQL Connector/NET enables you to develop .NET applications that require secure, high-performance
data connectivity with MySQL. It implements the required ADO.NET interfaces and integrates into
ADO.NET-aware tools. You can build applications using your choice of .NET languages. Connector/NET
is a fully managed ADO.NET data provider written in 100% pure C#. It does not use the MySQL C client
library.

Connector/NET source code and tests are available from the NuGet Gallery and GitHub. For notes
detailing the changes in each release of Connector/NET, see MySQL Connector/NET Release Notes.

Connector/NET includes full support for:
» Features provided by MySQL Server, up to and including the MySQL 8.3 release series.

» MySQL as a document store (NoSQL), along with X Protocol connection support to access MySQL data
using X Plugin ports.

» Large-packet support for sending and receiving rows and BLOB values up to 2 gigabytes in size.
» Protocol compression, which enables compressing the data stream between the client and server.
» Connections using TCP/IP sockets, named pipes, or shared memory on Windows.
» Connections using TCP/IP sockets or Unix sockets on Unix.
» Encrypted connections using:
e TLSv1.2 protocol over TCP/IP with Connector/NET 8.0.11 and later.

e TLSv1.3 protocol over TCP/IP with Connector/NET 8.0.20 and later.

.NET Standard and runs on the Universal Windows Platform (UWP) .NET implementation.

186


https://dev.mysql.com/doc/relnotes/connector-net/en/
https://dev.mysql.com/doc/relnotes/connector-net/en/
http://forums.mysql.com
https://downloads.mysql.com/docs/licenses/connector-net-8.3-com-en.pdf
https://downloads.mysql.com/docs/licenses/connector-net-8.3-gpl-en.pdf
https://dev.mysql.com/doc/relnotes/connector-net/en/
https://dev.mysql.com/doc/refman/8.0/en/blob.html

Key Topics

 Entity Framework 6 and Entity Framework Core to migrate data to and from MySQL data tables.
» The Open Source Mono framework developed by Novell.

Connector/NET supports Microsoft Visual Studio 2013, 2015, 2017, and 2019, although the extent of
support may be limited depending on the versions of Connector/NET and Visual Studio you use. For
details, see Section 4.2, “Connector/NET Versions”.

Key Topics

» For connection string properties when using the MySgl Connect i on class, see Section 4.4.5,
“Connector/NET Connection Options Reference”.

4.2 Connector/NET Versions

MySQL Connector/NET 8.3 is a continuation of Connector/NET 8.0, but now named to synchronize

with the (latest) MySQL server version it supports. This version combines the functionality of the
previous Connector/NET release series, including support for X Protocol connections. Connector/NET
customizes Entity Framework Core to operate with MySQL data, enables compression in the .NET driver
implementation, and extends cross-platform support to Linux and macOS.

Secure connections using the TLSv1.2 protocol require Connector/NET 8.0.11 or later. In addition, your
Microsoft Windows host must have the TLSv1.2 protocol enabled. Connections made using Windows
named pipes or shared memory do not support the TLSv1.2 protocol. For general guidance about
configuring the server and clients for secure connections, see Configuring MySQL to Use Encrypted
Connections.

Note

.NET 6, 7, and 8, and .NET Framework 4.6 (as of 8.4.0) and 4.8 include support
for the TLSv1.3 protocol. Be sure to confirm that the operating system running your
application also supports TLSv1.3 before using it exclusively for connections.

The following table shows the versions of ADO.NET, .NET (Core and Framework), and MySQL Server
that are supported or required by MySQL Connector/NET. For the specific Entity Framework versions that
Connector/NET targets, see Section 4.7, “Connector/NET for Entity Framework”.

Table 4.1 Connector/NET Requirements for Related Products

Connector/NET |ADO.NET .NET Versions and Visual Studio MySQL
Version Version Server
8.3.0 2.X+ For apps that target .NET 8, use VS 2022 (v17.8 or MySQL 8.3,
later) MySQL 8.2,
MySQL 8.1,
For apps that target .NET 7, use VS 2022 (v17.4 or MySQL 8.0,
later) and MySQL
5.7

For apps that target .NET 6, use VS 2022 (v17.0 and
later) or VS 2022 for Mac (v17.6 or later)

For apps that target .NET Framework 4.8, use VS
2019 (v16.3 or later)

For apps that target .NET Framework 4.6.2, use VS
2017 (v15.9 or later)

8.2.0 2.x+ For apps that target .NET 8 preview, use VS 2022 MySQL 8.2,
(v17.6 or later) MySQL 8.1,

187


https://dev.mysql.com/doc/refman/8.0/en/using-encrypted-connections.html
https://dev.mysql.com/doc/refman/8.0/en/using-encrypted-connections.html

Connector/NET Versions

Connector/NET |ADO.NET .NET Versions and Visual Studio MySQL
Version Version Server
For apps that target .NET 7, use VS 2022 (v17.4 or MySQL 8.0,
later) and MySQL
5.7
For apps that target .NET 6, use VS 2022 (v17.0 and
later) or VS 2022 for Mac (v17.6 or later)
For apps that target .NET Framework 4.8, use VS
2019 (v16.3 or later)
For apps that target .NET Framework 4.6.2, use VS
2017 (v15.9 or later)
8.1.0 2.x+ For apps that target .NET 7, use VS 2022 (v17.4 or MySQL 8.1,
later) MySQL 8.0,
and MySQL
For apps that target .NET 6, use VS 2022 (vi7.0and |57
later) or VS 2022 for Mac (v17.6 or later)
For apps that target .NET Framework 4.8, use VS
2019 (v16.3 or later)
For apps that target .NET Framework 4.6.2, use VS
2017 (v15.9 or later)

Archived Connector/NET versions and their requirements:

C/NET 8.0.33: .NET 7, use VS 2022 (v17.4 or later) | .NET 6, use VS 2022 (v17.0) or VS 2022 for Mac
(v17.0 preview) | .NET Core 3.1, use VS 2019 (v16.4 or later) | .NET Framework 4.8, use VS 2019
(v16.3 or later) | .NET Framework 4.6.2, use VS 2017 (v15.9 or later)

Recommended minimum server version: MySQL 8.0.33 or MySQL 5.7.42

C/NET 8.0.28+: .NET 6, use VS 2022 (v17.0 or later) or VS 2019 for Mac (v8.10) | .NET 5, use VS 2019
(v16.8) or VS 2019 for Mac (v8.8) | .NET Core 3.1, use VS 2019 (v16.4 or later) | .NET Framework 4.8,
use VS 2019 (v16.3 or later) | .NET Framework 4.6.2, use VS 2017 (v15.9 or later)

Recommended minimum server version: MySQL 8.0.28 or MySQL 5.7.37

C/NET 8.0.23+: .NET 5, use VS 2019 (v16.8) or VS 2019 for Mac (v8.8) | .NET Core 3.1, use VS 2019
(v16.4 or later) | .NET Framework 4.8, use VS 2019 (v16.3 or later)

Recommended minimum server version: MySQL 8.0.23 or MySQL 5.7.33

C/NET 8.0.22+: .NET 5, use VS 2019 (v16.7) or VS 2019 for Mac (v8.7) | .NET Core 3.1, use VS 2019
(v16.4 or later) | .NET Framework 4.8, use VS 2019 (v16.3 or later)

Recommended minimum server version: MySQL 8.0.22 or MySQL 5.7.32

C/NET 8.0.20+: .NET Core 3.1, use VS 2019 (v16.4 or later) | .NET Framework 4.8, use VS 2019 (v16.3
or later)

Recommended minimum server version: MySQL 8.0.20 or MySQL 5.7.30

C/NET 8.0.19+: .NET Core 3.0, use VS 2019 (v16.3 or later) | .NET Framework 4.8, use VS 2019 (v16.3
or later)

188




Connector/NET Installation

Recommended minimum server version: MySQL 8.0.19 or MySQL 5.7.29
e C/NET 8.0.18+: .NET Core 3.0, use VS 2019 (v16.3 or later)
Recommended minimum server version: MySQL 8.0.18 or MySQL 5.7.28

* C/NET 8.0.17+: .NET Core 2.2, use VS 2017 (v15.0.9 or later) | .NET Core 2.1, use VS 2017 (v15.0.7 or
later)

Recommended minimum server version: MySQL 8.0.17 or MySQL 5.7.27
e C/NET 8.0.10+: .NET Core 2.0, use VS 2017 (v15.0.3 or later)

Recommended minimum server version: MySQL 8.0.17 or MySQL 5.7.27
» C/NET 8.0.8+: .NET Framework 4.5.x, use VS 2013/ 2015/ 2017

Recommended minimum server version: MySQL 8.0.17 or MySQL 5.7.27

4.3 Connector/NET Installation

MySQL Connector/NET runs on any platform that supports the .NET Standard (.NET Framework, .NET
Core, and Mono). The .NET Framework is primarily supported on recent versions of Microsoft Windows
and Microsoft Windows Server.

Cross-platform options:
» .NET Core provides support on Windows, macOS, and Linux.
» Open Source Mono platform provides support on Linux.

Connector/NET is available for download as a standalone MSI Installer or from the NuGet gallery. The
source code is available for download from MySQL Download MySQL Connector/NET or at GitHub from
the MySQL Connector/NET repository.

Note

Starting with Connector/NET 8.0.33, application developers must ensure the
availability of following libraries at run time. Previously, the libraries were bundled
with Connector/NET installations.

For applications using OCI Authentication and SSL Certificates validation:

e Portabl e. BouncyCast | e (see https://www.nuget.org/packages/
Portable.BouncyCastle)

For applications using X DevAPI:

e K4os. Conpressi on. LZ4. St r eans (see https://www.nuget.org/packages/
K4os.Compression.LZ4.Streams)

e CGoogl e. Prot obuf (see https://www.nuget.org/packages/Google.Protobuf)
4.3.1 Installing Connector/NET on Windows

On Microsoft Windows, you can install either through a binary installation process using a Connector/NET
MSI, using NuGet, or by downloading and using the source code.

189


http://www.mono-project.com/
https://dev.mysql.com/downloads/connector/net/
https://www.nuget.org/profiles/MySQL/
https://dev.mysql.com/downloads/connector/net/
https://github.com/mysql/mysql-connector-net
https://www.nuget.org/packages/Portable.BouncyCastle
https://www.nuget.org/packages/Portable.BouncyCastle
https://www.nuget.org/packages/K4os.Compression.LZ4.Streams
https://www.nuget.org/packages/K4os.Compression.LZ4.Streams
https://www.nuget.org/packages/Google.Protobuf

Installing Connector/NET on Windows

Before installing, ensure that your system is up to date, including installing the latest version of the .NET
Framework or .NET Core. For additional information, see Section 4.2, “Connector/NET Versions”.

4.3.1.1 Installing Connector/NET Using the Standalone Installer

You can install MySQL Connector/NET through a Windows Installer (. nsi ) installation package, which
can install Connector/NET on supported Windows operating systems. The MSI package is a file named
mysql - connect or - net - ver si on. nsi , where ver si on indicates the Connector/NET version.

To install Connector/NET:

1. Double-click the MSI installer file, and click Next to start the installation.

2. Choose the type of installation to perform (Typical, Custom, or Complete) and then click Next.
¢ The typical installation is suitable in most cases. Click Typical and proceed to Step 5.

« A Complete installation installs all the available files. To conduct a Complete installation, click the
Complete button and proceed to step 5.

< To customize your installation, including choosing the components to install and some installation
options, click the Custom button and proceed to Step 3.

The Connector/NET installer will register the connector within the Global Assembly Cache (GAC) - this
will make the Connector/NET component available to all applications, not just those where you explicitly
reference the Connector/NET component. The installer will also create the necessary links in the Start
menu to the documentation and release notes.

3. If you have chosen a custom installation, you can select the individual components to install, including
the core interface component, supporting documentation options, examples, and the source code. Click
Disk Usage to determine the disk-space requirements of your component choices.

Select the items and their installation level and then click Next to continue the installation.

4. You will be given a final opportunity to confirm the installation. Click Install to copy and install the files
onto your computer. Use Back to return to the modify your component options.

5. When prompted, click Finish to exit the MSI installer.

Unless you choose a different folder, Connector/NET is installed in C: \ Program Fi | es (x86)\ MySQL
\ MySQL Connector Net version (the version installed). New installations do not overwrite existing
versions of Connector/NET.

You may also use the / qui et or / g command-line option with the nsi exec tool to install the Connector/
NET package automatically (using the default options) with no notification to the user. Using this method
the user cannot select options. Additionally, no prompts, messages or dialog boxes will be displayed.

C.\> nsi exec / package connector-net.nsi /quiet

To provide a progress bar to the user during automatic installation, use the / passi ve option.
4.3.1.2 Installing Connector/NET Using NuGet

MySQL Connector/NET functionality is available as packages from NuGet, an open-source package

manager for the Microsoft development platform (including .NET Core). The NuGet Gallery is the central
software package repository populated with the most recent NuGet packages for Connector/NET.

190



Installing Connector/NET on Windows

You can install or upgrade one or more individual Connector/NET packages with NuGet, making it a
convenient way to introduce existing technology, such as Entity Framework, to your project. NuGet
manages dependencies across the related packages and all of the prerequisites are listed in the NuGet
Gallery. For a description of each Connector/NET package, see Connector/NET Packages (NuGet).

Important

For projects that require Connector/NET assemblies to be stored in the GAC or
integration with Entity Framework Designer (Visual Studio), use the standalone MSI
to install Connector/NET, rather than installing the NuGet packages.

Consuming Connector/NET Packages with NuGet

The NuGet Gallery (https://www.nuget.org/) provides several client tools that can help you install or
upgrade Connector/NET packages. If you are not familiar with the tool options or processes, see Package
consumption workflow to get started. After locating a package description in NuGet, confirm the following
information:

» The identity and version humber of the package are correct. Use the Version History list to select the
current version.

 All of the prerequisites are installed. See the Dependencies list for details.

* The license terms are met. See the License Info link to view this information.
Connector/NET Packages (NuGet)

Connector/NET provides the following five NuGet packages:

MySql . Dat a This package contains the core functionality of Connector/NET,
including using MySQL as a document store (with Connector/NET 8.0
only). It implements the required ADO.NET interfaces and integrates
with ADO.NET-aware tools. In addition, the packages provides access
to multiple versions of MySQL server and encapsulates database-
specific protocols.

MySql . Wb The My Sql . Web package includes support for the ASP.NET 2.0
provider model (see Section 4.6.2, “ASP.NET Provider Model and
Tutorials”). This model enables you to focus on the business logic of
your application, rather than having to recreate boilerplate items such as
membership and roles support. The package supports the membership,
role, profile, and session-state providers.

Package dependency: MySql . Dat a.

MySql . Dat a. Ent i t yFr amewor KThis package provides object-relational mapper (ORM) capabilities,
which enables you to work with MySQL databases using domain-
specific objects, thereby eliminating the need for most of the data
access code. Select this package for your Entity Framework 6
applications (see Section 4.7.1, “Entity Framework 6 Support”).

Package dependency: MySql . Dat a.

MySql . Dat a. Ent i t yFr amewor KThis @ackage is similar to the MySql . Dat a. Ent i t yFr amewor k
package; however, it provides multi-platform support for Entity
Framework tasks. Select this package for your Entity Framework Core
applications (see Section 4.7.2, “Entity Framework Core Support”).

191


https://www.nuget.org/
https://docs.microsoft.com/en-us/nuget/consume-packages/overview-and-workflow
https://docs.microsoft.com/en-us/nuget/consume-packages/overview-and-workflow

Installing Connector/NET on Unix with Mono

MySql . Dat a. Ent i t yFr amewor KlOue &y Bgki Bat a. Ent i t yFr amewor kCor e. Desi gn package
includes shared design-time components for Entity Framework Core
tools, which enable you to scaffold and migrate MySQL databases.

Note

Beginning with Connector/NET 8.0.20,

the functionality provided in this

package has been relocated to the

MySql . Dat a. Ent i t yFr amewor kCor e
package. The original

MySql . Dat a. Ent i t yFr anmewor kCor e. Desi gn
package is deprecated.

4.3.2 Installing Connector/NET on Unix with Mono

There is no installer available for installing the MySQL Connector/NET component on your Unix
installation. Before installing, ensure that you have a working Mono project installation. To test whether
your system has Mono installed, enter:

$> nono --version

The version of the Mono JIT compiler is displayed.

To compile C# source code, make sure a Mono C# compiler is installed.
Note

There are three Mono C# compilers available: nts, which accesses the 1.0-profile
libraries, gnts, which accesses the 2.0-profile libraries, and dnts, which accesses
the 4.0-profile libraries.

To install Connector/NET on Unix/Mono:

1. Download the nysqgl - connect or - net - ver si on- noi nstal | . zi p and extract the contents to a
directory of your choice, for example: ~/ connect or - net /.

2. Inthe directory where you unzipped the connector to, change into the bi n subdirectory. Ensure the file
MySql . Dat a. dI | is present. This filename is case-sensitive.

3. You must register the Connector/NET component, MySql . Dat a, in the Global Assembly Cache (GAC).
In the current directory enter the gacut i | command:

#> gacutil /i MySql.Data.dl|

This will register MySql . Dat a into the GAC. You can check this by listing the contents of / usr/ 1 i b/
nono/ gac, where you will find My Sql . Dat a if the registration has been successful.

You are now ready to compile your application. You must ensure that when you compile your application
you include the Connector/NET component using the - r : command-line option. For example:

$> gnts -r:Systemdl| -r:SystemData.dll -r:MSqgl.Data.dl | HelloWrld.cs

The referenced assemblies depend on the requirements of the application, but applications using
Connector/NET must provide - r : MySql . Dat a at a minimum.

You can further check your installation by running the compiled program, for example:

$> nono Hel | oWor| d. exe

192



Installing Connector/NET from Source

4.3.3 Installing Connector/NET from Source

Building MySQL Connector/NET from the source code enables you to customize build parameters and
target platforms such as Linux and macOS. The procedures in this section describe how to build source
with Microsoft Visual Studio (Windows or macOS) and .NET Core CLI (Windows, macOS, or Linux).

MySQL Connector/NET source code is available for download from https://dev.mysql.com/downloads/
connector/net/. Select Sour ce Code from the Select Operating System list. Use the Archive tab to
download a previous version of Connector/NET source code.

Source code is packaged as a ZIP archive file with a name similar to nysql - connect or - net - 8. 0. 19-
src. zi p. Unzip the file to local directory.

The file includes the following directories with source files:

» EFCor e: Source and test files for Entity Framework Core features.

* EntityFramewor k: Source and test files for Entity Framework 6 features.
* MySQL. Dat a: Source and test files for features using the MySQL library.

* MySQL. V\eb: Source and test files for the web providers, including the membership, role, profile
providers that are used in ASP.NET or ASP.NET Core websites.

Building Source Code with Visual Studio

The following procedure can be used to build the connector on Microsoft Windows or macOS. Connector/
NET supports various versions of Microsoft Visual Studio and .NET libraries. For guidance about the
Connector/NET version you intend to build, see Section 4.2, “Connector/NET Versions” before you begin.

1. Navigate to the root of the source code directory and then to the directory with the source files to build,
such as MySql . Dat a. Each source directory contains a Microsoft Visual Studio solution file with the
. sl n (for example, MySql Dat a. sl n).

2. Double-click the solutions file to start Visual Studio and open the solution.

Visual Studio opens the solution files in the Solution Explorer. All of the projects related to the solution
also appear in the navigation tree. These related projects can include test files and the projects that
your solutions requires.

3. Locate the project with the same name as the solution (MySql . Dat a in this example). Right-click the
node and select Build from the context menu to build the solution.

Building Source Code with .NET Core CLI

The following procedure can be used to build the connector on Microsoft Windows, Linux, or macOS.
A current version of the .NET Core SDK must be installed locally to execute dot net commands. For
additional usage information, visit https://docs.microsoft.com/en-us/dotnet/core/tools/.

1. Open aterminal such as Power Shel | , Command Pronpt, or bash.

Navigate to the root of the source code directory and then to the directory with the source files to build,
such as MySQL. Dat a.

2. Clean the output of the previous build.

dot net cl ean

193


https://dev.mysql.com/downloads/connector/net/
https://dev.mysql.com/downloads/connector/net/
https://docs.microsoft.com/en-us/dotnet/core/tools/

Connector/NET Connections

3. Type the following command to build the solution file (MySql . Dat a. sl n in this example) using the
default command arguments:

dotnet build

Solution and project default.  When no directory and file name is provided on the command line,
the default value depends on the current directory. If the command is executed from the top directory,
such as MySQL. Dat a, the solution file is selected (new with the .NET Core 3.0 SDK). Otherwise, if
executed from the sr ¢ subdirectory, the project file is used.

Configuration default, - c | - - confi gurati on. Defaults to the Debug build configuration.
Alternatively, - ¢ Rel ease is the other supported build configuration argument value.

Framework default, -f | - - framewor k.  When no framework is specified on the command line, the
solution or project is built for all possible frameworks that apply. To determine which frameworks are
supported, use a text editor to open the related project file (for example, MySql . Dat a. cspr oj in the
sr ¢ subdirectory) and search for the <Tar get Fr anmewor ks> element.

To build source code on Linux and macOS, you must target .NET Standard (- f net st andar d2. 0 or
-f netstandard2. 1). To build source code on Microsoft Windows, you can target .NET Standard
and .NET Framework (-f net 452 or-f net 48).

4.4 Connector/NET Connections

All interaction between a .NET application and the MySQL server is routed through a MySql Connecti on
object when using the classic MySQL protocol. Before your application can interact with the server, it must
instantiate, configure, and open a MySqgl Connect i on object.

Even when using the My Sql Hel per class, a MySql Connect i on object is created by the helper class.
Likewise, when using the MySgl Connecti onSt ri ngBui | der class to expose the connection options as
properties, your application must open a MySgl Connect i on object.

This sections in this chapter describe how to connect to MySQL using the My Sql Connect i on object.

4.4.1 Creating a Connector/NET Connection String

The MySqgl Connect i on object is configured using a connection string. A connection string contains
several key-value pairs, separated by semicolons. In each key-value pair, the option name and its
corresponding value are joined by an equal sign. For the list of option names to use in the connection
string, see Section 4.4.5, “Connector/NET Connection Options Reference”.

The following is a sample connection string:

"server=127. 0. 0. 1; ui d=r oot ; pwd=12345; dat abase=t est "

In this example, the MySgl Connect i on object is configured to connect to a MySQL server at
127. 0. 0. 1, with a user name of r oot and a password of 12345. The default database for all statements
will be the t est database.

Connector/NET supports several connection models:
» Opening a Connection to a Single Server
» Opening a Connection for Multiple Hosts with Failover

» Opening a Connection Using a Single DNS Domain

194



Creating a Connector/NET Connection String

Opening a Connection to a Single Server
After you have created a connection string it can be used to open a connection to the MySQL server.

The following code is used to create a MySgl Connect i on object, assign the connection string, and open
the connection.

MySQL Connector/NET can also connect using the native Windows authentication plugin. See
Section 4.4.4, “Connector/NET Authentication” for details.

You can further extend the authentication mechanism by writing your own authentication plugin. See
Section 4.5.8, “Writing a Custom Authentication Plugin” for details.

C# Example

M/Sql . Dat a. MySqgl d i ent . MySqgl Connecti on conn;
string myConnectionString;
nmyConnectionString = "server=127.0.0. 1; uid=root;" +
" pwd=12345; dat abase=t est";
try
{
conn = new MySqgl . Data. MySqgl G i ent. MySqgl Connecti on();
conn. ConnectionString = myConnecti onStri ng;
conn. Open() ;

}
catch (MySqgl . Data. MySgl Cl i ent. MySgl Excepti on ex)
{

MessageBox. Show( ex. Message) ;
}

Visual Basic Example
Di m conn As New MySqgl . Dat a. MySql d i ent . MySgl Connect i on

Di m nyConnectionString as String
nyConnectionString = "server=127.0.0.1;" _

& "uid=root;" _
& "pwd=12345; " _
& "dat abase=t est"
Try
conn. ConnectionString = myConnecti onString
conn. Open()

Catch ex As MySgl . Data. MySgl Cl i ent. MySgl Excepti on
MessageBox. Show( ex. Message)
End Try

You can also pass the connection string to the constructor of the MySqgl Connect i on class:

C# Example

MySql . Dat a. MySgl Cl i ent. MySgl Connecti on conn;
string myConnectionStri ng;
myConnectionString = "server=127.0.0. 1; ui d=root; " +
"pwd=12345; dat abase=t est";
try
{
conn = new MySqgl . Dat a. MySqgl Cl i ent . MySgl Connecti on( myConnecti onString);

conn. Qpen();

}
catch (MySql . Data. MySql C i ent . MySqgl Excepti on ex)
{

MessageBox. Show ex. Message) ;
}

Visual Basic Example

195



Creating a Connector/NET Connection String

Di m myConnectionString as String
myConnectionString = "server=127.0.0.1;" _
& "uid=root;" _
& "pwd=12345; " _
& "dat abase=t est"
Try
Di m conn As New MySql . Dat a. MySql d i ent . MySgl Connect i on( myConnecti onStri ng)
conn. Open()
Catch ex As MySqgl . Data. MySgl Cl i ent. MySqgl Excepti on
MessageBox. Show( ex. Message)
End Try

After the connection is open, it can be used by the other Connector/NET classes to communicate with the
MySQL server.

Opening a Connection for Multiple Hosts with Failover

Data used by applications can be stored on multiple MySQL servers to provide high availability. Connector/
NET provides a simple way to specify multiple hosts in a connection string for cases in which multiple
MySQL servers are configured for replication and you are not concerned about the precise server your
application connects to in the set. For an example of how to configure multiple hosts with replication, see
Using Replication & Load balancing.

Starting in Connector/NET 8.0.19, both classic MySQL protocol and X Protocol connections permit the use
of multiple host names and multiple endpoints (a host : port pair) in a connection string or URI scheme.
For example:

/] classic protocol exanple

"server=10. 10. 10. 10: 3306, 192. 101. 10. 2: 3305, | ocal host : 3306; ui d=t est ; passwor d=xxxx"
/1l X Protocol exanple

mysql x: //test:test @192. 1. 10. 10: 3305, 127. 0. 0. 1: 3306]

An updated failover approach selects the target for connection first by priority order, if provided, or random
order when no priority is specified. If the attempted connection to a selected target is unsuccessful,
Connector/NET selects a new target from the list until no more hosts are available. If enabled, Connector/
NET uses connection pooling to manage unsuccessful connections (see Section 4.4.2, “Managing a
Connection Pool in Connector/NET").

Opening a Connection Using a Single DNS Domain

When multiple MySQL instances provide the same service in your installation, you can apply DNS Service
(SRV) records to provide failover, load balancing, and replication services. DNS SRV records remove the
need for clients to identify each possible host in the connection string, or for connections to be handled by
an additional software component. They can also be updated centrally by administrators when servers are
added or removed from the configuration or when their host names are changed. DNS SRV records can be
used in combination with connection pooling, in which case connections to hosts that are no longer in the
current list of SRV records are removed from the pool when they become idle. For information about DNS
SRV support in MySQL, see Connecting to the Server Using DNS SRV Records.

A service record is a specification of data managed by your domain name system that defines the
location (host name and port number) of servers for the specified services. The record format defines
the priority, weight, port, and target for the service as defined in the RFC 2782 specification (see
https://tools.ietf.org/html/rfc2782). In the following SRV record example with four server targets (for
_mysgl . _tcp.foo.abc. com ), Connector/NET uses the server selection order of f 002, f 001, f 003,
and f 0o4.

Name TTL Cl ass Priority Weight Port Target

_nysql . _tcp. foo.abc.com 86400 IN SRV O 5 3306 fool.abc.com
_nysql . _tcp. foo.abc.com 86400 IN SRV O 10 3306 fo02.abc.com
_nysql . _tcp. foo.abc.com 86400 IN SRV 10 5 3306 fo003.abc.com

196


https://blogs.oracle.com/mysql/how-to:-using-replication-load-balancing-with-connectornet
https://blogs.oracle.com/mysql/how-to:-using-replication-load-balancing-with-connectornet
https://dev.mysql.com/doc/refman/8.0/en/connecting-using-dns-srv.html
https://tools.ietf.org/html/rfc2782

Managing a Connection Pool in Connector/NET

_nysql . _tcp. foo.abc.com 86400 IN SRV 20 5 3306 foo4.abc.com

To open a connection using DNS SRV records, add the dns- sr v connection option to your connection
string. For example:

C# Example

var conn = new MySqgl Connecti on("server=_nysql._tcp.foo.abc.com ;dns-srv=true;" +
"user id=user;password=****: dat abase=test");

For additional usage examples and restrictions for both classic MySQL protocol and X Protocol, see
Options for Both Classic MySQL Protocol and X Protocol.

4.4.2 Managing a Connection Pool in Connector/NET

The MySQL Connector/NET supports connection pooling for better performance and scalability with
database-intensive applications. This is enabled by default. You can turn it off or adjust its performance
characteristics using the connection string options Pool i ng, Connecti on Reset, Connecti on

Li feti me, Cache Server Properties,Max Pool SizeandM n Pool Size.See Section4.4.1,
“Creating a Connector/NET Connection String” for further information.

Connection pooling works by keeping the native connection to the server live when the client disposes of
a MySgl Connect i on. Subsequently, if a new MySql Connect i on object is opened, it is created from the
connection pool, rather than creating a new native connection. This improves performance.

Guidelines

To work as designed, it is best to let the connection pooling system manage all connections. Do not create
a globally accessible instance of MySgl Connect i on and then manually open and close it. This interferes
with the way the pooling works and can lead to unpredictable results or even exceptions.

One approach that simplifies things is to avoid creating a My Sql Connect i on object manually. Instead,
use the overloaded methods that take a connection string as an argument. With this approach, Connector/
NET automatically creates, opens, closes and destructs connections, using the connection pooling system
for best performance.

Typed Datasets and the Menber shi pProvi der and Rol ePr ovi der classes use this approach. Most
classes that have methods that take a My Sql Connect i on as an argument, also have methods that take a
connection string as an argument. This includes My Sql Dat aAdapt er .

Instead of creating My Sgl Conmrand objects manually, you can use the static methods of the
My Sql Hel per class. These methods take a connection string as an argument and they fully support
connection pooling.

Resource Usage

Connector/NET runs a background job every three minutes and removes connections from pool that have
been idle (unused) for more than three minutes. The pool cleanup frees resources on both client and
server side. This is because on the client side every connection uses a socket, and on the server side
every connection uses a socket and a thread.

Multiple endpoints.  Starting with Connector/NET 8.0.19, a connection string can include multiple
endpoints (ser ver : por t) with connection pooling enabled. At runtime, Connector/NET selects one of
the addresses from the pool randomly (or by priority when provided) and attempts to connect to it. If the
connection attempt is unsuccessful, Connector/NET selects another address until the set of addresses is
exhausted. Unsuccessful endpoints are retried every two minutes. Successful connections are managed
by the connection pooling mechanism.

197



Handling Connection Errors

4.4.3 Handling Connection Errors

Because connecting to an external server is unpredictable, it is important to add error handling to
your .NET application. When there is an error connecting, the MySql Connect i on class will return a
My Sqgl Except i on object. This object has two properties that are of interest when handling errors:

* Message: A message that describes the current exception.
* Nunmber : The MySQL error number.

When handling errors, you can adapt the response of your application based on the error number. The two
most common error numbers when connecting are as follows:

« 0: Cannot connect to server.
» 1045: Invalid user name, user password, or both.

The following code example shows how to manage the response of an application based on the actual
error:

C# Example

MySql . Dat a. MySgl Cl i ent. MySgl Connecti on conn;

string myConnectionString;

myConnectionString = "server=127.0.0. 1; ui d=root; " +
"pwd=12345; dat abase=t est";

try
{
conn = new MySql . Dat a. MySgl d i ent . MySgl Connect i on( myConnecti onStri ng);
conn. Qpen();
}
catch (MySql . Data. MySql d i ent. MySqgl Excepti on ex)
{
switch (ex. Number)
{
case 0:
MessageBox. Show( " Cannot connect to server. Contact administrator");
br eak;
case 1045:
MessageBox. Show( "I nval i d user nane/ password, please try again");
br eak;
}
}

Visual Basic Example

Di m nyConnectionString as String
nyConnectionString = "server=127.0.0.1;" _
& "uid=root;" _
& "pwd=12345; " _
& "dat abase=t est"
Try
Di m conn As New MySql . Dat a. MySqgl d i ent . MySqgl Connect i on( myConnecti onStri ng)
conn. Open()
Catch ex As MySgl . Data. MySgl Cl i ent. MySgl Excepti on
Sel ect Case ex. Number

Case 0
MessageBox. Show( " Cannot connect to server. Contact adm nistrator")
Case 1045
MessageBox. Show( "I nval i d user nane/ password, please try again")
End Sel ect

End Try

198



Connector/NET Authentication

Important

If you are using multilanguage databases then you must specify the character set
in the connection string. If you do not specify the character set, the connection
defaults to the | at i n1 character set. You can specify the character set as part of
the connection string, for example:

MySgl Connecti on myConnecti on = new MySql Connecti on("server=127.0.0. 1; uid=root;" +
"pwd=12345; dat abase=t est ; Charset =l ati n1") ;

4.4.4 Connector/NET Authentication

MySQL Connector/NET implements a variety of authentication plugins that MySQL Server can invoke to
authenticate a user. Pluggable authentication enables the server to determine which plugin applies, based
on the user name and host hame that your application passes to the server when making a connection. For
a complete description of the authentication process, see Pluggable Authentication.

Connector/NET provides the following authentication plugins and methods:
 authentication_kerberos_client
 authentication_Idap_sasl_client
 authentication_oci_client
» authentication_webauthn_client
» authentication_windows_client
» caching_sha2_ password
* mysql_clear_password
* mysql_native_password
» sha256_password
authentication_kerberos_client
For general information, see Kerberos Pluggable Authentication.

Applications and MySQL servers are able use the Kerberos authentication protocol to authenticate MySQL
Enterprise Edition user accounts and services. With the aut hent i cati on_ker beros_cl i ent plugin,
both the user and the server are able to verify each other's identity. No passwords are ever sent over the
network and Kerberos protocol messages are protected against eavesdropping and replay attacks. The
server-side plugin is supported only on Linux.

Note

The Def aul t aut henti cati onpl ugi n connection-string option is mandatory for
supporting userless and passwordless Kerberos authentications (see Options for
Classic MySQL Protocol Only).

The availability of and the requirements for enabling Kerberos authentication differ by host type.
Connector/NET does not provide Kerberos authentication for .NET applications running on macOS.
On Windows, the Kerberos mode can be set using the Ker ber osAut hiMbde connection option (see
Section 4.4.5, “Connector/NET Connection Options Reference”).

199


https://dev.mysql.com/doc/refman/8.0/en/pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.0/en/kerberos-pluggable-authentication.html

Connector/NET Authentication

Applications running on Linux and Windows participate in Kerberos authentication based on the following
interfaces:

» Generic Security Service Application Program Interface (GSSAPI)
Minimum version:
» Connector/NET 8.0.26 for classic MySQL protocol connections. Supported on Linux only.

¢ Connector/NET 8.0.32 for classic MySQL protocol connections through the MIT Kerberos library.
Supported on Windows only.

MIT Kerberos must be installed on each client system to enable authentication of request tickets for
Connector/NET by a MySQL server. The | i bgssapi _kr b5. so. 2 library for Linux is required. On
Windows, use the KRB5 CONFI Gand KRB5CCNANME environment variables to specify configuration and
cache locations when using GSSAPI through the MIT Kerberos library.

For an overview of the connection process, see Connection Commands for Linux Clients.
» Security Support Provider Interface (SSPI) for Windows

Minimum version: Connector/NET 8.0.27 for classic MySQL protocol connections. Supported on
Windows only.

Connector/NET uses SSPI/Kerberos for authentication. On Windows, SSPI implements GSSAPI. The
behavioral differences between SSPI and GSSAPI include:

e Configuration.  Windows clients do not use any external libraries or Kerberos configuration. For
example, with GSSAPI you can set the ticket-granting ticket (TGT) expiry time, key distribution center
(KDC) port, and so on. With SSPI, you cannot set any of these options.

e TGT tickets caching. If you provide a user name and password for authentication in SSPI mode,
those credentials can be obtained from the Windows in-memory cache, but the obtained tickets are
not stored in the Kerberos cache. New tickets are obtained every time.

¢ Userless and passwordless authentication.  In SSPI mode, Windows logged-in user name and
credentials are used. Windows client must be part of the Active Directory domain of the server for a
successful login.

For an overview of the connection process, see Connection Commands for Windows Clients in SPPI
Mode.

authentication_ldap_sasl_client

For general information, see LDAP Pluggable Authentication.

SASL-based LDAP authentication requires MySQL Enterprise Edition and can be used to establish classic
MySQL protocol connections only. This authentication protocol applies to applications running on Linux,
Windows (partial support), but not macOS.

Minimum version:
» Connector/NET 8.0.22 (SCRAM SHA- 1) on Linux and Windows.
» Connector/NET 8.0.23 (SCRAM SHA- 256) on Linux and Windows.

e Connector/NET 8.0.24 (GSSAPI ) on Linux only.

200


https://dev.mysql.com/doc/refman/8.0/en/kerberos-pluggable-authentication.html#kerberos-usage-mysql-client-usage
https://dev.mysql.com/doc/refman/8.0/en/kerberos-pluggable-authentication.html#kerberos-usage-mysql-client-usage
https://dev.mysql.com/doc/refman/8.0/en/kerberos-pluggable-authentication.html#kerberos-usage-mysql-client-usage
https://dev.mysql.com/doc/refman/8.0/en/ldap-pluggable-authentication.html

Connector/NET Authentication

MIT Kerberos must be installed on each client system to enable authentication of request tickets for
Connector/NET by a MySQL server. The aut henti cati on_| dap_sasl| plugin must be configured to
use the GSSAPI mechanism and the application user must be identified as follows:

| DENTI FI ED W TH ' aut henti cati on_| dap_sasl '
The | i bgssapi _kr b5. so. 2 library for Linux is required.
authentication_oci_client
Minimum version: Connector/NET 8.0.27 for classic MySQL protocol connections only.

Connector/NET supports Oracle Cloud Infrastructure pluggable authentication, which enables .NET
applications to access MySQL HeatWave Service in a secure way without using passwords. This
pluggable authentication is not supported for .NET Framework 4.5.x implementations.

Prerequisites for this type of connection include access to a tenancy, a Compute instance, a DB System
attached to a private network, and properly configured groups, compartments, and policies. An Oracle
Cloud Infrastructure administrator can provide the basic setup for MySQL user accounts.

In addition, the DB System must have the server-side authentication plugin installed and loaded before a
connection can be attempted. Connector/NET implements the client-side authentication plugin.

During authentication, the client-side plugin locates the client user’'s Oracle Cloud Infrastructure
configuration file from which it obtains a signing key file. The location of the configuration file can

be specified with the oci Conf i gFi | e connection option; otherwise, the default location is used. In
Connector/NET 8.0.33, the Cci Confi gPr of i | e connection option permits selecting a profile in the
configuration file to use for authentication. Connector/NET then signs a token it receives from the server,
uses the token to create the SHA256 RSA signature that it returns to the server, and waits for the success
or failure of the authentication process.

To support Oracle Cloud Infrastructure ephemeral key-based authentication, Connector/NET 8.0.33 (and
later) obtains the location of the token file from the security_t oken_fi | e entry. For example:

[ DEFAULT]

fingerprint=59:8a:0b[...]
key_file=~/.oci/sessions/ DEFAULT/ oci _api _key. pem
t enancy=oci d1. tenancy.ocl.[...]

regi on=us- ashburn-1

security_token_fil e=~/.oci/sessions/ DEFAULT/t oken

Connector/NET sends to the server a JSON attribute (named "t oken") with the value extracted from the
security token_fil e field. If the target file referenced in the profile does not exist, or if the file exceeds
a specified maximum value, then Connector/NET terminates the action and returns an exception with the
cause.

Connector/NET sends an empty token value in the JSON payload if:
e The security-token file is empty.

» The configuration option security_t oken_fi | e is found but the value in the configuration file is
empty.

In all other cases, Connector/NET adds the content of the security-token file intact to the JSON document.
Potential error conditions include:

 Private key could not be found at |ocation given by OCl configuration entry
"key file'.

201



Connector/NET Authentication

Connector/NET could not find the private key at the specified location.

« OCl configuration entry '"key file' does not reference a valid key file.
Connector/NET was unable to load or use the specified private key.

* OCl configuration file does not contain a 'fingerprint' or 'key file' entry.
The configuration file is missing the f i nger pri nt entry, the key_fi | e entry, or both.

e OClI configuration file could not be read

Connector/NET could not find or load the configuration file. Be sure the oci Confi gFi | e value matches
the location of the file.

« The OCI SDK cannot be found or is not installed
Connector/NET could not load the Oracle Cloud Infrastructure SDK library at run time.

Connector/NET references the OCl . Dot Net SDK. Conmon NuGet package in the Oracle Cloud
Infrastructure SDK library to read configuration-file entry values and this package must be available.

Tip

To manage the size of your .NET project, include only the required package for
authentication rather than the full set of packages in the library.

For specific details about usage and support, see SDK and CLI Configuration File.
authentication_webauthn_client

For general information, see WebAuthn Pluggable Authentication.

MySQL Enterprise Edition supports authentication to MySQL Server 8.2.0 (and higher) using devices such
as smart cards, security keys, and biometric readers. This authentication method is based on the FIDO
and FIDO2 standards, and uses a pair of plugins, aut hent i cati on_webaut hn on the server side and
aut henti cati on_webaut hn_cl i ent on the client side. Connector/NET 8.2.0 supports the client-side
WebAuthn authentication plugin.

The WebAuthn authentication method can be used directly for one-factor authentication (1FA) or combined
with existing MySQL authentication methods to support accounts that use 2FA or 3FA. Connector/NET
provides a callback mechanism to notify the application that the user is expected to interact with the FIDO/
FIDO2 device through its authenticator. For example:

public void OpenConnection()

{
usi ng(var connection = new MySQLConnecti on("host=foo; .. "))
connecti on. WebAut hnAct i onRequest ed += WebAut hnAct i onRequest ed;
connecti on. Open();
...
}
public voi d WebAut hnAct i onRequest ed()
{
Consol e. WitelLine("Please insert WebAut hn device and perform gesture action for authentication to conplete
}

If the following requirements are satisfied, Connector/NET notifies the application that it is expecting user
interaction with the FIDO/FIDO2 device:

202


https://www.nuget.org/packages/OCI.DotNetSDK.Common/
https://docs.oracle.com/en-us/iaas/Content/API/Concepts/sdkconfig.htm#SDK_and_CLI_Configuration_File
https://dev.mysql.com/doc/refman/8.2/en/webauthn-pluggable-authentication.html

Connector/NET Authentication

e The FIDO/FIDO2 device must be registered for the specific authentication factor associated with each
user account.

» The application, Connector/NET, and the FIDO/FIDO2 device must be available on the same host or
within a trusted network.

» On Windows, the application must run as administrator to access the required | i bf i do2 library, which
must be present on the client.

The authentication process terminates after a reasonable time interval has elapsed without user-device
interaction.

Note

The related aut henti cati on_fi do_client pluginand Fi doActi onCal | back
callback (both added in Connector/NET 8.0.29) were removed in Connector/NET
8.4.0 in favor of using WebAuthn authentication.

authentication_windows_client

Supported for all versions of Connector/NET. For general information, see Windows Pluggable
Authentication.

MySQL Connector/NET applications can authenticate to a MySQL server using the Windows Native
Authentication Plugin. Users who have logged in to Windows can connect from MySQL client programs to
the server based on the information in their environment without specifying an additional password. The
interface matches the MySql.Data.MySqlClient object. To enable, passin | nt egr at ed Security to the
connection string with a value of yes or sspi .

Passing in a user ID is optional. When Windows authentication is set up, a MySQL user is created and
configured to be used by Windows authentication. By default, this user ID is named aut h_w ndows,

but can be defined using a different name. If the default name is used, then passing the user ID to the
connection string from Connector/NET is optional, because it will use the aut h_w ndows user. Otherwise,
the name must be passed to the connection string using the standard user ID element.

caching_sha2 password

Minimum version: Connector/NET 8.0.11 for classic MySQL protocol connections only. For general
information, see Caching SHA-2 Pluggable Authentication.

mysql_clear_password

Minimum version: Connector/NET 8.0.22 for classic MySQL protocol connections only. For general
information, see Client-Side Cleartext Pluggable Authentication.

nysql _cl ear _passwor d requires a secure connection to the server, which is satisfied by either
condition at the client:

» The SsIlMode connection option has a value other than Di sabl ed or None (deprecated in Connector/
NET 8.0.29). The value is set to Pr ef er r ed by default.

» The ConnectionProtocol connection option is set to uni x for Unix domain sockets.
mysql_native_password

Supported for all versions of Connector/NET to establish classic MySQL protocol and X Protocol
connections. For general information, see Native Pluggable Authentication.

203


https://dev.mysql.com/doc/refman/8.0/en/windows-pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.0/en/windows-pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.0/en/caching-sha2-pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.0/en/cleartext-pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.0/en/native-pluggable-authentication.html

Connector/NET Connection Options Reference

sha256_password

Minimum version: Connector/NET 8.0.11 for classic MySQL protocol connections or X Protocol
connections with the MYSQL41 mechanism (see the Auth connection option). For general information, see
SHA-256 Pluggable Authentication.

4.4.5 Connector/NET Connection Options Reference

This chapter describes the full set of MySQL Connector/NET 8.0 connection options. The protocol you use
to make a connection to the server (classic MySQL protocol or X Protocol) determines which options you
should use. Connection options have a default value that you can override by defining the new value in the
connection string (classic MySQL protocol and X Protocol) or in the URI-like connection string (X Protocol).
Connector/NET option names and synonyms are not case sensitive.

For instructions about how to use connection strings, see Section 4.4.1, “Creating a Connector/NET
Connection String”. For alternative connection styles, see Connecting to the Server Using URI-Like Strings
or Key-Value Pairs.

The following sections list the connection options that apply to both protocols, classic MySQL protocol only,
and X Protocol only:

» Options for Both Classic MySQL Protocol and X Protocol
» Options for Classic MySQL Protocol Only

» Options for X Protocol Only

Options for Both Classic MySQL Protocol and X Protocol

The following Connector/NET connection options can be used with either protocol.
Connector/NET 8.0 exposes the options in this section as properties in both

the MySql . Dat a. MySqgl Cl i ent. MySgl Connecti onStri ngBui | der and

My Sqgl X. XDevAPI . MySgl XConnect i onStringBui | der classes.

CertificateFile, Default: nul |

Certificate File ) . - B o
This option specifies the path to a certificate file in PKCS #12 format

(. pf x). For an example of usage, see Section 4.6.7.2, “Using PFX
Certificates in Connector/NET".

CertificatePassword, Default: nul |

Certificate Password N ) ) o ) -
Specifies a password that is used in conjunction with a certificate

specified using the option Certi fi cat eFi | e. For an example of
usage, see Section 4.6.7.2, “Using PFX Certificates in Connector/NET".

CertificateStoreLocati on Default: null

, Certificate Store ” .
Locati on Enables you to access a certificate held in a personal store, rather than

use a certificate file and password combination. For an example of
usage, see Section 4.6.7.2, “Using PFX Certificates in Connector/NET".

CertificateThunbprint , Default: nul |

Certificate Thunbprint = - . S
Specifies a certificate thumbprint to ensure correct identification of a

certificate contained within a personal store. For an example of usage,
see Section 4.6.7.2, “Using PFX Certificates in Connector/NET".

204


https://dev.mysql.com/doc/refman/8.0/en/sha256-pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.0/en/connecting-using-uri-or-key-value-pairs.html
https://dev.mysql.com/doc/refman/8.0/en/connecting-using-uri-or-key-value-pairs.html

Connector/NET Connection Options Reference

Char act er Set , Character Specifies the character set that should be used to encode all queries

Set , Char Set sent to the server. Results are still returned in the character set of the
result data.

Connect i onPr ot ocol , Default: socket (ortcp)

Protocol , Connecti on N )

Pr ot ocol Specifies the type of connection to make to the server. Values can be:

e socket ort cp for a socket connection using TCP/IP.
< pi pe for a named pipe connection (not supported with X Protocol).
« uni x for a UNIX socket connection.

e menory to use MySQL shared memory (not supported with X

Protocol).
Dat abase, I nitial Default: mysql
Cat al og
The case-sensitive name of the database to use initially.
dns-srv, dnssrv Default: f al se

Enables the connection to resolve service (SRV) addresses in a DNS
SRV record, which defines the location (host name and port number)

of servers for the specified services when it is used with the default
transport protocol (t cp). A single DNS domain can map to multiple
targets (servers) using SRV address records. Each SRV record includes
the host name, port, priority, and weight. DNS SRV support was
introduced in Connector/NET 8.0.19 to remove the need for clients

to identify each possible host in the connection string, with or without
connection pooling.

Specifying multiple host names, a port number, or a Unix socket, named
pipe, or shared memory connection (see the Connect i onPr ot ocol
option) in the connection string is not permitted when DNS SRV is
enabled.

Using classic MySQL protocol.  The dns- srv option applies
to connection strings; the DnsSr v property is declared in the
MySqgl ConnectionStri ngBuil der class.

/'l Connection string exanple

var conn = new MySqgl Connecti on("server=_nysql._tcp. exanpl e. abc. com ;
dns-srv=true;
user id=user;
passwor d=****;
dat abase=test");

/'l MySql ConnectionStringBuil der class exanpl e

var sb = new MySqgl Connecti onStri ngBuil der();
{

Server =" _nysql._tcp. exanpl e. abc. com",
User|I D = "user",
Password = "***xx",

DnsSrv = true,
Dat abase = "test"

205



Connector/NET Connection Options Reference

}s

var conn = new M/Sqgl Connecti on(shbh. ConnectionString);

Using X Protocol. The dns- sr v option applies to connection
strings and anonymous objects. The DnsSr v property is declared in
the MySqgl XConnecti onStri ngBui | der class. An error is raised
if both dns- srv=f al se and the URI scheme of nysql x+srv://
are combined to create a conflicting connection configuration. For
details about using the nysql x+srv:// scheme element in URI-like
connection strings, see Connections Using DNS SRV Records.

/1 Connection string exanple

var session = MySQLX. Cet Sessi on("server=_nysql x. _t cp. exanpl e. abc. com ;
dns-srv=true;
user id=user;
passwor d=****;
dat abase=test");

/1 Anonynpus object exanple

var connstri ng = new

{

server = "_nysql x. _tcp. exanpl e. abc. com ",
user = "user",
password = "****"

dnssrv = true

Ji

var session = MySQLX. Cet Sessi on(connString);

/'l MySql XConnectionStringBuil der class exanpl e

var sb = new MySql XConnecti onStri ngBuil der();
{

Server = "_nysgl x. _tcp. exanpl e. abc. com ",
UserI D = "user",
Password = "****"

DnsSrv = true,
Dat abase = "test"

b

var session = MySQLX. Cet Sessi on(sb. ConnectionString);

Keepal i ve, Keep Alive Default: 0

For TCP connections, idle connection time measured in seconds, before
the first keepalive packet is sent. A value of 0 indicates that keepal i ve
is not used. Before Connector/NET 6.6.7/6.7.5/6.8.4, this value was
measured in milliseconds.

Password, Passwordl, pwd Default: an empty string

. pwdl
The password for the MySQL account being used for one-factor/single-
factor authentication (LFA/SFA), which uses only one authentication
method such as a password.

Starting with Connector/NET 8.0.28, this option also provides the first
secret password for an account that has multiple authentication factors.

206


https://dev.mysql.com/doc/x-devapi-userguide/en/connecting-dns-srv.html

Connector/NET Connection Options Reference

The server can require one (1FA), two (2FA), or three (3FA) passwords
to authenticate the MySQL account. For example, if an account with
2FA is created as follows:

CREATE USER ' abe' @1 ocal host'
| DENTI FI ED W TH cachi ng_sha2_passwor d
BY ' sha2_passwor d'
AND | DENTI FI ED W TH aut henti cati on_| dap_sasl
AS ' ui d=ul_| dap, ou=Peopl e, dc=exanpl e, dc=com ;

Then your application can specify a connection string with this option
(passwor d or its synonyms) and a value, sha2_passwor d in this
case, to satisfy the first authentication factor.

var connString = "server=local host;
user =abe;
passwor d=sha2_passwor d;
passwor d2=| dap_passwor d;
por t =3306";

Alternatively, for a connection made using the
MySqgl Connecti onStri ngBui | der object:

MySql Connecti onStringBui |l der settings = new MySqgl ConnectionStringBuil der ()

{
Server = "local host",
User| D = "abe",
Pwdl = "sha2_password",
Pwd2 = "| dap_password",
Port = 3306

iz

If the server does not require a secret password be used with an
authentication method, then the value specified for the passwor d,
passwor d2, or passwor d3 option is ignored.

Passwor d2 , pwd2 Default: an empty string

The second secret password for an account that has multiple
authentication factors (see the Passwor d connection option).

Passwor d3, pwd3 Default: an empty string

The third secret password for an account that has multiple
authentication factors (see the Passwor d connection option).

Por t Default: 3306

The port MySQL is using to listen for connections. This value is ignored
if Unix socket is used.

Server , Host , Data Default: | ocal host

Sour ce, DataSource )
The name or network address of one or more host computers. Multiple

hosts are separated by commas and a priority (0 to 100), if provided,
determines the host selection order. As of Connector/NET 8.0.19, host
selection is random when priorities are omitted or are the same for each
host.

/'l Selects the host with the highest priority (100) first
server =(address=192. 10. 1. 52: 3305, pri ori t y=60), (addr ess=l ocal host: 3306, pri o

207



Connector/NET Connection Options Reference

Ssl Ca, Ssl-Ca

Ssl Cert , Ssl-Cert

Ssl Key , Ssl - Key

No attempt is made by the provider to synchronize writes to the
database, so take care when using this option. In UNIX environments
with Mono, this can be a fully qualified path to a MySQL socket file.
With this configuration, the UNIX socket is used instead of the TCP/IP
socket. Currently, only a single socket name can be given, so accessing
MySQL in a replicated environment using UNIX sockets is not currently
supported.

Default: nul |

Based on the type of certificates being used, this option either specifies
the path to a certificate file in PKCS #12 format (. pf x) or the path to a
file in PEM format (. pen) that contains a list of trusted SSL certificate
authorities (CA).

With PFX certificates in use, this option engages when the Ss| Mode
connection option is set to a value of Requi r ed, Veri f yCA, or
Ver i fyFul | ; otherwise, it is ignored.

With PEM certificates in use, this option engages when the Ss| Mode
connection option is set to a value of Veri f yCAor Veri fyFul | ;
otherwise, it is ignored.

For examples of usage, see Section 4.6.7.1, “Using PEM Certificates in
Connector/NET".

Default: nul |

The name of the SSL certificate file in PEM format to use for
establishing an encrypted connection. This option engages only when
Veri fyFul | is set for the Ss| Mode connection option and the Ssl Ca
connection option uses a PEM certificate; otherwise, it is ignored. For
an example of usage, see Section 4.6.7.1, “Using PEM Certificates in
Connector/NET".

Default: nul |

The name of the SSL key file in PEM format to use for establishing an
encrypted connection. This option engages only when Ver i f yFul |

is set for the Ss| Mode connection option and the Ss| Ca connection
option uses a PEM certificate; otherwise, it is ignored. For an example
of usage, see Section 4.6.7.1, “Using PEM Certificates in Connector/
NET".

208



Connector/NET Connection Options Reference

Ss| Mode, Ssl Mode, Ssl -
Mode

tlsversion, tls-version,
tls version

Default: Depends on the version of Connector/NET and the protocol in
use. Named-pipe and shared-memory connections are not supported
with X Protocol.

e Requi r ed for 8.0.8 to 8.0.12 (both protocols); 8.0.13 and later (X
Protocol only).

e Preferred for8.0.13 and later (classic MySQL protocol only).

This option has the following values:

e Di sabl ed — Do not use SSL. Non-SSL enabled servers require this
option be set to Di sabl ed explicitly for Connector/NET 8.0.29 or
later.

* None — Do not use SSL. Non-SSL enabled servers require this option
be set to None explicitly for Connector/NET 8.0.8 or later.

Note

This value is deprecated starting with
Connector/NET 8.0.29. Use Di sabl ed
instead.

e Preferred— Use SSL if the server supports it, but allow connection
in all cases. This option was removed in Connector/NET 8.0.8 and
reimplemented in 8.0.13 for classic MySQL protocol only.

Note

Do not use this option for X Protocol
operations.

e Requi r ed — Always use SSL. Deny connection if server does not
support SSL.

* VerifyCA— Always use SSL. Validate the certificate authorities
(CA), but tolerate a name mismatch.

e VerifyFull — Always use SSL. Fail if the host name is not correct.

Default: A fallback solution decides which version of TLS to use.

Restricts the set of TLS protocol versions to use during the TLS
handshake when both the client and server support the TLS versions
indicated and the value of the Ss| Mode connection-string option is

not set to Di sabl ed or None (deprecated in Connector/NET 8.0.29).
This option accepts a single version or a list of versions separated by a
comma, for example, t | s-versi on=TLSv1. 2, TLSv1.3;.

Connector/NET supports the following values:

e TLSv1. 3

209



Connector/NET Connection Options Reference

User| D, User Id,
Usernane, Ui d, User nane
, User

e TLSv1. 2

An error is reported when a value other than those listed is assigned.
Likewise, an error is reported when an empty list is provided as

the value, or if all of the versions in the list are unsupported and no
connection attempt is made.

Default: nul |

The MySQL login account being used.

Options for Classic MySQL Protocol Only

Options related to systems using a connection pool appear together at the end of the list of general options
(see Connection-Pooling Options). Connector/NET 8.0 exposes the options in this section as properties in
the MySql . Dat a. MySgl C i ent. MySgl Connecti onStri ngBui | der class.

General Options.  The Connector/NET options that follow are for general use with connection strings
and the options apply to all MySQL server configurations:

Al | owBat ch, Al |l ow Bat ch

Al | owLoadLocal Infil e,
Al |l ow Load Local Infile

Default: t r ue

When t r ue, multiple SQL statements can be sent with one command
execution. Batch statements should be separated by the server-defined
separator character.

Default: f al se

Disables (by default) or enables the server functionality to load the
data local infile. If this option is set to t r ue, uploading files from
any location is enabled, regardless of the path specified with the
Al'l owLoadLocal I nfil el nPat h option.

Al | owLoadLocal | nfil el nPat hDefault: nul |

, Al l ow Load Local
Infile In Path

Specifies a safe path from where files can be read and uploaded

to the server. When the related Al | owLoadLocal I nfile

option is set to f al se, which is the default value, only those

files from the safe path or any valid subfolder specified with the

Al l onLoadLocal I nfil el nPat h option can be loaded. For example,
if / t mp is set as the restricted folder, then file requests for / t np/
nyfileand/tnp/ nyfol der/ nmyfil e can succeed. No relative paths
or symlinks that fall outside of this path are permitted.

The following table shows the behavior that results when the
Al'l owLoadLocal I nfil e and Al |l owLoadLocal I nfil el nPath
connection string options are combined.

AllowLoadLocal|AfilewLoadLocal|BiéeaviRath
Value Value
true Empty string or |All uploads are
nul | value permitted.
true A valid path All uploads
are permitted

210



Connector/NET Connection Options Reference

Al l owPubl i cKeyRet ri eval

Al | owUser Vari abl es
Al | ow User Vari abl es

Al | owZer oDat eTi ne, Al | ow
Zero Datetine

Aut oEnl i st , Auto Enli st

AllowLoadLocal|AfilewlLoadLocal|Biéleavikath

Value Value
(the path is not
respected).

fal se Empty string or |No uploads are

nul | value permitted.

fal se A valid path Only uploads
from the
specified folder
and subfolder
are permitted.

Default: f al se

Setting this option to t r ue informs Connector/NET that RSA public
keys should be retrieved from the server and that connections using
the classic MySQL protocol, when SSL is disabled, will fail by default.
Exceptions to the default behavior can occur when previous successful
connection attempts were made or when pooling is enabled and a
pooled connection can be reused. This option was introduced with the
8.0.10 connector.

Caution

This option is prone to man-in-the-middle
attacks, so it should be used only in situations
where you can ensure by other means that your
connections are made to trusted servers.

Default: f al se

Setting this to t r ue indicates that the provider expects user variables in
the SQL.

Default: f al se

If setto Tr ue, MySqgl Dat aReader . Get Val ue() returns a

My Sql Dat eTi ne object for date or datetime columns that

have disallowed values, such as zero datetime values, and a

Syst em Dat eTi nme object for valid values. If set to Fal se (the default
setting) it causes a Syst em Dat eTi ne object to be returned for all
valid values and an exception to be thrown for disallowed values, such
as zero datetime values.

Default: t r ue

If Aut oEnl i st is setto tr ue, which is the default, a connection
opened using Tr ansact i onScope participates in this

scope, it commits when the scope commits and rolls back if

Transact i onScope does not commit. However, this feature is
considered security sensitive and therefore cannot be used in a medium
trust environment.

As of 8.0.10, this option is supported in .NET Core 2.0 implementations.

211



Connector/NET Connection Options Reference

Bl obAsSUTF8Exc| udePattern

Bl obAsUTF8I ncl udePattern

CheckPar aneters, Check
Par anet ers

Conmandl nt er cept or s,
Conmand | nterceptors

Connect i onTi meout
, Connect Ti neout ,
Connection Ti neout

Convert Zer oDat eTi e ,
Convert Zero Datetine

Default: nul |

A POSIX-style regular expression that matches the names of BLOB
columns that do not contain UTF-8 character data. See Section 4.5.16,
“Character Set Considerations for Connector/NET” for usage details.

Default: nul |

A POSIX-style regular expression that matches the names of BLOB
columns containing UTF-8 character data. See Section 4.5.16,
“Character Set Considerations for Connector/NET” for usage details.

Default: t r ue

Indicates if stored routine parameters should be checked against the
server.

The list of interceptors that can intercept SQL command operations.

Default: 15

The length of time (in seconds) to wait for a connection to the server
before terminating the attempt and generating an error.

Default: f al se

Uset r ue to have MySql Dat aReader . Get Val ue() and
My Sql Dat aReader . Get Dat eTi me() return Dat eTi me. M nVal ue
for date or datetime columns that have disallowed values.

Def aul t Aut hent i cat i onPl ugi Takes precedence over the server-side default authentication

Def aul t CommandTi neout |,
Def aul t Command Ti neout

plugin when a valid authentication plugin is specified

(see Section 4.4.4, “Connector/NET Authentication”). The

Def aul t aut henti cati onpl ugi n option is mandatory for supporting
userless and passwordless Kerberos authentications in which the
credentials are retrieved from a cache or the Key Distribution Center
(KDC). For example:

MySgl Connecti onStri ngBui |l der settings = new MySgl Connecti onStri ngBuil der ()
{

Server = "local host",

UserID = "",

Password = "",

Dat abase = "nydb",

Port = 3306,

Def aul t Aut hent i cati onPl ugi n = "aut henti cati on_kerberos_client"

J
If no value is set, the server-side default authentication plugin is used.
This option was introduced with the 8.0.26 connector.
Default: 30

Sets the default value of the command timeout to be used. This does
not supersede the individual command timeout property on an individual
command object. If you set the command timeout property, that will be
used.

212



Connector/NET Connection Options Reference

Def aul t Tabl eCacheAge ,
Def ault Tabl e Cache Age

Exceptionl nterceptors,
Exception Interceptors

Functi onsReturnString,
Functions Return String

I ncl udesecurityasserts,
I nclude security asserts

I nteractiveSession,
Interactive, Interactive
Sessi on

I nt egrat edSecurity,
Integrated Security

Ker ber osAut hivbde ,
ker beros auth node

Default: 60

Specifies how long a Tabl eDi r ect result should be cached, in
seconds. For usage information about table caching, see Section 4.5.3,
“Using Connector/NET with Table Caching”.

The list of interceptors that can triage thrown MySqgl Except i on
exceptions.

Default: f al se

Causes the connector to return bi nary or var bi nary values as
strings, if they do not have a table name in the metadata.

Default: f al se

Must be set to t r ue when using the MySQLCl i ent Per ni ssi ons class
in a partial trust environment, with the library installed in the GAC of the
hosting environment. See Section 4.5.7, “Working with Partial Trust /
Medium Trust” for details.

As of 8.0.10, this option is supported in .NET Core 2.0 implementations.

Default: f al se

If setto t r ue, the client is interactive. An interactive client is one

in which the server variable CLI ENT_| NTERACTI VE is set. If an
interactive client is set, the wai t _ti meout variable is set to the value
ofi nteractive_ti meout. The client session then times out after this
period of inactivity. For more information, see Server System Variables
in the MySQL Reference Manual.

As of 8.0.10, this option is supported in .NET Core 2.0 implementations.

Default: no

Use Windows authentication when connecting to server. By default, it
is turned off. To enable, specify a value of yes. (You can also use the
value sspi as an alternative to yes.) For details, see Section 4.4.4,
“Connector/NET Authentication”.

Currently not supported for .NET Core implementations.

Default: AUTO

On Windows, provides authentication support using Security Support
Provider Interface (SSPI), which is capable of acquiring credentials
from the Windows in-memory cache, and Generic Security Service
Application Program Interface (GSSAPI) through the MIT Kerberos
library. GSSAPI is capable of acquiring cached credentials previously
generated using the ki ni t command. The default value for this option

213


https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html

Connector/NET Connection Options Reference

Loggi ng

oci ConfigFile, OCl
Config File

Cci ConfigProfile, OC
Config Profile

A dGuids, Ad Guids

(AUTO) attempts to authenticate with GSSAPI if the authentication using
SSPI fails.

Note

This option is permitted in Windows
environments only. Using it in non-Windows
environments produces an Option not supported
exception.

Possible values for this connection option are:
e AUTO- Use SSPI and fall back to GSSAPI in case of failure.
e SSPI — Use SSPI only and raise an exception in case of failure.

e GSSAPI — Use GSSAPI only and raise an exception in case of failure.
Always use the KRB5 CONFI G and KRB5CCNANE environment
variables to specify configuration and cache locations when using
GSSAPI through the MIT Kerberos library on Windows.

Default: f al se

When the value is set to t r ue, various pieces of information are sent
to all configured trace listeners. For a more detailed description, see
Section 4.5.12, “Connector/NET Tracing”.

As of 8.0.10, this option is supported in .NET Core 2.0 implementations.
Defaults to one of the following path names:

e ~/.oci/configon Linux and macOS host types

* 9%1OVEDRI VEYRA4HOVEPATH% . oci \ conf i g on Windows host types

If set, this option specifies an alternative location to the Oracle Cloud
Infrastructure configuration file. Connector/NET 8.0.27 (and later) uses
the Oracle Cloud Infrastructure SDK to obtain a fingerprint of the API
key to use for authentication (f i nger pri nt entry) and location of a
PEM file with the private part of the APl key (key fi |l e entry). The
entries should be specified in the [ DEFAULT] profile. If the [ DEFAULT]
profile is missing from the configuration file, Connector/NET locates the
next profile to use instead.

Not supported for .NET Framework 4.5.x implementations.

If set in Connector/NET 8.0.33 (or later), this option specifies which
profile in an Oracle Cloud Infrastructure configuration file to use. The
profile value defaults to the DEFAULT profile when no value is provided.

Not supported for .NET Framework 4.5.x implementations.
Default: f al se

The back-end representation of a GUID type was changed from
Bl NARY( 16) to CHAR( 36) . This was done to allow developers to
use the server function UUI () to populate a GUID table - UUI X )

214


https://dev.mysql.com/doc/refman/8.0/en/miscellaneous-functions.html#function_uuid

Connector/NET Connection Options Reference

A dGet St ri ngBehavi or

Persi st Securitylnfo,
Persist Security Info

Pi peNane , Pi pe Nane,
Pi pe

Procedur eCacheSi ze
Procedure Cache Size
, procedure cache,

pr ocedur ecache

generates a 36-character string. Developers of older applications can
add' O d Gui ds=true' tothe connection string to use a GUID of
data type Bl NARY( 16) .

Default: f al se

As of Connector/NET 8.3.0, calling the MySqlDataReader.GetString()
method throws an | nval i dCast Except i on exception if the column is
not a string type. All text types including char and varchar are allowed,;
and blob is not considered a text type.

Setting this OldGetStringBehavior connection option to t r ue restores
previous behavior by logging a deprecation warning instead of throwing
the exception.

This option was added in 8.3.0 and will be removed in the near future
(potentially 9.0.0) as it's a temporary measure.

Default: f al se

When set to f al se or no (strongly recommended), security-sensitive
information, such as the password, is not returned as part of the
connection if the connection is open or has ever been in an open state.
Resetting the connection string resets all connection string values,
including the password. Recognized values are t r ue, f al se, yes, and
no.

Default: mysql

When set to the name of a named pipe, the MySqgl Connecti on
attempts to connect to MySQL on that named pipe. This setting only
applies to the Windows platform.

Important

For MySQL 8.0.14 and later, 5.7.25 and later,
and 5.6.43 and later, minimal permissions

on named pipes are granted to clients that
use them to connect to the server. However,
Connector/NET can use named pipes only
when granted full access on them. As a
workaround, create a Windows local group
containing the user that executes the client
application. Restart the target server with the
named_pi pe_full _access_group system
variable and specify the local group name as its
value.

Currently not supported for .NET Core implementations.

Default: 25

Sets the size of the stored procedure cache. By default, Connector/NET
stores the metadata (input/output data types) about the last 25 stored
procedures used. To disable the stored procedure cache, set the value
to zero (0).

215


https://dev.mysql.com/doc/refman/8.0/en/binary-varbinary.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_named_pipe_full_access_group

Connector/NET Connection Options Reference

Repl i cation

Respect Bi nar yFl ags ,
Respect Binary Flags

Shar edMenor yNanme , Shar ed
Menory Name

Sql Server Mobde , Sql
Server Mode

Tabl eCachi ng, Tabl e
Cache, Tabl eCache

Tr eat Bl obsAsUTF8 , Treat
BLOBs as UTF8

Tr eat Ti nyAsBool ean,
Treat Tiny As Bool ean

UseAf f ect edRows , Use
Af fect ed Rows

UseConpr essi on, Conpress
, Use Conpression

Default: f al se

Indicates if this connection is to use replicated servers.

As of 8.0.10, this option is supported in .NET Core 2.0 implementations.
Default: t r ue

Setting this option to f al se means that Connector/NET ignores a
column's binary flags as set by the server.

Default: mysql

The name of the shared memory object to use for communication if
the transport protocol is set to nenor y. This setting only applies to the
Windows platform.

Currently not supported for .NET Core implementations.
Default: f al se

Allow SQL Server syntax. When set to t r ue, enables Connector/NET
to support square brackets around symbols instead of backticks. This
enables Visual Studio wizards that bracket symbols between the [
and ] characters to work with Connector/NET. This option incurs a
performance hit, so should only be used if necessary.

Default: f al se

Enables or disables caching of Tabl eDi r ect commands. A value of

t r ue enables the cache while f al se disables it. For usage information
about table caching, see Section 4.5.3, “Using Connector/NET with
Table Caching”.

Default: f al se

Setting this value to t r ue causes BLOB columns to have a
character set of ut f 8 with the default collation for that character
set. To convert only some of your BLOB columns, you can

make use of the ' Bl obAsUTF8I ncl udePattern' and

' Bl obAsSUTF8Exc| udePat t ern' keywords. Set these to a regular
expression pattern that matches the column names to include or
exclude respectively.

Default: t r ue

Setting this value to f al se causes TI NYI NT( 1) to be treated as an
| NT. See Numeric Data Type Syntax for a further explanation of the
TI NYI NT and BOOL data types.

Default: f al se

When t r ue, the connection reports changed rows instead of found
rows.

Default: f al se

216


https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/integer-types.html
https://dev.mysql.com/doc/refman/8.0/en/numeric-type-syntax.html
https://dev.mysql.com/doc/refman/8.0/en/integer-types.html
https://dev.mysql.com/doc/refman/8.0/en/integer-types.html

Connector/NET Connection Options Reference

Setting this option to t r ue enables compression of packets exchanged
between the client and the server. This exchange is defined by the
MySQL client/server protocol.

Compression is used if both client and server support ZLIB
compression, and the client has requested compression using this
option.

A compressed packet header is: packet length (3 bytes), packet
number (1 byte), and Uncompressed Packet Length (3 bytes). The
Uncompressed Packet Length is the number of bytes in the original,
uncompressed packet. If this is zero, the data in this packet has not
been compressed. When the compression protocol is in use, either the
client or the server may compress packets. However, compression will
not occur if the compressed length is greater than the original length.
Thus, some packets will contain compressed data while other packets
will not.

UseDef aul t CommandTi neout Fobéfault: f al se

, Use Default Command
Ti meout For EF

UsePer f or mancelbni t or
Use Performance Nbonitor ,
User Per f Mon, Perf Mon

UseUsageAdvi sor , Use
Usage Advi sor , Usage
Advi sor

Connection-Pooling Options.

Enforces the command timeout of EFMy Sql Conmand, which is set to
the value provided by the Def aul t ComrandTi neout property.

Default: f al se

Indicates that performance counters should be updated during
execution.

Currently not supported for .NET Core implementations.

Default: f al se

Logs inefficient database operations.

As of 8.0.10, this option is supported in .NET Core 2.0 implementations.

The following options are related to connection pooling within

connection strings. For more information about connection pooling, see Opening a Connection to a Single

Server.

CacheServer Properties,
Cache Server Properties

Connecti onLi feTi ne,
Connection Lifetinme

Default: f al se

Specifies whether server variable settings are updated by a SHOW
VARI ABLES command each time a pooled connection is returned.
Enabling this setting speeds up connections in a connection pool
environment. Your application is not informed of any changes to
configuration variables made by other connections.

Default: 0

When a connection is returned to the pool, its creation time is compared
with the current time and the connection is destroyed if that time span
(in seconds) exceeds the value specified by Connection Lifetimne.
This option is useful in clustered configurations to force load balancing
between a running server and a server just brought online. A value of
zero (0) sets pooled connections to the maximum connection timeout.

217



Connector/NET Connection Options Reference

Connect i onReset ,
Connecti on Reset

Maxi munPool si ze , Max
Pool Size, Maxi num Pool
Si ze , MaxPool Si ze

M ni nunPool Si ze, M n
Pool Size, M ni num Pool
Size, M nPool Si ze

Pool i ng

Options for X Protocol Only

Default: f al se

If t r ue, the connection state is reset when it is retrieved from the pool.
The default value of false avoids making an additional server round trip
when obtaining a connection, but the connection state is not reset.

Default: 100

The maximum number of connections allowed in the pool.

Default: 0

The minimum number of connections allowed in the pool.

Default: t r ue

When tr ue, the My Sgl Connect i on object is drawn from the
appropriate pool, or if necessary, is created and added to the
appropriate pool. Recognized values are t r ue, f al se, yes, and no.

The connection options that follow are valid for connections made with X Protocol.
Connector/NET 8.0 exposes the options in this section as properties in the
My Sqgl X. XDevAPI . MySql XConnecti onStri ngBui | der class.

Aut h, Aut hentication,
Aut henti cati on Mbde

Conpressi on, use-
conpressi on

Authentication mechanism to use with the X Protocol. This option was
introduced with the 8.0.9 connector and has the following values, which
are not case-sensitive: MYSQL41, PLAI N, and EXTERNAL. If the Aut h
option is not set, the mechanism is chosen depending on the connection
type. PLAI Nis used for secure connections (TLS or Unix sockets) and
MYSQL41 is used for unencrypted connections. EXTERNAL is used for
external authentication methods such as PAM, Windows login IDs,
LDAP, or Kerberos. (EXTERNAL is not currently supported.)

The Aut h option is not supported for classic MySQL protocol
connections and returns Not Suppor t edExcept i on if used.

Default: pref erred

Compression is used to send and receive data when both the client
and server support it for X Protocol connections and the client requests
compression using this option. After a successful algorithm negotiation
is made, Connector/NET can start compressing data immediately.

To prevent the compression of small data packets, or of data already
compressed, Connector/NET defines a size threshold of 1000 bytes.

When multiple compression algorithms are supported by the server,
Connector/NET applies the following priority by default: zst d_stream
(first), | z4_nessage (second), and def | at e_st r eam(third). The
def | at e_st r eamalgorithm is supported for use with .NET Core, but
not for .NET Framework.

Tip

Use the conpr essi on- al gori t hns option to
specify one ore more supported algorithms in a

218



Connector/NET Connection Options Reference

different order. The algorithms are negotiated in
the order provided by client. For usage details,
see the conpr essi on- al gori t hns option.

Data compression for X Protocol connections was added in the
Connector/NET 8.0.20 release. The Conpr essi on option accepts the
following values:

« preferredto apply data compression if the server supports the
algorithms chosen by the client. Otherwise, the data is sent and
received without compression.

e required to ensure that compression is used or to terminate the
connection and return an error message.

e di sabl ed to prevent data compression.

conpressi on-al gorithms, As of Connector/NET 8.0.22, a client application can specify the order

Conpr essi onAl gori t hrs in which supported compression algorithms are negotiated with the
server. The value of the Conpr essi on connection option must be set
to pref erred ortorequired for this option to apply. Unsupported
algorithms are ignored.

This option accepts the following algorithm names and synonyms:
| z4 nmessageorl z4
e zstd_streamorzstd

o defl ate_streamor def| at e (not valid with .NET Framework)

Algorithm names and synonyms can be combined in a comma-
separated list or provided as a standalone value (with or without
brackets). Examples:

/| Conpression option set to preferred (default)

MySQLX. Get Sessi on("nysql x://test:test @ ocal host: 3306?conpr essi on-al gorithm
MySQLX. Get Sessi on("nysql x://test:test @ ocal host: 3306?conpr essi onal gorithms
MySQLX. Get Sessi on("nysql x://test:test @ ocal host: 3306?conpr essi on=pr ef erred

/] Conpression option set to required

MySQLX. Get Sessi on("nysql x://test:test @ ocal host: 3306?conpr essi on=r equi r ed&
MySQLX. Get Sessi on("nysql x://test:test @ ocal host: 3306?conpr essi on=r equi r ed&
MySQLX. Get Sessi on("nysql x://test:test @ ocal host: 3306?conpr essi on=r equi r ed&

/] Connection string
MySQLX. Get Sessi on("server =l ocal host ; port=3306; ui d=t est ; passwor d=t est ; conpr

/1 Anonynous obj ect
MySQLX. Get Sessi on(new {

server = "local host",

port = "3306",

uid = "test",

password = "test",

conpr essi on="requi red",

conpressional gorithms = "deflate_streant })

For additional information, see Connection Compression with X Plugin.

219


https://dev.mysql.com/doc/refman/8.0/en/x-plugin-connection-compression.html

Connector/NET Connection Options Reference

connection-attri butes,
Connecti onAttri butes

Connect - Ti neout
Connect Ti meout

Default: t r ue

This option was introduced in Connector/NET 8.0.16 for submitting

a set of attributes to be passed together with default connection
attributes to the server. The aggregate size of connection

attribute data sent by a client is limited by the value of the
performance_schenma_sessi on_connect _attrs_si ze server
variable. The total size of the data package should be less than the
value of the server variable. For general information about connection
attributes, see Performance Schema Connection Attribute Tables.

The connection-attributes parameter value can be empty (the same as
specifying t r ue), a Boolean value (t r ue or f al se to enable or disable
the default attribute set), or a list or zero or more key=val ue specifiers

separated by commas (to be sent in addition to the default attribute
set). Within a list, a missing key value evaluates as the NULL value.
Examples:

/| Sessions

MySQLX. Get Sessi on($" nmysql x: // user @ost/schema")

MySQLX. Get Sessi on($" nysql x: // user @ost/schema?connection-attributes")

MySQLX. Get Sessi on($" nysql x: // user @ost/schema?connection-attri butes=true")
MySQLX. Get Sessi on($" nysql x: // user @ost/schema?connection-attri butes=fal se")
MySQLX. Get Sessi on($"nysql x: // user @ost/schema?connection-attributes=[attrl=val
MySQLX. Get Sessi on($" nysql x: // user @ost/schema?connection-attributes=[]")

/1 Pooling

MySQX. Get O i ent ($" mysql x: // user @ost/schema")

MySQLX. Get O i ent ($" nysql x: // user @ost/schema?connection-attri butes")

MySQLX. Get O i ent ($" nysql x: // user @ost/schema?connection-attri butes=true")
MySQLX. Get O i ent ($" nysql x: // user @ost/schema?connection-attri butes=fal se")
MySQLX. Get d i ent ($" nysql x: // user @ost/schema?connection-attributes=[attrl=vall
MySQLX. Get O i ent ($" nysql x: // user @ost/schema?connection-attributes=[]")

Application-defined attribute names cannot begin with _ because such
names are reserved for internal attributes.

If connection attributes are not specified in a valid way, an error occurs
and the connection attempt fails.

Default: 10000

The length of time (in milliseconds) to wait for an X Protocol connection
to the server before terminating the attempt and generating an error.
You can disable the connection timeout by setting the value to zero.
This option can be specified as follows:

¢ URI-like connection string example

MySQLX. Get Sessi on("nysql x://test:test@ocal host: 33060?connect - t i meout =2000")

« Connection string example

MySQLX. Get Sessi on("server =l ocal host ; user =t est ; port =33060; connect -t i meout =200

« Anonymous object example

M/SQLX. Get Sessi on(new { server="|ocal host", user="test", port=33060, connect

« MySgl XConnecti onStringBuil der class example

220


https://dev.mysql.com/doc/refman/8.0/en/performance-schema-system-variables.html#sysvar_performance_schema_session_connect_attrs_size
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-connection-attribute-tables.html

Connector/NET Programming

var buil der = new MySqgl XConnecti onStringBuil der("server =l ocal host; user =t
bui | der. Connect Ti meout = 2000;
MySQLX. Get Sessi on( bui | der. Connecti onString);

SslCrl , Ssl-Crl Default: nul |
Path to a local file containing certificate revocation lists.
Important
Although the Ssl| Cr | connection-string

option is valid for use, applying it raises a
Not Suppor t edExcept i on message.

4.5 Connector/NET Programming

MySQL Connector/NET comprises several classes that are used to connect to the database, execute
gueries and statements, and manage query results.

The following are the major classes of Connector/NET:

* MySqgl Connect i on: Represents an open connection to a MySQL database (see Section 4.4,
“Connector/NET Connections”).

The MySql Connect i onStri ngBui | der class aids in the creation of a connection string by exposing
the connection options as properties.

* MySqgl Command: Represents an SQL statement to execute against a MySQL database.

* MySqgl CormmandBui | der : Automatically generates single-table commands used to reconcile changes
made to a DataSet with the associated MySQL database.

* MySql Dat aAdapt er : Represents a set of data commands and a database connection that are used to
fill a data set and update a MySQL database.

* MySql Dat aReader : Provides a means of reading a forward-only stream of rows from a MySQL
database.

* MySqgl Excepti on: The exception that is thrown when MySQL returns an error.
* MySql Hel per : Helper class that makes it easier to work with the provider.

 MySqgl Transact i on: Represents an SQL transaction to be made in a MySQL database.

4.5.1 Using GetSchema on a Connection

The Get Scherma() method of the connection object can be used to retrieve schema information about the
database currently connected to. The schema information is returned in the form of a Dat aTabl e. The
schema information is organized into a number of collections. Different forms of the Get Schena() method
can be used depending on the information required. There are three forms of the Get Schena() method:

e Get Schenma() - This call will return a list of available collections.

» Get Schema( String) - This call returns information about the collection named in the string parameter.
If the string “MetaDataCollections” is used then a list of all available collections is returned. This is the
same as calling Get Schena() without any parameters.

221


https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_transaction

Using GetSchema on a Connection

e Get Schema(String, String[]) -Inthis call the first string parameter represents the collection
name, and the second parameter represents a string array of restriction values. Restriction values
limit the amount of data that will be returned. Restriction values are explained in more detail in the
Microsoft .NET documentation.

Collections

The collections can be broadly grouped into two types: collections that are common to all data providers,
and collections specific to a particular provider.

Common Collections.  The following collections are common to all data providers:
» MetaDataCollections

» DataSourcelnformation

* DataTypes

* Restrictions

* ReservedWords

Provider-Specific Collections.  The following are the collections currently provided by Connector/NET,
in addition to the common collections shown previously:

» Databases

* Tables

» Columns

* Users

» Foreign Keys

* IndexColumns

* Indexes

» Foreign Key Columns
» UDF

* Views

* ViewColumns

» Procedure Parameters
* Procedures

» Triggers

C# Code Example.  Alist of available collections can be obtained using the following code:

usi ng System

usi ng System Dat a;
usi ng System Text;
usi ng MySql . Dat a;

using MySql . Data. MySgl d i ent ;
namespace Consol eAppl i cation2

222


http://msdn.microsoft.com/en-us/library/ms254934(VS.80).aspx

Using MySglCommand

{
cl ass Program
{
private static void D splayDat a(System Dat a. Dat aTabl e t abl e)
{
foreach (System Data. Dat aRow row i n tabl e. Rows)
{
foreach (System Data. Dat aCol uim col in table. Col utms)
{
Consol e. WiteLine("{0} = {1}", col.ColumNane, rowfcol]);
}
Consol e. WiteLine(" ")
}
}
static void Main(string[] args)
{
string connStr = "server =l ocal host ; user =r oot ; dat abase=wor | d; port =3306; passwor d=******x" .
My Sgl Connecti on conn = new MySqgl Connecti on(connStr);
try
{
Consol e. Wi teLine("Connecting to MySQL...");
conn. Qpen();
Dat aTabl e tabl e = conn. Get Schema( " Met aDat aCol | ecti ons") ;
/| Dat aTabl e tabl e = conn. Get Schema(" UDF") ;
Di spl ayDat a(t abl e) ;
conn. Cl ose();
catch (Exception ex)
{
Consol e. WitelLine(ex. ToString());
}
Consol e. Wi teLi ne("Done.");
}
}
}

Further information on the Get Schena() method and schema collections can be found in the
Microsoft .NET documentation.

4.5.2 Using MySglCommand

The MySglCommand class represents a SQL statement to execute against a MySQL database. Class
methods enable you to perform the following database operations:

e Query a database
* Insert, update, and delete data
* Return a single value

Command-based database operations can run within a transaction, if needed. For a short tutorial
demonstrating how and when to use the Execut eReader , Execut eNonQuery, and Execut eScal ar
methods, see Section 4.6.1.2, “The MySglCommand Object”.

An instance of MySgl Conmaind can be organized to execute as a prepared statement for faster excecution
and reuse, or as a stored procedure. A flexible set of class properties permits you to package MySQL
commands in several forms. The remainder of this section describes following My Sgl Conmand properties:

» CommandText and CommandType Properties
* Parameters Property

 Attributes Property

223


http://msdn.microsoft.com/en-us/library/kcax58fh(VS.80).aspx

Using MySglCommand

e CommandTimeout Property

CommandText and CommandType Properties

The My Sql Command class provides the CommandText and ConmrandType properties that you may
combine to create the type of SQL statements needed for your project. The CommandText property
is interpreted differently, depending on how you set the CommandType property. The following
ConmandType types are permitted:

» Text - An SQL text command (default).
» St or edPr ocedur e - Name of a stored procedure.
» Tabl eDi rect - Name of a table.

The default ConmandType type, Text , is used for executing queries and other SQL commands. See
Section 4.6.1.2, “The MySglCommand Object” for usage examples.

If ConmandType is set to St or edPr ocedur e, set CormandText to the name of the stored procedure
to access. For use-case examples of the ConmandType property with type St or edPr ocedur e, see
Section 4.5.5, “Creating and Calling Stored Procedures”.

If CommandType is set to Tabl eDi r ect, all rows and columns of the named table are returned when you
call one of the execute methods. In effect, this command performs a SELECT * on the table specified. The
CommandText property is set to the name of the table to query. This usage is illustrated by the following
code snippet:

M/Sql Command cnd = new MySql Command() ;

cnd. CommandText = "nmytabl e";

cnd. Connecti on = sonmeConnecti on;

cnmd. CommandType = CommandType. Tabl eDirect ;
My/Sql Dat aReader reader = cnd. Execut eReader () ;
whi | e (reader. Read())

{
Consol e. WitelLn(reader[0], reader[1]...);
}

Parameters Property

The Par anet er s property gives you control over the data you use to build a SQL query. Defining a
parameter is the preferred practice to reduce the risk of acquiring unwanted or malicous input. For usage
information and examples, see:

* Working with Parameters
» Accessing a Stored Procedure

» Preparing Statements in Connector/NET

Attributes Property

As of Connector/NET 8.0.26, an instance of My Sql Command can be organized to execute simple Transact-
SQL statements or stored procedures, both can be used in a prepared statement for faster execution and
reuse. The query_at t ri but es component must be installed on the server (see Prerequisites for Using
Query Attributes) before attributes can be searched for and used on the server side.

Query-attributes support varies by server version:

 Prior to MySQL Server 8.0.23: no support for query attributes.

224


https://dev.mysql.com/doc/refman/8.0/en/query-attributes.html#query-attributes-prerequisites
https://dev.mysql.com/doc/refman/8.0/en/query-attributes.html#query-attributes-prerequisites

Using MySglCommand

e MySQL Server 8.0.23 to 8.0.24: support for query attributes in regular statements only.
* MySQL Server 8.0.25 and higher: support for query attributes in both regular and prepared statements.

If you send query attribute metadata to a server that does not support query attributes, the attempt is
logged by the connector but no error is emitted.

Like parameters, attributes must be named. Unlike a parameter, an attribute represents an object from the
underlying query, such as a field or table. Connector/NET does not check or enforce whether your attribute
names are unique. Parameters and attributes can be combined together in commands without restrictions.

You can declare an attritue name and value directly by using the Set At t ri but e method to create an
instance of MySqgl At t ri but e that is exposed in a collection through the MySql Att ri but eCol | ecti on
object within My Sql Comrmand. For example, to declare a single attribute named gal, use the following C#
syntax:

myCommand. Attributes. SetAttri bute("qal", "qaVal ue");

Alternatively, you can declare a variable of type MySql At t ri but e to hold your attribute name and
value. Both forms persist the attribute after the query is executed, until the Cl ear method is called on the
MySql At tri but eCol | ecti on object. The next snippet declares two attributes named gal and ga2 as
variables mySql Attri but el and mySql Attri bute2.

My Sgl Conmand nyComrand = new MySql Comrand() ;

myConmand. Connecti on = nmyConnecti on;

MySgl Attribute mySql Attri butel = new MySgl Attri bute("qgal", "gaVal ue");
MySgl Attribute nmySql Attri bute2 = new MySql Attri bute("qa2", 2);
myConmand. Attributes. SetAttribute(mySqgl Attri butel);

myConmand. Attributes. Set Attribute(mySqgl Attri bute2);

With attribute names and values defined, a statement specifying attributes can be sent to the server. The
following SELECT statement includes the nmysql _query_attribute_string() loadable function that
is used to retrieve the two attributes decared previously and then prints the results. For more readable and
convenient syntax, the $ symbol is used in this example to identify string literals as interpolated strings.

my Cormand. ConmandText = $"SELECT nysql _query_attribute_string(' {nySql Attributel. AttributeNane}') AS attrl,’
$"nysql _query_attribute_string(' {nySql Attribute2. AttributeName}') AS attr2";
using (var reader = myCommand. Execut eReader ())

whi l e (reader. Read())
{
Consol e. WiteLine($"Attributel Value: {reader.GetString(0)}");
Consol e. WiteLine($"Attribute2 Value: {reader.GetString(1)}");
}
}
/* Qut put:
Attributel Val ue: qgaVal ue
Attribute2 Value: 2
*/

The following code block shows the same process for setting attributes and retrieving the results using
Visual Basic syntax.

Public Sub CreateM/Sqgl CommandW t hQuer yAttri but es(ByVal myConnection As M/Sgl Connecti on)
Di m myCommand As MySgl Command = New MySgl Command()
myConmand. Connecti on = nyConnecti on
Dim nmySqgl Attributel As MySqgl Attribute = New MySgl Attri bute("gal", "gaVal ue")
Dim nmySql Attribute2 As MySql Attribute = New MySgl Attri bute("ga2", 2)
myConmand. Attributes. SetAttribute(mySql Attri butel)
myConmand. Attributes. SetAttribute(mySql Attri bute2)
nmyCommand. CommandText = $" SELECT nysql _query_attribute_string(' {nySgl Attributel. AttributeName}') AS attr.
$"nysql _query_attribute_string('{nySgl Attribute2. AttributeNane}') AS attr2"
Usi ng reader = myCommand. Execut eReader ()

225


https://dev.mysql.com/doc/refman/8.0/en/select.html

Using Connector/NET with Table Caching

Wi | e reader. Read()
Consol e. WiteLine($"Attributel Value: {reader.GetString(0)}")
Consol e. WiteLine($"Attribute2 Value: {reader.GetString(1)}")
End Wil e
End Usi ng
End Sub

CommandTimeout Property

Commands can have a timeout associated with them. This feature is useful as you may not want a
situation were a command takes up an excessive amount of time. A timeout can be set using the
ConmandTi meout property. The following code snippet sets a timeout of one minute:

M/Sql Conmand cnd = new MySql Conmand() ;
cnd. Command