MySQL Connector/Python Release Notes
Table of Contents
	Preface and Legal Notices
	Changes in MySQL Connector/Python 2.1
		Changes in MySQL Connector/Python 2.1.2 (Not yet released)
	Changes in MySQL Connector/Python 2.1.1 (Not yet released)
	Changes in MySQL Connector/Python 2.1.0 (Not released)

	Changes in MySQL Connector/Python 2.0
		Changes in MySQL Connector/Python 2.0.3 (2015-01-28)
	Changes in MySQL Connector/Python 2.0.2 (2014-11-03)
	Changes in MySQL Connector/Python 2.0.1 (2014-09-24)
	Changes in MySQL Connector/Python 2.0.0 (2014-07-24, Alpha)

	Changes in MySQL Connector/Python 1.2
		Changes in MySQL Connector/Python 1.2.4 (Not yet released)
	Changes in MySQL Connector/Python 1.2.3 (2014-08-22)
	Changes in MySQL Connector/Python 1.2.2 (2014-05-27, General Availability)
	Changes in MySQL Connector/Python 1.2.1 (2014-03-31, Release Candidate)
	Changes in MySQL Connector/Python 1.2.0 (2013-12-23, Alpha)

	Changes in MySQL Connector/Python 1.1
		Changes in MySQL Connector/Python 1.1.7 (2014-05-13)
	Changes in MySQL Connector/Python 1.1.6 (2014-02-19)
	Changes in MySQL Connector/Python 1.1.5 (2014-01-31)
	Changes in MySQL Connector/Python 1.1.4 (2013-12-17, General Availability)
	Changes in MySQL Connector/Python 1.1.3 (2013-11-15)
	Changes in MySQL Connector/Python 1.1.2 (2013-10-23)
	Changes in MySQL Connector/Python 1.1.1 (2013-09-10, Alpha)
	Changes in MySQL Connector/Python 1.1.0 (2013-07-02, Alpha)

	Changes in MySQL Connector/Python 1.0
		Changes in MySQL Connector/Python 1.0.12 (2013-07-24)
	Changes in MySQL Connector/Python 1.0.11 (2013-07-01)
	Changes in MySQL Connector/Python 1.0.10 (2013-05-07)
	Changes in MySQL Connector/Python 1.0.9 (2013-02-26)
	Changes in MySQL Connector/Python 1.0.8 (2012-12-21)
	Changes in MySQL Connector/Python 1.0.7 (29 September 2012, General Availability)
	Changes in MySQL Connector/Python 1.0.6 (30 August 2012)
	Changes in MySQL Connector/Python 1.0.5 (17 July 2012, Beta)
	Changes in MySQL Connector/Python 1.0.4 (07 July 2012)
	Changes in MySQL Connector/Python 1.0.3 (08 June 2012)
	Changes in MySQL Connector/Python 1.0.2 (19 May 2012)
	Changes in MySQL Connector/Python 1.0.1 (26 April 2012)
	Changes in MySQL Connector/Python 1.0.0 (22 April 2012, Alpha)

MySQL Connector/Python Release Notes

Abstract

 This document contains release notes for the changes in each
 release of MySQL Connector/Python.

 For additional Connector/Python documentation, see
 MySQL Connector/Python Developer Guide.

 Updates to these notes occur as new product features are added, so
 that everybody can follow the development process. If a recent
 version is listed here that you cannot find on the download page
 (http://dev.mysql.com/downloads/), it means that the version has
 not yet been released.

 The date mentioned with a release version is the date of the last
 revision control system changeset on which the release was based,
 not necessarily the date when the distribution packages were made
 available. The binaries are usually made available a few days after
 the date of the tagged changeset because building and testing all
 packages takes some time.

 The documentation included in source and binary distributions may
 not be fully up to date with respect to release note entries because
 integration of the documentation occurs at release build time. For
 the most up-to-date release notes, please refer to the online
 documentation instead.

 For legal information, see the Legal
 Notices.

 Document generated on:

 2015-01-28

 (revision: 5023)

Preface and Legal Notices

 This document contains release notes for the changes in each
 release of MySQL Connector/Python.

Legal Notices

 Copyright © 1997, 2014, Oracle and/or its affiliates. All
 rights reserved.

 This software and related documentation are provided under a license
 agreement containing restrictions on use and disclosure and are
 protected by intellectual property laws. Except as expressly
 permitted in your license agreement or allowed by law, you may not
 use, copy, reproduce, translate, broadcast, modify, license,
 transmit, distribute, exhibit, perform, publish, or display any
 part, in any form, or by any means. Reverse engineering,
 disassembly, or decompilation of this software, unless required by
 law for interoperability, is prohibited.

 The information contained herein is subject to change without notice
 and is not warranted to be error-free. If you find any errors,
 please report them to us in writing.

 If this software or related documentation is delivered to the U.S.
 Government or anyone licensing it on behalf of the U.S. Government,
 the following notice is applicable:

 U.S. GOVERNMENT RIGHTS Programs, software, databases, and related
 documentation and technical data delivered to U.S. Government
 customers are "commercial computer software" or "commercial
 technical data" pursuant to the applicable Federal Acquisition
 Regulation and agency-specific supplemental regulations. As such,
 the use, duplication, disclosure, modification, and adaptation shall
 be subject to the restrictions and license terms set forth in the
 applicable Government contract, and, to the extent applicable by the
 terms of the Government contract, the additional rights set forth in
 FAR 52.227-19, Commercial Computer Software License (December 2007).
 Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

 This software is developed for general use in a variety of
 information management applications. It is not developed or intended
 for use in any inherently dangerous applications, including
 applications which may create a risk of personal injury. If you use
 this software in dangerous applications, then you shall be
 responsible to take all appropriate fail-safe, backup, redundancy,
 and other measures to ensure the safe use of this software. Oracle
 Corporation and its affiliates disclaim any liability for any
 damages caused by use of this software in dangerous applications.

 Oracle is a registered trademark of Oracle Corporation and/or its
 affiliates. MySQL is a trademark of Oracle Corporation and/or its
 affiliates, and shall not be used without Oracle's express written
 authorization. Other names may be trademarks of their respective
 owners.

 This software and documentation may provide access to or information
 on content, products, and services from third parties. Oracle
 Corporation and its affiliates are not responsible for and expressly
 disclaim all warranties of any kind with respect to third-party
 content, products, and services. Oracle Corporation and its
 affiliates will not be responsible for any loss, costs, or damages
 incurred due to your access to or use of third-party content,
 products, or services.

 This document in any form, software or printed matter, contains
 proprietary information that is the exclusive property of Oracle.
 Your access to and use of this material is subject to the terms and
 conditions of your Oracle Software License and Service Agreement,
 which has been executed and with which you agree to comply. This
 document and information contained herein may not be disclosed,
 copied, reproduced, or distributed to anyone outside Oracle without
 prior written consent of Oracle or as specifically provided below.
 This document is not part of your license agreement nor can it be
 incorporated into any contractual agreement with Oracle or its
 subsidiaries or affiliates.

 This documentation is NOT distributed under a GPL license. Use of
 this documentation is subject to the following terms:

 You may create a printed copy of this documentation solely for your
 own personal use. Conversion to other formats is allowed as long as
 the actual content is not altered or edited in any way. You shall
 not publish or distribute this documentation in any form or on any
 media, except if you distribute the documentation in a manner
 similar to how Oracle disseminates it (that is, electronically for
 download on a Web site with the software) or on a CD-ROM or similar
 medium, provided however that the documentation is disseminated
 together with the software on the same medium. Any other use, such
 as any dissemination of printed copies or use of this documentation,
 in whole or in part, in another publication, requires the prior
 written consent from an authorized representative of Oracle. Oracle
 and/or its affiliates reserve any and all rights to this
 documentation not expressly granted above.

 For more information on the terms of this license, or for details on
 how the MySQL documentation is built and produced, please visit
 MySQL Contact &
 Questions.

 For additional licensing information, including licenses for
 third-party libraries used by MySQL products, see
 Preface and Legal Notices.

 For help with using MySQL, please visit either the
 MySQL Forums or
 MySQL Mailing Lists
 where you can discuss your issues with other MySQL users.

 For additional documentation on MySQL products, including
 translations of the documentation into other languages, and
 downloadable versions in variety of formats, including HTML and PDF
 formats, see the MySQL
 Documentation Library.

Changes in MySQL Connector/Python 2.1

Changes in MySQL Connector/Python 2.1.2 (Not yet released)

Bugs Fixed
	
 The setup.py install command did not retain
 the value provided by the --install-lib option.
 (Bug #20217174)

	
 Error messages containing non-ASCII characters caused an
 exception to be raised.
 (Bug #74345, Bug #19803702)

	
 When using the callproc() cursor method,
 warnings generated by statements executed within the procedure
 or generated by the procedure itself were not available to the
 client.
 (Bug #74252, Bug #19777815)

Changes in MySQL Connector/Python 2.1.1 (Not yet released)

C Extension Notes
	
 MySQL Connector/Python distributions now are available that include a C
 Extension that interfaces with the MySQL C client library. For
 queries that return large result sets, using the C Extension can
 improve performance compared to a “pure Python”
 implementation of Connector/Python.

 For binary Connector/Python distributions, some packaging types have a
 single distribution file that includes the pure-Python Connector/Python
 code together with the C Extension. (Windows MSI and OS X Disk
 Image packages fall into this category.) Other packaging types
 have two related distribution files: One that includes the
 pure-Python Connector/Python code, and one that includes only the C
 Extension.

 For packaging types that have separate distribution files, you
 must install both distributions if you want to use the C
 Extension. The two files have related names, the difference
 being that the one that contains the C Extension has
 “cext” in the distribution file name.

 Source distributions include both the pure-Python code and the C
 Extension, and distribution names do not contain
 “cext”. Instead, availability of the C Extension is
 determined by whether you compile the distribution with the
 --with-mysql-capi option.

Bugs Fixed
	
 With mysql.connector.django as the engine,
 the python manage.py inspectdb command failed
 with an “Unread result found” error.
 (Bug #20022533)

	
 If the pool_size and
 pool_name connection arguments were specified
 using the option file (as opposed to being passed explicitly to
 the connect call), the pooled connection was successfully
 created, but an exception was raised when closing it.
 (Bug #19549363)

	
 The Django backend raised an exception when converting
 "0000-00-00 00:00:00" to
 None.
 (Bug #73940, Bug #19667984)

	
 The type_code in
 cursor.description did not compare equal to
 any of the type objects defined in
 mysql.connector.dbapi.
 (Bug #73798, Bug #19584051)

	
 Data corruption occurred when inserting sufficiently large data
 in a table with a TEXT type column using
 prepared statements, due to incorrect encoding of the data
 length while sending the prepared statement packet.
 (Bug #73690, Bug #19522948)

	
 When the character set was binary, character
 set conversion could occur. Conversion is no longer done and
 binary data is returned as is.
 (Bug #71909, Bug #19500097)

Changes in MySQL Connector/Python 2.1.0 (Not released)

 MySQL Connector/Python 2.1.0 is a labs-only release.

Version 2.1.0 has no changelog entries.

Changes in MySQL Connector/Python 2.0

Changes in MySQL Connector/Python 2.0.3 (2015-01-28)

Bugs Fixed
	
 The Django backend was creating excessive connections
 (immediately when each DatabaseWrapper object
 was created rather than waiting until the object actually needed
 the connection.)
 (Bug #74696, Bug #19972427)

	
 Using the Django backend, it was not possible to connect to a
 connection_created signal.
 (Bug #74679, Bug #19954882)

	
 recv_plain() could fail to read a packet
 header correctly, resulting in a lost connection.
 (Bug #74483, Bug #19930054)

	
 Error messages containing non-ASCII characters caused an
 exception to be raised.
 (Bug #74345, Bug #19803702)

	
 When using the callproc() cursor method,
 warnings generated by statements executed within the procedure
 or generated by the procedure itself were not available to the
 client.
 (Bug #74252, Bug #19777815)

	
 Connection pooling did not work when using MySQL Fabric.
 (Bug #73445, Bug #19331658)

Changes in MySQL Connector/Python 2.0.2 (2014-11-03)

Bugs Fixed
	
 If the pool_size and
 pool_name connection arguments were specified
 using the option file (as opposed to being passed explicitly to
 the connect call), the pooled connection was successfully
 created, but an exception was raised when closing it.
 (Bug #19549363)

	
 The Django backend raised an exception when converting
 "0000-00-00 00:00:00" to
 None.
 (Bug #73940, Bug #19667984)

	
 Using a connection_created signal defined in
 django.db.backends.signals caused a
 “maximum recursion depth reached” runtime error.
 (Bug #73847, Bug #19584116)

	
 The type_code in
 cursor.description did not compare equal to
 any of the type objects defined in
 mysql.connector.dbapi.
 (Bug #73798, Bug #19584051)

	
 Data corruption occurred when inserting sufficiently large data
 in a table with a TEXT type column using
 prepared statements, due to incorrect encoding of the data
 length while sending the prepared statement packet.
 (Bug #73690, Bug #19522948)

	
 When the character set was binary, character
 set conversion could occur. Conversion is no longer done and
 binary data is returned as is.
 (Bug #71909, Bug #19500097)

Changes in MySQL Connector/Python 2.0.1 (2014-09-24)

Functionality Added or Changed
	
 Connector/Python is now compatible with Django 1.7.
 (Bug #72746, Bug #19163169)

	
 RANGE_STRING is now supported as a sharding
 type. This is similar to the regular RANGE
 sharding type, but instead of an integer key, requires a UTF-8
 encoded string. For example:

cnx.set_property(tables=["employees.employees"],
 key=u'employee_name', mode=fabric.MODE_READONLY)

 Only Unicode strings are supported. Any other type given when
 using a shard defined using RANGE_STRING
 causes a ValueError to be raised.

	
 RANGE_DATETIME is now supported as a sharding
 type. This is similar to the regular RANGE
 sharding type, but instead of an integer key, requires a
 datetime or date object. For example, to get the shard which
 holds employees hired after the year 2000, you could do the
 following, with lower bounds set as "group1/1980-01-01,
 group2/2000-01-01":

cnx.set_property(tables=["employees.employees"],
 key=datetime.date(2000, 1, 1), mode=fabric.MODE_READONLY)

 If the lower bounds included a time, it would have been like
 this:

cnx.set_property(tables=["employees.employees"],
 key=datetime.datetime(2000, 1, 1, 12, 0, 0),
 mode=fabric.MODE_READONLY)

 Only datetime.datetime and
 datetime.date values are supported. Any other
 type given when using a shard defined using
 RANGE_DATETIME causes a
 ValueError to be raised.

Bugs Fixed
	
 Connector/Python failed to catch an exception when SSL
 capability was found to be unavailable.
 (Bug #19440592)

	
 Date and time query formatting was fixed for the Django backend.
 (Bug #19179711)

	
 Multiple [connector_python] option groups
 sometimes caused an error.
 (Bug #19170287)

	
 An error failed to occur if an option file was named multiple
 times.
 (Bug #19169143)

	
 Some valid Connector/Python connection options were not
 recognized when specified in the
 [connector_python] option group.
 (Bug #19168737)

	
 !include and !includedir
 directives in option files were not handled properly.
 (Bug #73660, Bug #19481761)

	
 Binding None (NULL) to a
 parameter marker in a prepared statement did not work.
 (Bug #73370, Bug #19282158)

	
 With Python 2, Connector/Python could truncate digits of
 floating-point values.
 (Bug #73266, Bug #19225481)

	
 An exception was raised when a cursor tried to convert
 LINESTRING data as UTF-8 data. Now such
 values are returned without decoding.
 (Bug #73187, Bug #19164627)

	
 Connector/Python now supports a shutdown()
 method that, unlike disconnect(), closes the
 client connection without attempting to send a
 QUIT command to the server first. Thus, it
 will not block if the connection is disrupted for some reason
 such as network failure.
 (Bug #72691, Bug #18798953)

Changes in MySQL Connector/Python 2.0.0 (2014-07-24, Alpha)

Functionality Added or Changed
	Incompatible Change:
 Previous series of Connector/Python had separate Python 2 and
 Python 3 code bases. For Connector/Python 2.0, the source tree
 has been reorganized to have a single code base, for easier
 maintenance, testing, and distribution.

 This reorganization results in an incompatible change in
 behavior: With the use of “raw” cursors, the
 returned values is of the bytearray type.
 This is necessary for having both Python 2 and 3 return the same
 data. Consider the following example:

import mysql.connector

cnx = mysql.connector.connect(raw=True)
cursor = cnx.cursor()
cursor.execute('SELECT 1')
print(cursor.fetchall())

 In Connector/Python 1.x, the output is:

	
 Using Python 2: [('1',)]

	
 Using Python 3: [(b'1',)]

 In Connector/Python 2.0, for both Python versions, the output
 is: [(bytearray(b'1'),)]

 To get the same value as in Connector/Python 1.x, do this:

	
 Using Python 2: str(bytearray(b'1'))

	
 Using Python 3: bytes((bytearray(b'1'))

	Important Change:
 Previously, to enable use of
 LOAD DATA LOCAL
 INFILE, clients had to explicitly set the
 ClientFlag.LOCAL_FILES flag. This flag is now
 enabled by default. To disable it, the
 allow_local_infile option for
 connect()can be set to
 False.

	
 For a stored procedure that produces multiple result sets, it is
 now possible possible to execute the procedure and process its
 results by executing a CALL
 statement. Execute the statement using
 execute() with a
 multi=True argument, and use the returned
 iterator to process each result in turn.
 (Bug #73291, Bug #19207922)

	
 Connector/Python now supports option files using two new options
 for connect():

	
 option_files: Which option files to read.
 The value can be a file path name (a string) or a sequence
 of path name strings. By default, Connector/Python reads no
 option files, so this argument must be given explicitly to
 cause option files to be read. Files are read in the order
 specified.

	
 option_groups: Which groups to read from
 option files, if option files are read. The value can be an
 option group name (a string) or a sequence of group name
 strings. If this argument is not given, the default value is
 ['client, 'connector_python'] to read the
 [client] and
 [connector_python] groups.

 For more information, see
 Connector/Python Option-File Support.

	
 The mysql.connector.cursor module supports
 four new cursor classes:

	
 The MySQLCursorDict cursor class returns
 each row as a dictionary. The keys for each dictionary
 object are the column names of the MySQL result.

cursor = cnx.cursor(dictionary=True)

	
 The MySQLCursorBufferedDict cursor class
 is like MySQLCursorDict, but fetches the
 entire result set after executing the query and buffers the
 rows.

cursor = cnx.cursor(dictionary=True, buffered=True)

	
 The MySQLCursorNamedTuple cursor class
 returns each row as a named tuple. Each column is accessible
 through an attribute of the tuple-like object.

cursor = cnx.cursor(named_tuple=True)

	
 The MySQLCursorBufferedNamedTuple cursor
 class is like MySQLCursorNamedTuple, but
 fetches the entire result set after executing the query and
 buffers the rows.

cursor = cnx.cursor(named_tuple=True, buffered=True)

 For more information, see
 cursor.MySQLCursor Subclasses.

	
 The packaging modules and supporting files have been removed
 from the main repository and from the source packages for
 Connector/Python. They are still available in the
 Connector/Python 1.x series.

Bugs Fixed
	
 Django TimeField values of
 00:00:00 were incorrectly converted to
 NULL because Python considered that value
 equal to False.
 (Bug #72732, Bug #18956789)

	
 Fetching results from a prepared statement that returned many
 columns could produce an error.
 (Bug #72602, Bug #18742429)

	
 Previously, a RuntimeError exception was
 raised when a Django application was inactive for a while. Now,
 the Django backend verifies that the database connection is
 still valid each time a database request is made.
 (Bug #72545, Bug #18843153)

Changes in MySQL Connector/Python 1.2

Changes in MySQL Connector/Python 1.2.4 (Not yet released)

Bugs Fixed
	
 Using a connection_created signal defined in
 django.db.backends.signals caused a
 “maximum recursion depth reached” runtime error.
 (Bug #73847, Bug #19584116)

Changes in MySQL Connector/Python 1.2.3 (2014-08-22)

Functionality Added or Changed
	
 Connector/Python is now compatible with Django 1.7.
 (Bug #72746, Bug #19163169)

Bugs Fixed
	
 The specification and control files were updated to reflect that
 Connector/Python 1.2 cannot be used with MySQL Utilities 1.5.1
 (which requires Connector/Python 2.0 or greater).
 (Bug #19444705)

	
 Connector/Python failed to catch an exception when SSL
 capability was found to be unavailable.
 (Bug #19440592)

	
 With Python 2, Connector/Python could truncate digits of
 floating-point values.
 (Bug #73266, Bug #19225481)

	
 An exception was raised when a cursor tried to convert
 LINESTRING data as UTF-8 data. Now such
 values are returned without decoding.
 (Bug #73187, Bug #19164627)

	
 Django TimeField values of
 00:00:00 were incorrectly converted to
 NULL because Python considered that value
 equal to False.
 (Bug #72732, Bug #18956789)

	
 Fetching results from a prepared statement that returned many
 columns could produce an error.
 (Bug #72602, Bug #18742429)

	
 Previously, a RuntimeError exception was
 raised when a Django application was inactive for a while. Now,
 the Django backend verifies that the database connection is
 still valid each time a database request is made.
 (Bug #72545, Bug #18843153)

	
 Negative timedelta values were incorrectly converted to and from
 Python. Thanks to Vitali Graf for the patch.
 (Bug #72493, Bug #18694096)

Changes in MySQL Connector/Python 1.2.2 (2014-05-27, General Availability)

Bugs Fixed
	
 The Fabric connection configuration permitted
 username but not user as a
 parameter name, which is inconsistent with the connection
 arguments permitted by Connector/Python itself. Now either can
 be used. (Using both raises a ValueError.)
 (Bug #18463182)

	
 In the MySQLProtocol._auth_response method of
 the mysql.connector.protocol module, the
 auth_response variable was changed without
 being defined first.
 (Bug #18463182)

	
 Commercial Debian Connector/Python packages included a copyright
 file containing a GPL license.
 (Bug #18422727)

	
 For Fabric connections, the Weighted Round Robin (WRR) load
 balancing algorithm stopped working properly due to cache
 problems.
 (Bug #17995416)

	
 Building an RPM package using python setup.py
 bdist_rpm did not work.
 (Bug #72261, Bug #18550039)

	
 The community MSI Connector/Python packages contained empty
 documentation PDF and HTML files. These have been removed and
 replaced with the README_DOCS.txt file
 which contains a URL to the online manual.
 (Bug #72245, Bug #18527132)

	
 For Python 3, when parameters were passed as a dictionary to the
 MySQLCursor methods
 execute() and
 executemany(), only first occurrence of each
 element in the query was replaced by the parameter value.
 (Bug #71975, Bug #18389196)

	
 Connector/Python raised all deprecation warnings as errors when
 Django was run in debug mode. Now only database warnings are
 raised as errors in debug mode.
 (Bug #71806, Bug #18380134)

	
 when MySQLCursor.execute() was passed values
 of a data type which cannot be converted, the exception raised
 was not easy to understand. Now a nicer error message is
 displayed when unconvertible Python types are given.
 (Bug #71729, Bug #18258807)

Changes in MySQL Connector/Python 1.2.1 (2014-03-31, Release Candidate)

Functionality Added or Changed
	
 Connector/Python now permits the type for stored procedure
 parameters to be specified. To do this, specify a parameter as a
 two-item tuple consisting of the parameter value and type. For
 more information, see
 Method MySQLCursor.callproc().
 (Bug #71124, Bug #17965619)

	
 It was not possible to initiate an SSL session without
 explicitly giving a key and certificate. Now it is possible to
 connect to a MySQL server using only the
 ssl_ca connection argument pointing to a file
 of CA certificates. This means the ssl_key
 and ssl_cert connection arguments are
 optional. However, when either is given, both must be given or
 an AttributeError is raised.
 (Bug #69418, Bug #17054848)

	
 Connector/Python now supports authentication plugins found in
 MySQL 5.6. This includes mysql_clear_password
 and sha256_password, both of which require an
 SSL connection. The sha256_password plugin
 does not work over a non-SSL connection because Connector/Python
 does not support RSA encryption.

 The connect() method now supports an
 auth_plugin parameter that can be used to
 force use of a particular plugin. For example, if the server is
 configured to use sha256_password by default
 and you want to connect to an account that authenticates using
 mysql_native_password, either connect using
 SSL or specify
 auth_plugin='mysql_native_password'.
 (Bug #68054, Bug #16217765)

	
 Connector/Python now can report errors to Fabric that occur
 while accessing a MySQL instance. The information can be used to
 update the backing store and trigger a failover operation,
 provided that the instance is a primary server and Fabric has
 received a sufficient number of problem reports from different
 connectors.

	
 The fabric dictionary argument to the
 connect() method now accepts a
 report_errors value. Its default value is
 False; pass a value of
 True to enable error reporting to Fabric.

	
 To define which errors to report, use the
 extra_failure_report() function:

from mysql.connector.fabric import extra_failure_report
extra_failure_report([error_code_0, error_code_1, ...])

 For more information, see
 Requesting a Fabric Connection.

	
 The connect() method now accepts a
 failover argument that provides information
 to use for server failover in the event of connection failures.
 The argument value is a tuple or list of dictionaries (tuple is
 preferred because it is nonmutable). Each dictionary contains
 connection arguments for a given server in the failover
 sequence. Permitted dictionary values are:
 user, password,
 host, port,
 unix_socket, database,
 pool_name, pool_size.

	
 Connector/Python now enables applications to specify additional
 information to be used when connecting to Fabric: User name and
 credentials, and information to use for establishing an SSL
 connection. The fabric dictionary argument to
 the connect() method accepts these additional
 values: username,
 password, ssl_ca,
 ssl_cert, ssl_key. Only
 the ssl_ca value is required to establish an
 SSL connection. If ssl_cert or
 ssl_key are given, both must be specified.
 For more information, see
 Requesting a Fabric Connection.

	
 A new MySQLConnection class
 reset_connection() method enables
 applications to send a COM_RESET_CONNECTION
 to the server. This method is analogous to the
 mysql_reset_connection() C API
 function added in MySQL 5.7.3.

 A new MySQLConnection class
 reset_session() method is similar to
 reset_connection() but falls back to use
 reauthentication for older servers that do not support
 COM_RESET_CONNECTION. For more information,
 see
 Method MySQLConnection.cmd_reset_connection(),
 and
 Method MySQLConnection.reset_session().

Bugs Fixed
	
 The MySQLConnection.autocommit attribute
 failed to set the value of the
 self._autocommit attribute.
 (Bug #18172769)

	
 Uninstalling Connector/Python using an RPM package failed to
 remove the fabric folder.
 (Bug #18143073)

	
 The global MYSQL_FABRIC_PORT variable was
 changed from 8080 to 32274 to match the port change made in
 Fabric.
 (Bug #18075339)
References: See also Bug #70954.

	
 For Fabric connections, any connect_attempts
 and connect_delay values specified by the
 user were ignored.
 (Bug #18055719)

	
 For Fabric sharding operations, Connector/Python raised an
 incorrect error when a table was given with the
 tables connection property for which no
 sharding information was available. This now results in a
 DatabaseError (with
 errorcode.ER_BAD_TABLE_ERROR) mentioning that
 the table is unknown.
 (Bug #18047794)

	
 For Fabric operations, an incorrect exception was raised by
 set_property() when a connection property
 value had the wrong type (for example, when the
 tables property was not a tuple or a list).
 set_property() now correctly raises a
 ValueError.
 (Bug #18047758)

	
 For Fabric operations, the default mode was supposed to be
 read/write but was set to read-only.
 (Bug #18047591)

	
 The delay between attempts when trying to connect to a MySQL
 Fabric-managed server was not honored.
 (Bug #71905, Bug #18335432)

	
 Fabric has renamed the dump functionality to a new command
 called dump. Consequently, Connector/Python
 now uses the new functions
 dump.sharding_information,
 dump.fabric_nodes, and
 dump.servers.
 (Bug #71124, Bug #17965619)

	
 MySQLCursor.executemany() caused a
 UnicodeDecodeError when non-ASCII characters
 existed in the seq_params parameter and the
 operation was a Unicode instance with Python 2. This is now
 corrected by encoding the operation per the current connection
 character set.
 (Bug #69067, Bug #18220593)

Changes in MySQL Connector/Python 1.2.0 (2013-12-23, Alpha)

Functionality Added or Changed
	
 Connector/Python now supports Fabric. See
 Connector/Python Fabric Support. Supported
 capabilities include:

	
 High-Availability group lookup using read-only or read-write
 mode

	
 Range and hash sharding support

	
 Failure reporting to Fabric

	
 Failover support

	
 Load balancing based on MySQL server weight

Changes in MySQL Connector/Python 1.1

Changes in MySQL Connector/Python 1.1.7 (2014-05-13)

Bugs Fixed
	
 Commercial Debian Connector/Python packages included a copyright
 file containing a GPL license.
 (Bug #18422727)

	
 For Django, introspecting to get the primary key of MySQL tables
 could fail in Python 3.
 (Bug #72001, Bug #18380100)

	
 In prepared statements, Unicode arguments in Python 2 and bytes
 arguments in Python 3 were causing errors, as were the symbols
 of character sets other than utf8 or
 ascii.
 (Bug #71482, Bug #18144971)

Changes in MySQL Connector/Python 1.1.6 (2014-02-19)

Bugs Fixed
	
 Connector/Python produced errors using time functions with
 Django 1.6 due to not using the autocommit value from Django.
 Now the value is set to that specified in the Django
 configuration file.
 (Bug #71438, Bug #18187561)

Changes in MySQL Connector/Python 1.1.5 (2014-01-31)

Functionality Added or Changed
	
 Connector/Python is now compatible with Django 1.6.
 (Bug #17857712)

	
 utf8mb4 is now recognized as a valid
 character set.
 (Bug #70596, Bug #17780576)

	
 The start_transaction() method now supports a
 readonly argument. This argument can be
 True to start the transaction in
 READ ONLY mode or False to
 start it in READ WRITE mode. If
 readonly is omitted, the server's default
 access mode is used. For details about transaction access mode,
 see the description for the START TRANSACTION
 statement at START TRANSACTION, COMMIT, and ROLLBACK Syntax. If the server is older
 than MySQL 5.6.5, it does not support setting the access mode
 and Connector/Python raises a ValueError.
 (Bug #70545, Bug #17573172)

Bugs Fixed
	
 When using connection pooling, a connection returned to the pool
 was not reset, so session variables retained their values. Now
 these variables are reset by re-authenticating the user when the
 connection is returned to the pool. To disable this behavior,
 pass a pool_reset_session argument to
 connect() when requesting a pooled
 connection:

cnx = mysql.connector.connect(pool_reset_session=False,...)

(Bug #18040042)

	
 An incorrectly handled error in
 MySQLProtocol.parse_column_count() method
 could lead to a misreported error message.
 (Bug #17958420)

	
 executemany() failed with INSERT
 INTO ... SELECT statements.
 (Bug #70529, Bug #17826833)

Changes in MySQL Connector/Python 1.1.4 (2013-12-17, General Availability)

 MySQL Connector/Python 1.1.4 is a new version of the pure Python
 database driver for MySQL. This is the first GA (General
 Availability) version of Connector/Python 1.1.

 MySQL Connector/Python version 1.1 is compatible with MySQL
 Server versions 5.5 and greater, but should work with earlier
 versions greater than 4.1. Python 2.6 and greater as well as
 Python 3.1 and greater are supported. Python 2.4 and 2.5 are not
 supported.

Bugs Fixed
	
 Python method call overhead was reduced for certain update and
 select operations.
 (Bug #17890173)

Changes in MySQL Connector/Python 1.1.3 (2013-11-15)

Functionality Added or Changed
	
 The Connector/Python source code has been made compliant with
 PEP-8 to the extent possible.

Bugs Fixed
	
 Connection pooling did not correctly handle unavailable servers;
 for a connection that could not be established, it failed to
 return the connection to the pool. Now reconnection is attempted
 and if that fails, the connection is returned to the pool.
 (Bug #17578937)

	
 There was a problem saving data containing the backslash
 character or 0x5c using multibyte character sets such as
 sjis, big5, or
 gbk. To handle this, there is a new
 HexLiteral type. When a backslash is found in
 such as sjis, big5, or
 gbk data, the string is sent as a hexadecimal
 literal to MySQL.
 (Bug #69710, Bug #17079344)

	
 Connection attempts failed on older versions of FreeBSD.
 (Bug #69088, Bug #17372107)

Changes in MySQL Connector/Python 1.1.2 (2013-10-23)

Functionality Added or Changed
	
 The error message raised when a connection pool has no more
 connections available now indicates “pool
 exhausted” rather than “queue is empty”.
 (Bug #17406263)

	
 Previously, instantiating a cursor for prepared statements was
 done using
 MySQLConnection.cursor(cursor_class=MySQLCursorPrepared).
 Now this can be done using
 MySQLConnection.cursor(prepared=True).
 (Bug #17215197)

	
 Previously, setting a custom converter class was possible after
 instantiating a new connection object. The
 connect() method now accepts a
 converter_class connection argument that
 takes a class and sets it when configuring the connection. An
 AttributeError is raised if the custom
 converter class is not a subclass of
 conversion.MySQLConverterBase.
 (Bug #13551483)

	
 The connect() method now accepts a boolean
 compress={False|True} argument indicating
 whether to use the compressed client/server protocol (default
 False). This provides an easier alternative
 to setting the ClientFlag.COMPRESS flag.
 (Bug #13369592)

Bugs Fixed
	
 In some cases, when a Connector/Python application exited, a
 RuntimeError was raised when using Python 3.
 (Bug #17424009)

	
 cmd_shutdown() did not work correctly when a
 server for MySQL 5.6 or higher raised a
 DatabaseError (1835: Malformed communication
 packet).
 (Bug #17422299)

	
 Attempts to change the size of an existing connection pool were
 not rejected.
 (Bug #17372107)

	
 The DatabaseOperations.last_executed_query()
 method in the Django base module was unnecessarily decoding the
 string, resulting in an error when using Python 3.
 (Bug #70324, Bug #17473273)

Changes in MySQL Connector/Python 1.1.1 (2013-09-10, Alpha)

Functionality Added or Changed
	Incompatible Change:
 The original message passed to errors.Error()
 was not saved in such a way that it could be retrieved. Instead,
 the Error.msg attribute was formatted with
 the error number and SQLSTATE value. Now only the original
 message is saved in the Error.msg attribute.
 The formatted value together with the error number and SQLSTATE
 value can be obtained by printing or getting the string
 representation of the error object. Example:

try:
 conn = mysql.connector.connect(database = "baddb")
except mysql.connector.Error as e:
 print "Error code:", e.errno # error number
 print "SQLSTATE value:", e.sqlstate # SQLSTATE value
 print "Error message:", e.msg # error message
 print "Error:", e # errno, sqlstate, msg values
 s = str(e)
 print "Error:", s # errno, sqlstate, msg values

(Bug #16933795)

	
 Output for individual unit tests did not show timings, making it
 more difficult to debug problems that involve a change in test
 execution time. unittest.py now has a new
 --stats option that runs tests and shows
 elapsed time for each.

 It is also possible to save the data to a MySQL server. When the
 --stats-host option is given with other options
 such as --stats-user, results are saved to a
 table called myconnpy_X_Y_Z. The table
 contains the name of the test case and columns that combine
 Python and MySQL versions; for example, py27my55 or py33my56.

 For example, to see the difference between MySQL 5.1 and 5.6,
 using Python 2.7, after running the test cases for both using
 Connector/Python 1.1.0, use this statement:

SELECT test_case, py27my51, py27my56, (py27my56-py27my51) AS diff51
FROM myconnpy_1_1_0 WHERE (py27my56-py27my51) > 0.5;

(Bug #17028999)

	
 MySQL Connector/Python now supports simple connection pooling
 that has these characteristics:

	
 A pool opens a number of connections and handles thread
 safety when providing connections to requesters.

	
 The size of a connection pool is configurable at pool
 creation time. It cannot be resized thereafter.

	
 A connection pool can be named at pool creation time. If no
 name is given, one is generated using the connection
 parameters.

	
 The connection pool name can be retrieved from the
 connection pool or connections obtained from it.

	
 It is possible to have multiple connection pools. This
 enables applications to support pools of connections to
 different MySQL servers, for example.

	
 For each connection request, the pool provides the next
 available connection. No round-robin or other scheduling
 algorithm is used.

	
 It is possible to reconfigure the connection parameters used
 by a pool. These apply to connections obtained from the pool
 thereafter. Reconfiguring individual connections obtained
 from the pool by calling the connection
 config() method is not supported.

 Applications that can benefit from connection-pooling capability
 include:

	
 Middleware that maintains multiple connections to multiple
 MySQL servers and requires connections to be readily
 available.

	
 Web sites that can have more “permanent”
 connections open to the MySQL server.

 The connection pooling implementation involves these interface
 elements:

	
 A new module, mysql.connector.pooling,
 provides two classes: MySQLConnectionPool
 instantiates and manages connection pools, and
 PooledMySQLConnection is similar to
 MySQLConnection but is used for
 connections that are part of a connection pool.

	
 A new exception, PoolError, occurs for
 pool-related exceptions. PoolError is a
 subclass of Error.

 For more information, see
 Connector/Python Connection Pooling.

	
 Connector/Python now includes a
 mysql.connector.django module that provides a
 Django backend for MySQL. This backend supports new features
 found in MySQL 5.6 such as fractional seconds support for
 temporal data types. For more information, see
 Connector/Python Django Backend.

Bugs Fixed
	
 Following fetchone() or
 fetchmany(), the result returned by
 fetchall() was missing one row.
 (Bug #17041412)

	
 Previously, executing a statement after the connection was
 closed raised an OperationalError with an
 unclear error. Connector/Python now returns the client error
 2006, MySQL Server has gone away, with an
 extra message.

 The Error() class has been extended to accept
 a new argument, extra_msg. When given, it is
 appended between brackets. For example: [2000] Unknown
 MySQL Error (Some extra message)
 (Bug #17022399)

	
 LOAD DATA LOCAL INFILE failed for files
 approximately 14MB or larger.
 (Bug #17002411)

	
 Invoking executemany() without any data
 produced a ProgrammingError rather than doing
 nothing.
 (Bug #16660356)

	
 An InternalError was raised during
 transaction rollback if there were unread results. The
 MySQLConnection.rollback() method now
 consumes unread results instead of raising an error.
 (Bug #16656621)

	
 Python 2.6 and 2.7 raised a
 UnicodeDecodeError when
 unicode_literals was used and a database name
 contained nonlatin Unicode characters.
 (Bug #16655208)

	
 The MySQLCursor.executemany() method raised
 an exception when a SQL function was used as a column value when
 executing an INSERT statement.
 (Bug #69675, Bug #17065366)

	
 An unclear OperationalError was raised if a
 cursor object was closed while there were unread results.
 Connector/Python now raises an InternalError
 indicating that there are still unread results. This provides
 information that to avoid the error it is necessary to consume
 the result by reading all rows.
 (Bug #67649, Bug #17041240)

Changes in MySQL Connector/Python 1.1.0 (2013-07-02, Alpha)

Functionality Added or Changed
	Incompatible Change:
 Python 2 code was changed to use new features introduced in
 Python 2.6 and 2.7. Some examples:

	
 print() is used as a function, not a
 statement.

	
 Exceptions are handled using the as
 keyword.

	
 The in keyword is used instead of the
 has_key() dictionary method.

 This change means that MySQL Connector/Python 1.1 does not work
 with versions of Python older than 2.6.

	
 Connector/Python was updated with error information from MySQL
 5.7.1.
 (Bug #16896702)

	
 MySQLConnection objects now support an
 in_transaction property that returns
 True or False to indicate
 whether a transaction is active for the connection.

	
 Connector/Python supports a new
 MySQLCursorPrepared class that enables
 execution of prepared SQL statements using the binary
 client/server protocol. For details, see
 Class cursor.MySQLCursorPrepared.

	
 MySQLConnection objects now support a
 start_transaction() method to begin a
 transaction. This method accepts arguments indicating whether to
 use a consistent snapshot and which transaction isolation level
 to use:

cnx.start_transaction(consistent_snapshot=bool,
 isolation_level=level)

 The default consistent_snapshot value is
 False. The default
 isolation_level value is
 None, and permitted values are 'READ
 UNCOMMITTED', 'READ COMMITTED',
 'REPEATABLE READ', and
 'SERIALIZABLE'.

	
 mysql.connector.__version__ and
 mysql.connector.__version_info__ now are
 available to provide MySQL Connector/Python version information
 in a more standard, Pythonic manner.

Bugs Fixed
	
 Relative imports were removed from Python 3 code. PEP-8
 indicates that relative imports are discouraged.
 (Bug #16234372)

Changes in MySQL Connector/Python 1.0

Changes in MySQL Connector/Python 1.0.12 (2013-07-24)

Bugs Fixed
	
 Following fetchone() or
 fetchmany(), the result returned by
 fetchall() was missing one row.
 (Bug #17041412)

	
 LOAD DATA LOCAL INFILE failed for files
 approximately 14MB or larger.
 (Bug #17002411)

	
 The fetchall() methods for buffered cursors
 were returning all rows after fetchone() or
 fetchmany() were used.
 fetchall() now correctly returns all or
 remaining, just like the nonbuffered cursors.
 (Bug #16662920)

	
 Python 2.6 and 2.7 raised a
 UnicodeDecodeError when
 unicode_literals was used and a database name
 contained nonlatin Unicode characters.
 (Bug #16655208)

	
 The MySQLCursor.executemany() method raised
 an exception when a SQL function was used as a column value when
 executing an INSERT statement.
 (Bug #69675, Bug #17065366)

	
 An unclear OperationalError was raised if a
 cursor object was closed while there were unread results.
 Connector/Python now raises an InternalError
 indicating that there are still unread results. This provides
 information that to avoid the error it is necessary to consume
 the result by reading all rows.
 (Bug #67649, Bug #17041240)

Changes in MySQL Connector/Python 1.0.11 (2013-07-01)

Functionality Added or Changed
	
 Connector/Python was updated with error information from MySQL
 5.7.1.
 (Bug #16896702)

	
 Debian (.deb) packages for Connector/Python
 are now available.

Changes in MySQL Connector/Python 1.0.10 (2013-05-07)

Functionality Added or Changed
	
 A new connection option ssl_verify_cert
 checks the SSL certificate for the server against the
 certificate found in the file specified by the
 ssl_ca option. This option is disabled by
 default. Any certificate mismatch of invalid combination of SSL
 options will raise a ValueError exception.
 (Bug #16400735)

	
 Connector/Python now supports the LOCAL
 keyword for LOAD DATA
 LOCAL.
 (Bug #16369511, Bug #16736916)

	
 The MySQLConnection.cmd_shutdown() method now
 accepts an optional shutdown type. A new
 ShutdownType constants class was added.
 (Bug #16234441)

	
 The GPL Connector/Python packages contained non-GPL
 documentation. This could be an issue when Linux distributions
 would like to repackage. PDF and other documentation formats now
 are removed from the GPL packages, which point in the
 README_DOCS.txt file to online availability
 of the manual.
 (Bug #68509, Bug #16430013)

Changes in MySQL Connector/Python 1.0.9 (2013-02-26)

Functionality Added or Changed
	
 Previously, when setting up an SSL connection, the developer had
 to set the ClientFlag.SSL explicitly in the
 client_flags argument of the
 mysql.connector.connect() function call. Now,
 whenever SSL arguments are specified, the client flag is set
 automatically. This change makes the SSL behavior of
 Connector/Python more consistent with other MySQL connectors.
 (Bug #16217667, Bug #68172)

Bugs Fixed
	
 The DistUtils command was not copying
 version.py into the
 build directory, so that the
 build/lib directory could not be used for
 development without manually copying
 version.py.
 (Bug #16236136)

	
 Passing string parameters to a stored procedure resulted in
 extra quotes being included in the value. This was caused by the
 conversion from Python to MySQL data types being applied two
 times. We now only convert once, and pass the values correctly.

 MySQLCursor.callproc() now also raises a
 ValueError when the type of an argument is
 incorrect.
 (Bug #16217743, Bug #68066)

	
 Fixed IPv6 for older Microsoft Windows versions. Also improved
 the associated code for all operating systems: we now use
 socket.getaddrinfo() instead of
 inet_pton() to check whether we are
 connecting using IPv4 or IPv6.

 A new connection option force_ipv6 has been
 introduced. When set to True, IPv6 will be
 used when an address resolves to both IPv4 and IPv6. Otherwise,
 IPv4 is favored.
 (Bug #16209119)

Changes in MySQL Connector/Python 1.0.8 (2012-12-21)

 Fixes bugs since the initial 1.0.7 GA release.

Bugs Fixed
	
 When a stored procedure was called with arguments, and produced
 multiple result sets, the result sets were not returned
 properly.
 (Bug #15916486, Bug #67710)

	
 The ping() method was always reconnecting to
 the database, ignoring the reconnect
 argument. This means that there would be a
 rollback when pinging the
 MySQL server during a
 transaction.

 Now ping() will honor the
 reconnect option and only reestablish the
 connection when needed.
 (Bug #15915243, Bug #67650)

	
 Connector/Python could not connect to MySQL servers using IPv6
 addresses. An InterfaceError or
 ConnectionRefusedErrorwas raised:

mysql.connector.errors.InterfaceError: 2003: Can't connect to MySQL server on
'IPv6-style address' (Address family for hostname not supported)

ConnectionRefusedError: [Errno 111] Connection refused

(Bug #15876886, Bug #15927825)

	
 When connecting to a MySQL server from a host whose IP address
 was not allowed, Connector/Python reported a handshake problem
 and raised an InterfaceError exception.
 (Bug #15836979)

	
 When a username or password was passed in as Unicode to
 Connector/Python, connection attempts failed with
 UnicodeDecodeError exceptions due to string
 concatenation of mixed-charset types. This issue affected
 programs running under Python 2, and did not affect Python 3.
 (Bug #14843456, Bug #67306)

	
 Intermittent errors could occur on Windows systems:
 InterfaceError(errno=2013). The cause was
 incorrect handling of sock.recv() library
 calls that returned less data than was requested.
 (Bug #14829471, Bug #67303)

	
 A socket error would produce a NameError
 exception instead of the expected
 InterfaceError, due to a misnamed variable:

NameError: global name 'e' is not defined

(Bug #14802017)

	
 The executemany() function now supports the
 pyformat parameter style. In the pyformat style, all the
 substitution variables are passed in using a single dictionary
 parameter, and the % format specifier is
 encoded like
 %(dict_key)s for a
 string. MySQLCursor.executemany() can now use
 both ANSI C printf and Python extended format codes.
 (Bug #14754894, Bug #67146)

	
 The error message was clarified when a non-integer value was
 used for the TCP/IP port connection argument.
 (Bug #13808727, Bug #64543)

Changes in MySQL Connector/Python 1.0.7 (29 September 2012, General Availability)

 GA release. Connector/Python is now production-ready.

Functionality Added or Changed
	
 Client and server error messages have been regenerated using the
 MySQL 5.6.6 development release.

Bugs Fixed
	
 Fixed formatting of client errors changing numeric to string
 placeholders.
 (Bug #14548043)

Changes in MySQL Connector/Python 1.0.6 (30 August 2012)

 Second beta release.

Functionality Added or Changed
	
 Changed name and version of distributions to align with other
 MySQL projects:

	
 The version now includes the suffix 'b' for beta and 'a' for
 alpha followed by a number. This version is used in the
 source and built distributions. GA versions will have no
 suffix.

	
 The RPM spec files have been updated to create packages
 whose names are aligned with RPMs from other MySQL projects.

	
 Changed how MySQL server errors are mapped to Python exceptions.
 We now use the SQLState (when available) to
 raise a better error.

	
 Incompatibility: some server errors now are raised with a
 different exception.

	
 It is possible to override how errors are raised using the
 mysql.connector.custom_error_exception()
 function, defined in the
 mysql.connector.errors module. This can
 be useful for certain frameworks to align with other
 database drivers.

Bugs Fixed
	
 Fixed version-specific code so Connector/Python works with
 Python 3.3.
 (Bug #14524942)

	
 Fixed MySQLCursorRaw.fetchall() so it does
 not raise an exception when results are available.
 (Bug #14517262, Bug #66465)

	
 Timeout for unit tests has been set to 10 seconds. Test cases
 can individually adjust it to be higher or lower.
 (Bug #14487502)

	
 Fixed installation of version.py on OS X:

	
 version.py is now correctly installed
 on OS X in the mysql.connector package.
 Previously, it was installed through
 data_files, and
 version.py ended up in the system-wide
 package location of Python, from which it could not be
 imported.

	
 data_files is not used any longer in
 setup.py and is removed. Extra files
 like version.py now are copied in the
 custom Distutils commands.

(Bug #14483142)

	
 Fixed test cases in test_mysql_database.py
 that failed when using YEAR(2) with MySQL
 5.6.6 and greater.
 (Bug #14460680)

	
 Fixed SSL unit testing for source distributions:

	
 The SSL keys and certificates were missing and now are added
 to the source distribution. Now SSL testing works properly.

	
 Additionally for the Windows platform, forward slashes were
 added to the option file creation so the MySQL server can
 pick up the needed SSL files.

(Bug #14402737)

Changes in MySQL Connector/Python 1.0.5 (17 July 2012, Beta)

 First beta release.

Functionality Added or Changed
	
 Added descriptive error codes for both client and server errors
 in the module errorcode. A new sub-package
 locales has been added, which currently only
 supports English client error messages.

 For example, errorcode.CR_CONNECTION_ERROR is
 2002.

	
 Added SQLMode class in the constants module to make it easier to
 set modes. For example:

cnx.sql_mode = [SQLMode.REAL_AS_FLOAT, SQLMode.NO_ZERO_DATE]

Changes in MySQL Connector/Python 1.0.4 (07 July 2012)

 Internal alpha release.

Bugs Fixed
	Incompatible Change:
 The method MySQLConnection.set_charset() has
 been removed and replaced by
 MySQLConnection.set_charset_collation() to
 simplify setting and retrieving character set and collation
 information. The MySQLConnection properties
 collation and charset are
 now read-only.
 (Bug #14260052)

	Incompatible Change:
 The MySQLConnection methods
 unset_client_flag() and
 set_client_flag() have been removed. Use
 theset_client_flags() method instead using a
 sequence.
 (Bug #14259996)

	Incompatible Change:
 Fixed MySQLConnection.cmd_query() to raise an
 error when the operation has multiple statements. We introduced
 a new method MySQLConnection.cmd_query_iter()
 which needs to be used when multiple statements send to the
 MySQL server. It returns a generator object to iterate through
 results.

 When executing single statements,
 MySQLCursor.execute() will always return
 None. You can use the
 MySQLCursor property
 with_rows to check whether a result could
 have rows or not.

 MySQLCursor.execute() returns a generator
 object with which you can iterate over results when executing
 multiple statements.

 The MySQLCursor.next_resultset() became
 obsolete and was removed and the
 MySQLCursor.next_proc_result() method has
 been renamed to MySQLCursor.proc_results(),
 which returns a generator object. The
 MySQLCursor.with_rows property can be used to
 check if a result could return rows. The
 multiple_resultset.py example script shows
 how to go through results produced by sending multiple
 statements.
 (Bug #14208326)

	
 Fixed MySQLCursor.executemany() when
 INSERT statements use the ON
 DUPLICATE KEY clause with a function such as
 VALUES().
 (Bug #14259954)

	
 Fixed unit testing on the Microsoft Windows platform.
 (Bug #14236592)

	
 Fixed converting a datetime.time to a MySQL
 type using Python 2.4 and 2.5. The strftime()
 function has no support for the %f mark in
 those Python versions.
 (Bug #14231941)

	
 Fixed cursor.CursorBase attributes
 description, lastrowid and
 rowcount to be read-only properties.
 (Bug #14231160)

	
 Fixed MySQLConnection.cmd_query() and other
 methods so they check first whether there are unread results.
 (Bug #14184643)

Changes in MySQL Connector/Python 1.0.3 (08 June 2012)

 Internal alpha release.

Functionality Added or Changed
	
 Adding new Distutils commands to create
 Windows Installers using WiX and RPM packages.

	
 Adding support for time values with a fractional part, for MySQL
 5.6.4 and greater. A new example script
 microseconds.py was added to show this
 functionality.

Changes in MySQL Connector/Python 1.0.2 (19 May 2012)

 Internal alpha release.

Functionality Added or Changed
	
 Added more unit tests for modules like
 connection and network as
 well as testing the SSL functionality.

Bugs Fixed
	
 Fixed bootstrapping MySQL 5.6 running unit tests.

 Messages send by the bootstrapped MySQL server to
 stdout and stderr now are
 discarded.
 (Bug #14048685)

	
 Fixing and refactoring the
 mysql.connector.errors module.
 (Bug #14039339)

Changes in MySQL Connector/Python 1.0.1 (26 April 2012)

 Internal alpha release.

Functionality Added or Changed
	
 Change the version so it only contain integers. The 'a' or
 'alpha' suffix will not be present in packages, but it will be
 mentioned in the _version.py module since
 metasetupinfo.py uses this information to
 set, for example, the Trove classifiers dynamically.

Changes in MySQL Connector/Python 1.0.0 (22 April 2012, Alpha)

 Internal alpha release.

Functionality Added or Changed
	Incompatible Change:
 MySQLConnection.reconnect() can be used to
 reconnect to the MySQL server. It accepts number of retries and
 an optional delay between attempts.

 MySQLConnectiong.ping() is now a method and
 works the way the MySQL C API mysql_ping()
 function works: it raises an error. It can also optionally
 reconnect.

 MySQLConnection.is_connected() now returns
 True when connection is available,
 False otherwise.

 ping() and is_connected()
 are backward incompatible.
 (Bug #13392739)

	
 Refactored the modules connection and protocol and created a new
 module network. The
 MySQLProtocol does not keep a reference to
 the connection object any more and deals only with creating and
 parsing MySQL packets. Network interaction is now done by the
 MySQLConnection objects (with the exception
 of MySQLProtocol.read_text_result()).

Bugs Fixed
	
 Fixed metasetupinfo.py to use the
 Connector/Python which is being installed instead of the version
 already installed.
 (Bug #13962765)

	
 Fixed MySQLCursor.description so it stores
 column names as Unicode.
 (Bug #13792575)

	
 Fixed dbapi.Binary to be a bytes types for
 Python 3.x.
 (Bug #13780676)

	
 Fixed automatic garbage collection which caused memory usage to
 grow over time. Note that MySQLConnection
 does not keep track of its cursors any longer.
 (Bug #13435186)

	
 Fixed setting time zone for current MySQL session.
 (Bug #13395083)

	
 Fixed setting and retrieving character set and collation.
 (Bug #13375632)

	
 Fixed handling of errors after authentication for Python 3.
 (Bug #13364285)

